Statistics and Probability, NAPX-I4-NC14
U2FsdGVkX19W0XPsJDB1oB6OYrs3yBsbsq8u/xySmIWb05ggIAVA8NFpski8FYsrcFOBblzd76gMnNRfCy3rioN2anUDMiyBLEC+SeAtWi09BoXolf9oqSp8diKPJCl8QrITshEzQckQT9EI7G2gf2oDxaaC5MeMpd3+66HUwjgUTQjCmILgNaHrOOi80+akNhRaNQUJPZYJheunnd1OEcq8ryTKurUpzNUK4+B/ZN1g++MEFcQEBKN+urp2vBdtgAJIHq+1wFoGfd8K+lN7i6Q7V+YU9I0gpL/oAUCAv2j6v+UKzvNvmZksDVBV+NMxUwSc7g+g6XXGchdnX6VRyqBpEaXogFq2TRkr4/iaMO5cprl56/dd2aN/4MKDHs6kzE+XiC27+0rVuonZBOWyYqtT7EKzYZ166p5mk1TMBf8vwI5PmyKHieOHxBe93KAZq11y5wTKGLuRvFcO5uSR5qKOd/KXb6s+ijrZWx/VWx4yYkwJGb4zLSmYDgDtl4+CawuT+Z2Ce4mtEs9CMYg/p5hVbOIea2D3PAwNuUYFcRjVdst88f9+no9HKM8Eta96ItWXUr2NAlv1cuz7d2mj/A9bCZQ6Iwg2Vx8XVfJdzl/ZjzykJ5LZd0smu5JEcJE4XB0lkD8JoIGTv5GR42KiryU4+vllIakFpXnHd1aCrFXuAQ8iW5NgooCDkJnzWFy5fpLp8Ue6bWOmEuivxd6Mw8XY92JXOuch6Mi4hZfJLkJ3gMw8BldGSeVXTsnbq1+7aXoy82lT4tRUa5GGjCQFe7nLvkp6UjZsY0GLWqsy8gdfFlpPL/L4NA1kJ6jVKMMfUTWJY+kfHVKnoUdKGMzwUggN+2GIlItFugFGN9KfcRVELItaTkqgjzz88N6l8zVWIfVDJqGPR1o2WiYbq/wTqwDm2bqE1jEgcssz1TOc4xilhHGPpNmVHq1ZnVPVHWC99WFXJhebUMySFpKdtKcsTgFprd/ueEJkFl7vvsXt+FTNYHUcVqFVeOll2AGwy6eklqPpnyhaKQlnwqZFQEfOPQwR/Pc+/7G02k99gO1ymlmin51izgmEhORZ3EZzhJMOLh3d/vX2n4589/kgH3EtysUq22AFaB+U9/fMR/acGgu5Ot+lyuaN4lyvPrcZytIJohROWtuwQ/YJgARphNIvU64Ht6WJCrHCyit+ut6/refWqTd1mGTWScBYJc1BqZK+VJ9NbkyZUazBXKIWX9VB1uYUS8hmwxMy4jicCPgX/JertZoxWB6Jr1pzoErWDIdeOLFwfKlmgOF2B7Gw9cXMBrI/9hPCO4Fa5iep86DLhWTCjPjsEifhbF59Qrkn00zX9PtFMb+xJ+E6yUiNdRf69ms1Coijt5JMv8rRSNiWBszgw7RGsIDN7CA+ki2gvQGb85JmnWSxRaTIg1JIf9bND2hvtU0amSCD9RyIJJuzWa+XoOijbZGZLuTVEQMhPM1L0j6p/A2/oW9SIvL0IPEkFQTcgnQ4mAGCr9vzoEBcvoiKikoqSGIHRMm2m4JsJwELZfwkZ42rfRcF/Ayro0r63anVZswSZGYPddmvZMtZjnpkBWMf2Q6RNUbZtGVyWbQxXJHEI84zVOQv5KGqic6axB5S4UqaeqVWQEjh8nK//ixyP0RE+WynHA5EU9SxpcX5M9twYA+cWLNX7HBGWImPyy49laufk+GrDBUqssU6K/tcYKZKiMFq463/79da9Y9tkOzS8uV14/jYszoP0it8EIir5oLRrNFRQci1dvl8dAekH5Up6fKDKTUmCJMayqG0p+Mk6U3GrDKZv3VNy4PJGG2ha6M5M28mOxfKK+n7+RGQ0lkLaNwV6ON8nku6r+4e2DeTTJoBXWlDwbmO+d9RBev0HHV/QqNkzWNHEzCcqqozphAa+r4MQTLWMMsuC6bmYzTEfZxjW7yHkEYc78eXtPzTYkAUDgzfO5TDqAu7xufnaWgnyBQzftZ++M7LSd3++XSM6O+Xn69SJj8BS47vDASqY2QFkwCT6jsVCWpGgmv2PIh9mn43WoJ0cp5Ymb9Kps/KseLbWz9hd4rnB6G4fbPphcSZfRePIEnV8q1R14sUj0Pp58zh9CylVEXaLp/pLVx6OjOnDE1eQrrvyrRQyHs4eSKUnhXXHYHQIzYaLQ+s9zMG45JQxYdt+drHTInE+BeAR+gEya6yPXCXE2pkRDhy5tjsQM/2qyDV64jK6eSnlq5CIK9yBQMB11jTBQF9chCjpkMprm2Qe/cvgXCE2g9jHIgr03fK/TdAl37Q99fo3rA06vyKh8xiaBVtJTsJriXuifiVp2iX7ngXcjEeh9DCUpMB4BZKa6ZDgcf9Uq+Yj7Q3Th8BQtfTth0lTX+Jqijj2o8PQjEmeFOv93y4l7LIe6ERN0DLl6/3AMNzwMNC2J9SYHnAtQ9zreaGbCwIEeqFbEk9MOvbWgyQIaxo4Il53azvCdTvl+12nidS85vDokg45+uWOgaU2aKLTji9+5lDZmUPqBzkZeNMufpe+nGB5kaYnR1mbNSiU7pUupn7N9AczGpJxHgTHOF+kFM8t8C6+lWQnKe7IASKoKaKA3+OBLVUScs9w456CwSezkEH53jqoBFz9yt+8h/BxTwukUhXdIwjzEYq0d7rNCS9gLKSjZhH18iiMI4+ovw49JoFr3WWtTNPVzVExYkHqw0JLSvHx6SoltNF4SMWI3VBaP/mGYF4oI4+mEMZ9sOXaYHBxdC2SDMVUt8v6f0ECy0UTjHF3C6xV48hSl1Kd7zqr2aCH1Wl8luC5uc5qKNfeNsIlRHaA4pIOxseuVkNf8zzP3UI6Srpf0bffuEgLTV8jTN3irz4zl9SXxAu1muUmo+lAq1mYm2L4Q/QXClripCHiCfQD/hbsXTjzzWU9OSQdh4ufXi25tHbaZI8SUQfgLI1EF+JtkMsBGKHQJBWuQrpkHdsjuY7m/v9x2I64YWc19NPSLSG7gFkmtTsuSuucUe5rEY1FcC3N8olAOCX/W5Yw/UVV8EieOceA/4AZAOnwjuG0QyIWFE2/YpgSVW36C4t4X9U2nlZ0ZvtyJ539/N2IfhhGU8H1c+atTW/SmtPLpV3Fnk4fAd4a4u13LQYpbJb7y197M827oofQ0fZkfZW5y5c5XU7BlF88Xgr70hDdJkRXrhvexB5T9H21DIB5uL4zasi6kOw0+Tnkhs2GWQRdXIQFTrl9kxvPpU4xTz9oeGMx4Tgpngt+1ud+3Va+ze7KYwuIOj+Vkx0uR1JRLCeFshMAEuNo3HkBCMqkMuXou2HgG012jazPOwnEaeldVvGlnSuI2rBHn13M5Bsf93Y2GNOdPTMCdLMZu3j1Yfd620t9PzawmdBrqdKsD+lGkQAQz16nVL8k13PWAKewxIOsC7HAdS5634xIHsNDERjvzzm6qEFl6FwgIAMUcjJPfVfi4HhSRAiHUvrJGwWmd8z+IrQrjaQ2/lurRm1t0A90kM5qZ1naNnB1hbd24Ckn2iGgGr4+EMHBh8IcXDqIB2+OMjsrvr3A+ddEAnck+q5x8dfR7JBc99iUaxag988FbejpUvfSYh1UhzAMkigzT3sYi5PUTyQs7kWqYSVdDgCCXO+K0Bb+arBbujtKbsla7hayuxRj0SlJZTMWMlrFRntiGgl1vux1bOfnbd2NrPTTJOCj2JAUj6Hs4BTRSv2axQ1D3FSJ75NDjMNcyaoW0Qj2qDM+xR9BqpSvJdcaDd79omc+DSpp/ALDDvjw4PIc9saXtOwq/VkjsWxdFY6wGcMSFxu4FbvbxJCstvd3EcyNiGJcW6IZ79nKXNWLeTiwAkLmDK0jLaWkKbEApR48o2hGVdwV36uk1U8N87Y6VIV3/4kidhCPbMiXsxAjrEb0VaLcHY/b3FHcK53yN8i5v1aROK20B8wNHHcFDW9Fs9YrP/AZnvDJbbCwelPdO1zFK91jX/cunKrLsXD6b9J51GYdiMsAGwPLTkPj0Ix82A/Mt5Ij+mhePYsNAbhGe4XBoWq5FiOJtKxAs6/s+qz7d4m8Jn6cBRLyTPKk4MOLB8F2AF2EFLse/U3aNUavm551BzBUgO/X1dFOyDs+5r+ElgenpSANKz02F/Rkx1O17OhNCZHZVa9Nu2uIJnDRiBYcsw4QaeeCWIijYBKoUSCEJ9pSqcImEvxCXH7GE8B+RWaLAou0buoc4JJxRh7UlefIFaRsZuvqm+JbWYQrXtAkl2E8yfXVaSEGbxwDuR51dcEuQOuU9kJUMQP8qtAW7M/LPNlXuthCChbocX2zr9QVA1Kd38PkchaTZ0VdaOiQHCvmCWBGXP7bxJuDOegrQGAOIFkU/8ssFk3FThODK2KWAKvw3xQ1CN83MIKcjmcQ97FgIaw60Ur5763YTYK4fh9zDA044cxD9Y1hSf9gLwp8MTRLAPueVAvMVzrquYs/kITrHN6E+Fpmrsx3vDcc3EkAIf5of6nkdvF02sQ8brMyREPoAUtASPkQC8FUb8dtEu/FPN9An1R9D+Vr67QIBv9T8EyzOqfrFEyGFQktKRwf1e139EIfCNlalS+VQ6kq4Jatweqc14uHPpAuoGLXM7zglAA3AmtNMDfYtl5ODpWIno/NZgmUomM23l+M3tT6Z3+d4n0/fTM6+lSsPu/FsrMAxmj4EY+O3T6Vwoe8snRxF9+VosWuGzYBJJzlT/RXJF4ZV/h+4gBaU5i63pNf+wGgFqxJyrmpWQ/Uwb28LgzZ7cPyXBRct/ZMcoQhbGZIk6eEm7nLntAUnnMK0zGkD+Gi1Oe4xM65t9Qb5sHy1BRWp3/MKzTaqQB2tSSqnqmMwHNSe8B1LoOv+TkQwhHp8wZo+4rZCgls2DX+ew0bFoC2O9gV3ULCAvUfx3kO9rE6/cNmADkBErAgw+XJQsCqAMlmnyVsoAq8PWGdP5urDMYRlWAVsKYBdyZ+rjPMDuWkULuU1Ta7UjR4qxn13EW/uJwEC8Rs2cDGz2KN1Ms44nB6EviCpJKkk/uCJ7ppVO9aasuWN9T4yiUfO53alw30W/8kKASqIkyR3P4eoX/oegaURlL8dlvoERSJNV8LDwMgoM8IQ+pxlRAXGlbfmwGDAOaeFb+GszcgELNCNVfp2Zhe/8I6Vj1LPFMRjUarX6GO2vVSOaomsDb3n+WO+tfNUTEnTUsaMdLVMnW9WhhQzKddHd3MhrKuoqwQb2fOUT/FufFEQOQF/MZCMH7cs820FKEX60WZL0uE86tInQYX8buuGx0xHXRPprRN6Nb/chPQve7tnBPyzF9bjJWlutgFo1qQejuiG62gLPUVcbm0usFR4wo5zc43UC4v9rOgg4zryZRs+wF/Ln42LwGNOEudNzv50l5ARJRTgaMaxbQjcJ48Y5hesz9qqi5jwkqlf6EqtB8VNfTijEObDkIfVjKbv2qUMcqFILwgnqb1olMclhdBCC68EIlUYZBbATEmnBrmu7fPsVqzUYJKLFmdO3o66Zhs0bxTU/qEFK4jn8lFgLZP1Kb9CT3QfAHjsMLglCwE/Ylfu+9HPMSHFTffci/MYilwEH1rOLKPU8qT+3U/vUs2Wn5HQlznL+qf/+nUYvd4+xcKT6aABPHjKbgFw0Ddw+DyR2eVR4mzmF2+VYabHnRfWSLSTsJZKoSAVr8XANsYLZuNGBqhgNlZ8zRzZCRRpL5ERNnHjiQJUT4w68wB25QtBlGF8ROpF43k9rdd+M8ADSNa5gzpS6+cULppR2Vosi/d3nS/nw/WRUCuCdcIM4GoNmWkKc/hYaSiULA/hUigc00BiFidFpl2RuLfky99NpJdPOdQoQ4dJwLTr8ZqfMKYNX60dWwrhV5DRQpDBBhgmthsd9+7BrRMTI1ADU9ngU0vSvFmOY+Nu3Bl6CAlfYzNOPoHLjxcNYbTpFPhwrEdszkNuYcuePdcZHyXgh6HNKa2hOSbeGTUO0S4bdZXD0IE6K3dOMUT5PzV5nuM8TmNSUlBfubr6/pFTDuBbe34pm5/Q6ecmE9wUFWNzIo00XuqcXsdg24V6/4l9wgfoaTQwA+FtFKBjODKtNs5LH5UTlTMyVMl2wfOoaT18+yPwW6JFhLhaCFLKEjTSas+m4Gsp26h3Oh/wVGCtA18INV0DcS6OVVWhSoUc688TF7+L4amp3MBR/0TGVErrPQ5U2IZa8cwLJvSGh5UpSLUrCj/A/MnaDTredrtRtn4064/4oMMlz4GSx6+VYcezPZPsIR4Bs4IrylKIeaSN+wY1yekFeW45rWROhNyY24TIyIFCszvP7ZGDm92/ZUDbUTGCfHq5BJQ+ILi+UihrxSI6tyAw4iQuMiAOTVMDmI8jEZ+UYacXa6Wv+10egD0P4t/441tUDbpcGIrRU0y3c7GeFVCUh3k7s7rZY1wwu/ia3ciQEgwUb1kiS+sn4qIkdOpJJ1EfQALWEmCoR61PNm5yKHk1VcjOubQzNZlUsuKy+ni58q8yQ1bVZLP7l3MCtLaK1/is4St/RvJ4PYtYpQYzr+v4Qh2IUVgM3A97GsY4shf9MyXD+viAezxiwbGhtpwqkwnobgCPPm8pUgDzWLCmLL9j4P+3DYDKYES4f4q1M5H2nlN3ZMKOCEL7cQ8ynb64BLeMr0+QuImedFemXFjB8BStpqUWVmMXzBczrwslbbYFFpDYN16hEeujLqr6i27JV139wosUs0UsjrJVMU6qv4vHlJurerbm5B9LBV8t5qiU++/+K5OM8leHy9mW7ZCm6h0W5Tmh0WCWgiUAnSTyaQgthASPX/OeeXBcFLHmfaF/mY7T8rZRBkdEqYvh7+YUCv6Cvq+zFWJRQjhJy/sEWje2yaQ/50I5g44gQPY7EaHKDRVEWydArySz0Hk1ZX1JcDdHjpe9BYlxMVitUAzVvNnDZh6Pd3QfSZVgWUHuXqSxPl4jS+rrwqgfFAPAZ8V4ScQTO0zJ474ySvPO7tyomHCPB/RExKzMe3aSiFLg8u4znbjoopE7KMB/MVRMwRtNHjaiEUqb3leiKW09oNqS2T0MpWkwQ/2sYAtPxPlncn4KYB0WHFLfwbhpa7clDBB2wgHauIV7uRnO4XJ5vD2dXX0WcouT0f17aE7vZOmJGWaSSmAKQ+j4KWyARnKLQk7/PnQ/V1W+x16hEYrnGU2tF/CIVRI9WwmqO2rZjMJDDwkjmRYqZkE6FK09XNvPCcO4y646CLxWsJJxtCmteYVOxjM3Ra28QtqXilV1Na4b5bKpvXbCk7ZsCn3YxBBBbaNCYErku0dcsDONSm+NMtBfb8tqjM6iOrI67pdCnciG6jElUEbt7m2eXnc8h2rbo7MUf5j2JWB6gCCaiIf6+u1nIS5P7y+cWOzDwEIEepuPvzGJEY7hUyEGRztC+9aPwjxFuRAOVWsuN8a6VclgQS+nz/l1ml+vluYSwCSd8eXaq5WkJVMI7uLIBdcyH/vfdVYcosxlNWHNj0cK3XPSrZ4fbi4X4VqO6qXV6/CQbeRDz4sjhueZtbA32OUh+wWGbt4UQVarnuy9GQdIWG8Svy1feCEn6ZPxk5t2OOO+au+vZ/2g6vq/taDixIHt/pxomrDRPPL/4+gEi65xdwB+pIJqZ7TA8Xf6MxMQ1mxeEOAjUaRyMIxxDoKUKp2pIwIozoeL0gBWZho2IrovHP2bRA5wmyOtwfZewE8u/qOcqAWgwCwJh9r6vMs9jCxhjKSsQ4aa4B1pjcv72Vc/4FHK41wC8lkzMAgPQqUWsdXyKMjtwR1cFllGRZ/+DYeEUUYvvjMYsJ+3pDjt16zgYwL7qTw8609Az2Rj/3+Xt1g6qH4u5Rk+kgj/pQ/UPjyF89pgBYLYLpytzfb9yeL4Y36IDy1UXmt+lVE1BsbKk+HBm2z0fKUwd6uusHI5AUs8yHi0gMafhatrZhmLQxILa1I0ouGjLn7pc18I33RMcXfXUy7YTGs9XuXoFd5TsbfP8h2TEryFlHfgDVsQFtLU1LAWKX2816w9LXkvDOy+zSF3ipNQpbWluhAqv4jpLhhfojV1RcEQ+NursUC91QLsvsGnCgrjsRIhDBbydCegBG+lCg2nVc3tKf1cZtG+hJnAdybY4bp5boKrhm3SXg7JgQqsjUpOmcuCg5nxPaRYcuD8zkNY3AUsxpuajrSOwv6mKlrplloGqqrM9+GcrQ7hpPTJuvGsW32VDA8KyEIsEJFzd0FljjU52qItPLmqrc3rxtTpp0NSybqQyat1EUPuUnc6Nd82MjhfBp6rxfutC4dh+X8U7zoTTY/C4+8oGnBX7Tx0LEcQI8XHSUA/TN1jdu8NxgpbHW9jidqXH4ff8k6Jq2+8HWojFTLBE9gmi9XpVF7F9zDZZO/IiDjQGKLCpeYrasgmzsT2n2PNts8At9EJc++tXTNTgdn0hp7zZy9usauInTS1KHakAkGnpJ6bft02HrJEhgovt2UCWIO4x4CgjcOZVAoM1fKm0RsNL6HcSDD/dGPCp2VCNWg47oy8Y3GLLYDFTJ+oFOLgUZz0EEVUk/pI7l0/Jz5fsqvqlCubW5ree4r25FADX9aYKZbeMZez5z0R0AVAr+T8S8lSe+94qxLEssAHuiJWHDmfk7cqHprbtA8vHhyzLot5dqwaob7NI6gK7dbvNdGKBDEJjDveZA11mxxg1m88JpleNzUR74khrn7P+b69N7r78NUTP8SjQYK7jneoR/F7AR6KM1hALea5HUVWwGL7RkMH++PCwa1EEbxoaU21CcTbH6XD9ME33SGJuRr7j55DBoIDwr8Mk3zT2VwaRzV8AUggrGCPDngzt2EUocsz+bX//MhQSpS1u/EjjYx88g/X4AeoCzWL0T96dqKu9METzN78OvTTJCnPVtgpCDinSeKxHkEJw6KjnMOzcxR7b6wAFJxpdwcWLeFu5friTY1YUSxa8lfXYtJ+d2pf/+WBeUfmk03wDZ9OiOQ22BbmfoFO0/2lWAxynphmRCi7F0OGFaYMycTT/+dZkU1Z3QgCxFzkMD8DTIba+DbAenG/yHadzO/Fn7y4W80+k4aeGO5GKF0A0IUq/vEviaTdkFVabvGuhasqzTGjeOlf2hRlJdFPRizMmZQai/Dgb2swv2bCoA+eqDr0LI2Bgc5xgQABW8xp+V0M3wX9jrAXtHhHqQ18TIlkpCa+2YdERw0OHz+v/AKDHOXy68gJG9MC1M2hVgxf3izUg3pV4G3OWpsrQpZKQJTiRgMLnW/va8nHDWRQ1AY4Y0Tmi5OplzcNETEyjE3XJvwqE4VXKqiUIgA1Lx+6WJ6v8yf2XsjU4QpIMWkckQYJjTPv+X/UV7pheCSr/tdr650ikQjpaWLm2vLRt7nniiDo94k6tdhDSHAiNcehfIPiRXVEgSJ35osvzlK9eya8foZanF/ZCQWu0LCeD7Lsukbk6MCk/lr4QKkDenxgF5JiduDrji4jZX8tnoE7SZO1DvnANwWjV/VV4ifm6UhyeFP+cU8xFeupBug0PxTB+iZy5RFGVikzXm4XxeE5drSmzVqVYetwlINILRAmBSo2p2hJf21lOJVwdpG/SYEchv6NkNu0tW8/WW7h+jwbxAkDJkgYcEOJb8EJXAAE4ucdHVFH7//u7GE+hxBpYNpF2MWr8z3RZO0l43zP1TaBWJlp2y3vM2Cns6e4Rq5MjLxOx75znaWt0tqQbSsTAx5LXwEHlwB+lwJxAT3AnpWFyW9kFq+FbB1sVVrAZMGtSZqyrTLuV68Z6LGDImlIkNwGVByCDUF+M7I9eQGOJdERw51BXzLzq1029MHym1b8MvcMEVCbreEwrZ8gklLKEUhbYJ8U5B4Emki2H41BS+C2Gy8pXE3UIhEE0+RPfOWE+utk/jmTpLEF8tgOt8jG3SabobP2mPTdsdk4zQa8VTBWW+VFp32FNPanhX3TvBR3bJCK3xtPgFgj8xIlWM1nECVGSLuHNDw5qdudPPChOsc7SPZSxkaZoviOMftXQWt5G3xyo6JhXnVRqpD9h66CgVELTnLpWwdpHRxkn3bgVWYFMr2uK6FHpv08pU7BWACjTC7M32G0bpEkbgjERuwdLxujeV4UnQMjCyDSa7sYu95csYrtNXKdsoAXKAowkiYC17EvWhH0vhwk3vOoBcBWhXLLlFVaqe8+R76O+nFOHDKJbeZ6LXvMAzw7WzJdTUAF887udk4Ve2KLO/CKrrzw5RS98lEYWcFhjSUDl0tzGihjMMJwoMOL7u3o3nzQdIUm1CcWstOGIuuAABEoT5i/XdJ1vc7JozZAPjYY9+IE+A1ArBIdGii+kOWLLzHZurZnpIk4kRvOD3IGp5ZJ89ydYh8359SKC+Nl0AVSl9exxslklWuLLZBi3hT2Hw9WDal66buZCWf0TSC2pyaFlGUmKYvP05zfByfoPWsbJ2BbKodXra3kZybvjkpJGmIjoLclDTN0CwUREzixVDBOLhlqEesu+ol7zddpagMYW9T558xAoqFRaRTDdHlHGGrtDSDd1lMgwfl4lgxWqfwD6KfJ3hnT83ktf4pOYl6NCpss5Rl1RE+tv8N9U2V6ycjCYjWk2K+YNrbRDjI0Ai1GhyOFbWCv10JWueMGVKFkG6oZBzLwUC0Padug9lYqkQILe+TtNKdZ0/T2hmfw1EN4MG4o6nA9R4QOgklxmr18cmUdDcH5OUmpcyNS16ei6ADzoq39ldpoQBZppcJs5g0QHRizrBa/WrYdaSC0X+9kP5dvNPddpaKfGaCgkaCJuJjr9AzRTkMdYWyb3DLWdHyEDCszLdpeDXp42uDHevnAnmbm/yEMk7dILHV5Slm0aBOhxkphb4QskpAdlhLzUvQbpeyF6Gw0OAItU5ECBkq9T0PQrGD6Hjo4bcc1phNoH+TFVq4EiscIR/8IgI2ELYUcGS6Z2iWsjExu3AAMv2HKw4g3fCVWI9ipUxMWQPzgOVdEw7X+tkhH07PKG67QqYq1GXZ41lAQvgIN8axYJCNSom6hM2j4fWoR0ef0OiYxRaxpPJa5TaigZds1Ho0LaymVQi4UNpp5N8BrbkntHsDHfTW53v+GGMPxETD6Apc13W8rbREyjy9s7vYfqbxEFD9Pu7jaJ0EjdKzmRjLsBskDFcYQsaz+kiE5Qjz9yES0FnnEUEo0DSKNlAcENymNuafxflhu7LtWL7Jn0POr8oCiLAZkKBkNNAWBHA2qy2RYcdLmZf047ML5IfC30Hr+mZYVO79Dgh1Jt2TnqIEDX5fwi6rnPhhD+aHW2460TPrioFLy7xpQw7YpYO1bMhfGZpd1+cUdmvL4985I13zarfPGocQ0s+E4DEnvR+XScTneJvFIX+pt/TCXM990Oink1TLaFOT7S1Kt3LHgmv83b7STKoShkoV0TcToo8sTBwbOT4zzZ3Vk73RmOWo7Dj61EPAIRsFO4s8ulSpuufU7MAKBrhEyJe0hSv7/c6LnGmvMqTo6Tn2cvTKAbqPe8beqKeBYMXOT2DGesPTvmX07mofV8oOS2biWxbKs0S8KiJ4C+Ua9hc0rsH1KS3ZC4bHRl2XZGMtM7N8kLk4PXA2nIzbY/ccUpHOPyQt8ECh2YqiO8UuXtS02IWA7bCgFFbKx828c9zmbiIa8yNz2M6MJG/gtEfguG/0ApsFWCvzfQ6sty5/OhXB2UaG+I1vvPQyZk0o1UYTwx83OYrcPIXPm7sGa4u48ju1jjZcDLmFRY5+BywIwu4dK9cOcHehBXVjRKXVNQ0IfeATh9ZwpFpx0mG7etvzWUCNm5p0Q6FbKWcujhoZRq0sQQOSS6qFfR7jwhRt2k2QIDmwmcZfzDWS/XP0wH/v4naKs3ECAzQHgLHAvNOw8aLU9V/7sDcSEgYy2ZUiuPx+bC04imkrRVwEDfA6Wit8sPVDiqyUUb4bBqZ2Yvs8GVX53qOp3GircpvIqWDw/VuFnm7SHEkZ19xJZX8DdlUybxGf4hobTNgLp4rPFA1T1uODbQTr0mUFHQRvFZcyi577r4N2KCfli41hcUzHI80Q+vZzHb61BVmjxYxBvW22EO70bydXUfPV3rmxtcztHT/Xdj1zOv857BPwAQcjU/JHET/cb4yMko6bqPnapA51fIm/wp+ZIIFmDfMFnpXOpQmPfBOsmsq7s+F+TmRs5u8ZTQv69pkUmERZU3LgwAchYSsLzKVHnfWLiTyppYEyi+Ztr4jARK4wrIs35ZIa8J4gHjwR0Q8gVGjNHJMv8dceJ9VWkUIugumDf4uoXR1zahV1AmOjU8lehMsx/3OfBerrWrsOOKRjir1ESNmBfKy2pOQpTt6LEhw2fOnE9I91MMxq83RHq3zBxTDR66iJ/TIdjeRqOq4lVsQ33Y4irSbPjspZA/C0cfMW5satJJ30tWVzU544TLNjoABSK1SVTdrGp+EgR3WrqUjTBAaoHWOG0T1ojlhUXdikvj9OV3PEpNtKquiGpZ5kyjEtVbVLDe3Vvx72HGGCZnb+bAIxVMN0iBgEEy8B91ifEA9L/D1i3jFagfZXWjXQuRSSYxRoWm6QTsCCEwgndmz8y2QaDhxEQkmNz/JDUKyWPjdJC4uc4sNNJ4AyH9+yN0so/D4pNOo50MFYb5Q6Tphvbn1SAOs4Bf0RnmXW3b9uEE+nozqd+KI4TM7ZnLT0WDJ7rnhRlRwsyezEds47qyLqKtTm8SZkKsw7fgZw2b7glvLiapTBf/Y4l3ctrz90hlgBUOG7x2GzOHsxfe0nXpQnWjYhYKydZSet3QN7sAPsNL65EnXuialnSRaepXl5z31xz9WmHDvmywtnfdp6rptgePsNS392LEiN6WclqXK2pIFySkn1gmJMFtKgA9OODL3rUbUdIj4cEGbA2rKxCfUzfJLgHOye1xJvAO7kOa1p9k+GE7oBFH9Rji4USljR67ycMPIgRsU0N/UEDBW2ec5u8D1Hu+v+yk7PC5Swc6N2rQZ9KuSH0mPPdA9Yf9jWgFkWmIt7WtvGKM2DcqLiKzIXYy/3R4SVYCLQb3gAmTJH/uz0pRYW6byOLbx6PvhfQVCWHuMzYtg9J+Xu5pgHGBV9zU5+Rfr8d1Dz7s+4HdHqIW5BFW0T3+bKthSVCwf5jwxA8HnGCycPV2Pu2KCfj7QkzQirJw2CH0mQikBwMS3zHp+z9QqxO8t+oBBRWILEBZV6BItN+DL6gY2v21gA0F+lRzg+joLUiPQeYAmTGm+JF9lVOYxlez5MEerE6avPW3J3lXGqHL6e/tJW5p+8m4yr0DEEwaG83GY9pwvDtnXLlquigDjCW2E4pS2/FCcL/E7IS9fkDi+dHi3XU/YPa/FAw9lqZehX0pBSZKUZo7JcAX0k+YxNkvjK8my8VgHFnnLz8uBHu4Lxx4xMQi9N+R4gN0MkruhtM9zhAl7phRFjvlllfa953XKYVfibB7lDeGGIsvIV9+PNooBFqLGgbiPWK69YhUMuhA2Na8eNSsz18ydp1CAzIdbuLL5Cc9ppiwS6gWgVyKb5libuLwCt4o8dhpL8sX/VWrEyiRWSislWB8xzZ9p6rhdNQF5LaX8Acgdt1ZJHg6i3UeoPWyoJbgrmCJBKIHsc9uHSfgFbNB33e8bDUx7CdF11tZCtfrFTtLaSDRvSfM9H2iH/txv5cldh8qytAj2IWSMelPkqj8=
Variant 0
DifficultyLevel
624
Question
Two fair 50 cent coins are tossed at the same time.
What is the probability that a head and a tail will result?
Worked Solution
Possible outcomes are:
HH, HT, TH, TT.
∴ P(head and tail) = 42 = 21
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two fair 50 cent coins are tossed at the same time.
What is the probability that a head and a tail will result? |
workedSolution | Possible outcomes are:
>>HH, HT, TH, TT.
$\therefore$ $P$(head and tail) = $\dfrac{2}{4}$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19yOxlLwmavBVfYuHEYf1CLQd2yagK3+eRWBApXmlUYxTU1s4YE9pEJCXQEHOemF4BW1e+h0vk0Yc/AH3j3vFDqNOrESxrHJXVtrFCvrsTKoJnVQPSbId8vq6DDrr3CIdFyDJF4dIui32wb246DKzoPL3g4n7OHHC6OSBuefOWuFKFvo4UMpLWMTiCre2rTFz3jke/0C0hxEdCmf07hedI4SHWC2xKLI4cyDn684aXWKLwjBt8JbO22WK4e6vE5SqRxv34esBOF5qPWMCdzkCvZOGE9x5AYHlFhib0ZbRfXSDmkyQ57/bzeoeqDrHSxjwnyPHNA7+xe5DtMp2DtQ81KocRLiZ6Skrc4OSPssTiw7s8R3EX2WMxANyelGJSapjIKZRgzsXxFETMkAp9UTV+BVud4zxdxvYQbzl3s1jtYR91qgyIv2+Y/3pJRpYgy6pg72XhTAsyL0mzYkhyQ20S/Cfxcrhq0II35p0zVcBJAbi2SYdW+MlaESSgV0pu7zZXJj6fjmSqqvQzPNX6MYkPG6Z+RJkIMK+2aeyvfzNANSCL0b1oVaeQ0WLoAa5PVELJz0SLL7mSnTM2k0Ae0d7KDEETyEbRrvbSAYnBU4SV2mjAoGBvFbw3L38nXiG+uEQfb/01BtF5swzLujMCfR1Ilm5fJYW2TF2RMeRY2F/LtsgprqpITFfalNGVC+7hxL/sH88W1fDAJ0i0k4QPkvy51Y7T52XJsGyhUH8dirvzq8AAuRin0RbKaRNEXS+Ij0PhVaPqofFYAeQ1MtOxdOY0znFZr2zxbFyKHJ6aydks9s30e62JgqEZNrDdjP2cgO+BwjqBoSgIKgdbnYP94Cz1zGGHbLNfypa+XfMsgSPYK9eFNO5wPsYHtVXnfcdLPX0A+e0Xt5PKi9yJWw/HrSV3oaLsy0xaa7TDEPXUGCnauofDIKUj7tf9CfbwB2kzL5ageC/Odn7nPVMyNN5xcM9XiQ1wtKwCrNod2HM5NeBKSj64B/6WkksgcFQYCogYQU51tgZ6aeouSm5mwH0zEFJ8T0EOGiAX86lA2P9dXGPDwAL7shfOl9EcA+kGaigJ/FKMR84YeDMcqyktVs+I0rrahz/5uahSjXIvpPWKQCsHethJsWhEOSJ14CooYIo+D8r3cMu+8QDS5t7KiiSENkRX88YoM8SZa+4ycrd9yJoqeEpYebPrZbhQyJHuuy837rnZ+vIRVGuETgi+MJyU9hRAVkxXxdR2ynZIW3pmedbW8DCgNVZZoVfHzBG1T610aYsjJi6q5YgzGS0uTELCrbLTWPtlaX0wFtlPXe+blbO+BgvlNtLbeL+V0of/XR6o8y7IcBJVUwX/YpXYtVt2rlTfgTD5p20GS1SeuoBhcgDY5NW7g2gDiVRS4qsEEbV3PHA/oF0disrnfSsf6sx1JC7t6tTSenzQ6/KzfoD8jHhshi/8ap/lhd4GKN+VvrH7aJqBd9BN5EU0cuq+NsMGosBn5jhQgBQLpYNZ3F+ryyBv8gcb3LdyXuqafatBhTmrtXAseLdbr9RZ2MTVmDtn6zCAqq9C4KvXxnqXOQ5vqPj3wZL/H6ZtgGAVZZkbkisYr/wFxMU5ngsPU/eUTgQNItTd1aBXJWa4r9cMIZootMDRSMe7x6Cer4nFQXu/7RYGbB+tJJm5N53ZGgqhAs+RqrrcRA4v+22AvfBeNf6mXwLPFRtQt/N2VgNNdT5UpnYjSPSYHNLStt9T5YCkS9EMAxRRXendQ8kGWrUPobuBDvkLhVj9tO5u+rVQURoF0uKR67O9RcX0fQIflTwzq9RT+iLfHrrtZ1y+MSvN9Wngk2VBbAvJTcJRQu/aXCut9PwEx30bx+JOunN63Gh8P1DjuMk+rJDfKdB0D//nvciiM2k4Z0i1BS94H6rwmVB+ULYino8k5lmZBBp1p9dFPDs6olEC95iLzq2gQOKKGcawu0q4z7UBLzlsav3EPCKkXZbFLu4Gz6mOTUEW2+Bi7BEu8M141IXs2qyGmkbdy12v7hM7fzw/6PUT1mMZTRvIphT1LuOZa03XHHw1hleZLubE1fwEF5k/am9t12Ob4ONRxkZ7UBTEUQ5Rja2ztZ6DWdVZPTHn6WWI+sng6fnXZtEYgJX/xUc4MTrUvZqTVzHiW/WpP29/ZXYkf42rbahFIwG3SuF93cymQNIpaULCgvbb+dfAGddhTsSHeT4qgvQIr/DxM6hhfOkD5GH0PGnaqZbtuOwI48TrXid1khpxPxSkmEQXU8vXMtSjwl/BXY5BMHO1VzzTiwyqSQbtnDnlvKLgC0xo0lhCEIXgswYwnNuvpFoVAeHjaajB7dlYqE49ITreLEzTivEGAdrGiLMdY17qaPozMx7V7rV0e3LbmowOdvtANZzmtrLxHSP7jU127AwljW84pXcaz7fV98y3Jo8vgUt2bJ/SoMQHbXq0a/1Z6F6zn5EownhI4qzD8O+F8+G6vvF63H9+lcWau2nVjJqW0la77m6eUWz/tMWqGUyfdnCzcQJ/zdFi6jHmdmZiGZ9yvagRxc4Y37UaI4QmHxDokLKMrBPGP4+S/tCamlpL20635Vj4Ss/jB+fwi/GpcJmOvng6/oEi3j8tsUClqnDSTezGmZYz2ed8c6cmZMveJR8ZOv5VpQbxKEH7E2lwC4L0yYq9iksd1R4bZQHYu1pw+9uxOgJ5Ox8o6tEZHzakzDL0bopxufa8lAqvzPZnbmo+edNnvBEh7MfobL0phtJeiRQGh+ZAgAIUnrKMj6r4Yg6ltxZ44CZ36EGZmCYCflU/jrHuWw9FKPPa3mcoy1fkW8y/T6u7TUVXviVjZI8Qw0a95AIuRZxvZIRWABSNT0IjE6Hi6Tu3SJ8LHnbnCJFaQrb9TlDSsFRg6ts76cSETFmOes/wIPKnns62e42KvWWBUjnxYFQyIB9OvN6QGWiXBYeLgUwwBJNXPAulgv2dfFFmYL+HA9zSZCw/kOrXlOViTmmaWkRyXXO6wZ+C8uXW5hxM6sfFu5xVlBaxvmwfdWk421K+xiNAbAci/RGifksO8ZUT7QsKs5c3nhVXNMwY2/Nk47d98w6Vf203h0HNo5nJqK43k1rJaiDI+jObqGgaVTDDds/M+dZFQrU+XRJh6dY83+iGKEHVtmK/LvtKR+RE8C3/M63piwJz+LEdpOWlQwinEKWkT/89O+SHBAmCSdYBPBK33EHlqf93GWsznEnlmXl6P7BXHZa2cb/T3dVYIoBnu7PVgKTP6jPg6CGvLZBNupTAXXW0JuhcO8+ndWRuPhhBnCGmBQ8izVOlGtP34jK9mjLcOEkCmpF/r5mHFQeBhB+ChT835dsc37OBSccxE465dAnV4I83/FzJseBfuCJ9yKQMEx7v8pE0PeFeSAta2Ywa3Uv95yRUIfTr/voaIotvMOFDopGYMQdVb/1bmcyvYtwya3M2Xnd+3BzSaKUC1kZZKtR33kOTIqlpwqlD0vjBfk7dR8oa2DDfFESAYTp3O3T831Xhp5IqfiHELfDRwHgco/PhiGNjsb+thHK39iLJfKWW7qhI8KmAmTA47z324IPgznOYW/mtGQ6gXyb/R65cvpWY0xZ6A4a4wazxkgKQ62z0peczA3WTvwrVasNjQMO6vqm9GUxnYfImJWoGgGiIPnAFoqMqKgWH1tYqZQmSn9I25ZmH8FIsWN3C8e8pl9ANgThnpz12lpgdS+epcA1cYAW6LIwcw7hnUj5ec/qXijXgCgTyxaQ+4lAVLO58Tn9afUIyH9C1BrA1Ewfqkw2hB6gygZ8do5m5/xWQdMXML9LyyIQ8Hu6enSugjn7w8OvqwdSSxbG2s5wjXB/H8GKVzoy9GxEgUH0yYxmvmnlCZSXtVXp6xy8ly4PoB+hkWyx+oNLRBGjvYhPUqZ9mZWYoJZc/b4dutfBRkURWQnHCtv11OJU9e+nU6lN6CAlL0/CKqABkt0YkFY/lQupnv7LyY7RU94cTjJm+sEGvF2a5T13yGBlMMPbhFrPsx/U80ax0/hvj+Yz88ZnXBc6M5amv5uLQ2jHEc8gm5X92QAmju68i3vTUCBiO++HGAfvDiMXPgfBzhMZve7Y50V/P2TykHHdZJTDzvW2XI85vM6fUfqw8zj9u7KCqzxw8tUV6UIxTz9VBj4GO/4/YX4jtU9Ca4zUH4c5bGbNaX1Ip7KFILyfDbMmvPEcMkjvAOwq+7mV7AqpTqauJopSo/a5QEmnCBUSExocscNLrIMTM2cfV4C10e8nFPRHvv5FvpZWMfKFMpY8mQh+icH3GWnafmn8Uh5HIrUJipf2iyeAsCUZH63659c2cM2pgYJ9AC07klVbW8mBdUrEZCRzVj4QbZyNE6R6EWSVaDiItpQOd83BuccuRXfZ4KXouEeMt1ThjU47nQ9rGKQLqJf7q+e6LMQNZOZRjw56GTX+btoYPuyoM1EPgHvgJIchQok852D/Dc1qaJS2kzPJJ9jQ0Hw+vrGDFMPetFbnVrohD/saxVXsrmteLFJUBJrC03ZgbawYnd0s7iOD/By9XLaL5HZ26PaLr9QFykqjXj9L6SJlrOyJGa3tNq6FamPuJxDhaKYNFY4ZKMwZHHoMaU7nt9F1bXFYOzFGr10VQuAL+Cew+aTPS1yhQtNd+bALhEAh892oh7N1F17Rghdysgx7tooc85rDiB49TAt2ImkhoC5VSXmDkWEumvmui8mOoJbGaY18VOWHmfUgu7HIs/jXTpu+xVTZdNNFy9C2H/I4jP/wSANTuf/7yrgNPnWJEbnvXchSdRe+irsRalUd39Xh0UKBNhHEIxrCRiTOj6ytiax0n7HEY14dOrEa0Uh+/0S4IWCjaC24igQUBp2mjXZz+Z/mMsgrC1ML7mJWNQo5k+BWmLMtM0Ygx9Au07UvYQkqHafWC9ELT+KfQ70e8YQ5ft7pmFJb7xTmC4rlonWqFBIrnp/lW4gyniTiAhAut6CRFtEkIjqba0nLWCh/lDQXnXEJkR58mjXL8KNULBhESoNYq9EckSmv+CRBUiYZ/dqG3X1gCGSqQQQFLnUNhvYV6ioDXv5REkI53h7JG1afvl60ZAACMil76AaLteg9qU7/VDOClFHTrnsIfFpFuSIDnxXx+pj25HIqphhEoKV2Il283bylnx7QLVMBb4jhzyMpe13jHop7gRHCWNLc+gxhesPwUFkScEr7xBGDGO7oIUeH5DTMuwtJhfrWCLZ8S0HGi7sxL64Y+P6QCGWw0UdSAEpXALXUZOb6RGIJbeU6ZwTg55DAG/vEYj0mS8wtbshI1WJ9i3t/jrlTsXi4X2CsBJpkCeHGPEwbp42N6ndgwTAT+axIULrXVZp/5bjfS8qyoLdaB9pjIHTceCaK/bSJGPJ0+m06W3l2MtKF1sTY8SF5RnFzTHGWyW6BH5M6EYSoax7flQYd+4xPY9shh7cXkuooIaUi8XsOKIzJtLK/VmNrd8HN80V0rAGwBIeGOhMtRCRojWwWfZSNJoij5N1p92bv/+xRhB8uQsROW+roqDt/rzFPO8CfURvGgzlChvz4NH4OuLBmsLyOitGZ20pBhHGo1jxCx0gsR/Q7/77TNRHqxdvRHDz2jF3coBmXKd3DaZF70Y2XJjUflm8YHeDoUDWEjq0LXH+xlzZLx2wc9CxdvXau4lpzoDYbqUt0LdCAQBQ4Dv+QR+/5z9nMgeel+im2cBk+gSoLNalsqJ+v6E3oMBQM6Mhn9LqqPyPD7dP9MLm31EUE6KKQM2YAeqejPZ6trs86stlkk2L3smi8uhzurkR0901UzwIyYQDZahhp1VMjo4r8Ifm5fd+HKk2PrgLCtyfamn3d1x/0H102Q3IriJf9T4M/5+hzF1bATWrwzAheN+vib6Nc9Uwin4nkL3MUgXIXxVXHKGFbHTgOu/08H1+H38va2c3rJvMy+OnL7DwtE61s2O1Z+a6weCX+PwOLMypP+dRcYMcAG7UBJw7SXOLhbBMYw67TRA1jmIL5oDg94qtGRD4WDY/TpWkDaJPC23gTy8c/EKxIzfBy27luWSVpLruAI7O0F+eYJ9kwuh3H91JAJsFb1qXfXLRjhM38bdj8p5f4OytCw3KLvsB86KsPeNsTRGIpjMpOejXoJCOzlxhLlK/DOx1x2klkE7PDx7stdRIemr9+GHHYUloLfH2I8HnNGK7hywr0s+Wb4EzDoQehCnKRrDwcPAwvhfgPHVqdZFKtK1NO/1EKQqQYleQx8GAcyvb+vbhZnLXW/INW8nSSXDc6ytsIlvmA2dFAn3RgfghiT7x2VFp42tq3Wl8IQhZbWYj1fOpkjAbvntrYXsMTRZc6THGrfYmB71DHl3/C9QqnO9zBZV/8X8fAh01OTlrTJybaJ8ieaZFGQEKWDed/CR5WxzhETRsui16lx0LzckLJvNywWVw/RGUJW2a9bKdly0+18JmmGzMRthv0XHRYqK2toNUt/nyQ1Aanrakmhl7JEXQqMMjNKJnVf0viVyQ5Y0AC7cbqPo/e6tVGgZoZSY99Y8EJgMBZl38WIU1k4DHDYdjkEKVOpdhxUitL5ILESmGmXVcpbxmle8a3D89Xw5NTBUsMyvLOVafBoYCq4kq5HbTmJD8xXGLpAxBWvNFtqqc6y+RRBTrwZe74MmvmPK9DdrK4jc4vRJQAO84bddqGzbu39p71b2fpDYyJss0J9BA6VgcnHAONUbgVBiTSlY+QANkGTFq+T5fg5Qpd12UTYbduEUyuxMOmoxSBlWDnOxu58OxMBgTks7JK5QvHww2DtjeaJXshBYMEFCU+hNSWERFra4tJGr3NTwda1slxd4fLQrlpnKEq69wlYnj6EChhaLRNfUViCPEfHV0uL7X5mgeu3evA5DRtyVEkhWCcHagf4XhCKalydKQikXzq7wxdWmlGbclWB0VPqNpjXYAUYopM9H/G38qqO2V2ZLav79vvAlPOZatW0U7J7x3V4tAExPCC3ZshWC6tgNB116cXRKJyleVbmgxQNbyRdbB3iRjhayo0FmDqoXCZryaO7xWaCSO/kgAz7mxbZuD30gewTyyBOO9r5BvleFDWVVeGF5t1xYZpfFONRUY6RZraumno/Esk2Fyo4nmsTzKkrjasn1Jzy6xPmQns0u9TdzaUTjd2MQnQK03mcwBeToQAKU0y5mzAMQ8iss1l7jJxodrPq7fTs1Tt6MbZU1rTLYJ6B5TRe13jivRoJIg5sUt1NIlAGc9zKrBlxnq/V8X+nPNGj3RcDCH/NJuNJuKm6WnJeAQxlDl39ecO6s0ksfLdkBNGIvtKi+vX0F+5iWiW+oyW3YAkS9bJIR27AgtdjjpzY498Jf2HJU3KBSkXquAGeBWL73sgcL6iUs9q+rtZYQtVad7tsC7FfjOTZYzrQEorj+fLQRH05KMnX2A4Vgkoo19OjIH6Idg/jCbZggyzMLpElmUn6prk2IlFLcOZhRmMgqHVUXBFyHH/PdIZx/THr563dpFEkh4X+0AwyZ2g7rdYt1VEANO8L7VLJ8cebS/Kb45od+uG/1Ei8o8WVAe8I3pl98Ea3l7HSwtFNXRav4X55CnLIbyDrXaBd/ZU2d0azV1y8yBBNczJeYnU/OJimggTfkPVclShPObnfOPUUD8ezHuOIVRjqSJfsUjF5vfFdeQaKeGH0h1nmODK8OJG6uz9NBmfQ9hi+K4xlAvHcqKL9ERwDkYbfFTf1Jsf5mQLVSf6FgFwjeEiEfzQCgdnyXXZYeKObtr4fbi2WFFP1t6sjBPacGuo2w1OqEnzJW8cAPfFq82PAtnxA86G1y1wb6kM26kTA6pB6XEK5NKw+bPYRKrS+AAew2tdx2Ns/CTBekGR4gsnyIRXmqKMJ9+ApVt2iADAECMYMqPD1jnDWqK40vlW4J2nsGOlhvcVD01RfChTpdg/fUZwnDS/1iP0GU/14Shc3kYEUwfiSLifaYvMx8G+BaqyEo7JmZCpGA3gVx6PmwLthPWnyisHMDOVKfDc3xMrdhUonLQwzJydT8B9low+9BH1y07Fk+kosWZfcHPbRPAID0GbW+bui7MZjdYH6tSnpBKFmA3XJrqVPHTJBRLsr/npB6YWqGlbc4r5D3064Y5YTEw/Jpq+ACZIaQuwzvNiTbYvtbQQwSuxiAghZPpe9v7jlm1juuADfFMAckdwd8ero3Du1w0V5Cg0LfmHfx2jpF3BIoMcWyR3OoFY35sRrGXbUloJp2yDUeg7X3zKTgxoNM94CtSqvrejc9IYTaS9x0J1/J+I7wP1OBuLLoT4Fs6bbNERDxxvAOFxHzZEaOX3BYh/b8Dj/2xGDPnwoL55/P/SxaRlQvTkXebHUocoLNDpskAHpK8aYiBhFyT1eNZsrqJPlQNIdEAUe/QzcUQIHk/b1kR+NW2EAS4yjXz73iTO1ynbGZKpx+h5KVidj31T8fAlrZlpnksx55567f6iJn3iuHaAZ3ea5BzpruTOFe+SZgb5v0OgZB6ud2U6uSwJ+j9IA3VpKDZcOG3ENrpbg5PTsGbLd9ZGZd5HdrVg4U73KE9q+gmyK/ncl6OWMacUpkWvqEeJsDwgUBOj6jgck6nlLc10BhjNjBJz3mPdShiJtoS9ja4lm59DLFh4Qw7LTv/S9skJVFpO71FvDIPo4Sp2r2xpw0TSlASr+VsT4gc75+AtvdoEsxWivXn1NSVo3+IhcbO+G2WqaIVnzjd8NbDjuaECb/mUpTwToG+L6H+U/nhIZsVCF/kuRGHn9y7IR/MKzCGQbLDSwj3M7pz4iHcMS8BEYjRunqQtJwB7S/FWoBPjnCcIRLq+CMr+h8crdIXWyvXTxNVXlUBRZQfBQ2tNEjA/zI3Y1EsX1SDZjtQOyEEQ/87Wg5RtDFboGmuvhwpBtu67kX34pewsUsuuNZ2lhzle3NbWSYSsCVm109yi1hIZlywnuhd7E/sCBnS7gX46AdWsRAG9r1lz9xmWABMJ4ca3v18cp1GIiD7ApYek+zNv8PFkXRm4GwAzjZBPhyz4YiF7TajNoWSuP5/vorJFPoeHOd4rEtr1BkstiJTC9yLauTcfJsprCluAoTHzE9E/S3Vno83nZTxoLVNRhwn3BTKIkhnp2+hoYRz9P+TfkkiuN7ByNX+sEVs7CzCVBcoRhARPKxgKpft3feXVbzkTFnvTv5LPCEGWS8Ou1TwLU9V06n2cAgGCkaCDvzcP6Fw6ApQHbROWWVP5RsfDZCQPaFnUfHQXJywNdtMIjQDYou2hJ+76z9ok4FTrVLyAlqEJR7TsRA3w+RElhkdfT1moyoxlTkOsLQHuSb3IHsuS/6RDWPIaFF2RW5lPOI9vDqK/IjO3gVm7dBZogg7oM0PuvjB9uFvnAukt8OjkrKSYiuumXeavm2CnRMxbXJI3PdXBlWIPYjqvrJLdVafeBnfUqUJE+NKxaZKkvDV2A8fsRPu1lxUChCl3ZhtYhTzrurdzFqM2KRP7K1CK7eBVHaHzrtJZQMsN79ezxh+WCNZ/2U76fFILFHE/B+zbSYZ9ZEGJMSfAu0BzhOkCOa1X9qUl++b97yC7T9tEeifQAdhNdrN38CQbPoT0/MvRbBcqvPclO5aT5tFM9BwKus2UogM7H/ypO3XcFhH/MHSbksLsdIZhJ5DqfCD8z8T6rILNI4eNrrq7uF7B0AsvkwHloBTuUK68HDn2Q1LaaDq0Oi00jk3BegU0Ona/b7bChp5ZIwJDUjtlXcLwIhqyY79IsmKioq+gh2KPfYjq3K6eWlsyXUmHDYoumSGgz5Ho1uhGcejMHFO+i9K27W6LNQvsKCOZ1sKRjrXXePnR4batwdCyqmsU20XfrbSg61kAvnbHviBtI79RYvqYkwkZ7+OBy7GKJP66Phr7ZxyjSduBI7kGDmv1ymhD6Ci/zp/VdVzhZgeZuweK+FeFGGeNy12s+g+Gped2z3DLuqOrvNBRiOdNTDWlnbmqfle08kccra0yfnRfiy9CNcMFiyXBSk4PV1Z8ljeny8vPXnmQeH9Uk9Bj/4u48si06pxcNpNJeFNL9qgJ8MeNpVOIsTmN7dme6VtqH+Je5tCHWgBYyDQ4JltOhl055eLFsj/MS1iKNGEY+a7rzcVB0x88gJqXAFlR4tJ0iUc4LYAcOfCO3xETuq+vGIn5di2T01CguqZnMKrIrOTjH0a3O162myidbupWnyX5XlIFhk58mf5yOYJBJ7EKcwPSxRrZXOEe3hTyPTdcuu/McqOzQ0nUYWf5ImJyf4rLTe7RGvPILAu6LsCm9AdFpO8kWSS8GWNloxPstGmrfkXYKZ/WGsvMz28KcYz8p02tjmPGVWU5Kza92/GoT3xydXTBTZciFfgy29MWRvKrHqiNf8AcvXRYlE1r0xeaA/YThs/H2xtjsPi++/PZ5s+3yYcrQNCX5zwrVvFijkFqfcBczND0ovqOdd+Zxm0COB4kQ1R2Vb8/Aeby5vqdJp6JbDLmtHtGIzSNbSMwz8k/DCFpL349lR2M1CNMc/WdOMPqJBoFcXyNTUnEZBfoEAg/CfX3rM9MrYKaSL0qlMSQg1IMx6mzPa2+DYEO0IVLR0TXKz8ZZo+i+K83LGLRNTB9qCebM7SUU/VbIoeIOYv47eyFpy71SYz19hDHjZTaT7tH+l9mLXEqDffTeRuJ2i+7R/CfSCnKIKJkU5JQVNXFn8j0NfFmKFsPfI5Gsu2k6cbDz71gIi0tHBKQT21EIFOKwc4BqDouXqMvX8o+bRk6CqW6XxWx/AIqHG/2vmSLSWrv2zGunGbARaFCGezpTTr4IIOiw5fm49feCOXohTSK1Z1L6HVpT2dR/Ybk2UhqpF7ykrpuxMrUB3x18PSNk6qqZumZ67ypVZBgiQoN5ysoDzRQaAD5Sq+PqP50MRj3nMLSIC7QjRl+TmCvI8YHAhBO9rYKfRDOaHz7cBUxzlxuD1wOmYPaifYbkvF3d652wz+fnTxjxE5ojCTEKFRlPfGKopAr466s49RfStBfzNZ21wyEctbYnR64Kgs2yIL7LJMtJJSOVWtrZFeHcQwGdMBHqzOOh4cDslS1ezDFbNkaMBObDCKb/mR4LGIJLRmbXUSydKTZJGoopt6yIqC6vJrKbZt6rzkI65AigMuOjBhNkBfZBn+rUnosCqKDb0TaV8eJWnOR3WRW7sgE7npGqTOhhuaBSBwKhg0pfKAoeRtJ8XE59O9k7eJ2D2UoetX8NAr+OR3Df/otZDjNBlnDh4IzBrExFgXoKgz8wVWZTDUQn9EyUh2F6hMMamIDAEmgRcS6iTMlxX6xHdLrOI7FUanfW48F8eo9xPpdYwwRWkbqP7sfvBOsa66/o119Qt6nzynmWv64o7t4cg6jC6kQ3A9ZbFMslFZlvHAKqZxyoiQqZe2apo8vv1ADcHM7iNL6oEJ/hiBFWdGTjER0l70MFXOIC4mFgK5p8tgoy9Ne0KiQNGwyFBuEgs1zymmGXRj01vds1NlwJzFPyUxAOoOeXW3kvRu3zeeZKHixqSdOTeebhOd8vI08l+dvzNlssMoiWYAPYuo05F01s6bagVxZPoHXKzL7FMNJd0NDU+g809c0CuOQrwwi8LVlqut1ATXtH103iOd5DPKpiCmOpp4Du6cypzuVxCcRMd9dxtUbYvTpNJfuDpWoYjuDRKFkyC8ZLsYsc4pWfqLG7Pj2Hk702mkiMOEARoPt4FjadU6FCtEB2s0grNHdDrosMcuGyE7YcwP+Yu/mmBPXSKw7SiVpaBiP2As/noCtmoQf6qXy0s5Cu3+1BDrVt5K3XUurcTgxxomsivVJKi3Frl4AwvlPIjS1xD7AhXqGUwyCSDITNqSOLYV1f4AZCqo2Lxmk05cPprTq1pcIzAIpDLR0vS01qY1mH8FUpL1HK3ZCTwbUgPrM0/alYAjnQuVudzP4VS2O5fJsdV5jKK24KBYlqICldVRSG5hXNKEm81V/5xjF8AUR+GYJF1P8Ojenqz3aXOMJVU3lna4gTfq1t9OfND5xOLgBau5iXzfwMTH1nj/uCnpFhCFORJy5pJAEfp2TJSUyPQVmAdotRJrM+3j9tFffKCZdwuZzOnhtgRK/sDEPw84f9JACBeh/+CvEi3ARIJA8bTBIRy1AfL3L2Aiq+RuykTM/EBWh3P+t+KGIhj7QTW7+U2QfZ8zzJtNV4W6OQBOkvQeWrgY0YEHfrX+oUWmJh2n3yUOubNR8U7z976i3UpBske4sXZIDeUlbelQz/s5bKFFQt4Yk+YY+nMVKukvE9y5GSN7/m+wdEPpurniGTtsUsyyXTUS3UyvWsEL6OIrK0prCEV9v7KFbhH808uuhq9y3kkV3iQ5F2wqh+eRJs3GtTGirZM/KLihgkwqwrJ5HzXz8na3rR0x3I81LUicnpH/+s5BVABB/J6EkNiOk/qPCKMmza0cpl+l7n+tsK6WN38DyUpNg7/c57avVEPQzEq7LYc6CyDzlYViTOkEuLCxYt/LwC2Mt+51fVKK/J/lvwcuB7fngNLFFyfeVlmX47UyonVMWWx+R/zzo2ctmjvsto1COMVP38g8L44Dr+m2v9rTvBWVoICU+REtEeu5qY1DQ0QFpoHerTaWe9RIow94lTcnMG4QOf5zcHsGq9tC/VSyQlLeEzyS+q9XvimBP097xVERay0LNqPzMWrUgHUZ6wUj24iGqHbwV2NdODxSs8EKokfT7PbrEZZWsVpbnxobhaF6kgOnTOBTd7VYrIQxEWBfUZ7VDm99ZHp7liSA+P/9UcUntKK9unFveaTaEx7r5L3fwLop+YshsLnYtSMMS3JrXMCJYamBofC5iP1am6jfwvxhurIozRoAkJmcXQE5yEGGO1eL7WxxGpj5keS4g4SLLaINU2TLhxlkJPRIvLV35PddNKtczLZNEAHd/p+XbvjzvijnLXaCn8yNeCbhVV/0lhihwKZVKZuItHKd9f5oL4x8/77USb+pVX3Xrj385nPX9tc68Ya7ITFa3CoSdHKX01xbVJ1cpjdTEn4/TKnpLSboMiGqqfBIKgqSlxSZ0F3DD5AH4Z789sE2heX4SzsLZ0kxmQCHrGerIqvb7vc8Aswa4QYn/eScr5w1hGz3CDnHhhNdOQ/mVSLHP/PmRqJMH4nnQWqGi4yxDJm6TTwf+ILHCNXZLMLDy8vhnt6qbdjVAGhM7koUVBzpCU0EJXIL+8jz9hIbwhyRjZsDwzBTqoTn3H1hHsNUJn7nO7htXdyJPOAsI8OJkzdn3BjNCLjNIyLQFj2GaRU+Rvb80sWc6EF4jwxlYjaHySZmVHFRy8+AlmrA2OyYN2i/P/jZq705yDDMJ4jcV5+EQO/a5Apq9eMa+AB3AIExab0QWDNDWD+Pr0PxUHQURCFcTCC51c8PSozQ9BphEostThoYF8SEbV7x3d9oZpkW+W2wsrDbty9HlradzyMRGajrDVd5GwrOv8u/kTJWxgqUSqfng+92OjePL1/P6vpIjqmWnn2ASABY8KXHI0BmCBwx/ndxxu//lgDLuPdygs+Ty6eQPf8GD2K1wwZjeazxmjn6VJOSZIz+tlcTXBFnVto0fD6q85KDc76uDr6GNznxHWIcBamOUV9zCYyTJyF6ZAWg2s8ITkYGlUGM2IxCLVdP9FCBO4HHaQy+l7xmb8U47d5
Variant 1
DifficultyLevel
622
Question
Two fair $1 coins are tossed at the same time.
What is the probability that two heads will result?
Worked Solution
Possible outcomes are:
HH, HT, TH, TT.
∴ P(two heads) = 41
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two fair $1 coins are tossed at the same time.
What is the probability that two heads will result? |
workedSolution | Possible outcomes are:
>>HH, HT, TH, TT.
$\therefore$ $P$(two heads) = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX199BHJbm2C7hkLc0hT6B9zdsoQuDk0gF0V3aCFery4KSDkspRbxb2TzGLS8vxwiGVNnawTzaiVCA9KZcs2cYnvH5/msgocjxnI6CiQV1YNUwCYwWEzpen1CvZNc3DAYS8636/GMpcyby/fxCCZmzfPx5ApAq6pqJMGNCgob3f9YTwCDXyfEQ6MCmzZVhnzua528eHs0zAutzp8+EuOZoshBWszDlx4pl8wMZXhSFUATRu5CeioL+u5wbj5YRFQefNlhnLcFPaCi4a4Dk3dPUFYMPX+8mHiSGEyS7KMbUNlritPBeXHH6FOwVGVQpDRvlc8nbKWs1X95HMsgpBC/y4PjqFwP4FmhW1d75iNTPAXsAiXGz3vJwj/8DIXn4wCr70JFptLYUf4JX0hoWkAl84lhSIeseZ+O9BlofhHFWt/9zhUQxdWOniCMj3I8u18605w34U00bkYb4nmamr5t34iSw5W8PV+Jy9Kpe9+CfomTXPOv9TMiUnZlRNz6e6sQo/yC4Jr9P2JloXTDstOjzOImqQeCcIxDUkQLbbZS4UeS3cMPF4NpQ9Nxpy1gkerFBGah5q11+kwyIurHVj9HcHIxlL/j8t/e6znhrvmk/utMGGbPBBzDAFP5p8F/AWfFBM/Ekj0nKP2jt9Cqwr7JeOMdSH+41HJYXo5SzvpsGWieaUw9rYkRzrspiqI4bRToFZyrU+Y9YNMS93Neyn03XAoVnsnaV2DPNNoBycTw16nMM2+Dq7SrxZn2mp9uSzCOJzfqXyy9ZuQ8vl/EYSqYt31kChH8AtzRCdbU7VCtxEhkt1zG+fPwXI06tle7r//ue+tW8+Yhr0iTNbjpcAR0A7dXvi16kXgwnNKfM1Pty5bFIsDH9KMUXCiVix25s72erHzLNf3WmI6OnCsTDoGR9buecp0I1SHz0EwMMUGNBE5JlSHFn7nwo5M7eflZq7zykcqWEZO327u+NG9QNwVbMYKd2lwDwKw5FNVSmvxdgFRnGDQxXIw70/xWKB02AHDES+IY87a0VREe8ZQbbqlUvqcnBvvaq4swxiVvCmECYlHMvnYcnF6xQLNxseQCCWv8EZZNOJadpeNYZdVYptO8UnIjSezX4JYah8gzUToKrgF5MfUXnCyxyxvpIai2Hsa1MG2DH1GhbrsGuyHPuMcz8zwbX90suJIbrTs+J5koeGEURjIMcjYYcg5G8/eSG5+/4HOXrdK4qHnhUmKN9STtuqbT8l71FUpRBuBbObZQuf7Gdxa+lL89pOroXEyP2y2UtS2/f3rpuYBJMeCbFlnQyxWF2itOeto/Y6qsgaslwZTnFCGpKFNzK3WXpCDtIDUQ5jSwyuLpLp2P8LCORdafszdytximiVEviBLqfc2UtlybvU4Jzbl3OgPGa3O+84p+2YdEQ6iWsw2SWWxnvAOJG1w2rszfyAAipD5JIRTma9jyBxclTcFQH0OsLBDDffyeigF3QBNeO2kdk6DMS761IpdnbXyECbWKMM4hWW3tKHOWfrNPR9KmdEqmkMyqbILjgVna/FgI/5un7LO8HcBnlkgzjkyqDTW8mPCN75Sb40DB2/sPL5K9Pydy0q+kusOn+bZScDd8ArNpOixf6nWjOuWZNSO5BGleJofQJ2SIZPcxL4JGBfUkaq0ZN5eHFDBVfzw4/pE2bAQbajVGetPKsWbfdFMZ+1thuTkQ0oQtlAHOkgVYjiMFPv5dLbzpPSBydSAyYaj5/I/+omZA6Hay+zB7J3+UpTHW2sopZ/eAUd3VihFOLfKLWfW9D0UVBdujjPSzk+Yz8oKDXFAGwl2IzVMc0VkyGc2TnuvdO4bfqt5PIq+1pPZz80mrVVAwcAHoVP2rV2r01MIgThFKGESUr52YVN/UD/+l6uYlxvohxfbtnkP8NblrFcKow3tRaCWuV9VondF9Fz2Wy/2zJdfzflM8Y9O6PDb4pog0w6JjDIvXS2G/VvoYCXTrb3Kjyu/9+b6RAj0ikilfP7D6gSShYC0nXSK/AXs2vz1kym3Sk9AvHK3IJS54stAcjsqTTejfEVE2arqR32ZTnZlxfVNswyOKRnXemXX8b5qDgzQhn4IhubqDZC7kV+ef/u9fDmDmIEDOpdGZmE2XMgUKvH13C3HXrpG8t7o+afyMCoAmzTLz3dmXKQ8J2/RoClwMEviAgrpRZSujC8rE5RT/TocJKAme1BMC6JDUyEBpYW0Lb2UTjAgo8bMGj8Py0trm+74UG7QKVH/KtGbR4wh7CUb7UXg4YvdoTI9NCfjPHs/yqORNztcGcY65Wkfomw3hdoLo4diLvVLKX+To7AmS91lXEhStAWV3s/XpiP5ZnyTe30Kl8d/cEcqBckLakpCT79ezbmQgWOKq3dcsml1+zAncI1v4dM02X3lEY37JUXoTvWzQJyptalAxwgNclY4KVbm2Aib90j5p7RUuVY94ocO/ytxY756jly0E7UzsKpPwK14FbnxL991N37HDzdw+1MFnlguR8ymksqzWtvdEtCvdDiKMTqPINhTavWwHkvhgtt1x9uaryzZIWrokDt+nOvy3AWZa6Wr4kUHCs72leCFJP+iVaChLp0q3c8col+bWYIUuvdqnt3uIlCZSDlTAEjPygncotTQhDOLS0sl5V33ADIT4zws8fLWtj0xR3BcfoqCKSqT8WQtxadIuuwJwmLv2WT6ky2ht3Fgi0zkjFTtSAwHUxHJW0vrIPUm6pQe0Z+4IHYrJYM4vye1/p7y4jnJpqWTXghkaqKj62c/T4XN7ap7Ez/WeI0CxTe1VIvHTBZvkW4YbBbS2lxZmyyTuAoPhHOpnyaTQH4IlKBfTXASWixG2CWyqSXBaDeEAbLiLBXU8E8wcaibfGx5ALtgqsyg6px/FH7XzVqZVmDVVsQeXdCnv3t6/VkEZI+BDQg1njQ3CfShCcXSjrOTeq7LazrUIZvFoDN0z1gnkNvgWrJiALXPrjHM1s0unyJ3APx96jvmBD1ExCg+pWOJokp7LtJUlDXBX7vFNp2589x4DIMwS2Iu1P02KkWEIx5EswJuX3cu3/Pwlb4/4bkcyyzb/EmhFX6cybtfO4gYCq0y0kvNdJ7gFduHoZ6veOPquOJ3CVnxzZLBYFdMUuL5IcexBMzw7nx8GnvTeRZQgK2jFv52Vop1IjONtrUH9weUtrZ28p/WjX22jmfLW9ay0csoHo1HGJAVp/426LIirNx3D0H2ligVIGOj4mMxy09e/mX1ztDVpn78zAYT7PctYMx1BlF9rOjpH7ZB9aQWSfOCg+ntgwqzRjGOg+6xvZ4f9pXiyitHx759i2L+RV/5b+uoEAgr1cRc7lGwKEnTS2uuxcotrZfJ8ZMSWVSlJhHGIXopw2hZSVAUzyjgSbjukTQqlc1d5of6qr/RyvK8xvB8Y/jHGaerT8uf2BLk/qrX0K6gJAwNa6+X8zCt8PdhXx45r/xXGC5AHLA5Y6KPPt18lfrKLt1qLjpM4ImBVT6CE0mcpoTwg7CErs5yJ3csWPSOurrkK6cvUy0xs+EUyYGLhVoMOwNmo2uRtBuXqX2tLH7glV/3MgrUr3qf/t59sjZA6X2j/OLiYvVk0SHSEnS8Nx1JGqMV0xNn5zxLsDEhqSnQvNguUuVKal3lsYA912bQu1uhdDf2vc176v4I4IK4mih/fgefrcF8wVHSm2VUcctkITalfDdCuKuluc3KvbfwEAFY0WMVTgBIUf9oRNNn6vACPNu/LHLeH6uz5Py+idw4IFT6X1CvfeAeb+PyApP58wNo99j0HKyZoBy3Jd/KECHT4iYVsYpU2xpYxnZa77KkNRu/whH0zWvFd+chr+/mXBypalNU92/uXYC9dgulgG6tfAnY+fuVh/T/15iE4ce/p1z//Rh0DK/yMbCbHwvb2KYdpQWSSZZ8Gmmy3jVN9cya9JpdTpLY8Yr/43rYnOQpXf1smOMJexYa7zLG53gQUJDJ8+ewQ3mrSEbKE/rLg55lkNOn9PZB5GYT6seuKu6aacq9HrN9TWqnquOq0+FLp5aSiPZH4X/TULnKmsNHC7HMkuS6itGrE1Z95wqLuRUW1FR0u+kBK/w3Bl/KcP4QfVHoVZMlpEyZmPRlBjbhZJGXzEOxhs1TUIB7pAD0SwJ/a1zqA0QJbLMnyvUWFb2Ckixnj5/Vu8UaIDZm5QkjULHthPMPnlM17zUxMNLRp/iE44XN0byszDDnaeLQ1Lf+eORu2m+4pST1wqSX8aZDXrA12Xx5JlJXJetn6jiMuQNtVMpR0wKCJYJwl0lOfrBSzrtbZZW02aYDRyAPWd7U5ABKoml3MF4dAcq6LO/myLATaSlIF6bbpWc42Ewdwd8I/y9wzR2nJk0+zwrJVrqG9v7qcv1v/WSgQNuT6CqDZUwedpWOSbmaBfUNk2R2knlMic2lDQ1o74N7P+lnyeTkUqajqLMVljqzgMupWOkxtBGul6L9+ydlewbNe4j4t7rWiM+xaFH0MqyGJoIq8Se8DuMtSg/3omFFJRVDeNgoLEX+kG4jidQTxq88s8s+T2BFGPw6i36JZJCl6nLZHf5xE5qK9wMiQYBHGT5LueCnPpS+TyccsqZTpcLaDFcEtBbjQTooIGpg4Y+tzZHHDJzXmwrzgKk7fw77eSY6ba7Etru3bA0ie/dRSbLXZPT60Tk+dOXVd6pLPFOlnH9wTcNpG6w+RfSXiSnhJgcT+CZaJ2R0unFppfD0tblla5aVQufV0pb9Os4hkU1X0vEHJ7QRnJiMVE8sKuRmd4QM8SaCi1tMtx8QpiqdSbBaho8MJmtMKZjtq4TMAMBHZLcpTVIAJVNpdkWe2dsEEkVFDUVUkQKEFRcfvLDauWl83vixX6yxFJ07pHPlKUj8oPF/kX0tMWfkYOcE/XJwLNtT5t+qgqzc0hgKWUqbTahhm6FksYNYi4nQLGdlGnW+x4K9kmH1tHILqjGi66iJTwgX7mgI1N48OIsJcQ+Takw45TV8DSvaiSZNkueRnLoRy+BKgRNviYUhsACxgfiCoyI5eSFSIp8sPNlhFPnWHH7YmxtcjgDb/bj/OPOdhmDAsrkq+SvS6Tz9PF1QSnfAdzKC10fz4XbRa/zBQyoXAClVoTWO1UK8tJpFNWU6g+tODaWyrWj/fLwm4o62npOBIvwW0kwnNUP85Cdj0VcyzwSHCspRArdrbCdDIKyr2up4cRdZZn9yEj6qnQoF02tdsyRxYSIs9r6aSUwC4AAgZqb5owepweDKwfkqTnB5Spjy3qESspSHK/mRVZbZFknncOdZK7wvEUkKv4IPvP1uaHrUyH+bKuo2mZPPZXS1lWNLLGDpmAYikUj2+VYiDRN0Q9X0QWGaw+nMwqMxsSWUtYEWRbxoNMe+8ualQHaf1eyGtRjKGmZ8LEuc+zi547aWucOfNUhtFGQ9+8HMovEUxsrlYcYHU28k/dqlwnZxKJ0vkvfjxLjvHdfVD3mILclMNh/EXwLj2GsM6NHDFYVbVPPsdz4+bWcSpWSqxVsgJGxYu7/qcCVOkyOt0dPm8EzS7t6GUPpMYQZpBOXusePclJOPE9Bwbj36Hx/FTYLw2oezVTmsyKb4TZIGwiY5vsLExgNVXZg/GoK93V/dg+eiUT8lRvX66+bLjOsnViPhNEqBvBuuTOGK96oidwrhpqBXA1THvXSOWu4dRqOHJC6EQwClTYIfi/nUnhXDYTcNDz/8JR2pR/wek1w0yRB5h+ENqoeBlBd/03NSTtxx3w6BWHR7q7qXCqby2XHLcK0oClT38PCufgmjj8xIVWd1Lvp4WReBnegg08hcltLE2bFlkvngIzyxtkoRgAKmHGYliEV6BlYjLXeYn4xOjyNPgmsr5fzzuh4kK3HGPtW/Odne6afsEesGaAlNjSnO9Ib6yLCwswa3xSLzPGq5016K6YZflYVABSTDR+xLnfxhCjbQPhxQiaUElX/8XW36AqN5UxHzCAOA9vhOdiNmalQBQV1zVdkJhyN+wssidlnJx71m6YXjN5uOG8PptbTQ7LSz+D+V4S8w48NEO4+RvRKh9Dcuisi0LQzgb6DfwLZQDlfC6dvI5JDe799K4fh2BIp0woQ8fF4Qu46yVAOuiyVitgM3568IPA7+NJVlty4OLSAsMUl/34KVH44rNHLipl4PXaxjQfNHxxEw+13/UFjQ95VAfzDVMkC/oadsm3EPN+Z+uvKUjjGgTH497kfl6/7o1hwsDJFW/NTWK0x+gNM5oNCYv8QSRtVOyAhvNIyJUgq1yIiRsAlUv5wDXl1i60rT3/CDagYFOts8q5gFHy7N9ofjEUHQ25MMkwyIa/atBXjwD97L7L/+fIQ1CtXGKSuUj3+rXEhvlkN8Euxav/uE0+D5P8D2oafg72+BlsPlbtCJf8wJsobyUDHy/jHwLnFGU9A5mn26RkCErS+BCuBbLA15vPYRF8RZ1XIYB7xi43OCTXpAX62EnC6MND0MM/QhZc7+3huYShrZ/UK7O96fayQBtyf0SXh+yzlyWBgrQn0CasMeuyywUqYrpcTRp92RlINwFeqwbtsgRhTUUhsaCU+Bn2TxtNg64dZnLd5J6Y2qcvJZS8JKqOmBnemj58jmsdJ45D7DPPGndQQCytLkUjG2OXOIiM1Eg3jK/PrgQYH2qXDE2q21ZDe3ml+e+dWzw27gwfNuX8O1lRVoAgEup1WCzeB5zb+/Uirb29pcQ1O2FKZvpLDbW4ZBrW6G5Q1n2ALS634ByCO1OOoohnww0s0h9qSCipGYmxOmUZWwwIisOe/bCtvnrHJvxH1Mgq6lhFO7XhoxnrrPFFjPppZLCx/KM0A7kt0b0N4yawgd0u33OULxP//MEpx3PrW2cRvbjeSAjOPaT3yklOp4hX6j6IHC6Dc3TIaRPwLPpfmEtLvEfaqq5r/FI/W368gcKa0qy0jqfqD01rCx/EzKwAyw26Nf0pMbEfjz34tiAha8Ngmap5dOysRbVyDRRv8e5Bp5SZLCQSrTMESGbXr5tqghYgBjrpntmN2mh+oCnsUw6cvk8v7sYHYK34zv2dahThnTGhmsvJy1Aq+KeY7vxbD6s59mZfgHdnwNJHTJNQ8uQig4kplv0kdibQPH0C0regKMXHw4USar9ZhWYDxsyd1TXJKWh93sFuIC+XUYcJumMpqNcESaXjMb4jgu8a8Wofl3YXyf1Kwd59bC/vI+AXA1RbJ7Q5RXl4OYuTiR5TSk4Vzt/sW+/2oz0pKYa1t21Jp7lYfdFhoDTOk5EXC73xjhNU+DUP9RADn/CsoOX5YzeCpkGE9wrySYVFdKt0UYaqKokLLPGRWGTyCidGi+eeA2hZ5k6BL56ohEkYTys5A0FprK8+o956Q7qzu+sFTO5EUxkHa7Mf2fAUTRDeiKiF7BNCsX+jGMYatnqSMf5aZOrbcaqu52M+eQM5RASkYf5SQQAOBGHxTKS3IQyZTjHtdndf/QUKOwhxKBMlTk0hRsUHfyjYm33Rjg96ODVSuJgKxDjh/oE4Ta3n5aEMOytJOgLFeUs/ixge0Ovmxi1FOcLfh/JiIspqYfwkJeeLxK7UPdlh69z5R/kJoWEJCZQFlHUR1nXXKRtAn25i0kBEgSg44Ut7joGYZHlFF7zdFgsTMpMY6XZBuKlWO/x+sGpi9xdOqi+vgIEy4P7NUFzhRIwVMz6ZrNGqlHn/b7+BR0TTWEtwlWB2aw7TFXqohLxAMtzgqyHPmc8GpYq7+fk+34yKqE6sxcZSkMJ/97AF7GHExE6NLy/KBFsvn1iPisS1I4shgrq7Emi8UpvCjacZ7/1GBvyLfncdr7R/+lc2HmTwkedspjkbSFyQZtSBvelMmS74kVWWMa3rZkrk3jZG6mOUe+PbvqkrBK8zFEmlCL1VwjGxYs1FyMJ7zVzK3IBa1cIBRU8USutrtClingIpEKcyJxOlWH4NDhFFMu5Id6Oc7dx7FiNSJCBwm4i2p0ZVSS7A9kfA4Bu4Si/5MWlZXcc1fYCyMnOjZ+kZgyBNfm2SJufA9CMkj+4v0V9rKMzpLMhLXCm6LJ2kuOw2NSaF3HwjWq1pfMQR+fWMhdZvXPlqq0Fkojo011fZAiYPdGJ4t3bT0DQlv5Q2JNusGXCl8OrwHiz4OwKzK9JXVgRpZ2+kjr49zIRYN2ecJUfBmXGG4UroV+M7krKZ2Sn9VtGl1ZFGofLlx1OUoKN1Tn+TXJqY/dLqwr83J5eXfhCyP40ZqRf7pAQ7T8gDcPnhPKpnq3nSnhM40bX3AVTqfeWWxDOZKB1Q/YqEDmod+xeRKCdTlavh6JOISYmr0oPOFfkrbXvLcFluVqBI8HSLWL0+4yugLY2Wh/umF/zu/ki9KfJicU18MXc7e+J0EEMG5uNxFFFZuyE5FhOAsjpNFIk5TrVB0XJjNqO9y+qhG2RZio6uUPJXMt9pWFBC+50L7xtz/7dWiiOI92mvAa2YKOdbDH0aOpCHqxgP3OBGigh7gk+qvft29a3oHSDTsnSxHnHfcaU5azomowdICk8BnyZ1gz/tmcmXPw4iXD4mosBeNWFJmUm9ANkOwFLyzW5uEn27R5Y08XkTK4BmupbBFhVkfmFjDa6jqFhD2G2MvAmdvbxC9Xn9XhtDr/9Epy/Q6A9vksSdAQeHmY+0NEz3den0cMhvuoua6Ol3Eeo9Pa3aUC8W7EUTQNU3o5aegHLkjqex63FFbBNOW1MGCNcUTtrnYmIQtC2l65Qr7/gwfbyRAx8gK/YpYe7yhFsDB/3ckHEP5/6GjUNrtP97twjxdynJkC4oX4+twhLIvsGJpCmNxlSeIbkDE7292xtF+ka2zH4DPxbjjKIo+gka1P0txn0Si/5lozUyP5jyRXT2tN3MnodxXTj6Y2sDPL0sFxMAtuHFIynaURxhUOSPuw4Re1+J03drp9y/gK7MHTW2WTPqOQoAX4gmvIJO6QmaDLJ3qdkRYX5jauuxoVct1JiJySPT/ifi/e3elOMSn6NRRzm7t+UkQ1C8fks33WLQyiJbPfLHURPoKlz5zee8Lcg5P0t7kXKO32VO32UBcZIESWmuVj+Ne4MWolvjCst37n99frUgnFZtvfFVBdex5UbCSwqnvxWhgW5SujKL6J/yIzWb9hShtgPRZkIq4HvB3k8nLZ34FH+iVLiCvP//3QAugVkQ5l138yFdHw0klhnFyEFpHaJav9YGp99PgCcwGuCIRy1qjN0H6Ol8xWh4Gj+3iwA7+HP7nzAO7B9+aThJzX8q7zNHRtRKDKQMty2jkTiy4wScRwg7FF0P0ZehmG0ffgzddmdk27mxGWzuNJQuWjXZJJEMjYughg1Gh0m4X4SgElhGOz6RMkFMidVyy7JTkUdx9JjUTdqiRrnfwrmiuoN0UvC0S+GP2k5y1G4lsKKm7qmrluc1EV9R1Ox5gHipmS22hYcrv5tvZOGvI7Rm6UMKXraGwLLKf23c9pmbdHyacF1yft/dMOGjgrgtUwq9hPX541twYGHvWODm++AVeFOcrBUiMyUCoditq94fptRo66Ep3qmEw/NFKwfq5CHytJnclCfglZkVczE6ajSeJdyUrBhjFJP1SujZGiwxqN/8iG6/QMYJYgov1RAyTTWROt9IB791zBTBxwM8jpgQ42YTytpOn8koZi9ov9IxjNz7XwAbqy8dOrvvALjV5+dsvgmkNAB0AJ49qrBbiaqKAIhQkAF26kfAEsqyIX7nrk/Ueso/m1QFoD3bI+5qPqtVHAuNcwONEh+1Gm7SYytKqGWHrFX9Km8vtDjSpq+Ibfq7TwxozQ0tE38ElfB7oTVRAEBMnlFUfoHBYD0uTdO4LbKq2C3nyhbUMyrZ8YQz6cWw3QxievuUOx9CROQ2mupDJsWXNgqP2MQPP/W9D/f5QxCpYtgYwelc8EHKFQuX2LOxNJrkEOxCeVMkPRrP/7/Q+NW2cNzFZPB2ObQ4TRlxQM4uCKKIK+JVvf2UCCmh3ID/EKNidXPVei7YLeO/A7vQWyqdtiCOfsNcbOjK7pU+uxnbn+L8RY4C2KwC3SAKIREC/A1jaP31GA8pcPko7kUOQrYmZRbRJ3DfQzVvi/41WAyiRLDYHXDYL96SwOJySTPsa9guAeDojSWNQKEEsREo1FdlCcg71E+zjn3Q2ane+cETd+YJrLs2SX/mQFueRadKRqn/tv3fJ/cF7ltMeu/bZObsLebtVxs+cvfvTl1XCpl1MYX7PAms9SVcFXN0bbRQmfsdOVG/ZyWXwuHhik9swi74xeKO1cD0nZZaGUGkIgR2Ir9E0jY+8kg9BJdC6SDXhNvZhzXh4VvZK30C0lItI3FltlvGYs2ORdbVdfI/+vpo/1WV9HeHLHn/5WTXIQo9Vnl0RB38/0FaMAhTPxeSXyjPnI/w9O669BXb9Ae7tKhrphiLEo3xBeoZpZoOjM0aUEXSIYfX0OomEewL5orrdHIx8UKQwvEdEbpRPtsK7+3zwHq6h9VuRzpRdZlUW1KWKRJoBkIy5KhYJWRRIFxuOouwavESKcqDOL9mZhDxyy0zENcj8w+7cDjlbHLMZaefUpzl70SuGeVb+e2pNyvkVacrO8DU2jsoB95pw+IwKfUGLLb7NV6kLJyeGLMXzhpkjYmNdyI8ckavdgAj4UtScHimplfVV2cfiLT6Id5tEI7v2PYMPkWtZ9znFJiVrgp++sYyKF6zzakaDSJOIYspM7hOw6TNhCTgG9jUs3mEEk1GEZBsGNSd9oPH4zI5xUBCOTNFlm+rXlmxy4HhnHOnnAgZNl29fiDQxposKsnh1KNz+huA+peS4ffgwd8QwASDj5VN2RIocUqACBKBokAZrL1BaUHpa8CLnpVQDoLSZ7jzxx7vuqLv6+CPM5KdDNESRA1mlo8bLy0egwiXvx8ZlpfmjOcOMZHyfHdCYlxtaVkzILXvYhauPK4gSc2xgEFidyEhU2hwkc17AuT43LH63nbaGdcjfPW/tejJ4DWP+KUOktBQBJSiQoLCSDFqBLgrPVck3o6OPaeeNPieled8NrhfJGCkjjQddBKgc0seiyWJuVhV3l80YOMPxMx4hf5he7DhAKWac0LUzcSPuhT1CF8wJMWBTXnkzo7hhMoe/TPK5ttHDHSvTCYEUIRUMPQXhCMz9Fmrips/QIpO+c3ip6jA7ENgVLboPr26fL9+Hu7oGUNHjR816HJqMKbMGo5SsvG9+Os8895325uqmhdl9No80WBFK0Z05vtBAojJ8lh4Av0r1lchObigsYiB6wHGK6u4AhcW+Y+y2HMK5l402Ty6YB/7pXglUX7Ed5o91UPt+nzteD1Q8h9GAeWD86u48NvVWE5/wjCQTcq3FBUNGP1HVxc5oV5yKTXHVql+dj/VO0AcgrAc8df9KtsJn4Bq60bcfzL6ZNnPZsxlSzv5am4FxSuDyubV2yfHTld+xvD3qFNisdVtGgjmrndsWmvCvhXf6QlcUOgRi1/NW9aiebZseuwbQ0uW8B/Dehj3c7RFFWPI9zjJfyhcr+ubU7MN0US/ad4A6vdZ6D0pOrK/ZIfR9PeUlslFfoB/8pu6mUKUh1SrsJ4ZhYElD8KP+cF9ENpKl4vxwvtTBd62UgiRtiNSOZyfGM7jMt3FBt1913r0NP83xXzGdlUMIVJCoq4Sx7DT9YI0627ZKhTGQRm0iRECpHhCBj6rfvqkHUNcfZZClP3mDUIBb8hjKECQrHaROmyY68yZLQ4uivKVWzx5pZRiDBQRvhzSN6jXY+92j0VLyANzOwpmOO/FDwI1NtD3P1fNDUe3o2AgGMlqAV0br+33UZMeXyV04g3AterMP7tyLIPmWPlWLt5aUbr+RG0VQotR6BGHnEDtuZtI0h/G0h8yfpbLUW+eB5AuIGOBU69S6d1JlOxqpNk+j2KzlKHZrAOh3rmqw5Bo7fSn/0kukF5VHCnP1cyxyqE9VTy++uj6DWMSd7YDc3lCffRS7dXtompqIci3EhLPYKiWQcnqd5VaXrYElIwkObtGhX9/Z7IBKviDEka3qJ1h/8EWRAT2bLMQ215eQXu6yG2TpypMvVMGgpLcvoPNxobGnMZEQv+PggoQ5xVDZh0JJ4vFvPRORQNps/Oz2btzEwqE/Je7PBuPcJqDeJcKfy0ktDqvViBtYerf8NL+vaWezvfb0k/X3Fa5DD0xNwZanqjhk2HLG8tERx7nsaAW6zbYqkdrhpe5wH3FJLp5Apkx8csTpK5jfD+Lh2uxT5mZFVPfAnRUTNEwYeOoA9Ed5+SvD25SGLtQ3iIiuJ/reBiU2Ei08y4gBE4q8bFu0yzPWnTwqcXovIhf4qzuYWRCO5MS7YFIF2ZzeyCwU8YrGT7Vwv8L2Axv39lK59UxG49z1/k5tJcYuCZ/Ll68WzKTyysW1yTZN6NwDseAbXX/mNwfvUqhIxP+9J/hZBHqquFk4PvTRbpApCbXwWRdW04nFuj++4asU45Ufg2geOFTDvj13zyi+z5Np+Yxn1gUCv1lpTlCtEm87UU2sQnaRhQYjieZOWl/44kEpuB/KAFkW/NPvL4D0QYpfFGP6HJb9SxYMRr87QaEdmuauhNdXRE41nzWffXR5/HwHpR7eQ9Ebyh+vZQuKBIXRu4i5ZvMTG7FszF4144a5taD4LpztH3Jc9+DU4lmdD7LxAIYjaIHkTV3OJaNwuhVaPU02tBpvJf2iRx3JmlE1FIi0/bNGOHuie4fwD17u28AImeDFdUTsxjspynTBksJ7YyIJDlBqkkDABXMVPfFakvQlUeWxjNPhuhGdHaH+/Cn+v/MAfBFtYBN11n8Ry/MWkv6XJrHnXfI6HYgoXOcUR2mRA9yBQ6Hok86FxMEraUxe6jinRAtBpkjtg6vqnhmT4AlUwftkeGBZrB5qCBoBINg85A4p6idlJPID4vblIXnfSfKy1xl3WTKZ63zGNkoa964gteGGRmfQfJNO99ZgM8SBaYkZuqdntbyFXBD/VeraQ/ZhZ+f5AuUiDfSjcG1SIoNkTO3O/k9ZvloPSGMc59blkXk69ZncZSkU33KKOUQDIsEPxn4tCVq5n/MItXF3Zuw4TXDu7S9pIYNKuAHVQZXXymZ1p2QU9aE5P7GLf0o0i2lYMLMmUk3mPjKQd3yABTeJZsUwUkhB13Enw7uCI24JzsdyWq8G8uO5lby40XI1FtmaKoQuF/KQVI+yLc9m5NPlKlVC06+W9thn6onAiNqsGqlI7VJ8e8086rPG3MziHYcnwj91PM832Fo6/1cr3sAPfMPIl56ns+QQCSYZgKji4oermF9M7xxnpsMMW7OSFaMLkB4PiDz9qEkWxrm1OJjRVFMNALbRB6+y19HgU89RHJ/Upg6OuxU8JetCuZcQJWwTkmOnfjAu8CKE4uXycfE9PK1Mr/hjjSiwpyse48p7stC6LPSgR+qSdOal5yLxOUKZS4aXPeXvgGkhAOdosBvK32KLW+HxcEAbx+mooa5spnF3RJQIOuutMBWv/K26uq72en2hLa4L+GlEcZhjCSCeOHQZhRP0wWH02wg/lQCmsEWqLwTmvVJW9KkVuWaMMRF3vJ0ExzNsbPrdY9BTL7fEETw+5/ucBAuRFcT2pxT8xNX3F/Lskh6tZ0aI1PF0gzSbIwgz0JD4/Rxh7RQlpxITntn6UxQjLY5gOd9tshF6BWOANbqGWIO3APewug1hLhfQP4ajSFVuWnrX1nBGoFMXQXkgrjgmD5Mi5X7kIqSo+CIGnXotnnZNxgnEFktE3ndPKXPMtLg/nsTh2oAQfPRFuM2NHFoPEy3vre9RarRL55Yb0Vg6y8jjUnynitOlIGhL16ymWolK4dk87G0eGCZwkrjVHBo0axs4ec4kKWUig2EfEa/DzzHO687oUJyCFxU2LwDYf9HBqcBGrbl/LkowlXQXWgan3eTpinNpdE7RWbhTrRqRyNvZhDjfAmmkuIFf/FoDMOYjyEY6Q20SpWTHTDdTZgIgf7H/632D8wb8w43PDm2XUtT93Qg07H7LJbJPaBNN6wwxRllAXCSo/lzxuJkX3XuRbNBINnL6LsnjwsiUK5EopcqF5pjksD8HkKVg5NNz5A8ww/yosJYd/OsB2AJtVdqdXsYZMDJo0aGjrFB24mtfB/Y/Bw9GPHMi1MwsSy1GIPPPBCfOBpuRAv5trDKLwPc7rDbmCFHa+6j1FybG8cfjqukSVML3IudE9uGpUK69l14EqNjL6AvGcw2Mz1yRGbQW01QKdkkVZobNDqYhjvWLMt049d5snONl8C+W7GMcwwfaqtCkzepgrEGNVwiNUXH0nqfdhYngBvtizPEyMtqbe/QGezlbhTyPmpHSTicoHY8ue0qSMdVwDsA8BnC3NQSlklj2s5
Variant 2
DifficultyLevel
622
Question
A fair 20-cent coin was tossed two times.
What is the probability that two tails will result?
Worked Solution
Possible Outcomes
1st toss |
2nd toss |
Head |
Head |
Head |
Tail |
Tail |
Head |
Tail |
Tail |
∴ P(two heads) = 41
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A fair 20-cent coin was tossed two times.
What is the probability that two tails will result? |
workedSolution |
>>Possible Outcomes
>>| 1st toss | 2nd toss |
|:-:|:-:|
| Head | Head |
| Head | Tail |
| Tail| Head|
| Tail| Tail|
$\therefore$ $P$(two heads) = {{{correctAnswer}}} |
correctAnswer | |
Answers