Number, NAPX9-TLF-CA31 v3
Question
Scientists have discovered that light travels at approximately 290 000 kilometres per second.
Which estimate, in kilometres, is closest to the distance that light travels in two minutes?
Worked Solution
There are 120 seconds in 2 minutes.
|
= 120 × 290 000 |
= 34 800 000 |
= {{{correctAnswer}}} km |
U2FsdGVkX18jrQF6YyHHBpHzV36EUbsbmtiEKHgOp8FbGOpwPzw1JvNoLAmG3/YcIYESl8DdmX9h2SrVZibdgLD/soFuejidZUp1eLHBKe7GPcOrzjQAdPJG0YenxUTjkP7O+4qqfjn3UfZMFvNtmrAPQ2J9r7nPpNHND0l+2PWMVe6pOq11/9wpt+qXq9DiTygJKy4UWapIdQQzPK5G1eCItcqL/gput7fOVng3BtROJRpLcqg6jo3fxye/ObxxeQZ82lsB/kNaxMKeG26Hvi+s6dXC2tSfpoqTa2OPzfg6n8A4PxLKBisjTp5kwwYAh042y4pbY933YPX8I4mKXPq1JCaEv2yC6M6bpzux0UeTs5v5uL5m5QRxJhCcfV7jw+Zyhwbozdm9FNu6U3lKsIkLs5gwNWIwgR0nYcz1FhxjAOWWRtXrzAFvjJ1ej/fg0bTBnXtSCGijG+MhkqfP4VtMTFC/7nh+hB7LedDSPqrC/s7m5/XzpjR0xeklTIylKOP5Pv/2H45Xu8u5Vl76B0fOqGjelfBh0lzDmsedmfTlegbyOc85Y98PYZAN+Q15oR4h2t/W8tCs2pqLTuQpO632/wbzbqPoslhlwqNKF4LISuZ9AqrCwi2tSPHoVeaTlfigu94276jYIAUF6Xl0VTZfBE4451yCHHbFwFsEQDoUR8Fwvg+Xi11LR7B3+MiTD44GGC4ucvFfA2eUvRC4SaqRjA3dqJjaqu0dPrSopiSB/8CwJcT220dBCBuL2GdZFoR0AOxpk1neKo1Ia2Voqv5KHTIoJ65KRn8Bw3lUi7fdVZXVOxcPy5OUUzguSD19qvkrBTITMHqr6u0a2NlzY+Zv0bCefdRSptxnURSYYvztTFGzezXxS7Fjejo+u1SingNd1BSMy1PuC68KPD00LSNA6153Q4WJyGZNFrYmXkGKv+GZhx6gA3VEvBHtcosyvKZYq9rAzuJqkDsIFwNZhH4MNooQOruveIhMVNro4UWk9fd0lnj/rai8ktQSr3TpaCFhUHTsW6j9skf+mOj6QZf0V0JxQ5tl8deIhvQbqkxFAbEQGrLhtlnlqVXNksHpeeEqQ6ws0P4fdVMeGRsWdL1dJ5yGfeUkAHZpb7lY3VUtKQxtxSAnQYlTpcq8C54TFLq0yb8dLBZAE+EdJUIWpmi2+5DYb602iUZihUZQNpTDgNMbegg4HhYUHhHoYkYfqx/X569IHtkInezPFRioQ/+EAG+qcL+DkHiDXpQ4Z6ODrzdn+FZxLP2CG0OTVdkBw506Ok1kjTqkhzptD7lIvbxuJb2aE7xQfEcOTS9f9KcBIagncuw/NBrXl95RugzjXeTqbNlT8iw2EVeOvGANLlhP50vtCeti1oYu/PU/ATKEUIpdAP24IHgTGspoMKwbZTcnr5MZII8nwSzCyQXuEIzx5h5Y5Tbfh9vXF79p2gYj9Sxq6G6p5vvE93V4X9OQEFXHjtFmJIXCnjTqzp4LCox2GJPGL1Du4Z98kMdK/ufo5f2k8nQmPZZlD3c/H8NUs2njysUKfib1CVCmEKJ4MvSaBm7Rh6BFEqzSg56I5Or/nUB0jPHFQPbxIvpRW5CPqFtHjg/Z0OXvMJu/+qw+wMI/82Uu7b9XbKLCYaFvrbxL+BIj2p+H/Hw0zljsIxwfe2ej+U88FhNE8hFd4YZp/G+ihQKcxcUefWVqpffjrn/Ey3hXLR/ynfAwSLmFQoq8/gmGvs00p7ShbQkAE5tuup8b7o5OOg45AL5Fvv8Bg+NCbsxxV6YIFry/2nS6r4ryCseoJu7JIICjvM6NlAmYE7YFkSs/uCHghReZB7snKddrw3s5y0lWJNhhFIGyrX7yKDDM2bIEmskmrIlvLlS3TjbUAuE64EFRjsZDbAuO5hTl8bgRJw/oGmGRChRl6WIrMJwdd/1UaGjQJSWKJM43Z8Sb7+LXNqNM0UuzuTRFK1vaiWYIcHkGO4eSIlrUJuk+cLzZU3Hr+ENvFXIW1Y3VpfvQSYAyykjMzaW8cG0/TBBrwBT5W56uHT4KYnslqr+8vvsgag4/SXLQlZrdEZTBMJNxq7W8VvDhqVyrG2BymNOwWc0ZFlR/jI5/htLDcgk3xFNNgblj3jvMOkdAE9cm1EE7P3iMuQz/GYsEsa3+w6BGsbrchNPw2Sn5iL+5RPBADf6Gri9J8OWSLXl+WyC/fj+k2+j4fstvfp0Kplek1dozAH8EehhVSsx/zr1+Z9FJfUd64NEIS9THn8lhEWBi8r7Nw5JgLK+Gv3H0Jvy+BSbpRzwx7Pu+T1V1VOxC1A8VeoWQvo9upPdvYQdQ1yISz0M4Tw3o/hKHV2s12gaur46Z259kuwIOZZZbqXyOozn+xdRtFHQdmGTcxOvIqT1S6yL3nE3q+aY6JjwZD+Ky8Uq+IPNiOmIi758DqIcmKwkhSLhVSmFbqWNrjPcJrp6hKr6OI1uM4EEJACZBM8OtyfMK8KQmpT1PaSAPj9pvCr3RWZxACL8o1+XMelTkUVc08ATjY9ude6csxxvIeeyiJNbmHNJfB1dsIa+AJvR2aPUai+0P4DJpU+PWJ5z+p30ycn9U6iJ0v6XIX50VgV9HAmyp+8evKWkvpE5UVvg2+I4c3yFMtipuFI62Y/Z8tJpo+eoP2N8bVui/BvNtY0hWpJDQ4JcDi6htEnZ1Vg7nRyGfdYkwfJf2AzS7fb2FHCPUc9l/OHIbrW2PutdPawpMiI4tj/qVRUcNfCKBsNtUIjWEIHfjBnxDlaPgqs9TU66VRu0X6pyW4l1TWfMu2V3FiaWKpelPsuxwRcJCldsHgRjyxEOV1T6zcDozJPPUCqCRiOOLJvUc4SXg/fR2unNgHIuvFvP+lcJMmSl4aQa6RLvQIKaG5TYQpfaamNT8j2mlOwAQL5mA1sCFLalnSDzKeR9W0hpg/vpwsiRhiIluLP5jQHxwXHWdecnf6s9s+jjwmaTCp6ppotMjlseTkC9EQTuw+mG1+eLX0CqcNvQkfPt2fi8l7dv32FZ9KciiHL5cPxN7CoYJaroRh3HvmeEJfA3lJzXPHLDKpsCXUeDygekILaTzXIghZXPX3dCVTiMoiYH8ligLhNLPca3H3GAXvzWbaJafmir9W1uiih6U6dLqzF2o2WsejOKswSzOVicUaZvCaasyF+b/qSPblBOfOUSiDGs/+0uC23Gw+oCCtDMYowYblKQoypVQi40xpusv2kWG6NlhVrz0dqJuV7oPDXzsd8AOKGQjSetLJ2tihd6Ze6tAbsoURzVvGk4G9r3Raji24yXEQcjZB2VlCJY+5HotCQBZ6fQD9UTRsJTIqMhyQxelp//J6KEP57AQpqMqHfV8ut4xWy04QmR3Vn3HG3juxJw3rw2ZAQpNipm0YKcSdsmnPDjvvhrgpqmVX2F6crf2CpDu3h8IEF+uX6MlmQC+gTUqbGGhQ2cl3t/LgInW8YMXSI3nl75WskyZWl4k+ZioyCjyjli21ytgNtrR1iXRvezhEEZyosfh8LF7xHgaSm4wPwMt9yjEU4RKyFJKr4iX8Tcc2YJzt6loVlNwc9zBQF3KbbWOW4rgF98ehccSqMZLy7tF7ADBGxUgXX4Vp/FDh8Iy+ivPS5KSxZtLeDdz+YD5h8FT0fl7APpSdfNV02acuUmrLm+ilRytgWIscOGb1Gjj/pgJ/KTnfwYeM89KVhhSCu9o81SUm2x01jxh4gdvipPExq+lcKsPF9kI6mWtQ1KXO2ysbGkgTktSduUIcyN7xzy9w3VwV82frPulxhiH3X52/ChvfzS88sHf4qDHhOzsSqtKeq1rSPKr+qM4bmMDGm7VZC2AEC+1pvdxId6AOQ/oWobZdbusNV8kDBBQ+rkl7TsksA1IHpdIE7udjpyf8HlZ+562lTbCRsfqJGVLCiU/DRkLyx4hGRcCCDcnmQmROTqUyLk50z6WrOvhw1RcB3bGuv8fbWXgzhopexs9T4/NAAbTU+xwfb9UdyVbTvTIYnkrCQFW+sbuF0KCxMerOgncZqayzgY50fhPgy015B9XSbIGXFPG08dWv52GG4OHRelIIlroG8TZ/CuSL4H3h4sYlmNxIPIgEpoTNLIZDQF2bbQAhWDzKqlUr4VczytE6NUEOq4dUYb6lFv8n/9rDWXKRPGtB3l1sYjTWHq8JcAQIG4a+80g48j8ZgYWyU6QQ60W3HVzoI004HkqIh6vUD4eEyVYLglDUwCGBvdxjEw87eaIvs7EI3aFPKUI0Jf21f7ToQp9191D00M30HTPzkyYIB0FSNpPxJrz2Bx+GLi12M6sJYq9dUaOan62jyC2Y4PlNhn+BQklGKRRWy1m2bmWbMJ3KDq4h7J91gcSloIVKEih0mbLVONsyEJGxAaMoFwNjVe6lR3z2POgIN7DUuurCR4X6npCYS9JpmLhGfdxZ4VkSVLsuHLyvrD/5Hai/zuhTdQaXI+3AvCEas/JF6bKEavQ2K5Wy0zbmMVYG0Grk8yY+jhUIxbADLuj2k0WORZdt16XrHcC56yJxMRDjRLgv2CFFdzwAK8a4lrsSbarpeUmEbvw3vrye+dcDJkNrdc5t/5nHvj9kSVGxgT3UnKrL67Zp4LEvH5M7i4PZPmLMQ7KVwRi1//fIDIQsOWy2njO7LXJeqzXt9twk+UMTpYkli0RcdlMU8Ejq5a15WrS3lBhbscZBy7ogeS1BuMMvK5DZ0jlD+q7taFjotajJVVNPeOH+hzgIpdiiodMawliduL9AbDOpa43yCcW2PZK7QbujV5KT9hPkiqhSScHZmjro5Y1bEvczKNynjjMxxXQGndmVF7LrnErAauAD7854x249qqt+Lgl5DZFA/G9Z3HhRJYiEc2r/h3YHQTGdZOrMTdB7T8GKbke7G1DNoYEorNH7pOHT7u9UROpepLB5onVV3Wemfye4JorEOx5DWqq+Cvr3fA3gThKxf+O4q/7SSzUpMD0u2522XyjRZOvGPU2SWvkT3hcCN1dLcnkewAzMiY0WeMdkSeuA/hG1VFeCKfSVJI4XVuzIMEWCuvuOnw4ZW/sAOtxMVELXkrMspt1ydQDjj5MGpC06SQyOcbwocRo0FylT0CUa03QR9GsLQ0mTfX2bDWpofm8qd8T3R/G4ttWrRbYf2ZeEkcShKB/NOkEQs2mahIZRJG+koAEpy+iEIbnp1ycmKprqukHPS9xeHXet2RAK9iS02MUEReNfs7Ge3bGFwDA8obVlu6itoslx7WdYRq7Fi1mHsB1tI3e88WfgRBEGmvM6F9aNOu4M2dduYRst1OpkNGtMOHqQ4+zBwZ74G5k0A2FhWLlytCduXzpbkueMcj1fCXxeazJ9vYvwkO4XPq6org2FEsmYxFKVyvxkT3T4HJvHpDJVZ4Pq4e+IAddnzPXS2UWdFoT3ZqCsRmO6HdyRFQczbLHolhXz1JDirSb6qsfzNAFMLmq5MoFZTUEhxJr9oaIs9YYF+PKfTKRkUqX8BR7vG0K0P0yff2mkZiiwN/azDlqUd/8u/WRNWWDcfU0rVYj78sMpltMnMKdtfrzJG4R0LiTfs2oosPGYKkcda+WU8a2SCdyr5X/uCP9bvW8ewyZt8o9lMS4xjYkG5DH+CZ7BXuos8eng0q0nleSXSwxo+MNNcLaFv5zz86+OtvM+dK+AXe9Mmp/Oz59KOfCVS6jGNFnHwQlAEZiMPIQkq8Bf3LeTFy97jxzz35QVEFa/jJPl1yD9Xt9qZ1u7nNCIlBvfSbao42CRR3szNUVSyIOKLRERg5uLP/nEByFjAi9N2u6mKulWSfyUyWcuJf3/N3oxjjRD9eq3oeUNc0RzrvrQAcAU2mC4SANI7HpOfLnvOt0eVAU3+1i4pEZ3sbOPMsuCVSFaVMfHtywKJhcBlcx7cu3pgSMmxtSkUukD01Vb65XTtEiTsThqyDQTsMqgbCMdH5/wdSdUx/FABNB2MS6Cz854lgKuXznBs9XroGoBUVjVrv1dCaZEMLn8u++ewFDH3e4mxt5gqYkGTw9xJPUag8IlM2lVzGpcX4iDBTV6aFR03Y4p+gotEvrLMKmMn/Nuhkyj2s+E58j1q8WT2SJQd81EOJIh+r/blrxSpQ/BmoGoXr5n8Nfsd0y0+ny0z+cSUKSBSBhfQ2ztR3cbzXcLqYD/pHS4J0M/Qa/CWAHRcAk5vfcK3FiBUGT3ssxNWoFT+wX0jbcHtOSbM49f+PwA332CFAFcJlQoiMxqP738n3oNGkqP1uqBZYChZt44ucUaRy9A9EwtOBss5MB5QPYEoyZ8bkoEH9L94xALU8pgtoZCEDW1WsEsRswg953PR4vGaMkTd9zAxuuDQBRE24tTPs/XDlNlKoAZydYRToKg0EVXqZHqEbjjemYy1ba93XQ+6wt+xvSpcWPFGknRVX5MuyZWUy7t3QhA7+FRtIpfoXUmhd7EHYr2OXQZl+5k7FB4dircbqcJUhH3uC/GNQ2dNm7AQCVaQLwBKxRrd2N+X00M2XIbEZTbD15WMY+aVcwcBa9cqF+62zhdEqT0jMxz6ng3W/+abJ57a06JGH1PTgcFnb0B5qkbubfmWkbKYBwRKZsiX+YH+1P9w2gzg+k/COM5Sv1Asmm/2/xhYJenAFUNF/7AEpBzDL+lYfLuZfuXAJkcT6S99gKx/j3jPe/FAVOrM8x0N1/HdXVWzF+CKC+3nfkV3cN0aM+lg7nllhK5LfOwxNqJF5Nk4xL8edGYF3OorhRZHYlhaO0uf3RdP2phVUp+PfbytVBjtwfdaUYLYqPGOqIvzdRHShdl66j8/vIvwIrBbpOoslbPXerDS9W8g8lpzTOM43C7htD0W4IbiKq5nabRK5eFphe1Jg8hMP6Lx+nVhrhEMkq1Qwfr/y2OryETFMS3cpL75cq3wH+Kt3iTvJOEZXXwn8o6chB2NYkR0G1DoBJ0oVe5o5L62WTJcM8X8QkRKYXbpEfVU5e2WDq05bvTMXXGlJt0U5ty0ZtAugkTTicxMXb1jqMbQYX9mxihWo6cJ3K/xs+pEvuqW6fOtfkwd7FqvnkzPgF8WBOg2XQa+5nd5q81eFx4S1OixbW8h2FTr6MYVd3UbzDpjwslbg91zdDcIzHMl1+Bll41HHVk3JzMf5IkXtapb4bgoj4m4MVFrEzeldvLCiGsST9/9qq/DmNJ5Snked4Gs3ubHWLmUO77afxSU2neNGIRU9XN2hy5fbmSLA3d2kh0+19Qi35x9uKoWoUvlIxwIiI+79zpj11+pBd2nFi5oYN7ja1tW1M5iAUXzhmLhFTJp4Vm2aM4GprRwqB18wctExI2bh6PzQ/PX7+uJ4D+OQAVawMPh7vjZ2ahWP/ZCPeXnLSCftiL1JMzAPBO1ONZlwosOATwTWVpb9OOmwYAYY8Bdbyqm82AF2n76h2zDlRCiclnNodwrZCefmzXulR/RpxsUrOA0yiQ8n7iQx5GXSWQcqSOz7SMMnPqf5TTXXV/NfeSXlhdQ7ECKavPfIqWuJVs5SPoFLxrluUeG4W25B4dCCblutxH1ZdEXg2uLY7EAkYjXeEL6afBAj9RASuUzozAUCkmJBTLpdxyagXLbc4bs5zCrytHofkKm8Xn/NTnbnUua3tK5nV9XexZCfHE4btlJs44DI3J9N+lZmQ7pFClZ2CIwNXAYVvtpTcrOD1gpDs/AUREZ0DioBdQNOGolZhc76ajqp4S9Q5qVFQrb+NKnXUp5GQBZEvAO46wBkHCBr77D3V34I0aTnFl0toMfzaoeP1KxF98zCkR7bJoBE6IWUID9xT0wZEhbiAhTPaPRoNom3ReoFF7Y30H+ACys9+kKg+2vHe/ZnnzqUaUAfzX/2ernhleB3uF+oF0pIfA5B5NF/uFrr9CoRHOu4ZgDFoXpXpFfGWCpUmkuim+yVFaq3NSfzUqF6gVsJplo+9FnrzgoXNfE4O/vopRIwQAELlxxqtoihK/WiW1D+z88xAh8RQWPz+be6nalMIN7XyhOF+T9gkkSnl8VUEjlt8OhQcLngYRWbTCkIK688wHAuf82hSrFBaJDg+0Gv/81RiQsw5cxRSvfrW1whBG7d5PyqvvkVaPwA1KObA4zkrA9Us9sQoozeFPPlhLdQrRm6YkITvf6WrfvxNrupP3eiu67gswwFr4b9ow5seNyT9fa1bi+W/JGJ/Lf/25XuaBQopgwiPaGVU0GtEpZcIE0GlTZZUe+rMHju5L2/DMsIBk9rGuqcQIyRhOwJDSyFxmNQKv4gZt7wtnJs6fTfoQaQNFQnMwZ8Wsl2x8m4+KVjzwZeKJElLLikBlCFm8FlybYsJ6vgFxSqHZtjy11hbBE3IMp6iWrbAtV3XfQkQ8Q9WR9mEssNfRSzE2L5thnEo85WzS29leWixUXCzRsfu652XbqXQs+7LrlGTOnD3mHfM/pGedhfCnZ1MZ81xkuGAwexat1J2a1aWEHaqj6lmpB8VJE6YQoHiYfrRQp8YjIpoJN5yQhYxLm0vePOGD3ETdGnZHaMcwKmt7HC8P4xxedfZjzko9kHcXwP9P9eg9cQZvV5RBe4gP92VQMWzdQwsPVMgkaLwlvkq2IhdFcIJsqhMAwZb2Jfs8B/eYri+lbvmbLL4qaeDkXvsneXFVSoIKFvHUDW8Ss7QYC/47HOXpXNLr3Y0fVUHUlXm0plsHdJa1XyGFpC8pwaez+cTECwA8Cj/hIIStP1LAmQv5YjeiPY5DQYxx+v9+yP+jjXCOtwdmP8hEhFEseATCia39jWoMVuFxlLy/2xHvKSftBR7nYO8ceY3deaz7nNTLdx/Bq1z3U0V/FE+S/JeSsoqJvm0UPkS/ZuuToTTH2dEqUIY6m3+pegtyyAWEQ6N6aSaVykbzzrpmMeF+jhmnbZ3VEXdjPk24ryNtKjEOQ+1c6wdYIm4iCFr0OWRUNDuMCzDprRr/KnEVTH4I25J1mPPJ5M90wifrxjg8I9vQV6JG4ACEOv7Jt4FYBohmJEfsut2I+iQiTRP7ZMAWvHhOIGXevlVN9zT6aq9e34qQ8zwdDp/45ECmkUj0HuZ9yLwelbW3s2i8r5l9LTE/O00cjjUUsUDMNR9S7pnKft2lpjiEyPU5r0dtxuV1kdB5DqpXE7/pp0YzDWm0Pg7mnAGV5FJDazsQWRAduUiTqeRZJVxwtJsI2fUM57qOTrmEbIKHG1uoLobXs2Ps/SgUCdm11SnQ2I8QCcCzpcseCeIL6PFcx2SgRgBpm2bmSWHAL5e8wOx1Ohjk3lQAETyFRwStu1lp0OFj47odxP7DGhqqBFlSpNi/C9athPlToXNlaVYPd2p/m4CESGaVLUduxk3PO53VntHNBIwdqzPutkJWM68wsus8IFNyfuDp7wGIC65qEmP1lEY1C63Os4kMMGxNNDtXji/2IY3twcho1ewGOPreAXlRDHouEHxBqvuUgDJoMwFffyXwlewc8r4BANtEnbdAlMNl4bpQ5sJtAmoZFbmNVLGjJwKpk/bQ8rB4yJ1xef1Vy9kRhyedmu2AYtu67F8CuMKG95fFKiFpjAYHNNeTDULDsEsNZiFUkuOg+1WN/0MDHWSnJ4sDonmnTjO9m8B+zG9bBiqDJKJn/qzPNe6NpuZk+qXqjFHa52Hq1laB4pOWRAAr27c68yKnTn2c8TNx5JidnaUhUlj14zSyfBDegvLBFvOQL0DpdZSj3V5sMziF9j3Y1aLKPLsIFM/i78W4TuywUh6yCJJGlpmkhjRV34YklCrVeQDUkkPUzvsNpPC6saAl0leG57ykBHOXpHwlvVY8lRI5lo2PJomEA8mWWm2Q5Hf5yQh9yVuCwtUFZ6mPMMRx9cpZb2j4n0a1O5Fbz+CU7vmJl5mT+qKAK8z1fnSxbg8Wi5j4TztfNIgZn20UHVApjt/W2+cL1LAcDxj7xexhTZs/WRxGqlBvSLX3GY3mRFxBhVy3tHchkUL3povVAEj47tYodEtbyGShaDvrlksPQODgPqH/tGWXt4Ml4WF7YO8Rc6fxc1Oi0BkHCi9sTfGwEahNHxk7djY0TQoZ9wPfZanNaE2IhGPFTbBphlsKBN2SnR12ZcS7uuLfcgmtEWNFDic2Ltn3MT4MRbj/vVBUZakmXyWju8k4wz2Tty0+hc1Tf6sGB2hnJMRzvQefTxyCOZVRnRf6bt4vJxU/7JSQYTwof8KDXKOYtsawi1S6i145hRX88dtIrwlm6kfiZKS5BCPPzd6HpYIFIRBUiQ4z1AVz1rGkjl3zgpwzmxkNSNWujZ3oRSENVKCEx+PsvVx23KpKYgomdFssgA3/Z6AugzAaxk7Lf+EB8vHz4/LzHgp23wIdp3IjdsvaZqnj69bpJouJH/icZTBhNXzWVpCq/EknMnF2hozH9cvhpFz3PRjSHTTycwuY2ZohItplv+KFyizPB0k25jGAlmZhOvASiw9vrBT+F4fYuAd+xIyCmAGroa+s/bwC7m1Q/k4S2yzA483K8+jSRNGvg2NONrwAefc1DGYPS2s1Q7xGa6MhgoVp0HQxmyY4gORNo/8SHAWetS6TncxWdjUeBGMgm9wFDEWZx0eU7qLo1lMtv3Uf6lf
Variant 0
DifficultyLevel
685
Question
Scientists have discovered that light travels at approximately 290 000 kilometres per second.
Which estimate, in kilometres, is closest to the distance that light travels in two minutes?
Worked Solution
There are 120 seconds in 2 minutes.
|
= 120 × 290 000 |
= 34 800 000 |
= 3.48×107 km |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 3.48×106 |
✓ | 3.48×107 |
x | 1.74×106 |
x | 1.74×107 |