Number, NAPX-p167381v01
Question
The image below is the plan of a farming plot.
Squares containing plants represent land that is growing crops.
Which fraction shows the amount of land that is used for growing crops?
Worked Solution
|
|
Fraction |
= Total squaresSquares growing crops |
|
= 1610 |
|
= {{{correctAnswer}}} |
U2FsdGVkX18r9td8TwcIZ4nrEckdQ4aXXxv7M48fmdmoowc/DxxTKYEIIzD5YAboXt8uYwr3v/KgtwMGc+jY2pGWdBp8IxUK6VZvfyqdSX0hYito7dLGzBUpUZchG0vEM4A0CAEwDAAuJ1NXB/DX9JVZp5Dfrt0ZBB9G37FRIf0sCN/ssZEQojCvQsXbQ6YOPXyBkXtfVrKMF0j1cr/Ugc4kM/rTQHu9+c8wwNacPHJ34+54Vvw0AV2ANy6Xt8pSKs9GBXDzJ6rdeSxS6K1+khjAFeP+b5Q794uOmc15eGPjPIdhg42fkulQW+NnrGMJKQ/cWGdlD2LJxD2PjJYi3MxxybxHyfBz1NutqdlB57Hu+Y7H2aZak3FfM8p/cHngRdPcOGozPcWKLl4SgazpiuhQ2ZjCOsx+eylh+e8G+xDBp/0XMQWzhtnzuEbqoSCc6uVIQGWIfFWWUyVaP4y9SKcN+0LgPoJSURWbpvH15xofGVX28/+Y+He5/BLCos4Eg+JBv15RXtXrHO2U/grV7sXMs/TjD3JlUmmh5r05qt5Ngh9uFeMFyEMmOImOaNGOTJk/b6wllA+I9usinpWdbyS3GIunJcdEP3N+LqsHaXtoQ40TR97fFAMRUUKdmm7YF4t41Y3xrH4Atw75QaaXHBDbv2i3nzBkjLYFnMDmCj2F3yqb8LH6s3PRK5pyZ3w0x9Ers225tIpYm2te1EDC1T6nCs2G8lcfsj3qnnhVSocFdynads7iVKrXiD9bgw1UyTNFzHVUU3NpW9FGdfbCsiYaOzOMwXDPu/vAPMV6mZKCdg+QXdPWCEJsIIRvc2l2B+OlkzY85jSqj9lYARj+btDIpUK3ow2b6UkA76aJDgdhPuSJ84tPhFo78+yi2QbCkyPj5a7dHKRK/sM9WmXc/irqv56LYENcW/tIjBvne/i6U8kny0vOWKSlG8JebahQxBYoY9bSXTEUiJk3PdEklwT8cStDEk1UBXHrCcAv3R9E+CtzYYHuICFk1HGSXOHtrSfGEJUQ1NtTkOuSZGKdU0F9UymALfqq6mIsK0uE5XGx0IKagVY5A69WyfccjJ2PZthd8l9LzRvBlyqOtzJu8LHxZFlsFk9p5l+jf4GNmU1UXrj/kr2WlunIbqKEo9MJzd6AMzXCWl1B7UdxL830OoGelAsuYZqtxCsTIz6epZ+WvIAGZ4odv/wFuw7o9gVm1nbXe/Xms0nyA5H9ENOezjUuantayI1VYz03HBJwIYmabFP/nKBK3cg0Yi+xVTpBE4jlaxzAD0ILge73Oa4YaJNw5xIYc2Ax41XZmBQul76v7YFcKqBKVj87+DHqCTiEgxdj2yn6x2zNSbaOm9dvDwFn/MjD9pLRbziLbdE3nNHkrrAca5JRu7tpXu8bgRyhT/mhHHOAGUAbmH99cvfZCgOjUO+sPRta4b1yeBL+iD5c4rCqpyXe4USLm5V5kTLyXqHq1QgiX7SnkYCQhWJPI5USrnpVwrtRu9Ppu5GgZZUAh8E43/sUo3yrSBtjoVyDjN6z2YWnzf9R+fFjF3JePfRLAq1k88DvKE2tOC1Hxjc12AejaOVzzTOa07EBgtU8LHuaXdkqX4mIz13ogk/caXSymik0nxMS0elbmAq5NmF4L1i10jJgttuYzjVvjQr8L3p1LClG6kWNSMaRuR24i7tP/yZnI61vQXwslCmWhpixnuLvm/55sxxtHz9Gz5l1zVjZDaLB/M8iXNjt70MaERysHnrJtYLH7eJc3xJMkX5Fbwgif1yapuU0Lkx7SO/Dpi4rCqHi/TMRPLR10kbSU4iiIllaDf9/Ale4totpffyq3HzcOSVAb6fpxNh+QSpwwHLCMnH2A8KsyC0qccW4y+5EZgaAEsmYQjXpDHbx1dXTYMvHSJc0V47i6WOIQahTcl5unsGBv/LmP0u7F0ZgyMjoZzsRdDHryK36BUNdW7cIQ/vQha24ZQMefEfnryelYr+9HQWuumqflCIWS/zSzs80FmyFubNq1FnRWFTZw26U5gbUbdz3hZ3f+B2U6J8DLJCsNPnC8Wgi89yWd1Ur2AgUA1/1vySV/53SGJSyPLGF0xT08O1slMc54uopEWPXIwXsI+PbfifkHEXc6pZ1xbiqho1HkY2EtM47uObdV0DskOX1BPcn1dmeRAyFE9w4Luwmx6ohuaVIBDmL7iyY8U/5keSI2nH8DKRbDBVok/I9v45IA6gGcdO6HSb10FWR/Kv+rsQ6eFwdeevH5OgnqzDltFllqu+J6AiSMZoLLgQVsOslRnDPPTB6YJEA9/WoMDxIRjIit6FFGhudVJ6oH7PK+3hkYQ9ak/ogKApakjeuL90unS8EjG8JczWGa1IYOJGCi7Q+yPectD6WTP2u8yQtmT3PvP2WZn1DbkLiCI8wvxR5eGam+2kESoZM6lhue6ugekWCIqAkgEbSGxr9D42GtQt0erPWp2O0J4CQ92G8kGkcPgKRrYN4/YUWGn/+m4U0hSqxpj0Rh059yQZwhSGxh/Sw01UaM7o9CNiUqi9GBvz852GZj37FN+eb3Uz7FW7Qr6jUDfvvEAQWCfp59fybbrsu9lr+aOAr6f3Yky7+jK8RT0DHmtazZo9+XAvNotk0DVjkIEkLV8tId+ECctPDkD1MRrZUWaNz8snwQKfYkRBQ4x2U8azouD2m6lm3arnkhAQ28Dy5vQrHAJz4EJD0KvHyYfsFXqpz5tOBg+RKQd3wSw7KdHdGYgIFs9GJTqlqBJUTOokf5HSAdF8pM995T/SaAwcor/NEhxpLiuRtuRnDrYjj1CTCc9GwVbhmkjRTJ6FjFKAnwKdHnKzl59+HEZLxCp/qtjq8bRXIKSoKKyWvGweppChTfS9Fs7lPkp3lLLF4KMkMV/N1OtpgcwaYTcmhS8tyQleB5Ja8pzpZT5ifGYpL0pfGkzQ8qyUfoltwcd1Vkhb6NDbigIkv6H5R8Lc+zTy+PcJPkKFxav62rGaUvtEFSf9TbEmeYTYul4XPQol1NCmaLkTER7pGPMK3q4Cs7vBg3FoE0Y8MHmzx2oS6+/KiK2pCYfPWbT7oSxPjsJbTeYXVgxXiX4lclzO6yk31TE/gJx0zShoTPMHN/x09t/IzYVL8o5WLReBayLVOVR36E+aazdiQvVTg7SJuJ2+wPM44fjQOaCK2trPZr0ZQbo1ugjM7ycYK5+QuE2i6x7pRAMsOAG0sILQ6WkgkTeeT4OXbdr5nMgvvfPX6hxMdFY4roPQLmBd8XCFhnfC8+VdZ4q7cAAlDATr+s3zBB1EQeh809SRFzGOoss08KbXtp+UI3kYQueoYp5h0WqtP4q5w6cXvvAHsiVyHCcXKHezVO+YoLt86NzTUE/dHxD585CeXYkl+ZRVE8xKv08TZgpMyB3ixu81x4OmquR8jdX3NEnJ9f2bFbgk07YvKuX41C/+thwJWy0dtHCOuaSQK3XBSYA9NgHehMHp7uzRtC+/+HtRh9KzglTOiwtLTmyso9VT+kNNDglJ4al9874dTQPZgiX8FhMfQdWGhlC8RtsgDiWG6GyC+N6e0DCsyYTQedcikLS7F64hOx4+//I20yGLifotOp1n3vAu7FpIGST3rTzNNmAszkEqhPsZkqqwZB3kix0k5h1hyO33Nn4npsLgUQQBz3k18LTh2MPAFQ7+hdoBGiexBK5SZI0X7fTshPIsIe+mXu+eIiWuxQH7YvZJQMxrAXlG1PBfwIWGuF33CiONC/zXTuthrKlT8jfGFoehZGkSffebp5FYkiK2M082HwbgWciEmKsdhMQWQiIekNclB4fiyCrizgRzbWQ+DH+zVrXhzFKzbdwB+St1yhOlsp+t+1MQytrfi1tILSe1LhMZsgd2ncMLfiJ0KeZVOISPV35gLOaIJByDzcCMaHFN2yF5VNrZD3gKJG3yRKi2eQd3PKIocICppWGEboEy4wlL7nNoUu8J8pjkLmMLo215luUUzUfieb5ZD9/Z94Lisrx1pWGpA07hljJEvL7v4rLANH8Z1CExJBQlbIYevXpwGdIcYzOGxWnAJqexOjK9CQuFTkUGBqgXxNP1CbKBgVzP5jNnanzMGV2y/rqhaew0sky10QQDHKdouFc2bl/Tao21MTZlCVom1mtWF+Y5Tegvy1M33QpXS5i/UwCmRTIeRWOS9ug4zpCQtijz+ox+0QqfgJiCRixTpColRc8IBWVnwQY2oEFY7GGICuqM1vS2Alqb0lP08L1KRstQJ9OPeB9fqaEQwdvRjmaqsm5iiZNSdkithap+mBI5U/WBB8CJAthL6hAK+lV48eLaW5SdNA3yuG7+2yRk5Jf7c/WPSweoIbcZjzZ1OLKMCBXZX2lFUtzjTnpp1lXMx1Z+/f4dQElurnjkx9DJDb++bk+EV0xRVU917+aMsMAav7N2NTRvlzTDWkWhwsqmqSoY5/5rI/LvcNTDgdqb12k1wEbcuf65UesCw6zBgSs+r0uvYX4jaL50ZNlkMKNweLYSIOxN+YM3DMYHEO61nlik0WwQRtq313CkP/ldkEygeErfv49Ast7Qn8afx+IBpzbQF0pyf0GTuLriVSGcBso/FcGpErf6ipf90Lev+F2hebvnRbGSxnauHwr2iCKiUYVv33j0nltowlL45nh+irdUMKMVQ7FyWapYFpjYwIkhyYKDEKb9cSccEJPOjwmp6lyDewHTdoLdHZrYpLmxWG7kfiJO0zTP6ZVQpd3IW0HOfODVkp7VPEhssLwZLCbtneSS7ajx9kotEZQCnDRaedQiQMEC0/yL6yNoHxyzQpsBWvGSwxK4igztv+u0I+tK7+Bmq5GwpQYcGsgHU2ENdxDOnuyu+pk9P1OailTuse8VHiB7flBZfFDVNCxDDwrFuXwkREzgdrOW1LSnffDHZz2dLzWIYucPlM+eimtQMZJzQaJvyaRjQCmlTfokBEpkBFfZTB3RcgXVmcxyx+sfjGszbqOuZjDpFm0RU+/oSdmHJeVWia//8Y4IBV3znU7n7NFk5Fqk9CXyYqn4rRsvUEqMo4sTk2OpqJVaTjgNsh1VfEZDyDDnKzDeLcTHd2Ksc4DW81nnshZgibdREjN0EYxrEMH5rBi5Wndbb/1Y59UwjsJNtry9wpsYfmtDwzeQmVvrh9nDo5AKjl5LRVHTs3UTG111+mNpmG/QaSOxLK+cV4yN/ZRV8v4g8OJoUXowjquySo0EcnXApHUMyAIMCAMzkh4xkpZpfkT4faLt28UMmAjvZYNQvdCnjd+At/U2s73lHCeqWnx0OtCxQyyMNsHb798dLYNPrLksyaDNaBgx5GjSdUeBg0WfBOeucK3a7ZTzpkzK1rrG7qpOrBGqIO9DEvJwOwCNE1HW8j+Of2cH4/8l2aTX04xj+YguXxqFPA/t4Xhd3wF3D7ujWiWdDHgZTH+ft+kdQx5hkxnK291ZT8aSBZW880gEEBJbFVyvLKT9OcSZjVoyUQYiOfaUjTpkCQWSdqico9giNm+q70SjbAjD8vCoRgH4BChuao48e0RHQwEXR2FveTIY4/+K9iUc6sDwryI2OOU+16x9OLljfhRCeo+odoQTAZji1Soc060VCaPnvQK5JKVkcc3On7EINWuZoqvhdqxjGGI337xaVa/4veofmaRlFGkVmekItMvoxNcDzXbh8vV0M5Y0W77xpIDl06M/ipkusKLuw4yc70sRtni/o4imv5D6g2PsyNayZoq1pklDF84IcmORYZonNCSOgLCxtLCTD8I/F/ZciyfKzT9HMf1tKmE+c9+imS3iqArLoNgYYj6v9Z67lkIhWdwuoeAs2PvYqQ+4Oq2FQjUH9Uck7RSgkszn9WseZzP8eF3TXsMvKMNptCETxVJESxFgYqAfV2X10Kqz08ADzFQyuWgEzD6BZFU63ptROc6+SuTkd2/qLjfyeh6yfhmZxyOWEKJ7JQStr+uOjV6F0DEmYPBAsxcB7hxET/ryUnZZvGO7UmdgNSiNbpqgymNyeq5wPfFggp1uLxShM9gfUOd/v6C9dT0GndOVG49euwFgbf74YwOPBygtOrfvN8gZckUgHrAf8G3cQUTHBG94a9FyO/MgKe6fASmVEHcqStqzVpCPG8AzC2js3Q42KGZVsoJO/FmJHCFUJZbTCPBaT2cG7lASx9wX1usVbNuBmc8972n8Tg6xgPCw0yPezkkwpTJ5fx+8y6+P/4ZULdJNXrx5NFJe+xKKNMIzMwfjOAv3nA9MZsSL2j6GeiLqpaiA8KR5QQGszfXUdIvJr7XLvjL2/cQemNzc4ujjgSaUhBZWNZxKFLCj4HTurMCS3E457vJoAGV9uo4exdYJ1oDZJ3Iga96K/HvP1lQtBn0pQol2fgA9QVdBxC5O7RTpcPSPt3Y7wucTpVxQnW/9xfoWhPbX/PYqOxCS74sMPJwUFGxMRmkN76dLtEJciX3W/sV3RUSQM9iyBaB3cA46xGtsZBQDBzP/c5mHEsbTJLCbApZYLB+gAjK48URDkiSMB+Kz7S7ncSo1PkgXL+YYzshD8y8D2MKiJil4yrKvdY9e9DK65d6yieDr7s5MjqUm5pd4wKfLDDC95ljg+RcuWvBSc5fvPMidrTT8E4cjf7nelZ/kdgl1L/I2n0ohwGd0Aq15vyrS/6s5jWAk53mWix5I91+w7I4HUl1JmdPxxVhv/s1klgGTwkUtyyJFVzb0OGP22RnqFD886UwJZdJMef7X4E72zFxOHTdXNTcbcZqQxI1ByfxboSKHqGmIlcUwwEl0/xMXRcaxnalMehofcnHSbmuq6V9H7Wuao0KB1HAx/r82+SOkmVg8JPlZeR3JkFFAUfDz/Favw3iI04qiqiM3+kOD/y6ur6lcYElH7fAUxCpaTfDAiLDCilAhMEwYsO0JhZI/5GL3tstzyAHPjzAKYVOyYwOBfnVDrzM9aSD7WF0MYyevm1h30EemANlbiXzZS3JFQVY2Y0dbwwOwneuHfRwd0saKnB/RJac7ZfDL1LIS60J76/AmVKRzsb18j1XgbIPpG0VdITWwodG3RbAUe/j9BEdX0o4J0R1d9acaUzgxCFHrgJQ0DBJFREuVYBtQ02YX0+nriXtLAMY0gHoXACiXGkLRiTGGtz6luUj4SWjZtIMghTWcqubQQ1PNwGahV+L83D2smQWe9gHQde9JiSA8pyWO2+BVH72j8U6mL76VW+PVRchKQfEQTOfI2pXYAxtydI/zj9KxQp7O7vOkw7hW4Od23e8Xbi0wUceOI6vY6XLV3r8aK+v/i8TIJKm4/U2BEDmBSEm3YEX8DvggW4cVqKFUTXAG234WfNHh1UU7qjBzKgezvkBx6Yrb7NL/LAw07r+UYAhVnxgMGi2SMV872DW9DltozAFX2n+KGpB8wgYMBW76j9juictBFzVqoBN5+QUl1vMWjbWqJqFx02YOUEpvltKJVxctze8/4WcvUelXIX8tQz0LXlKcfvPQukIOf2TJufwcBn6yPlh3fIRhQ7q5f9uWfi57utRiJna8XPG4/b8cgxTtPNW0JSECj4APP1mObpiUchok1JWcdgcAik45Q7j5QfJF+rr4f3NE/nevaRhvkRmUOM/sJmHjZTf/4ZL7SEb25O57XqNYjD5W5g13/0HH6Ae+G7TDFLpHTaEtns2/lHO+HE+UC8mOLvBpgvBwQ4zod5opjLs1unVjXXOmUUep6pFgkZNnI9a6hz3t1iuLNkdh+ETfj1ARxWSd+gd1mNXFvGupV4sQuB2O96/KnPUY5ScFlnyydUCNo7evHt4/2KzJdLsXoFr1VACOfhcWft7a3mt6jZoa3AZh4yWaX8dfH+0RSjmOggdBM5WHlmUGKPuYEypiB/f6FMqJU7N2FX8roEq0AE8RTPCkandJ8uDYql8tu0Ztn6zOWxcPfPa85/B4aCEKM5KIsoIxzPbBemilu4MUDOi7YJlA/k6CibHqPcDjW+/2U1XpOXDLd8+uuDulQ6K+iumFid5vYHboPaW9CtVeH1FKN6JGC9sRdKEVLn1B9TdtrJME586TRwRAsr3jBDlZb23ZKCsv9W8yWqKRepjSAlVUmE982ZJMY3FkvhyL+hI2h2O4WLacdiyRrCF6oSf+p1glND1xOG9jrXRHoT57eObEhl43FMAtyf+7EJEfc2tpSXfL8Rj1tuO9GRi0pKpKLUX7r3yt1Url0ucEoDR7V2upDf0ew7Lus12rzexqkQ/GP0bC6sqU00oDCc7mDwwe1uJQQzpw3hljQlf55nYM7givRaAfAj+ZI0N6l1/JJZq8YMYdq2Z7RSsm1QpVJcz4Pu1LZkPmbEa0J3OUr3Zn8rZyawSif5JQsIHKGgFG/oAaARr8tdnfn+onDLkGx/6TmBEiQ0MY2oSdG0eGmdkBDGKDJD343dv7zLohfFozMsEpjlY0RKtjb8Y01tEKrJLoZV2xfYObB6kcYU7k2VNKVwni2I8KDBmOFdCoxB4WLOtbgtSKs7N18+Upi3IJoZZ7Mfq9uRRkYVyiWYzi/RJKHRgkWYhmyiyN1sWLbF4M59KhxTo4qQVp7hpIflNbg/jvVomJr5f1Oegm6AN8yPIssg31xT4CLTysdEcEKRGHvq8zFDQ8dlbyPyyZRJO+6r8rPs8zJsczGpmj0QNnJwIBL3ROfFSMnpys9DZvVuE3XMf8uGji8y8W+rqPWiQ3raNMOnpvclNfqF1ooGik2c/YHlT/JNcPr+HwLrJG8HIlKm/qWLMG5RO0utPpcxNVz5YvDMD95EkzrMMAntgSykqvE4PdBecQe4ndKJZa9lzCewlPGglD7sHEAp+ycV0dvH1xr58ViUwMyMAxwO66iz3xV4Yf9Vb8I22GNLV4VacflvF9QtKPz8l4t6L3zZ5MYbHN0CFRa5He2zBJBziztTIzKmhxQy9XBUi9DXn9h16wWRYMkq/hH9iY9rvksjDMcDEtH8eesf4b2RCmppkHNiW9PDzeeS4/No22fMqQ24en46oXO8NNE5UdOv5onGpRuG/VTDE7Peeb3pDgeVxAZAUIBsRT7NoziGSuQykj1bNuehdpXIX4lsf7jO0GyspaOJd9JoNwHsU68+6VtoOzr2smEaT6B5Vbq+cuem7hxh+ELXSrJE/UI67RwrgpEkG84CCquRUNJyZGjkvpmvzINhHDQqRJpIOzQQXZaKxsFpWf3bR5w3QPKoSeflHLt+TxDUKuJnlgHTSBA+kIJb0wIsBPPZOjImHtt8JlS6Iba9VSWm+DiopCHKsf8M/kqs1m8HzbYYPodUYk0CqQxrjT00Uq7WTpnbJb4nO08NAU8ErAXgoG/YEq0n7Pw3cpAvNShaz8y+Bq32hCANNMUB+KMDB8c29z5U2BUH4XfGtewa6t3wCXdOvoAPPY+w2leQxqysA7R9nshIAJMOfVeNf7U9NDECvCJ5MYJGEdmUO4K3fVigBsBh8yISGjgGUie7oL8d+UmayL8s5xTQyktMgrZniAE268e9GNfBtFF5KQKgCBWfLM6kJr1q+/uCAm3rjV6lN/sPx/OHPkuSASGG0x5qM6cJt46MVdTIl+5aplaCLB01jkxYST+k/gZwLhXU57SIcSgcPvbD8eQKTnjTrm1+NanrQsRXbn6yWxwBt8o0XIoujHcnml0Jo1/lDWcbyH4lJnjcr0XS2WxuaTkglLFKoaI+YQufmuMoMs5GvyESKJGyiJJmD86CyLlJqbsZnr0me+3D341LZfhcdhQ1RTEn5WXMdAEgBwO8iKKLjKDmDeSlR4ZxRfJyI7NynG6alQFjLl/4UEVePyK1cm36P3+by7zcqPfXN5C3uFbq2euoPtflzf7seplE3nrcm4WHnr/9dUrdTJxIMLEoDKvoe0a9PqEF0LymnWkP+CTx3Gc82W3iNXFQTVEQhouT3YAugl2qs0HvWXiS2HB+Ik9dSVpkeSRZ+Jps67tnCt5z40HObfrexO1+yGP5bYy/0LEcfJ3buAGNb3AMJo8JdOLGVTaHIzcyCPSaSa4GYB2hzJI3PVeUAq4QA/GE2Qh7oAxCKUD5tXQ9VBbi+y0noSnbX3354NB1p09AXlBpRk7QFD6MWQNEMToGygTGlocLNYnb6W7OY60vlNhpqNTpU/aOOKuxy+I9EI7TBRxC4Vxjv/94Eiftr7pJm/08TCFd8S65A7b1/XuyFwGaF5D5vjZCx+mykN45UvfIFz4wEA5DapGFlx90YV1ZY0skSFHssa1TJqI1CJaH5Be+NN6e1dzoz8CeTvKkHD5hP99c81la92WZ0zPdcCPFZeEaab5inMo6JI4rmk1Z1VHJmmcM5nmShhq8q5dhEpXzbyU1Y+Q7REF1Lu0vkFBF74c98xeIaz9d+jq77rR8JPLd2lnyuCuct6D+v27Z50iwRy1LZ3VNGxqnn60p/WMXHUAYBNK58IxcxTIf/Zjg60jdkYZEQDOg/lG8/6DS6xwfMqTsXM9Iee9u50TqHyC4XtoJsANVkEohDybp+WEk7/iytKvw9PWKo04ZQ6eaCWHN/o5JuF+f8e0OtOlWhZaT2/cWN2f9ZBa474k0DedrCCjXMBJ0Rwxj7hY+PhugJZ4HHw7R8vqrSn/cck2P8zjadADB+I7STSPFGVVKITm6okT4xUQYbmsfqNpMsFkO+smlEI7FNG1EPT/sjM3OWFj8xTuseTTrHkjsxxHlS+msPgnHAg4xW+COkDug116wEOvlnQtu3kmhPqgj4aa9jtlx7sz6EeT3H7e2jEbrF3/bfa8zV3kiPFjH+UDXi49nX84z69MxSWGN31atofp7PrmAoLqjM40ZiQCId3vJOdRrruzauh/mKU2sGDkfhWuA1RYe/oaDWPxAhaUAxnrpbtHD8u4wSTbEokP45tvPJwdelURVFCc1MlHW2G00cs8/xzd+2WKw/H9NBxPSUyLpFZ/XMUDVfu+Jb4Q0fAjFaPF0eFpp54JmW9C3ysGda0sR6AROcSAs99UNuk2D+0QLuTI0phAGTELYRnkdYZ/XylVlA12t6TU0d9WW6eqXHVtKxpSXbTPUa6lcOj48zVIsJHKQAahOTHJjU5aiLfd2GlzGnLuUl4gCVUWgKZ1SppMWDwlth5+i8R9C0+1ln14OZwaKFUhWC1hPV7eLzYUpBDc4bNsLQEEZsJ+jnrWzSmCX+n55t9KWcCq33ZXlih4OC1E/oJC7cdgUchHWMLGV1FMUceaJVjZxQxaZX8gBhxpo6fmWAqmkSaVUZSSb1OkUtE1OUBp72bbr7Cdlkj7yg/zhSDXteO1b2yWCMhB2v8j2OgaC7HC7x8hmJIPP7AFf29kr1y8GbZnHEnw58dS3pMgFrH1uLm0J3mB5UBbH6f6c4IhTnUP/Ap7OyJ1hr/cVwh8UNFYf/mAZ9Pt67iSsuVOnIaeQkmhs+DWkAbwcgM/fhgJMoTocjxCi/uEcwuqwUq9jKBsR3NBSeogkMydwzVf1WXralZEC7/EHDHoljh/0ZcnNlYodXPfQlfvaFjMNYhfE3YQbTNoeN9aAVgcjgEZ7rjK6taF3WTr3/J4rkA78TppoJZN4Nmc6tKo6U+K9SW7I/S8tUtfrSMwjdj2akScrZNIhIOoiMyAcYzJnjNOnCnrSsqJVGFgISgkR/Pp1Lc6a1/JquLC+cfQSDqTOoV8GCTeqCYup0g2jXyBwL98kFQnTGY9AtI8zmWEcNghhLc7OKPN1bF7ZFlP2RYaW0YSOnoDD0M4oZCDl543OhHt+0fTeqo5vE+axY98dCS8pLyJ1jnvfmTCZG1Xi6RPnZ2q/atP4BegSpHrnuFcD18nY8jSACPJ2yN4pP8OZFN/zpa3g0v8kGue9/YiQv8HvSi5YZZpMMZLVJn6KI+oXVz9A48yzUCQGxaEY7pbxYe4iY4AsrW14EiyOCCQCZvXcwOIFa2naoLpbICql7Hl4LI5MIai0t0T8k6x36xP+RZNVB6zg0uXY9IFpnUZjmhx+erYQSBo2zCdFCIq2GnxBS8ttWhpYAgGE0E5mvRDskHc9T/Iblb2h/qABBnPehCiAPbn8k6JO/rTbE/kybUBtEI4zxioP2nhfVo4viFE8BrBGU/A/RMQiJDbmquVuQBXC8Sa2tNcmgsI6gCAt4SH3FvLH1D68CHy3dShAq2CgBKqgm5S5zB94SnAcZnq9RBoBi8Zn2/ThOuXRVW+OQdv7pHQ73OmqbNujk7RH4FClvMOdWEY5vTCvRIVPQynM90tt21x6iyDOcIgX4qcSc6T41j90VnwjWbgFuBEW7XtWEKWz+laR8cL4ZswGmvwRaM3M66I1KZ0OayRy/aZfy586DRKh4wFcsehTZaCaAVaLV+VLdiSi3RjiA6f3AJxJkkxnDtXqMWcSqX3BK8NqxEr+baWnN6LiH75ChpvHkTiwC8o2x7p2tbDC82kKtMlDmMEaG0KUlj+S7j8qI8UnuQhbTFE4kdQB1j6DaFOfB+5ww2phOaFHuqTZPlj4tRHAT5keURZGAc35pA6fh2f9PUgdU+Gz50FN8RbeZ/e8TFKW96uoEQWhTanH1b8Zp0juaBbe4QmRhKNj6PcTriz7pDtLJ9LWw7wyKvA7tPrI6b1vj4g5AE6ljXHzLOEDmknZl1pbIsfvmPwCSzN+HeH3CesrCdL+HNSdW4GshgnGNRZB9Dx8GTZNbQSFmmySenre8LmjMvArcBhuygfV09B1JoZQkUZi/2wdLcHI6SKyFGDPu+JRUdvXweaWQsz9fhVWLYXSqySYGCATmKcsPJv2sAi9LM6y1B4KLIhdoYV2bcZm/3kU89CUZX6LLZJWJSEb9PNmf2x4JpLXosyEGB+NWrWOhZkOKJLVQhIauYw30Du2y03YcQGgsN4GJL71/6E5kV4kY3r7smlePTrK8LtBN5D08+4mzyeV7kBSUrjOYvhUvSrt7K0lqP8igR1UQelA4xHbM97xzh1PMvPigU0FjY0/gtophQGqexD4ppBjsj7NPmAuzGwYfYMv+LrgHtUNFcmjo6Day6OLneYBk5Dz7D298LEFry6CKr99yX4VFA4+fwh5Y1slov5AjtBkL1YfTkMGSZHB7IhNBj4OoySMoj7j7ZyzvcMBrQU4VoHPKsOFfs5Cw4jQ7dAT5hRiXOpXha79ya7X2PPGFEbdVUkMMaAQioWvAfzQgHucqBwhEx328EEiZr0yc9rsE9mMW8qBOcylJbHjpyZtHeVfPwpuirliZvd762BEu3w5ssAJ11rRDm8GhJ66SqbfnXBa63x19ZYorqrOEnqWIhrpOYATv4UcvVWOX8RNOB9DQtAPxM2T59prFV56NR52jl9IvBC9JPE0Nsbq6RtNk1Kxsh0pgD5hbDtyEgheEzWu09NL9k9as51fNWYtDWz1RqBc8UWFQGttwGVZulwTvZA10BD8X8jM1ja7GAUt9zVA3NQlIVwAr7B0F8pWEwKrXHqsf+0JeTRHkb3QsNAaBO8uzffSFrCHe23y90FRMaI3sBW8hOW46GMbf6vBmV9rGZLQ56IFUTXdSzjZ7sNgyj5yWAwKiVwMfKRj5poc8IrDLeMWpsLvNhKiQl5cHZjZWOmBddHRrxJS77/HVUaYx0wGRXt9n3OajHc+5YnTgTE+a3x8hG68gvlV51+s2K1DdEvrjbSvyMNRju6xBmIm+OhvjzRgbyHkzDoF35ZS8OIkEvCk4gqRgr2EyZy264oH+WNeZIngGCyOW0MfeD8Zff45ncZg/jQ7okKRpwiwnw2ytge/4ESmNbf4UOa7HsJc+06v0MJVRjf6/0xWwuLxV255jdlB7JQBS5wYGbN+tfPzajleK0nSjvvPfaBzfyunv5pB2TpYS5D8g884atO/ek7Qd/Tic/yg+hgr8W5qsCZRcqjapzWky9zpcrPqX2TQjAu0NcYc1EkjNVxFySpu1jP637WUgFn0Hl3RuhppRO0h0xKBpjFbo1hynUsOXCsQz9BHLGUWBpRrXaQ6HuVaxq60tuNA9At36v6Njkfp27a0cTDzTMi/LN2tM+KPFcoMGZxMD2ZBSdYS0+OInjY31fDRbA96tyRir1GAkb+0q6rgkge1xHIt4vx6LQVAse4g0EpESvBEL320EAjerHnooeNqA4I4Z/0tTJ5dgbMz84rg+e4ISjEJxQB4rjlfFYHsJBO8vCbccmybV2TJELjD7wNxCJ+avOPLmo9gbKFDIEFsoVI7CvlCNll8s7/wcj9xv/gCRymes1hSj1y1N+425ieXsSGlgDk9cZxDUIxFB1ZP1Iru1HYtAXkqvYkzjQcWNq9Tx/wbou73zYMZIuWqNRBh9RVoa6aY6j5CJg3xeVUPxBZ+dErSpCaICwZI3w+gRLtqyud1nQhEIWiGmaaA2jtoo0ok95ztc/nX8wVgZ4oPePzO7ajzsrbVpJ97NSnh27WOsEGPYhslCa5sbm1/nVYddH2RXPAaepPrHcv0poUZu0rkKhjGjJMlsT6gtaHbHi1aIFAOXQBXGHv/H0fvHKyZ24N+gmJYj2rsXWHmhuNa/fTCKyG9dangKwIvLBTACUre93pnCVC2T4RDbVXV0sWt0QH/C4jWGbKPEC1NR4c6cMoVpQ3aX3y9+wTpVsk9d6dLsSQgYGrn87ufZyzPZtaqZTGx/oZRkhsSKSvbySbzhxifw3SGa+JDFdweNs0KstenubsOKcI7bv4w4RKisELYoCC8O+kOJUGfby0Brva5RcEXJUCHhw2kYm7VXXJYbNbFS8Gsz661iGVG5C55VXBp/h7XSwfHluA4HIoxYgWRJq+rGZJtF3hcF/bX86vZNyJm01xYSWE+SuWVhPx0sAbO1OYOqWQX608Hg7Q11QrEopb/b2SYBt2xZ20PqK/k2+Ob/fqKGOACzrexic/reOz0Fm+YrBqtdG8KYZ1bYyWgy9IvO4EZw2BNK6aG79s61TWjelcWKkXJAVNsRxU2pZ+PoCNrGDmCS41ZOAs5bGemDVj1Jvr2OMyIh1Qdg==
Variant 0
DifficultyLevel
446
Question
The image below is the plan of a farming plot.
Squares containing plants represent land that is growing crops.
Which fraction shows the amount of land that is used for growing crops?
Worked Solution
|
|
Fraction |
= Total squaresSquares growing crops |
|
= 1610 |
|
= 85 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers