30047
U2FsdGVkX1+eAUAdcwQ+WflW8He1NodWABVPuN0j9jy0xDBanAxlCWjEPeu8ndeIiiIerHMDdNo1ft8YnD5IpGCnsIuk+EePmcuPmMu1BiQkjlSh1O2dXnmz8dDz7PRP7ULjyeL/ggqSHn63dXX4NrHRb1jfZgt5h39lvTeIhagpqkobdE0SDr0ByV6Dhip1Mmce1BsheBNXjT8hPrg2Z4fxsuW1jf8snEe1OTrhFQzeLGe9lB2zwMPX44eyVqBnsSZcyGwpIxXU+h154clswf3KwhtaH7+HQGWgCqGsl2y26Y2QF791bNrN4tT+zgyRh57vf+/bU5nZJjTp2ZWG1pX76bkB0/Tnj5ExuslxKgam+tcmqa60uo/qPRsjqg1kDUDs9aSvUaZistsQAGm/awgRDGrZuMJHqv4cAwWwjKvJkSwwUvvn1GySghNyi8/7Rq91cDoMAHMaCQ8hx7+EwWkvr/cO2zCL5weaJ91m6j+o9aqSQpIKY13SKUy2nU5iaB6zpMBuAHtVHmL3HVi6cAREEE+5Ldj16f0Sxd6H4DkW2em5l5Jl9s6YmhE4r5n0K1YbwmGDu7ULUv3JlOrlmOsbVDmDKvLP4jOsSB2tisZZSyuo0YqF5RVx7yRzsvUSQ79ZkzV+onABh97gfU9bH7BZwkasGD7Uiq2ulB2g45fhKkW227pl4dY+QXOKPAn4tEZjma9aClcZ7dOMjP5uZife4qSwoSdmI17o08SMiDcoVm9toO3lNEy9oejdkCfxvLMP17zNVcF5SVxI56AJko8IYmfZs2OoGYcUXIHePiUktGfFRWw2gpIftyaRH5s6K1c457ofoeRappeZVYaXjc08ihqKberRbBiDrNU88pBVDoj/wlSxKEqAUUySCuMTggx0Z+DBvj4C+X3hML2p8iCVzED/4BpVekLAFPxQBSGJDnGJDJzjLPjtxyh+PBiYyxZhT8xMklOrTZMd6Tkx0nU7Q2xxHkLI7TES2sQGIsgDs9ZAhZwZUqw5ZXwXYk+ENnstgETJZb3sYC4dXxtdkLKKV4N1G2eSfPQzZW/drfoad5nmJI6Rsh8+Tvhy/1VYGjJifWbmDUO/YJTIdIMpHlwM1F9Cgp7foF2XEv04GbCKRQfaad/UyFJgOJSOfZn4IvRX+NynE98eMA8oP3Ho8fkqdZbaq+lSQRlZZpGrY1CppFuELj/LBW52NjrZObaoT4ZbVy+1SlOXsgNWof9e5fkD4loo7KTJcrw7d1X1JiIiVRtITspe5HWco0V0UrdU+l9Hr0x/HsM5ObtCSOs5COT5aYz/74qKer0rR542o1TaJt2nZG6AfJUCUoyUJEOeJiGlAGD66e4Yo8ZDHp1oNtbcSTkou+KxhTKm1x1U/3y97vKGzZ3kVKxv2kaH7mXuEp1W8VZSZ4SlHUZLyCPngM/QyffH3tAyzOlDhrKZFTw2CdnRGWcdI6FsYByQ9LwEyyKUWXB1QYN1hSmslH7ih9H3lXcDQkStublJdMHbVxqwhoA0BS2bgmTWUvT0XRZ3T7P9kBx269Tm4yZHCX7y7SqOUaatBune4U0+FrvKFXG7d5NkY/dTVVfAuhCQrImweJUpGxlaKNSfaQmZIZzFrYpOWC3fZsRJt9VXv/zfHAZ19EErY1LNSLyjxVzTq+endvyMnsTdscovQhAqpdfilPBX0QXoPt1W75R7Ued9wjAGobC1wJiB1U6Pvs0dqeO78HYpouIIXY4keGpr2BX34m3YErs6Ibn8VxmYYxBixuXxnuYJciHnKSQDqCyA4bhMJ8fB8gzDaCvpylEOKRkqvQIKUdDBYOlPw4QMay1RliDcZpB96khq9ads7Ss9KtBaPWgO3mZKui2N+igEtSNPdmRIMHnQiRhPMqrBdZ365O+PC71xRVqSKphDxlNbt/PXKUrUaW+h8BoVX7q8+/N5QCdLo4n8UdyqAHdbjZrzyyD/07027KzK+9kBZTZ0UYeztJR54XNvSSqFpoopDnTDuBkHFbgzVhLLfyGYMxW2UqVovM1B4g64MsH3YkSVZLZ0nWrfczkPcaUDT17py5433kFKF1sN3huUPKpGMtH35ZztWXU1i5wdKTxREYESqjfxUuK4RZew3NIYR9cWeJ85Fv5fYuDyC2GNmJA1t3xHX06zBdWMkMHw15Wn6z/T6R5OW8Zcyam3fl1J5ffiLTkAj+LQcJRzdCc4Jp2BBHpfc1jTeHnfDih9BUq3GxuyrVs15Uyna4VHu5zGPdLZCJLQ35V2yMGn9I73ccnYYlvj2iV24CFbqEkU5eCbSls6c8IKCj0PLBEnRyvci3JJLJenZkOr4Vi5PvyZ821N4W/EBSsyIHOCwIwkj91oLOpVEQu327rB8KhmCtH3zQOvWiX3EQidaHbVegBIxcGLd5pJpMS2hnN0+SXhGoY7hnP9AXMIMKEoUTCh7K6FtIxJeKV6AJ3zj5YDitwehVt602xYTCBLFsW2uJWJutoIscbQQVg49c/j11NIuorKpqn7U8jB9V4ODm/dlPrCDSWB+TLzyepwD2CRPYL0CfY0CHB65UGyOCK3uENQCflcg0q8losr4wn6sa9qofGmslU+HPqFS3CWiCMsYhW6g+BYlHBgJx8nfLkgmeGDHC2He/rDJbkIQlbeSCFxafy6Wl4px9gvsPDOFnJldvqvCjcRLXYK1f4941bktyl8bX8WMkDyoUAb8ug8CSHpnGqhpmlwcuI23r7cxgsyJfh0fYqTfBzyZV+lGP3EbguSqqGbHeY9pciAcnDytaIgo1Oy4ynm/J4Hx12oYAZXPlNbC8uyb1QBDavlGfo/UKx2x6VBmP3ERTixBNRZC1r8zw8gbJ9mbS7/7gd6r6AZlmmmItMacnfzKqvsLVH5BPJDgbMwDgkFayD+iQY5lRSVm6d/MLtgoFJd4dqLNGWkWoXeOuqze69k8dJzNRjbRVeAb7NEb0yPNW68qFsla3xTUrNAECXFHAsotxCpR6SHDeJzgYlX2KuR4XHFZsLk+In1/b2eab8IQFoSrhPQWStigYAJcwoNyyLjFOrnid/zdptlw7NtIS3iv0yg9EnN/zgeBQTy+WK12YhJ/zlXrEloyhpUjNwVnUFdLKmlbGRP9jXQn2ifPZBAyTi2DZPIfzu8jYemTZVKieuqGdnlk9Rxry5v8kMAsUORsTH78RbGpRz9IBO3uhspykRNiQJCzFgz6NhV0n2osG2Tnk/6mL52ndbFpX2P6HseQoR5yzl0HRYioyz+NMtg5u0ZKQEdpXCPat5k1gRYMMUm6EgBdmRgJVcusnGvmx8NNhu5QdiZWeo7Dd3uKt7jCtM2xvlxx9XsCsum9F9q0t0qWhhlqc1H6EsLTB4gYXzgM1zCR2SqIeDHL2kpREh3Rynu0VZQN7GdJ2HPNbGSZsRustXjPhKZVKY9kGORQjJRplMzB+gJ1Jj5VKmP9wge1q55iLWbUVS/RYat5DpY5WHn+d4xWXbMluz6eTG2VPKYC5jMCl40VzOFv0OlUQ5U5wOZVLQyZn6qlmJF4IzoyD3AADrI5TIUUu9l4abATF2c4VSS5WxAp7sD4E29CstQgDDbRrwtckX+KjcF762OwGbSt/fXH8I504vc5cb8AgxwSkT6p8UGSIVZnukjgpLyBHyy3ApIqWMn+Tze04vpVL0zVho5KwPwti9OsZlETUmGQHcW8xm1K2lmAid6fRQLF0Op9Ega3gfBBhe7CQFw3HZaQL2xSmB0ZlvXXvdNDBzeUXXeaGIVgkz7KovseTmlgNe75YQTKhd6zRc7u/BqN5oCkTU4qLpdwY+B6RXP+Sn1fb9qXU5steaBrWH2wExE7i58/D00QIWIwooWZsCKVBj9NEpepgms07kMkLOMmMcZNhB7hVdqnc0rqT6vz1EnahouQeD6pqinBx0j+OMkPJ3MUUpSrLsAC6B81nz9JxPFiunxjDD8GrRuzJdTUS1rJwneTDoPZg4q6lpoPVqChfss0zhzzp6Mb/NiDhCmqcm7ieNGpQW3/EhNzHwMeqgqWE1By3rdtoWAAy6ArJF1SdJ7SbFdSG11Y/P6SmZSuX4RrddD7UdUEpmQBiwO5KTZY9dlqEyJjhKHsD0FkFot63TF1OUXpdWun628OBTuI5oh+i3syEf+qfe8wBR+YgHGO5c/76LUMPpoi8mHhsr7LlxFEEr30ida6MjEMQ+qGyvUH9hJnX0RHh+WAr22KSBqrQOIJXFHrr17CVgf0l/qPEKoHdzX8uPVBB/jnEPZaxPnrnEX3NMDy+s7Kb6XBAZFlktE8fK6pN/JparIhNLfnRViy/B0aceFzxr1pQJh2sHIU18GtjP2JZWl81GpvfrDFWC5m14VWQ6uE1JaDbiK5HeFWAHANwfjtupAcUJci2y485H4cqfUDHL2kPIWdm5kARVSZX8DMpNIkllyOMEiXry0NlmZ2pK+Mz4lF0JZZC0QFedkyOyQuiDfDsETDSCJw08zXiCb8q8udo2QG84dGZE/3vH7tim2RosBNTbvKiD6RmLZgVFxDGsBMNGswyKDEQmtjLIzxCL+lZl6OMCrHUNSZsg1oozI7AC6wJzpjornzPdIszyG+NYHXi17F9XAnL9u6qP1S3F9XiTlHMgle7RFpkFoL8o4kFRMQ+500VOu2w4Rn9/FdwU2mqfkFTyHN49vDw0f7DLX5frFdeZpqAz+WL6CHXJhRSgjCR0bCgS33tEnByD635E210ALP49pWCgyCahaxkLTnxS4uPucLwNftI8ZRrb6PdEHX1cEC54FNAW/KHux8S/HYKjqqqG0J144gQ023x7+PYpqpjP7/CmcIBTR1KdsJ9LyQY7L3/BQT6zynBYL+IHMp63aSZ/V3V52EvuyKW9hljtjzUWXAFJRV2h+9HX89czraPXjg/5QpmRG0e2hjtbxbFovc+PSctmHZNrvFOcIkmsnn8D/1NjGA/SrUCDhdgSJD3f4n3cUfJ0Ia6eAeL4S2LEOVPw7AzOV0FqbSsTeT1yqbisGBiI1cRnEqFzUkGfKWjoCF93utWZLlHs/SvT3Kze3EKPxDcsOjNr7W6k8RxHOWmAypzxyWqbJy8WHNYQ/Le6uyD9qkWktPaqE+RmZwbDUP1tuR43fFVLCWCOdxNt35ru6UdRCe8bkykZjd3kuJvphSY85n34J5e0RYP58pT5MrcneS4wNGQKlhD74Broh4UHje2X7RkfxI6tH9cssv3dIkREgrf9YPLdZx33GZvHdIvSGq3+WBn0hIxUGYU/MwYgaFuhwzHsfRbq+nzeibuhDtA0g6DacmwVv84lYrDcDmoy3VaydFhDx70Vdbbl2PjrfwhghSl/q8O21e0at9Yat+Plh8V4JIzkhmew6MvdUICyBwxW+rCyuNldLpeifaBUfLq0/F20Qcp6x9Cm5pIaiIRg3oajipWuO9hSLD/mt4yxBsN1OueJ3UuIxk/4QUMpXG9B+5SZECqMT8zuBxap4rctMekvGYKb0xeE9Ao31bpMkvDtbfIh9m+t9i+/tAN4YYMJ1RDrJXW4vfCcM4bFwBRlypttF1+JpxIkiDmYhZgcC9wytpPHRsAIHBCsidK71yiyGwja+xCsoGdsJC/oOb8Mh3cgUcGJy8bG2jDi+XLwiy4Z79m8/3WP9J9719g9drWsy3JCZ1vBdrU23mXI+Q+xFMzMb/QSkqAnGNhgoSbMvUGFbCQMp1hAIp//hsOiX//+91St4o717CjYFBqJICudhPRJuCYSBTdaY37q4JxjFDgPeNFFGl/g7b5ba1M+ZLtlio5P9rS6lvJxFcaZe/zV475kLSANl1DFi/NSCJXx2uYtkwC8ITb6GbBP0A2Th8QCvEmxipgz+lO2WkTLL7uQZA3XKk5Riwnp3Ns+oxw6wRNX+RsQePx68IK2uaXYEdnegNCfLh2vFdomD+u956kRqSx2E2O8Tvxw2qKuwvJLY+/C52jRu73m3EVwy0qTFEZnR0Pob9G8mb3yZ6Cz4mMrPwB31yz70YANDeRkyydgHxW8U3deEMZRG26QE7NKZxGbKX3VSzYey7ADuKGPzp37NbT8BpjCBi10BCirQfVKCaEbxPUqpIDMo/S2g8baSFIYOOo0U5ZFPHxmTnhXR0U2xokbOkH/pBKu1/PZYLHBSmQXilOrvl1ZdkmznzFRzMyqu3TZCkWb8y7b3e5YRW8WXNsd8XREARalUAYaVdRhSZ1i0h4f3HNwQT3QYdcEAQegY0RS0omnmzvVn6CQ9FZO+aZU=
Variant 0
DifficultyLevel
578
Question
Which of these is the longest distance?
Worked Solution
Convert each option to metres:
Option 1: 0.2405 km = 0.2405 × 1000 = 240.5 m
Option 2: 245 m
Option 3: 2450 cm = 1002450 = 24.5 m
Option 4: 2 050 mm = 100024 050 = 24.05 m
∴ 245 m is the longest distance.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the longest distance? |
workedSolution | Convert each option to metres:
Option 1: 0.2405 km = 0.2405 × 1000 = 240.5 m
Option 2: 245 m
Option 3: 2450 cm = $\dfrac{2450}{100}$ = 24.5 m
Option 4: 2 050 mm = $\dfrac{24\ 050}{1000}$ = 24.05 m
$\therefore$ 245 m is the longest distance. |
correctAnswer | |
Answers
U2FsdGVkX1+dkWTroLVkdUp1wRoxoh9IiJf62DzCT2X+yXKEBx3JSM7QiEWipXNaN92MOPgcdzuTjsYLK5yHOj+Gq+0qM3N+ro1JdBMhNJMZON7nqU/B+GtqsVZnlBLM5kbT1HtqVft6zyjMTYt3eT8BexPzx94ss3WMq6ZeIYYZSc7AEudzUGIJfTj+7Mafd+eLT+rK1lHnvGMgkLr/buCeMhknnk5mAGj37I/IpHiRvX4aV+HRpPsD0Ny9jIz1mIB4NXt0YftZUG0sTwCl6/yPU7Pg1ZOXfKwKHNGFH3pIMwDwZeUTjPQKzluGEnxYmAnE+EOcW2s1XmyITOyvXHZvWDaE7w+9MC5NEyrk7TXwdwc7FBr33D8Mcf4rV9ZiNCHzN0ltRdUa93lcv4gGVA7TZF4/TASa84C8OnylrgXCMitgCfpXRcUBCg/YhnEVY5Bo4pPA4QAqxUIKyssfp6DSPsdM94Dh7z2ha5FwkMZL67VqZqmLbC98ml4adDQdPWWvkbanxdx14fsWEeyR32It4/h6SZQ4XQOZb6vVW1NTyc/M5sJ3K4kj5QEEdMRHwhoNolrQF2S8OXil/8/8x35rBQE44iOtglqBjQhX524S7Zy9kYCc0rfufXpCnJQ+2JlzbLeJYuLcg0v72sVAKo6AWL2wOp04kstDCCkV2zgUWCSN2JBRMZvUFT+xZIcQCh0C9CCOT86asoTHym5lDAMalEDq0bc5H87D9wPpopIDsu+yvIWMPJ7ZiIKuuKsjdZUW1tWsUx6jEZ7REM5sJH2ew44rh8ErxFeFSX/PEa/tIl701o7tBaDG+/FPsoKUvdPp55VKP+/sbTxZnGwAkCpdAFiaJ8XTYBGwazgkqDtJU8gRc075dIOWOKYFu29ZGKlvCrnWtOAMWKj43WSjA9bdiXe6q2ldeKLzwYYzQEYbLgUJo1wqNKxpQuhWdYm0M1jlIiO7PJ7u3FwGl461UjwDB5zGd7I4w/K+BG4nslvEn7KHuzq14rbfGQDV8LcR9aSY+LnLuOwY+p/BxNkJPl0HoImhRVjifbLOtR7vlfD8ELlQg7tvxdPTP8vzlI/ezZZGVXFqcfeF8Ctq7ZxD97zA4VobYFbfp5fcIm0sh37peSZmTqWactHWPyxn+4naeyRMdBYkBabR5FSSynMBlF0b0Vv6qFp5CAypADmi5te78b5fy2sCn/bdQmbi/LvbgDC6Hdm/JPNCrHUieL1TZ3V5Io3lY85tQVs+LZUQl1f5Wo7/I+YIwN4Ido0NSazKDpm1zZ/nBEuCNq65KO11rMD3ycTVaslcCCMGqQiCWbU9of39oW39ViVPftnBiu+I9xxjsjWfI6KysVyyj4pa9x5jbf+Wdib6jV6StA2zKTXjZP3hv0dWxX2trDN/sscBLCQ2AlsG4y6IAfxgkO8hbaupqJftIHJKUFhPfLD/n5P5wpYPBHfrJNbn96pW4nkYDTdXrMl/f/18EOG9i28udb9a7cDdkPuh+hjZP4nmiqC81V0FJKutEldlZa1n3301wvLQVVaP230dMfkQfbEywNSvsCKBQttsBUxxZxcnaBF3iEfMslavxq6+lU3mEljafOj5XWzb62GUKTIm+YpzAiB2aGQKu1UFdnMlR1WicUC2NLByBHNLawc+mxVNNYqTKLuLIUx8mF56mqYk/niBhAVwWnQuR8VI30TN5mRc4KGdaARiBwRspG6j4T6/Ol1JNyphRWyw/oB9qKHKHwg4+QZcRphtATnUfYJgLO97FkZYxv1IBdiUzeSM1AdWjYNyRLF5+GaP8sB7ZUPmnUsCxd70rJC1hQf8cEA0A9hpIvKcaGYCfW6zQ+G6dsEdjiLLoYS6/V/8pK1JDa3eOmff++JUNJ3tn2VKxSid5GebQ24oh3eeMt0dCvtBFTULAAAkseJPjmtoYpINzRtqP/32fl64FNdeXc4jZQgKDhkVU8/LB8Y0j1tm4rn26QcWo4KC1XQAy/zSCZMkdqn1D7Ks0OpjmP2idm5WDy1KpNU8qP4VXDB87uG9jI4y567Lb8zT3ZO7Mg8PeS4iZAFTnp+Ep5/sEEsskJUuXLgBepBxnuoDN0g0//UlbUUoEpEY1wRYs83PjD5mCzFyoUOxqf4xtty1vFo1iCNHHA6DmexRio/riz1x0yxszPKFxHXRdw9p7nC6rjxKoyijbhzeT0Xg5KQmXy9ABsCbQPi4UG3tF6hJoAQhalI141fc5NSsO0pCcYxKbjHPOb24KFVfgwfmpjyf2r1Zz3nbgvxiDGtV0DSb5GrfgVQtoJaH9U7zR7PwYr9fI6WG3PaSnrKHiPaBdCtRBp8KZ9vFnfh7c2yHF9Fef3y6Gb+G4x85+AOR0QVqE+RQ/txR7IYUB8AdC52S0U+yuhynWMwGTBFs1pOshzK8A+bbyCUYcrTFg4bJOr6Q+V6qADfHOwpwzRXLcRI9KQMhrLTxdLTgnicgI7IET/OxeMefTTasf9LwH4+pzqw0Ef5gHeIMcOgiFrmUo+TkJ12gUpaZeHPOp3hGrr8KgNyaJuCHzPSqP1J1BIkJS+edNy9Fu5dqq10Gxp9bVz86wxRRI0kofeRZC36ovre0C2/Z0gAG5qgCeE+9XeYMq+LW7k9HFynBKYGwqxB4zBB5VVKiUYvkLP7LxiwmHBLco1tzIcj+1pXx1Ml/qxws9gsZD7IIu8JgN7AOan8oCR0DRAzuuYGaDVvm0mt5iVfHByl/HciVlbSXi5vdExo0wJtqbg4mLfJYHVvckQChx8P4R+1uv627m753i394th7SGKU61oT5uA1WwOOWTIy4rDR+LRGsDC1KeQcsMmOB3gGambe8fW+huFI2cK/tFjE5I1e/U8sPvF0rco7E79XuELUyJMbL6sJ/xebxFY+KFhTMkizu66nWHr2kjl5GN/Y3XiFuWbZYBR7zEE5rUZzYpAny6pWg77UF7u5cDRWP+W41bFY26pneGD8SRHwa5H0BvhxonDrTraQRwKv9Ss52gEhXT5xwSMWx1zfpEWYnmDszRWcglIo6V/9m4BJKh2W7l9D9hz1UXLkS3iirPnlKRqY5enFK3Pf+OkJCPOGK4EpBHxQuB+o6Pp/84V7xFUoJY2E6jUJqp9hi3x4brjYFKM7vGScwzzJfrTvfsyY6z/s8f/AU/+iQfuno3fUW9T7bCnnav4P5PWRi3iduaySXqI/kBsBHWjeithtLNp/kBObtfkJE4zgXQQtBag4QTFEkGl68wIaPWaP3cRQqTN15AYjruW7jMq//nbRedWzBEZxVye8MvJw0LMKdwIEcPoUSbcqee7MwtqMKPIhDXQU6BQfD3g30gzAJ5WmQ4i5jltHk0y0jHWZ6uaUHHv4LaaQAWuVQlm1QT6Ke6TU7994xjR1MrL/0JWMfqzwA6IzKR2CiI7RT29e5rslqu9ZFOd8AkjuOOQUSD8OWlMmXEJ5qZyvxDdFSL/kka4ujTjJjibq2EmaFJ/KxCzPr1nkWBgEdqTeB6gKKPk+QZ3pcFlKtdQze68+J/HVwUI4he7f4p7vmQ2UGShQTH/Cj/KlosiXwb/jNsZfkDsqbA5cLCC4DVk91fEpC1Sh7Jp9PaMAO/+KRhDbC+L5jTsdRNNCbmQOkeXq+voQF1hqFXd3NFPaV/ZaM5C0TOG2Bo3rNqFhRefksNXt2hWHQHicMh07l/85VN14Z7/de3N0pZWFfUGKCUpdWS6OAJuC/c6FdJXhrk8rRHqtz8KeE0+ikwkZT5PnjFFqvTg5kZJrD3M6HNQgmbSbJgFxXWwCDcpiGTZFe22BWSjuEj2RxuUey45d/lko5jAGsU3rKCIw6itjifqIrgw8Q4hl7vDOwNjI5eOVkSb5AjsK5A4+kpme64fHX8x/rR80RhMKJaV9fFsoEfv8XTXkb4Y1Ci552+PeM5sKz1FiibASisvFBvL5IaFMjhI+mQjtv4squUMRwIJElC7Uv1OnrUikwYoxW67dYRqcwaDwPtB8kIlTp5r9Zqnz6uWENUaX23FpqzW7rfxR45MW/Ub+/G0AhS37YkJCd6tYh4ULe3pXdiHtUyE/tR9cNSzeQ5rMOSP4jDwRWCUWHIX5XB8JYvoQ23XRRaygR5xwGaixKCtBWmEQLRqI2hDMxH1lI6H1AIlgPc+VVBobKvRdEF9/+WcYMHlAXOlcs/3T7btHvpYnxYrRLUGY2uaYQluWscNoc5bXpXNdtU6LOflL4z8+SowhmiqI+kgnw6jwqt1RVCJZxO4vtJI1XIOSG9m2AqW43oFFhxecmtavL9jgVB0Aozztx2vSHZovn7iMAmaWidZz52Gul3P+zYU8bXfYqWRm2sorN8ueAkEpzt0Wd27iAmqpIhLFjRAHwzIAZESljDQCeLxjQK3+0lhopPVJfDqALBu9NsnqFfxCERNnB17AP8p2iPAMWtwE1FlrbI3DxsdfhSJxP+ShFtQnwJjX/rtotDo4E2OuCfIBQ7VtyyGl6ZXUaGDzpNZl+vUZe8DkMawu0sfx896oNjyxO5Zl1QGO6UGMmWfN4aYUjwN6UFqMf1oHikucDmw+vBcgGWcF8NQBaJehmWJX0fthjLF5hge2PFPFrbzeggZS3uG0xv9SsMmM4n79jHiRP3WURCXb1PfXFeL113z/BfyoZO6bLicYYWLAvR08X1XmG90Y0brbSCkuUcFf7+603nU2rRDDmOnNHCMw9hYJfnFJ1iheESq5etJBsDs/nLgi7G2i1OFG05vz6dBL1JXUcYKo6y7DhhVXbYWfe40Gdu807TRaeGxFqsi0h780HTmvZZ/lbxMRXI6t63avXthnoT8kaNF2wDa36KuxtjZR6hHuawOsW4nE+jBFoBjWa4vMWjpVY3FhWIACdVJs9t95vyXFtdG/6qtM7uh12KVsFvqs67RY5TIT+LtrI67nIYXEMZ1XdP2crxYWPsyiqoULxJ+MhK0twrv5HhZbTsusYULSnElSwuIbgINowGco4oIQIqoLMTNY19CeEn7Yo471ZFQ8EHRJw/FAdr32MM7yYKO79U7iq159pJWtLfezxXk+gW+Q4E4t1TBtKh2agzXBAVmnfBVZHc8OQoTvKQ4SbXIxA0CrdeeSwv4s52YFWIBMlJHtZco/6J6dXokIDv2OGzeozpC9EhfV4Qc/HRAFkNXHQayv5HvbdE/m10c4An5Sr9BKvd1pGgKHJiXcD5CHXpGvPUhEk/HPCitQG1hT7SIELW4Ezn6elYtVKXNR2WIoGXMR/FCMi6UXZA1wrd/Qb/kL26dyh4B6KfpYNSEGQpEQU6K/AovoHJP3HGxrQ0Eytp93HoyAbXoYaBs5iTBPkLgEZ0ov5u0HTgYYIPMka/IprmWl2WOmemR0KcANVEHe/PcM80lVv5PLIJ2MU/3woRnXup90OrEyeyKAVu/UufAYmWvLywzh3MKN7zVLRaSOHCC0YeYo0IlQokkPS9q8vmLHdXHFvF0QHizVsDMjWLxpMhQkeLUKArjvYOhlRfBr01kn6xwy90sSXYYw0piXYgCOiNeQTLLMrhlcGY3+Dsw6u1c3ihKzG4AFttFcom2d8oJ7SszPkrGAUD5cUY15eNqrWHJ8HrFKXaVgJlZDWBBDQICy57L3nz763WbFHuaTb912/DxpR5T4/lR/owZkKxNrHJKZNsi8jZbeFxw4EWH3Qi7DO7ju/6pceOfYnB44mP3FuF96ukpimqlMneQEyr3dKxj1jOmlMFhnHz2wBOqgv/uy5IM9cCMpmPiJymvMyeEtv1c6CQ0NrgWHhI84u56Gsn8fsn16tehhkCtMm2xJsVHWfQrMl1MC4H3ntwqKGbb5dv5EPnNRAmKwtrvGRJbKazLNCtLDTWZz1svGpPZXKeE+76dwmy45VEapPm4jmuaIyNFY5ZSTqIUxYrYGgIrebTUI1TniyDVypzDK8vyqu/LV/E/5rmye1ioY5PjEufMA/NfdlSmMlMkkm+sJ2P4p5mVKrhJcFp9OAkHddCMtMgauD51YwcF2jv5QFUt5jVZgjk4Bv6z52JAbGeMAkk//s5A7S4bmjHiDlVyfwnfkflbvWh5oM5hTlspeAQPsu/2AQmmhP6DEn8Ty+LgTjosbIgf4srgJq9Osg1cqGV/50r7/QAxUJq+92JK/R5gm8G1/giPZ83EYoKtoi3tdXnHN2ENJXbkeiSkmWYBmWaPogQIDU4J5QKTj3C4+WOUHasu6pvi8IQ8QkNub3Z1d+/MfxhOXwGa9RsYcpq0heaHe+pb8A3mKB1NHkxpDcP3W921l/m5pxFiCPO3pz7XmVJWIDfJ3oFCv7yOCRnRxXjFW3WEJtCUC7Csquan+r43YXWQ6MVFkEtyfcGmvGdbgRfzY44O1l7WmyyitheGvWBOpkzBb6yP7ZUbFiYFD3W2WM6ksyTLjq38+O60i+jpyjS4f8y9fgYPbnGV+ggZI99YGBANfXbGfCC6CQIWravWgO7DxmU2foyBhXJhWhXVJaTQqSrorzKF5HVY5amEyv59AGYbISiuEY4snOaTntd7DqcTuWq6YQ1DSV76Nkyu842kKFXOWx/QjjNyuxRJHvOSvHvo2j0uFbejg3UmZ5BLvUrOjm+QTxRIEppOXRw50i28aX3W6Dq3TQXDS6ZEo8x7NhkXPksHNNYCgQmeRU+EDbHtCYp1/JmDN9EMDr2mwVEUuYJZZYn+RzDsL0zy5Z14g/4NvJDvydAFPFkIyMpfUvCOb5e/FIaRMrwrn8UcgMrKwBd3A8ZTNHxBFlWp4YB5uyxVbpgrdYJf3r4zEpGIXmYrVN98GAi4X0aNCWyEkw5iiEDlGGG60pgy9ulhbl6ol0uJenvp+jec0gK1kld0TF+HVc9f6Rb90hAxMJJJwvmtJ3+ecgQA==
Variant 1
DifficultyLevel
579
Question
Which of these is the longest distance?
Worked Solution
Convert each option to metres:
Option 1: 35 070 mm = 100035 070 = 35.07 m
Option 2: 3570 cm = 1003570 = 35.7 m
Option 3: 357 m
Option 4: 0.3705 km = 0.3705 × 1000 = 370.5 m
∴ 0.3705 km is the longest distance.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the longest distance? |
workedSolution | Convert each option to metres:
Option 1: 35 070 mm = $\dfrac{35\ 070}{1000}$ = 35.07 m
Option 2: 3570 cm = $\dfrac{3570}{100}$ = 35.7 m
Option 3: 357 m
Option 4: 0.3705 km = 0.3705 $\times$ 1000 = 370.5 m
$\therefore$ {{{correctAnswer}}} is the longest distance. |
correctAnswer | |
Answers
U2FsdGVkX19AZnWIB7X1laYNFMb/IHVeDhU9/6TUZfUtqBYVYVcrHwMp/A1EbmoAUa5GYNTftaadwsFiNQDQTw7YRkB8VIk8eBk8CSnb5frKJuK5s/eUu/TqPctg9GUZVRkbGW9/SSZMT0PPkcp7IEPb/TDdLqwkwEqbUISyRi1H38BAobRsq7la9pbmoO5FCyH0DdP/6Hrq0alFhCPG54KyLXEbm715s3OuQLHN92oJEC3wQp0C+MBIoQgzQ92ZN59Lkp5klSXANjnZ+Nrx3KJTLSZw7kYIU/bUCCKdMZzjkXIjfnLTaWtQC52aub17glu3PjQwzN0M78bw3Pep8mJffK62iPLlgLgN3gmGtL0UPEI2ufoWd30fOZV2kpEJnoysEjnxL+3nLkZWLLexa/IESbBuXb+yAhoubQcZ6+3J3xqDTQrt+fUXUD1b/0N5GK4i+XD8ZI/Vt9T7sH+s4r07l+dLkMgaYJTrKnCzCvjmPm94YnTWT4zZ9HNGCCAdBX8lgPuC2ZVbCuAXSK9o/pc9MHq0ZuOqoLEFVRoFxyip1z+DSBYNdD+hVVOChfdLhJoP8kBQaWvmyCMP4T8nKe9VEd3mGp/A87kIAVQaV20GbtrkaXnC8owEHr+QPLYj/Ujng/K3iLjwsgbEGqDTaHyuCrOVKHstArBMlPsmBhH36cGVvKlOnDJ+THnW08m1R/Y6mQ80BD+fiZdh0Z9tJPTrYpfe/pSQDSY/QLJfwgCjIQVZcS0/H5zWNiqNAq/CXHzGjXjA22MuHl8trMvbLgK6b9ztpASJbWK8VLL3aKlMQQZO2PBklE4UpEQDFDQREqzSzDxlRoNC/c27prcfvyduIZhInEiDdgOu/Ll3742hAKsPIUsiv6Hm6CCOAXtv9OOYeFedDQDFNDrkMZYWeCsPusoRkw/wTQosyBysrN0L9HqDA7Zx4051Of/AlDNjqM/I+c+KsuWlPfYt2O/xWoYc8W2YNncaozJ4+25PsczhzDmfXtItHkS/bmUdCadQad97IRPwLtNP3ksD4HESEjX4aFv8BQpUHKueNKevuhyEzsF3OEQQNrp83ltfQhXVfUHoVRHB5ZWgSbM5X8RJZPnDa2/7tCnvSm2DAp7jlUryg458l5E0+JIFQDXoKuvxJUghNwMA6DNIZLru3uJrg10brW6J4OE/w8bujhFObpyscUIgJQ0cDcBtKTmJXiaLGiQpoMcAY3iTiqCxlCwbf9jYUeMtEY1ZRMTMUQiqnBeOUa4fTatycExRtroJEIprz60zPLkwvy0AQVEFn7WFrwZNJVx3No4aos/p0mRBwWODR1zcgPyMA4/fJwDl/16j/frxTVJ8jyXN/4JTn8pMvLucTRXJLD2B6z6clphEpVJze0ldcV9DCZwZh2Q2mg3RTGRU64miBGfYSS22Ntu7+0kHRF+TD3igyxFr/+M/sSN6vLwwjLqa/+ZeMWNbkOwHU6IQdx0tvLJpGVZVhgKUtpwwO0OmLk+dyKxXGQ+s8f/dZNck8Mk63zspTSHlXfUFGcluvoWS8HG/iHDtxF6K8yydQlFZJHWta80wO57Axx6P1+HpZe4X3OHlUPswv4R+7dhnuxawN1xW4fg6ErOKj38imPvKkuz7mGhxQ5fTOy5nnQ4ebS4D2FTBWcPQLoRIsgi7JtCO38TLRefCWKUa9AXQtjgI1aGLY5xAESxOIKAOjd8gk8cVvTVno1ojapPwLd/6+3vHwLBYaRpMggY36L9dUKooQTfevzEmPYrD4Ro5FD9sArWkIQGTLflYstUhni0XQQPQ6tGuN1FP4GNiJUejvY9n8F6fd3/bHv08UkGiESkvPzto3gqLvQn5Q8YxSUuneGY1TbmBXwq+hUJgdqvksb/gp3N9xj/WT6B+Y4o2qQ05TNMTrlrWXWl9D15xv7Tcl4Jgha96LhUcbAWQu4Mak8ulsSvrEJhJxfGqL1qy2xxf6r9956Ay+h981ZtbrSRD5IzA8tNQ5w6v0WniN2Z+2MX/c/XXPp8girPi1Ndx3Puop7Ujh/6K6SEMLZOWGhlK8MuVlQ+T5vLgCPNsN5AKxP/GC/EthjxmU3szC1p/SnPorjBhdrmEuPLyFkT/4P701D/7ym0fI3aeD7cXLnyP3b0x55T5qwyuQxb7HyfLtvv7L4GTvvz985INz/Z16F7Rsoc33PYTjvq544wBB9nihn3Pk0bCb4neMg9LFg5WolqiOW/sN3+H+PbmR5ttv2BDK/N2Zp/FYqwVLRie38LuFFnXcUW6GIOG45itWIfG4NFY0JHUdxG6lGNCI6LaHeOqlCvV2Z/aUC91OP0XNhCjTNy3hGHzaSwSF6qTbz7XY/LR63cctZZsCIhD+ojnGYC1wsAodBVyvYIR9fLr76cHWuOs4t0HiMwvF+WLdAJXxAt9uOtjEfg2vPlYGUkL2LyP0pdxnmj/NooqW8Qkvss+CFHwWVmml/ar9ZCnMoOSCC0bAf5SGGo++7yC7T/ISHKLOqsajTlIwFrYwCx1b9blFw3zCpH3yQUVuVr7UGLyauR0UVNcvrCAzDHkKVvC2Gf22pO99lXUKB3wyZMBsmlCNkUEJ9KrRvTvvgaN6ZBXO6qgMsVT72t5pLzEcjoH+vq8TgqXJFTa/Yyc2VkRqgVgmTkZ0RI50fymkNfNSFI7KBkX/KqAfEsJo4q7OM9TpfnsqUFTTQFEz+ZZi3c72DC/+FwasqNoq9gLwTgmrVBKKW/ObK8Z+aKnldi6Zfl4KdmJQuyzKXFPWmXegGz2SzxInXRY1ONLEnFOozYVul6illobQiPL/bUbMB4n8+BKWOB9P38PPnUZzJ6Q9+YyyXr/mXfbkZbMQa+XX63KM3Yjv8SmhuuiVQhFPqlqrcysp3+M4qoBMBowvUy5wSLf69Ex0Sw+RCxEemniNm5i3augN9e78EkR3gWgXogrVdGrwuFEiCfsjP7TYimQAh2s4ZhLebfKfoh0f86fHASBb1XJLhrq0GyiLU6pwIIhTZ9XCO7JsGN85KkxjjKaJIb80/MGq5LgfxvW8fCiM4sd5jLhWKPqmmofgpjWoVGgmmaN+HFPwVU8o7Uf6MaTupaZDspV+cIjGef4lfO1+89ZCgKKFLY9uGGgcIyF7d4fKYSud5vq070zttmfrxDlP8Wj6FAqKRYYRvWgli6/4KBiERXXHCg3mZ9uMdWKYfbfVvMwMei8798Usz4B4kVLIDk7bK2nawvR/K40jK3W92uw9fwHL0hvnCYkSLcWXWk+wQi/HOEMYQuUxCSdsmEda+gerlol89z4Riz9vNMIj3cdzFJX6VFgRctLI0F5AvvP2m8f21vx6IM/zBl5P4vFVyWNXBwyLVXIaVIP0rA8JFpRyy1Je/xxP41q1W1AEE0thba6CCs6W3PA9Rz/1TiOI6SCPggNjVur5PFzqrGKeVQpoHuxWUeVtu2ukGb6DA8pcsfVukxHgMfQRQwi01UJ8wXLo0LbrexJScMr+fMmM7ifOhEwU8nUCM0WWXEquKAXcwiJyoLaRA2wiyZwkaDhCXHq4P5RDazPgeRFKl0aRqvz0r4SthpcMw6yq9Im4L1nRXOR51KEsfiAfzs70VmMkOuJnPo/CegBOFAES2i3cUkTJGBXRgu6XSkhBa+eZHNYYstHHX09FVCBqblPLewO6HY9FdUJtVv9crLz1+hQB6R8RXWTABbHAIvjfjc9TDNy+NzN6xM9FNYoAmhC1RSUdO8TBaqyMd7d64MqDoWfCA9mvSStCyovPOg9NTb9PlBixzG+P/F3lv5mB2VxWcI1Zy06OJk9wJdUHqoBGlK3hgQPTGiVc3zQfOtnACL9mxfL5M+g/6EUP2ev8Nmm1RcatgQcJXk5cmWBDNCMibn5JsJ33rwQZHCbEJZ1WvEq185oPnOwIn3wGeWjfCEzKN10nKHS6X4klEr44Hp1QGWGV6UBb9C4QBQeYQPMG04VoZFSGqovr0If6A29QnAj+ooP0DCbPjLsgnfR8WYV6QQzP4VrcOFUcSUuuWzv0bO4uxhMcACBNbkI0rYJ255i1OVKq516zdlm5RYF0rsPjSlmduDisRGgfZWt3g3zwyDaeLaxUK6TcjP9IFWtePe6ZUNQ6+LcC114CbY1jqMp7ETRhT3eNDk9f6jmFoXXIblNniIz5t9XDwWFGY9Lcr7fuHN219VrDL9CVTH2QUf0Nnjq6mt5sfqceoW2eq7R1cQVhAIMWPV1VOrwI5e5u4Z5glAkyZd+BImV1rMoDJJgnhZ3r8t2CGe2bpWnGwWP9T7pJaKcspDEJNhkgY+jv+qoax0Ux10J9204i+lcMG1WVUVkWOJ7iVXDFjXzAvvWcTMOGoqnpB/zghrJTTvti5rKgAIGwV0dk0gzzO+ZZHVClKkjHDHAXwizoBC4fFTC3eXrBjTEuYc7oXMRAwtJ32/95Uu9Nf57U25XjhBtAoy5fM3R0qf0IaW85fE6kdft85AfAebvr6Hv51OzAgWNe31fAj3eu3EtR58AqyCfUlBgcmUS6ChZmgmsCrDfcWUMHTUla4co0JGR7CEq4pkDpON32RNOYIYgntX+GYAPX0EaS5JZfq5PwD27fOWcdXkgbwWCvmHyx+YqJCYqwRb7yZlVbu5Cz0Ph6yw3zC+gzosdagP4uzH7+VuqntEG1IRlE7gNKeOgQe90j5nVDY8kyc5WPE4nXXJBlXybNTFEieZDgY1R2o5fRj2aeR2+qmB/w2jyr0m9ZVmW801PtBhReIEm/4v7xf9J3JsZqScYlA987EmQ4XyZcegBy5tzqrK/Xx2/GA7outKRLAU4uU4l2Vr4KkpC/rFYub63DbHMdZar0IaUEdLoTq4GROj7z1re09wC6UON9QUdNlYQdmrRaE2nHTvqASKNUM1LQrf1yMJtKYuRXfsQJyqqNnTTkU8U0PasRsnEGv/n4bLWz5+CtQ+EKewnl3xoa72My0VkjP6U7ntN4Hs243xSk13P+mefVgN/aLt0ybkVcdJHoedaXyXqH5QKWsdis+gRr/XORRkpbwUKGh7wICKRgasgF7DaF7nCZs7uWm8QJys4snWUWhGk8ZETCBaW9pZeHkF2TBPLJAp3fIZa/xdWnSrHd9dkbs8vDPzswytSThhaaK8H44ARSBPhJYJYHkRvCMNCpLfgKo/6fSs5nMmbUdNuDUeHzH2Ff4UDZOxD14o1zcK3hiz+ydQKe55gazf8yztoTAb1O6HQqbBo8bd7K5fw0SmeODNBirPweI1sTvYLM6oWaJeoEkk5ag2o1df3mYqFLk70uJEydw/B66dot9i50/WUkS0ONIS/dNI36iLMHa/uyvrMgntCQ0ohoyN7UGwG4AzxEdMTo38RsAQ1l1Fz8x4A77Us8JerVA12Qeo3pTptdc5NigojQ9ZKopZpYKwW3ySbttcJWviZKtPbVVpWJnbmd2Sd97KgFJ5YTV+tVcHnWhqifCVZYKbopSdBg6jhva3ZjR5UsH0v0Vnxld9/Ic9McJqs1C7qFOPIy2oxaPulVvbvKZ2KqVzD3ppfRxZIB+1e0mCsddyVTYtewwOH5mYWKfW2L6LC5nURIF69TlhoeKR7kGXiGWJtUEGhnm2mFcd64cdDH9UA+OF4qdXDY+DE2ShQiV2mocgZLJkRkVPjfkM7i5N/r/5X7TzYUTUTPu4e5VrIHsHdG5qBcW+b9ktl/U//97LENCFURiP2XWPF2TUhs/zftzmUuxFzU+ZlQZzYk8r0Ru0m3yw4ktn55Fmcyl0O76hTGt1Sn1+v1oaVR3fCoLrq69griu1FkeACtomWyBQSE1cFkyrgw32sqX2bjeVrIM1FekBNRTuFUCmQHrY1EJwortRxGvuYhX3VIea3ae6gaLzlYkASaVChQvinlwDiECjmR55zNXgW/heykW06gCRBpICHRfnCHS1Q4+4biBnF5ULQHVlcmhldOWFreU4SSbIJ5xpijc+iZco4vngRyz/HaJZGekFBOCPMroko1KIbi1T4cIqBo/uLMGPkefb5oW3i9MPaX99jcyYIShMpU4SDJ9IQPgdL7QI1FC6F+6Vk0JLr7cz6a7qmGgiUXV0m4cX2PI3OC/3P/0XFPO5J9nZuQ9K8ZTBQQngFpY6Z3ThvbC6XPtjK6mGAbFN6eP4IRJDdWv43+suU3npvKfCLP8TEdWUCdPBAVOrnzBsX9oh3/uwOUhGdvqOPT8p9T76p2WF+isEB/Se9iZgNCZKvgXYydXmnP4lyYE2aaOV0qdsXr8sTU8nJYc3autGyGrkjJBd6YpVZpaZuPjeDeD262a8Pr0MNxOzJ+xrfFt4DIFFfPZ0N5WyuzfDZZFBbgpCi4+aQUrw6+G5ON7LFvMhWf9iK8GHhtaFaknseXx+WYHTRabhZbj6c4DTTFoa6iPmTEXMFqeWyXaXuzlGGB29i0N/nCWxFeodmuGVaOyqdg19PQZNPWwtpKyGZ0xQZ0LLNfIRkB/TQRSWG6TfSEks3lTMNGh9OAIEX5uXHsOnqqZB2wlmtInRMRTNHJ4xYLg29bvNJSQn0qmx1i3Tjqs0Y5fYKw1WXSijJOIbKUAS13kESrP9OYnbc7ox1EppUNq+dE3XAGzCxJwlPI+seUOTQlVC0i3IuChJilsg9LScexExHv5SpOkA8p1/eyFuEVljl17vJ5ZdMCxYXvTIi264c4BKsyAYT40tsNuesUymvTTTVpo2nTSqiFNATbfYlDZb023w5oGKTHFbsdXbpdnZYi7fSyHThxpbByRklms6sm+jxCg9P+kBgarIILfQgazLUxcXhQlH9lB/pKeDgnrXCvmvNhGPdX2mR8Y8fg2zSs1oHqDqD0ujRV5o/YWsOzk6wgOeR2fI46ygXFwWW/GiOuNmDVz0Nbazn8GBVlsOk5Bdvmo/pbtnHszsWve39p2sYT9XiA2pIG/fSNQxEQ6utk6BF/uemYAEVHXV9BSJhvts77l/0f3gxyHZvkxWb7e0buLX5rJhgTv0CoJwhgSDESIQxtzINndnfTctUeR32cEvOWWVO3As=
Variant 2
DifficultyLevel
580
Question
Which of these is the longest distance?
Worked Solution
Convert each option to metres:
Option 1: 0.4502 km = 0.4502 × 1000 = 450.2 m
Option 2: 451 m
Option 3: 45 200 cm = 10045 200 = 452 m
Option 4: 45 800 mm = 100045 800 = 45.8 m
∴ 45 200 cm is the longest distance.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these is the longest distance? |
workedSolution | Convert each option to metres:
Option 1: 0.4502 km = 0.4502 $\times$ 1000 = 450.2 m
Option 2: 451 m
Option 3: 45 200 cm = $\dfrac{45\ 200}{100}$ = 452 m
Option 4: 45 800 mm = $\dfrac{45\ 800}{1000}$ = 45.8 m
$\therefore$ {{{correctAnswer}}} is the longest distance. |
correctAnswer | |
Answers