Algebra, NAPX-p109130v01
U2FsdGVkX18dZtc1c2gQrZTeiAqKFLvLjwBPaQvwsLmfHNh9Eofo/Wt8NGJk9A2bckgLITaZC3os+o5JfYarx0ipUr/IPoZgPWxRZ+zFHOeW/6lmWttR4x7ljSkH+j5jt99ATuxxKKYzCER0IwtTJLP0f26ViFKamFML4q+n4JPem44B/xIoqdXJKTpWm+C0ZojfwT8xbu9ycrZtGhAxJM4/NcLIAcXVpyOSXJvKY4qIOfK2bSyAjwk/hmvb7MqIKYqjrZaJjYK2pJLOH8AmyK0pLBAw41AD5Cztwo4E7W+i+Lp7U4ggeybl3zvWYtjn958wqzAZE1qTh4sMm7QDpzokXqvWDzys3h3OOPgvTmkURPHLUkKEWTIzAAot54BoRUaXk267TYBtQcamnf/EJ85P7MQhFyzyX/JweupRCOAn642gBcq6W0A6Y47PkHTSqLwyO1a5YMygtnQDKEjHYdZBs82rMowLN9ufgqoFR+/myfho0iJ6Mwbx88wZtq8O29M0hdP5DVUYTyTb+gqyFd2iKki0FHR8KJGQ1Fw+stQqGJ0usl29vQi2qTDJKG5VoK0gXgmboq2g6bokZ1wKgr1bENTSgvte0V39HTx1Cmg7hB7z6wDZUEHdGHH5xijY4Nu5O5LV60s16jDjn6vS6VfjfHMFdZCXaM+k9EtRoOOwUiwgbrlP0oGuUw3XS2LL3Tt13Tzjf8Nfp7MOCEMGGN6Qgidch+gmJk7SAygGimE1PwupdwgmUSEP6tFgu/pumN3yE7x6XJedveI4f2giCHa13k1mzPRnAp8MQyuUDV5rD7jdFDkL6IRW7zQtgjvEhC3moVVyaYGcViIrXR5ND3THwijzbwJxXz65ZSXIEUnNJZXx9VTje3a2xkHcxzphhxtXVTcixRH8SVidks8G7O/rA/fzChTgWvTBDAjuEPeBsmqYKzYfnRjTpEWkk6ri7QkesADbYPA5fC7J80+uRsQssDMRA23MTKWICIiAGqEIGa6NWSI59ZPBiFhWxoLvVQZ7QvLof1uJhGbP0kvBc9oHaKoKop9wV3gxInAipL78Antw0mBc6ixKfpADRlAdVOSaAE+zimOpdgQs5bVWeXBz+9jnvvnQcrx0JZuDNcp5RPqgalaWFjC+9o+vUEw7tIxuqhG704r1OzOodUB8ojtUR80repiaR30idHTGo6NNtZOvvqAdhatpuTepPbdiov4aFZxmCw4A2oAwEPCy7Lku7zo/RxgeBifxrzGBj0+irjRUOGKApV2Z2akoS3oVTpMeSwGD4JN/25QXc+PVVvWj29FBQnMBtUdXUVfYPUsKOgOPvQ6jDrMA5KxfsKpgN6G5zRbMxDXzlLTKYg2IY4+s6jQnvSByJcMNWDxAT/eCXt4fsQ8kwwKsCSgn3kWAHdsabxIJmhFnGy4QVPHf37cHvEp+jCQba8+x3e4EPPdfOSoWSSEBIX3cU8IZj9IAjKgiCyMM4tPkv6AsiIZqTqPGE4AzIeTtDYCa+FaM0aTegAYi3a8wModq9mywV0X26/Us6hrU8ANVNqWUxymBWCio4c3jlWaPDbklF9E6zTe6E5oFmR4F1V/20PJrna1BkxKAixtFL8Cf3qMWa7pfhHALz1VLTU3W2s+vKPI4m5cLj/lsqnUZzYtsVFTsbcdDeuAB5XwI28sJAnQdYQG2vZzO5IpyaWy25xzRJP3IS19y5F5SU4gwsDN9Lx4ZcL8ZIMQRqZSOBRto9tq0tAYbMyqG6g+29kB6LHNPB8u2rcPz8dPDqfFz2vdz1dJdRu1Lcq7ZTBMZ/2XTOu5qDlFWgJwQVjCZjOMZBdC3ONW998yEEcgtUZ2zV+NEgHEJMGrgzCFhOYJQ0BlsZbL+7vA4t5XeJsArpDzbiFoyHtEJUNwWPu1/FkQA6MadOYZqf1fWo0krkOWTJhcxG6jhJNAeY+gZ+cTd3rzhXoidVqm69rs+apxT5ERol2O+lRxgLBnghYOrdnq3SJkqg1EtWNG7dm2MlGqB6hhRsLQjkDyS9ZZEa+Uv7kEnrVa+jMslGeVB7EpP66jqP4OX+QmL40HLQw9fOUQOENa3/bXlaZQjFjYlRASG8dYyC5CB1gr1dvoJ7AjTVfnwOO9Ptm2wOq+py0q0j4WgwYOpFt79vo1QWjfwvZh6ivY2MBgd3unnHAd7lMkngkxvHykLhh2GO+su8CRkEuyHsHtLt/NZ2rkJJv9jyUIyU1swkj8rB20wN8yhGcFYIO7KdlumjOqksTcckOhSP3GTIYb7rlwF8bL4yM4C+A6hzkCpPVmWZdGlvxzhcE1m1F7N1GmlhNWAbfzICkYwFR6FwMuOfH0GBe74B4HpuBHZGRZrco5YFrOvbfEdZcI+MIE8arsw/mBLUDExe4ch1W5odZWL9NL+Hg7j/pDA1JfjxIlr2lRahfqOuBxlSL6Az73z5+E3BCXAozPVQj6JBXAboD9gprbi6jYJhoE2l+gkjT5mLReLTts78RS1RM5iIfKL1g31v8YH2W5KUoY5UFl8ZYfUEGSsmfJnBZBisanLnHe6EiQqSYDZKFk+Re+JPfVXMrpHPozm3ZyXxmOmJhBgV7gNnR+6/nJHnV/6Ssv25lzTANX98CepwLdyBoU3NKGSBiydBge+ki0+n+Vrj9wz4rCXiBJBBDQF6L5CKkzqR4xaBYJbOq8+djUZX0URYSxhKpYoOG+1pajnLgFeLDAW5YZOzQL7+OdNUCyL7f02Psqz/Wf8Jy8iPqgbhrvMpRPT3aMZ20RGwuMu1d12x2QoFSs5V8XZCEGxu5QTJFC+N64RHHn2yyRyvAa/TqDs/zsnCem24G6UBeDtTF/Upji6uKlmqHL6yPa7PsQxk5iIaAP0phnJtUTuYfVqKJoCsTHIodO1BFczRlc9ygiBkvMkhTpi83ADYuxDqrHRVT/hrMUZfmJGYlq8Giacok+gqEetQ4JMg+u8fO24BL3uwi3K0kLal2OxM88nzBSELwVspVDw4X5lF6aQ7AKiouekC4GFklqc5YnGB6c0gJ7WfVwAw+Thz7nuZSLw2FTMOAzvcdM0jX7Fx6V7rZBBxjvKiA+4KYH4dqjLrNpY+tYFoJQe7bPgCUTX58RBof0xSouleKhe9oDIRrGHCi7Gu4XO+9Fq6ouFxYCNjoLbJKmBnucf1RljcFNDVhI55JbNBGQfGdj/WMIrJG7oLxKbQj3ahpV5kCWNoSFA6Ooh0jUXO2QbO6y6R5Oq/CixYXHH0ha1IrpvNFDr21+PhTn2TOrcu1V0G+uX18yRSfkq8n2K4Spd2qASLaete9JgeJ7+qFiipWOhHElWfK3x0K3MEKIZsD0ZtR3Aj0U9WRVVX8pPptD1WsoQnKk66JhQTGWRSpcniZt2ZZwARXEWwpoqwCsOuuycXo32RDSNhdeAlP2X6VrPwxZats87pg94Laq5oSjOyndd+4O6eWJ31UMuulpTmNVKKP07v3xcAr1mkti+umAjJBjQWy8SsV43uXt8TaWZylm21SjYjW6CVK2DWXAGsNH/NN98bYa7ok9d4cIXPPLrwVppcFahcehlwUGyxpRKCxhkl1JLPStMnU5dvl05/x8SRumNeUnej51LPDMs6SWstFyYCrHQslicrIcVAKHF3sivjdhzLU/JhDDIW6g3RX/ZZcXs/pkR4k9W6RQw1y1FmJXoWQXf87ob60tQHzH16JoRdYhoI0jqg+92CBJMAs00/HePpFfRPHFO3/zfZCTf6Vy0IZVqKMjYXfqicWedUgknPhwfDrJCVPgRVxXxUy/pbryjvfEXBDuNRTFQBXdO6hSaEPhnAEw/iTBDbQoQvcXCbRwP/JihWZ9eX/9IIxF+jSkHKletNeU062NY+BTqqA1FywbDno/gVwIHFZgHNz3zvubTRPycJ66e3pVVhjef0jbm480tXQibzk73J0B+AHqVSeoqm0gphcGxR79ow5WfDPsHS4vlR4Ep5xyRRxmG2tGr3g7ZdR+9ZrqAhx2W2ZMsu12wLe2DK+C+ugEneX9DxtJQwtBxVjqWvY+7nr+r15bs8hQeEQPze83yhsfpFLwEyhS/AVOow/C6Z0oFabaHdU4pOhrSCV3bBAdbcS16RPQqNrlKxD3ymwfGpCRgPObg2ZMxnda28YFCRtvxLCBn6qfSL70jMU0fobkoVdRM36MQ4NrHy8N3PK2DtFgIMhhqH9CHReAAFL7S5mE/ECTKChEB0Ftgb8Bir4M4lkp0l6rN6WF9Ss9UX0o827Eq9WyPehkjbd4OEo/ZiLWCODe5lrwEklxHfzVd2E0GSPLuemIZHK+6vvD0fy99fbDq2oQJSc3JhcdXU8vtiyIiwNr4OaL8Cv4OEFmkyIgBJwCOjP1LMAA1LAGRNSzGY8ghCl8ZVn3SaUywrjDXQMz2gCjp4/++Xp7ZQ01NRrUSnAWJBjAOFGhH+iU+xLJVkEIBdfKvW82O9DRow7DiM1BnHv6AiVVrd5zRliUPj6N+0WfSuy3JYEW+AW3MAqt3z1npFkGcl2oqtJ1ZdZUU8971SQItNUancgHMptrkfMjqDTwJPxpJIah9CfGOsreJvbEq4nYL2ahxZB3wAYXunRbUeBnP0Xt6vR5xwKLFxL4ahrE6IRNJKWrWp+NIJNFXa9KBCkNtO20Luv5ItVUtNsbiysYTFL/dNkFNIvAUaVYvxhOddsRlSrf+p5ByxPIHcXJpkHfhy6crBhuH8SD4fwfOtoAkbGrsJXsLTA+knI4eGqSV/XhbaMvANmsXu3Xe49nzSkOxoj8X6AAHz2z43be/Kj10DZE3MrXuYGAF7ObcpmYdWDXf+b8vETB0QCT3v7CCs6z+HyMai0raOZt20CXjsJEqML7Or//SA9whKqbrDsFkOM3Lr4adplcgnuQH9Y5ZUwvaTMptxp18Pd9sSiiMf2I1E9wHNm5qhyJuUbAAMNkla/NQ3FeCjc45NmtDeuvZOcvA6+TPHRuLtmRgXPl8Y7uiiq4E9De7uDfqByxl9QyogWr8JfMT6tNKxpngIIZeNxdRCzdfKsnQHUYypJyNf2l5QsqoWTF6ys0hzlaVUb+TI4AkAUnHKevVNNShPf8TF2JUZfxZrdwP1P/Jy+rCnAftUQow12qJ2W0P1IyoS769z/l22mcrm24hCa7qEO8vDz+3CPtH/KKv3JT4BDYAFP09zBRSQrxmpyvOlOgOwL2kGamcLBT9GHenZ5CiXB0sM6HFGqn2ZeAKpC91llzzsAixv5yh38EznCq2vT0HbMBauZwgcK6EX67sbJB75Gi7MJtU5wEVDc/b6bN1/4TBgP5qLDx3U7eHJZzujTV4QlZqqE6bGgsHYgKG+QjBvrELnZN6OiBPkNiatJzyboXbJq/Fin41+O16sWZeeqEVtOHNGf64G9OkwjjVwgWiRN0egdLJVq671cMEbsxN/QD3SxBSt/ZXK8Oj53GgcO7+wEZhuCWQMYMcb+zlTKToincUr7FrnoE1CPxiGS8stgLV4fWVVb62wpAGpo6rUX3krmelYzihb9upeTqf2vLRZQW6r8JVwllqCKCI8ZE75g2LSN52JGhVxonvXwHSMGopg3MwLn7s0Vsef272ek+0jeKvAfWOtzxn1x4PS72z/hN77BOWUyXthq25C9sx0L/Rrddv5/nzqgP7mmPuEHSf9XVMzv966ftPkbsRQEvCmSt334YRsUNWsVN5F6ewJvKGiuF4GZnLK4yG2OrSmwXmjYpFaThIhZVYJo/ScBeQ7pI8DX40dbkjbTqY3TS9GNMngRRfaBrcIQfOCv63R5dRXC5eVOgiV50axlS+XoYeg/3BElEnARnV1oxMGqoMxtWaQSbp1oCjb2edb0EIt/6e0pxOBmYXRRvZnHrLjhDq8BjwpL++Q9ItzfZ3CQECaelGrENZAtTTzWRVkEub6+Xc4/G/iaSpWESrqn5q5BVBkUEA8hQgPRYLlHlvpEZZOyrjvqNypcPgtNdQXcPpXEjzjmFxbH7oHd1uNsYlUEZhN63JtpE78JLOFTNnF+oiSHkWK4jyyKZ2oVtF6ws6G4iUhrHxizN15oJ19zLNIUBUsGWTRRMwWGD0q/lCioUZeOy2qzROBRkaEx75Qw0hBQwde3/uS9ssSb6a08R+kJxbyjzmoQIk1fZAkuept8L3DCtSy5WvskpK6IYTyVsLjcS8usD01hskKM6V9V+pTuZimo0Gh3usQ63+lR3H3ZacpuNgrJtwglI0pUaB4IlBY9Y1UdlYN4ZW51A66H5/Q8TVyoo5SfXECOzWjvpmR5MCpkiG5jQyJ43HPK0Zj2tdMkX8mFnolEjtDNn6euJqxbnu8pjZgG22TXtc/LYcZcxfbOivJMzUlNDtKucZ1AW8v+s/H/1r7RoPXjqhtGA8RBlycZ/X0e5PDMZvZMzxc/+V1GY/fwJt8Kda9BIoCmb3tYSGRKp3+5qyUSX+wlqjM0qxDcidib2tLJncA004Iot+pcR/kat3ZVLJQbQTWNBQTAueIboU954/ZMX0UqkenWqzuSwC5Zs84uo8ewcpzaS4w5N4pL+jEykisOEeubY02J9qWy3QhVLKr1gw9PJSa97//yiPXA4oZysrMTCa8bRwB0Y/V/qKRwoZnX5YjcxOxKVxpDOlH/rDIiI8AkhpkEbkVIuKehIAiizvv2+b9KsgcMswohiGbOLQ6bt7r/W5aeSab1SZROGtKz+woYdztD/3LsExr/+CU6pk/O0o77h6wgPHcWC15bveV1OqnY8S8SoIenjskvxrB3pFXZeSpQNKLk5RFoLZuSjZkdsczQiT7wJz++mDPOTah8Y/wetlUw8SbikS+RonFUg4sh7/AIOcsWPOdFFUf6hhoVmWGWNuNoh+EhOt/LOic2Zd/cYwi/wUxu0Hd9PvAOUsyW1GUscd586fJNCQrph+sOdwDE3Z4dXGNA6uOFqGPCuUmb8GmfU92FkfBMmi/eCYit/+G7cuMToXNJdETfCXfreqnOQ8Yn/Ja2E4GoGr9g9ZyznrJ3m1EQbRx4VOQUHlYyszPc6qHTwIX1mRu7ODdnaZdBYsRZZncG7u0a1XX16oALZPS6g6rut2z+QcDk1k13tC2GQZYYwU2A7Lql6IZU3xLGRYOMfna7PGesc+BcxPnrLq/qj0FeshdNzD8E/WXJ/rnixvJpMmaTmtm+fv9VoHnUUiDH6deFxvJT6U+01PEk/eghUjhdLjoeIyHeQHDom+eFW1J+HaG9n2k9VkLd0RAu/IkK7j0mhr38ifxnXH/0zruMhpV1A4i/0+ymzrdfftAGz1jTqyATZML/+v+qOR5oQZxIOi57fxlFy/5KyZukVOrkv06aDlALs5z58vRuOjZmpbsL3Ap1dA+r10UMFQuB4f/drn3pqnCdeWDGlQ89mVoKAsUEhi6W8+t7P1G7BTcBlOnxNo4GZraPVQTFJ0LGG1o6Qjw8l2njhXa6wnpoBYqRJfFL9g3mufSh/q7zdg5CiAHx/Uk90IIViD3evRf15RLS5Fz+yFJv1fL5kiHNTyUbn7oHmD+qSd69EwDzNZafsCU3jnfeQrsdtHSPHrk4QxYjqtKS0UBxy0kReH6NesmB+gomGHkEc6rc/RBHqOq4T5OlsH0ZGG3er0U0d1zeNgyO+/IAKUxHHq3VuR4yDH6Y3cbOf+GkyfFmXYslBDKSikthA0inMGDEYUnOStWSD9UBK9u+A3DRoH/ghLwSXRloJW4voSuRXGxJ8utiQAAluWyMsoiGIsNApkPEcekQRXkiGmfBclG5ezGWPGq+icbCieXnDgxXpv5THQPZ7x6kF0iProlIbsysX+oC2NFqxZMDJTObA8Criozlv5w4CVj/KRbp87tL130PFkJYo9ebfEuhr8C3mSQeiJao0YRroWknMfV4iLDx8XFK1+VuEhpQ6zpor8Lyr+AOf+ybl0MqbsFIoIkEmIVyZEEuNKRLTJjR7/24PSk1DmE06CxTJuMSauE3hYW1Y7p3RGS6dS5eGDFixWXwj7cSDA6bhPXFpBOYLTyFOrNgxH/oBM6vQNkkmWqStvDHaBCpchZbRc7PudeCL5cH19XxT2UVwpYAQ4Bty0V6Aiq/qrAMZckguqI+qAx74Mp1WUtgloaqiKYQedsMTMsX8P5EvUbD+Vwc3Yp5THdf5YWC3KPR0hafzsE8aoX1Sx8xImqfiGW6EqgLQdqa/N2Vuue1qeDcKchOTDiPuFdmrwvh0oluZ7AVf0SVJCVbxSfN5bNnpXhrWUL6Rmatmvf3QeRtow8WUwWayTHEmyvKIDPxy+BmOUCmAuImVwUnSRoL+OBmu6RQCss4fdsFvvy6CBeBh/kQzB/EAPtp5pRn9f2gnnP6QCMtcejqfwuGRyAQy9XaI8WbSOhQWM6+H5o5vieaknY9HYaKPDoywn/U/5OIq3fdGG/N/lOVw0d4TZYThzex4A9j42TlzDPaAdBH4AQuIZBaB4vLnwQabvLqoniImqeXhR9Zdex9ubP5OcJil1QgqecOrTYIVOk9gjqxuhevbL3FHRFNFkgGyhcIHNETALPQJndigAwc4MjFmBFfiPduPyDDrPRXCwfi9IomUoirsjiLM4t74UB9JLGPhqLdZ39GYOF+9QFA1XFdTGinyyQDq/Lv/5OLui97f83z5q6HNQ16fyzQ7h1P6RULlw5q7jSKZfQCSL2/bJVrgTRrd370Rg5HtKzPiFbrS4zVu3QPmKVT1tjzQBYHo3/PcoJti5yT3RoOSwr9Fc54+rkrlQ+K9Z3N4WdFKOXabdVhLqZlHnu0c/ZOyVtmckCzlydLQgrpEsYlyiwCLGENAly1KmePvR49nr4VqlQ8kbEtmWi7Z+067BUMzqZMVkl5sSVWoEFlbknBVYks9LckLvQLHgrWC8RKwh+CMl0uA8ywNZSIU07lY12VJL93FdW/+lYu31fX5NRvOlDWUs1TLoBVckcLH1jt7M8215TWjiCA2SLTS8LanDYbSRkdCVSZd3KF8fj/0eC3jR8wqgCsOtpNgTM78vf5nr6BMmxSbpZtc1tW4wC5t3N744r3jQ9t9NocEfTnxxrBlM6toqoED8N31VzuJmMTur0VPnHakAq/glSh+A6koo+HtwWkMMeqoUTQgm7EMqSE57SjzLTVQaBNRewR/4J5crWs3hwBPaSaDsRxMa2itcyyyh6Vrw7TMFIHM9JISKlcpD/7NcWTAbwvS2nsku6GVurqydbghQlOKjyMf8HV5g/3gF94QRV2NVn1qVURf3j0OJGE/kgBtkz1x+lkJhXXEPBFFfISMjxgUk3n90SrzfRj+XUYp+vsaFhK37hqmA/Kc3sQtSu1jBbs7jhuucXW1X1vdt2ipkmTx6D+el7azoiI5IC71FT+nXhk/EMwIcjpOEH9VjclAA71tUK2K5R9M7vz510zUmSjX59WSRfBTrMZWaloN+5NLBU73qd0v825M4qdtn+VfAQiETFvl/P1DtfdUtjFjgOtq4C6X+r4EYG5IPWPByoKKI+5ltVrkIjRckZdmw76nEieVOv7MYZj1ImNl+/JWd+GZpu65sjCSTbi8nxVcxT0ibb1ts4W1PLnXjZl/86tPVHhLB6L8VyaV2gGMQMe8q9YiiO1PboUkzeVJ62CRW4y5ZosA9AoxUsdR04R88cYYW53WFTN46Oe8WC/G8aeNH7YYezkUslnIyr1dC06dmT2XqjFEdFfTHsxAkijEmfdlRi2J9+v+EtWBT9TI5QMPzYUOtI0+aWw+08aVo0t/EsHXNFPEh6yttiIo5h3aoJ2HtqiXf1DiFquXvlbvnm5qYND4M5zLUPVmMdDxaFcfNwzG9vFqqFyEHyAE20dUtuVgAMzCxBCrRIUKGXOjSxFSlAWuhsxsMGyT2+0gQ13Ojc2UUPWuK/buJYeM5cVzkTHiwVBS5h+pB9PhfShV6Gn1F7AX12twrfhL/hO+gh5xLJBfDuP8Dwhr05h550NW2C6k9Vx0HbqcKZxsELcryUejd84JvlPlM0zfUzG81LvcPQC4J5cVUaPwQv4l/EzjDGpNoife24dO36hrxshpSGsICIFar6eRzmaMfQ9lPlerXMNKY+iRKzuFVFSLjycLUqDp9ucBIFTabWBitbW6fWv+8LxDu3ATUsb7YAVz/PQsalvEh8H0/2Kmhcs4QcbsUNUh3hsEc0wDP35zWdfk8t+mA8BI/QXUVyeadPxJdFcGLK6YsPR9Kf+PHZHPqXd9Hzhmdsn2KXNZ7ZGVbnC2Lb4k79VZ7AQxwb9xY0BfDgEguOLPosJvrFLn61nnhIG52koobCWDWi8Cwo3SQGT7l2xixXEz50xSzAVTEqBafkJOIsVNCjwM/0Pbf62GqDf95Ue8E75hmAyZ+W5VOQlKfc+GRStmBK8B/2QkpxpydPMgSYz/ntUKPEObEVM8/VVawy6ZW5c4Z+7yeo7oY3wWyZgUrxDM15+wN05Xe+FvECbzP09y18eL00ovTKNSv9F/Zpbhz6+VwLghmPmy2+dEHA8q8iRvn3Xa6u/w24pV+NtrC0ZR0WJYLdUrxgMhdzXZiFsoPHsDKEMGmQkfWbfYco5dm5CZT0sSAJsfJm7OYEq/AX/AiHk9HN7ZX8aNVmkykCF8UtyBjJYUYKGAeN7SkVVvVtsH/rKRZYHHmCryQhJoVWlUayK3E4s/hyCjtupJPhvozVmPUqOhtRdgQ91r/I/XDWyEcFMf7f6TIRc2YpwXuCAhJOLzfoUC9WBkm3b/s5vIlXn9L9u3/mUHJ6xbQdbgwsxeAR/R6S8dg8KVHZlPZp/wE7ZTHtpzINBVFO5gzxxGaUG0n7bmiwKpifGX0z/mGHxdKk/JkLpggQEeQYmbXd9GwcOv0+sYHEXvX9bMYLNfnU12ck2XyfQ15rvuFu9z5Bn96wxuFQct3Tdd30KHzAdWDjvak19lv5Lxym1RnwAYLCbHWrniTTnbjGGpK3OwezTdwhpEhWnKGy35LatDC2UwuAXRX0fnG0knLdgfImWbxlBIEQt1uPQJYsjDdMK8xcNlZnRGyUfhXe8qDzY8tjn4qQkEnZlaxMafKpEpiV/W4zmzKT5uLdANwiCjS7hWd47s1Dr+LFzTSEwZIU2nntPIUk+Va7cNVXhEAZYoSzihnr9lbRsyQGWuhUO4mcv3sGJ8ROkqd67/qs9SfNz1BhJDnWzT0IJsLRJsxL3NyhmP8v4FmUX+cYqGA+d0VAGPUV6zpOcZNntAhSmaNQGskKz4Qeq1TNSGyKfvttH10eV8eNP61E9CEA9FK0WwZ2iC1MjOCttHAAQtAdQ0/gROs/+Vn27qgynY2nppqri1gJC2VMAX5S9joKvurBsRpexCsJ252BHXR6d+YJtsecSSqlt5cQzZZq6wb8cvBZ8oS1/4jQfXTDkgjqsVtGK5SX5qTSZttlA/ycTgd8yd/19gpJXgHY7ZmPjUEaqf0BA8BtAJ2IiiyBcVXVQmIppPWZWDTaBZx8Z/ckDu9f65PyPQiUu4oSIXAZDKKJfI+zpqLJZV80u6BRpngr3rjSN98mMsgfoh/0V5iXVHXQeX/Y4QwOMb+wrRH+iLY8s09zy7TZJga5fbmXpGIm5kEkaBZjBrHUpzVawnfkirkqNwxDOMkpAAaeW7fDkTf2VuBsdSbc2zbuD9z2s6x+ymORgdJ7cjnj+99tXjF/V6ikz2MbyI1OquMdhV7rG6o6KHWTuNdQ8rWlPESBnRQiWoxllLlvicTs6fSKlMxqAYNcfF1m8CWqHiC7F3kDQYuEimvuADOfVTo7K8JFGP+xn6jOJZra7FS8krmUHx8sDMIbpmUCWS6j1SsGvQgSbT3SI4yQX7ucuQaoVp+ZcXBWhI810zRBLr4oUTHB9+iGQLaswgJNi+Q7lkRdS6ZPn/T6FOX+2HBA3ZSFu3ZFV58JoU5JAtZ/5ivpy3EeVT9M+j6l9QswmzvE9UjNv/wSM5wJ3SN/aSwKWDfDbIb7zi+ODWECNQy+0PX20EK7z54Xtc52+LqOFvVJVXpOB6MbZ/dlOLE4RNPSmORImAw368tsyPqaMJSN2rngRxahWK8ciJ70k58TR/OxWElR7YVmlM/xFxV0Xfn0eA97Egq2tSn1M39x1Nk0nf4qtJNeGZ7zjaXQMaTADpV1u8IvVJlTE/hlnardM6Xp6dpXF2IO3RNTvOttNbNkG2zXG1Xa+h3B5TW6/Lw+iZlRBqQZlpq6IlUBSnNQanHVMdDVywJ8KsFnxPVcpU25YYzNUvKOtLUOGXvbu4+zUnRN5TLg6S4tmhewbUTmdgc7zZo4GfVmBtvRu+4W3tRyJWWlkMPVHbSjGWHz0ZT
Variant 0
DifficultyLevel
584
Question
A college marching band is made up of 102 people.
There are 24 more men than women.
How many women are there?
Worked Solution
Strategy 1
Check each option:
30+(30+24)=84 x
39+(39+24)=102 ✓
∴ There are 39 women.
Strategy 2
There are 24 more men than women.
Let W = number of women
|
|
W+(W+24) |
= 102 |
2W |
= 78 |
∴W |
= 39 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A college marching band is made up of 102 people.
There are 24 more men than women.
How many women are there? |
workedSolution | Strategy 1
Check each option:
$30+(30+24)=84$ x
$39+(39+24)=102$ $\checkmark$
$\therefore$ There are 39 women.
Strategy 2
There are 24 more men than women.
Let $\ W$ = number of women
| | |
| ------------: | ---------- |
| $W+(W+24)$ | \= 102 |
| $2W$ | \= 78 |
| $\therefore W$ | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18XNMl2dq7r3Vpe4/WVrPsOJzRNr/Wf8/+qSfaZYUdUXpaGnMx+nwB4BWGEmsE+6M80EpiAxNlz58I1/Sj3YpZIX1cHtcFNRLiawZPdihdXD5x5M3ZVIlM7SKvh05EnpYXA/4b/UblQvgMv7LtVCCOR5HL33lpy15GNVfhWABIFIVnpBZLFBim7BZUOQ0U4xT6+SB/Fy4UbME4hTQjaIE9x5Yoab/71vuxmNoVq04TPh+gfjAELgAdqXvC/vCBwjkQQr2UtNb/N1ja9qUd6XxR0VCcn1b17wxcykmpT3yI0xuVWWSNvncVlAFFFDaY826m8bxpK4OzZt84w+pDjahmdNy8LrejRjJjD0qX/iAzwpVhjdQao5+yApJyA3hXYkjqvtG//xCqAA8oG+QJ7Il4+Sn6wq/v20CUhHCCnnu7BCjqhA5MASIhoBoQuMsHIgHuDs1sVa9g4l7y2JWukbVzTSaWbG7g8DWo1LXwwHsxy49BBn1EWeidFNHnxGwRPg+3a7BEcywKD8btbZJ8LHmqsaB4CPSllBytU8BD1b30vFGNhgQenwo6io5uJq71mZrdOJth3vAbYl40dCWOAIe4YdP6K+FEZOMhJqhNj21LwdyAvLKIKn44J8ZgqdS9pZgnyUxF2NXTY93PFFLIPHcsBJ9Tm/yFq4QoyWi7avgHkyGf8N91RZ874h4O/eJwuyb+1dn+3r96paYV//0uQfqTrBJ7tvidEFgr8e+Ct/14wwo9a71tdHkbSeY1hJlyYdSfpo7WEO85oeMeQtbdcsscZ4YFULjwbPuT+jRPwkWQf/ucK3Csoa/NdITskBMF2xG2WN1FjfxHgopvmEDWFm7E/FKEDE602E5+arpbDhkWmEBA5VEhzQNQm8hHmtIzHWMHOysT4b+DOfitrvSa2uNn8+2yggmiuANreS8zRk++KzClH3xqqDlGohSijE1R+bUbBR0Hyszwre0jwhEj24k37WT9j9r0sKMMJHzjYN3E3sCmv8uwsyacMVAgdIsu9u8Nz9TT7GFCBvbByWxbiz6tCdLSnzoIBlBwxAeQ4faqEKbrAWaSSqvJFkS7UIPZVtmUMAqnGbbBHduJugXTt8VBu1D062zZSY+poWIM6L7zgm4CvLyRqL5uuim4pE134wKTYEtIaxvRg4AdSDgxRv+cnOLRarylo00pGyp0SYXvVf8QHRB+ylVtzMCduMHT/vwfoUTtANzOVI6ItC5z9psWJb3HSPwaiyv3Uo8FAayYOwVXqvR5yIIiOCtT8rR5cgbrg3jzAoNSXKB7gso5DPzCKJfYN9m9ywOQwjYbUtYPdlcXgSEvHNcNZ/dpMKH/xqpEVmUvpT4MM317Q87wXIeXPA1lRe+NF1SVSO5w/tjz0d6UxflQaCmcpyN0YjnmcbNMLMu2uiwwACl/a05n5MGOnr/H31N40zsEPr4u41tuM4I09I0hgeCZn07AWTSdWK908v1sXIzOAp5uZXiB9Fa39B34urKfcg42s42lyKGZY9l3bZ94If9pNe4mYGmsjlNQXCDThFjc1kOJAAQdyBMhYaG2A3lC+EY0UaTLR6JYmmb8vpgffRz1Ng4yabC/w4p28+5v1Z7FYz9hjyecQ+l01n0G5H/WeDVIb2WLV//AC60v4h5rpGgGkC4pTXIWv/xq5tLnueP7PGmP8NUJA+8mrvlnbmVzp4T3oIpiaHMQqOuCr743k56iL0ewuHoUbVqg2NVqlCqhZ/us7bdn6DIx/gO40uF62vPy3XCO/ZVX0l4uECbv1ogVquKUyVi8KMyKP4zapqYP2sWrmCSHJmJGODQK9h/gxiC7ozhPBgphEoxXx7q8L9FwKir03/ad0OZlDKWYNqU8tyJ3uNzICnfpHx24ZjU2oEUkLX6zsDKdjOVbsOmAlD0OVsnX3yy+Kd5w78hURd6iPUHZVe1q+oc1QElht05IlLYmn3i9hywSXnsDaO/9XQp0iyNatGmbZtUyHaGie5/9fPoJWIJjWahXXRhnkPCZm7Q8VCv6eSglxxaPOMJGO6Yu7isXvfB4AF3uOtTqXLtJ0gtDwabP+DA+l1Y3kDl82u6y6RDGA760NNDkKSK9YVRmOAej+yhOO09ToqtYvCMB0qkXJjAgiMBxe766U/ahenAY2L+yISd+d6UvHEqdW5yQuhkzVWfR6JeQJYElz835iUGOC9iK1SSq5TNNesujsoprCVovP7d+e6649YTQ0cYUXWWsf+0RtAGRDLMF9L8NWZvh7INXGq6yMLNGYgiVVfPYKq6nn4UaaokOoMGOdrDCcful0vKBc97uCHUebZGX/9nO6W0Vb4g2Es5+zzSDDBgfUweWgq5gjbOOT7puPRAp2Y6r0ttylaz5whXO/oNZLKxKQm7Po+yng3+2C8fWN+VbW9pPUCcRRJw/wnxtfKP6iZlXP2ivVBRuxl3+bTTB+/2ROINyc2xTa5s3O+/kQuZWvtWdLquwuoWLx5bUEkPBUjmQ3KYZPRLk/cCoCnI3kRoOim/hUx1VCPJOeIKWkbiTUAIH2Hd9HV3mw5pAbE4U7HXZmDFt4IkmSwr821VGjpyKjtyD2cZpKZsx4adW4HUHUQFZbkwWS2sLYDfxkkfVNbKk17sU508bEGpo4a1s+e/l8Uxf8dRZK/AICFOvTKFoCvIxD/T0TNMM958ndUDvUa3ySWjCFZ2WHKXRjLPXPI+VE3oCsiHkFaTA0XPBQ3tSPZIwLJg9NdqAszdl0+FlWnba0105Juk0PxbMtGX40C8GPbu04szndI27W5Dy2Kub8KuUpPa/wyc2OCx39k5B72IdetIQraq3ynF67HTWGD/T9yDA1Wm4wJn9ZxeYC7dD9LKESuhtciqOwpYH+NCMAhVnI1s2kCk1uiakzmvCBSVmHftXN4jXGihcG0rkvIVViB+Eb/vmOcKoHSWufB/qInUVQe6kpUTQAAm/2PcDTAVWMUZZSVy1NIjczvzJxO8KCbIreC4wu8bQx2QyR9FbfofcasWmbFZVvoVppZY40GKIAJc5uc4TmxToHaiZF0rDgogIMj2plsgI5fjXDLOT3iPybM/KYbWa9r0gheLWacxrzZjYDqcl7RQWsISwuUf0O7H3qzeKVW23tsRCNWc2iC5nInMcWi/6o7cyN1hz8HpLUyBNunu5jDYyy2ktUesSo5Yv7LJndgb5J4ulcJCLklRyq56mstk46YaKz6j4mYU84LNzoBXYh433A9brS5Uo8FJjFzy6mbvr2zZoAmEgi7+s/XMGlwShaYOjEOztzmXFKT9e3NgW2KD1r9JKJpLr5A8rSLF+MHu2pjtp4XyVJ4hiE/Ql483kTF1nDv2CsbublOHSBEHsV6L5F9ox07QKWHq5l8UkDjbUyvrzTTexMI7Fx0NDCI7LEnI7v9R86E43FmPxmo+naGz/RIAOts0Phqggd9OI3nK0+XfyxH7NT0h49GB8/VkaXEBajZwclFJNidzxcsQ4+th9+GC1nLji2+dGarKY637BK8u4cfs1dZWPwX7bHp3q4VWIr8eCG1DIGfPH9ku29HSdK8PAsd7JCFDg6V29napSf00mro62rJicDCp1V2Ymn2yrjxFS5eBt6C3HoXp/uRTf+Oet8KxqENj+smS0E+F9WMo8VH8kQhK0YZc9A/S5flGry5c2dKWElk55R3q64ZCJ/tocMtfgvZ1ONeMeLVf5wBZbxbLRt1XC89P9xQkmxIzikLL1uCi+mQJVWuBU+NBXW/MvcYG1o902bWv31yelXKH1VMo+VdD58bSAYcDhnVTdce7NGIyzzlBbxNdFXT52RT13YGO+9z6F/FWccppviVFh4FfStoDXWbMsSrs9+XXazo/vpFNk1cxJbpG+11vy6AeR2V8ZxvBdBiXGKhAH/LlrmMIy57oFKIZuHAWzSeRS8Rcbmd6OaprU5lTviYv11xA11V3pKWdf7UWvYW0AZNMn7Rl52W3NTOGycWVs4cdMr97YRaGX2zEWHKVDMt4IYi+wlwErXUUUZqnSUnciiDf15G+yd4brOwd+56MPy5+6vCqBoYkB6f6xqDQo1uLFSIufJxz8of4GRfrDYxysyEoN3Sjv4i3IcwCqnddAhwLOpczt+Ja7INJ7MTHphtZrNj30N3r4zMOaoV+IMi+GHI/TNoCDfF9uCFebypFJAQRHQNE5PoV3YgqUmTrjhrZ2sHLmwcnH9zJ8rfLEflzGyjEEJ/AXtQ3WU0IGCb1Ct8m0PLTGrRKFelp47sPeYi7R1NIJxU3m6AB/r/FDg6VxnvKC6AGYQOaavdBshtNr4FBzCIWspwUnevTSX58k6DFP1Gi9sZPUUt4tOjtjCM71q+0P3cj+BOgXeksoArZ24qOvckot8NaG9ZbfiwNYwLfcvW2eOhquuLP003WFSpZN3xdlyk+PXhEz9MwhEVM3lV4/7Foff2ZaXCHSnykX8xC9rYhb6QbWqFB+IBooK2ES0tN2j4h+J9UGQIujXlALQTVqxzYC2y0vCJM0sAtDBxZGJqHwiLkRwZzC/VdX9DoFY+aJFdVYS8uSrciqMHN87lnPlk47ParYEYEXxyfmdX3niM+GmprG8uNaVNGwbLN2s8eioraEo10CncLGxIklBeL2idgVxQUwOBDy2h16zIbTofKP8VFic+fmFjutcoF40VfWI9LgqDVf9V9X78YQtY6vaIkgdufiyASLFthtBmFPkdkt249jyszK4x/dp9I1gA5gzhnX6A59o61sNsF6ZVXBpYgvIspBLp+cZ0Err9Yq+uakC7BckYqNbMrbGg0SXabzCHvYjg6aKq4VLlWY6O2/DhaFUtF+uL5J8Ki3O+pxPD/rCmMNwrUPhlruTnJQXehBzCxNbQqkYhcKkPTUJKUYjLsNAwdsnpknmmYLoasjXZ105e0F1XA9RwknlSnkAimOG185yTBOBe5sEDVO1LMRn/ytsmU0ovA3ccS1WK9Jv6+Qw6A6WZB2sc1B8C995xJhgU342jlPjvtmcUAVBe/DG8H9dPh9O9lpBrNT5YQTCLVPlS6p4CEpI4IznrvDb4+nR73jcqHSJhIdk8Hxte39qF0ogTCEttJzMK0kK39wMtGdaKRMcPYVYS2hFY5dQcO1x+VZ/Yl2SbMXgL0bI3qWRenLd/EUvjoZBmYpZY+wJhHZmVD5BvVS8PIDPGbKVFsRZHIf5KzIlBvtqqZcM+NGiWIO3ui8/2tsgHPYDmi3P0gKYaOEcrJK+cENbvmo4aNJIuLC0vb2NzHtMHFlT9lU0dvMhJkmDxqIjArkcpK7lS2KH83B+pEw2cPaCGU96ZPui/Q8U5TatjPe251VkIdb2grIciH0hygZPyRUKM4MdAanNaWJERbkWmhq1w1ygDJ0t9+ISKyBKRnyq9R9oPw8/zk93D4NQjTo49lgFQn+0eSWrdv+ab2INJehwAQrPK9JWO3FX3JTe5g3A/uky0/J/CYaRbfi/emiu5r1cjL2xIfzd7xOTk1imOO/sNz5RENFS+QVuCxfAZ3J+7vS8QhFvfFNjpimur1B/rtnm00V+PDmUfN7qxS8ynV3CkW9wNt3z0vkHkFg2mhLKe8lTeUxld1cnHW2eLf5Yd+VVnzdftlGLpglbg07ffJEXSr40nPJ52TvB2/1w/+hQ7IpoFzbiwhP7ejGuCQXEpwd/J7SCUv2TMjlbmy9yiAObujXgLgkp/IVca5c5epOs0P6dg2UWHKNF/xSPUm3mg1lvFxRPeq7ZgYyJDMfZsNMpR1WWPtoXJIp9iCjWVRJiMfsZdk8zM2+ZRKS/67P0b25tbUysBgwO6+fD4vhugqyi6RnCYhwX9JQK3wAhBWyUeB7pz4935QCY5EZ6Kc9l3/aTVR1sLP9Iv0bVfu/GsO3L5zIOlO3/xAymdBaBSlCGzj98sTtCNDWst4KB7c1Z6Jsplnx0ukSf0sAVcPSTyFhMfoc5cRaZAJm5Oy5FuaOJOnXlz0B+VqC7jxoWCDJudOpqzh5aHF70ZIH+/L4GxkAxXKqg8y6cGnpUHXxYG2FG7k6mmQJ6o/9MW7wagPnDM4axXMPak9QbI+vkcCXdhoTBbHmdPzZr1mZxlcY/L11yq5agl8zohuDZYW0FXFYy8jRyGtB6dbPKLwguEG+WdwZ7kBYWvQ06ALQX3LIAKHZsvS0dGvKnvS4khy9BG93acFZ1WVaHkYwpD6uGGJXI3roUGq4R2tM8biOGpgPAIwzkwd0RrVnkEhdim051WwLp0Pqs5rv+dB9Cv2ZQSZ25v7mumLdMDpMMWVUUmwUoFX9UVR2OYm36hEvTZQI7Nh9ZjL7A/56OSTtGaGuFbaU70O64RYOFoFiEWgMJBGKaynWvaCoVtr7ebvgkxRAJeCpy+qD/XLCZwkknYs6DPlM8K5uvAttV4SR7KL/UUdw7aYJ544DVRRNQ0IUbeOZORiemG0PT/RlGIdZqj3wIEuL9sGu0cFny3v93cVxlBJEBWau1Hy57R47+RpiqkN9AAhYIxeGiBmzVnagTeBF2AVZ6xR1s5EY+D7ZwqXfU3Jo+wQ/D+cejgJjoJP9owLT9mUiFZyV3KihsyPpM90DsmvMaM3MmhVd9i7ljn5oZoB23D/WJV+o+4wjpfpejibxigvg57iiLa2ndd/VrNJLvJT4VSjgxvZr0+mpxtrg+eWi/1i+ufDDvnaNW02asd1waozo/UUoRAh9Iy/1UPDeEKOIKrLxvR/IU+QvC99hj/dOkAmaSliGOfXSG4IKB6mmOCMJf7SlIyMcb8JiSoXxfhMIIM+AEz2Pj3xljCRkRrND38XSmzpIN7/cUbeOaG7BABMubM8YbtBJLA5jWa7Zrj7bzJRxN3+HqYKQVIimskwDC7CANAjmP6PMBn4dc/6VpCyTSQdYv5whNLhbFpkZO63RCZ0NzVdMdBMtUbgMcjFtLryZlVmDUS01RkKXLwcfP/VWyE5auhnY3OERzfxJ9QTPBdZToJSry8u//dwdzrbvaUMKQ/Wsz+BUzmTsSWhuXv5UmE1IwRfahw7sSeE9C7JKgVzDtOih3sAF/2S00qb7k14ENO6mkBCzxrIaajRxyziZK3d5pqR6+P7TDWIvjEM1tXVcGoaKKuYg7T7S3OsrQ+tM0SK7YC/aCLWwCxixNN+WvHcN4sE26c4o3VXbKPDln6Y9NlgbV6IukDHUQCBeq9DCHX7qdkFuChcZeVnQZYjUtwnWfB8zFyyzxLA+HEZ9Gnp6mRCoPldTs1j6hzMGypKxOExujIg24s32XDdiS3TuzlSMkurwAI8aXJfX32VXKXrRFC60B1wrbOFvn7q/BTtgaHRUpQ6egTqL98IDTucCUwNAWAq0frMcWgMtgsWKocUnv/WZ2d6nAooG2lSeHcdW+nRsk+24h6FZeSJdWAylXFYBLFGqKwXr7te7fez5tWtPFmHnKyVlyxo55H8K3AX50Wdz5lFwrJsU17yDqeiKRTdPjgPWqGbut53WkiZs724PHYudorefD4hF6KmFnBfkfIOPd1UBs89mB/wyAJBgkdK+EtCPFBEKGVW9rcj0E+r/j+gHctSfV6JDtfugf8CrbIJeWWdPPxAMGxG7gXSxK0RRGagz3MNuhpY/gnylIZ3ynlX6lDc9Yd/l4NxvfHjZ87OHXgI7aGkvmzXCUutejODpJid9EW8jKSVNcHtBti9cPXt9hxi2ulSY+hTDChcNLJtkiY3Ka2q23nr4LNdpez/ga0IQOV/kRKfJ0JDRahcG8wQre4sK6orkXAcPiaXAL9qa1gK4k/yOGmUo2YI2Ohpq7gDmkGITGwd2oNKUJ+3t6rzSTe8fCstuw+Hhoh+pVbnOyTNkeh+mmOAnQsuP5RzwhV5rN7Jluj2yq/zqN4GikEgd2BwA2GRZV5fXEHheINN4wJUTs1DF/WYJzpy5SttwRXJRuxvsZNGxIrV4Y3RptPhmak+fqAADbmUOHuVSKY1/Ruipm91czu7SpeU5Y+8jEl6XmdVnHAnk6Xne3kRA+N2ZW/XsDUBEGAcyIv3epPaBT7Nj+iKxSGyMPmrPrSeJfaGuY6rHBpa9fVnlBWLOqCNdg11jmPI4CsS3K5Z+qS2jpb2lvB0moc558upDDhGpSUkzPtrw27bVX08uWMXFa7Kia7IkH+CX+GP1k3ris9p2ZKAy8LAxjjIBhCTUlKFaWZBw0GUHKuTizJnMXte5MHhzIb4YfitxALgdpJ1pG7Q/roA4NnJipFb1E+p3s36X6Tda6DJZYVi95zGDg55qqqWNU0gQgR9q/pJ6SQn7opuGpL9sjFPVvAJG5vsXVSVeaUBbWsrpkbJ6gIepNaelwUhBN+ME3DrgJP7U+Thng8FfxCGYJPhB/p18w4Gani6O80oJdJbH/EVLJEj2MlzoVpmtd39z1JXSmRBcVYWpWtb/3iYJj4ZG+qVo0bEed4k7f9eh8oWAaJmULEumrwLyzQpK7aeJsbkaLTaoayyuqT1zZOpGcTtmqIzt+An5NDHfhRXlpgQh6sQymLyrE3x5i586HZsoqVLIFAMzPj9GYq2a+OljVkFh2wHtJ87ryqnhInqUisTzY6/wS6ycvt/qpTXZJgIQWOkC0l3XAuc1SBZ/qL8WFcVhHaUTIv4nJevg9390763J/t2Tec+blv8Cwy1KqqhLoeZPSB8KvOB92Ni0xXmZvXZHRX/yk61x++dTmSBLzKkg5iCfrNcx2y8TX1NuhRpWXoDbDZBr0zYrLh+mZDDLBFQCrjEc+cLuysnfzrni7fqyrVQ1DzO0HckG2PkStUOEMiqAWChvjDhcoE5D7ewYBfGRmHq6aeV5EEUtFumtiLDxnsNhinvjbqZaY0l6vUd0cyXYZAb4AC8uLcKZFXJpdDWn8VCGHkFg0ayOjf0fi6g2t3p3kKJZ7Sc/p3esqlsfwdJaZREStU8ojPXTtYusI2+Y8BiJNFZ4kZkw9Ugz3mmHg3dPhjnW0IIMmDd38JzCocpMocpgiI14EzlY4NlMFnK8Ltmu9QaEfO7iVRTwy55K9P2bxGTS5u8l6OyqDi05P9CvkFkzizlaB8wKWoKXH4CBr6N8rsKpvqDGuruTEHaICe+bGhk+c5M5cImLrrHydIokAadJySh+B36B/puWosarZkwIyYjl9p/tFBZqjzwFdzwCoY8Cv2Ohi7seaUPGu+TJ0K05bBp9RcJXGqiqZLYmFz/qy4WgUnoo1P1bnJ4POvaZTAgqWBoD2s39pW3dKRrZCS/SOYj3KuvPPXRL5LzPww2ar7NoqVkhp3HaWr88D2wMwfyLTV+VJjUagqeIvXkrNk2rbcu8TNFRCZ6adc7QZD8UeZO4f6DbyQCF8c09zQwoBVA2aLXxAsb6MXubIM38R/fqeCSmOcld9uvzpFsC1CQiAdyKoq4OcBfAm7F5brKSeawePvUVKu6auWk464GXfe33T1ICh63bG0tIaR1XQPCC2v5MA25QP6BllOcWX5oKh22x2ZSkgWIruI4tt0Ol+kTiSiKVGXScM65sd6bOg48bfyPB33yUPeba7zsqsjzuavV2SwYppZmnJwDguyRK0ksg69M2dgaJ70yPxa9EEm81OiG9nEPZ9GKvZ7qmx9Svj2tmgMRAC5obS/ZxlzAS59nlS/hOfqLEz2+AMAX8wtgRXsjYiDjcM/ogWSfDIgTEWP1KiRerkeytB7SlGQJW06GhJ2L4fcuqLvUIzwwUpzVWqvQSj9G/v1z3uva6C/IoR2ZHta91XTxY1maVJ/4vL5fLegqPT7lK3WpsIevH3H0d5QsgLdjXY3udGHVn1DDOs+SNjMGE1u/sG7NT5oO7sLb4Z6pM9sjPzoWuD1ogDn/nyScmTEK8vmkMJ+JtHefFTfZROq4yNBeNbu9nnOhVJxhZNCXaOJ6QIyUYSGRPZoo5YFv1CIIUGUC6YbGk86KLYcl65yVxoLAX5OBtzZcd3GYWFywkLLQcp6hj8pFhVq+Ys3hgg2IGVwxsXFeEP2QzhswnP8K6lZgJvn3zpuN2jVopz51a+xIZtcRDKKlEIOmXUltaj3706WPhqryKw88xpzmo7vZYAstKqmjW70FtTGbCRtrCWxa1/tYNt2ofqNQsK3sOrWktX1rMI+OtT58CQ0j3c68dKB1vwT4/uy8pe65I72F/vcnVUdlygnM7ptrRr6S5j+o5UGXzKt7wznMqh9Q7358HhQ/mgdD7P91S3pF7WGLL3V+JaHli010i270rODUsxAtPOUpmCNgYtFynvSBDmhzxLhhrrQujUBJJfeiEwuT78+FkBjxU2hW0iUOqzA3x9LOk/SKqERPAPAV8WSvTXzVUXnqYyYvFOs1iK1NNkqG/gRFupc6opdfbTcp0xVgDc3mB1pwRibjgzroWNr1nMRxGuPGRc3nXlc2Cr4q+j2StythBzy7u5+zXr3a5I54UB0UclFF+IxUumUOKihahb1cs66PRQ9uENPwHp4cIviQ4PJ3DI9b6hABjFw30236kRGGNRw0Um5oAQmxY9Uhf2giwMLbO3+nEhAE+m5V8LGi/0E+qbcK5pQn/bewm+pTATXL7D3fNJzRhHgSaDlEhdJs8CNxD26N0neKHZ8/hPn799uhm4gWUIfGFiYlhGEhUuCEoj4Odz54NTPZ8yVhvtyPgjFa+eZ8rHgRwKHft5S7KDW/Q2vIYCyTdzXoOHJtAoLuX5Okq4b0SSU7PCISGHYtD7dDheu0bJC3HPHJMfxTLrkWyPzyasJXsnjZf6dvYkidoN9+/EsPhA/pdJk9VXCehLrtcj2e4SUyZ+Qn/VW1rpTipDFTzC/kCg6sGsY7sycmEdKO3JuMmQh20cUspsKz/J+fDBIMEJZGKaJWyV08UvhPix+eTuBPtPhRssISRewLuXjr/YgIaQClB3dB+D/OOtMIvkOx79++++3OWaQth1GYJHv/55G4Krj0ZJb2ZBLODDeN4DLWbF+lz08BPlHoCukuhSTD2AGHwQjLovlDZkNToTocHViATMmyuzkPYF1IhNla3EGhplU0O2b8Nfg21fRaqTo70Djk1HA+YY/x5N4Z6moE5pufXvnEhaKbIOcMtYXZNC8kosNkZw3O2cDY2t8N9MElLZhBBNqUwfBg3j7nyZClEs1RcjOneKikiViX74woZ7ha8ATHt0D7hGgsoyY33lF/jnMTxMjt2Hrcmn1y6+ybg5NUHZVtIUpvib6Oxg+w3eo8iPSKVwCPKQZw5jSv78SIkPXzbsk2o2ovRpFtnP9PbNwAfPRXVp6B6jJ+nwO+8af1Ci0iwCUV5THx6KLu4dpkVAi5ZfUYP6XXypEkr7r0d5J5kRQtCxKAzRC5fs8cyUibmks4GxDaKs6uKfnycd+l3jzezjPzfIHpHHAMts2suApLydj69hM8uBPvsq2xQg2Qd6m/XeKzktof0FtVcxkdFh/rFU3m6y0XyDOqST1fTn6lDD4GPEoM8/xcuWm+KOpcKFg2gVuexsGzbOrZdl9dZ60bY9B2j+eYubH3dmdFRm+pczQ9IMTxVItUZQbm8ktXRQJsVUMt4VaMe9CM60bnXK+oBYxJ0UBLWdi58Q/G/ROu90jt4vZjJdjGKl3YEm7jbLHOXTxrv9BlSyl752pk5CNjYebeVV1K4kk3mRJgxqnTdH2A==
Variant 1
DifficultyLevel
596
Question
On a given day, the RSPCA had 87 lost dogs and cats in its care.
If there was 11 more dogs than cats, how many dogs were there?
Worked Solution
Strategy 1
Check each option:
38+(38 − 11)=65 x
49+(49 − 11)=87 ✓
∴ There are 49 dogs.
Strategy 2
There are 11 more dogs than cats.
Let D = number of dogs
|
|
D+(D − 11) |
= 87 |
2D |
= 98 |
∴D |
= 49 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
On a given day, the RSPCA had 87 lost dogs and cats in its care.
If there was 11 more dogs than cats, how many dogs were there? |
workedSolution | Strategy 1
Check each option:
$38+(38\ −\ 11)=65$ x
$49+(49\ −\ 11)=87$ $\checkmark$
$\therefore$ There are 49 dogs.
Strategy 2
There are 11 more dogs than cats.
Let $\ D$ = number of dogs
| | |
| ------------: | ---------- |
| $D+(D\ − \ 11)$ | \= 87 |
| $2D$ | \= 98 |
| $\therefore D$ | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18M84/oky/OZEU4Nbkl7NNJl7wlgf4jZIL4vAG15DNnvOvgljAttGVUnzgbHwfZXf/v6gLMWgtFLE4Ikcxu3lVotazEevf5Gtb28kBNRvA0PDB9C/Me7ZwekRNquRKcL4hXAIxCsfSQzqiZWTMu6xjH5sHZvNozJl5mXbv6HHDga2VWRS10K5sWp4BI4oPG7jJI/x3eCLpApxGzW3uUqCJ6qSw/HlLY3ZrD7q0nEzaJ01dSNbBQhZLkt2+UDKGuBjOe3SXsv2Bdwp5NFmtt/sFCiLxnxkIl0mVc4p5x1pzL/iaiuRvjKpENr5Z6jJGQJp1KyrBTChKPQknnoUjQmKrplrQwDhtKh5JjY/bh5nacABqOCbXoUft0oqXJVfa/1JJH1icLSoNSq5+yqQNm2bx6mrwV95klwl0zBKmrNZhKhSaUzrduj2W6jWvqREoJOgi68GFNj6btRUTXCdKmMTKwtaNG9VpJ0a4MnyPz6y+UJFoBBzguVDH8x8FuMmUIi6y/sFUjfAaQXGK0fb6pZks1n2a1BN78XIluWhVTkvoORHXQ7Okk+fguDYmknHwlCbfBfReQUS8HZJvY1ZK6zVgZckVdyah6x/fV0tvLUIY7hppNrqpLnASEt/c02aKn/nzB1zslETWGDs/tl7COOvLZ1VRPpa2H8XV5ci1xFH/1XS5N4FnFw/Dz7utbRycDQDaNIyWsusOMuJOO5y62OolZsRdomLotxDTOrACXOy5QLN9hEDPGWc9Rw+4U9khF/i8ocBj4oJIPopqDTBEqW1BnOVMq8ePituxVo25UaRbYSldVg0VENL6i8RV1Z/KVr5a9SnZZIVix2tZhWpNCbFfiycVQiOJytqwfdbBbMssFtDGj3pLeB/c7NXv9jMIg4O6k+vIBKIpk9lkEX8f/rtgtrz2tpFX4UsPT9asVrpiZN3G2jZDJqMBEqrFD9PVHtvtsNmAFAZ0u23N6kc6EAqyBnL85UIdcCZqZEKS+iKg3kfAdLb2cGsMci6zwyg42VSECkDzweS/yWbWSLjXkMUP7q1qXoI1abuzOcdinTSwJUiUIB8rxH0RF2Y+qjI+b62QN14fW+x7nwnw3zcbazS+RNRucz/4jTWmGZSUG3sV91drL3K5q0AczSLvtwokStRHg6NSY9eUQVEKIuxqjDjSbgJlOgtTi80e013sqwq1NvtrwAaICEfIRaw6YHrdfMXh9e+EFUsTQdmhWZoWaSY6ZOfj3W5oedsbp/Cz+feShKtogH1Q+dewqaxncTTioTztLuDOVOMvnrvBRYfoKoG/+TZoRhYt/Gj3KP4bBESeqPy+wWSffIlKhVAIw7aOfv8JG8m8/pEhYno5z/ZPGxB2Sscru64xQb2Ly0qOSbeBVkyUTM2M0EP4FeTOTmphe8kOL2zpwFXXhsVZtfH1LyZxKDMYkz+ORSE436x5bA3eiBE0ZgFilCSOzqbMd0+RdMd1aeG7z/oXyJs1vtGpqVqs+cTxL9dpHLGdI+oOl5Mnt2+JPshTxbi/YAAHlVd9glCQV131bh0FZldbnudicEiS3mcmIsAmdsif6UL6ZstKRr2h7QdmBVmrvusmO8blskPsxa4VYU95qOdpf0uxV0ulvVsoBYKp7Lp2CG+xm8k5tIGERJAHCfjAazxMZ/TDJcds0SV5ANdP/Xu1T4mFZulYMtM4a1pQ6fb0ZVVTN80ig8iExKyh4/6jTDENWdgqO2cK4fxWIWiyUz29Biabezx7tpjay6A4ZYsh6wLulpEo+s3r5v00VA5qrnIHcOahOIrYp6BsE6Kn65/9Ch1dvBfTfeoQRSp+7aoC0Vk+fUUAAuXySTVRGMK3iowm6/dYEw6LtvNBzTQK507Elz3izyVCLZ9pqGz5PYjY5ybVRtlLBcseTpsx2RuUwl1qiGMdmIY5PLoD6/Tj5vrISCq4ZHi0nDHIaSRp3BRjz4Ky4cITegD2+uPD9nKn9/Ubl8TFqQRr6AXv4T6zLff+Ssd+MXsCzzhk+YCA+hVzgRQMaDJNH6GmoJ4aSPRgS5zjoMK3aoUrwSCE5WetdBglCQpmflaR/hiGCYMcQ3U+4KtWsAXj2I2bdNLlbxMtSVfFhB5FhxXxNXgTxPESm0EHWOGMqoHieosxIH0bXAvXqeLFPkCWNabLg+B2dVK4gfgX8olGsP9Tg951Kz6Cy5zwbRlULXm8E/drL0xl7sbLHiwKpKdvFqaZAcETSEWU4u60enXDkQ1o6APuunYztFMETDku6nqTg2zFkI0lKVXD3WAEqQ+LoNbykR2RuZcdJ4cLexeRz/q0yEjReuoz+LZ0PQ6oAkd/ptUnIVjZyDsV9DKcXD9yf07l4piYqEQ1TO5oirGtcmQKpk3lSquk3RUOnzsC+aRTgS+ET4VqxCdcT6IUvCa0GNBkq+5rH0b43I9MuyB4Ho2GeEaIV1mD8rKkutJN2IwzfjcEq9Jn9ozWGZoiAgawCkhIc5/BICXD6uUgTaV6MHcWiaOyJpm1Bz7KBAQf4tpNkc11JfRUVLbDJf9yN9VKteLKaTNLzWoQ+I45KhGKxJj6NdHnB0WlHXxjbfNU9g4GyZffLNfMDrpnc3ePmoVtMdp9hEETdnY0GQynkxdkEv4bQbHRJ1YJqOshQTmVA6tfIM6n+A9M+zq6K13EgECiGYMiPtpzp48YwlXIaTikBCQWFhU4mMV5l4aP3Mj5eRI9ZYNs9VOIxrBZE+kG8WmqZJY7Y+mNERvUnLvUpRld+yR6q7N98+rbJD/69sWE4XDuveNBes3Eeo/RI2r0ciEhni+Z/oqQU57FmEmN6tCssiF9V2dL5z/c3+c3DJ5t4nIAHKBbOaBw8KHO6hR0wEGUI9DQPIOH3ttPcHkXx3CJ6rNgeouFFNUnLv3JbxVkKkbbz8vmLbxvBI2ZD5L0hmECD+4ATrspF1BzICT72IRZ2pCT3hz9VXC7XAuwcLwgpBTxiu7o/vRI6a607zVvBwbsZhkmIiJOpUnxrELmhPbxqK9mqONkr0xylFKhs1V/xc6gHjHCn3ZiKzqd4RR1XlqVqfXDIe2nR4KNB9GR4eukQmD6+dpicpqcL+7Li2+swtV5wekFml09r06JZdP2vvY516TTYKux06B6b3Pzsvu1ojmrgoqtU7YnsLr08S/VAmEl793Hws5+piR+ZTd9rkocnX3Xd2dXwZh5NrCFeF40bveMBoHH3eLybBKngiOdfTkyHAQW8RbY5lnJuh69CO+l5wzHt1VKAnrGW0x7UrI8SK9/G12UvJHfkvM3l1d4+b46k/GoFpubwmuC8jhTCb1GBsxHYojwtt43amoMFcjrYac3H0TTrjeeICHWZ7JohaaEl5W8Gtnl4/gbNKX8KtTelFPABBbHuOcJOca0Pkys1m+G7zT/q+LouGNkN13IicB3a//Tx3gPRBSLxjZjdgzVH3dK0qXIadlGAzBYyRSNkrSbQyGZ+BtCajRXASTkfq2u7y2C8hERT5oJSGzZ2zpVNWKgfyyZ8yFiqgS091KeJauBirx5jLTmPnISAqW4NsWbKKs5GYaGx+CMHUTizCJ7n4w2wj3FUTq72kZhWx7Mx42xWQ1ptzcESkC64YyaDcQ4y2oTUemjkbk/vytLmdsQTPMylhkPcpbaSS+1JQPDS7GXdNB/gF4z7zAHocazU/b3ujzAPFzwKM9aE3rkiyRw0BMVU8+T9Qw57Q6JPeOn77uUnVs4pVGBqgJ/DXQFbY3uNbUXo2EN1sH0ZQMNXKp/A8VRQRcRzNyYu7MUL8BoavVi+6EPDD7WSbuwjCsFwRr2ccQ50k0GTt0VdbVUa18DxREje61W4Xqs1OJ2CWxw9osApYuGM7+A3+RdsgQyrD2PuoMU0pi1ja/gUuuaJDTdvfZL/LndbFaCwZeDRVR/b6yh91ISa4t6rcXEqLNV76fNdAX3g4p2lGe7U5doQs0aPyeIrGrjduNnq69bGmzJRveHItbI99czgoRzOD0l2g6t6waBRR3lUrj8z3AGavG7RAexzEbzWOzz7cHb+rjV7MnsmKxe1EeOYWhp+RTJT+hpkPFfAC5q7sUov9/n+40Hpw2jdzELaUS3mbu0kctV5vZVyn0WLMgSsqilX+JaYx2EFBzelb6bcp6OqMuqMvW6jPxLFBxhPQaLI2TmVCd3/KoLlEO5kzUiXeXQSjSdsODA0MLO2N52WhzZOQUq2NcTTsZDYUMl/JmPZVBRZXeyGqu1sgIdntpNvv8P2Iq+bZrdv/b83hkxsE2WJWOJRUC+RXIp3DL94yutqs5DV6y5Ja46zoa8VbkTZKntU1ef9qIqBEo3SfOmbylSyEoiv/k5dW5YS4zWfog5WiS3W4nIvlccrtI7Rk8eKIHmaNVOxu2LNjc4+Eq17mEXRBJvocgjv6SIUE5OzzsCrSglC7/F/eoykx43r2dILKhAxvk1g8gfn2eH8euEbMRzT5g/GURMpE/tc+Py8oz/NaJyyjpXwMMhqD2rBI7JYq3Lyytb0I0dAw+CD0xF3t4yx2eYmY1TuUTyWYkxyGKpUEysgId4idzYpB/kKXyKYO4W9hfi4/2Kr1Br4HlyLJ3TlCfYx5ceE+SpfmfpgeDrQnn7bniBjxPOrwsLPHTihXYeYj4Abqdlc/riYUvS3RPz4YXV10xSC1lT+vPYnuS7ZGeBC4SeTmGNd5F8LJlHhk90gq8ioDadczaKM2tZARLD5TMzTrD122R+YMQ2qgwcR4iGiAP1PuBPUKQaGZc01Bs6Hy1rZXd5MsU3ePSKTiiVGG07d3otni9Uffaq2axBNYDIfs5afg2X1HxReUIEMIjLrUwIvpLWOzxPvzoNarOaYEGhQ1f1e5s+gWaSxHvuaD+UVoDcu0tuWctxitCS+bQavixBAI4KHOwcyXBGItRGKaij3ZztpadS6fqGW7EE+pwzzbzVnLJiZDxYDoZBfSJh0dCaueUFpQ+lwMHDnuYCa+gSRaimz4RRr4IFiKwuCyqX3Qc9x+KMKnZ6Q+R5w0usJNx/uZVnuIglzbu75RN0dq7bsBXg/BZ/G0RndwnkAd6t1iCTQ/QcU56MpHW6/DO8uNOLU2SP6wN1OjGh+bEd+IB2pIB0kgkYtDaPP3vzV9SC3Pc088+VC0jJwgsIrbxSAH+7O8GEdrPybwDmLAv39epAWmZ6lDHik4zdDtjwKp5iYbq8Qf/eOe0mQ19TqxtKUV87rqdjU9QnUIZCoQe7u8W5fycF/rsJxTTCsTj+i0VkUR15byNFJxdJ9YHDvzjvq6Qc+NbYPTYWjuEMqzsDIlGmOE0yn3PGsrItKdTnIngBb9Ry045cW8ov1K8/IybM1LsI0kug83OyK+ui6VgPz51E1ftEQL0QqZ8Kk5QeGOCTqOqYue23HUqgaCycJ+RgMRckp+rAGEMgQ6fwTG2ARTm3nX3W52X012zZFCr2j2onvDEOrssV1XwbChwMX2FtSzQMgnAAimKACYmU2vISp1e48wzSVwUUZHPBz64N4pLJjSZwKz5WO0GlcuZBFkl9oYzuQJf5wGkxx/xYQ0kGK41L6b1qxhMlGufHz5VUxGBR2D0DUjgCKdV6pgZHc1a5BjLqzPSE1he+h7t3Ap4R8Z+tBLsR2+xukfBIcEbt3/Gi5UqASe9FuMgMWiL5KnotiRPBh61xsIOo2tzQEGkrwnZR/KW0PWlvmcgnkumrcFMPcbBYlbW1WRjoBlLK8TP35qcLhfrsuWBShdxzR69/qEfSGCkxFgdt7q8MGOeqUjq/869kKmO4sd99cEENPKFyH8E7Jgw+hugbRlmJe82gtfmj8W4d+F3xVS+sW2VS8DRaVL0ma39H/7ZYqku5d+uCUlPjyzlHFwUHah9UVK28KaaSmEYduhhTOE96g6PiYAhp0Y2kIQKRb7C/XNOceZwfEZp61Y4qBoY2xUZgWlr36YHz6q8ksbJAUFytUJovgfV56ulbcq86XeV9qpK8k55LrFvf0VFE3JErvBcEmjfVg+ZmCjTA85MwQf38DYfOGiDn3SijgBYYHwZRQ4MtCRBKCqaBCTdSsYhQGeckgVn5hWKcyKffsgFcnWIXZDf6DLos28cbeRUwN3dq8DSFFG0Kwjpe3LIaE/IKADs3g7uwoQxxyi/Y6KMbK8waRc9ItTBMxRnSZ1rXHmip/Pkpbr+fc7lb4g6XfFSTnBEuwOT+KninaxaoS3kf7wRH/+PKTLppYMFX5QNB6VqBsmsuY2IQwECRh8EpRQJgxZKX3e4F/liODeEXeLnTKh0YxfCth/VfMLeecMU2+3A0hhtTjxJ+HP/bVtXCGjer2HjzdIWktoqgR1h6+3sD0W5ZJeMPf2PL3SwEMDSg0cfX9Q0wmr888wmKPvwDEXPeeZ+9mXh3GlsXSOL5ZkryLZ4V3aWPUlmjpX5NfWmObXbxhIqDtUNWHYCFih9F36rgk06TOz8fjzNh6lZyEihEY+SCBjrqk2VgHvhdXppcEaZuiQmPY985ce+AlyHu1UlI/hgvcqsnkj4kJz1eF2zJkUbtVV2bFGuT1qNkqS5bfWq1vEXgzC9hpxEcrKAv4a5clO+9GV4Fn5lZkD3hyDL96uS25hZ5w31tfHuC6ThGekSoMm/Zh4RUDVkLWySazOBGf7R9su6K0McKy8WCw7FY5hMizvsrqOEVLuBHq/jUsnjb0xcwERmNiwpbJE4jM3RlwdeAwn9T5yepD0IY6+WvSsUkWeYidwVbqi8nDr/dsUfMDShAYC5MlSrL836dAGxo2srcezd8kEXR8p20FLgWO+cuvj6c0MybXaa7WttOBUKGK54NRWmcOt+9cQX5JTadE9UZkOmcCe1UKAN9tmngI2s9R/XggqyY9Ke1dUwXkQ7JeqUpivnFIlTVxHuauAlyDRkq5hZo7XqqITWO/yl+vn54wQY1aV8m5DWxmDwG9JSTTtKp0k7mLS7qfbA0Je0kaIm8vf7ALaQSu+fAnHPgkOpbdzZCTiwNM6jZtFX4IiHacTIAomEXe9E8vUJK7GUFi0GAojmMJXU9PWEQ1pIXs+QQq22nKw7+J5w9FJzUz40eiRo0ehUhT/51M3hg7MPZV6TeO6/14DrZguAPxWuzhP0rw1NTSalDcLqdpMLa8yG5TEM8jN9drOyZYJKv15McP8Xl3sQoBVNTXKM9oYBYLXDKUYTOlDxY8nVSy3rrxxskmJWdz6kErmPDEkp3zAY9Ov6hBZykZFl93oKA7LMjaEi3CK0F3BMIc4hFKuYanDyb0dlob9RRtGgRlaP0xiK7h/EbWx+tRTvE0nBeX2eYYBcfJGBJjdzxRGd9fT6ys2+62u2zGbsn1c8+U41OpqdYJ0aSsfuRcNnZRpxfNPeNEUkFB1NHe8VeEbsm4GW3YQX0MA2IdUmt7DNIz+RpqQ9B6OWYWIFw=
Variant 2
DifficultyLevel
584
Question
An AFL club has 68 junior players registered.
There are 10 more girls registered than boys.
How many boys are registered with the club?
Worked Solution
Strategy 1
By trial and error:
If number of boys = 29,
|
= 29 + 29 + 10 |
= 68 ✓ |
Strategy 2
Let n = number of boys registered
|
|
n+n + 10 |
= 68 |
2n |
= 58 |
n |
= 29 |
∴ 29 boys are registered.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An AFL club has 68 junior players registered.
There are 10 more girls registered than boys.
How many boys are registered with the club? |
workedSolution |
Strategy 1
By trial and error:
If number of boys = 29,
sm_nogap Total players
>| |
| -------------------- |
| = 29 + 29 + 10 |
| = 68  $\checkmark$|
Strategy 2
sm_nogap Let $\ \large n$ = number of boys registered
| | |
| --------------------: | -------------- |
| $\large n + n$ + 10 | \= 68 |
| 2$\large n$ | \= 58 |
| $\large n$ | \= 29 |
$\therefore$ {{correctAnswer}} boys are registered.
|
correctAnswer | |
Answers
U2FsdGVkX1/TyZNreDXHtGAUYK0sMDFSoRQ+6Ef1Ba28entmyveBVNttv7s7sa+Lxd7C6VaHZGIzB2xUQvG/55wXXUpYBcG6ZHEhw8x3YCHhpGeaAvjEBF9LnxdtnCL+IEGtr5h7JOot0S1AGqX0ejQx6A63nFuZvCx/Si1RAa5fvzjDN3YETXERblgC/iDNRGSjkdnxlFczveSRzMvehBV2HzHYn2kq+LHKKnmq3KJqKFfDhcZIZ17+AP4o7jmWfIg0vRlX25hPeMWk9KK95lYByvvIi9kVTJxUGXPhiQPt87vsytOHwjQUAie540cd4aPBC2x5nmrXv2a+E54aIGNNWEKkAaWa8PmrMrN7aTyPGzC9+95BoRrj/cjT4xOlO02R/4kg+CrkyoQqELyQWm+xYmwobCDSL1fsGdnfMSrTcQI1EqhZR64KevmDW6mpE7XtBFhXKMRekMD5cRMrw0ajIBUZ8iGP6GCuLIC/Bk6T9Fq4RK446T4OWcEnvp8kSaCrLbfLAQ/qf0EDBA0qldOOfgrKWOCG6bSxJ5qHmVNn1cKGYY+VsrsWD6GQefqAEtPMc6ICAbNubcJZIUpDTU7kSJrGHyP4Igr9Q84K0/apdix4vZABgXwXEIlJXues0BJtwoM+d/c1vzte4jFpuSxJjVtXk90uiDdCORA2lqgllJd+vCQyq8M+GljAHxuOBrgoU2gcfWkV2maKhDtd91kWos9QUGsiZ/R1wNaZHahMv/vk4qEhKXqPLpKvuWIHgg9P+B+0OST/sK3iipVH/eOHnwaXZm5dF/Ig0VKF0UTy8p5r7ZyJKGwCkDH1U5eS0m0EB/VgtlUszZjMPZB6V9DTlVkZDpB3GnIF3pSXCgRIOTOI8LT6tIy8PT6ZBpGSt2yTHtcii24G189K3u0SFDFgmZRQRaQKPAQDsQiHDjy19Dm5kM/Vj/5C2m8ZnizCIDwoS2qFSOyxePOUKr3oEKFx2sDb8NDyNsy9OaLiVx8vNX0jvbMzgBaxN9V7riKzBTONpUHdZbc1tiEu1VKnTnGusRKDrVbtZvbnN+3cOOJlLc4UYU9Qz3zoIYhRwNtSCvPwWaMfr1ItbiCJ5sWyQSXwyBGYXewZklJwYYa6tw2Xgy/dv/WcZ/9Cfyxuf+teH+YuHKlB2PNConkvKpD3+tHoXhFiVuu1PuJKJG42LKopK3Xx6eVT/+3xlUrWFSKGpH4CF+X1SklxPBVxAXc4xqLu/oLKuGy0YGGwME2LdH/iZLlwU6nxm4xuf/bs5NV3SF/ePyMiky+23v+0YEW9DxCGeTJEdfrufunuWkt3OE4ohcaxa2L/ZFZT50zBfwzhns428UDsApmWW/jXhCC0gQAZR3y9XR8RzsxbKZHZnuA5rkhALPUm/f0InJ4g5wGSggJmQGt4iyvnbdtKapu17pG8l3/oaFSKwzuIpNEa18VXNDktkrjCBL5wuNBYJBO7izcGv2gN8AEH51SCc7LXIGbE3dvH6CZitSFWmMIM6kbKrFj8n1RrHXvNfQThPlhcT0Nb8Qg3t/uLmnotNqNTGzX27tR32hLqAXkGB+YvnOEbVAs/163R1UYPNOjsHJoiyV6lQ+1F69c0W7XyPEKMLlcQJLQCiDnTK5/cRWlJQkF5ihMROoITEZqhJ9RHwpV6Hgd48U8qGKJT+6MzfViRwbJ08AVehR2XoQtXWbx4B5U9uAJyUhmREpYKbvDGTTSyQlIV3qxitGoCfa6v714OBq4Iuirv05M5nYpK5o3C5JnOVom0IqwYQMooI6RyfMbyfG9yMfDL+/AuwO8NXc94koevwbZvK7UIz9naad0sIfecIPRmrkQDGN7r7f/siCeFayenDA1HFA0L16PdizYecpp2glYJu7hhwC8iOPKiHd+4MwO8M/xNmpb/993N/UkVaR/9dh1IJjrWD5z5cba2qjZD1bkVqE1sB8WtGgyNrCauYJ23C21tuzOu6uX+lHJQrgVek/7cCok3bChyPJTTjOHFLEvEwM8dYZ5O48honKVWiEWUhSRcdVjZhp8esctXST4zCNhSy6Lopq0RU00qRvXPIufX8O0x6st+ooS+oMFX3rgmTm0WL5Gb38VPiw+nYwG44Jg39X4mpN6EW/aU7Uh4WsUeIihO7gUJpiEdLa4+EURgwstnHK1oPocw1FAeQrH8d80Nw2oFJWKbhULnoM/xdRdyH7ObQ5XKubrJ1CmQFWngu3XPidvGo5VdQOtobSvx0R17Mp4r/jMTYtU5kdc4mtirDuIGb1Gn26rK3e+Ei5wsbkntgKgMTXmUQP3lAvi/6NHZ/LJWzg0UqHoQ5yVkmI+ETNX7TSEHdOIYRPB/3jRXHP6bsBASAE0r9Sg5bihZxvPFqlHwE1c1r7r4O2PK7rXbZZ7NUwzuru9p0KmEfyIPibjVgzMKtX735WUtZrsVqhqTRcg10cbzai68ppm3sH3n3YC/w4dy2MPrccwyIQx4BKl49VwIfb5rcOCb6Fi8zunpjFTH4FEIns3J75KUZ3DUETL80hEzBgtNmQCZfrt24zniXMkCI+iVyLY6FqoGFAhG5e0NnC1yl1gRzjKMh+efz8NeoYg54eJ1Y18FS7wUVv/HkhSUjP1e8Y6yZUQbBk8iMx/f9h3UV524xG7l7TBlkT30EMLSLfiYcFAsuUr4kpXO7yCx/CIZfyuLtpdLUk43VBP/iiHnSY/ZJMJMdzUFF7g/YW9LBEBaiaUngTsS5DZVD12Yddtpk1drFUPUXLRbs73FAS3Qi/phkJL38BHylCtpouV5Bco8pMz0kTyy0eXmldxyDpZ6lTvu/Vs0fihQlXZ/LaPO8mkstEQkYyTpsTiJmfqe+5KEsgLsun8OqVCRjcNOMQ9vcnMpSEO3Va6eco+H32pmM91P4LJqP4uyldRpc+WeINVu0YJeVayY9F5k4W+2BDirzITJRUGpApqQYQq3ghwmymE4cz3u3wKhxe8QD1TILyDh0O72axwJ4dvexZvs2stmWA9ERtUs1SxZ2RIB0WSaA5XzJLbnYQqgT1kyS7+lPKhZ5K+m98+iZNqxjDJO9Y+/11V6AQqW25UNbf3iB+UCfMo9Fj4ZQbGGILWQZUBShCB2jDtzbGA1MsTcIoZjgK+CDUfDsRfJmhtD5swr+tKYHvSYBXL74gj3v0kn1uvNzl2DY7385mxqZCq7SnJxND/+SKwa9SSlDNTPGmaNtQd9vc/XCtHJr3HC0QBdcmOuWD6yrp5ACqGwYBWgYJASdaErp3wtSjSjds7UqVlyiG0M2lE3ut+TZnhPfXt3qgwwMrWpTFqtao4Lu9vZGl3uh0BQ67qesilNrTamNoBVzhlY/Rs1jx7ZgvbYNzfYThdXiwIYq6528riUHfh6XDjug/dlHwLS/rkEGVcpN6aQwLIKb/KUQBUpg3/ggx2haBvd3ZkyyznXuw8hHwLSTYkJe9PW0tTKeu6PPl6kF/fx7cdhNXu2Lq3Qout5nFiGNDtH5cZI4adwPaMiXD9Zkj58gAAi24UjnzlF/oxuFvSnnge8gSMCMdzOFAYMOVRYcReUZUGaSe3423cxsun0xz2UcDrVU3MipnUi5Qe2VUh+SfQJwOWbETZtzFvK6V5QRxe+kE7WVMAJnL0pQ1aabUfWvYvnIrQZc3Ej2+JpsqUlZ8G6QzjmYktvnHrJ6J4OYHYcQmGiS/g8w84m7S79bVW2KKS5AdQuVIlihAq78vCYui+593VR5oEUprEKxlfca9PxpDeNugiT2+UTBf8ddYjtL3xiavu4/Ka8N6U01q1xPWUOo14oG8mH+sA0zQn6AES/bogDtJL5QaAsuoY5Ka41hNo15Y8vMOeznlNZrSVhccX6LJWi5sEaiVSCXpcb9qz9GEobEQuCCY8LtVgbcH8GUo/qfo7kp8z/jRkTAkW2i/0pIxgsrgFy4wBz4c+ejuC9MJU14pSZEPUV4XqESUmgoK+UXGlnpD+OtTRyUW0XtnheseQSh7Bk3n3iDnAzoFXWMzuicPQBR3cbdvfY1NYOZg9C1zjU1ga1d1KRTIBTyNwgAjVtjBgQERZCA95xZzF6AsR2YidEuXE6tdJ9rfKRC1AQoGGSs8P1ArcLVX81SLLD8PgrWbbaKQcvhCbPk+QH/NwMTiHgL+Kfb9DP2JuQ40khkTvSxbsBjr6zteD15GJ+CaP3OCNlu31jc8dFbiY7q0JI5dR8T8+SBsyM49f1pILZ8h8vTM97Q0maya7QL7dZ7UTigbZh7uoPm7+5PDzV79XD21OBXo38JEvHOJwTxgo37ZaT2dTrGWnQ1exRrGvyvmq1ij7JiyOjBdYOfZYT3xAB9UJuqa08GawJaWx2faefU4WkJI/1L7PBWuBqf6IIL26ixYuSACaz9QMHlHBxXx9PG87jqjpA9Huvwm/VVxb8t39bKq1eDgaJgypb/tglmtl6mFmS0o6JmabJD6wDj/X8TGNx1MV14nvXuf6HG+XzFzNJ3TPp7PLZhy6SUPkjzVa7+/X0LnVHbzQEFdOTe08F/wQqTwLSRcbA02Zi33HJp3sb+NomhHFCV06KOXs7/qmZUizAXGoXnTpoI7c9iAtHwSZZ1bb3j3u18p8pqgmn6PXcK1LOthq5gDH/hswgtKFe2XO4CIGv7w69POSKNfntth2NKTXhfPZ8VchktJDFuGuB/JqGa7RItRVC4WoYP0MvuKYSm5B4UxXMbtsMcvQ70rDhdEhVZGOhOX9O/HsOS1vGPziLV6bfvq1dNfqcuMKJ2teRgoqM07GCcJ3o+yiII12LiDrUa1JhtcLFN0IwAe/Ot20abMEl1w2BZGJZYQpwwSypP3ry1T4Wl4jGw5Fcsva78L+gGL0MwhKahUbpmCNE1OP1tXKws5JlatsGFzxbhQC9an8zSZBtDySSGh6wPtDLWaP8stBnVHKUDKtUXmkWsPk1sA7EhcK+iocW5GKQde3ULPeK9Bu090y3LR9zo8We5K4bh+1G9SErbgNSua+RcFBQjlFcAOpm1/u718Wwm09KT6uuxBbTs8CKDDmB4HKYtcvZLTFGPtghMmcrO7fYBiqQMI3VUgFBFqRDWk2eJ4HhG96bD1XEN1dncZ2D1C1xG5uP1wpanoChuSCzrzTF6NPX8wgfOQMl0ms3+5ua67WJFkbLkRsA99Fv+n9QcVW/s2i5nMZIZ/9kt+QAaRE6qoxJCE3kbbqOxXXZJhTnLOS/UNvz8x8Qtr++r9zJ2SUZA26U9Qe9NIaa1InLzZZsW3a3J1UurH0vb6AWjXFGE7lxBypv0vJs7nO6DT8lFI2XWgElcnQje2CmyUSStj9mMAaJscrAoxOOnwLCdKR1rohBNElYGi8knLxpS07sopuk23tzery8JCV0SSBk25iVdn62cRicpDT/MezHGViRRZl5+oVjMUptAq0xhrqXxlq+PxSXtv/hPomZ5UHnX38K48+H9mshqUwCaiLTMB4u46tKQsN0mvHiracagLUfUzg+Z/cGHZpgGjcNlOtXAYeFjTWrsBHKu2oD3+H3VtR+rGNiERsYxgK7nhcr9mI7sLmS/Sm3cK8MDqqvBMQ3m0PWj5HS+qJHqWgJMCnS0E93edTH0OvJrbneKKDV9a7NBw2nkEQHdT6gJTURaEik7M7AEmFxOWW6j0FQC37id1zsZo9JYIeYSzy5hV2ni1n90FK108X2OkmMDDeSvY0E4t/XpiSn5QOQNIm5jrtqj+/EfsWxfE3wYuJKiPKDFoePnjevlZvfZMWF8CutVBcnPl5tSeJr2tyiHD8NiPRMY89nVqslhgKwQSh24I80SiJKLF/mFjd4e6jvb1VidqCli5wTV5It6hweOIxXZTc0d3Tc+xQJJMH77OO7BTaIoZF9/mcfY8DDQw1iOYYHYUERJseJ7uaYfR3t5g9HRqurW7dmH9Fe1BNxNYrMGcjjfkuHDeSvewY7kNpny7QIkwcI96syaMcUqo4oVGvh1ABeermCFY8ATpg9ofC6Y+OHjG2EP0AJH0jWlw+1Am6LkHLXzT7YXoIzhL7cNPwbdV3IE/MBSwhaqVTr8iunyTqGswo/NBVXZvBrXAU8Onc2VBB6guziXk+GBccswNlnTNjV6qxL5o9Xr4QZwqpIkd3RgA84L5pWt6WOc6mQJQrVjRtaruWUYKkQVFY69AOYfj48dbiIBnrcSmUqmN7h2e+T27Xz+VlTu5oFSkUfLWxFoQb6xHjzkS2Qi9FXBQKWBLkOvhXM9sukecYTPwnIO2xKApjyyNT4wBSqJk1155UBZqdEPr7R1xT99ecmD3rv7ewfWCfQow9mqCB5DEQrpVVhkWC5XRkM6bEja9QYburDoC5xER/uR/XCj+OQQAyg3sryofvAWjL8k1L1QTS482xxiyk2SAL+UpnCa7Cj8bbBAM7oZ/lKPxnjUTjwQMTgVw6jeS68rXCW3h3e7ctTpZ1oDOpjrYxtILWVnfkpw4bzgIcfCPn4SCtr8X+QfReNi3gH7nxG7uG0RSyh/KqkCyKyN/lFgcF0oMBSVlb+RqpsK9s+YVTHyAR8IAtGXVAa87vw2WloHJxsRSypzYzsjYgRfBITrBNjRFayBTQm76UNWuQyobfPT4v46qKJMyeM7oy+XvVM5XAEQba2S7Ba1V5oke1m7Dr+ZhOLYOaZGoWh09Qyzd5w9VnjtZkBYm1rOjC3XOiX1bH04EOB5CbZ3CU7oMzPnTpZhv8YTDx6iFOAcTQcjP40SaF1bOz9wizAkXKpS1hsxiI2jlPK7gPbA1bXwMQPJl71orDG/Z2gKr9wSgcr6mICjUlOBDWybQ1X7u76Cjw82eqwTJQn0bng8FwaZUj7rhiKmkjVh+wbwxPjekH5D+TlkdBBCMMJC64f7OMtm0WNP8RJtWmEDVNVTt18Z2p0ApohDohQeXHGBQjYOHHQacpwLNGHwN9nwUFqOsjfln3Q0aqLqAf14pvEUZZqDYne4NuiGwDNcSnhfleGp6LPTgK64Tdaon5wpA8x2ieJ5+AUmevMm2xFxgANdB5gr9xU7b4UlhY3G0s8oUC2qm0LFOuQ1nowQg9WV3eN+CqLr5Q1r/i0AxFmpn+KSGOYex+mokFHLk2cpzz9n2H9qA9KNQJJNqZv55t5laXO2Y7cj4cb4u8lhlj/kBntFY5rr2+ENsK2hslwyg9AdGUYr4pqLnAuJL80Jt4VjgBRSRwfIKpHYrXsNXznelZxnHTxSgg9Yfp8J2Hr2uki6yZH+tpZtq6EriLPUBhsaE9MqlDVfJMHrB4sGWCbvu2T898jf9nG0Prcf2k+9ngHEqe+of/eF0HamkXrEV0b5nzRdp1zG3kPlSLy+Fddr4KpKntLCmR/MI/TZ1AwxIfwtm/fbWk4h8aT9HPka1clQi6hqTWoQUiIgXTY5/YSWIULSEaSDl/oOwM7gkQEP088HVD/SIMkOq7e
Variant 3
DifficultyLevel
586
Question
At the fishing club weigh-in there were 45 fish weighed in.
There were 17 more flathead weighed in than bream.
How many bream were weighed in?
Worked Solution
Strategy 1
|
12 + 12 + 17 = 41 x |
13 + 13 + 17 = 43 x |
14 + 14 + 17 = 45 ✓ |
Strategy 2
Let n = number of bream weighed in
|
|
n+n + 17 |
= 45 |
2n |
= 28 |
n |
= 14 |
∴ 14 bream are weighed in.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | At the fishing club weigh-in there were 45 fish weighed in.
There were 17 more flathead weighed in than bream.
How many bream were weighed in? |
workedSolution |
Strategy 1
sm_nogap Check each option:
>| |
| -------------------- |
| 12 + 12 + 17 = 41 x |
| 13 + 13 + 17 = 43 x |
| 14 + 14 + 17 = 45  $\checkmark$|
Strategy 2
sm_nogap Let $\ \large n$ = number of bream weighed in
| | |
| --------------------: | -------------- |
| $\large n + n$ + 17 | \= 45 |
| 2$\large n$ | \= 28 |
| $\large n$ | \= 14 |
$\therefore$ {{correctAnswer}} bream are weighed in.
|
correctAnswer | |
Answers
U2FsdGVkX180F9vItg5atZHmplHR9fxiuzA5PFlmOGhhB1jnysLU1J+JiMoo/06seORrIPNDa0mQcw0OMJ5p2McQigPaKfXFbBJSr5n606EHqTz+5j5TUj76GwQJCs3TKw2LiNIthf9tf6bPFC7d9VfYQt95cWO7gFovop2MrNtoTIMbfyKC7n3TAvGreQUZ35hYTwfafLzVZX1a+TQOPl8XmRx/ctoAYCmfP24+ASl2iX/W1izA1N20RG5V3stzDaylCc8oud2PXfPji40ICI3G8GxLoIdPrShiY4RKwzNGQAHUhXRqE+A+MI+bXE+h9lGJNg+DLy61aqoLSLKxw1Blsx+sVXRr2qi3qDSq4AQl1Pi5yrogD97mFaUNW23tEoXVARZN+3JP3f6bSgZPXe4wovNG4GW1FoMutcwVYgoEXSa5PmEACkI/DBxNpCrQaNszSbhRJDpmTKf7yfshFTHoORaXoeF4toavWOkYXSVsmoD0sHGZOh9OC5IlOS/1Ja1xT96D1ZNB6lQWwoWZpXJw28fSiH3HZreTet9O4qY2lNGcdONiHUwKUTbUQebDZQHPuRtDp6ausdp/pblPF7828tmjJzlHgzFHJHqwpj0C6+hfap0YTf09SSWGOYkMm53r76yngsVjQgt3Mi1tbbNokMaCJIkZLgnm20M0rznxLMTr/7VS3dHSWNtCaeLA1gcj/xlTtGj1yfhpu6l5qYwfushUNkNEF9UClvquN199qjJaxVHrWykHBhRpe5FHwyuixfXaOB9/ZesGtkFxwrk3lfJwbE7uyrwg+f1dPjfPUczj15uWO21gW5rGji/VcN2SNWR62YJEnykqiosH2DkwQLtidLf2nT3TpY4Vdsmsp3kDOowb7zyzG6suABvXtaDrPbSp2G5IEZ027Rn6wZ2GUuDw3GBu9k5v4HUWm76YmI0s4EU8xBJcyF2pvQ46lcdSLt5Db+TEe4+/uYnZwHSUpm1X7WqTWgpKkqk5Ua+Ml5ayZnYl6JrSsXymw0a5KUpej01ILHIjUvKA3GzuA7kWyAoy8aBvCU71FHYAnw8G0FBl6uwve/44f9IJmiEVgwibL8XEeNyMAvwE7UTkR9hVJmGxI6zUowtl4cvLvYibWUTbbP4HNeHKgYNzFZogG7zcg283nOT8rpcO2fPL8gGmS0nJzTqMPh4ngE7IQlZH9L417yIFAkj7Vbw//ZFQTJXb+SfqALUKV/iQpQP7cQ3pYMoA8E2BsjkdBrE19kd+yR0zagsFvP0gJCoT5xcBJJ1z1s2saT3jnHYtjJf7xnFQjdd5byvNrOOU1xTSl/PW/+MZXEnz9wfuSmXXbuak0OrBP0q8tHyG5MT02Nr93gS9K8KMqGZghMBzcPOI/zWKHyqhYKJW92tewNq9Hk7juIGulKVl6YN9muV86DVB+sCWAMwwx6owsBVT+TAfobgYf098XJk3VsMS+ySDj0pXTZA2TVHV1vMyQdESZnE6eWkjpO8uJIHzwpZazwmAaShETshYjV81UJUuPKdhqtyV5bDFCweoc75unWquwciJz5qd0I7lzGDjzVRzy03m7kZLF+h9Y4UH6wR3N2BJAu/Vv3bfCsY+j48XcWvfy+/XEINJ3vW7ltYmOWI8t9tObIAtjpBZLqP6zlQ1O3bXBin2TVL0EF4n7E35f8s18SqbW9bbLmQyJRC2Qgs+xmpPNW18qhj3be04OgpeP0Vx707ptkN3l8zWrWHC9p7ecPoUSJa4+1SQfKDhef8iuRVQfvh1FdrpeNokEaO1VMh6nvSWtaKQMDwmf9ZirvEAb7qQRX3JzCEEZ0QaYWZ7LVYzubm1PaJVS84y40w4YR1h0QxhaA6sYljEvPB7+8rY+h5woCeqHpEeTBz4oy90upX3JyD5PvWYaW+91n9If8XyknoEc/XYh0XvPgDXRlSq0LkvBYRhWR/6Gl9wG1UNqJhyrC791WVg4vawPt58LAFUbBzOzsvCogR06SWOq3LAeKP97iWXSEBeMjybdWhzo4y9TTtoAD3mWS5mtG+s7PLf0fz1f2iqB5egGNTLblgLN/GDp3edbIbYv35dikePlE+cZuh+BU4F7QEBYiHrGQUPdanpexijBX+orOXLg+o5lMtQiMnQMmZ6olFFxMcdr3l9izN2w6Fr253AT+1UM2Y6X4fqhgrrRfYVUnOuSfcpqgaSAk70YnGo2npd2dxCLGRBKV4MYzOxcas/mR45Udwcwjlxz0L6IP+STIuEwsEFMF370VsoxrTCucpp2fKoVzzGEPHseAVzImbC6Mwdz8VyLW6RbrdFfxugQ9oLhXQnvJQrWCw9BwWouZOfthbO9QdrrquhCjzWwdumoU1rQ5xDmB6Ghnu/a8Dc7B6OFMYTXDwJEx6wOY2BRh+X89GSJy/pPWNtnn+96CRT5RMpST/Cz07YJ3gaOmBOgBtY8pGw30hA0dDGG3fExy57rbSGNNvgX+Ng1cJ2UfnzUwrq3jsfO8pX2m7kL6deOY0mw4hZvN/DeRUfR7wUmk4td6y+mi3vjuioa0yigd/mARSesJAY+PQtauJ+duyOCEAQ6c74MbvK7y5MBphZxPLoa501LEf6p2qbD5w5MHNCGkJoKpYpHuwxuiExXdhNpyZZOO62Om8Py6nYe+Xi0DwpKxZv80+Qfw2HbBwhVQ34B0zbWiGIAHG/p8UXyThKE69F8c7W6uBqi0b+teus6x3irbtkYV0pTtFjp26z++p5LJLLeQIb2+vt/8CQ7gpvEKHGDg2CrKEnCwsPnWWZFDzc77nMbeSYsqIRmxCrKzSEPY05Mf2h8YrX/LdruI5Zjwg/cILubpq1ninLuE4ZllANNt8OnlzB2io0RtJuywkYbVxqJPbF55JVJnP0bYeMMHZFVUpJLgQ0yK8ytzVu8Lzwo0D81KRwruKyFE+f9UMXOfV6gfxP+S1W3XJYZDdqTU5n/x4iLcr3fx0UVk0uhcKaSYu7ZDzMkJAuRrW9whSkBJlpPWUj5i8MuAyfRdO884GbHFRETjYOvPD06wJCKeN3D9ccj/AmkmcyGlYpKujywoi1dLA0D/1PDuZXNA4W7SH4JIjwGD0bXcvhDXRa3KO6JC5G55UyfLYQGnxVZOxS2n/Ztt72yqNnYlAeZwamktkTMcH5F6xjiaWNzyug5tYTykyjisqXTDpuIW9TJLdesZVWtbU9W38ttHLjdN+g1YFgP2BoyUNbjvNd/CP2xp+OiuA90+KMdboGhjyQPSTJuKrvsX6cj20mbgkz6QVWZvSyKMsOpHp0PMes+GQIAhW9f+F8H/uklsHgbTFoPAEDVHwIYNled0C9c4zdPSjCXoyENzbiFtmZK8Jg5/U4WHrAOTJpRADup1wR+xq0b11bVNUcG3ifgfNstOatVSaWjPcKwzxRyB870E4/gqJO+7DwPPJOP89am/tGOrT4o7PC9Xzpq7Gdkh8Rmzfj6QykqousKcLl80pZEGVOX6KX7JrJKnTiA7glNTvbO48znbZE0ox8C5dU3VbYuo+kintbcPxonqy7E4Lh0u70o9/jtMBK75xtts3/xrMPznQLpWHwUn0NdLMoOAIF/rFtrf3TyCLBuAy21XTMkVUT6d7KUNP9FSZHVhb7dy7zlEXp6Y2QRErpESuFxM3TeGu5dO2d3Qxni9SSn/QqGVBz/1ZQ9WXtT/rgRwb4J2DrQrqy4n/JucXF3v1a8aH+THjTyGH8jnTnGfMQBnCIyIuAhO8YKJXGsJ6/IVwrXoxxFL00BhOCxPNl+0O2UJSUgXQbyXrxthUAODCk6Vcgabdf48cPpYKRaoS6cR2n6fqAu9QZnZQh6NILDdjKDEj7ABb78KauOdGHTzbZEUz96vUyj3WUOvTPVNQa1CWilHp3BLK5ncUnNp7w3iF/XvuxVxo+WlufxfT9Uyrlv54Y7kQn2SI/28e2G33RqjbCUaeay3mZMOLO+T6MPMfJDmAMedH9pijSqJ+NsuqShApQ1XJSKPQGTQYqBti81qzrUK7p4NQ5w0S2xqSwg6whYhE/AZmg2q6cU7dqGgHrbM22kkXNOW2HgW6HKPPEwBZ0FkgfilVwskWLRYDuVKriVMWjz7XeY8v3c173BKPO3jSMpl+9XmuI/qtNPKKuvpbBVkbOBKVBWUEXdTOKBeL+wnwPENlrx5P23RTrpWqPGEKwWnBvfWUOrl4h0/lJJq3QgBOgHyg7Hy3nbjGkpgy7RIQWZ+Xw4O9RGOyA06KOALzHH7bLUEQRzsFmBWkMBFgwgPNvxGeFVe+2hnLtn2NvyaizrHrpORuL1kmMSdetMZaThs94PQ4joryJPprxN0M5ghP4ob0Gg7yWP/g4AM6H5v7RtDQLugmO4FK02BjFpcsKsuAD/MA3EIvVIesk8XEP9uRLzgwOyX+IxlcXaAv39s0LASIgswgMeSccgfLcPlHVd+eiRPvD4hloFInLx8uqkheyFoZG5qQquzwouKQPrPFGxyF2yko1D2izB0jesGtdUWM9/C2Co8lAg2X4bVsH/FS7SkML8K8wyUS583238wIcOxJVchFsgLOW/FaWaa5pYic0C7rDDAwQcBYpQ6S0UVnjBgiubIT7y8MYoOL/C7qNwbJg6EXj0+i7wfjHzncQGBBh6yqC8jgJaluvDmqpFPe/2+/t2fF3ygBCBjnxyHUBsjHIowJdf1KRZ36xZJazrgl6vimE3OR8mWRYe6jn8OpHkFC6gBH70TIa7QvAlI9RN42caOWGogKKo6pON6iWWyU00ny5KCW/9rvo/VOp2XgFfPcvPqKHqwAYM125Qeq08fT45QiJhMczW5B+57dkW37e8hQ4K42up24ZRF1Y7NFfK1fUqXJAN6shg8nRSZ1oz34Dv7lveZvK5M8vbV+0gMurbGp8sJ/2oiumJfOJ/Qk0BX6KoxKPkqZErK+rzJdw0wtQdsXlod7Ydc46YXaffSTCAGiPGExlUhlHRDzlvMXRPO5ZBN4LACPTrxCIinUcFs+sDfIYiRMJ/V4Lvbegp90duvTdjoF6TCTehZbRqsdxdHXLHeUCmwvV8Mg00D7R11bvxW0MyRaQcbSaukJXODsU3DP3t4PaXd0JbNpKBZewW00y8UTfjPsgsnJUkdedTspSl+JvXhbZcw08u/RHZdE+tnw0XA3QDYhocVoiUn7nba9c+VOPUB68JtcTJ6nWnzCozMe6sa8Oi26rhsDvK6oGktYTBikNWrD30EjsnHPDyHIuufSqEfxLnX9F2eEtm7kMvLJO5IujP1o4eAjDybxD/uS98GejqbzWqA2NJQQgkDBhJms1J5KM4LslVj/h3mrZYfqwD9nDjvATL1uZsbFJaCGyeV/ntRokJXFJNNArVbGuT0R1F0+B89E5tLeZX2IzXUvdxPv3zCA/4CT2bKDqD5+oDJGZXYPHPbSdrTyvYkmcEJDtQrIXBivlPh/iYXGx30dZza0NdscsfjZ6LoDKCobtILaqpNbFiKElvGVrFrASrkkvxIJex5csNnZsTdJ0Y/uakflKnaporJKfQbWMdb2pPyM5sjyPh8K2wnSa1TDywJq6fYXqTW9hlVq6FZ7eBs0IB1DranXlw/JHVstdO42EBd1s5KvfFmwRt9TEYpsl9xP706jRwZhpoKAAxW1JAdJMkLwan5MUiAbVzciU2iI6ZfzPjEIMRqlCcQ0CDGrlOjvHHGW5QHmA+n7NymY4IjBLRnn773Kw5cmQ0Bpr/SF4Bn0Ycpmo7JbOmD4fVbQYYHjh2cns7z8ixS4a9/ZypNI6q/KbnFUvn/o3iGEEFGRz+dgmZhSqbOWdOFe0lAmGxIUwnBfLyNL0BVFAiixgWsFU1zL4lGc0bVLJHp9kOUSeKsGhpYIax6Lf9ZHxla4Ah/mrNgfvTNC3o1gQE7bQ1Cd5SmDMGaSnkCdFY26hVTTqyIYELJToDe04W+LqnQMc/Bacj5JYBH4js9QrHaSS88Ye+IOZOZ8el9GAxk0p2dUhCZBOYHf2spvFmGx41JrE7ZFdnwnY7cYiBEcXqFkCr8GFcv489qSAwM9pmCmxGGh6LGrFH840IO1GeN5mTQQ2GxO2uEVNOCUENWpZAKi17sH0R1WYyz4g5CX6xUL/YZ52UbAKIek/nlhM83VFsmiho9oKlfgsSyI3tey17HQwxNtRYVJRPj05fMY205443w0lTk8ozAVrdxqznV5sgEMlexH1N8FSA16qvnWdiPqurRAdD9NwYiH3MLfRyJ9YAajGsJJJ9vrv5dbeOjN9L4RKlRw+MfVRR/9mCYQLUZFvk8syVvPFiisnxLMBL+/1RdzkOcnct20BbYtlFIGfGJrFMsy5FP5OvSSaZaFE9gBB12WulCLoGDGPw7Yr1144OvUNzR7K5y8VDNcLU3zzlXsUGA3PA0gl5Wo9VtQaDgkwFN1sHV770d+ujcouh2gS+TBwoC7NMNYBigb64KtPTQOKmGV+xqiNDswPTMBnx3EONrwZYvtVizg0RZCp+z+UJvcbr51Bvr8QCtBaH7ITTgOVcKmbiE8aDEG+jBBs14hD26hH6mx2h7E14xc/ut4lnP1cmmhDACr0daa8QeDgqJUGUUBdEXmYvtVjPT4POVTVWAYiMBsmYtspHPJ2PxQqIdNI12kX2xshYSt2KH28yVpo5ado3QSNU4wG0QuglPogEYRfzNsABlniQJHyaGL9WWhWGxuQpGMTQyZMmaKZo3ggLJijdoiuNSdEd6zj112B2Zc472gB/zc2XkhWTlmr2c1uHgk++DUyyZG3Z+0gQTxGVEkVJqEl+ocntdNQQeOj18MIXtfhXkQqqmgD3GQaqQwHbvLGEU/8a77QW70gmNpu0tG2ust4TWP5pbrlJtWX0+6gaUf1eVeeby2+L06FtsgyUbUCYBlB9Hs8y1YdMuXIiraw6jeGjzROvBkKbNgSWGtCsvB1AjJxEhQLcmWM5zIxXt8t/ck29PBrniBd7QQreMoO88BomrKiQpj/NYropschw4WyRO62Tt7dffxQ9YLtXoVLM3ET1r9e6Do6o91OPaAk+kngMCCXjuLnWchuT7gBPOiea8HfOn4mIHgRU3N0eGGCCxibz9S++neHLOtaghpMbxZB8i3e3Liyr6e57B5JvCPpxgdnrEjq4mZcO4CQB3dFIOUlnBVZoWCGCfEkhuFUUOXGNxvJrE7K33x0h3kuZygma79cVo5iQmb1+ISs3BeL/q/yWVTkF+LDKXzt8NgI2Pb0u0iQrFJ0+QAnbyEJkyZQjRGLG3jGE1Opqiw4leWdu4rKpfWtZDBrOASvKFYtCMAeJi3tqHAMyJNyZQriQN7b7plRE2OIYrFuB8ysv243d1q118LmXjtM/y/0u4iTHR9NaspnjjVR4JXtm/Ohxdqq/p4EKQh474Topm2dh/J4TQXMUZxeFg59DDh81VN0lpF5PtXE0AbJ
Variant 4
DifficultyLevel
576
Question
In a fruit bowl containing apples and bananas, there are 37 pieces of fruit.
There are 5 more apples than bananas.
How many bananas are there?
Worked Solution
Strategy 1
|
42 + 42 + 5 = 89 x |
32 + 32 + 5 = 69 x |
16 + 16 + 5 = 37 ✓ |
Strategy 2
Let n = number of bananas
|
|
n+n + 5 |
= 37 |
2n |
= 32 |
n |
= 16 |
∴ 16 bananas are in the fruit bowl.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In a fruit bowl containing apples and bananas, there are 37 pieces of fruit.
There are 5 more apples than bananas.
How many bananas are there? |
workedSolution |
Strategy 1
sm_nogap Check each option:
>| |
| -------------------- |
| 42 + 42 + 5 = 89 x |
| 32 + 32 + 5 = 69 x |
| 16 + 16 + 5 = 37  $\checkmark$|
Strategy 2
sm_nogap Let $\ \large n$ = number of bananas
| | |
| --------------------: | -------------- |
| $\large n + n$ + 5 | \= 37 |
| 2$\large n$ | \= 32 |
| $\large n$ | \= 16 |
$\therefore$ {{correctAnswer}} bananas are in the fruit bowl.
|
correctAnswer | |
Answers
U2FsdGVkX19BTm9k8Hv7hV1aazTXeTtdV2R1bepT1WujMYYryZi2VGUyBZoiEAEFPXNhQT1xYjWw2IzfpZQ5+cfDZiZTWy6KaGPbcR/PB6y6Up+vBjZ68nq2gCLaNeGoQB0eKJzjzAXDnG72F0tB/ZRGrhnCFNTSer+WGcC9Iz5c4wctirEJ698VId61rtezHwHO4MIA5cptVtvBxESLvBlffFOwiyLABSw64pyU7HSpzP9ioxDi79kX3c26xe7vRoakQPWn6/cuQpfA+Xf+iYqIcpYOq7dYEWNCUFesSBYkjIL0QPUbn5boM+5zo+45QWV6YjvyGOufz6N2nrOTbj5FRVZR19jzcSdGF4DVNfVfymUNjbgfu/ZWJtHOHUUBPB0hOlO0413JT6QDxN72iO83BhdChHUgthYYn2PCco1JhiOLPyhX4zcYpFaaTE2C5KoYHHdvaWc3dX5pqVnKWmXlrkB5ZdAmfbAbmFHvbz3xQHWX9CcKiLncWa0c+fnSur9Umab642UOzGPzdTKOl+1XoN12BrZJCAwzKvF4a6oRJw0ntvrZd/bTvHoBrPMHahB8m8H9g4wDAB9HQD2sy5JRjuPoCwGifkAnLEZcxMpZ9ANZmHEGFl5Jkzcf5CgbPkz0Yayuewiq5k1mNlRh0Coc2DwyyCcXgGWO//XX82d0utUZ5DD+7c9RMeGWUAyV8JzpLwiQTJBPx6ACJv7jqAOwCJM1Qz3jBl3j7D3A0P8HvVtP5sTaoOQyLGvK9VeuWXvP3Ntdtcjve5RKuFvtWfdcS8/RgaE8hzLuezIgsC4KYnDfM1oMkiu2qaHl1KR8TRIZrUlfJsUnmSVvWSXsKjpXWAYRIpJykra0vw+jllRtir3R6JUFeHaRSZeNQ1jUtQk7YX955A4kXH7qONOE9fiu9+nMvjvvn4S91HdDCsp3bya5AYBUwNEBzWZKUc3DCgptkTDc1Omeda+jS+vW1rnPUHux89gBTwN23hBkpoNQZci2AiLzAIz+8/PdGUT64x0VsUOicMYMeCY/YYOQOde+LVWTHyju6TY8oUsOz09Tck8E8D9XZWetYG2kHIfZ275ACF+N1aQ9pkHiDfOy0e3btr9siY3A4VX6Q5s49pcPOQaYaJw25z1M1vWLbsh+IjM5+7CO8IFYL/7lkZVPgXKCdxBwXF88HFnGzSn+pSiTaVN/dspjqcgDv8K/UK4aVtkHXZ98Z+wIR2DZepnLLNjd4yxKFLngx4WdmZawXeVwMFtcLUorUaY8uBxE4V5VlHS0onywbnEAIbsCbooFSpXI0lIhxy6knY+ovALYpLW1pzLpI3rasskpzNvE0A48FLyZisMySpRDVmaclenEhS7BvULiTr7MYJDwlMgpp648UnGqmi656cz16AO7eBP/z7/N6FsSlLG0uzaqQDYV3szM/22G+8PzTg1YvTgSC6ue3pAlcSJMxXOKX4UMqCN9nkcRJ2XZymGuKqoocnYeBMDMAwwS+zBU+5v8yTAyl4iCQt5zJRQVp8YTzL4Mr9J+f4DFzosDco6Ce0tdPbLqe/3L2xLlK3lsiVFTY3UMskq/Z783se1Xq4jXDIQNTGSTiH9m+kAIaHITJ1tGCjZ/YAuxpb+SFH/joGfAFf1oJZcbDTzJgVfF3glN/emDH6gaFDPoEGSlglc8CD/lwBDMUTuzXiMRB/qyp2b89JHz6MYt8lKNMUfZnfUVaf7OZiNIYmYnS0IrYoDAos+wKeQguy76sITPFuUwfd9uaOIXOtEtLYmzMKo26F3GmZ6szokgzdC2EBfFHtVsz0llHjwHDoreMrG2WmzH3kzRKzFG4HoCg3E+DxGbXk9OXc+Ur5+DkmSqfcqx7noBzhLeiEz1WP98C27Rw+9MkbGPspJNz5wEpslBByod6xxhocGzv2uw4w6ldBj/QFXP5cI7z264HeEpkgdyHob/4e8zehvI2Tc4pnPTNi48hvWqOKvf/kTzKX7wcPezi+r2Kc0BO6pBZGxxuD3ZndUSpx1AfYVYcFCQj1rQqHeofoHuI/RG4OzPZAZypeDdy0qRK7pMApiAwD4AAcaz3QF6jHh5blrD8FVhbfDl+o2+4Y3JECbqvSxNvERRMu0NxLHtPYn+WN5VJueUk9PZ+3xSSiN3wJM0FzJ7VzMuqoX7r8r9QmLp/aT/ceKsKaMqQ9NU9rgvxKke/AbpKqR4aiUplr22Rhvep74V6hXFoaSfkry5kw/TVnkJMBQYicGX4Ycpnda19kpXYxrn0rFpCs1i90kYnlHgtmpFm4Vy9mIINjL5ovKHgYP3q2YYHMYDGkLN0aHCThrQGV9TVVO8KRXhm/r7rctLnmvH8JpOCO6CCCSXiBrDOoETR9Xrsy+YFW3U/Dm3K4HUegZgoxMvvIdoVrDWjSA9On96y7hE7chf4EsS9EB21/5WmhG2l9hQsBvgujygsqYGi68uoXP5MYsuTH4faMm4C7tmNq7RmVNC3/tF96745z/rGuY8d9TTCR0fGsM00XFttIVE5SApOonhaOFiQOt3UQhulljkHTnDqU+GXYHyCfskylTXDQRGTO85xUzsyjphHyN97MjtcM40EdzIYH7nHaQ0YGpueXo2ppItdb+7SLWvXAQ1kGBQJb2rHYdzBzLJm+Bg3JLRG75HbZn5WPJ1yFuEH9CeWgl+EHLOy8qaziDiLVOQNqxf1cywKggpSu9vNy6fAosNyypPBMKDQXRvwKhMSEVUrxLFV5ZT5ed+ClpiYwETxFVcJSlQoR9dh+WADa+NuBJExKeE3UXJYHZfEGNXi24RVjMppZjAQXg73WlrbMkAW2hDT/W6pFIh65LP7z6zMHGOrbA4cSUx0S3UfOjIUGLNN+ZWfylApGCilifSv6NaZ4zJff+T+Qvc44rrr6HFYUVnHCxXYWwP8+jGPyElmuaqbyrFbwIUSDzV6NwC6FWVVpFbUmGdRsb9lWjBF9YBXI8qspb99ndG4w1x0jOYXZCtWgCdJCLSSfATWD5Y7EOu0NDFUOOHqUuS9CBpYxn2XSq7f1oOaYFrmHMZDGX1meFmPccnAa7z7l15RJaOA5MVraQjSJ+6iCOTx0Gr34ex55IqdHksMbVqwA+uI4b+zRDUKtcVbpYeK2y24/xg5M6bpSuWGPFYaXH6h1fw/6/cBw5K9FXrLOHNsPLsAwApPV/mC7OyrS6hTpgqfGJfYWmy8+I7ZKpBaoMxQbahTeiXgnST16Uf0z+SciI5TQ7/dAePuc8iPnVY+CwKlgXSoeTr5xB9zWPX9mm2qXp4Sa3y8KaC6rw1UcEh7FGXSa2gTyoJggv8mrIkQtAdq/Il0XDlrX4dfkp4iWPKZmtdAkZCOOEPe1NOVd3BAcNAprCn8hlA1RrvMF9VUNtG6AJFdUqnnsWxiEhXvk+fEzLC1+EC6l3jLqex8Rb+mtFNjxL0YpfdoXwt383Z7NwarRegVF6qtYvyk24wxN4jzZl8VmliB1LtablmZL62BgtGrB26YXRZYwVmEYai598axziaiZ3LOIvtfDJKzHylZMjotgAjMO2StQqTxwnPO7Hcl2Ao2iwxBSP+ZY0g3C2ZbB0Rz944uxNgt/jmk0x5omlBbgb5h3DwVAlRl5zIH0wnrtsWprPiAVqA7HwoGTnYOLws0JEejTqlM55CyypqD8ePPIzEUY7fgfMoXV4dcEPKbhVo6OHhhZFwpvdCjqRx3oD9Zj7Qday8ylbdeZtMUipMXyCgPj6efB+8lb+FwY7I1PclFud0279n/v+YE/oPlhww/f1VMYjHbGIIQKzCgCS8bI2mTNscYbb3wymJynzxMbj2fPNQlBFS5/bQCn7Z9srHzfko4RdH8ioR4BYKW/25wvR8U2rvxs/cQ3mEimSvA+bZdo/jMu6jtiVw9wCBy4zrIRtCvWefu6WwZFyepYeMwSXmaWIlCVk8FApQC1pfni4lKOnr5cKJKdqcWt3JC8DFFzeXoWyymiModOWaXqX3OC1ovQh+Vv7EBx2A+TfdxHtlVcNGLeVXypEBJ5IG5DEGpxT5SRj/3NxIyrdsB5Mwf7WptmKIZiBkzsrBQCJhvict1OJoIbSzYlLB1m/TfSaYg3XggZlnvWFrNcPfn6Z0WoCb+DcS8BNdyaOYvYgBVYO3UlUICm0/SzviinTkwe5UXcfE4GOPU2Bi/ufMuCwITvA0KaI5dC9JvwDrxuA3XQ69cjjYOCVCG5q7Rb0NO61npShnmQiucQOIw90wOqpwDQyzxguWQHoO+1YY9o3cCp+JUuaVgNGWVYy/zoKSqwgGeRomGF0bXPdnz4qTJwf7llkMA8B9h4TDth54bVYx3AcJHNGLJKCoyJLO/CRqc06mi2i50tTbHDurG9u++OVUeKvwasgjLp7m6P2NtvObwKva0eJV2oEp12VOpVDmWaC6bZstsYAxje4c2IRbragRdFzHZWUnAbm8dBnQkxmp6i+E+ByKGmDthd68v/Ddo56q3DvZcvTGkBa5SUprBNgaSRdQU3nMANDiH3owjuL8fcvoihACyaX0K79nvP5ciflJpqyDcLNwWnnJVPQVJcYJ3uIlnK1VXvM0QWikHfx3kQbNezCBG2lpcnzzR0+Sm+6B3zSw9sU/radtiHocE6sfNnQXEzhYbgEJLDJKAgWHL6XOVa6BPIh2zVS1+9DzqrchpPiFX69GZIqCKGG3y3iM2j2AHB4Y5Cx/uhStpYD6kVAU9Yo7rXFqE25kPmguekyEPNYCZfYGZXjLEmLV2/MpRu4lGLxDPDRtV4bs/VMUvIIUScQptjUGhF9OdyDrWTkc+uIcvFC+JFCV8CylxWvGaF8TSbhNYDDly3ry7BurHHRyBIYwVBhCDrBai/4zlhKOeedymppdbM0ncEQ2E6P7Kk3Zu5gDG9HrHGuoIsogEhB1FNLk9oGMk7w3PMw6+tl2Dl9Eyt8bB1AfqL1OEDNWvJ75oRDay7D2zhEnz/55msZlK5q662ZV1xFqvvtqS5q09MZjojk6WlNcmw+7sWxnKFU5c7QDEpAM2JF+/WHwk3x4XZ8y+B6S45gH0LdWGsISH+yEflELkzmH/4eJQ6okYoZgPlEFqIcCvvJpUgIPmfrKgNVUsCuPKBgip8F3vp3Y7b/aGGl1pUipXddGQX99yz7Ef+wEZb/4f53S6v2YkuCkiXdRHXc3Md5o11bK/558LOSaLnLMGJlnHcSMm+5baq6213/Q3rWh7fJohbWQ0fBlzoCnFhUY+QU/VONvCV87/NdpRVjv4nUxDbyTD1UjtIedG1IhWJ8cQT45WX6VcOPLOZSPjmTfDFHl6uqdqPwwZu6+1lbBHLL6ewuIDnnlXsKBTve+olqe7UkISfwimwJDZZG4UAD5Lkfl5TgAAc0dPLoGZHuom2O8yPjCQ+wm/iZIGXELy604B6jQsrKjKXuN24FHQBwkerXKqZTWmK9IzulbM8RPEn+xQh0m45CSNeCUGylZj1k5Nln01EVqwrfkOjhwzN12GzI/0Ldob0WbonK5gO8INVxeMyKIrvfEoquMljgvppyYaqRkpCvBKoZBFDHUPR2/gaZvY8XL3wTq5E0Y+ug58QpK9faXJQt509h8YcDwEsQ3yjUKKZ4szeOQjwHIlXB2c9gcLfNG+1fXS8RfJqFY6MgUHvEWx23xBo5yRwbG4UkZw9Q48AKYq//gy9DAyuYWacgwkmgim7G4MEG4WN1sytE8fBR1yMI3Tj+FXcDb8vEG08IEtxtIrz/RynKRca3X5TojS6VtwctdA7VdYZEJWCkTcRWfkw0l5B+uwc6DlmE0NMLR4qMvPcxWvDtRPQJflTC7mQBx0NHGqTCIZAqFSj4728/DbR1XPXmBQqHoNmtY0OCfqYnGRAgwELryE/318XLtytfgMkZsmzns3bnFhTYiemuKAyfXaBIbkjy7oH1x+7G4YTJf/s8wy+kfDIUqG+f8Tz2PUV5kPZpbs7ad8eau39V3YBxbofF4eeDH1rx01rDr9pf/Y0y7DhdPQgyiS4HJjW35S63aWqoBUw1rGQB1C/wCk7pwHI1kwPFiPItwRpQWHzD59oJ2+yn+ABdJKK2OFpP8YHLmJGokZ2ALQZEQ2JmEDu53tEa4b3oTi+OEK8By4NGW7T4hUUnkdkkKJBQ9pstG/IbCbTUNrgAnRpIvh55z3o10BFbxjCuPO2TdRhGrK9+9Pvrvh1w0CN8OJranoG07xXs62mzlfpbz/9x2fB5zqncdItEmT6iGbdzey/nvPFBD0WnW+dK54dgGfqrJwv0h65iYZcpmB78bdF/4J/7jlWRYRGNNUmyYL8Qg2NoY38n3fR0GJanCpUc8V9NOmhBfPFMC7EKuVFRIRTL4mtNE0twUV77Uy5sTt3gx4LmOdfgQQH5hgRZYd58rkdwRnGlN5C6TgJBRsc8IAvFBiqlLS4sOLld0Wkwrg/AQPduOPTVflaHImuhmKcNjRJEurbR4RmaFJGkPvgubMI6zvuBGJzMxSNA7VnSQ+bx9efhhU8F+4CRYi+labCzIljnvOXf9WLL7IHXy4gdHg3lW5SIb7Zxln/Wybq3dgyaDVIhKYhafKoPIn9MBePYQlGTr1EtlPCP0AOEJCOrg4JUyLNiX4zYX+c8cGFzL/bFe/cEdi4S05FOTCEKD6jeLBwFECk3I1FfbXWIHJ/7j4WZEmbviw30s8zMH01bv0j4XI7BU2rM7V3TOxQ5ZKJst3grOYiEJQbODi+mWvL+Zc2ga3AAvDWcfW26ox7DJA6faGwWYyt/kY4xYjuFC7+Otvk0hEzZUbYoIF3uGrfp3sRKeXQfXTAj05qEMDIOj1JWke2fI7pFwPj6lI6ytCjXfFohFvdWwQK1dKOaHVUsATltC5NtsMaCE+yNlx+OVk6bGPCxwCk28UepmTrHY3Y6wXnDEUwIt9vpwUJ6tAlEh/R8ZMmx+EySb4BNwIelufdAq6+SbC+IMf6k1T7Y8KWxDP4zNew/VLzQz/bsnJVkHtY3yZusYEqhJ/Duv1aC7oN53MmxGw6JDlmczOchaNX/L9VZKup+HEyXMSp6zUFDXEz1FSR33yHd/VDWCDZ/5bMrnftbBQZ04gLK5FHGZZ+bsSixfO+hoOJEZynTZNuOZzbrpeb+zXnpjjL7jL8OHt/P7k0yMgKLcEDC7EBzl6JJIbjNeUrk/Aq0g98MmNmTJvhBwJlJwR2x1c4Oa0HEUYTgHcnl/+dOPxvHGhmu0gnEZ0cIKreghAvBV7PXtMlLmprTzEld2Z6N9IF5wwSYsftuRa3ncX/9NQ6d/tMsmSRnUlQabVGHoqYoV3zaup8/6PY86ETXcJMOGhzApt0XxXFA/D3FZfCJ9TXXqKTHpjZ6fZrBJk0o01AgAnCErkz/NHPAHFXao9aK0Q/I3D5R6qbOqYNdj7pV51SjCuums79yAPi7hojKyuirztnDiTXg8xYtuctKJ9VH/Piu3sBnvKq+5Wzax+xteyjBPXtpLkaza+Xw4xna3OlruZbfwQ6k4Mop659dwqfxhAGrtLeIke7XgMH9HRD1QQ516rsKrdGGfsukw+D6LoZsE8vpjMyOLb2S5MgfEZm4aObOuD++al81iOucFp55i7Dc=
Variant 5
DifficultyLevel
582
Question
A manufacturing plant has made 238 cars. All the cars are either hatch-backs or SUVs.
There are 74 more hatch-backs than SUVs.
How many hatch-backs are there?
Worked Solution
Strategy 1
|
82 + (82 − 74) = 90 x |
156 + (156 − 74) = 238 ✓ |
Strategy 2
Let n = number of hatch-backs
|
|
n + (n − 74) |
= 238 |
2n |
= 312 |
n |
= 156 |
∴ 156 hatch-backs in the carpark.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A manufacturing plant has made 238 cars. All the cars are either hatch-backs or SUVs.
There are 74 more hatch-backs than SUVs.
How many hatch-backs are there? |
workedSolution |
Strategy 1
sm_nogap Check each option:
>| |
| -------------------- |
| 82 + (82 − 74) = 90 x |
| 156 + (156 − 74) = 238  $\checkmark$|
Strategy 2
sm_nogap Let $\ \large n$ = number of hatch-backs
| | |
| --------------------: | -------------- |
| $\large n$ + ($\large n$ − 74) | \= 238 |
| 2$\large n$ | \= 312 |
| $\large n$ | \= 156 |
$\therefore$ {{correctAnswer}} hatch-backs in the carpark.
|
correctAnswer | |
Answers