20195
Question
Kirk, Spock and McCoy share a box of plums.
Kirk and Spock get 71 of the plums each.
What fraction of the box of the plums does McCoy get?
Worked Solution
Fraction that Kirk and Spock receive
|
= 71+71 |
= 72 |
∴ Fraction left for McCoy
|
= 1−72 |
= {{{correctAnswer}}} |
U2FsdGVkX19oN2CshF5CRVRGR5sLuHdU2GFmzRH63BnRavC98q/++Q5L+jg6VZ7wmTIP1q6z2z09kLUVjXGN8YqpF/G0ITwQDxpvPnJtwsDqS7gGbPwgdstbzSks7p4/sVtKtWJRk6OCkEI32H2VSQMDKyJ4BuRpVEf0SQuwB7667A+pJEjhbP22u5OxZgoMpu+tyWRaaMjp08odXQGCQ/fnC3OYgKXj4NGH5mh5HgqyUOApKOXBjtMLsVBd819vyM3zEB6NbMs+SbVw9NrMNuCazrE6r/G+tHVp2IeyBwhLJjzCTFkg9cbcrZb8SKuMseOW+L6h+DD8tN0sNfAcwzTzbn22rkOfI2NH0Jbewynngm7XPdf33udVsP6zKk3i1sGQ5fBRUj7YWSBqt0NaOtz175ZoKJprnqvRVcWTHRVDRTfnnL9tVCJN6HbGuJl/L4rsqTINuFrso60QbHDzJSU5fElbgerten7LhyiHjGSWzOL3gbvPNNSi2x9Opc1Vs5FOm5rLdhqzOeiqenHwBju9Ifry+8h5G2YabpafD9kKfMWTm4VupS1fkOeGVjiXDIoX3wqWBpBvXdMQT1LPnnSBsAJzZAYZLqB6fjj5zXwEwyr0EQuDL1dOM8finc5wkguEPVoF2JTz9Kh+w+g9wj0hToIiIrMio2RQpJCJNL7SzSU3XQI21w87pPdiEguhiVgjs8DS922qXuvVJLnYfwEKn8vAikCt1DDcftMzryBoNgcNxutgacRkYMIFxaPXADayQkl6JYMOq62zKuol7Neo65I67pcbeU+lFTVjeibYHRrkDIVjGSyv+zcoqwHiKYZjQPURyayH5o+aSroouXvb5XIT9gxItbGZ7IuntGb7XSTLpbSNku3L/EIXAc7qL7gIFemMsMYuYts9ESB9xJLvy1zMbfwbNmNfAnjGj3m7qnjyuP7ZQDcMSXL/bh1+aYviTWkORZfUzOY2XUXdqH9ptkHg3eLQZed3LxFYSeLGkgOGFFGhvLmnlPGJlOet4afXLKpcELn8KE2Bdb6M5aP1rZOeYNSuCsaB8al7cY8VyDMqoob56zI2D1PryW2NV4KXHSnDQ9cUM/2B01wJe+qZXY3VZ3eHnFOJOJ7F8uzvwZBWLaGlHbeik+ZIEzIyPMqXC5HCw0bWreOncdFREtwQtHMN8WpObHMw//SIQbIiOVSc7abvxHk7cBq+PplLEznvmm5qOGoYWzHr1ZxsjoSBIicnFKgRqMK8mkO222ERaJSpgxDGrWR2RCEKC3zOG61rx2UwjkMgpxdaOxzGii4yNPicj9n860vDJAwVSFw6kyhCQASsX4BVEJsHtuRkSmZrWwP/FhJIDYmaQz20vyobDp/w2fKl4rg/o/YxovXllS4EOOXXxtoxunK6UGoEU6AUHz+o4fS1l2iprsL4AKDH0zZmI6LFu5wvFrfxr1C9nOt4wtTsJC0bbnVbge9wmS3ZN5ttrenungTisVgrji+lTNeefNnbq9zTNzR1a8QYubljZ4bBLLgoNRFGVLgoTboPC/2vcdLfiwhNpWvTL8NgkrBb5Tq9c1YTV88p2xoTsnGWJ/JpKnOkspEcPbvPRDuLIGil0TuJwX9L1+oJYLEhxRmP5TX4130VZHIWIOEJJPp733FjIDKP/KCi437ralmUpTqgtGVyHMRQKPdH24eH0i1SBMnF0ZT56op5Y99y+4Q3CmTZshOQLMEfEX3tYWi+mVFW/XHaMrAN/UQ5qgKxrPogr76pt5wzXxppn2ndpcXPL3S3qlqku6Juhmo8ChITA7oyjsq2mxgTK7Xuf8o82CnBI6EqRvbjgBEhJtkbuNxDR9fvnlwStCTQTX9RI/Ev9Pzl/U1uo3tSFS2qIjUOrge8iqUjzG73EK3f4biNilycOoCQVo/9hqBlvn4ooImTrmR4jEt5ZMJP50KhuOgUMazkEAIGH2Ob2kKLfuIvGUg4YDAhwazzjoWQ2dVb4jQl87cwQXdavvBVx3mDBWcvKRpJoLDLhh2FBS6WYLFzyB0otVqFINvLn43iXwZkA1m1zJQwO+3esS0hDwdo8GaGHSlKIWOVnuhZPln8L89OhL366Q2D61D2nA4QFkRVdv3wegL9z4gk0l61yha6RE1QTn8/MKqT8NGNLZepPlSTZ5RCqKpqDjSf/5sV0+8LvL3UOIR0B3mMmrlsze0FgLiQpwXJkM2IRuBhWmrvCcRWdsK2CWYQyinhf8io0qY17A013yjGMQSKEvWeByC2C1KcMf7HHQ8fQQBtRcUGse+aD98Hq1rdv0yKOHboRDAVGsGkAxonbD1HnTvlq/D0DDmID7FzhQbZRfNy205HKoBNy3SrCg6RqV9IZtJezsW4/iyYXFxXjL6QLSFGPypgRgi3ROejz9mlvtd12LXMUm5p857ilQ7f8bN3WEVnaOUsXW3wlS9PZo0nr99SJ5pSk3bxRx4kbQowwzyZa0ij+yeiNWUWsAPZFVYNiomV9qR0UtwlUg4ZyhxPMZ+iIFKnbjF3pM3pdcXroK9uVILLJatQP8CLBY0odJLpGYVox9BFv8oPSyeRpulxySILtuZNhIBJ3TNf9UPAoE5maPLiv0I6ZKyzn6v2ajk2UjkJTudOIevpxLt1LHvJcfooXQwFlitLlMgYpfm7I+t4oAUNbJ8D6RA63ORCVQTS2Qv75ClVzfP4eCRd9nlMEI7Z/H5jRKCqKovHx2gdxleB90t0LOEju/ZZ72/BA+wxQrMsgyBnuMH8oD1g2lR7W5HvGnnsk88Vmm/yP72acVLX880+QTG0L9bg3vUPjCtu3tuC8rKM4Zc0P0blpwrNDMDKwVFok24cakOeNAOZzGk3PcYHNx0JZbn4SntYHcni01AcwT+3dIFXzyi8BXE0M23wwexUjXP0Sn4pJbnCJ6XdGUrcO2t86wc68qrwtiS/vyHVa5gyCwy6yFwQu7B4NBKIoGYuBJ3x60eeksb3m11D6+0xxh5yZmy/dwdcak9YD1Y42+crRVK2i2pCfiYJm1KdoYc+VCnYXeo/MJ+zrt4L57+p4LQQkJvktghgF2b7x0YydKIltZrwJ04luowJbXNSdflKdHt83QOClwkGs7g7MA+hNzm7koNYIoyuujhg7e+WptsRTdxHMEWDG9gPC1EzrhL2Fz5wC24AEGeFaRiDL5PaK9L/lxdJDevcNrRi0/Sl73LhAYfVeBMYN/M+df2lLu4BuT4wu3cXXaPREEVBqBPDa+9dM+BoEWR/+AxOiU18+75wXh/HaKv1XNip60qXcTQXy+auzaWQ/wfNl9OY9eI800+jQx7chiKbbPYl1fnGZGInu5GmEvmEovW5/HdTz8Lw0/kWCIZXfIfYNAGIEEUMeDQur/OOuYiV8ncxkuu0VAdmpRJwxu2PYlqZc4xhhyi+X88jpKPDUtbaY872QVQfN3kf4AmCG08hrDX8nee3LINJVWQS71j41+T22VcGdf1nSu4JBZCppcJVG6x2xSoFgTpYFYNIYIjtIxBv6J6JShpw72Z3sMnk0a6g29R8HpI57dpKrF+PxoYhQZZGK6ZfwTHb/q1mKMgct1lDMJ9cM2MSHToz9kovKnUeloR/+VtZqHD/J/L4W68u74mtu8CI016bCexnbAX+hdU78QlRD7yE9qL7Qlm8LAMzFd/V+5gpKK8LFoGG25tENXAH2wqze1LApyOqb4JltO1g3qjnIFQ5UmCHn79Ua3iOuN/wiFxre0OdCDUzBpCaWqIGzBmpgyJsRa6oz+ezWrNC4TKQImzHMFbREgoizN4MJ+0G5EmO/BNwPHf41yzGf+5jKUb3B8LtjFaBB/tdqvrDKcUJEScM4aijWHiKZ3z2hQMbb0tBm/x+dXerUAwZd3terTtZLapLLkPCpw1qv0/+t4a3dO/RSGqnzaMa3TQ9mMLV6jmoSKxH2Bt7uEw57HffPreSV6mmXD0d1f49PaeHdPX3MXCmQ350kSn6oN6+yW4EZb+6/Dw5Z9ndiyxkimTD52wzWcqNfpPPZM3daCVVKdNVblBOIFylc1yY4ELLPzxiZYmbSMlK0gaZ7FUzgrbfyyzvwhzoj3GpaL0Sn6xf6TRG4mWi2p74o0SNo5fTubYD8Bq/QUnZ22Gp8ugtgGIOpf/Ajmpj6YLk0w5M9Un9qJJVQHt0TQtEsLq8R4udTOCg0Ws8rhr4ly9Oq3bP3gejFFMt6YdX3yk/ZRecTSXAxJYdpw7Ll92NufPkKZuXpgFiB3qCLTa2A4QhqouGof5Gc0iWx8WmI2y1wfGn4e6Jrp0nz9Kyaa2aKrR3Tdj7l5L/KGR23fFwlCqxfSiwWcY/8+kBKrnV5umoPoHt96Y/tGUH/af6iUIIOixUr0U3/wsEQ3oDgqRR2MqDLo+dFM5qznJU+qTVhu1p1kU4ftZ15OQ4mtSk95EyU4wLKgR0Nc3z5jLt/hIMuN3c4mxf8Ib5gjSCmqnio7oEemW5vgEFjf2kT5pNAiU8bT1WThQp+ltd/NDq/vZ7N4IENQqL6LDgRnBYAze5BCONvCManANK/Qv8UKqqNVGNbcCiYx/KXcmLWZ4M7OHvhf39OZLzNXSKFFuSvl3pnrbS/m3vdSrm9QhKRz4Dg+a6xNYCZ/aKoBTSyMwXnd7Bn/V6P+OAycv0ph1oj8MNDidQMz2Iu/K+EFgihMHqQi7LbRSTQ48DPRBZWUS+/9+jRIO1tKgPiM0iCQEsKGoNGM5S1t235isxEI5MrvBYMNjRQvhGIOEAgT+s+aFi6on7F7sbHm+E3oNdJ9kpvOnQfZRMeRvA0+WV0mkdW7hD4vdEg8XU90dx+JibhU4jbT6knVyz2zKyzGpt0Il/RRBbRL7REkPSf8XaSXi2ZtUoVSwnz/4GyrEHpGcrhmUlROQfUSuPCgn16Ty832tWSGONSzWAjl/OTR7cbNul/HAxVep3ngXK20kO0nHuEU32dhS7ECRjYl6mRcC/QcOKEANt+djioaoYMNy+YZDDVCPnThpLsk1DVi7S+5hBzjs6sfJwyIMchAI/zfsiGVgmaCiijzBU7V2yncW42U/QNWP9vt9nL0R4Cpn/tSAiFhMtNsmU9HqgptD21RfaQjpefShfwu8QiC9ijb2luWvrYzZv/OSVI6WVJYDi/zDmAxVxgteljokhLZPFw1Gn54R322X2I/7pPMMun8/mrDCMSdyVLY6Q6PUrRhNI8zg3jt5YlwN+5DMsL1vee2YbQrdTb1KiXmFYFnpV/EaN/So3VxugtWeK/idMb04lo2fVVk+B1oBfdtQMzn3hz/enlUinn7TW9L8STAOvLEgM9fSs1LbIjAXuoQDRDDojhwrjxb6XQql9uvgF2Y3BPwidFq9ocoz2gg6gNxgU6QyKCKo1+gUqK+H9pcifAeebaaxGli/RsUzYDCyYB8GpCDaLQcnSV8q1Oc+oKonZ3xxzOJ13TnyJOp23EhWYQm2FcAHBsqCcB2UGvCmwysQSI/kACVC1hNKSgGaa7g9c5U26OBUK306zf477vo852M8UIvA824gNy6lnr3zJJ/wOb9VcRCmP7m5oFg1I6zer1rZTd4udNHICsTeRtJjIp5NYph9Gkx/vgwUUxbOLlOc9mzeqzDNkJLyCIFiONKyNjfjXQWdoQ95rlj+ioER9tr4fh06zbRMBQIQeT8QYw3OV0mqa/DtfrHjYrnHc9dN1X1yZ4OVIQnb9rrH+evs4ZX+7fw2zgCj7T4zHSIpETBvrheIM/gJ2t7YiqiEUbQgELlVUsxljcJlB+KhOYG7Jb7JUKGiUatdEa6EDAGPZ3kZziT7Pgtje7s/WEN7D0H85/2okOhBKlQ1taiOB513FGDB9ORhnWBRrELSn3IAFIuSWtl6vNDdMgtleT2f0aOw29Qe0d349F1BaWCPqkKcn5LBMeBJU7WeOEXuCENj7sgED9+ccEJsINWqK8DwFO9Fr0QSN4tBEwMNjjfvgMYiMRhHmJk9pLHo2ROgXK+9cVU2RB3US9LGX9HSLy/LLJ+ck+jrK8yc22pk2xMrz5JtceseGSUPEB+8A0qDJ2RUQXT2Bpx8GHlL9TpVCyi2foooNVdKHOuLTCFcNe3rN9ZjsvG/tbEEeoOfqYC7mdN3TyCZlqQwiTO9uWj4UXTKgpoF7ZzWjmVm4bcU70LivF2pFNYsJ/qTj4zMa3/R5EfkVtA2adUBUvaReXJ+3k9ql7wrlPb8f6LbV/eEDozS9m97fo03V9zWQj3uYxd/wBhjZ3QtZgllvYUHnqMavnQrd3C5tKOxVP7IyL58Dy6NA7BxtV1Q7JqoTW8ulTZ7+v+9TC1CUXrAKRA0Lk3YplSomvf9mksxAk5oZ3/yThbfAim29nQZ5yWcSqGqFzhNLEfn8kMhOdvRpuwmkVtS+nbih//1bAy4ZUxUadhG8PsE9S3EvvGexIpVcJneaYKLoL6xCb2Sj89GNlqSs+mijk07gDL0z52bFDz9AgbP2ZROy1Idd9J/70HTTtI2XzqEPsqocwEtk0QIHSjb1sAOGpVaWcUbSTyTUbeQty6S5kPkXd8HDqAVwhYy9OnQ2l7xwHUR3YNbr68q4VhyMVYwdU2avxcnJbRYl4+mA7hxAk2/9RRUoXdLIdy3WhBViExvRmD99HAtyBuuvYgTiNqQ/66a6H9zv4s/OhAyUzIldTUM3baZCqkvfZS4dOl8zCi9GFV5C29eWEE9ZPtaoBGFsHDuRQoKj1lbVC9YXoqHIMPtr5hNl8w6pbcbSFgkjigxDnld9u1pvbTIIALouQe0G+kB/5KP0+bo5AjG6nluYzYrUe5R6txEaZytUuw+jWXxEY0J5AfNnSsKNlDDAwzko0EqUIlBWW33ge5Gxjogx+ATzD6D8urWBi33L05pR4j2oRRLJmJ8PmzWY0JtJnD5kengnCUjm78U3wPQ2cMZd7v9dIyENW7dLvyywKyz8tqIwF/QrRHjw3B6JUlMxWPRvcaHKatOl8PykWM+/GsNGJU4WymirpJVJpIPlCzv1X1l++jFGUxNU1PiNysER9/yqxk2A3dcDkTnH66zPKvj1FkVzb9jinEHcNhSVsuC2hjrzq7BdGzRuvZ77n6UtFB3xvyC89waArOi5jiMqih3/HVIgq4sYw4brcwdd2qq+DEljEQts6SWLG0qQw0i02t5IgCvHWQ+VVL1cBJnEOM34lrQZA1MLLWS7/r9FC4bYu7CPNgENyK+O2JgVsuhAhq2B26dR2QjQ4rbgaVUGrMCPUy3JzF9QXvtrp+UJPF4rY6HDmYTbvUZ0CgQHQ9+738ooT/HF3qxVo00lEgpAvom+HoY1T/sP9cvGxTS1hGum28gNQA7yivoQNvO8lhijuWNpGOo2nDNwnDrBwvRYIfDx4DtjJ8kXAl2cf6NPiUFtTZLaEr1EQRxk30fJHu6ClGmM3jWWVRIAmmoUnbAf1bZPRfgnGsAi7oItZfjY7JTqul/EWEFPlZW4ajyi4bMiTjCNrI/7Gn+WRaMqxJkZJgprHhTsGpZBhyN2LmNI2XLaUDCl50sbt3kijY/z2DXenQuTXcYDaqR5FZMLCTnjVZ/lIoyydcEkpTRUO+Fi/pLM1jzsF/8C8EvRUY3aNscL9wUntygujZfttVcpa22DdDGtEz0lM+e/+FdCYK/1Uj6WEtjSKqVk6dnQLU1uOm+RW9gADxwLgIFTD0TRQWifnQ0ljgbQikjbZRnh7d1jzmkfNGoO/2y1+pS4PUDqWirLgMLI3EnijS/t1bv2B/GnXsZK64xH0RVyJbep49Wn4KlcpsLyjCuEqN2otjyoDT3wAufZBngQUIFf3f7RF+O5gMI/NoSEt1HPVkzZmM98JbZXy+gOaR7eoJgnE0sm8AtNM3mrfGVRnEy/Jivt/uPqdbR8tZu+elBaTcusRDhyDGartwGJEKIETSaG+jOyJUGHK4p7ULyN8ZKXtYPNofj6Ug67rOABSlhgNS7Sn5Cl+wpZEbZfs8tYIjzOnLxhEz5sRGnUoeORtZQf8QoB4i820Owtjy1SAqXL44He5K/rNAXehCTHConb53ScYmq7/DRylLas1DgQ3+XsCNt/4aUmktrS+IJDn//Q8895z/4xHB326V5uBwKVo6xkq6oZHeS2heMXJrW6v9jqtQfBfq9CgY2C9N/MZ5q70IM7dOG49r8S+KZBBepSq1LQs4DAKx06hTuLW2glU2qhXY21eqw2ixglh+eeyG+UZVuHxmVzJEwLVu1bYmLgGezhBihOtj4N+4EDBCX2CCOcKCPjuw0fvAyMlsHekI4ekj7S1L631nDsjtJqC5UFWjiJtweBg36jzoRVV5ozrXIHPUNHlnis8c2MKF2RsIEhTkiCmK7njTKnDxgIZ6zVpaouRkmpdM6+XLbOZOEXYh5g+byQ3LiHcgSZ2Jom7Anl0oYopoE05NLCOAYp25LQylA+auc+MvLIe//LUHAtLVlL2NfOp5LZ/Eh6fWf++yhYbj+n5g0WqGblr4pHFV10bwBl2BbVfh2W4ctKq93lnS/gTRb4Tby0aeRznechuW+5DbXSsqDIAwqcO4b6LUFtj82JDB69HbN2I8PBhQwJ7H9MLKycm8Ledj4tyh3O04WpnIB4Z1qdHNOAEOea+XfLxbjiw0hJdiWI5lznUGugWWP9gu2BzAJAubRqdbm6bE8cHA9UIxbOa5SbhPe+1ZnVIPVf8OzNSjEpGK9hQXBT6D0RXbK2PzTot+44LS2w5lYcUmM6Ea1zF+aP2wngff6CilSZBA8463viDNo/L74j5+zroOTj6x1rBg8o4mL+9jzbxJobehtB+J4A0ic2llHqy05+arevR7fuKKPfqK7OwWbF7hHoeBeEui3euPDlm/jDSPCvWwDP63VLrj9tkGC8UYFVfsqhTWRnsmlpT64HuZker17FfV+F95GzAuU7hoy3MiRfi2uC57f/RiRCLa/YnHECTPZNI6odOHJjdxGhOkcVcxdYwtCcqZDd63mPHHDoVbpgUxwpRy1dWN/KZAxt7B8ms+15imYMFW4gDqKIOaUMRiorGKKlzXK0NBRKY7RZraqNdkYNXzDRSel5e63LqT1FLf8wvQU+UnAMXhzAN5pV28NOHckiOPTa8lYrZTvzKHeQy2bKe5DibnsO7Yf29o5G0G+WT4ePkskM0N6EFZBZzzew3pg+PX6QPaNGNAz3fpIhzqK/WIrq5twzJBc77V0PWnnnN7lHZlpL1vLNxwmcKmOWy73PLICiBe6nuMg2lVTX3KRpezZPR4MsSEZ/N9HWoKriIASwrSWBcV8ZsB4/kDWgF1INo6emXQRvSuOU6Kp/vSxmf8qo/ySTIpdOavjumyUwmS43yqfHYVINJQTLOfWQ9PbT2gVVAKq7doI0/cXe0ZSHKwzMJKSvfy+5/hJQBpuBFEYo9bLIC+bpln0Z/F+ElLcpsbp2ejJip7BjiBsNN5NMTP6r0hkcppShJd2GvqN/5MiMKiGSg98yD6jcUOltQPEJeGlhK3QMFDP8795aJkKmgI7mVBwZJ+dhECZUwd02Sh90+riCOvlAoQy2P38CRhXneB4HPTi86Dald2LdJ7B50rAWydxpHSofQsFWibCTj7B8zy7rfKgfGgo7tsYT5B5I5IUeDpCWpziAT25CfbvuzzYfnbFhAss3xLtyTXV1exC40sdHcmxQul7ZqJ02JQhYg/PGdg10EP9mgwL4lRkXJEcNpeqH5e/QvN0ZQ6NgjV08XB8lW6l9GLgBCkisF8XeeRuFivzZNZ7yqa/T9wMKTVa4HlK8cN9H8tyA7/TFckmSqxlqBoN6cuwZWJ4mOcJB+NDEDT+wR3ci5hvRi+pjOQSrxebCf4e83qXGkHn4xkFY/QZLA2gRg2WJJar1bfXGZ8h73zgjHHIjRBwMRr0WuqNHFr07CoVKmFk0VgPuld/Skq7B7Y+xfCKtc9ORPtAY/r2YuHKIx8+eMyK3HhQBBWehBanQLO5y05vRuGZxf0xgQBuZ2W4vCSVU0bnoz0OTz3UQU5QjicBBXuYT15lD1BihSkA5JaHY5uotFa6SPuGfqHjvzxo04PGVbQnA4zaoQ8YDuHWjoowEFp2qYQ3N7EsPi6anA7jDU5/rZNOlvRveC8hPGAv40LdL1daqWW/SjzNp4ijaKbvPit2W8TcihSZ3EgHczIdv4zh+YIEKvTzb/PQwgs6G5CzyI5N5eYv0nV4uIpWWVh9z7FSQnU2tB/Fsd8quaYI/XcHAi1/plG+GuP3Gw0JdSwwaA/a4wMwYVXAEKmIR2v0sTVyoEXFo1FJtx5RdgZ4uYTzaGmrUeMeFjwfobmIWEMEyooHmPc6bCEQzkCYlZW1mAfzCfRwwSeSq06gqzFBAAVfrnCtDG+Z6tbLUzZvyzq4wWhf7uMrE85TRVngXmxqqtZHQ8SI03Zw80Sbwpo10TVGgaheHrkFUeg8pa/Oy/Qoh6sff+E8DVN8h72jYG/XFclQ1j6dgCkNjiamGJY4hLH2cWB5vFE2oqbeAqUujXhVqEZ0pX6GpQnjG7T9tpf9y47g6f8GoIauuWqEL2jSyZX2UWw5g+GnBhzLmcyoZuxywLyXoGlXm2cjnygBgIfhDzC3AQ70Goeb9pTYFipR0wnhLQMzPtlEvtLu1xwSFAWVp/qpWcs8CJGlvtpbrSiQJxBUkYuXdpuNvpMNNT+mwbVidTHKI5M4EbFQsoEyR+6z+uh6eUvGGZz2s3ejPL3lQxSQg7rFZJFh2OHiOPS50CfiiLpE2LlOR7Du9vULAq4bbFlY8X9ZUUdqs5yQl5+aFWGknghadHirqw+FlNiPZQ1RvpQadGiB5oTvA9aUch/EHPBP/WLxMxHQOq3EgiuPi0DAA0XNCyf3ayGXmdePzP8Snrh+oKXNR4u/lcxxMq4TkybBR/XygE/zmmaa+1alzanGWlsGzcVKbbXI2zFzaEwccvmKY8DQ9Ygl2faq/a5TS764qdVOT7qAcVJiCzaX9B4f3M15PUbzC6kxcMrldULn4BQjOhQ+LUcMtP1w1nJnn/Vq3iFdEkWld0lzacr5oBLKQOtWxBee85TPv7EIneXrWhvOnPfY+FygT+blGx3p6UQTVFq/emqWqtc+ZcyBvH4b785Ruv07z9ZeSjcBpr0Z02+358K4iMa6tQ9awPywQ3uJ2HRMZEJU3488yV5g6oA+LrvgLNwFoAroGete4eseKDybPCCozj1OS679Dz52FcUZUyEJHvHA5oxMM982TSiMQtNdt/IBaglh1k/IyKFW2UodxGwLWKEvbs+rqg9M81V8b+xWrYr+0ZgceBc/1VJl8c7T4CoakKi2/ufhuQV1NQsUq/Qq/MK5NqwHPDtz1zxFD9Zh3oH18+uuLriHwOzKL7UjXEIlMLed/GeLIorWOPCkBoY++axy0iOPVq727ZQrjrlx+0j0E9K7a56rRgQOJkZs8/11ZJ7dvcoMackj/GTd9bKh49X+c3TICuiECekAPKw+/8ObE0DqKn3rnWRYvLRNXluN57PvoOq7apj6dQRARy4i61IlJBdyuIbTR1tjlQ8iC9ZOjJW4XStMIVszFx46kbJfoGvh+pwfu9vg4c/g7kYuz/p/FxpwB/Mmcpp8vDvjcYggf9CQ4DOtxNxpiulIAW9LM1i0Djqqv7denmcVggAvZNkLxaSyJ7l07CxNfdBreLGzZ8wof6IGWK7kuB8CLjq4zR1Yl152DBWtAxfy628IZ0p98zvgiDyc4wLInaME23mN82Kyzuw2WVlp5BJ0L6cefAIxbbbq/D8XyRu07w8FasvFVOeugmv9dRijjE//ZcgQOX7ihno4BisJwxGi6BmJGYTx/e0v3XFDOr2O9G9IMasTecji0Cz+ZhdviS4T8hg0E0h26vi6/HvdkLOEKNZoDITtiacTlHNOrYATfEU+ku0yq2g3ea17undB3H8q8jW+e8o8rDvgu5k90heRXu+jvpL1nu6p5NXgVokTZKGqZVCdMr4F52qx3yjm2SGduk8wFyiVcunjKFRy7iqLNsjtvcRXL71G6cfjs6tS1oc3ugxeZ84u0E7xYiRA4/Hoju75n7frhtoUGG5xHqj05z5lxUItZrPP73fgEN59cw4rSF6RONb/r7vClavd8k0XU3+XKeqR8ro9uJ1qlaQQPUtE0FAMcmuH84H0V9xUqfrTY8y3Tp6DNTQ882QWfvfLEmVRZANd0h2SgArXGo+otvCTZfwp5hB06IvfRDv4Yx6aA6MRBD8Fp//Ulkahw1FWmfPf3mQ65aP2jyv6G5wiZ0swYJQ0PYRuugQ9dIaR1rgywTdsm8U0mNEeEgM9soMQWwagexZp72g93yZtokeisMPyXAW2oObUwJq6A7mCpcYrf0v19C3juA8HgddXbmH6Uz/LL5KwzJDhUsiNzDaUzZscVb/XRXHPAF6CFEABr8ykOzqRxZhLLlTMSRMJxREkaXgCfiyBhnwFE35WiHqohk6cuApWv69n3+aRtWOrdIPqpJ4nsh/kGrh3RvLKagmYZ+T3pS+Nv5AXPKyFbIKfXcN7nAt897BvW67NDQVUsnb5L7Ok0FaeBrPKCy89U05RI5wUSX35UNQGLLwrFvvQ+B3y3yh7EM4w0lewibxQMTxL7aiZ1t3sQO7y2VozpHr5RYdnOz9C5ZV0g2fBOmlxfkEQI3lJMwBGgWF659u310u7/avRPy3wKGPFHNQgCHAlyClPAN8Z6jKzYdGDINpO4F7YlbotrJn2bANmKPCDKY2G1HZZvdpGmjwhWrKnk+TweXpIkEjWCLsR24zpJ8MKBfyiuxF3O1vX2NsPF5smBmOPiZ36XQsouckn5GHSwBvTbymWgCw3ZQ5qq+CrnINKtDp+BWI8xK/1skEy18m6Ek1ahvhTgk/Gv+mn5Hqer/1KMc4obtmSRRHgGGwN9NO02d0ykEkmnt5ESvDqZhw1725dUQE+RW6tRpt1zkqK2/8CBHfFZNfKiXirTLckYVQCv/YahGlQ9v8urXi/xA5AYItgKtXNos31OhRvfkXBqHTtucl6YruhrwukoRff2KDd9H/uB4Ql2IDXFvAQU7F07nwBKq2SMazehS3lUcaxU3mXsuqMTIN+abNOPjrDHknMx6dakOK8vyqbRXiSmFh9EyqDQmwV37MjRJcEIMC64AI6PlIq+cRhSusm+R4EqWoIJ5LHvHA9tyXYjGQr2mFpZ1rcHv3wEw5165Ans/Ph9dsufpTTfFM8Xc9owTOsSK/eeIuPE0/nQ5z8XYpLrJ19ESjjBa0ycCB8NTU5o0oyHz3Q0qrwGHMD6na6ONq00d9xAYxDdgQubVhv6zknSltK6TaaZcp6HCLIpAJgZ52XiEVlvGWJqJTdv5H25M868VkQxsJ93TcGvYryzA336lrQbrp2tojT3uCvpPXDyqRI1uGBkc/V/LPrdbw2saKxneClVZ5cCLA50Kxvv//czN9/UTzGjf7LPhwuU+0LWftXbO47T2LUApcXB7nrdCDxqNUXBHil/kswNLKNTPqrBA2OHn1T9n19FzgHZy2PnzwvvoEBwOjcPwRCNTN0Z0dvHhwyLMDCqFYf2y+/d9q1qZwHNhWH4uOhYqf224jYTZVRjVTCkfBnTDswEot39KAjv7u2I6qFos+QfuW+8PEW9H71OZmVXT6mQuWXXWm7hdLyDs3H604LPOog0s8QsmI97a3pyKFPz7zifcira5adMnmeQTbvYqdVgOd8f8lZKdDy2UjwsMtsISL0jR3gs4AAPiPpgquNNMh08DMX6wyvH8NuUkFuyQ/OzYw/6CRlOJHKgbLwU5ajgAakYeqv/eDEMfms4nSMRi+Uin0zjp8XoVPAnMUl5dq6BiHSnT0wxDsVXIQhfuyEH4tjibgxHXDRhUcqNik5xKAemm4dNAeJWql91KTLOCUWWvyU8C2Tf4iF8TGtpL+55Wx/a2hsfZznhuCq44GtmAwxKRMTkxWEMIJENg8nnN18dxlks+bPXjr/f6HYgBZE5OLzlifKRWnkFyZjRFuMkRTpSYqpm27UHhuA7zm4adnKONQFdCtsWBCMy0rLGnaQzC23eoIwHJ+KH0twt7itmzspMxLsZGzK0vMa5Gb1f1CpgwzlWFAgr35iTxDMdIrfIXuChjhA+nfMDpWaVX8gc93VC2XjCfuz2FaJ9V0W5br4QmoPDbEgr1p2k4sUgt9XQwnDzrGFEBajsL+GDR851UI+Q62Co7PWI2I9w8dcEOE9aZQKPf2m5FZmvdJzuKpsTMMRcGG2EgXrYEUIM41ahnKBldEuWUDYu3Etkd1lu7zbbudMM1gOZgQHZvg+M4QUUJA4LcB+bsmRHZw3nVpIcPIC+VWkwxny2nDVpYIyTgQmG+5Rxr28xxPStoh7q7rV3LCnKUdIWFJfzw2pj8QCtbPcHL3Jep/Lp9gsYCX5X4Bray8ISAhGfqG0XFns7d3neV/P1ZmmGHC52Jrh6dSW+rlpflQWPfCosLxQIP9y1Lfx55kt8NEw1Y/db40dAShZKe7cb2+fo/c8hVd8WJD+652wdculHNsa/FR3XDvX3AkUvmPaYWhu4sperPo/LB3P48ZgGB6G8AbCkr0rH+ybzH/5HchuEsL2NpqIQsl95r69d6+Sa7RdeQrvyDecJWyaEpAX53CcwmsOgKL5yDoPSGor1aTa7sIoqEk2O1H/KoFYf1rao/spQGB3cxCAHpw9xdRzsjtBo9plHb0KLclivEQc6u+88xkDkgr4IN+CQBCA9JFKuvEOYi+Pt/Qrdet8RL5NBL2fIRXoJmpmKPXgD9L/mUipk3YCpK3AhSgqeqxMQrTw/llJSOub6XTOAoIba26XtJkPKPS0Oe2yDjzsq/086I02FBSNZvsm1UbYpt5iT39EOx0S0BgcqvMEa2ZZWFgnGi+XHt+dphV49To0hUd6DsFBXv5ZRZY2iX5dUF6ioknJdv+lUOVcKKBGiN7JjqG6o7saGTj+n4cmcZfDi5eJih5Le18uV1GKMDpBIcWC1H0JW4s1/h8UUgWEfrbggshSrDtFwH1TUArFArG2FlNX1yMAnerc7cElyV+WsXqwx4KYGjytYZEFcCxoiiSjiYWK53bFFME07XvO6rEqS4uVqBwk7fU3+nlN+uU5y3ddTafeQdWtUe9OvZcaJ/rxQDQ4UGP1e4PETRB9G2V/AXjNkmfy9h8cqUTXrow4agPhm/maNNKcW/GKzT1CBOUmxnS3zRcgDoxlOzRQkEs031guLCUJhsP+Xw/zJXUMYb6tiKFOLRNtsv7+OQmVGmMeaTFIKcW2akfs7KpNPPc69E9AdPq4Hq7ePhAyssp1Lvpdh+LlittFopteRm33+6PEvrDer8kLyjINt2uQGs23EBrvp0aaQSIfrZKtHljfdsjsU3JcGXGYrcPLy1pl1bYPpfSp/dRm4Oxg+dBiFLSPfw9QYIWmqC0Pg5A2ikPTga1ssy1Cs85q0dXMr22+z7d58y2zurcduAnsdZ/QsnGIMCCRJzOuL48E5oXYlwzdWrHLn/zXifbZ3+BNN7286i9/FmuqrJ71fk2qGr3kUn0DeG3mGl+eJOdwSFHqd+THXlms2La2HrmsFA8BsFLpNptYR6v4WQZ2UUu5KHpLpj5pf2ApWOLaqIHkJaoS6Ey+1Mdps3nYRJjPpNQCX5Y68Oxp5EaSo1YzCrTAnfXJXDjJCuHDgKgVidujPIYtu1ZrIZrfLyQ3H7VLIMvMdlTCKYUHQpMOMjcusRlcCbG8SBtP85bmejt3nfBfqeqaRFydsgZLj98chJlCOVUyB1lcJAqzMZXNKULkyyKoBm6GMxWz1uiTyb4T75dxCJnEln8z1o3YIkx1yMoHAysm+91KVdzpzJsbMCVVd98e06p2oGQyu9indu6mHVCIbSv/6QyYE/iqtSlbiN/yFlyrJ9jSzsGjEUEXY+dj6EpN8tcxTA7Y2Nu1YOiHClRXxY2fzJrUYx74jT61Dtxq1gNrLb31McfU4IcgvHbGzeJdMSEocTMXmqgHMzt5X1AeW6or0mAzmrSuVsAms4sSpN1QaBRjvoDODc4PSf2fn0aVuMssal7SQhTxXmYoMaWC/CRxD6Vu7qACojkhSDu4FJHiOKYNfX0F7fW3cTyMdZ1EiYR/9Ay3aI7GMaoPtYHYUBcGW6YXVkM+3JVn4eX6V9YYa0E1X8DgvomYcBTMds0R3Eu3yh4eF6y/LZElPaxf4bB6sp/FCbf7HhkQo0OSNdXh+hLF9NsGjX5Mslu8Y7VXRKBLSzJTg8NvFkR3WrvcHmAhszpGLvs4G2qO/P3/MGl+WXzMNLiKEfPO75gilbRWJEhvElscNVBagw2RXx1aJzqYjPQMmceCkkpkK59t2p0mdfcfe7xJMynLIBuLDFkeINmQUodHtAi6DKXNnJOqfwGMn7d5wMDfea9K/Pmzww8DZw/sw0H7tOO3tT+ZE4yzpBaGCs8nt5yY+5nF5vasHbgS35fRVnk93o+LtlpoqHm78LKJmBZohXoat/Vbkc3K+Uz2MgICAc6DhI1TjMkOMN5pJAq2MPt5neZWOoXyzWsSgcjlMzOUPcd2uz4E/xOKZ+SWwlty352k3vV9EfmuqXXueAIFLv+/btWcuJTpGXCisGmHOOjIsELe0x9oOt7hrQgXfJYH8lKR7dzNmYvvh1QE/w3hbO3Er2W4dY+b8FqOfeusd/BWnAC9q+3yPlIukVlTyQHOvyGzccugBH6lweE7q26lGhgeCLvtWafqXODUVXXJ+8QvzBmG89ZWxYKUMVSnKDLnClmW6qQsyd+AWV+lglIOYjtAczdmnXQptyhwhFb2pXuobbGcgl0mvk/yE7ikF4NO5Ts4yUlDBqyUyqZk/3ifm+dbieaM2OFzcTVFbNtXiXRBaYFDwXIeTUeU3gibxFf13nx0Yn7RSpTtjJSlZKSackh1B7Dyu4uH82U8O2XYADvTe3YFTFKhAsJuRhDGjj5OfrSZdfq5MM9yfmiV2Wqh/jEdQO/omAFadfQnJweFKYgp73z157F7pHf+QbMo6KjDnk4dab5k7l322Pgjb8jqiinrphyJGBjU/EEQMXURFL/56rRF4H8x3Qukg6TTtq7oj08p+yhPB5rCxKOuJcHMHK/5u/uLizhLY9v5hRpxzW4L2+dXDdIuItqSjm8BGM8g3GVsyVjQXMHoM6cLdrBdvypSY/izf0im0zxIWrPRsZVdtV3Sh7NWnWG8KhIXARfEKt6EZ42omPgThV/GMQRUmHZWktDA5uoVIsnd4uOetQP2JXjbfHGle8kLIcMLabdAylljBtdpVsotI3gzNNdYjj7ypM685AeYD5Zqs1CJuGXu6LGN/ilL1Hb6a6rUJS4mpAm7gA4ey1o7PppxohrWbNyNpTy0vHtHKNGCEgC+sbXLeY/O3t0eJT86R/fX0nJEHNGZz7ddZewbMp0zFhOz6fTHgPYx5UBI75uWWeE8Kvf73FDY9Wcr+5tpdrgIx5YV5WEPR/MBa0jEEJgSK045JVDFNfnDSztyHrgaegAJiCVX/z6DYJ+qHuWQqgZb0gs7fFMFea0wKR0vDnKBP+9Urpn9Z7WDcPkwCNOb/8NCCVWNgFbxjlpPiPL7LcWM+YpQuDwuGYNApktg2kjpRsa1jtUgwxjpnpRq/Jk8/Z0RfNRxZiKD8LrB5lGtNhpaMToxKP9ArZeEnG3xt7gd+u1POFUpZMsW9RTWcVBExYbfR+GlrP/8HJbZaYv/FNCq7PrUu2NNzaGwyyp0acfblh6qtVPff2yIJ0jhqmEGTtZG5uIQsbNnSWy+2gIjuK55dQbJwVN/fd7t1Y7XD1hqs5Cl0m7EE0olegk4WY/CFfweu2izkv2Y0ADktuZUPHtP4lPfkWlM+luMQMkK8/3HV86YTy+o/jOD7COXO70PxbChqEbDFZkg/2ywxKGpB7sVDC0/BGhVGxLM5QTfH/LGiOcNEcFi+NjtH+ps1UCF7Dr4Kkko29Icw39uZBGHiv1iQl0r1efNWhBKlkyG7p0Qz32RUsVw+oXryxTtdC58CYJJLA2CK+Ah+bxw7dqwzfnWlbUdVE/RjSjzkerC7sp7oQEgFwOwuZIn7aLwnITGa1meqHzSdRF344Pr5zi+wIh/OP23/W2XpDMAezl9LTlPVt8h2pnxYEaNwqnpEsQVoY+lS5EXMzc0O7U5+ePuf0CgSx6GJgPLNnk4J5OE8Cd3BEFoCXmZRECK3b+aQ761vJaD4TJPVaJIOy5ZUFX0f/ucP0FWyBIKpE4Vo/fDpeiaAh5UvZvoR/X31nbc94rKC3Ba9Ny8IK21V2CuhLUtRjjARELlA2PJoy+W+LQjRCRIoyHKPwsCY5DArTejq90wVsyIlKoEpYtpLzrcgr9W6FOLs2OItzBmb/98Ltrr+/fwS8wzr8Yumgjunlir+tsK/J2nz3MyhCYHp7ijkyraw6YIhGYkWcn4cZvq5Ui6RPLdvgHS9RJ7iOKkx2Te4/kfeME+PszqRYcEQyAt9QRsnFMR2vpK3SnSGfWYtGtRwZPji7hvFJVcUMRddVvYJ96uC0EuMSF3PGZU32CF3L/G/+VLhT4Zqjp5d/v7EJdkd93SX58COQrYUN1rJZAs6yb9WrX3pIwPvajDvKdDbU0MmF6CcMcSIFXL1xL+jrrDVXCtuGctpbFaLyRJq6IiCoH2CoQfYrbJizFTgNiCOcMQP/jsayIEXkqGVfep+v1j46YlupveGl0eYLGp/DQ9FF97e6qAWKBOQU9mhaYAApiANa3ZIzMLMQjZmZHGZz5SICxQfhGw/vovyVXLsIXQp+HvoFKyPRh0+sRMSDSDtghjdKKhQRSHzYnKfYtvZf81NLXQUIsXznoQc/1A3Hp+ksIC6Oj711yXv0VnhVsyTw0bQQ0PWWfn7axvmDHO6rtPUSWlbFPTdHXWcoUW8u7nYaA0EE8QYnMR5G0b0WbgTJoRkr+ZrMANxXAIT8sZETbB6t4cjRIRrwULx1kvvx3cyFYPB0v+LzVlTGPSeT7A41iW4JY1j/HlBrrcbOuX2hKBsRy1u+V16IDXK90h13WVvFf9YhgEL6FeyHXfYFX8u95XXOd6dj5eRixFv95lh+IME/Kezpd7u9wLOIMJG90XGUr0hGN0gU7A54bUoJbxtxaBiL2+J+//5tPlsneuRGgtRNTu9JqxIdIILriGQFgcgOGaG3DMwUAkiaGtyjVjWr9aXgUzRs2MmFacq6HNwhA7mOC5EHX8oP0R2Uso8DO6Xd2b3B64hHO0PXQ/KJ32F1XrI+HOh7/a3XnGBcYjaMfjhuRLURn5lbmVfUgeWf5YJIDGxL0lAR6C+Hz9MuplLFxhs6XDpF2CAz88RHmDl3L+rPST0dWuAA3oi/NSsFhYG1sbQy1jYElL842MhQ+0b6cfEvTya9OiCOZwRQ/JR9ozymvh/kYWx8yNkURNh88zraF2xWXWaC1Xiw7Y3/Ak8gAdBPn1ASUQHZRFbe0X/n1maY11GMBz4aL2AtTQRUvodaClWVmZd3RpXscxkeZcDT058tDU0mqLpO+mUMT0+QTG/ugLmFlnJaIK9sZJ8X6GYxx5J/nN/pSLjDC0H/XAALQayv3PhgMvJkjjB7xRVr3l5DQ1x8nffhm24uv1VUmKeZg00GERIsbGS/WZ0EDtweZ646Atn5fp8TigwU1xQofj/QWPmY4PtqALBtCBXLc8hE62j2sxF/+jYWt+hh154VSomogejmKNXvXm7hE/LdOyp81I2lrT9spZCOVn4L8ojW/4STEqYOnR7efg4fj97o4rHFx3CfN/+eqqCLktsZk8TF13G/L6hiyLMBdjtjhXOoc2WGQT5tZ123nxTpit7SBq1YXlnS/i+bctR0ydfiBEeq4QpNUoZbVv1uty0mGE7ebg6d6b/1Q5OsrIi3PcOK4AsGpMltHcSEfwUwnSnTYE1Gy/hqL06Bcd6lVshNyWm5+ArXgmR3+aSPs5NIRAf3QghwjqDX4MfKTxATIRCsl07kYwkDNVqqz9eY3z5Eq41LwzKKTTbjOFZhObDVlNmjoQ+Be1/2Ah36To4QFQdWgUSLA68QnvXyXTgI3G/5uNVWYz2zTK2pDL67OSAN83IKrptnZqzS6GneAdSauEyUWxz4pWZKGStALg2Xs1zSnwtnSTMZB9vChXjz9z+9jwH2D2raOY9mx1rVAc3SsF0uFe1ackXX/Rt4p6gSK1ly3LpllYO9d6U2W/WwtkyE6uwbrZodURmw3uLZxhCzyuQgoN0Q+mbkK0wFen8Kn2HVeoL+v5s4ZYct+6MP6nVuchkUeclBi0IkXzoSfg/P3TRdH9UTVWl19zfn8AJJ1UjZO55jQ+z583UefFMpAdv4JZeoS4rbZxdY0UBFpYBYg+fIYVbzD3gHMSL3CqGIIH6XOoEq3T+Gq1SolK8nd+Hs89uL74EVQqtv5L+NSVQeOKk3PIMjQFFF9GdWPVk3z0YhvmWzcEiwKH1Nxahw8lJxfX/uCiyvFXF5iUimSVfpECxmwIY8mBRkaHJ3oK4DenHHCouOHIynvoKjIyMGw4LacyGWaEZJ7pw4ym0WsF2H1p17+JmiIbCpQFEg5Hqj02jQBCTyFlPwrcuzc+lvpPnkOR1D24RwrGT9wUjtDyTdOMi57eqHAcf2pjeqAXjce/IuQZi30FCtjFmleiotCTI7kKoQV/4lYy8QnkzFPDyM9wZnEAsY144G5mDJpI22vDkAh7uUIMx+zig7O7IlJQflvAfNj05nwTxeEVOupNMumTJw858a7uY3t5/Ucci0LQEbdMDgZPjSRfONNqL8BauSb0jjaYHwFygZtLgLKtJwnldZqC8v6isgQfL3RGIWyqcBOzPlaXAWnhTwrKxtqV6Ve8eZdG1QvLk45vZ5IaB/LZ8HFWEXyiTUkBlwbpr6d2vL9C8khRjQt5LAJ7EEjdpJ5zFe0YcHgPN2nrU+penRQa1CZITRNN4iTuzNGjueyHzPfwt9GJqjyKG4KPHcvICFphqJprFIJByCssGBg==
Variant 0
DifficultyLevel
522
Question
Kirk, Spock and McCoy share a box of plums.
Kirk and Spock get 71 of the plums each.
What fraction of the box of the plums does McCoy get?
Worked Solution
Fraction that Kirk and Spock receive
|
= 71+71 |
= 72 |
∴ Fraction left for McCoy
|
= 1−72 |
= 75 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers