Statistics and Probability, NAPX-G3-NC16
U2FsdGVkX1/cz2FP1jWywYKWNM9A2Dt0qDogyFPw+vr/tn8uZHr74mjE3yFyFIKHUw0oEnDqtzJGOgtxV8UlWrdDjYcUvaA4Oh+G10kLU8kHUHsUgMCrciPNEnJg/joV/dIRo4QnIBOy2aGvjJ8XCWelyhoQ0pa5X9lvqDfDhLrmBnL5QgxQfkVgD+y1CzhtgeIJ50xVQ//5bwP9yTrw0towglEw9EmiqKGPEprSlFsxz7hgZlJwWpt6JmseE5umFxO8ItKVW6a1JFTEpVqz2BxkUnBXZmnBU0lFZMSAw94A3ObbtXbqWDew30PqiyaG5bBNAiGL6xaWLaIeWkjcmrEmEK+0r/A1bbJmJGKwLTc9tzP76GqbTBfnsbDTcb52ws3MDyIq3GsfxXNUFbsigs/RmKLTRzqplVUNOCZLkKBYRsbffdNXlFxTxL1Ca2KqzZPm22hAxGVBU/JYdr+VN593yzedegkHNjhBllKpfdiXQtGAQXtr8yhmsXC0EqKB0kgfIaEEyjQU98e8794pOvsHb4f6Hmi1yb8hK7q7oxVPREP4MtzBy7s5ZIfg7ly/jxhZ9EiCD54wM+Sd94eD02HCLch0+eotFmwt7s8ODgrdGeUjE9aI017e43cjVp+qC91YS6OGpz4iP1to//2R9JLS0fXg9G8j0FpeBv/AQ5BA7mAXJBeySfwHwQwCjIyhCkSGu1Cdt7lhNpnkEGJpUIHXm5SCOkbzdSon9GJVlhMm9AxmPi0Az57kVBdHHvc6FJ+rnjybQcGfBVQd5DEyXLFVsYYZzmAnQaoh9A85UD7CKtNT9Q7gVOaHUss0Dn8yXPeu4pmvNq1q0GfCUyMKqIgOZ3cafUlVAYoYd21KxcbA7siV8PXJGokkrkkDomjRIK01mS9OoIdhgJwUVsXJJrzF5oDCppIJSdI9CnVXGoEX0huP0nh9ao9aHxZvdjO7Ti6tGTDpJeig2XNoIWcHJIzwY0r0Y8+lkCMD+8HxlJmstHFnWPVxobSA6WHN2eoonMKnPr0C7aK6W1Uy46A4eAuc8DPaAkqwFD8nLM3sKyX92Ef7hehLf07Cam600U8Hpj23vzXjxF8aUAB6FfzYOa25DCybqS8j/p3Ok8oLVRsHFAHK6h4BCLHuevSjGstjP+6YJR5KmM6PQMHiwO74toUk7S1yho1oHTbGbvTIQNan7fnWFEM3WegffdElYTonXPsk6r1RDk3Dn4tgHutl09JSH3mTJjKj5jUJTk2f7YS3tRz8V28DTW2+J00/++r4zvhuiGIpwGajNV+5DX0NOz0mlCEdYC1qew2g1c2fJIK0kEezviSKDNR0RKqg0O8tzEss0BHwK3Y4nx7uFNq8z900YredGvHnMS2Xe+xShQevBVhLm8/5rLrySXeVt/Q821p1wKxIHcfrQ86y9GOGdBUyEMJbbYaLanmf7JR4Fav7I72owPYt9VV/QGadwKzpQzjeqscBzuyU1TSsbtFi25FBWxBNZOg78y9ncUACX6kcv9mdPFB83DUkIeotVlDlYr4pNFKcisspju6rDrSTObzA+yoZ5zfRRRqYFzw6QbRtBukwBGbjbPnvv02ARFxU8+nSw38bA7Dl3Mb0ubx/cUBAH1z7gtbVGRUjuo0jVFVep9nOw3ILxZYDCxgR7yh6qjbJ63aZtVI2gy+sQPz+XmsWxKjab+DuU/JMPyN/JRH/OaafzesrG0Gke9bGdqAHeC1acrzp61sKvBRDR2TcyJlyHvlz0wRDNHGGTDedgJAUmjTFeNF/f2UiQtD9N2ALNW1Ia2Uzx36ure0aC4G/56x6AkN+oEDdKdBGpWdeuICK1uCX4TPdLvCdsYKTUF3iqJOqgUt83EET3HH44rkDJ0cdVJlLld1OwduUQsf/4pUjqumvb8onLmnf0F9JlWZa/F7K02KmlTQ3DJOApkPDcSN8N1q/ttVRd7SzwEP/sGtdYxWnpfEeAuRzKZL+ZP1HOi53pbATj1WsEi44fCq/SDwjxhiXQ7zYNGWPzE/4T9qZZ1dbwCO57Fg3xHMgzUKfq/sgj6gOVNIoTicn05HaQ1PNW+ERIrS4IlhnoH+IFc8OtQOJHa6ovH6QEOd1GXUDve8r6oXTXRKn//WVQWnN1g3DF79XkVQ3fVaNrmCdGKvGHZdh8prvpUWmNjglWdWZGkpib6jlDAPizX9TW8l1kj/OimuGWJrEcFuXCeOI+Wv2EK25LReHrqdn2yBcE8dr8TjbNSVUs44smD5l7wU8o/z1rgke2k3t5P+a8SOx0RZ04GRwJ69ZZ0MYCOL1gsuTEAYBfhKpCWRFHT6yfS+uAJ99MXoQAX8guu/ON09aI1GHQDQOxwfx/vo29z38cSkYfV1ezld/uSPRsOganX91zy333Stl27nEYx/A6wuFwljHXkrOZA8HLk0ZU8y8cXif8VWMS/iz3hNf3SZ9TP0y3rIBR3HCYUsFoEqz/bd+KQ4OxUrh04s6O47M3OZob5U/HdwEJ2yfBzqZReF0I9R3DNkFpRYuMo5S8KK6CrrsS4ywd4Y7RuQSpRgVMfB1KDlrszbWWZmVGSTV8J/o8c38ds3yiNp5Wkxmi51GwWAeOAmbKqu3lsjaanIU/oKV7zqfRqaNSW6pxRwhjfo2JUfloPMOutweTW1A3ZQR3YC1q7mhPIb7LJjw8i0EtTBmjgFXEai+1ffs/Ie34nHadyLFZ2wyH1UNaX7cYQpTbPJbf6ES8vpauzLlQfaj0xBZOtuYvCntkFfwpaBqxSlPxD0mVaGaMAPDRAyrDvLf0csY4wNj/Z7dfKVnT2N975EHGi1d2KjLkJShWdpBTMhF+QkdgiGRUqMU+jsBct2oAb+Z9oZ4HE3/aELlh8heeqT/BhLehc6Uz/YFJtm0CLHzCZyelKkIuj5nNkewWEB5gwU1fCOqKTuw+hfZ2NyrpfKnbRl1Ay+uovCrDOXNlKhah58a/10E/STlpUgnrHT/91QbPFN+baeM00OXFJxOYmX0uWWLwC3+voBhO0TTMCYrCVqx/YLnJKw2ZKWPLM/l1UJCG9tMAj9BFga4W3goqGCZKcumsJ907e/G/aJYRhBw9mpv7EC2A41RtoYq3NmiPtURq8h01Nyt0Apb9GClo28lkR+Bwt8kWSrF2bMDaTojH7xSYcDOXoLYMjGCMdYNTPTG+kwofN6kA/TeUwuXM3RcBL45HgYWMd17IwE5/aM91IKOEnWdI6TuLVtFq1ZePHg4733VotwN0gA9x/oWwp99jL5Y0FhwLBVlqZluK9NGQdxlbRwfsNPkgMV81AZdMJRP/tnFJYwZxQvWECbUjVRm5GYPiHUmTiZ1J0vLWJrrpxVeAp8mfPn7pLoHlTK2c59+KXhNnTLOiBbk1rLOwqrlqNpkuMR294K8n1wCscd0nwWGoJ+I8kePudBKlF4GFE8bOJ6TibqxPON4k1Gt3jcpq+17Aau/p6/HovoFVXKiBhBYSS214iDCd8QkO+P/DjcefxAOxpxml+Utl55DVQXCtf6LEnpMAOQAnYazbEPTd8FSXb7A/J1xOm56VELcyzNcLxNbRZUHCgejtoZyKWp5sRPK+mfDyWmefrtxFzmRlR+oypiMarfCnNXzYkkJHpcg5EsBj4N6IrwQ6+WlCe35t/OongXxaxARqp3O83igEwuyp+zDXYx7aEgPmvrjIufu6odUpf4wRsrELdMvRmRIBzPfau/PU807J8y3I1KaJ4FHlcjlrCN9MMcliCR7h2eg+2jAB0v2tAOK7fQVc2JwE1ik2ooYcTcs6UIyLW9q99LHhydsKV49pIAFb7ORr5z5vGS4+W2D4RAqZ1Gp+r41gIJDFxxOnXeFp8190fKdC7C8ubNyWzD+a+rPqxCnnT4hCqeq46VhSpm3H4oxnFNshnJ9tkgR/AM/qHeNjXj1U1tGd4qJ4AI/8iMx+4s3f4CkUHVWv44JpnPCl6N0xbek/mhyLMZvTjB5RZ/WUKqSLNDjUehCHiHj2G9IDWbkexAd3NsBM5nUSXxeag40TWnugZ4hrnfGXvaILwLHt15Xj/zV5x7t0tTvdR8DTddwmrIFRbf5IcG6/0IMpZfLPI5pXgYDxs7XD+Uwo9bOLZAPe/bJlb0sE5Qi08zeOHN/jCW/XOsYlgc45zET0wYUAoGMQv0NNX9yhDgEkbMT8/ZeIuCr59C21VLC4FfMlUwgDCMs7hqxYWdvQBb9boV/TR3R9fEbrDzACgVU/WxC6Q2Yicwao+tuWnp65/+3fJ2c87sPxXRttzjmOVXdia03VL/PrLFDau3NNXMjTyMdpQzm8BMkum7eHaZvu/26Y+8Wx/dYvSgcBL9sGazAeIT2vR1KixW3itMrxojzFjx4un8QvdDdMftU6RlNeXLgspHn0xMZOCdkhQc0JOINMnBatOusWoWtBkoUvj8Pzw0EM5kqdP1ktxtd65e99SPMEHAqwLVXM3ctpsnDqOJCVgj0Wyn+2+lWgHakqbEJ8ZyAVM8FOwML814mHarMRvu2dRUJJVWgHhwyQpfdQHhbF05//po7wrRXcMW7mqver8a15nD2kbIvyqiRNgHYXwKBjTIql3RkwVpSrqWxgXnAatWfXHjFeq7ngiBTTjr+gArwwbEr0WF0lF865p9MMjv43EZe7WKVbPZRbcPmtsS2AKQz7TOkctMAUp1JmDwA23atAUhlWr8kqafLZZDgQERDGj9lmfX15Ou4SPIBXzoLceY6oKh7etq1bhKsaxlBCmalgIrQFIvN5k2qPmTEJC4W8voau+mtxsvfw4+dwlnFX+lf9fBGQBq5NQoE/8VyRWetnUvC7LZ+PmTv4jYJkBBzYEw6aD3LkOtemkFAq+6MCbUxiF6CQKO+bB/f4YOHnCRV+FOse578Sza8/RtRmc4swkgI/zN1Z2P8h6yuj0lVsDvSTk/be7xyAtScn5rxXU9flnc7k4hNQcihXWwAvS27E9fU6ASOkaPn2r+qzdPKgA6ufj/ASCU3HxhSlqsVLwM5DlRBPpbRXsR0nBepB4uhkrLG5Cs45hnnSS4iecMCBPRI7GJtyXejGPk6kfNVAYs0ynGceGVv9PDvpsnAr/+eTOvzOrbKxxmfy7zXS8R4grkm3GW5MIjrG0Ofpj5ZbQmTxJiQmCG9eWWBPwE2+0xLkL0rsB8CzTm3tXJRcOJ7UkLv3EoPe3H2FIaeEcQypKHd3ZRpC8pLmFOICBWhZxB2NT36s5UKpEDw7y5baDdmeS2aHf4BptjABNwk44i7Oe+7oEHNvPMWhxuMp4oIYMsivcEWYSBL02M+346Tflwox2O/0lyytmDhWtW+4D2+Ix5OkJEhMS7MSFjM3/x/CH0LG3vj833mH7Bluxs+mk3xgYZZfcdl7dm2TxlbWEaNzyaZjg8yZ19yuh+c40MsfDmjGdfXspU87ORZ9ESFHLRGyx1CKOuTIP703VWIoblAQS9MWkOTY7Bcdl7lpkXOZ424SFJ4pzMKwZAe6xykTAIkkDcAUHXBsEnmJPKldn47uCPmP1kysZE2uvtb7zoMOb4ciw6XhaVpWvapUBhXBkdUf5vrNUnFAcYc5CsNgvL2srQbhuSKs2H0N3+5KztZL3ii+i+gw2eDvKlvchLMzb2y6rNi5/PmTs7+6Uw+yYeW9vwiEXpUQj/LCg6PhNGh93E8SRQ1pmVzqjEGcqL6Wnj+iQXoQERKMh2us7FiWQrxPmKKyZpSkioc0Ook6EWzJm0qwtCCzxu/77+3E+I7VHBdAvJxJQOXH/XRHsUu5rejmhlJxjJ5mbu8GRqO3040NfA+VTh3XjGr867i4jJx5NmiC6HJx10Gq3FRzGD/U33haSbeMVLJ3ZcstAy3u+0LIkQTth+ViCAyuQ+z0/rbZM+CmwXfmHFiGP3ayqd3gA4u5916ri7XbLqeT36pz58uKe3EURm4/o5DOQRHy2OX+2a7NZL56vCJ0Xoyg7aAn3Mjzn6sRVYu4z0leU4vGwka2P62RSCLsBbNhTJecsYRu0sm3xvTN56bOmPQBQaTsdlTWzJiMLpzICNx8+KGyWMGEAmULCW4k3nw4sGWDkGjwSrqQ/HN7e9ivOEGAdjv4DE+XMh/Z5JPwStSYs7F4l0HAZbgtQuy1gIxfwjrRxIId22CNAqDUxBG6FNU3Hh08CbqvyN5sdYo/jmJ6qZHDgyoI72je1SwAvbSpOKp2+TLzYUC8k/y8z+eIKZTqv6nu47NKSmiKe0wZN/ApZDW5qFhUvwjc14nfLGU4jElAMMBNtrqDuNuXvf7j5L2gLosQIJDr+xqdysgloXhuc5iPzPlEORI+hboIRt4YyRY5H9Bj66VOlB1k54lbbouDlvV4xDhmCkJ71lU8OUA4a0hke3WppWbP8cRN6ZoETSacLX5dRbHrX9RRTkgvRYxuxhib3sjg79BnqQqulM+9Wc/frwZXx2UlopHa/Z5IKX8S7yNN4KBQM5Gm2T1b8agooWh9a5VP/SHB8O51C3iSIa9W4PfTHaFb7Ws19nX3JivIdMSIOqOLhYSuqVnzwoFhSGV2RVHSKBXccLmWAV5v0DG2bFeVlnA5Q9IDi41a9F8EO7SzPKA/4wJZGfPIxtOEl7TwX1aOUiZqw2q3sYxWiaXXGoUQm1ituCHv6oMKMVu/uUfba/tWlaXG7Dc3tYPpkI8AzREXazSm+bbqh6lDGBwvAYaxswaSk6dVEjx3sj7CnCCfNIQM1cs1YhfC2vmljTpf1qi+7VpEKOhyiYe4JlV+CwAp02InKO3BuT7tnPz7iqlCBXQckkccGFpnKcp2enAtVi8eA13Qmno+MTlO7tMXUfTOKu9dD8huwuYze4GnfcGM84tE5tzLpPQDVaXN0khGsHLUD9lFQnOGBgd2xekCVu/zb391CQm6C7Pa492xap2ONWdMoRRpccbeOjz/At/jT+z/otcpv19ijLp1jseHIIFv+njUYKJB9LwgTq69NtaqtRsYdbYGLRTtDj4J8HmUh8M8502UUFpN9M+jhqO6wQefVa6sBvSPtlVEifo0Nq3ArfP6Jcnfqr/J2ciE1T8wXeO+m9AGyVSS6ucu5laOk2NS+is7dYQ3OTspJN+GIJ9wVh8RE5LKlV86oj74eZNg6bsYhA2ZP0ifqH8rSoXgPx523RZ6q4y3vDpW1LX4DwIqKF3i32VZCddL3TePcp1BDofFhIAAbjJrMGamAmkKoET4TKZ3fsu/9ZLgjYJZAhX/7WCG1mWCnTPljD3seKsYZwQjzIUP2Md3Aw5rQNEXI8fqAhBw31hLP4QqKGcUarP26noxK175OcUOjNGbcnRLR1x0WPb95AkY5SAeCrxNIhO/XF0GZLQwXvb5FlrkoZfmQzL/Ije4//JvioVqM/zQFGbkizcM3v5lkKlVD8PV8dK5BuAG3WRbjvaAFW0SCi8hej6IXwF1DWSm4p1tAeSWRH/Y9MtCFRQRdmmwWK0wSVtC2Mr5ApQWemrWdp/wampmB1f8OxMKVfPYgZsP25cPEPNHeWAcWkG7lP2+g+EeHUnSWF5RG0yadvdSScZ8F+jk0K92r4XFj7kKkhqYHPJxDpf4W+Nnm6I3MAOc0zn6rRm2qr834mwusPF2xjmIZ2Jl+Dn4kLNqUEThRxkOPxfDikoThrKY3UpcUO62mdV/FJA7pZK0KlQl2fmF4V+FfubfS1PzYE3uZ2V/iWXkyfjP1Ks5FiUbm4R1N/h7+n5zU4CwH7g92nivSVAbKCGPGUM8AVZkn7GLchEw2LgK6jHmFub7oG0ORlRp5HJApdX9VSq54x0hEGYhz2FGIM7LyqIRZlEnygV2akbCilOdhqeVrpTeIVJdDsfuoKJiVkA4wQOEzzfB2EMChiptxM/DlykiExJ7Kt8xjvIUkpV5NuVxFf+5p31pZ0+8ogHou8ZlzSjlKUTmvA3zZReC4p34pdV5np15Tq9PEQaaiLUw4EiGl09my0fAf8F8k0fp65XHsnq9A0L7Cs28T/WJJYz8wMAfbGKH4u0ftugzzdy22sHu9tGHw6bgOK5BN3UDVYV9gy8xBQZIjasuiGjXVpB9QqKoWEO/+pL77KzYvk6sdMXuVgc1veaklUVhW1b/ISILCf+wWfFaKsx9YdVJ+fkipefT4eoQXGLW7xyHRWwylJzFiZVaYdpyWq/MmEh8cYyL7I/Em0oBDz/JU7bbC7iYv+CseZu3bYkYUuWssffMSmpDtVSSgitQM4bdjDXVLmwErr8n1hUwIA9gM+eG0LJ1XANzo71xaQ9AMlaGbQv2/zM+8wZjrJc26jgHDzegyd5zgO3ByiwcDUyJG9IT+DfBwqGzn4jsJt3CcSz0tVsyqRjOtHdX1W3Huad7Wyn9OTwM2T5PV5usaH+JVSQ08gjs+MDJG7Nwnqo03p7SUZlNBQvjo2jY0tVHRXnLjA5xnY2uTQXJlW5xTdV2IenyAdBGaJAv+Kdlo7WUMKTL+2QlzQABBWurCeku0XG5yMajeazJ1pFYzGUFlcAuGAOKFM7vZ1N7G3F3kk44/g81NmTHeqd0lfpgkcDJfc0NljIAegVQcuTA9LV6KLFG7+l468JFoOY3NXSEqJMLhmQ+oDq4WJJvVQ2LdaSrMZcvbb/BrFSKbyab5TLbyQQbRmu0K0oTqVIRSAWIuq0yLcWnFRR9BsdyrkTaT2/PvZEF6H4bpNOUPD9cxalaXLb0pegJBQz/KT21SUGwSLdeB/pEJm7+SpX8w7mHdy3qHYmLGSjwmzsG0TVx4+DN7Rph9Ca7tOnC2xmlrz0w93kZHaoRBLjmGtEEz93swKnsaO0GkgxZOcSiuOGeFEu/jVeVcBf38Tru689L+raqAYj/bofgiXdq7NO/SJiwH6XOKUq6uzhD1x1R7ibROT6zQGqydhA2HrcOp5Pu3HBYonv/xGJp7Zq+ZHZ+Or3p+qAETQ3La1icNo6/ob1Bu6I1F+EEEAOXyJt5YVhDre4hJsXWeSAEQzharD0S5WVVrikHexgVK8n3FXQvhh7idX3lVceQOEhXUMjl6kJzv0cCqGHo5eunI1EYQ2eIuE9Fp4wNNRhPrsdT4RGf3rLSwUESiUMNGls4umel9OW1PbDsSHrCofOhdDyoYbekofmEO2NQ3JG32wtL0EVuxjwfMM/kTsX2Ohw81LPytywULE22uyARQ2TtujKo2ENfGlaBgVt775S+AepYP+8h0goFAn5zl6BjATcVreKPEDyIBKtAgEAOq+I6uK4T1N5Cefr336dHKjXXY23voefffL0wtK9rrnh5WZnDNp9LnVJ1GIsTzIy8ycGViq+npmaI0ZbPBOOJE6qdDoEjUCB9nczs+Pe4TL1k3ZTl0HxUUUpzcb3/zq771WvYDrlcyTd43iQsy3rbA6G1hiswOcmcfT1ajqarqqrqr6GfXqJI0RfvtEkxtGjCX3tcZC0YORITj0aZKE68wo8iLyVXendC4s6ncns0BGxg/yziIEXlo5Z5oJHDkYHBIQCDzeI3T01tNkbMo4MKYuouEtMZ8SGzgiBT8DYL6qhpgSXA5ZUqcBV8cnqVRmn7jxfprCXTSPm+dn5l5i77alWVr5gqT5ggmES0p8S/o3IUeeyA4Iu+wV3kYNDT6a8JC6D5MhzVH3CVL7Q0NvfEzdFtixwxUxIhfjmYbeCA9twUxUqwlzM+PKdshKUhFYtk9FrdIxmI2K8WMJc0+kfj1x1564iIQpdlZEPQv/gPfQxtJOkC4N8hcBR9KJQ7ZA2e+gtNLTO0X+mIYggg1hjmkWMw3FR8CuGorDnzz6QjQ48qRluB8CNvbT4BRV1PD4aHgyha5GYZEkcUGQNGXW7tbrXxJPkuE2kG4zKUGR2EDw7b4uekfryBNRYR6Z2TnA0fBo+RhXihlMgk/bm493Uia1CO+2s5KLEnqlYLcPHz1hvLSQFos+6f3QOBLLTKQ2ee96ThmkWFie502UQ6ds0u+lpiP4O0MNbxbsXs4jQssj8UPH6Bg00gFwtHLZI2NuI4A0zIQFhgpEQ31vpT9HmIJZFuHusSZb9Bzik0VCDmmMtob/PVRWAhAx+fbBy2qRE5PvUb76m3BZAHhN1aWbsVrfQpZG1ixvdEdsIfS45dp8lglaKwB6jLRsU4FfVxikVoTdVa64KZ7XRu+6O6Jtjt+1OSA4LaN+qW2B4g00UTwJRevY0x0CEZOjH/PlvmFhFc8KQ+wj7ZbcJrx+3TAPx76AUE/H/XDiM8MNW4I9bASHS55p7UBAGdzM1xtKNpUJ4Wha1Pne9HSPx6nzQta2AOVj58OdtcpcUQiApocVlgPN5eB0mfpFQZfm1jOkCfTwSMhXq5U8ET/DmBkdg0Qtycl13hxLpDoGdS9gOV7bUGtxaSV9Hd500I+RRcKEA2lDXbkW7Ve7pJZsPB4C5gO9fHdd3Vhff5nB/Pym9PHXT8NZ1ll/ssbyQGIZi9EXQSjW0M2eNhnZ+4ni7hBzeTRyVZhy8vfhM+/jJ59u3KRUX5eYVXCj4DRoN21fMAbM+X/lOUIg9icQoWtPe4z/BuUBZuwIIYOLwkijx2InCpAnTDyw7crFknfJcnjbMP+HBSOEsejDDHzDsatORXLk95IsuC19EHitv9vfOh+iWIGSymkKBfHwvcfSIEpbPpFEdydvEKrJzMAk6oxVzqlQN8arWZiT6/uzCwrs0VkdZGCnRxU01nwxgk8STl/yLH0TWCLO112rmWDJamwX90eVBxOv4YSXgsFJYn0NOPfziD4UZ0qzZMj6/adECZGE/7Dw6chBe3dSRk8NR+ZRs5icNmyUg9jvurStsbx4KL7KKFILtz5s/yjDmhbPuZ72+BW+7FTXVzOn+pWsANTzrnH5w9jg9TeOOQj59v44d3ux+5tV1NP39R1g64fsc0VKKnm6AQs9wkxqa7CnT5eN/9CLQVU+YbLZJ4KvbDukzhq1kHpUigOFT8ew2ndVpZoUxYM7Jsxz/j28eQxWOp8z84WL5UQuQL4S/78w8vwOkoJNqrnhA4aydpDhubS1mGy8yTmCpfVFow0xtPqy2bU353Mcwh7T93bdNwa4E16vevvKDbMQxq2rTseE6cuGRnP7hSMENodssisxCrc1fQ873bBpO2hbEPxFMMtnPruwGuU+ZuAcXrUyw4vBjVCtGYYidUi7jps5DVP2ixRR1C9O86RStYZ/gs1uM2nD8m5+o2W8tCVhYxMEl1y6m3wKS3kvLPys86xssEFajeo6e1GLmt6EeFXFf2/A1nk0lGPeDLLyLVQhoB4ID4M7znZIklyDNa2n/0IKoovrJwP4Pt2NlRpV9icV9qwtVRGgwzqCpTHlS3ra0+/6X8AhHU+BheOZK9EpmTOWYips71wb4LgohPm1QIAUc0nZD4Ds3naD+hKO49FSY3MqF65EXHH67m6lj76MSJ3LnJUWUEfXS/Vi7CkLqH8DmnDs0XaKJZ/vNXx4YURoXBKnNF35SYzUoOTftwyFQvmorBwvgm3rrbs9duYhGNsgD415GZFi2liflsRTvKBTS3EAfC0ruvFneLSV6KR3voNKu77w/w4VkmkyuxY6NwPZxmUZUeZtTOTCIA2M2DssTlpt0nIuRlPiP+SS8IqJYUeEKt/5M6t4aH0VsZ4w6PwCZEW0AiaDy8TRIDCwtsKUfbkkDszOk+31RRURtDhOFbfoDKAPmLyydvjYsbIEpZgs0k86Xkaz8WRxC+3+W2vFr9han0JetF7hkLgK1ZvpMMagEHbhkZfH2cpLx2dtMMa54JCm4ARLuPm/6Y3aZsjyQzVgNoNdVIJWTlq2rfeSoOrV8ua7V1cvM777j+VD8NSqCy9jvZknpYbPE2dQeHGIfMAZMjSiiHs0+CsWpyuvObTTFZ3ro+nw57lpRkPNIts/6XOfUetQLjpA7KY409WMU3nQhZi9dcOWd6Zvzovw6ZvYL4RqjKspfdYzImxFrFpGiklRPfQfabZsT56SYJqz/U8aMRH69+26HxRIqtPPeYM0pB60MQixpOW9Ns23c+d1AELDu20kiN1TXRfs4N3JLAdf5H4WN4q9WpZDtXgGS4X6453RskI8ghvp0ITu86hBh4T0hniYp8j6Kp/L1wG2qKRDojz+EB9LNE21/ZFAgJw75+zSZ/HK8WWtucHTn+dLTeVCJzFzHe3fV/sg3Xuf22xUQ7eIWGz3Z36iiz2tn/x+S4x+HsT0xCcXZQ7jE3e8eUFf+OmFqURc2/2biWWJBnXTSZjQeQyUWXBHoTcv2lTlFbzhn2F5gqJOBTKDPiEm9T3ebLyBGY73jGRfpu1U1wX2w9ONzIraLRP4/dDBjlRslUjFMy3LJIVRh6Jn8gLuXFPzgEXeAtZZkLmi/oPdAKBGn0oTWe/f0Rkr0AilhnslvEtQxFQ73PC7U/IKKM7EhC3bvFENHnQw4hbBjO7cO2efbM7HEqo4dq4aKRiT6vlILgJhGagMaW3diSe7pelkWtN+a/dZOutiHwws3Df1o0GHJgonyhEJ1a41p8YVp0infdkrJepi9Tj2yB2NiDSrK+I5YfkSQRLGPClTfjcw76UI7UqJeZiIGHgrj+T+IPMwrtv8wUcjR6HUjKb6Y+dNNppY/v4WUHYckCm6/P8IcrdwiWJ6pOH5C0N28VIQS5qZ3fWXGqyZej22Wq8hS3pZjBQ6tbXK2qy4yjA1gy9wSXP2sLpy0QlSlswyAbTx13qgVEUkg70+8MuGaYwNAbcCWb1bldbl2i8NGD4xL1D3TtGew/OrmDqk3wOfwQ6QK/A2WtxuQSfKVc242j8yqolrYqDCPGnFb5cpgYE/KAeazuQAhfd9J/Si+hoed5tHo8rSsWFGdI6PpIFc/IkYIfJXgQgMkYp5x4y7rB3v9JUP5yw6KAJKYMyJmGJ20x/rw+elgbwdYKFaZ6uJwiwZ+StSGUySuOAkEeCH+ykFnXqpOjOprMaZVz6lYTZPziKSVbf5EzfL7ydaM5k4g2GviMTH5/GlZGpjFvEe9jXt9/ctbb4GAeDlK0Gw3i08Q25eCmR9RSKw/TwzEuirXzfMmj+2x5OG3EPXKVKbmYNmgo23TxoUvEgDDGlipwH4KkD65TSfqHhQeGqIldEhDoaHifStrCEl7mLOu/bc7mOWjWzwcngiWD7eoaloEosfYljb4c1eGGpOJLb0QsICA92xcKWJ5tleXpaeCyi2PGAIIX1XjjSS18VEDrEitRA68AdDnKfK98q2+M6m6X3wLnOscHUfCHitoMmqQRcaKaxFv3MTxjTPA/H29NPacQBdDpS+laQuu6oBobBGsp8VXun0k7nC3LzL5zzru22XQLemMBxkegZZahP7kRkvTunYadhbIy0Koe7m1usOzINpxSiqZYmSH4P9TMF8V4yRJ/aTAouGpNGTn0akOOXtsreBZOE5r/ZBceGpYYqpbp995ErbbRGa6p5nASbUHewPSJaP35Ycrz2/dLoQeAMj5pB6d97Rs9t7se6IvmpnUoHmPAFbtKjglKHAuoTjh1smcEXmqAHCBAQ2Na2JjgcymOl8jBEzwFcvGHoU0YX0pAHcS0T4KKUNjAwLINjIQyPb5oOYwuQSth0zvpYnX/rXZJqnCP7Rv6XPqSoLhiZfhe6rsnGSGukKUuLpeWRPX/rfuv4pITk/7mWdCfbHqfvX4Vqm+23ni8FFHssHQmDofGV9GlRica4u+PR79mvEzhOD/D49/D7lXR4WFMwtcRe8QS45mmbkNp4fgeBPMmoc5RC45BVZU1VwBihAlccaRJ3r/DCmrI7+zgrdn5mMq3pbkkGuUBYUuk+qJyG0+ygs/X5Dxp9iVvE/ZlElQUtBpnT/AICvWS8BMkrkZslR9JBYp1d507d5NRnNwtWg45chHtfbp5sU/CB+IT/cQFBEm8R7QUg9NE9MgHwmYoOaqSifpG97SrA7hcKy9fvmq2qpkq5oIQQBHggFFmvw2mezTFQJpIGlCpHzbK+oT7JNhwc2Z4GfwYsgX7XdZyOItg6geWAdI4noFgBUso2CxfJ9+CCXwIdWVhN9W0q1AsIwHAXGHVS6QjXrz494yCdRI+rkL9HHBeQ9kJtr5NtZB+w2xVfP78uBOE434NGFas6vY9yIz7sraF6xoKaesocinCc7eYsIXPGWzyTCMrV6Tt/HBZaI4I7rddAUv6YWYrQ9CeBzLhAjXbXGr1Bz0Cl2ywsa9OETr9CqfaO4AN3i9JdkcxuGgGp6gnZ1XZobDn0S1YXUywcppa4jjJ5fk5v/Y48PEe6m/NI6Go820h9dBUDohUwkoz+iClb+ZsiDPjY/sfWPCAmJbXmiWowqflR3QhkMk5f6h8OR0R819C68PrYXrRRqMhMSn4+U69wJS9W07JXYdU+DDSj2aUZQBGdT+cEgv3W4O6YT/7i5ME+Cv2TM/Q3wuZ6PEeZ1WqNq38wyS5kv8ZdrvD+uqd+y6M1gSUQ1peFWoY7E/fBsJN5V5ZpMiITixYyCcqvMDVcSvksuWD81rcmRfF2/UL/0RmiJX+SnEW2l1CqokelCfJLqkkft1BOHb4yke++IxVbgGaltqK0hmeqU98e7RixLugtpi1ojCWiSTtN1fEtZtNcNrO1K5Sn9S97FRJ8EA/MXcM2V1HDd2W84xAPyY0ZukkCQ/wG47HjwYlnybHiY0sHkCU9qtq6LXEpTp+43dDHsxrrxuURPjNbh7AbXr3nbwGtwOk35edJhx927aMeU9ayamQAjhX5RTAGrUogfRJ+Y01qXc2y/H+MsMOKk0xryJzY6MpiNk99xfKNx0XxPVfS2H71zFKgrH4amBN8GX1aBRbx6kDTCvmgpBywRqD+mTd0Y4l7qMoLput63KlNlWs8cVQ22ngEIrj9c/Fet25YRZgGroHKMEU/Pl7B9GcgUb8pFFuHoDPFFQsrnxYZXL/SoTkGEL4s6oGS62bKl0bwHWvD5VerBTXMZCwwnYrHKDhjWb3rkUQpZsxrGFbOjwtJnZT35lVGVILQPNX+XXZFRnYeyLyDxg1EsdRDJgs9qaddTRE7zja3t1/hQVZySop+wvH+H14byTGIbZhQk4EykQbiWBpB6Dv+WzdYd6iZPanybHvist3EyZf8gYfRU+hip/sSyvmyawPzEO6EIzTBUU0INR1M3/s5RmYQ+5xtPwViJzeKD89Z7mZP5BCZJ1chbM8LWdGbmfPlwI3Yrl1z+0AtPjA7KTnNdExdtFrSWV9PhBsaF/YGRz9LPDRdDX/NY+jivN2chlXGJWkC7rCApEzZ0mr8nGUcg11aCwLa/j3NbzqScL8/xDJ8Wvp0j4igIZlY0FBkgrmOriCOVGG013fMpoUInxx6jiNRH6WZn4wPAA7zOCOfIHeq71AUewJpwThzzGi4uBINPksDhSVN44vBUcuSib7Sw/eLHXHK8kGnUtmQNVCDZwPZ84KZboz4a+lr7zdZOrdORdPZMLXIbVY1/Y/Q3aPZzAshRscvPX2QyedyeOgd89gELS7AUsJjvjfjPeYWzo4eT7aBBQCIBnSKQyP5G/OICMF+bvzrchN6UIHoBLrg2op0VfiZrsuiZllTWK1x1fTi2hWztXeknmcCnhVmq/mpsbrvtOMMW2B9gq1Om8iZvgFJIbJuo54AtEIayMuPhhtPIFJlQKu63eDJH9Vh7EFqMKi9tTP18XY/u/1YC1m+QrDvvtne4XVrkGaWjk8rtHnVaBAd1bQUxph1Fc3Ho9fyWHbPbfpSPDa+i/4PVtPAH5w9ZG4gTmAC8kPOjgfJcyiSgydmjG441DJ0a5tejoVhpCPP384ukC0oNH9yS0qP0ttilbYE1qTR8XJ1VexoFNHDU4Qd7+ziQ2qogStpGi0fk5mk3WPVTn+QKKyowBzJu1XEuiQJbsjCXMdAJWUECEVm2eHWIgOcsYIuA0x9Gp41i+K24rUpNBj73dUdh6bsq1Rr06NSutzVDrotZKy1PWttqKQPAGN5/wauFNYZGiZxn+qC4PaD2oauvC3ztmiE713oBNgrcXq+3j80L6dRp9AoAZCdC3KNf+0sTywu0sUukyzj0v6JaS3EidENBWXEohg53FZ4hKHLgWX0g7EfhCVM0+DzZiImJhXtno84VQyn2KuU5um8w3xwFYpj3ZODzn8LIlVQxFjczjqKfRM2R/7B51be/agOvqMB3dHbOuf3zCn1bnFNtSxQEu+4yH2/5nqx2xjytF1XT/ylN+Yg==
Variant 0
DifficultyLevel
570
Question
Zachary has a bag of marbles.
The number of marbles of each colour is recorded in the table below.
Colour |
Number of marbles |
green |
13 |
blue |
2 |
white |
3 |
red |
9 |
Zachary randomly takes 1 marble out of his bag without looking.
What is the chance it is red?
Worked Solution
|
|
P(red) |
= Total marblesNumber of red marbles |
|
= 279 |
|
= 31 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Zachary has a bag of marbles.
The number of marbles of each colour is recorded in the table below.
>>| Colour | Number of marbles |
|:-:|:-:|
| green | 13|
| blue | 2|
| white | 3|
| red | 9|
Zachary randomly takes 1 marble out of his bag without looking.
What is the chance it is red? |
workedSolution |
| | |
| ------------- | ---------- |
| $P$(red) | \= $\dfrac{\text{Number of red marbles}}{\text{Total marbles}}$ |
| | \= $\dfrac{9}{27}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19JyZ/aYG0wtOgk5VB5o+88Tp59RjKR4BKb3S/f19CBU+Wra1johGFOa+JtSjJ5rIGWUUmFaKLu83mUSsYTDFqngAMha77AbnYWsKdYeWC1zBAvivANQ/nf1LbLXjaGDZeii/iAgJAA8mjnvCzXOciK4OyVQWc1T9VNnCvdOuFc9ScrKkVfacQR/CDMIqyDPOoDG0rW9OJc475ERelqJGICrxTzNuZZs3p+u+/r2B3b828a7rKutjsLIRnRnjETojvV12JWeR09c4jZR70YEpB5ns2W/2aWKjcuiJK5Iy5hF72jL8J2QeLSckmG7Ja93G4V0hSTW+gPoKUOgwFAqwmo71B64FSl7Fzz2K45GJI9UiQCGq3iYw3uUAou3Jtd5qczgj63U6xLQezOBUtgd15CrDqpo9JiCeUdbFBa0Z6anxBL6+43cZMIkFvhd4DRg7PwpwS9QIDHDIMG8IVjNzKaXJrSXoK2BX+AzJc/Pj8GDkC1U7EXXk6ziqy6n9o1rDYZStL3ZPFfLyzb4HNw2bNq9ZuxJzxaPBPdWncmAgRuR5oHURU+ePhb1XdrYNvz1oePZ1lmY77G4GHT/pvGshL5x/6IcwduA6buH5XbDvKt3qn0G17+P7Zd5OE8lAW5NFMpF3RgwirXimiqg6lQyBTvp8lxDA87ZD+YZ2LM7RtuubOTjYirJWJQ3qFv6Mir9+WRZ4PIRhcE4pwtX2aHS2I+ic0EpMIutAtHKSvO72yy9tQ30Q4vpwZiYxM7lZHGY+EAzI6OCldNtk0D0mgHqPWsVKdKc/ywvGEpaoCgoeDmp8nUzet/kueg/k18YR9GjJj7Lb04/mtt5t0tCDpmpcx2DOUFZBPp8advhTaCHV/RwDF69/tjGuFpj8klU1IgibRXosq3h+YYH1A1bH6L+GbBTA6c+d61pyOQUelsGl57buLP0DeNcSjrcxe9YZhF/VBOwHIwSGhyraPEPOfpmvbMrdSD+YaYLf7des3syEwv+35zgcB/vWHL5gJ+MYFXAbywT365pLwQxVFMjoOtP1uyuCb6bFnfELMLcJVpnG4F3pemRJ6hj8zN7zozFUOjQkyQjm2ogF4FkpX+wn5DjAg+KNCUPY1CXp7ZplI+4Soh0WHVe1T3570ue2xGLQvOLeeVW6LfEsBPuvJzSG8tbrIkQxIUkKPgHZaKLAx90QnFaXYc/ZqxhX5LeqdYUDRAhbCgqscZ+kxYpS/C7eb04PZ6uGurSpbDgtdbcnhoZrPXYTcTa+qOr3/M4H2gFgSJKHhXkfvo3q5wGl47IrYKBkz6LEsAewXBnTTaqzyttJ+CxJAnWAX+hW38NmpJwAiF86MKRlEX60QYZgksKuIQ8eMRiRtsWw0H3JQgeR9KYxifNdHj7CGJVTo08RRxAI+okI9wWdDiwOTA7Y3fhvo+60YkiEBDmNdcr2mapAEVg1SdjYLbf9x0YUhE7Pi6xwBMyO4vwN+/NmSlJ2TUwyAc+zCGRUI8q4LDStya4gz7Rr4RNiOso8yC5w8uYiDj/PfIrYfzkrZDLxOcUT5z8/CKjceEOgElpbAr9O8qODBc8o0l1k8RyGc9IhsqsFyuQUG5BwJS4Vtbu8jkNZexnn7t2XKg8whyaYRhqbMNKomkrt+kC6S3purddWvQ2r90yYFMM1EQKCMUBt23PvD7TyZ3MUEmVHA/pNIueU3yh3pql2Hy93j1uCcZ2p98myx0yJLIue0DR/NydcxWX+a7qyTlN2g+2r6prPefmvh8PNb0EB+PgIvgqiY8ZEWh9vDTWzNenfk1q91P9QI3RapqwUcoKneA3AJ1GJ7Mw00a7NWz1CzCGcnkO6e7UrzWwTL+SwRX2eJEaO+x9AOd3ORo9MP9ffUB3ngSjTKZgvtT5jSUVJwcsgSObn5iWYwj7U1crvDyKUoZE3CyQFpgxEBslgvc2SqUTFBqjngWSWMASe8c74Uh3jWqELia6G7NXEXoNRWFFf3mfkxYIwcgW55uN+4Al/PDIu+MN5tg3wPOvauBwkPSMZsEZayK+cw/4SOy4ob5sptbmnKqsGabrJLSnhOzWyN55+GQhbVXI6BjZSLki5UkTlt+Q8V+e1R/xAOOztrnOcR26KLbIGrKhJuvNLfdwsJFzo80JtVRmm0j9ySbJzzsne0NfVJ97mV4VqPuUlrqwhoCJTMFhT7KZroxRyMzI9xai6+4tkTmQv9MRnBWaZbuEGcMSYw+b+xcYfxf4RS9yuspZINpN/3biKGrfhJMlaapn7osmS7nAbBO89DtsyvdqLtRwX5jowPjXwTvaIwmIaWlcX2Upt4K9nQFVln2jUZmhb7wKIar6PSnFxMwcNx/HBpAV3TsSot28NSK8mEXZUqnxHzsFLlHSBKsyfIzoWwNMZ7I00U3VrL8Q0gA1lcD5U2daxFnp/6/htK3eCXDMUN4FZp1WfcMvPmdEuzg5B9gKqyM2/Z6DS5dwmihZR7Xga7/nHj9WVKd3eE0AHC+5PGuLj3x7DqyD7pcFBmtda/HrBeXhAgWCltdg0U6FKnpJG21UTCLkg+w9q9csT5fIizg8FDWLvsREE4D86jIE6Y/eeCGfCKcrwoEIMW3eRlIH5/6VMC6CAoEpXz00iGtmyVU3QrvdLmkHaVrykD2KVxBGWMsYN3gB5E4lPwvoYppBTXR93j6utdOyFcPIkrvizr/ibTxwf9AKs/44rUTzgb6QPB7wFTn4RGkLKmABHesMl9oOT4i08BVrYNceyK+5P0Ep87BVU2CHZg42A6Usy1j8nKGNfjNkWd9YKpJ674Hu1Q77WPkAiIQz/Pkv+CKsmStaMQGVXt6Slb4uaID/bkEB3JTC2HSk7i5EK2CG4scwy73ZD0a6q+jB5hj6J+q99BiVmELFHwwaFzBRoFTmxm/VrxWusozXD/OjSmq3WPn/we5pr54itH/ydYsaVcYD6EUw6y/Ty3z/CaYAMJyHjdHVMCICPFj+gLAVMvg8IVRKgrtLAcNERCYl604RYReNShlfGfCY/06u9Le6cvSmXssYZwZcfpHHCWolysWDVQurIaYthJzD2ZZYmexhZ8kR/Yjzf0SFD1arit5XWxkPf02ykp9dunFHhl2ZCGuv+BIahjxwNV3MlTQju7m/1L9YjNahx5UnBPyiLexiu04S5jJLJ1kXfQr2aKlFLM5OFYZ40G49cvR3e2ihrlKK9ZE16n7wcuqvoPsX3KCjNvwLDWuZK9UcJbfZIMk4ZW8jpA0M/VRBTFL7kqzN3DjUeG+G8D0uekStrbjj58PE1JsZYmbl2kXJ+JZP48bkE3yrsV7hfYiYm8pEmGM2u2zsgeX0glAycIY7vl9FGh0QtQgtO2UaXj505/fIMsjNP3APBpbV+siavecWsa/8F7El//eRcGav2XLxSGDNyTtGJjxPkU3LPcOdKak57VVgi19zSegJbbljbHwArYHTJC/UWho/EzNuglUjt1OUq358grIQG5zZxftQfLv/LzQF/kEDQsksIHdDQvA+uOFEoi42rMYgbwN1U9cbq/xZX7IuiQZYU6ji+nH2BmVXUnBrO3B/UZs2872uQTU6A6Rw8U5AJcNKvxuN+5FB+B04C+MbQrrp8GHzdEPRdOTo6OED5b+bivUxJvPLj9XTBwZlbdUIPiIBG258V3JpJPLjnes8tJY1/og6c9C7pAlF5EdP8EcCu8PepeqDUzs0H1NlRJuu22zcyzfP4lCsZKjaeH3OJN8yO6X8RpLBfEfgtmyV3+2g0+AochskwF4l+ZmREE4QkJjFfdwqON6+nRhQRUF04VN6Ksb6ygM7WV8EFOUcZ82iO7mT1mAIFp0adnlYfIEKxI3a36CrbnLRWFhO+W3wqm/SoB93xoaim9gjGZyDfOeQKNkprvueRQIyKj8NhriPRQp6o4MsuLEVNv0x5U2z/FQZN/ryDCwYavsr5xllqfbA+QQuYrXwc9rPmC3HRSaMr6dNf9xh6056uzvxIyFXhbhD3A5FmuSJxW1lvbptm7W3/SJAUOLlfLFPoilqfGXxGaSG7xfx131SkIVAsjbMUaEBe6a3VlEEosB4ME5L3RlTENjGh0DrTB31cvvNMfW07BFQq/pvYGBmrKqWjLzsyl0WjPjmLXia2VkvYF2bXLEbwEokJasc5WzX+1Jx/ovct82qkbejI1kp49BaG5xGeY7I1r7YV1s79vlESTUylrLoqM4S/7iOTU5DAyus27FF7I//gRr6ERGdsiPTq4JYGaQrRKCwyoQ3gdmzJ+DQOHPBlTeVrPI1P3WGofSPMnyOfi0aqNPGm5gCS7lAo5hTGRHyYmCHiLKc752NF57PxBPPj+egu9moznZ3pdw6tTQBROyI/cOuSK0HrPtLyyYSqGOhyk/EjrVJoO4peoWk0WqFzthHIEg/AzPlSGRzYnvsNykFxvvZ/VrUX1bW8dzZcct4H4JzAR54n+Ebqsp1A73yRp/rruObcS33A3NZjXUmnBrrf8nP7rCnHDTH70TnQc07kOfgVfOdAV0uW5PXiEYlFT/Nj73UcAIGcwUmbSQBTGN8t8vTMHWX4G3NfCWciZI9ElJpj3D5XGhpmqrAhqjBAJLJr6mno0T13HKNh2jthEVCd38AsirOhSJ8H7u6wpe/+/g3rkG1F06TcHRtW3cC8OVB9zn1QT2gU/0IOANkemr66o2f68/ESa3JM0MRNSDmpysPSKvmdIYd0Nyayzq+ZzL8Ab18TksSr2YyHiBnw6Ttr6Wu4bC81tCdf8BfBAgk0jYiY3EWASOLDhwRUgKv1koBYKj4SSmtAFpHQxnrryrRn8E3tzmzYQdo1SjQLvfAhCv7PdCFWlDldeHDvqGuD8hMgh2NdF30RiU9a9e6LGOVOHMWO3RGfww8Du6gRZkFzKWyPmX9Q9VgqN9NPtVxJ8MqF5Ziw4Om/hO0ldHKiyv4yx8+baTsjWX717encFDo3/VBhMTF2bShCV9NyeY2GMDSDxQ9n9J2L2qvFvsizlPXppSkmlzzL5d8sTXvmDaffW5CSfTwGqKqsKsxPiZwWHWKCkvdSIoRqW7ojLc4FsScROPaXV9wqYU3WT8YVbB+efZzbxydjAzjJDDwdi6ILb7cHN7lghGkLhb2rvytqOct+GtT/Igy7E/O7/a0Jn1qgzFtevywVBRMJmkpCibpWBSdJLf5AWGXNxSuM2KppXnqA1/6NZ/AAt4RGosFUmtanSr4iRafYeZKKjAG5kIi1ijI512coCPDxCM2kqVXQu4FXXKZhxosU8sj7+MDHvoU+XGrgF+vJx5wps9T7bfev8BWBKUQy8J5OPil3Nz17ZtrJS9OAsEYmxOMAaacIoW1pxIwvdYyRk78+2Nmiy5iFP4LhYxRYUk8GfwHfSv8zoZgkXkrNH5KlVL4pg+zgBYZMAKaHGUstm6SCNUCv8Zdm8R+mqOcnDHsNHlrQ96mJq1dR84996G+zgTbyHn6qRo3q2xJSupKcU1FLnm8qQ1W50dJj62+mf8NgYN/Ba+G5+fcbZSJbKL/jg9QRDh8cbxjEMVBaEtDQd5ax83ztJeoYSVkHOOZEtEPlyDBh0b/mmIYCpg6n67PtleV0qpUKmUrb7ZWmQEzuziY/DrZiGc2Oa8bmCMHtRIWD5HkYPXisF3IYU+d948vs+d/3uks1XM47TpYDvqSsiQV1W8tiWI9vFblyZe8X+9bi9yNbwQKoq4GpV987+MzhMkwNmh4vWxniNF/Nzy1QaBFr/z+BvB0Se2xxfy5fs4+vofSHgA+wMSqlMdrlAT5jgQ97FJZyCRDQiBHUQxpBBV9CfDUuI9o/DSB2piYc4KZoJVehv7bwB/8ZJVodSCk1Nd/TmIHXMV9f3WFsYDug+c3qwduhbUf0+u6hJZv/sIW3LbpQ8+AGE71mh2kzxuF6QX0b28M1kB5gp/CaqcaA5VX22jjH76plpg+aNaPB5WY8PCTcxFl9HUc43v/8/EK/9qo4k0f4jSM4A5k2cCodC7Jp/XlUW+YUz0z2EMCD/JaLqwFGeycjGEcfUTbk5R15H4nhN50BgfkV2iVOwFyKod0WO72bJCH01Dzi/bnG3lW74TmW84oXGwff5WrlwFifQJixAMnq4esTaeDfNY+4H+1+iStgRraMaBOtOjIKMTEr30Lz57cz/SNddXJNFnp1Nzo7C11369olA/0HgFm/1FlU6C2eYVSAoRw0N3cFST4lGSXSiHL/WmfqRVkJeq+X6t7jPHOL84+xB7L7/FMX+f9oco+nFYALjn0lxX3BY1kwGRV2dkJbRmWyqaR2xVjIdzdK7yV8Qxp/KtzDIlxyIA9W6DbFT8t3KAuq7IMR9/aZ4EGhI9DxiqcKh3mU03YI1IOu/pNLPXDH215KTwP2xduGdh5bwBZw0QoDpbKy6mqx0UXbQOJN/VB4PbFe605lwaCVK7Z3hTKn+pXvigVhWeE37oLRufNRFnbTwpXzniuiKmnlsPAiP7tbfhjBeYrAFqRxwqqa6iDJzjdLsBjgm24vJAR6xFX7lYOucrfZthjLl8bFbFULKHV7n4VzeKmQGN+jqjfd6PsgDlSz6bbo6IDxMg6KoYdWqfKEBX5YOClOF+aHsrg0e/5TFfP6UZd3zNhmhTQiGe5XmeAZjr6fFHb1fEkz29KIkm24ui9IGL1jqbRqrvZA9cwccxRZO4RdBEKcK3MvmBuh42aVumoK+HDbT9XaUczmTZp2LZH3OmfiURkbkda5BOtjHQlQXY5ne58cCWy+4c6pEWbnDHWn2k5Kk9kyybQE+KjOQubd6pAwobetbcugt5jhTVEfVuApfs9QGdgiZNHRg4Vt6nawTM8rG9IgrCFMgoCDLaYf4FCjQGPlLGR2pAVKd9Gxt3l1QMb8AU8+prNZ+6QT9rWWGWv7JYdIwKV/BbwuLpNJ9vBrt1aoISOi/tTYbHFiPOjaqUIM461B9Dua9U/0Mmjhw1vEvIv1VQfHWb1USBHcfo70N3nQHX1d7+3g/hXj8E8SshZA3bCiB+gJYkLWm/nTyBQsNiZmctrVdB73RrjTEknWe1nYDFmRcHnSk2CyK2zC/LacO66QWFC26CncHam2Nx/unp6SfUnfzuOZB5obEA5slHX/+tmDS/hmx7EolyevsxEnkDedsdHT0szvNGsCPoX4SsEWO6K0BcJ/pUfd/XTbMnEqXgUNEHtH9L2lMx+nX9vcDDD0ChLAD+5p8Zi4MskqmtoActh0qoUuxCiQMYXIhxwkRyjfWwFakFgzf/a/Sku8NUAjKhGlgfxaN7hOjNZRgu3Mr9KnUDN10DQnA6t9pYdk8nPXVJLG7s2p7B8BY/pKglGGxuT0YCZdu4UmHPIsQhUT7BaSj1DN9lDzBTO18b7Ahmh/JRYInLyWaUg4BYEeGB4mSU/KoByjiBusl28FyoCuvgs4UfPlRe9iv6kq/HokHBAR97TQDEMUKVSTLW1VHqye6usD8wFlEDrcTJKH/jnF2fm1MXySOwVcXyp9YO3H/fixk8BoVzbvC0kubkGyFsSmqcjaVii92mp8ulK6eYVXp5WYzKkrfog2r9JNGY4G21mhb4e4guQkEot1xqLQU0adWX8xyGjrcow/iGWRp2sxnUNWtr/KgX3GT/K/kWvAjJ8DBjU04d85FQdvEZ8UFyJbrMgd32nuv0fJ3l3CdcRpc7XcHOX1Hlr7HH7yxGtQfubS86QWDWJxDk28tPrxP77Hsu1g0ARUcEH6C60NiRmwmicaA4Bo6vaN5baFAOiqpbtmprKL29NfB1P+/3rr3fvvNoZBqX8/SDuo8R/ON1/p2G7kcKYXg5hoGA7cIj2XFULM2fxdPHGsfxhZDEniOnSOOnASdSR+u2GSBgNJis5wmNHh+zwMLfRmg4q8dar+JTyUVZ6f5NQRoysqIEDZX0CL50ickrSTA2aHngxh489kSd4EIuRkclUx80iiJ1kXiJoVYjBybP+G1J4jVKT0wXDAADVpGH1n7Nj8dlm1YLtBz6PKUGl14+2UcaMkVy5kymxlmQ36S2kv90eyfwMAN/bm8c6/wswhflRelEnMN5x7ZbhxiTdGBXYBUs/lY4w+XwyUKL9KAEhFetQ8Ftct0DdF9MZjGv8Ul9NXy0yuEbNBMFmyRmioP8E+gNRjHDAEER5wDbHBb51SQ46id+tIOdKz4j22Jbmy7jQMw04AI6P+9bFYNllmuQm50wIht+2U3gzxUfAJ0TXarr974JYdonJs8KzRUjQ45QteTQUDtMMcxlGhdmSP4CXH6CUTfz9jvolAWUAc8JU54Q3P3WpAjs/iOA0obHKBwWz5mQyR4Nu3wEooJG0md6Mq6/W6/g9hQB1CMH85ABIe4/Qnep7M8xjUpBVWUwPCNygrES/+ghzBZSKzrho2rx0qUC0TTfker/0ZYyi5ZwmqV+k48PGAmbLYZzAJU60yyb9etWBkvTESyyRUNcRlTGSemOHHQALW8DcNrAYrKu+2MQ9L5ndUgrzmAGG2v2omKZLFap3WFIBFxCQW8t7YpRAA1opowrLoWpHE8ibcRhokZr6KyGPQJZL03ttpAvNgiKXIkKxkEHE8DqFdjE9DImhTDN7pcS0DzzagsrULxLe0cHR+divGSBS5r/CM6x97eL3nmU9j8agsQjSW1gMjaOFLpgixmqjahwrf2Pp8wEYfqmKvltE/QWsIrGiowhXeTzCcRW5KFrNCYoegnYohbvKnvsbY+40JvcfPoZ5QPBR0Gjms37qioD0+0AOTGp+XuRfXvd9y2uhQEFALcr2jRQecN3NnLAQYwkEFAfGIev0hfrxDlg65t5RBA5pWGAOr+3O1DsMVtWGs+kIFNwy+CgDhm4IIKk082USeBQ7t9m0NfFS9BTh7bdlsTVrsiScDAgnIZdEUZ9kcp9bhlNC0VZS+ysrck9OQ2nRZHdIDjPNlBPCtbQiGqBZNFZxtZ6dFlNTL5n5kw+GyRh82fir7zSRGW/UN+mSAuSwN0SzQa69LAm+C18y5zbO/rIMFR+wLr+Wf6P7vW0DcSmeVGimPZo2+Hy27hY/PNiGMAcxK5kbb0BqU1my8GcDKTO65UoliVSEVUsvTNzCHQn73gYbabolPpQ6rF1ZQqUw1SueEW/wPYmKOp97mQ6VY/YPl90vlmgN1bzD06z619Tdifunsvk2bzJRktACoGmwAyJvbuDBnq0dXAWYsJDjGeBzZwQ0x2pBJo1kns8bYS9wHZu/pPqwbVqpG6BvfIM+amaYAC/1rN7SiYLx3P+WI1sVJ518deduSq4oLK/FyWDOowL/VNRZWp45j6KDNwxvuqtbgpeSNuOxsQspSOK7e+VdBbxmwLSDFQi4P7X6ilr7L8+kkDAgdIFZ1G3SFhnTslc/1hskd9Mlkaw+CxbDx0epAxKlR+cjW6vRvJ2B3BZzOoUwo5o8Ub5a3GvnSxNsfwNB3qkAFWueYV7MhajaOvrtTEP8K8lRUxJQmq+ykvrBdzWk04G8+x/JtDmU/VS8QxLUvZWIv9xYDP5Ot6SpUMU2QqgtkCMNBrcSZBbqUrhUmG+3DsIu8btja3+k1xfim7dhwxsUz0J80za3QjWIbAPlJ3pz/+0soEEFbptpF/0BDYFceNt7WN82NX5FqyvAB9anLYdFHJSN2axCbBDXxxT1gqM8bc99TTenb/rVnDSAbRrGctoFyBlQMXsB8TmxiZqcaugy4rEpFmoIM+Eg5Ng1uiykfcwztbnWFGZFyCWdp26DG+fMIcMnnJeRks5h2zANC8MiHonbp1Kx3cC0Ulm6iMxSBCDjSDV/npzjJpQk0By6fqCq5ohKRR3EPp3rbsw+74Gtg8t81djQ+RvjNU8k1RTrtG3/VJ915VkWpdP0sqweIlQdlL3M2RVrt9qkcFomdw92rDhZ47BnaeeFxBpDG5MYIAT8dwKFl6/27U4K4gTMlGf6b9kPb4z0nfV53mhw+QnWJl9fWTYVYk9GCUQ5I8NH4HZJhRrr2XPFgVHb8ht0BW4fghoprfgMDMFL5ywwUCcvBPsGFrrQkGI0pkTXnhZcfvVWk1kFch4l3IwMuHsxiWltgpWbin9RanxZXWk5N/n4NESxQQ5XlAQCxRp1gtYYnZRN8boxhBXaQNF4b2hdhd8fGaUdUe9tzcZsHnJU4ixz50w4Mk3C0HROqeiJ97UzAkXhxx3/SqBEmeRiZ9kXxoIkqRGe1fjl1Y+Ovn1XMun0stDBAET2f3d11ZOLCFYIQxC8O6eSXsjcMMtkt0qleWO81dgo2zo1gGZxfqwOfEBvvfMiXZKgZB3fB9JJIQs4K6bTWlA1KOi5bjbH1UVttGqrjuxsOskybA/m+gd/3FpEa5t9mjPwJg3nYy991pFNZ4uHCSE2FnepaNwlMxN66hsnYML9kGzgEGwx6qwiFxTqvMStTkACSi3Rloc84JXYc/8THAo++FZVqHaUhWT7C9hIbq2Gujq47C8jRtIuVan0+NZ7QlYTj3/Hor0/tltAU7AAeoNeBgOHrV54KkjpF6Te3XyPaDXRcIdC+UruyAVDMy5xf9o2wLWVCDasl3ixvTQ6kd6AO9bIU19dsCgpBBGwt6J6d8pw2P62foEenVIKnIqmJqphBt7zvGLaiyVgPcN+UOwyexJchr6OMRyvi0ALKOMRPJr6UgMHEeJsAC671mTfGiVnLhVbJYBarRPHaGhtfaHpKFckHIb+iraAWxDBSmle1JXkfgmmOyt0uy9dYflFGSDgxkpSc/ro0Hz3m8h1xo8wRjjeQTTslGV9dXdt6M5wG1cUZiohKuWeemX+jIdc6kcRzTs4pkbjIZW210umsHdiWDTn56rAGgFePGyl74yg0oJ8Cu+lqqzGEtDhx9fNsdkeuwO+FHpyAerd+rON5mtJorVaVz8THbbtwFZaRYopySp0/LnT+7SoHDXajMFQA/BuVwM5WLQQuqVlIiW5hn3uZ7cLaS5bbPSBDsEZtudkF22b/MR3y0lQZeaLexJ/ZONhpZPLMH6FSGERQi6d5Eh4NbULDspBbUk1oPezhRiHvmB7fIin3BllbFQ6RkRhcN+t4P4MCA1Vf3Wcl9Yqeo1OtAnPKRa3W6DzkAwRRDygt2UJeSXjzfEHytILUWy3+p1VLOeqI31w4idDUojby5a0AAEllJpURjZUEQWbjTqdcjbY73pt1F19tggr+uQqWOcFvDLZGr3JHvFicZMvOF6rABONsNad4msN4eTFSSYcDSykMMZ5N955JYINn6WaxSXunA3zMPwoT4j7SApYphEB24OhIVqlgdeehnxjL3l7qz9qzMpvsh6XPgL1A6WtkoCFGeydN1pA9aujBDI5MPG8lxgVPOPukq/qAK97SEN80IHsGc0a9c3UxKARzXK5TrMJjAEQd/VMblw5fHMW/2+VLfPPm2YK/e5hrZBlqoPH7el55WFroopL9FxhSkO7tTUOAqFQYKGKWk2v8cynrty84bLW+f+lW9udw+/RgMIXD7/G6hhaGnUjeaht+t8C9jg+XydbTiSfkIe+TAvHhteBgCI0jxHXATEChorw1sv1u7TXCJFzurQYbEi7wh45wRjcnh8RQWZNTO4ml7Co4u5CPDI4NjzHcg7E7O9+m4tiVj4juoALgQEj6CvLo+X/ZuVlIZCkhruiciHKi6EKL3rVpnDqTT5ddNUVsyMlVh8uAtkcYFMH+2svho8qdLsZtbyT8f47XRef6gv6uMukpiNc4syXGO7tr4mwR3z7b3wswxS+YXYhpWQgTWGEqZu6bkNqa4VO3AhKa/loCE7YJZRL2h3k1sXOyGftU+WLKPVOf8LMPKzhdZb7djsWop6aEeM0h2q9WyfGervKg8RgKw07tljEZZp8O9n1mA5WhFP6yyMWIxJeQJBea4o9G/2d97rMWEsVcMx6hXU5D6I7/3DQHxy4kaMTyc2i67gxo/3rrGRrrBVpugEZ2EWDka+DMD2FelYHU5wwQJgBpdwiCLkzmlVTGF8u68c0q9gz5siOlOrkdUkUC52VvrHQ2ECkxTLGtB27NT+9zCkbHNMezWoO4TfsmV5QteYNfPiTl1otrIFFAOqrMbjvPY276L+MUd05Y6X92d/r+x8+RmOIFq/GOAudWOzdg10D+iy1yMnN9vDWcwdH0j6LCmAZyXFfcaWs2kfyGoOuw8GFbURbinH/NtwSNBa+i1Wm7Q2ofhh8NSLrE3sacEDVmQpf6eR1ycal8ipWGtle4fMZD2d5Bi91OlznoBwKcXoNefpsaLEdLknYOgHXchy3JIIsHVcpjsFZMs6rhhKYmTQjHzCCMLjEs2Td6pDIFs+cv2yg61YZwgWcEStvlVhDogNtTkEYRn3xZkqC7fpXIaFWHhU0MSzn468kXOcuCrnXTTm/rAKPMfxk3edczfmT1q8IfQ1TpRbXFuzJ7wC/AvE4Mb97/Bs5bHB3FQKhTtURVVK30+GA0mAtv3uXK5rEpLdcYhN/DA5kOkj1aLlUBjCwheG0+WXYQNnA7EvGc9Jnqc8M1WoXqIDTmRc80jWnJrszAZ8Yvheo3rvXBCBqY/3rs720K5pJZqriFRiBXBREJ6qSCBmJp1+OucsybryiYkr/a5h1Vr92b0hp0XwMsalrbOIiZxCoEaeViPplDZUM5X/58OIaR8GYMG9ybLUhO9TJXBC5yWzhm1S39EHmVf5UdAZrvTKtOudT9zZnHncrvrr4vkTlOCFZUG5x6PQEg9Vl5+EYJJZQ8oXDqfhup/MyKAWK1bbWFIigz8aEgr/DOwls3YTTfFXO/Q2wM4/OhGRNggREo2qztyYlmLAQXZ7SviIYoGKsArLd+4v/SqYWsnGafICJwhMm1B5NF0NYbV4d/WxjCiZOAuNvOqsQrttkS9MVML8YRxk1jfZ4Zmlp94RjxjepY+L6a/XVNG8Q59U4/yg1rMu2iTG89ePEqxkMdcYyvCAx7HwM5pdoMN2fL/FapNyaodqG2QWgoQlKz78gLPIoWUFXPRCuVhyIzLaf2tJgdBQVHivCIc83uFQ8biYV1KnSnTQMgv+TWDM9UIoJ+fd5DMOgvwftW8kCt5hImwsYvE4VK5XIzW9lmiW6Q4VJqpLre9la+Ju4DpnadvNEObrG1aqSi+BENXlLrxnNO/Axt6JpU11e2Ts4KGHg/IPFB6SVRmyOIxJqvdLoQd3pnmyhu/LtEvMMkT4/frxiyxRdh7BciBr+ZPEsZqn8JdZ4stAWAas/tVAFMNoDPYe+8PxZzDmhIjha/4HuGghQBXS0BLxVBpHAHr4Qju3R5XClcG7CfvcEjHelzw8rzLXkTHCQUCvGmrU1cC/VyhBUnlM/tfRQOmxGRAT2XHR8dGTYntO0JD4LJpd3k2xNTw8i75MGUASi/oCqTDXlmio2PlWJUKiAkS7NCEE69YiFC8ZURFLPHSQf6/hTqJ9G4RUEhvuAPhO/usM1ntMU45jb2Qkp19HG8jAD1Y4opETAy0yaCcxXPx4vjX4MMFoYot9nMxQQNfo/ofeJijZh6WnOEN84d38I+oKxMIOLKPJMO6OsX0reMsOZfRbnnSIag9Zf3/KlvAYlIcZTQQf5kiKGRNpdCwKGqZtG20jWbGtRN2ueysp+b5/APrAFgpQ7E/qT1/Pht5BaEOX8VKgw+kwB4/0XZfmnmzgR3elACPA5utPomWbcKKO19zZXk/9yC+Dt6Z0/wLGhP82nrzCERc7g6dKwUJ9QgqG98azsxURKErO6UDAU3IazBxH8Q0Sr08i3QvsKWEe/S82OALp+qL7UY8bSrG8yIhrC2OqlHfHnUvSSdwRTSR4idHA0Ws+WGwVxUMvrPuXr8wFao8evODl9eguj6KKDha2epiaBPXzka9noXUyOlIaRQawolMB9qcN1rc6b3gotVWfttvzMkoZMRUlMZffOlT5pdIMfKlwdVJbSKuK9XMFVAdMeCh9Ewts9cvlyeDHsiTTsxrMcYkAash6WxC1UIQivg9l8Nd+OweOo2aeoQRXF+yGMbNHoGVa0cqg8MmJvSw8SFMyYRMjGJ0wVLr4CycooWbv3KgVwepdCAiqKNr57JyjbhvoGiNBS4WMiw3jAGlnn2S7UKySz6rxCHOpr2cD7Ikjt3vCulizcN1Vpbz6onLKv/QJ5PE0o9hQEc6Tn7WPhCsCMVDeXl2ACPLrz90IyxQxWWi4Da0np87u9Os+LwhfUY9IxjjXfhQvNthIhTpopz2JRDmEFa/5xUa/ibiFkE/mdf6IDBROpg+TM5IOTXpj1e2Iq2TTbhxxsc+5bbfNL3aTwGBEAF9PPJKYlmYeZKtDVaqg6g1URKZCPTYtNjSlts62WNP0SZgT8oXnnDGNp2QpB90g4Ngwx+p/iOhqeMubziIMCACB72XpOUVFHihD3jN8ih+PLLbC98lyaReBS3sAqNoRu7hDM95wwKfu64dxXCHtZ2eJ3UdOFtNhgugNJqBn46If1o2TADshu32/bIE5FMMw27O08HtM8ThrU0JRyKmSQxGQhSP7EmuIIEGCcJRCGZbzGfB2zsWrLyMEq9M9CSJNJh03Z/UPhiwIntL2mW8EmkFqJgkc/sSQz/4SZbVGEPmVnHsf9yNx1nl7KtFOOFwiY588Q5kv4rAxDoTJHjxYZf9F9Mkxe6lDwNQ28S5+9rkmrSswVtl9iTEBuThH+A2Mt4SvJPXb7FlBnwzSv9HWyEaCoQboOF0bRDtpoUHqCuTAjXh8Fdc+AftAxsn1sqAynUf6Z4u8BbX3cpE86D8WQyr/z00PHhgVS56E5pq3mD94d+/XZo1QtDx6/Qy+aAnUeq/Zl+Yr7OmpF2juhDhxK7VM58CxJ7pxjnqB7TUrhAN077gDE1LeN9hPrewzt8Y9JgQ7hiagjTsZAyj6Pkgr3FfZIw4TldSjU9b0MV53iJvP99GC7FbuQRCp4Goh7T0kC5OCMBIUBBlwrhWAL7nWcPt8I2ntmqx19T3T/PdaDpX1jEixg2iKtpaOUiMcBIdlb+UhMlK/CmRL6Wo9wYolhiSWS/saXAGX+3ZWfMy9Sd3G2rM3ercX84PNPzXVrIMW+Rh+rlHpbm7TI7k7oK8JM1jpkzdhhHL1YlR5zVS2Wwu+owxb1/8onzhmFU7Ocgzsw8oBEs1cwdunvqbVTZykqLLFqVoWE3e+zpa7xaIUVmwQekW8IdT7pO7avzfOS3XTwODcljaayWvNgGbhgy5JixaT+mB8FIYEuUDTEHyFHM+vbcqMXlIchoB9WDjsZX0txlYHODCUwzVYjRMGg0pHXxH1SHouRWsFjFUGkXykijrNVbZU4sScMGOCdxqemdGWYGoI6aOpkqTVA/1BMdaoB6QX9LG+etqVzYFRZhCnX94pFxEpOSBoPq86DtJ2tYXuEMurB5Bv0M3P2gvEYz85vZYf9wGsOJjXvnSIv6FseUy0u0NugvB4XjRCFk8x8p7G+TIjdbJs09fnHQvsQvmFbgwilB8xhvG0bsSIUC11lZ8LC+vV4tYzEJXi9tYzC1ih5gJoW9Q1+4qpG/x80AsVi0ZQgVD7/GUAq3vKa3j/TzycipFZrgTEfFnw+nr26ae6RtxELqo3iMOTWFnfcRwO74buhXuqm9aiUdx0zw0Dcqb58Bt8LPxTSNjgZj9zgH6k2Tda30t/S0wUiqXVeugP31+XzhCcM5IvuW506CR4YyGh5ZZL151tRhJiwe+MOBmLZ5zRpGWbyOI5GMMqLPawZZGo0Qs3lxogi2Q8E8dRMi18pV/E4z/QXI0qTIbkRffdNc0dr8dmpxT/Q6/oUHKaBcRFZ4NCSXOb8EKVrHOxottiV7Gjbw9KBL80nUQ/C+0N6Mmmz9+9vl4vE79kKstnG9jwJPYSaf7a9ptJT/u5kN+Z4C8RVPH8F/jSR+3axTSlmNrLH4arxmbXwlurUmeyKg0+JmudY5nr+S+AsAPVlyQNTV//CregdZAFi6ZjcxBu9ReuRK+XrfCuji23cBS/bV2r7976dlrKXSFsd1GEvfupW6y9c85+w4L1+VyQKBiaOALDtYuEgx8DY2SQGgtfOh2L4ZrNJYe4zeo7la79OCgfDoHtpAJfP5pK5Inmer9LFqWopuNczfQMXPVLBicCJELaaABx0PPA0SVys5VM6EiIpFxunJI3xIGwh5q/k9FE13JgtjH/iM6CchBj9mtfCQ3c/uLhIJxgq/ZKrwU1GhuTz0Sg66AEJnZrXdXhte1Zi8894KXt8THstboIL1UwUeoqgzdDroQ+McXrNkfoKYPzIGfcrshZXJO5am/z/M6NVqdYiA2SPU4Em6qRVoSC35urlUgg+5euJ8SOcxNmHwrXW41W6+dYTW7PhweqJ87pqTlSMFb4dNz6E/fh2rMrmkpTI69XXILWKLQfRb1KbKR3ftpiue/7tbQRDHVMerGdJv9wgkK7N90=
Variant 1
DifficultyLevel
571
Question
Blinky is blowing up balloons for a birthday party.
The number of blown up balloons of each colour is recorded in the table below.
Colour |
Number of balloons |
white |
11 |
purple |
7 |
orange |
6 |
yellow |
9 |
Blinky picks one balloon without looking and gives it to the first person who arrives at the party.
What is the chance it is white?
Worked Solution
|
|
P(white) |
= Total balloonsNumber of white balloons |
|
= 3311 |
|
= 31 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Blinky is blowing up balloons for a birthday party.
The number of blown up balloons of each colour is recorded in the table below.
>>| Colour | Number of balloons |
|:-:|:-:|
| white | 11|
| purple | 7|
| orange | 6|
| yellow | 9|
Blinky picks one balloon without looking and gives it to the first person who arrives at the party.
What is the chance it is white? |
workedSolution |
| | |
| ------------- | ---------- |
| $P$(white) | \= $\dfrac{\text{Number of white balloons}}{\text{Total balloons}}$ |
| | \= $\dfrac{11}{33}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers