Algebra, NAPX-E4-CA14
U2FsdGVkX1/WJC5+jfPK2liUZWKY/Qlgxc4xTK7PaCAm0rN2Xe/Uvx1d/ojv9hHMWUel6eVGRWOUuvbq0bfLfvtM3B8RJ+r0slR7CnmQgG9i92DRpbQYcaP2WEv6FDL4YOisVUdKJlVRdHE+dvbqOz/YydSbScj11cgs/CzSYUpQtvAYhjIXLBwtVoyifJQQXtJxINzYnfc8lmfw/P5lHfJXGtQ4IKuUxQXzVK5EjmOkbZk5B3h30Y1V7U4bbpkJ8+DbQEldWdF/S34TstwpoZc8SYE9rxhslVtvYSQYbbNKqKP26ujRQHYQyM1O/MiASI2gRK/jyKLKgSuQoV7zY5kiqhee1sCJ4/eZPU6nv6z9DtinWnrg0D+CKIyv6z3SpwIADMYQyo1cJ2zzXo2SB1bUyiH85yJFcPaIuHFB6Namb7gf9e0U5//UBap0NotrAZxu/0oe/FGWBJ8DEd7F3ZHAs7m21z7YItpHvpcjKlEc8CiyU+vDYPmTExcHqdGRpkfbILevmeY0YNcDAYRpxoSAbO+EVm4XNaZAcC3vlNtzq2ATu94PJQZs89er5LvNI6/XVhyijw0X1wtUEPq7zKAgSRv6pAz/jFLCihWWQTxFnbT63gh0xE8EXqvQ6eDtgOonlayfLPWkVWluWe6rDD3VOAp0ez/D2ClF1ZPsQ0R2accwnPp9AeDAJ6VhOD+wO1wvMDZnZvuibhHwVd8Kzwvg8/1lvjvA2DJKhEo4WeeXFDcD65t8T/7Fx6lr/hUlCumbRay+1DnLLEKS8wM+Jrgxsp6Y9n0m2A1LzsgxcfIOGzmq4wfgxFi2U9Ga41W7tSsVs/k4tEb1h/czuxeF85cng6+uu87pfb7Yn2kDFyxVw8mswALDcDIjWY4wXL+A+6S+24Gp/XPQwhM8mLFUD3nTmwa5VuZ1RV5fnhC/rQuF02jUwEKYnr8L5zGVIY8Mix16g2Zhh8rz3D+Dl8Hb3Umx4teFJtCFbyv2ZqwiZHe0577NNWhLa50RKiBJOBqPkDLlzh7/JVmjhvAigde0kIZFmHOLzIM0/YXvWhVSAt/ReoOfszkrkSCntPhMsQcuu4USjIuDTgrgLWeJbAf+unMsBHuNo8C9PFMyUzU3h7Z6I2sByosAtlRqHpPoVAn7fVzWmSKjKAsEbqYjmeVzp9tTaYFB/npW3XfQcP3Up0MrQ3EFMNpC3MptN05xQzeRYl8N8EyCd9kkJ3A+srx8dR5vc7tO5Q64ho66zGnP2668P4tvpDYVYcYSmJ8jqO+h0+ldLOeXDod7HZIVf/vOY9N9+Xh1VwtJSwCJ/hEsIE6+gkykQBgwZJ1v54LX79BLwkBJjamv57/ow2K/OVQJhMA5NSfK+9EBP/srFDqUcVZ7xZMBIKwmP5V3NOlpvAEu7Nk44YNqRfDVocYhpc62XbfWCk9B5JnXyHfPgxNu92ff65NE9zTXU3H2vMcqD6TZz13JCJjdZUw211tUpXRijYYN4q6hVNKvNfhtV7evnxqrGRb7eBnzw8d/GZZASSbk+9GoVvS4z4OW0+aRUUsu7mw0cS/O+f6xqoh5FN4QztkUmxy9lQ+SUxzmah3sNbisnkd0eHJWUYZ31+qtLZuEYelvaH8GgNSuiKyJmogJvxrbMdw+Gc17/p2vobe2rC3tPX84FvmSPMApQXvKEX64jfpXx7I8xZ1QBQgOcgFAOweIhIVFfVhTWZEnhAdMjUDOQOtlWxyJpQPaUUmFxYKD2Y4n9+4cVE75bEA3nORmpMdjM2+VHB0aDRDmoFk2dC9o0jDKg/hkZc7gbqh0kYZDfvY33T4hH2IRys58eN/I5zEkoQYmjjbXczUXs2B7hlfm1u/nXIAfVHNZ7fWefOgCtQmsWTIc+9eiZVTFvFGaE5A31UynHZmWRYMXymIPjzhXTsE11DAcATtap5Wz0zcUTlEnRaTF2XJmPcSlAdItAcC/EF/i6bf61xtX268KFtsP2ihTAStiUncRkiqsvDg0HaIG5Cl6YihMEmmfkOtXKS20timEZPltXCXOpqGvjW8QKQUJrkXPg9xjTeH++aDcA4buTlATBJH0Pni4bQHLCq/BfloV7OWsi5ixnJKRtGsc1k+ca3LSd1gXpbgXFAkCHYcYtSN9AHS4hIMUmKrKpSmV879O9hm0MvoR4tiDr6l73uNHazMVW5C6sXSV253aMgJIbj7PhuxQR64JlJLV0ezOp7xAfGx1pahGmYIYIy9/wpRzrHhrWpWhirn0sZlfrm3H/a1pn8Rfw7r2LLRY5F2ytwgItLzMgcQYqa7crKaXdcDKacPthfHCShIViqNWvXKWVaWw/zcTkA28waTXNOGdFxa280Aq5QMagyLWrnnyE1iAvNeANfLmrFhs+mtTbjxUfcx0piJjYIvpSfB7LxosIxU7BJA7XhVzfu41rbBotecsZPfEZB1jIUjbcJuleYZpbEX+Y++iOF2i3l/E9AeRIv48AnL8idwKEAHPUOGLCgFo4/Z402ulnfzVDZEETzfU6vWn8VjfdVB0QPsLZpVg7aVV0UvlIco/Z5KiJGQne3FHnvNsCchX9+nJhEFHgyrdDOMng/PvVll5An71LlwP7UeqkjaH+toShkbPDzJJvgSLZwRVNqhflICITxY3sFje4eRipmTWCNDyqzU3XhYvAEU+YE+xlnm2auTnWQDbVV2Ryyw5WUkhUHHVlfFTCsLnzN+evOArbV9/jrq3OHK+Dsl9+O2czOWVJ8oJT/BT8wUYtXcWb59tZZcbArsoTzTQ4HwzwpCbzuPmjcKHutsV1ogAlkzjrH1SO+V9KFIscf06Yuh3EI9R+GaNRwj7IB+VhMezeoDo1tBpeuaRnC9l1l2IDoGGgV8pxb47vwtdezgnslKC61be7xjJSnZYXPNPbj96XbVOfKtASukfFUQcqsPZEvBryJ0738+OkRpuxbRQBptU/EjuSBQT3IvQ3kEJSbzDlev5ETUS0vjg0o7POUcxe/vBsl9YwDYStY4UsnldiIaGOvPG1Nbs62PgZ03VSPd4TuZuA4kJuJAZXFF/+5lPk7Oj51rFPfwLSJHztND8ngF1TO81TH1TCUYB/ttY0R7DF8GeblYFWs7j09CKzFqth/gNg21OuD8BuFPAz37Rel5T4DvtcRAWER/3/aX8B1V2zYFgbWR0Vc9kO9cZQc+5Dn65NY2tvjhdrX71ic/SLG+XJ8SjLcg334rLzP/ckNwCo0B5soYwrXEkUwRTLXRaL96PFIHdPhe0lPx+NUO/YpwcnAiwXtXXK9qfj/5SL7/JxlTJapa13oONy0Kt600aOPcGTFkVhSsqF+hKMODEHQHvLafhpfdMFuKGQbtKOnlGcBfa8EIZTZbsS3Lg1EPre/DEbM5zuc0swQfuST8lM2yCuOHV1GjNsWed95B/066UHyoabdAd7AOS6ldkNG7CRun9kgPqBHDZ9hwSpTH5+HYC81q5uGo4CZz8XRa5jPrtuiKH+EXD2dhRIWRqPk3Bx35/PHt9X5y9rZxYFL063E+GSvUZldbRE0dP0tVxfIaDK7JBwod0nWfIVreG7iAQy3vseGUdXQcn3t/fuDtbk7yOZfbm8TlEJlYJOzD+DQynCtIs9XtuAerFbwdMHDSJ1UNPVM2mdvmEbk2PGl1O2OXnfYTJmX/ZDW5lR8+qWuDdsC5RNesTf5s3fGNUwfZjMA7maygPW87Fg4gEk7Jd+06ulIV4uq+OeBh0fzEzWIAHuP9OivFFA5muimZUI/DnBBDPTR+o9x9SrPlN/009UoDfMMwaXjg8in/wPCwQbI83il6hvyVcazQtkpk0BtQD9TfjlR/3G3Ffo9jV85Te8wEH0qSR7rRyITl9JuuSICcHk0TftmXF2CNIvpYWzoW4qmtszjXYJdKPM8kYcDj+l/2WEsBif6Yx6CgTPVHgDacH8Sh7lKIbCGmYRzhShgZmU79Ab99hDBK43NErc9/PAsy28VMDb262cDDN46qx1hedfqOwexNTAhQgte67/UUmcYtxHA1VN2GDXmifI2WFOuuk9umOJnXZTELkbYe4cDUu+f6EaV6J1rZu5pq/hgVEbB7OY1+jBj9JJC7DYo7DNq88/9VzlZ35LdkmiPb2kZPw/k1ZL1h8DHZoqq3PFFUaEtKd4kkt7TIHOse0iyo+/0DAT1itR5xYfQwCQDTnQOTt7HG7Rlyzyd7PQU1MeMouHBKwFzbvL+XNuEnBpnqTdDTHJiM8vELu35Q+auGooe9f6PLW8WgOM0lKBzkUlBLmfqtKLPmV8/zbnIo73UlA34aNv2/G5ItIoMNhJtXXSpf14z8F5pja0LMDOd9zzkncfLUB6v9qLfATXQJpLnEUetb9nD+NqVFsNpbs7yMcrdcWY5blh9aPRWqILXpOE7/dBi+au+uw4g7YN4WJ0DFZ6W4ei+aM1dpmxlY8tSvyIKfwOqBWxVvPjIZ/tR6a7zElX4uzi/O++GoWG5ku5YrcbFeXLXnvUH3qrzcd8UVyDiyvO7t4ECBq32pX9k2SoEyefYzYmqMAGjwhAxSGMob1l/CA7AGPHB50HrA0V7E+18CKJS7fPG7Xk5QXqIwx4HPLK64snZYyD1y0PcQ/4vPK3IPc11qQZ6eXB3sv/0rHqDK6g0lJBCZuWnR6zrp3hY0KNQMdafnfpD8wpM6egNOKUBz0Zbtix04DgkfBZA4eO8VAmnPBmbneQiyzGJI3FzOLCr/3LzKoNxSIFWuJXRRviItuIknPr6JDEwUKOjK51ac78qc0OtvfOsrYQyKf4poS6GXfxmcIkMKZ9/r7dZWHb3On6J3r4Eon0sHPPeiz5cgf/D0JGYGBeJCbKgYi5tj2Zsn7BB/xDZHomTDQKR/ovbof1cI7OsJOXUhN/jOFH3BaBdmSUDZCXSDWZSS2C1vj+CAj7h7KJN9yjM0Ug26dlqTNaYSDOlOSpBnmSGL9lp3e0tEYD9APFBP7liaz04Kaxz9t4YkVYBDQoY3vOFi9Hv+VgylRJFVaY4ZbehoGkyS/tAdJrsFW9NUb0pawm+mQAfaH2HFOwACWGB0T6jdrGLDfol2/8yVsOVDrZ3+r9RNemyTDx+QCyv+kWimbHMZUO/N4Sza0iNzEvezlWZflch7I1IdLLTxedfXLGpArbG4d8s2kylVjsUW6zKIq+81kwY31Q0KT1Hdu/l7GpFH3SgksXUISjFxlDdLW9JW3KuJoaSPbvdlhx/3QgcJFlqg12SgIuh21zK2TTnR7ZsSLEgoL/nGpvMIZ9VscC+iB1mIuToM23CgmBIAeH5uqqkyynutkV0MRE14U6tpaDk7+hEPGYApwUQ6Y3O0frKuPEY2PotBxRzrMDbWG+gW7Cd/Rgnangiv3B9dAzo58PsbWk7XgfCjpEmBDZBhaM13ixpL57nLBrd0NdjCB6UruAin3H0XJNTYbCpGsK/4zGv94IxSuvuDuTcOm3vbZo3nd1MJwNs9yGhJE5EvIgCYeC7kFuZP3o2K9gRWSBbyocZsrWf4K9Q6pOdIocBHlNZEkKGL08fpDyGmHebM9sMy3Mv+zZQrhk3LGHoqurgCHY43OImvQJQDpSQEkiY/XnBhma/+E9k4oQXTruy3Kyc6uj3gZSNmC6uMmIb+sYXgziioOHW+ByLbCnRhXeaDHZW9gKtTjrJOQuenroSnMjpknVEW80uw6ElyjzWBff58XNbJlEzh7xFeEzliHSHP9+pmW8/q/hol0Lu4dNRHs9rkd8WOLQD3I4cuq2nYHX7KEA/uNNa33MAqm31ulhseXOFqtU73Vfq4SejuRfI5Lj1NTN56TZsUorf+ZvkAncS6N3JjaE0ONxCx9pYI+wKkSX9tb+DmzFrQpKP+ZseQK+ausvjJ28pkGhoHcQlmqYZ05sDaFEKBs+0rZ5YaLpBByupaedoCRZSQbpgvrxlwhVcuQIZBcVVHuMWe44AhOZnNPeuIFxKKpofdLIhk1VibC5ORSjvY8RCiuOJKd8gCAjtf97nQOjGsbKPWcxZ7TpPXI
Variant 0
DifficultyLevel
601
Question
Alex has a job selling bikes. Her weekly salary, C dollars, is calculated using the rule below:
C=400+0.06W
where W is the total value in dollars of the bikes she sells that week.
Alex sold $24 000 worth of bikes in a given week.
What was Alex's salary in the week?
Worked Solution
|
|
C |
= 400 + (0.06 × 24 000) |
|
= $1840 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Alex has a job selling bikes. Her weekly salary, $C$ dollars, is calculated using the rule below:
` `$C=400+0.06W$
where $W$ is the total value in dollars of the bikes she sells that week.
Alex sold $24 000 worth of bikes in a given week.
What was Alex's salary in the week? |
workedSolution |
| | |
| ------------- | ---------- |
| $C$ | \= 400 + (0.06 $\times$ 24 000) |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/jBq1V8tkKiYB8y7VwtRUkLylm+eNFtHCEsrhx4UKfVVwTjH1D2WyfNWFgisrLO0vWd13k8TTOYS3krz+le3IaMkKNivnC7FDUiW4E7EF/f8XELj8WLDznb3Bw5wDXtzr/ttrPR1wCssuJR1b1MQ34sVtIa/EAYiirmEpYmDjaF9RtzcoFwxnBpseKR/H01byuiL5c6avConF30QzL8ZiSIBMKZdqTcFD42bbmjhvTCyH9tYtEtY3MMN6dpPUhbVbFX1wnIwAEiy6Yd98fxQOQLC0256z2Gvv8KUkfaFyhplx81av7x1iP2GR6XrPDCvHGWqfJC24dlDxbugpr4R1H8ljc8DrLOxb3upfFkB+O3gvFpQA5X3U3/8nCGmz/R9F7/D+y3jQM56It+M3I5IycQUZnl3qyo0+bzE37qU2kNd8cXmmCKdW/+qdOw5Olbtr+kZ9Y0fcDh1zwYEgLX2hjpCRpMALpoy06r3D2eikvc5/qPTK9kxqzn5LEak9o4y4cwYrDkCuM5JqHz56vh35NvU6O62X4PTPMjzVYsFAiPyGElPxb1m22jbgf861C/I86pnIEcfgFrIDn3ET9GBivaNy4W+1Omg982chGxihAYAwM0g7DgWZfMogb5RsvUnQwpRIDAq88rGaUMpe4XigXMOGTaPU/8MX5yJsIZh861QpoZseJ8Hc+vUkOU1AXg/dr2hvdyHuV5gZ67EgBI0JQfRDDN4Lw3NJ2eUWseAeAOPnBF0W6m2+sqKpcoXnfJGephYmnrueQPGmvDLWDGlCEL7DopwYhKLNQIpBTBtu8Gdt4Ea1IUJ6L4urlBByXkkyUA8tiHd6wabpOoa/Z1PELVdjElHgSxwr7YeKLKmcgnzhQcFVzGt7XGztzC9vhJeJICcUe1BNbVZFeqBU9jNw+JsfSanwzswSB5uv2HL2/esNZ7R0AjyLv6JlO7DeIrKG/wpjuo+MFNefs/efQY/N6L9ABR3OgoKpzCk4m0hehM+r/AivPI230r9oK5ZO0JdxA+29mF9LYufJn/mm7hJYsOhll5JJB4xkIkH9cLUepeYvW3OyAEWdU1hk0qrEXUIn427VlC2MASjeoSytzYY6cyyQ3ZFRp88NCYw3IxCMc36l9qADkplxJZrm/0E3/5DNTDsCAgDkG/x0dlzLSNmPcBDvxy4c+hFPfmJZl6eaQ91MwJLbuHU95yYIY9PHUiGvc2O96C6mpCYpT9zBPYF+sNfBx0adhvZBZ/Mskslmzg6qPX8h55tuAIEiKx8FRRpsdzFkjmy3teWVQmsl+BvgxQrtvyLG4V14r37MskkKHk4TkFMmtoEEgpPHpAbJsB4bCuMXzKL60mEWyTDquCcQdszgL9xoExpP90HFNvxAIJcmFpcnVG34XZfTOxwhd6pDzd4ENNn/D8JVwXxNua7VS0eXtgHeXcOhwfbHMkeUxj0lbPOxjx+5n2AMvxDDZ0doC+pV1QRxTyLTp3Xg44r+T2ZPasqQ/zzW2oDUoX6gZJZ7ltl7LK4BnD7/cJH92EuURgCNCR/Nw5gI3SbFgtOcYCSrBfAk63neA6cIcZd3KfoPZw84I7ctuCPkmWwBUlHi/iIlEIoCIPYhKwhRkQVBvH7vWKRQyA2vNlV9nRtvVCtKJ4ie8SunJoqqq+v3SyF0iS803gRfby5/Z952dRFpcIdDXAxz6abG8ghuiXqCeVjuh/AKhRCyZzBvpgA9KOoNsK1ebMKbgKxCEma86DjpKPmDx+jBGoPU7a9Mlsk5hcYK8va0MxUDzOnq1j+r5PL6TTR2jUWsjGm/iV+dKlCquiM9ns3EXxgGvmKmy9pXvTZgakVaHSrDBthddSubbDeBl4xx5shSwc9wUgFrolYkk4A4fwnipSiyR/0iyU8m7nmLzuBUllqPLsRCtb3O5eZFx8rvPTIMErqMGMV8gzLR7dvk9IBONcUMg6AEANsU8pph6qXBAyC3nY7bVZJja2Iztg7MyqNzO9G1PCCTDXQyORjaCw2PKDusddGy/i4qh2Yq6f2r/PAgQN43dglztaDrVyH9H0lNQE0NPOBIZ2QaHpuCC7RSqA62ET4dsVzs9QshipigcNCBaTdHFiE+JfTAMHPCGIdxfk7LHyBnVsmPJi59l2imEn2jbpb3y9dO7hGbJXecJY1WONaHnqyxlmtzhW6FWHn2JLgl4kS2qftACNq3O6U0Te9Ox3AT6orqdmOOIKMCPEvwkmf8JgUJtuXaLEP9KUZA9N9/9HgcY47D3nrnBAKSLbYxg77GuQ11JQVdW0inBA4CWHEWdfw0Scn+k/ZXrno3JUXmPb2eNEBjtA42ZdFmqKqrhip4KhepKm9QcQ89QwzN18ZcvRB2Az5D5UrVuRBZuTuUL+mZXSaZjYmubTSh7IsjAcwFQkHBOOX1z0zRum94+s5AetqtrPP/MLudLQETcgBk6VITzpWiObQ3WOiky1CBxmW+aoo1CEhPdj5mNIEmbW64zTE8/aPrbuKIT+XCP0N1Prc6j5m4J16A6Dakl80P7btbMtti/AM/GfYYNOr5WOvB75jxeBI7H99ANOx9qDgyyEf0Jig4mBQC1r/bCMuMtrmLkfLaZ8H0HcmOvrw4QVUeYENhgfB14x/RZsyUJWEwRNzpRjn/RratHSb8S3bUWKR7OvhRiNEgW+11gTi3oBO+UZp1PtVnAc8CI9daUJTmbcWGWq7lrvHWD9vguhUhvEihrQ/cx3Pek8wXaro+XoM2Src1Jc82ikdSwdANKyTWgz09BZ8DCpTvEX6ml2i3zsaW5u9eg5w+OH2oITfoak04fMzId7UIPL/P4BfkPwHTYRDjpGDygA54jxDVZ8cYi+v7bQE7o5URzeJ4gnAW57lM76uBm2RMoziIZkrqF21MVFyF/8TTQ4bs9p3Z7ZJL48APT7LOyvrxlU5RNX6mPmBam4uuKFp3HFtcchMGAFo7yXFl3Vfk85CR972+DuIq4PWlZbWC7SmjApws+8g3wc4wftCmHw6mWrG4P8bnJEHjwdPbZtNYEANc6kDy6GJCs4xV6dzJtJeqSRe4FYd7b70KGIAnhRfvPgOYINBaFMrTuUS3f4K6mKKoublcGjZl9wDyDQrODBMNvZwsgSkVwxjTwh3bfDgxg6xrLmm4kb0Ks8QnWIkKDSTBOd0/NoYSeTzOiNfG9B0ZOGSBLVBFa/Dj5pUmU/N1oRmgnhWWj6JCvb6zuUAGpxceZvyK4cHOWM6sawhzLhGPSx2NrEfVazNWL08tX2x9tPR5rwbPdocP4DIEFFO+qrQuFoS/9d/zZk44svoxCiW+jvZDu9UVfTGPlWdisQl1i46JjlYGnbSdKEx7aYDVKw6leWO/6q+HcSmSWzOh+dhB/6ErOHQfukqoYOyvtM/uKdJppKNMFF+IL8NPzovXqtPE5JR4MRG1IbtzJkcv59GE9hCHbJcp4RBRBo8S3mgU7kjKod+XMZXsWgHiipWL978Yyaj7D/GV5/ILX7T5O0cOW7UuKy0fKROea1x2S39ASTCiA6n5lDYzvtG3javtRR4WsKglwo5DjPOxs1MA9NzyfPHe7WS1hk8Krb6IuBsAh+8fNnpstI6PTXJK3PilAp8UyhUO4AKLmTVVkp5RRdBD9saHtaKNjSEUdl7kQ0jYJaumEVqtSkaAHyePD1Fqa/bzvjmlt8XX/Y9CNZ9T0N14UG/auxlztCPYHOf6yGi+u4IjZxxiVbRDX1EQpBXBAqv7R/n5GAliI2ImMCaE8YKYLN/0abnePfEMxDfPcLAtTYxdHZ/wdDQzAr2Uoy2Fgxmps/62QZyIuZzAD56BCDwGMJgysfI6gNW73Lih3CmDNMcy0R5M6OqdP/h+LHKwUlPNp1FWDbmXcsplTtp5rYjgJttMK00zZYM+i1Hz+up+aeFt0iJL304Pxp4xCSRqzUhmYrHVPO47oFY0jTtprgAx52wxWahCroxvDooyKdvcCr+ICfRvLazEcIo6bZO2dXAqokp9NgF/YyWpj8aEdAjvOkGEpyw9C8S2lvKY6xE+0k56+JmolV5of28Zq7YhX/c+Wmy+lKyg8a1V+gnldEZX19jQBLZOK9SnSHIMLMksc+zZWc1LT4rK7VjPM8iqo/Y1SnTLbi2oXpghHhO7Wn6ISOT1STJ1/7MxD8/LZju20Vn7hSc6ebEyj0byMpEgPaxQ1hc0CvFwmD+aNMJS52Jbt+qVx8ZY+OqXFV6wwmRQ9GSjck04zv03IVNU0o3o6bdFJ1+5vZD4ZAgjrImss0EArSOKkHCxUbkESR4gdYpbJtxBMPKzhCITSQsx7q6GK/Tcgw+vc18TCoWyYQP3NaQnh0GqufrKhJI/Dsa3GPOqtpYHvjrN3z4EtTG25bfO4eINTh8XqLJJrJMNTvVoWjrEA6CiD5A86XTK6DhNowyzWt4toSN/63tN5gQisx2USTK06mmOzQlsv569tmAP3aVV7/T8W7zz8+SbbwMIp7bGp5KUSDACIjK1ncCzuNBUPVYZnV4jjZzRNRmboBre/hwIIjS9iF1hQ2x0K/iMj1T5gxja70xYn0skpW4a+hLFuut4jjR629cZKe7ssti+FQrQqYb+YZcr8jK3qyeZ7K6YpqWwRR9HgR83gLnHW99t+f5JuA5GrOU9Uv5Xz/SxE+0hZexNT5ARgM6gd3rUfIxOFJ1lm5xJ2hvQ23s6brzi5dX/CdTVteQbZq9RZ047/rXEonf0w/FSyMN8KaSApwTYaJX7Jl3Ck8bL08j2vskI2ntMYOJKCQBjqef/iHsPVr4Z5AauRVZpaxwkJfdo0UqJgt6yNwGKGCRLvXW56/LzcCVc6pszuW0vSbsDtM71FW5cTi63VY3AtqM/9JBhTR3LuA4+lFYB6PBnlWuh7+OYsQliZdr1njgiLfCm+T1PW15YKKqUZkfC8AuhUOmZa6molDvkZ8BxBc2jpdhed+s14ShSMpxV40JGK2dxrzVCoYovWbMN5u2zFB/Wvz9kUxx3O9LxPgLRYmY59vJw6SfetgfZFEk9xIyPqb6O+MCbYE5JcFx99QFxnOyl4SQYRjK8TqN+AluqfKF6F2q8+nwydiCzceCAWs7WTufg1jwQUkpK5GbtDb+swjlJPsbnL1KURAOZKqawAPQyfRN+Ertw4HlD+kQUpFp9iRu5hyNtoCyG8DgWNyIWy1c/pRs/9T6JW4O76UlvD+gSKCRxcHLgdXE1I+rAVHhlb4Zn6EamqqOcQlsNcY3IIZzHBbRVsh96BhsUaZd3K0WxRpEERSHGbK+rKZnT+NpwIn2WTmDq1tA7ZJQWBEgLwBjsPtIlT7A833OA+X6IMDBwiYcb3G2l0iILebF5hcPEv6LPRzYcmG7jrmTos+om/UF3cx8lrOIqq33rSaJ2C0EVWrgvLLredYNtbK6Nx61fKg8mGOoKRj6qvJoZqPM89r4jCCn+/5IgvCPsqqPKBj4/+tBTyCyX/K6UMnuein/MrBGxwqJvy0IhUt/xHwipWD3xrmdt8xzTnbUGMzFIGhDXTupeG0bCPXh4X1S+KJvSR4Sc0lXA3gt3OIw7iAnocg+mGsNXaNVRrSTrhAUkJiaeNnymOopjPg7XBssR9lQ9pm/H3qNI3AQABEN4SDqtLacOryCvl2ZamP4DUcEh4JP9md8GqMCBWhWVHCwUVVzwIytg0rKDJedvWIoHjVfZG8MPIllrea7BulPLoS86OOCUeOb4sUqiObIL6tLd0Dpd4Eq+fXamNjGmECRe3Ib+n9IuUNrfR/68YKXYx/hgrFW87+jBvsv+cdiXYaboj+48mIA89rEJVg1duzteL+yBDyW/YKCHNQufc87ipxfZmVImoXRSHWTfaNbPf6QsnuhjCv4eItuccELqCxwA7SrF5c4HPdvktV8seBTkT5zkhdH7f4nVYQtzur1Zthoyb0T6xZ4xjB+fR5RPPCyPnE1TXShV5NlmbgHowLNAhatdBKfYdf9Vg+Px3CiqS3anfGIbpKQ5F3zZ+ARXOFUfhg992h9rCVmxaEI7DYynM0DtnvHWI0zcqu6lR4Sn3Da4FxE4jV5GZXg8uTildNsdZauw73gget7A0/1ckUhpIG0bbufPDDuvQUvKxVagm59PL7mm67Nn4l3G7ssNNq6N9od4p
Variant 1
DifficultyLevel
603
Question
Zac works in the electronics department of JB HiFi.
His weekly salary, D dollars, is calculated using the rule below:
D=500+0.03E
where E is the total value in dollars of the electronics products he sells that week.
Zac sold $52 000 worth of electronics in a given week.
What was Zac's salary in the week?
Worked Solution
|
|
D |
= 500 + (0.03 × 52 000) |
|
= 500 + 1560 |
|
= $2060 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Zac works in the electronics department of JB HiFi.
His weekly salary, $D$ dollars, is calculated using the rule below:
` `$D=500+0.03E$
where $E$ is the total value in dollars of the electronics products he sells that week.
Zac sold $52 000 worth of electronics in a given week.
What was Zac's salary in the week? |
workedSolution |
| | |
| ------------- | ---------- |
| $D$ | \= 500 + (0.03 $\times$ 52 000) |
| | \= 500 + 1560 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+mwApqzdw75tv+vrGbiv+rQz/1rpNqBn++43vKfGLC54P/rySKNAxvJUyGfG+BUeqf7uorL0IiNqZ0xbavFicB5AXFFVNApe9rgUpVZfx8fF18YYfPA9qgkmMS87cIG+mQaN3qExyC0uVVEp1ahcZgvbvyz/tbu+10bD3allzvNx1tYsQ9d2x2hPgVrMwtWoJ6I5AVSw3vsBThdMYR1ZnG1GxwIreDeJuYTSQQ2QEZvXkeQazKmio1vIKRPXvcdHF+L6bvwCsgP8NuKLK6SaDFpfHrbAyWIAjV5AKOTbhgtQ3smg/91mkZS/lLu5/ddAMhoIEkK1fEctgkJxXtY6//Qy9IvSEnef8iipnAUBjUF13h2RMYd/xtZDPta7rmCODvVtD65h7DfnKyc9qJD0g+FjE4/98hogPsmba7VWCSgRDqjGGgNygPS4QttKnj2Lz2dTT4jd229wADr8DqbNdoPY4TsBKHfJqLZFQvR74uJi3RkS3B11/kSxAdjhhtki5IOo5OpmjmcOMTuWmH1pZ/V684wiTL7boBXeTjZx8s/f3lXSy6s+52mHHYp2N6o3tFgrUdTuy0/cNGr8I8/B72ul2/cGS4HpjxY58YEHLW2Op2fBTe0tE3g88BIFJnXxiaFk9ypTFeqHA6JTDTm+xQKv8cPDLDUqw4QfP1xL9c0hdlMTXC6YF1zBV05+YZmwAMKxSuAOrQoaGkZ9g8RqaVnlTOMApIr5Q917XAy+SQB7rqzKzZzxim5axTV1sls4CGVv2mtujx45suMf9yPXeP9aIKxUWP2qpNDmKDCCp7gXtVr/j1Im7T0hNzELOT/oNpryN4cBa+yVPj0VTow2geeeQ4i1QtVKDGlaBpZIVsqDB7u8LxdlscNywr0Wbn3FqOI5loC6r87QhNfkiWSMcbNCxFQ98gBizVyJfcYsItVNNBnUtAHTeY1CcNJzO38pMMX8tfrfe963s3IWTi2L5BBrXZyRSaAiCNnE3O4n3PKFm4KnTd0eylTYjo2RR5eyn9ok3R17WvDr3F5rQdsQ94hpSRUHA71WZVSiGsXs9pS9MUnAlpjKAO5hgxhLZrSuACpVrc+o41wtR+MZvH+2M7ml/IBnuxaq3nRBHH9Prfw5bksPROvwSnXXfF9mcQQBTcmeiDwqXLefgTHX5l6eANpK3VO/ko43eKFM1G1Nw1+OBRrvc8P8tHltul8OZImB2PXyryUft0l8wlurxbjYedUvOrHaSACVI0TGITbGo0D5zoX7+19oCuPzGyUTbmkW7zgdwTVJEaenYF4iT14nRwOzDcR2/swSWLBsZzZw43ov8A7M6tj6jFAO5XbFsmpk1Lex72lCAWYgTNIq4IE29iqM2XVfMeo3gXTHkGK1QVlGRQJHROqY2qBaO9lVaMOx0fxoT+aYn6l9KizpsX4rDaWKMyaTN5N6hp9vo1bVZphumpbc5j0IsAm+BsmooGKZaPgqXhhBMl/CMJodgrc7Yp/wB2ERs1psTvMt2L/wptA0F5+H5CEyMBNi+gaA9ikhOofa0y8G+LDAGPNoqE7la2bcoZ25JDGCrO213L0UPqw1UBEIiH220UL8j9qIa4SePdspWBK+ioh2m/cD10bdT6eQ9XX1z5hxDXVA35at0fvQPXnWPAr0b1X0WpRaE5V/gHI3lTZXT4EDMHCujac8vJ4axnfc5i2Q4AwFSIn2XQMeWqmEaFU1GWYJwb1UZZ++FVZFGgTYMuqBMTOqaIvzzKMdjTPZJuajpTwN8um7+jGHTOAbmkYfgPf+Ub8VLBW2ZUqh8Q/CbKLHmVxV+Uph2pHjWPP5CLqqVPFi/wMl+daxAZpixiuIyp9n8Nf9oVrNwOjIOlmSYi9QpZQB2WVQbi5/ISh00/RjM1D2FXQY8zGNV5cGI2M6qYJXjCcUu36c0DAhcV1JhvcwG02bu9cfJh2at3axmI1RIOb+ndgjzf580zBH3gC14MCjKYGb58K9+Ipp52OvoUYmc6cfERscApTKC8idPtWiowc9uisl0RxR2byNluohkIz0YMR6wwYE/qEtbvHpqP/FMiTh0Tk97NPYIZ7uyZtW3FcEp8//XSLn2/5BJRHyY4872+bWfJfDMN0XgktSA9SxAvpg2gAhNjIAy6QTS3B9KfWrF4G73bsbCtuKzTBXnuudtBIH6l73v9QarhbU3x5jpQC1n4wzrCvubYmiAJU6qCWtEdYpIcHrJOkIIQ+7kVB0ZyohXGbbIZRYX4K/Nwki7PENY3v1Tpx1nZYyO2Y6N/eionFtyL3+ojQEouMHdGdtODHeP6Pu8/MKeMrtb2KJp9gfkmADZWEeQVz1dAc6ua7C112CAxFjLr/8WmmWlAxhmrUbfs2FT1XbnaFvlcMTmoejAxn0QBUU9EeGy/9u/Dwj/sLy02iUlKxCr7QBQIWUudLOYzpWg9K5d8dPZcJ2FldB3sHds/5Z7eXzVLwWlKBo6UOz7Y+97Nz8jq6NNmhoLhb9937zkyRbebUNYJtjLUVL2VA3LsWHeYu4/XixtEa284A3RUnY9Gg2XVeOV2XaR/KrosonPihVENIENjaWPT0jVcmcPKW9VNz4dF0XuB83OoFqzWhvzwZ8MtMP9SAezE5qIoF6PpdaTGUDnhK6gMrzQWrWvVHNN94JrTPhQPwrjRbxUHbX2SapRDjWsqwsHeAtXbJWvjOjUM/QCMfZ8UP/LKrThOdiLdRKEPB/BDy0IR2Dm2wktc34/V7lieA+dM9dzK6GXMyYgcoVTFpy5e2LuwqyljqmE62lTLxgh0+Hz10ruEzylFbU4WFdYEbbW00Z3DOHFcL7a3R6BotFuhgm2TOEc+sHVg09v/0LYIUOvWgSJq9JOqOf0XUqMBHASp7G6aH2KocvbTKaEIliHqEsc7fNw7sK7URjcWYzlqP9awssXBUq/DW1Lq1Y11KOo51LMDPtlj9n3mQn2WzR71BEgbU6Fv9vhuy6Qz1S0cambks0At6FUwldn77vf/q6CKhx2zWXjJbamQ5k05cdynpba5FPIVvwEWdcBGoJnFC2K+EXOF4m8+snFDKpUhfZMloW3GMpsDN0B/3/EgWyZGusFUyciC8VcLnI6kj8DJhhC4ow1B5Xd1fh2jTdb15+GJBunUA0jQvayGkbvvJDaiHZCq/cuZOHQ+X2Ze+AfIXrSQEm6t3oMoMWn1WcWdDISS0JXfcw8MAleVNcsg1PveiF/OZnyA7Ba5O1tKHa1+jDVK/TTC0dl6bsXQlgAy5/gKjkYWS1QKC8oteCz/1fg+YC5NE6+ZzF57oQQnqe3ct9Rzo9XMmbZd3RRSXJVslULNfkTeVzvPnuToxekVW19NHqE0SqmwQ8MwgO0c4Rq8SVml/ykIPXlwfPcnb80ZKvC7gwofjAtmCZRZMcAzXpnFav/zZZy3FVAJvkF4UxBi6mAVI2u2hXojcLwIA19Ok8z+4FJrS3v3Rc7SPSkPRLpum3SUCs/Fb9TRJqgRQSMWsP91bU+K7kCe2oUffXdawBVO9+CflWNxcjTOdeudGFQkKlPa7xN3Be7Th8cxhzBQ/aCMui7wwwP2c2UlPn8KfhTwb+6QKM1PYAsmfP6B9DrRR3A4XqUEiDdxAUMF+hvhXhZyVHLFFdi+wRtxGnLRjds40uDQjplXdLz4zzp/XRYuAmscriZMPK2Z0r587VPjVX4M+D7mtCtKU1U1gcrkTZsRLHwlqM+E6AzHE6TZzUlETzzwMN+GBhBrXrJm4RCcuehh9hRkOMjO3DzpT3d8reKzuG6y2B3oR4wbJh+7Lt6uO3M4Fr1FMzrD6waDQPoByEQcB+7nwR6VtKjxRYwLqWz+XZRLtG9+c92cS2SOC8v95s4C0o99d0ckleYwxEAYHHGQH/wF01nLF/AhlSNSGYskWTvRfTs75sYIZsH65oztz3JE3tozDS+et+hHE7hN46qINTB36PffsbsNH+43LoBKa7i9dJiEdCfGvaOs72PvSffa29fyai5mbn3isEZiFVTwwPbCxFZpWMPqBicrCGP0RTn/gGd1vK1nhqHbQ5h8C5+uc9pQwyUmPH5z8AjyTkMBOrQTHJOXBJx8FZ8MqoX5wm9ax42pHAFC+7l4nfYl8LDIXpBCcZujlJomQvqgtBedhnhC1pA/0ImxqYoG5eI9XSvoVn0d9FLDAkD8oLpNQiEcZ7DtXnaxzxi6lG4GQUZpFN/XGWkDAVumkW/huSLrNWhxpgSnn1GYEo3Q1j94s+ffc9SkgS1lvmRARlA4S8nre7dk6DQMpgaMNnxOJFR6sPKOPoXmDC0nu9LZBmDMourHhAiR74GheIkW1a9NU8dlLlaye8n6Pt5OQErTfj9gzWueooGfqc0OobppX/257i3xEzB7Ys5ebSW0e8psCivIVYjjy6tmQ88l0NO7hNbJhON4eq9HesSh9zWvkXniD56oB5lnuqptoIZVjU7eonNHTcVMBFrgM7UK5MSjrCy1RQMfCgT4rPCbgescFkik/S5+vTPTSlC2jL/BW+lwisyPkpEDFp8zWmVqZOsvfijLovRsJK+0q1sdSlv3dqE8WZ0BrmXOHHUAC3jURITlgPJh7L6hKS90zwcTBcokF9Hi62IbwvlvFNbfs/KeULuou0VH/VVJz9e5NShfZH/hSRCENps6K4dPb/zRpUbxc+8lO6GFXaJfPl1sMZ4Kyf8KrlRszpO/2LuS8pB3HvaQ6CPUQ1T6gx0j0Sf0mGObjUxdrM7QuFArhvCarl2RFP3p5mw5pHm1vwYb1lBzSzq35FYTB0PfpKvRmdX3J+ZCY0JWnCVbwdVq5q6OPcmj2v+3zr13E2oUx6lo1ff5aPEeBsjfDGZJmWUMtKu/aL6nYhX3FzJVULyNsKNfmG7lHnB1aunXh73cJo7wqx0VH3hE9/0CmOusP8GmcTNYUW1yzKWbk6PsCx+Z3tGRcg0EOWHin1WDYFyLTw6D2Tf3eLQx+oQKfUmvJt0TTQgxBtPD+xSyg11pX0Do53a6aroEtsSEbdmdyKgIaXbHWXfNgkY12OeDDauIbMAdRHrv1gHTxTxsisH9DyNWPlCmKdM6jnDov9Bq4ZcFVJaaz+ChtgztEgZ8MYJv9j4qRDrEK5Kle9WmT1DAMGaD33fmzbthTe4Q13cGzwBH/wOxfbKiUG+M0ZV1ivRmed+u2or02HcM/nYbE5SSnucBHzqo0ZuFMWQhqDIO+irVUyOhfZpQnxAguyZpvNOWKmK/Z/uiQ+ZZh2nZbEY/AjOS7PvdLewtSeXwJHstPUNvSXpvwFXhLGzJv1STjFSA2yoAn1tO9HJzjx2TClCvBHSoS0i6T9+F6st37ZPPS8clXNiZaJjto5XsJwEO4ENEvLa/DJ/rPTiBJ3K4syCpOkBaY3QKe+mFT4TjNXu92jie7XRhLSUiqmSs9Sm0fdKG9qKyEz5r1FA6Nc9qtFrUHiWLhqTRiRoO4Uc7KdxDkiH2ruLD0Hv1rARsPVTdPlh8Goql9EdKbpXpmIVvCUDw/zOnvIVXtHiOORBSJVH0gs9CPnaUVNXisUnDnMHbyWhreQ9kSG5jaLbdNv6VKMr/QC45qQgz5AI5ESocsDqfA8/V1ATSefoJ91DqKCJtovx9mKNNKkFdFg9DqWhO4XBYAiuJIQDEDNQdjLDePEOUIi5sUds4lXn/rX09CrfzYFys90r8V4FOj6LsnGp9OBMxYtegL4YW5IovHFIIBq+3sMmKxAn7BRlGWHtkc5t6g943JOAnfvhPjnTGat7cJdupV9WMyHA1Gl0NNuF+OnJU+zVpdA6amhIFvXMq3tRsmX4doRoPjBz141Vfbc0w0WzeErznHd0O6J6ToyLSrqELRvUEelCyd1s99NdcyWhrC+nie/DAgNrvC5dw2xEDUI0FhajEPrzwan8rrZSXql2tn1DCEpb5BcOh2hH8gaqidOUU6ozIZuXSUAJFtaSFO23M3xAtcvTkwqMJqjZr9rlm+DFS1QKVaedoiCy758EojXVBG44PQVVVyYoWvN2+WTBpzMYpdVH1lDvhgwhybXT38P3EmYAkQYmwO6tab705j0JCQoETHawkZE7kKjJsivrRC8OGUNF0pAc7GvQmX6rWJ/3bV8RdvC2PM9TtuM75PejIX/N2FoewGU+MvxOdAhyrEJRKZ3dbcEocNlPCXd6Wx+DydAcQqzdL+O6iCXhIX8nKQFtrGR+nAeeaLajnA66eTre+NpMFUckTgQ/op0V7H1Bd4L4QnFHqZZLtAqAjAmuep8QA1LltfxKAxwmBCrgERBIebT1yFmLu0uTejatvYFq0N3PUbzy77ljRtwMBWds8q8SQzDEtuOdzTPU9gQSNRtFasPm2M5PEPxDk0c3qqVKzMkZ5O6hLxtrdyD6fbTWAK6gimqibYNfILSjo0W6Q7IXRhzrIeki23sboP0aJz8NMzJao7r2CI8Nt1n5bCdJQ78JS0oBifPH8tPO2w6q7F+n0FMT5kCblQr2Yyr39tUZz/wUsDz7q6mgUL/kb0k51zBjaDnGiSqrS8R7Wfy4cvpHtt21Vr2xtJgsiFrztmTkGsCSyTks8b61fM6QJ9gXjmq1i50rxBjsNNYibMj0gpSiReLs/b6ihqxAulXqioLC621T799xYFKS+F3NWh4bTk2npBt+sLIBKj8zAbw6bufN4ANr7+epOMYcqLtjqrPAhfQcCU64MLHccdqKWyi//BYszzemhK8SdcFYMLTYbmQRQXa8tWj1YoK8kKyCIS8inV3VUoXPZ5S1+3IpB1J9xOeIiaieyCdZFpEvwDec3qOH6Wb0Di9J2WQXS32mAuyji3JBV0Wsv7Mkd3Za/Xo9L7VGpVWtmMCrZF+ZHmTgGDNVyKv9CBhMhic7s6qLBg4fF3O6Sm+ljp7YMojmOrEAS1sy5M59jYW5CpXCwcpBboGgGG/ZtpqMhlYQ9xQK53d5XbWUae4v/MMBME1wya1aZ6sJCneMpfUN6vzRWmMDLb4WB30b1Rf+oTMeDV5Mqi7N8YBxhpBExrsNS0vkGRJZ0l6xGxT4bUjxDQfFWu3cLtSUMldEkUPimFormFAGdBNUV9/Rl04RjN/tFHop+f4Uel8UaNHkQkpHNS+fmvVDgN3BraNayN11gjn0QjqkPYWSOmybpHNgjBIL6eEmyaeWoQbj4LihGyYpHU4fUnRrRzaeX5zY4v0YlbW7afRxKfDp9WoUTDr+lCQAwYH/TtudAhGQRqAUQ501kETjZcMsS9Q6/NyUGmdkUCaDLSQlaU3MKIjT+Nm1rakze/imKgj+uWRNDSod+VowcIIw2j7MKbfS8Kl7Mo2NuZTpv77+GUuWwB5aXAy//QMglHVm20AzUhTzV+pRYKUBVT9XDjgx1XOaq7Esz+D8CXH7+67zNtzTAMJyzutoCeL5RHeehD9W6yL6lt8tFcY2btP6P4TNt4OfyniQemoG5cSFcPtIoxB5b2lEMjIekSXsOvnd/hlMzr4DX1ePA9EU1ayr8pzm0GVil31Z2f2gI/UoScbrMSN6rHN9hHGmM81GOKxGIEfID20k6aGW+RSVEqrJit3q6YNXwHLXQ0ubVukEEY7nf9t4HU+gLx0SDZaszPJEckvLehGBFqZj8khdBAkD0fJpM9L6qNj60X8c9j/nnQ64hFCciVIPZmyy1elVa0RwSpn2W9MpIvBosTCNe6V7nKKEGweBlkMZoL12N49AXcOrLEIDbo4Z/Tn6ozxY5YPRFEu89xldpXIy4YD8m7TzUYt7E7nDPPYmu44SfpwZMIYeZbsX5yk9cGN+OcmLzyWqko+YvcHPGTrSYM0pgQbo7iR5Addjzh1jyj8QKRtwGNoHW8LBd0+yowZo/M+pyHo9cghcxG9tD9trIOLJ9LDQzkkydnytlJF7I+Nqu5QrhXjuaKYDFCrS2ZPWIaN6qcrmA/JE77PuLH/zO7q4Z1r5PuDdlH9WrvcAAz4tl13tYyXGoI43OWW6ZtFtr5ofTWUZ7N6hUzsbEpY2M6tXgNFlNRpEpWaQa4VFdG9e2qtEDxj5E2S8ZUuus1KDcZm6JWK5r5Ysg/GK/y0kYMkwfshLlUWeSu8u/NUDARNXGiRTV8E2uaa2A41ggr7XtUA3THdmZjSTVBlefmbSORTOcL3FOMJnttfuQr7o8uutCNWQeGOPF4z1xLmg0QroB2ZaR3CGEke2EyAfOC7YlbPbStDO8fS3yJfF3qduY8KAFtBdXbpWesPb40ZRdeC78vjhLCM/ME2S6VtaD4PosX+DYVksC8QEQCnmPCgayRVQiB2iJCilDPBgPOw+fLF9uXmeMsAX6aZkGuT/Du0j8Vo+yExrQPt13BlaHFXkN1BsVBv4eeKS7qgdLKoV0UZ+GuIKjKszdUOiVmWwgNW0Ed6/G0ee3qNIfO6NWfKI+bdZIXPfwW1aj5FbU0bcsuffj8BSrkRF69/iYzT3TNtvSoDePIJsf8DYXd3QH4tmKBjoU911LhO7tLzYlQOeZ5BBk59saZygXNigka3I+FubfkxiOYFNFYK9zg4fG+RUtSQgy2o3KG6nQPUAge3eAu0PgW4l+2ZrhbeTGxIjZl7mWP2U4E0KiK01ta6ThCn5POcXBXUrOHCnNCYh8SQSB+KtkUcLup07bLtf+Gk5culaQZaz0MPCq+TjMdMflsOPvGufeuFq10wWg3bpUJZ+Ve4mkeAvhwJnRI8YKUNrdJsdu0Pm6g+dXvOWzgjjBeb7AuG2jq58Pq/ZWnygLPCuWOdvwoAn62Q62phjVVth14sq0WKgOaMqoUwwM/iUX+I99MlJqVEox3Rkdv/yQhRzvaVEeHrDTVrH5MI4VfmhGovdJ6JTOsnnbf0wGIobklXzQesDD74jTuY6Rxkzz7r122P6TW3XGpOAhgqEc+XNHuF2ZfAN8gJFbp7bS+kZSdGDT3VwDkmF42EQsC1aC61E4rbOWQrK+phdo67vLM5GPOxEu+CpSKrEix1G8eLa72DYfz0URU/yQp/Pn7qr12yu0+VPIzm9kTo9EfvwQ8IP5rlZNmewKV9WlYiMlse9SX9wmkjkG5s0nlJX7VuJJg/kfp3pOp6CZDy46yznSFhJJyChNKAMGUxr1zcJthbheLMdjNV56Spqi6+uPe6i/6t0ZyAGJRpPnB5UOl0Vb2YTkr6PunY5ovyxRXk8IR6Cjg2aT7uijDfNjGQTBas97W36Jpbx0euhwXDGiwTR/GgOOojqw3t8J9VEVXSK/j/njvFBSSKdKDlYoIKdwFRM9rQfJ32RVjrH2ebX9GCew7pvjVehJnPgLxwxkuogdYdbeFDTKtzcgvXEb3OLhq2m/mUxrv85UqhLBK45AyBbkpINmbt6OZCilXc7YJ9w1Df20TioUnperiPQwKJzEC7Az+v2t0dtjhIF4yVkv+E0Ac2RX8doqGp7lu+QJkyMfBShefDu0UsjZ+ZfMywL1WgB7lIgGUjeQfcOAu7IqdhyyHF1XHTIwP4YIaPl7lVvWOwupS1EntNR+76nfSJU7x2kpI1d7Uz03i8XKNQxNATePp87nuV+ahp/zn7L6Jjo/3Bgppb/gMQye0qL7a5D69/x0BvOgLTaKeIUN4YKGT4Wn+YRcDZt+X7vOGaktSpFMy9CBlsg5BH3WPRDLBfCW4xtQU71z1ghHcqA8X+bf8L+q47eGFxyrOnIonv68rQvxtYETODZyhBl60jP+SaZ4A/YUrPNp6W0Gvfoyid25U+wvEXSNrqprJVHiLBEmO4XJ+LQeHhjJRY3TxfRhReKW7ZJIkiTHHhsiT/IefueVn3M0ofbZ/b48IkkuwlefqqCWeYmJZDaz39XoNUOZ1jLx1mc3iIYdNbgpg0P9GbYxy7AX5R024+quIXTPltQexIZZMCWRdEyyOZXSHwnghg6a26ux/qgwYVjRG0EStbjXfvT5BRPS0iJ3KmPmh8iSkcbX2Ea5h+rLqj1o3evncdPWyenReBUh6eV6aqSxmwvDqxPqKP9Di08DrRxPWQJyXgG60wdE1t6icCw/5I0LcCF3r48zJOwCuZQXxwWZxu08t3YItVk3WQOO3UyQBpHs1bXZW+CWFnLrBf+YATc2hlf8HI919nNrV3GPNzaYlODEn+lP86o+CBSdmNMBsQO7FNOnH7mpdrYBkswSDf08baFgNpwUKgzreQWn9MnAFGwjPhXsInaCGeD2OaMIH+J+aQ9ZMqt266TIWgLSQlMAFmIZwD1IAF29nPN9IFLmJ/qu0cipCPgGMK4wv3y9xmk2e94NZSeBxWxNzsiBXxRl5ZeIawlg4vCD9Mhv/DRmiJU/drrHBug1YqfbJNMwjwLRS3UftOxTYopJ/koqX8bfYazJJtvzXisXVYTL1PvRTiYteKH+xE4bNSZfBEAlwbrBRRXLrl/1/NvFNKsWKziH1YKJ76uwITggx4wE38Jrq9xWVkz0xLNcadV3sHSPbzlI/7bM9IiFQlSDB98PU4yIdpF8pn8KO0QTbGiwne9COkdbhKjk2uU58bE0l9oqMdAofw5Fa0HTXcaXssARiEhlGvzu2ba3oJTXNyHFG0ATr/jm6R1vvfIZdX2pKReylRiCX4ZuMsY9IlVDNt1OkxXj05uvZe1uqoY64QTpiHd/Mw59R7rL57e3uXih33p3URn55b3tJiBSYaJiHCtxEf7xjzd+vE6xmFlhc0iScttacgYwBzUnrTkw8kiJgvsfmHT/UMpfXu0WZEwuUbIGNtBjSyTDLht/9rwoji2RntJPuke/AtZssGAxTIFWd+G3msFE1K315cRtQP9kne9McWMW2pnar3IoleC9Nonrj1bgMIjW8yPlnkWUDyIbeetP4yqiLMI+MzOQsIgnQbtLV1QA2ryS/6cqWdzUWvmTteYkAM+cAVipYpiDWH8aCLX2Jbi21KRRyVOKvsqjU8kOlwtMWNHpmvj+jjL4blxbB079QOzjIP+uiN305oNZZRzCJScDIUE+W9qh6KkXMJOObsxE1plJcx116I09LJrdzLRj7yB4FunMXAvMbFiNa5aiaGqTG3IaC+gDQV4w94A9cA5QIbrqZPxleHn7/lad7Ug=
Variant 2
DifficultyLevel
610
Question
Lilli works in clothes shop.
Her weekly salary, W dollars, is calculated using the rule below:
W=300+0.08S
where S is the total value in dollars of the clothes she sells that week.
Lilli earned $860 in a given week.
What was the value of the clothes that Lilli sold in the week?
Worked Solution
|
|
W |
= 300 + (0.08 × S) |
860 |
= 300 + 0.08S |
0.08S |
= 560 |
S |
= 0.08560 |
|
= $7000 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lilli works in clothes shop.
Her weekly salary, $W$ dollars, is calculated using the rule below:
` `$W=300+0.08S$
where $S$ is the total value in dollars of the clothes she sells that week.
Lilli earned $860 in a given week.
What was the value of the clothes that Lilli sold in the week? |
workedSolution |
| | |
| -------------: | ---------- |
| $W$ | \= 300 + (0.08 $\times$ $S$) |
| 860 | \= 300 + 0.08$S$ |
| 0.08$S$| \= 560 |
| $S$ | \= $\dfrac{560}{0.08}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18brQgxahlecVtkYXm4HT2e8SBS30x8MS5wmlf4J5SqMk5EyFe05V/xQfJaw4DoAgWgsTWergxWzHcPBAjgmCQWgDAL1NIIN9gtgWcpMSmTRtAYOPf+FWc9a3UGYdNopLtHUipEt4r4o3DVTDKKt080aNGVHpvRKP6aPHSGGoc3atXKk8ALVmvuiTJ9u+ICjfSHjnyZMY0AbpdSpBm/BTkc/zfWglTwvvr5ouJQahd2117Av5lvyNZjWNM64mTj3rRyyMpX8kVqh/pXuLQ+xXnkqguVi6LUaA4D+3wJO+tVZC+Ah4PcpsRKiSovFSsq3QIQDaHKf2BkjQ8OBsxYup/kIWgy1k7g+tOVoPWxMRyGOlhFSaZSSpKbfSBom1j5IdgpKtjGV9hzo5LWj2gM6rt8jqbvdJbQOrMKdwkJ0gPOOTrfVJoWAsI1O0xsHUp/1c/+0kwz0SDNGKW8RTzcq3ijlnhqfdNjxVn/Njr8JW1sMlH+97WrGbwBtOhU7GxgpDF1FL6sN3xRYSryx27hLwkUBQ7dxzKy1sDMcTEwGZBfTx1qTtp17suAq6JsbFcwk1+MLeM0u7AbxBeLAXOXr+Rl/EOe91GM05X9owHX8GaXSAvzOKU2Aeeb5TmzjBktdkPGIkKJsDA8hX53EUggAy/tZzk3ArvSfws1W9D4dz5DcNKS4KQizfzdDIbyQNhrq8q3UY1CNpB/oGPUnoBrRdhXs9XRIG1kGiPs6yR7vu+KSwkNOFGbSuKerlEYO5+OQy9uGCYStUebDfnG15TrDzZ38j1aBfqIb0WyB5wBe8ghtxiap5kXryZtfRWcrTKMcfnwFLSMTqqlZ/dz9EFksk1c1Xixnak3qGd4Si8zX3Ri/TZ7cuYX/iANRN/AyY4a6nsWCZUq3ao3nQNI3XNhgDEba3pdiux4bfwTJAZbOR3KFAqpXlXPWh7hzFe76E/hRANaNvK/eaLKLnEaaiRAlGdzWACbFIRdylKYWb0Aq2r/FcQpFdxk6rgHzTvRzNAkRKolMVW+6LxE284Udhi4s7IuB3f3iGF1ja/LUYH2cjNe+Z1k6p7OQtzncDFyNR/5fOugHgnhlS3QBejOOoBBL9kl/qDWg5ULadw54P17Yg86ReOr0hdG/ClKo8gjqF63qh85UlV0d/tSrJb10vaTTru5cfPUz/TVvGZNlt1kf108LHw8KKBNZLeCyJPJt8/jUUT236PuX+Lg4CjEzH/wBv5P9cYvWYvFrDCGrf7jb/t9zVBs7O6KNdrzDmUGDw1PZs0mEmxDVkBzxBR2KM/ysr4AfPsEYUHnpEBBXylAn1tlsKPfkX3Px+OGr0AjrY0/4MDCqnOb36/qBastP3RrD2gYL55wLNb8+DD4NTDT051MmAVNqANsvhDXUrh5UPKsQO1Sx+pVhSUcabJLa6c5CwGyKV/hCxwxDgXIgZNQld/xOMHn0XiN2Qs/8Vd4JSGp4LdiV5YU7qwVnAWkWSZxHeIzBDpGdZ67+TNK7KVdcl7lIR0fYaFLg5UZ+ORl24FryDorRCdGJs6nK8FpXekOPhQJzjAVOp/X7LOsa+uvwfX95fg+6pcwYnGIMhGRz3xaSFFmo5guARB/7HkMlLwIK2JPT0oNPYejoQyB+k/L0xDxK6yokUWpsxIzFTmRw4j/ec+r+VIr6EzMCDRpMZEXCdaosX1cr2er+dalHUiCUrhHvURohg2B9dNkgnDKMcWKI88DL9wF8WaWxK3xBbC6kjoMhG95X3jOylrArXgIW8yj7NPQeberA52SL0baBiyn/PlkWd442q2AiEwtbiny5K8SAtqoeKG7fLjgCVn5kWGiO99gKGk4GNkNLvjuJgsK68JUby7iA0khKJbF8N7ntLfq5wxhGcK9rIB6UJLHrwtXNyhpXukjdY/gamfgydq6SbBD8I1S/WBD6j7FRcltNsiiHofEpjg14IE8t9HYSqiG6VPmBlqIfagRPSrzCA0eUCMrB7JjqOEVDEugtVvQdKnNa8GPNE/fXEmI3CGR7XeNrq+DjFwGhkCt+TlkC6720CnRgU3hUCSsC+7U5kHSwjy3RAaye0zjveaCV0Nu5FEUny7sNWVAEb2Y0bN1dwQVdr1VA3DGYNVZNcRh6m73Umd36v5oJbWZ7j0Mn8wXJNnfDB/pgFL1pjdX2ZAzl4iUttloweJIG6aLGwYrczCJ5JsF3vKt5v3NB4jBouWG5yOqynapq4FbAxilb4zitZDCippuN8LW85AUQ/I0WVGutoqXLtVyUPB4Izqp2LV7oD1qSARn6BVvZSUju9otsCG/kkaXAXBYH2mASUCFX/xlgZURZ+1cgiCJqSgXOMy2c3NhRGQcZIK9gejFVzmAKg/Drl98DX4VvDyoZOPXU7b6F+SZjHWFQVk/wr724dvvzrVB6H8iV9QSoYskSy9aIg//AT2BEVmE5yE/R5GjgETlhYMCC7BVrnGuUNPeC0u6zmKUo4ALKF5ozFyJf5P3jAJv0XrJ6UWbA4i1mnjzi3ETICmbv5U5IHQZsDxd4mkA8GJ46Zfu/BYm/mEOT1rhu/PCwUL5xmqXrVEWLIRWmiwYvtdQEwIPZSbgG+9R/jdaX6HY5VpOeFHW8+Rtm++amIZE5O5yGAEkgvRuUXyQcbf3sdQpyLYF2PysjbAyeX5Me336+xPUf81nIcsOTxEDNu7MXmZ39MwtVvOs4wdzHgXU3CniukIl+d4vhlhNBx5dwl8Vaxz3xN4Yq25r1UDCcntPUAKEt5aMH1GtS68vD35ks9fjx7+PuOHdSwrTM2tb328T7GTL9UbbGQ/p/cObaAgqBFkZHwvqy71yUUrF7ZLefGUeA2xvFw+VwnAMtUaW3nhtwMPWaWp8j3JTCirhQvZfLi9VaHorO0a7IKf6fiYeRWQNeKT6l8BoDg8InBoRMw6WYlyJToWBQxm/LLE5qGadVcK4EMWtllwDxYaEjQR0GfYguwS2fn2JTcYBCMO7gTHnCNetb7q5nMKo1RNhm5Jt+1kVCN0zxcaV6v5IDS9P7S7FU/3yj0MDBEW2p6o4Bh6z7rmQ6SekjLWnqK8UBwor1EyorPeD9gcjBCKV93h/AGCRY4usU+Na+tU0fnd7GTR/cDHNHHnEWRM/IdWn0tlSVGCcppO9Df8Pz1xlA+lQrAXcFxAY/XsWFg82KCZZjEsdt9xUuRh15NBjU2C//3m36kSWRTbb7gbEbL6gGdc6GYn23Z35y2hU861e3OPZw8UBXO65e4mqCxLz03m7MNPZJLRalLkQ3loXd546nMg/F+gAMQswVxb94W6qyfQxqQIMPIG/wBjNEQi0f9DR6dK5Q+Z44bNNLzfMK7el2yoPyu97/Ca4evgAgWQ4YVoYivVz0bF3fJxYFjB0lgWHJ6R4f98JshyZeeGp17u2yUbj3zq7bodzh9BO5yPZ7AmR4FKpTy6abZg7jljxIhoUZIMX4zJu9t08oZe/peEO7L3H5ELf4tWUrl8If3DqLOrTyjbusLqLmjfQZ9fh0UPdhxqiroyniUnkYyZmG3VnEfEfEpQRU0pJCi1a+Pmy7tQSylqUpUhyXLtTvEB+tij0qnpOW2dOzEsIvAy3c4ceFP1kppiW0ewoXLlfofuIJZXvZSalzKYI8HoeH97FcePTd9K4rS69aV4VzP+z9pTHcsi0UxxhN7wTenfia+Emx7Qu/GiLDCqFEVDJomyNSiIUThBkiPk5i68UfQEfZB0A8jObhHjs6JnL/bnKMA0Up/gCkdRKUbzOqt+pd3cpVUT6odqc67zjOo3h7lcvEOKk9lrtcKwvz6/S+0+zHPda/LGF2o8j65O4EwbxQXvabxpgttc6k3u8pmovJnh0uaOn8d2A4zvA9TrYdVG5BGLXjJy/gaanfBWyQ7gEVReM1kcHvchC/sMK/D0R74MoR8dD8vJ6FthWxo7W2voXIXantNTk7I5cRLH1DsOs/U+iT30Zbzts9Eu6RmlYNLUnhczKTbCyvx9Yij8M12t4E0qlulQQhOdFj/WlMbJo4CvxIyph+CJNAqlt2gyIQ+kFPUVqbyqaW0JCrVOULx2cGcg6RkzAhQRftpgtvCF6BqAcjJJciaRXWHiE5iCD9GZFHxnFKxB1GyCC1h8F1uxbYK+k2SIPg0eskjDMSRb8NVfVFNi3W0qDKWmUnDP6sLE0dywS5Lkh5wjbldwDC+zizZ48gJY+iYt/9UVL3pDz9BQjsPyVHRAAPe5hEotfrZ42bWeRUZHa2oFwHh1i6z3mJ+yzdJ232mneRLdZAqfdSEEWgZny2sECMw4E3MPvDNaRJ8J4YZMA1J+QytK3/WIm/c+OQOiKv0tQy0TWaYzT7zZXLZ454iSssY116UvR2O8qx8CqgoYa+cUT00En7lq+hAISTlNJi2hhsXWBDOKR1DHCJVO3AftzBYx5LS5sxuRqD93n9b3+kaTY9S72/ROl+JQY6IcxzsznXhZ6/hmNdNpU/TrLD+ucwAZTIkEKuOVy4DnF3+vwM3sjrqFEjd/RYPT3DeraOSyFSl0yy7Nn3pLtoUyD7R72GaAApSbWaxY+I5biCDLfDjo/IjebA6PoFGr7+2HpAF5pKlzceqvdfbeFhBRU4CXpIFwvutWik3GL1VmLjpXKeKkLxFQZP2SGmuGG2pkMEjets8OFTkpQR/P33FWyFIDlWXaI+oS3hT/8+dJAmFU5kvhvCzNpwcq5hYTCafU+Dmhzn9Uo7uY7oDiQTDWpCc+1322H9Zo7T+JKuLjZXoR40QhVf3ZxqXjKiQZWAMoOTlvKHRSa8bBEQFwu4RJ0QEb/MvxhI9YZoyoAoiPwW8/iIHjWPCr4FdPZtTYctETV0qgvBCDF0G/GGh9f6H6/Wal2Kj4Mh7RrnhMoBJ+q1ZlMzE9gCLzqGH4ayEV1R/L5R/DHy7VwZ8ATM+3g+QbH8d5XBy3sgVQeQYGfidfyXnRZAu1a2IgDaLmgppHglogTX/WW/5TXrbPLZ29jBp7AK09YzyjJNqz4W9+bF/1oF//2xPplcqfqNWEGw4f5VehqvIQmgsqLSPYj7a8YWcrTvwjyjsqRW7ne4L2brZKzXdZBCrm1rEPQaM9rANtoxSAmoZ3nGdW83W1j11pu/gOvN30KbyNlVEkILG8xqgqE5WZoIImqaaQVZV1iTqaPpDWAl7dWNZSqQkUXckxwe7hD2DEo7m37MoOI1uBG7wSpZ60K0LWbfbQD9V1nLtHWRRlFfcU55CYRL4VZGW7SP0LOvyPcjIONu5Q+HIl+ThCd0YhbWj+Q6TIh0Nfaf6Wo42qplEJEhQIWLXieuNERNH6yRkK+nrmgV1sCSjCuljxLZULbKiva/jK941N3hJBxAcl/itVr12w8qQtOzXpiiYAxJ0YVEjTWJG1oVhDO1ldIKiZZsPW1WMYZfO/xjM2OqTQE/ZvbiRCO16bx1+3OSbhUDky1/EbnC88sXjVsonrb4P/qoF+2+I/CRC5eHeorwuKFBPZFkWbwS1ta5G/414Ztz0X/vrr79mWO6gwj8U0hWv1W/ZhPPR74KVVvcsDqbg2/Y/UhQvbcVawozfTwiGRyT766jWRw/yuU7X+zZCs1VYkkrXrSgnNRPfx+LJ7jIhRjRBjoNtYRuJRqPQFNGoplPFfbcLvQnfjXqLTE8ggN0ZTE+a9VRGxDzqB0x1jSiaoqBRoWR9fHToijKNpYz0MJQA2dnP1+lKhA/BG+7KxoyEMnq2vkufQ6XgOspWi56Oe0sI+Yqw9cAQobFaNw3FPX6n9N4RihRUeYny3QPVhDIAZjpnRP7+WJNyNT95rq/qcT9l5eYapBBl1E/BT+/D3d+I/xrxDi8HdHc0BG8XPzEg6wUjzFgfKkRGRorfwQvRkxDx6h17sDts5tfif+AmwVGxEE+S1AKp3gPUGz+DB1d4ErO9F5cqkAMdCkBroFhOE62nDgzHHPw91QSIcJ2KR/8SuqHWdVxbFT3vKup6eL65LvZVIv5M+5KG2cAPS/vnuYwmDYi2ll5ArgRXkkmuWfpoa12iFinYLKjFusC2jsoDSG8q3SA+U7ejnSeICNHV1uo7ONzNeLq8HR6qCVyHKA+v9odp0+5/d3fU3luxCNeFohrgAwzqSwLnD9Pl7hHl385Vi2j12LlmJnxxCxZeEs31/B5zuL+0+sL9beBUS5ksaKC1ItFEimCnB0wSgzx3DlsqywJfm9quH0YmIReXXpqwnx9ZGPReiXBfWEg0DFzQKUDrIgJBO/iXXU6t1ceDTQO0UjU4R+DueslShxN3vzCvVT8ZE/bhtKB42EAdjkfJk1ijApWEDUGE68RBUiTM11Ix+b9NmMS8kp1rnUSjDawC+VkJ+0mSw6VGbAqvacY+YIFEvJ/phm+tDo/eeV/phn1Mm8pkcbRj4uiZljaUgH+FwgBh5NBdK+Ph9lIDiqbbkEeA+CbQ4pjiT9FlG7B1dhuNc98VsqDbdJNErJlhOE2Or5wJiyATSOxbioG3SYC97OJ1uQNymy3zjYjvrfBG7sa/X5L8GQeRz2T6VAfoBOACEjRUJ+y5el/7Wg+z62ebnEB4eg0pr4dGbb2LYV3zPnLau+kPaH2WKlvAH0kNWkvIwZXPXc96BkgCtlbWU3b4T4F2HVdeyaea1W2Tu0T3hFSXB18bXAJloWu627+juvFHmCRmLXW6QXBv3skHfbx/BGhbUlJemqubREJEWPwD9aGtWRVOeqKryttDXsdOSvuDPVJgYdwRnWbx6MkS2JYYDxWlnz5xVGrXX6dvV7ExvUwldx6djmZrbn29KEhhALky9W7ZzzP69TiB0ZDgBBn+Ffuj1H4eehqkiWLfJVwNrGzWhqL9pila8pQCgpFZNSgmMPNtdi7RfwjBvyB2+1RpeCpbzrMrzZJyLeI8iOKSVx94iBNm89BNAkPrI4vWqVfrVDrClPyQf7Vd2BejUdnPBkjKPt3PAVB8uN4LnLns1EF18zhs052hJM2m3NgScU+ra83AcXH3zVcQ9YtuGxR3UsaYMwVLTIbKGQEUzrJR9IGSkfRqYaJTfcqreQLVy7um4tCHgiR16hs2YGMh1Rm9Tyy9vVNf6bRhrOoRcF7iYX2Gd9ckGYdmgSFZrOszbIvkP7ZLqw14c3qd5YZvvQt6y5z1PlVdrBFmhAerAy8IKFChIL0PDX5CkG9RnaGCoQgUxSRg6WCjoVfxw+zPlnLiD+izkl1OK7UnuWBJguZg2FK9piQBLGvkmGZOeo+UiO2D7sBBF7Hgs5wlQwV6DQ+ucdORbDloYkPGLhCdpFHRwf0wqldR5UDHeDQ8UpSboo2d9LWrlcXqbTqDSt8CJeTod9VEL96vpzfj9FVDI323SiKv0m3jC2eEjT4lBs/g+b55bCpUmkcCR1CFRms9mlkmiqAE6+O5zf/FMPsLAexeinSEFJMlaLKa9hcVWgnZWSj0VLUH/NCf6saStlUex6/4roGmokFiKOLacsiG665k71F7bEh4Pf1/IvblI9d1CbSD6oN3XhEpjUqadF0dbYm2dSa0/YdCOnZf78QBOeOahEXGN2oGUOxxwOQMe2SZLRVU9F1WcZRD4dnSL5F/sK55E2DaPrmMu8rrTy6AnKSV6cpo1bcZTRWnAQ0VxfzM9Vk7HE4OlhhUZoUqoe9bh1ZXVvCzhPC5fidN9NZOqL/+dGY8gND7U5AAvKcJIkfcMGLSTtptsVk31kUuc0JxGP77oJrL6/vYZAbZVo9+DWkDc2145SSq1a0R+gNU51GMgtvo+XG9/1gfR+khQUrHd0C2Z7yY5t5LZTxBziWW2rEf9UEnE5w20U5sFsz1GguA3kFGZ+GoICFk8pOWShypM1/oixZR9tweGLG3DIsu8D3gtLGstpDFT2kvLCFeULSH7qtTb9lNNfNvkkcxTFpfurieawY7sbblRTCsp2TeUpXuBLt33M2Hg1DDhgvI4ut6V46YP8DV/HXoIh5UtYjAURjwRMRigpvEYcWCSh6wiVGg+q7dsYgRJIveEmije8zV3mAaC3B/Uf7lVdKBbcVztH4njjM0A6kA908xgz0/VEw5kKEOT6tj0eQXQxxtVKpf4JaNIQvTd3JnMjFXEAPfT668Pw7GIxneMYIcNdY7LQdWtV4kRXogCTBlWsn2Lz7ISgR4DZgWmbMCdZHLDZJ0UZQ5OXHe3zAiG2BIf2P8HoUGHyj/KQhNSqcBJyVV4V3ah9hDkmKsb+hlmUgCp1HMxbWLeUl3r7DAwEYNy2VIDxenEGhW7UP+L8jDpvdqudBXfBCwRK+YGZJEM1bQW0kV5iMhWZrfMz/ndiPKv8jYDEprPDOjxBq9ggN+pHcyYOiU/MmPRvO9wp0lT5TxSqnMZyqoXhWFhl0jb88jSXvewe+qHo4T40CkOFuZMeon2T6v5+BEpj94r6U/sgep8Vtt50uGI33j2hU3sx4WrGDgcvdgeoUe72ijmXpak4FvayB5nN5wlO9ClFvMpXAAwM0aMuAAGubMtERm+HLulviFg2qrqKFk45e5/prdemmqreBoWiwYFkpD9SKUGZfZ4ltwVUACyqUXx8b9d942SqxNk5W8il3F4hMryDgJnDOpjU42152uDApo7LK9zTa9/SIZkrwIzLyx694lZEaajEk+KF4YG6FiI54763vijGaIQvKMEq9IqvqpCCkMxawiHwDPcFxG5H36eWjL5zAbgqk06ChEqqHCXvo/vSejnxAfez1qKx5rS9Lu1uEOG2PppQYWc9A4ggehaebcgqmcGzn5kvo9VA3qEmxbG7K/tNZ357pYpUhS0lM38IkxkXA6wPuGtzHv4a5+99rPmzoDy1N0jaxcNPuazfZ5NVbcfOXm2aSoc4HvJDEpy9gZyxx+nzc5NgAcCsgPO2N863X62+cpHqEZ92hlpFH/XsWzhTBMP2buUSu0FzK2lT0is0VIW4eiUG2tBfIDEiO5HRYuq+5J0hcrYO12eFxQUxCBkE3aa+f2MNg6QWxO27bxA241/HkIu8lYFlamOQnkha+BM06CnhtNE8JuGbNMCNQntw3pHxM/soGaUbdp8VsqL87+k39pmuF2FHYnUsgjzc4jsw+QwU301RBeMlOKmPB+0GmxDaQB1umMQLewoOZRh705HIZ/7SVcHY8/HZZO5xR3Hi9lyMMyq7rweEJHFztp9ndTtWW1KU7fgvNyKuOORiWTdJhEYzXqsMn4iGdnBfJQqL60p3IvnxFcAJS2DQwHDk+kFmh8MCAdjfLgx9vbzWHi835fFo4TfN9SdxvBXqVWvjHRYMHuAxf9pQc5T4hibM9iKncfebMZPu0CsEqCwWzsvbjjOrNOMjE9lcGkC9F7mE67h9rC4gQw32sSEtjSPIhcoi0rkLgUPwbV0lKapi2ZXcia3J3+p7SXIjYFCtCZb249eKw31GO+vBkZXMuLd/hrGuPlRakA/dfU3CLS5DVbeOivjAkKw8Bm6Yk0xHDI9vBMpAXDTeTrqpX2rzL84rpaxWdVWIdqgjLCzZvKpcQUNzkNNMrLaLLSZdz1mXU/vlMjsPbr8Up9zOC+r5iGY3k8jERiya5kR2DW71MFr89SjChFSH8wqMZwyh9X7Xp7HTdq1YpjqjGy5uwsYhCKTeSVVypmX7BGuUfHC405rAEaoux9KZOvTr41jgps31L1ObuY2s2TQU4yYVxiTB+y+6X3ZHAIxujTHzqqi6RJhBn5JGqIqH9DaV2Na/l8y0JR/3zIjp5ZY18V233wLV4AbGWcYyFneBCCIHP0I5ajg4BwDZ3+/+GZeosu4Y0ADMuHjH6D570BardlAmt8ZeMldzXfUTFSW32yao/ayNnD0SiTghZZt4S1NPUhEsQZfdP7SkKOHhQJ3Qy5wl52wJh8slUhRCUUlEfcwSVf1ZdjsEidhoPlQiUjhQcmoUj5wllTti/uQIdHKDMgAosY8qtGROdlRk7Wq3a6s4t1Tp6q1BArXXf0Hln5JnTLSWY1pvJHQR0/ykOH8ST/U2aUGjcGbh4MnzfbyiFUcQuOkmSKnocrCZAl9+0Z0wTellZ0emSwieIr62/UgSk8QL2pOmqFrcXGA3/9kYm4dLjOQFcbOpVwo65EhyG59wFtiYtf07FJm2Y4Rl60Z0K3t4/CmILEFf0JRyxQHJ5Cu9AbPpqdePUubyV+vSxGhnerqpnzZ+2HeMV7wqHudVFT5iMPZlzUAXjD0nYAmoSG1rMCy57h6ovtOj5ZgpwRrj6/Edu+X+joA9PE0NCpi6ByvF/KJCg0F4Zz4m++UHCgstYgf2UvMnUHeNh0SP0YvBqXQ4xeyfkIuH3abRvwMuxc524N99by8r6IXruh2OGtA4Gvy4oAGQ4nBGmaiGreX5eCKb/JDTPwPwLLDiiV1aTRQhzILWaaMYDmzTL9DLsNF9VU+zMmlWWXvQ3WPY/hRRS123BRS1ZWELIDCsCkYQpbuNvOusaEgfwdB2Fuse5VOKc+mPUAWeNCjjN8yjzpjSxf0mbGG7K5ZghkLbrgdm2gP8jVtyoHIWaxy+oGRyKarlqchbb5fwiE3GdSI4lAszIjH9Y1cD1kL9njWjd5bJoR50hKoDmCzSeiGL9gVrSV/5qXhPLc09sytO6mgA4bJrtlQVnKRWN97bnRULR1y/nXyWNNCNR+BFbA9P8rmhfnIh1YnUej7ktMaotzrVDnGNEHFYybcOLrbeQhCT3dxcpF/Lalaou6g2kSwzFOaNr0npR/5Rat3xJlocHbrhZLvLD3540kaxUV3wS188PG077skb6LZ2ioIRZWTUhZ8iPo9cRCU1urddvUbkQawHPmcsspteiWZiR8aDNODR9kfu+FnImlNPBSU/odUIAycirSy49/77kSqai5feUjfX6HDqx2bXNaN1ehBbOu+RtrqhvewOXd+D3U+P+hsksNgknDvNA3KK4qLwivCdlO8gWrIQTRflTVSEahYWZ5oupof+dS9BrTGE04XELJxzDkShYR0uy+9Cp5nGv7Q/k6ntWLNppAYbp0qiMqxasONWEJPszShqWUaBWnW75rmDXSg0TdpRRu8/fhNZWHX9K1MmsLtvlz7piL4BI5rEUdixQFrJGV3GYasgqWuOv0CJ
Variant 3
DifficultyLevel
612
Question
Trevor works in dive shop.
His weekly salary, D dollars, is calculated using the rule below:
D=480+0.06E
where E is the total value in dollars of the diving equipment he sells that week.
Trevor earned $1200 in a given week.
What was the value of the diving equipment Trevor sold in the week?
Worked Solution
|
|
D |
= 480 + (0.06 × E) |
1200 |
= 480 + 0.06E |
0.06E |
= 720 |
E |
= 0.06720 |
|
= $12 000 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Trevor works in dive shop.
His weekly salary, $D$ dollars, is calculated using the rule below:
` `$D=480+0.06E$
where $E$ is the total value in dollars of the diving equipment he sells that week.
Trevor earned $1200 in a given week.
What was the value of the diving equipment Trevor sold in the week? |
workedSolution |
| | |
| -------------: | ---------- |
| $D$ | \= 480 + (0.06 $\times$ $E$) |
| 1200| \= 480 + 0.06$E$ |
| 0.06$E$| \= 720 |
| $E$ | \= $\dfrac{720}{0.06}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers