20359
Question
{{person}} {{verb}} that is available in four different sizes at the {{place}}.
Which of the following is the best buy?
Worked Solution
Convert all to a cost per 1 litre:
{{working}}
∴ {{{correctAnswer}}} is the best buy.
U2FsdGVkX1+sTH4fATFpkZvjSo6+bXhTVOPnmYXJiAuzRkuOVrSGrUIYD56+3xKbC2kKVM+1KHJINO6FRf610slMRm0KV3sB3YwSgK2ThQN4a7CW6w8HLjwUWox2alcaemr3RGoXlndikIgz+mZo1wV7uz0EXrNrnVf2I4337oDrKpq//AqRSIo2X9bjBcaAF1MXqCqA5dek6Eekfg1u7Y2Uh1rcEkGpoma3F4eDiLh2lF36s23g/vw4pPc+z32AwUWpH6ZuOoiv/SHU4a69PAB4zIAPmmIv0SzvwyFTXDEVhzegZ+EZSH0UH+JELgrHMdmYtUEJeMM6MYkaC0EHCX8ZiXgwTrt2kZRVuLgwymDKa0N3ar7HhRnkK2Av5RW8Ikd0oiE/QX/vO0zif+3zTkh9hfm+fcc7e4x4NSLa1sdIcrbEQOn7BBsqilpV3JEizapEnp6wr/4CK8PEygrENMMK0Yzk9rRpJGg4YaFZnOdSvoFhzXOj/KxIPXLs9FSU0RvA3PZN6cDgvszg8zICgpI1MhwrgvcNkboU3B5lkNBuBJLIApm9awwkiUiidOK8apcC50IsetzfcMugVvmI6JOA/l1OYAKqTVQii1vUkJuQk5imX5AdqNHpphdyjWJRF4eZk/Kh9W97Qsqnujn1bnr3NbfwjAS/wkB3vjGvm+AjJE7Iu2EDpj4p+wBqjei5H6OtaDHZMM8OxNVZ8xMBulf6uHPL8YYjthXuv/R6z260V0t7XXNk1vTJTnXKVhu2X9iwi77svS59aHV2PV9/ZOHegPc/kexyoBR7YNmo8Jk5rgpHF1bA6jWl8vq1vr9Enc6OMI37N89vQ2v53yX+9QdHkY7up0kPNmzpn8WIlnkxRhwQuDLetUAr82bRcIPf+Vdz6xyY2EuSD8674y1ZaQoFiilQoY+r+WyWyj2msmPBhHomH9fjR75Cm9vvovcjez+/KQsQrqRiPl/WT/cVoqWlvWSB7/yzx77Xc+JdZD+o8oZz3v162QUmFrHY/zycPL8ZxYnE8M4OFthTO5jlhhQmB31JK0P6vvwDUYNPPnAXVfQP68oprBhlYWE936jeKmnr0lY0Q1DDLXeTtNQZN+IJiOiZxhhwspNMqB0xeEk96sqRCsMQPVEHyf0oOg/BigcMWkaJjVAhmoAqiQIELaBoBzV/UGiiDEXjg3iGqPV0vT+gF+mCvdCiMkY/7580+9ryHz75wt54sz68Q4g9pPBFivT5fHJEFP44WuLDLy1+Y7YUFJvMbtZAczUN/iV/s6355WNLmAUSPX7SJmdfi4HdBf7POCaV8Vt38rsd2wfcAXSXUJqVrf4EzKS9LA84CXhLhl3kc2tWlRCT5GtxsBoUDLR5+vHkF0dmUBC4DWLUAeBeetqjNMNbB81Bvs06j20zUxFi8GRVyUWLwJIf8Hqxqw03nL24k8QBLlDw5WHjT5lKpTWN5dGwVVPVBaMEmxV5MBYGlW5mYIkupd25kRrCh0oeGjAjFQls582wqWvuNmimxxP/Ueo0YCSCYhrAanrsIVDhDbwqBitttNm9FxNxNxWAF8RDQY8xQxmCq/DDuIU9lujvcBcYOLeAatsO/dZt7Tr7Q4T/sHz9Po5YTd6uDh7huiZfE31e+l0zObvI5HZuRPYrrOlLOX6L2ttHnzaGQiE5bAHqkWmLT8wyv5P2q/X3KwzoKTFoKi8qyRHmU4sLnM3r2FXzhWdctWToKXIDHDYYJSgF3ig/s3KpWbQB906Ki8zCDi1DuBcwAqIIUp1aGQ1GxZ409cStidtXvcyLNEHRYSt5txhOA1B3eTvxTsP47W5hfkbXT2FIAN5Oa00LO2m7ulSXYmJqElhXTm4WJLlOAW4ibV59YHg6SDjJ8QncQyR9mmGCI7o+Ix/d6l6xK5cP1HbtXEJ7ZVs+wBLLkYiE8rDgOjikv386TEJJTbrjvu6P+qHvRPbvsMRibSUCVoGDDV0awQE9iHTFdgcbtlzBt+Y9fhCTWIex6KUvTsxG7kDkaiDAwiqHyhomjYPoDryGyfRp2oV+2IgxiJgH1+NJWcpM4Q2HG/7co4bG2AKWrPTKLyG/iTH9hupTIPxv/zWu9UkBXNG/oX76UqUp1tZAO6w8P7i98Mj+ExlqAUgH5YdekpfR3NzrTJQJjzFNqCsXB0kCvSVx4sXOL/QLIj5hL7llLwVbSa2CnAg3XUsPayRHQG6s5/S0cadUmXjaFJVw++kTcyR1tDOURNBy0PB307jahVpEIwMorEOn0jMrKbHOgIapS3B/rpJbAKo7u3eht2y0i0dCvA7JvAV5CzpNRNXibO5oN5Vkig2TobfwWrxdjljBPqjkpgkwfxv8NwZ8XyuPquM+SJqUMnHJ5GthnhHs9IbzZAlvxm2lpmRv73wonhd2wcUElA0ABGfodW4UAHI8uVwB/vUXr5Fju5fM5ANsx3K5ekQZ95DyvCOTjV66x6klggXrK9uHzogmA475ppE2xcTmCLcyZ2sbqunyy0piE2GaN8U4cT8/Cj6g46GWbw1cqxu5ZlDp2YJdD0h6eTdxA1JdmbP+560wYt2StUloYMbW/6WVTMHrdlc+jUzdcfKcyQWWTZJBFTr6X9b7WqBx91f6pJZ7WKDf1tP/loFTIYQOJjEB46BNA4bjWgwq44zYyBwjD5UFtgwK76oOM1W6TyKpevKKKxj4RyIQMulwfut/H+jdXDDsF5bKgjf8szWCT6Rdo9Dn5WpB9YKkNFmpiGfKlfDYqkfu4j793vMWm00wwfk7DQQwjzh9aDV/K3q9AqUsaU62TQWjKM2GnzflqERg44fGCQz+u88i9oGzgSzgIKjr1rEo44fz10a7VvdnC+NqbjLtDqpL8VVLiYQUOm6l55h6AZGIPVg/SzlU1vJjzLpA7elaHuqgC0FIFxn07SMcoJmsRLuWZGeiejrLvsfy+/iR8t5uV2nzg9emwoOa1mvqWArxvkDoQOfKY1eO/C+l60Oy0t2DbVp5t6oihh5y4A9OVQ6eta53HkJaHKqL3DRArCrREe3UCNpWP8Mj+J771yy7+gHdUW4QnbvB0uNSFSPR3d8ud3kbs7i6mCzpH55dq7r4dhx8ZzPWD4qUCSrQWoSv0ItLhwWMI4IWRcUZQjwOTZAe4Dux2C9sPgFMkZw/qfSaI9kJCnfYrRE85o8kvtznj5h1rbag7uy0/6XS0NfmkXZzaeecSRf51iWL62ax6JudDOat53xxy8tMg8WHBPaxcN2ZMHVLPmqZpTyHG2Jfb7bgN43HIDgVl2KBmqYnZ0s4lufnp9A1S1OS1UJg7sPjSnn0VkTtELBwP/GaYSqE/ny7FT6Jap9zZStXye2jogVd3RThzPd/NempA31UIR259rRwWnHqyapTapSXvi6XJTlyR2x8It5cCPJybVTxpun53+O3zhKhhHTHT3i2iIj1gjEtrj0nfCRPlqeV7N1ATfG/2Rr6c0SR5UdbcGguCLNDCUWYBoznwXN5f5DmNI7kFqaLkuXCt+d1UOgu1K4BeqImcVz5AVmYTD0ARbXz14MnpeNdADZSCxoyQVNcSsSkl0I22XUIwQgKQqWDfR0cCtlad7O623bP+D5HHzzNeLKGzIIVDJRY3OjKUejqJsDLvRykijAdIjzeJTu5sv45L4do/+ZRahmka5R4lQtpY+ak668g+0BornFbmSaPqaGxD1Wxnj+lBZqcccDHrobPoQIlEkpXSal+GFlCDHSGD5ReOiyVMd6YR5w9yhAU0VNefgINnPrGPTX7DVN7E9zKbjjz2mGhGoRJ+5SGjdSnRWQ/TEMmPbYAnAAd8KqXDd2edUs9XV5r03KjhvoaKAo6
Variant 0
DifficultyLevel
590
Question
Fabio has released a new cologne that is available in four different sizes at the chemist.
Which of the following is the best buy?
Worked Solution
Convert all to a cost per 1 litre:
100 mL for $5.20 ⇒ $52/L
200 mL for $11.00 ⇒ $55/L
500 mL for $29.00 ⇒ $58/L
1 L for $54.50
∴ 100 mL for $5.20 is the best buy.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
person | |
verb | has released a new cologne |
place | |
working | 100 mL for \$5.20 $\rArr$ \$52/L
200 mL for \$11.00 $\rArr$ \$55/L
500 mL for \$29.00 $\rArr$ \$58/L
1 L for \$54.50 |
correctAnswer | |
Answers
U2FsdGVkX18m0GewwTlE0SWUauk821XGDl9RgRcFXP5nUyU1hYM4vdyYi9CORiKmQ/IiQZ/5BWX1XJACeBkZDCrOs6Fd3QVYUYbNbGXtCRZAgaYgwATpTGjxp82swOKXe6l7MP3L9az/mR6bKPX2b6LY70W86MeIH+mkAkMpx+tfVjhorcbJ7CGhYE5ajD1F2hc2cS4gvu9+WDEHZSYQIByuYVPcrBXuixaB0wnNyt3ukUgBl/eHgjneJdY7vZpHzdrGLo+XsGk17qdRa27/tLfYzLl8xuiByZZFLljZM+PUfmvRUjdY+YOYAmrlFGiO74GZ+IGqKhRnH/0xaRX+kTsa7BrUot3eoXFIlWisZ6ozQvZt/46zRrfSs0vCLEkOV9SMYoNTE/aCboLPCo7rAc1WdIOXC2UThClbSTGPOMFC4MTVUCKiBAcsZiy2fgIm+lmZy5n/nHCk9odcZBmoGazX0TqWSw7469Xgk2x1hwCSeArDoWd5j9C6AN0Xdz9NtaKh3GRKBZFMyFaw/Lay/KY6Z+Ri43AH2KxaLAgppcUAR8gHsgBAQWcWwFAouVazksvUGr7J5AUtVpJTIKdJgR1kAF+QVK5B/eeTXOzqq77IcJxcQPqWzINBH9ESamF+unJsjYF0J227j8WW7gmQ1KQM0ovgCuiZp+qtOYujMz/A/SN3+fnO3ft2lnuUZpDoEnXR5eNacFKNWgpboHdT+HUmap6a5NM8Pd8K9hwTeWdYimhn9wnZ/rfdmSboGsBAfBmEfIdsOoVA0jVuNgrnBSxHSWocVxkYSqfrLNAK/AEVVm6vSke2CZr0dcehL3n5boj1DtnlORZ+A/i6cyRfmgpgddl4OETKIx3K0v2Imxk4U8Sx2+0+ahuo0ccEGRX6WqoZr/6UBrIFNwVODoR/SsEcwfim74EDAg4v48vh1zIga8hetENlKt8OqUo1dJ4y4RSp6JVGkI6ko1HtxqXV76H9pazOAuVqXuGrvDjiK+joF5Lhomljj5D9TLztQgmF62gGfafaiRSHM8iNwjlgHGzek4Fjj4KHERBRsVj947ezZftW9e0VrG63tDuvpOOAR4f/f4UFgOjHgQI/Ng9ABNRo7NQFyRWgJX094lAMAveo/NXu5io1fkKP4rrImiNV/4omVr25RNKWJjpcJyc/k05w+tvjpGxHlwrJdSzEnpNqZAQmZknCXkAtM7a2pjQAapTQjLKyisfzdqv68LKv5IvdFmIfZ86p/jkKh5x5+S5u95VaqX8QWO6TknUnQ8ZMKABrphzBNu+qdnOCC8CNdMu9JRT3P3b4ibw68tw78UXBZA8A9LdNL9L9fwNpvZSb7q1d5GLRWKmJCuwjbnjvGqkci/+LYY5WfI+nHmmYXnJ11vI3VMgeO3xPOQIXcgHGuJZsltds69HYBQ88cc+YQjWdiRkuwlJu1yX570j5wL8GmKRZJYVvhWH9EosqLQzf5p614z6b8PpvKEQVReR1+kheoG0MflfjqGj7qKpSnPzF4BoC+Fcnt4R1d4MPI+lcNZ0hKiyJa8HsHom/y/ssNEbu4wX1wr+teanvTuXSY1iU4VdfBwpAC1yJbHbb0J/F75qvsFLkjCkOG2NS0qFqKrwM6HrDPfTiWlTzGNMBhqSR9Pwr6/TiXtG72ynmLhK51oU/Guwqpw1hI9bl+qSPc3wHkIWC2METbtdDQMTDpvtW7+6mS0mc08iBeNsAl4nubzjFZZY4HKeOgjJV7eGu19NQ6X1peiznwUU3ACJgjLp4WrHUhcLAnscGMtG3lmgMr1xqVs1vdNYFykdodm8qK413YZmAtAeIxv+I64nG8jMMkDg+jsmIY1dbvDS285lq7tYRKnV0QK8om4eocADOGT/qoN0S7Yv8TpgOflB+j8F10osR4qyanTudS7pKwLLfqEK5vd+nIkb0yPgQs4J6N0jrtEDji3fAjnf/71fFiKKoJftZPQdwVlDB/WTRlihPTT2TUhYeMrRlfsbX9VUyIKx8cDRK57SLqmzTRxSO7D8izE/f3xF9FdivKGDwi4+aqx23S3LHOx9EgXuQrm55EFqKPaJ01SlhW9J8mrRJy/pysM5X2iZiO+a3VMwfVsog0Zf046pS29DVjWtkvWmv49Phn4N2ABY9+NACG2mqkcpQlRJkh3KsOXZpoh5Tp3l7DRxkZQepGbWMd0iO4f+jTzisAKVe5kLoL4kjlfPAeUVDbkr2KZOGE5R0X9bKRsiKll3CXty4z5Sf66mBVUbn5s5bzzWApFv37m3XWLfRasB/4+xaYuZR2qCvDd7XYFd5koT/YhNIqmfBtqQ+sFu2MfBqZICHN/nUiojbGRjWuNNBNr0pe/mhCdZFW7NEjQXLBHZH5854IHmfX0HiX1nJearjCGgA/KW2KoeHSPCW6vIkBLysVNkh+n6ujx7I4O3IsB5Dw1K1/toy3jj+TIEnIvwgSncSZczR+ErgcJPbPd3ckaGfkETHhlTf7qpLmS6aQh/RysKzpt+qH6GMFtJdInLl+gbFWx5t1gJAf4sRX+nxx/b5el8hj7yF1a5lLK6zE/TEc7SGwM/U1/9O+Mof8nbWaK0z0OCeK69wI5mdgfq9AJx/fWukSkrQZUUjgwb6d8oyXlRwrRAo/VkDCLzra00jPH+WvI7FbkE2nPWEeL4NHyfosAsuEjLpzGDrrjhBtR7yFj29km0bm31r52yT4Kpa9KMNy3geeUP2d5ob2Ql1AsI1IetcjfvulxGB7yTusOZGWq0qXEzqJY5Z5YXHwfEiAVVA5pjlXds2qq2JCffFY1L1uWXEQEE7PhNOCgKt/65QKoSbKCOKtIykBPM4ks5rJ3gpbDVSLGCqgUReERiTYAt4z/CMJpmdDoEj2bd9JrfOsrM+AfIB0HwGALUT15NCeBiTVNFebK3YyfVeR5HENjgh28ZyGZ7g2ZhG0EQwP4xCqJENNvT2BBcvlab8P/sYMdaNB3oTuThkCKAM3ljNGCWr6NhMw89Wt1ABVj5A2Hpu5w9+nE46aaaXarlMxesUBiphnadj0o6AcIFvJZgk0bqim1mIPoya76sSI209mOSRiZCK5scYUstFSgPt8oLA6cAy7YJ/RrvjND9gGWXVKBiitJNdWbNmCMGAOsCHEPJv26bla/JaTzX6GWUC4tw8jmDpjVJJP/s5qyON79rudMj+F/K334xUeksv28mZ84g9LfY4eZ0wIaKOSkYiTI2tK0kX7e55OgYVWSdBfdQ/C98pEPR+vLMNp9rNwP+YK6liq8amiuEcPJ87QOLeVIQmHI86nuo98U1rdtDaZDg1S7n6ZIpYV0am8ZATK8yjoKaTrBgfWAtWNqpJ81x8/sKNt0zKI5ZR2Lfi86i46/Cp4P1s+vBUE6QvbmIWcHJLC8tEmT+kur4XKPNg1PhIPwaQ6WZ3NyvT1GkmREaDwz+OgYkN+KVqlITUipMwYERiw2jVksJV6rY1emC3RvsyP3NUjIab0tDQAp7HNIfP0685/Vwpnp4aYjVPBYvK7GITERwaOgyu4G6yFl18j5Wq4EztSnWecIUm+bbPiYfprHK7tz2OHNUFfVSACMnnCOtE8akj0leV7UXdNt8O5NMpBGFzDk2Ta5reM26G5N1bWSe4WT02KJQDGnBs57mZM0pm9bCkm+cLDRMyUNdXhoI3BQVq1c8di6rNc0hw+h3Q8NBLUVNeRW9Di2RQSCAx0Ham9O8UPXRIJRbenl8GGR1URPSpjaeaKMLUEUt4ssnspgePdih7eE94mp5DohqU2K4vBRx654zDQjb+0Ns+GfQ1TrJPTFHqC/gxYqczXfwvCWZn3FTsdmcHtJKlUADnk3OzwCrq+/fYZ24QSOaXvqnbZQ==
Variant 1
DifficultyLevel
590
Question
Dove has released a new hand sanitiser that is available in four different sizes at the chemist.
Which of the following is the best buy?
Worked Solution
Convert all to a cost per 1 litre:
100 mL for $1.65 ⇒ $16.50/L
200 mL for $3.00 ⇒ $15.00/L
250 mL for $4.00 ⇒ $16.00/L
1 L for $16.20
∴ 200 mL for $3.00 is the best buy.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
person | |
verb | has released a new hand sanitiser |
place | |
working | 100 mL for \$1.65 $\rArr$ \$16.50/L
200 mL for \$3.00 $\rArr$ \$15.00/L
250 mL for \$4.00 $\rArr$ \$16.00/L
1 L for \$16.20 |
correctAnswer | |
Answers
U2FsdGVkX18VqQhVx4o6o0IWganCg8JDcnKhUUOrAJKVpboxy8xkQgC+OOPhNJAW+lWxPxlBxfLL4tWXUkourvK7WsNMvQPvp6QFf0cQjHI+raiQgaKLBFasUfdrx1WHwuzvqoWtQcEirU5fGb6UPOFqTKVURqVGX9q9h5xN44Jhfnz8yQZT6Z+XVoAO77HK0CGIwmYZfdChkSLjT9dPiaeXV1v1NGB+mCsmLs4Zr5q4I+tJ+ifR8bL4l2yU4PxStuOH9iuvmVFTzS7yxpJ9kq0FIpEMYNffTGzLP0MI7+xc26Wt/e/4NUtlriDmehWPa7zUe2cFrfM5GyAoy8LVg944wCztbnoVo6Fct0enB9z/VyzLdQ7Fs/RVBacj0i0JsDWntVwpV4MyUoj3g3bnu88i+Oxtr9mlw6SkXqyLfVNtAkODoheOjtr9E0zc2Idredc3Qf/4De8YXZPEWA5voC7aSc5G6GaEv8sV/V/TzD1Zdw3b42lkx1S5MohCj5SBExPa2iumDI2vhxthACSb2lwzpT1kk5vGvVF+RPoqXfwPiawxDCODrprbzoPMTDNwVSATuc88N9i9jPP5jIUp94Z7/hKHOiiB06BCsf71QNqBuEm0kgIse0JA5Kc3ttthKvcqmUWOuyHtoLZ5YS1BM2ofTnee/V4eHk9qcw68Ma70RNk/KavgJYbyNfBBHO4u6lHa1iuZMnt11PQQX7V/R/9+iUO8snQVThseDO3sQvyE0Re5nEtwZ1NwfXDV+jkPnnH0XJvCg/aRL3R1cOTXJz72NvUi75kstBPazP6GsMYNF6M/Tl8fvGdLF1bN++cK84jHKYT9CZgjpILojYM+Uc2ds/KnZhFIsPuLKJ/+/r24SXH6TLGhxsPust8vGU+BQPejJ5YBBy+CVAzUBflcF9f7gBNFb9p0KEe6hp5YWOAM7c8gel+un5LsPPhO+0Z2acZRiKGgRKn9SP7sokQksfoj2Og5OswusVzleaFuBWfrwRKOqaI1y9gs5yfv63osHZVwLjvUHQCUw8mP1KEj62Fj2MdGDDb5bntGGW2vhE5lcuRk+GsLq68ADs24ZAh/93JjODEptaTxbUVuRynfbumG0PDzTpJQWpsosV+rDhksYsF+xY4XiaxHLjQKoo6n5ACc7iodDRRVFcsrd6F7f2BdYFIidaSvoXBhYlj/9/f6n6cEmwPJiUFPL1OE2YfbUu0ogylEI5ORbKqdRBdyPw4YW3DpFWaMnvi2IpbbZPyeZtyp9bGri+9C5oVNgj/q+1BbzJTcYuQmdlBvZNzPD7R65LmVmPANqM42ruKO3V9ykr3TZ9q+hNDQvQSNZRn24RcLutztQxY5na68A/BfLo6OPmGFQ6b+O7ZhOZAFCSlQSqDWnUXFPKKlrF2GZOscP/3k3rvagpxcaO9pkWA8G1m83EkKYX40l96AEu7Y3TQlFuf7fxt6WQIcSyGswLQmQm7QaVHApFLCr+PICXL25QymtqnaLc+3lakG0gtOWkPlOFHkBpdtaIQogVFoNjYgTGBhbwiuUQttlCCGL2vQDi93bEs3c7XIl1dgtLT1eWEE+1iqzAKVvodtWaMub9RSvvsJgYha58Qcta5Qza6Hn7B9OHuDqHHZ/EIsba16sXokbMz3wmyaGAJMhXpHx7faPoa9uGeg3sxQq+iW1kEsuxrfeKIUWHriliUEqzURI9UA+8FT76KTGsKkLw996kJ8QLtgbZ2CbBLDINFbqT+WFu4UQEP+IZZaPBTrNgxL5Fn22mHaMl4XqCdnULuufeao41zECM/yZRN0ZeWvDMKUeQJedfK6WhWHog2jRhycTQ7YYfOWIAnas8agIl/wb9qFWLQU2hm8Uz8ayv7lhomIVpCHXdn5RNW5yrPOhZkiA9FFpvFaDJHFrbBV3jxgT8I2B46YA2wD9+T13AacqPdzCvpKtGcOm/bxzP2IT0SM5cuHpLi6HI7CRrfSTs3tIQr0DSHeSSp2uUixIrQArGERjjez5X30y2KfU9oyfLBnjwoupPXGJ9DduuCIwtlZ9yEmJcRnhCk7iT4HMl4FUJQKtWfhf4ugvW+wCFXRIDWIFR3O2VklCShOr/5VKTAHjldJvsymW9Xr26dNliIJBKszSO5DBuqnFKliMXelhD2HDekvbtXS2YP+RUEbVGGCSvcet7gs0sRIj5QuterQXZgad/UVG9Ff9qK7tTre048Os1m8XUeCOQZ29p1yveQyh/J0CNn6tGTz39RdwpYn36nF2Wigfcs6cWomK00OkGNLrQCm1IXb8O1w3Y600kqc2+aFXhJfsBtUs+PzeE3e5MRw8r3LhGyihNR3qQU6p04iEak2OvKf3mXg8ff6EY6yNgC/6h/50ueEqxQixdZxw50AgjNMprQptRU5G0COTM6uIHoCFt2a6MlzGVYCdIc5F+h5MnXnmJB/igj7GPrYNqL7AW1o20x8IsjvnC3aR20UWLhqnXAsnawaStrxcui7N2OWUHcfwekltQhn4C1XTSdY5Jkjw/tTSb33FGpBVlQ7F3WYslmETSW8r/E8OA9bdMk1xCXoJE7HFwAHYE8iaaeZClbf8Yp8nKuY+pTvI5Axqgcx6QiXgXKaFyewimUnnkiwCrkP8fRECr4ZD5eCSRp0ws9Q5VKsTDpBC8+JZT5NHnfsDN6r2yRKcvgppBQ7tv+uiLw8flr8kbnUtxekaZPaU4hLfMuxnrc9Ydhrn+twDz6C5Jgh4vgTKaWLwrm4x44TTUIKVrt7seiIQ58QHmw5GJrdbnKy8WBW0QUMbe9QR0AsRKhJT3R+AepWvqiDf2zqae/fLAMj8eUpoYP2QqyFFaMh6tnftgu4dHvnBjg46sRdt55eYgGugRZqTzmEuuzJsaJ6M8BuRPTbDnfAvHUT+utTf8KMYDehACXrF5PsW8CVRaR4uLunzaJs9xHVZ70QxiXtsKZH1bRwvmALdLB4G8TndL3ukTUhdlolUxxufk13RzEWmtRdtywm6EREtcAGxfGujyJRi/SBp0bGSIHuoV5+VTBryEJ5LDVq3SFV2MAzQq/DCLy7qozO2NiwzZLuWJC3eL/LuEUxaXMVZP3obmEJPwd+8m+UD/SYbAfeeKxubZD1dQ03XW0w5WAdYsALOPT9GvphJniBMxD9ZX6WGbuAfjLnCG3oyhZj5CSL9dL7fuKAO8HgoGNynBxl06ySucWNpOeApK6wzEQOOfQ7zWFCpvDhMG/67Amw9ejoOC8+S5ZjfDvsA3JIkHmWJM8yRSv6KibxVmeZNJ78Zqkn7xDwPkSsCcPzay0NonRv6P4xTbyceF16SXw6OfS7dQv5CGWjHQtaTPcQfpW3rFD24Cfxrkc/xbpyCY+g+jH4iAIkPhmGUG5qc581CyWJnLt3CLG4teuruFRLBgijWWxtiOucBe+0lgwjd4aqs3I+/k5y9cBHvN26eg/hqOcB+uUhUgvqISm5J6B49/XC5wok1HijzoIIxgD1tNXKekgIzPD3EP/BB1Cs3vBAWnHzKWT4AiQXYV2CSVX/2AvQ8/wzz2w8bGZxdXfRQLLEgjPbmWYp1EnqtjA4rZsmoiM/RPJkaOYBAKORMgm7/NvLstMpTpIE+WA5vjs3SR8sLKpmd1hR/+rfA+Fg0gyeKsUWiVXGszljzrvyCzWSYYUyrbmitAo9HqLWxWXJt5vAPM0gG5mi31fBThx54Owyn1Tdt7tuJ8r6KLzPY7QMEK3XoeMnZE4ayqszENEGEAGpGSueJ5GJSowrPnOSFxIZWBjw2SNzsvXAx1paEMq41pOmmxrcHDlgPF9d0VRCFfzFW2q2AJTIytGWK4LplhGhpWRQyIyVQ02wf9QBdIQqdHKSIWrlGg==
Variant 2
DifficultyLevel
590
Question
Palmolive has released a new liquid soap that is available in four different sizes at the supermarket.
Which of the following is the best buy?
Worked Solution
Convert all to a cost per 1 litre:
200 mL for $1.80 ⇒ $9.00/L
250 mL for $2.00 ⇒ $8.00/L
500 mL for $3.90 ⇒ $7.80/L
1 L for $7.50
∴ 1 L for $7.50 is the best buy.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
person | |
verb | has released a new liquid soap |
place | |
working | 200 mL for \$1.80 $\rArr$ \$9.00/L
250 mL for \$2.00 $\rArr$ \$8.00/L
500 mL for \$3.90 $\rArr$ \$7.80/L
1 L for \$7.50 |
correctAnswer | |
Answers
U2FsdGVkX18wuszLD9HRrsuh4FjMP4MdoN+GnkHEJi5fsfXxB/cm73suHA68UTJ7usSNjyfgJGYT1I6v4+VYEhloQiyuVAHkWq3T3v4Wk66t00m+qmBAV8gkM0QjcC9wqGPYDR2bzLDCqQe2D3gSfqM6Bc380cTQFDIalIZ6/MmglU+v0rZRLDcdew0NLtum4/qCJgct4RhpzPkP5zJ0jT+hiullBX1Kl86LvjYUVfUGM5VXxNCUs+VmMUiHoacKI7Ck0cEAnJPZgIxSqtwK5FJQt9tGYffjegsD81wK+705Xg6MyD/OzoHILpess0QLxewvlOUkPYd9bIVOTB6JTLkrDwYB2+Xls94b2TimnE4NbE9XrV2DfpCo5wVuAKR2hTuhWXcFlDkpXpc6KN6dSBBplpGj19SQ1DEgis+sFDeGhzkLLFVKDLpX0mPyoKHGF+rOT1d7XBZG+kPcQCyJmdbwJosO0Uw56uWyruWgfAiwp4y+7lR1EXdKTkXL35kaxXKWHvg6rr1HNvIxezNPz/6NayFIQI/hqXCmODgc9XTYVkuiEP8Mf13kfnge6lZxZWjZ1ixqkBNm18PxfiJ1iDbG/KndsbXGFFlV4+jYLIng46c6kXvjheUe9RcJz//EYYMPE8APvJ0Nwg5jnOXqTXdQvQePvXywLqkmVsbM8Fu7HGHDo0cCUY7fwC+l6BEt9LMfleIVEnreddfKiqo3xqaiISQ017+Mi+TNEibid27SBbl1fhdUGoLidjzlHTdHkpK7GU8z/0U+r9eYqfFSrlPwJW+fvVw1jM5xAYFSp3Xy5LFBLyY38EmEwoQOtfeaxbi8qBm/AI+MwuVNgoMB++CheMENxhWNXRrhvO6Rhxds5Tt/8sh2Ebdr9XqOXen1DO/nV4IS1H4YX+shNjf6y95vit+XLUD4crSvjYO/8qYfXA5R051K+1NCnxtQjzAJE//XRjU4IP8Q2a/LDgm8MaLq9AH49Xj3heer+fDy9/j6w+Fxk7N+zWch22oUviVRC9+UrwHzX8MempMjsCxefjzBqMLHLare3PRbvvOtHVxO/sGPsYe+oBoYP43repJUVrlgmH77fX+lrunM0RHB22BpsMllXX59xH86aKUxERa5UFwf+K+05SxGpTOXL1OK1eXFRUOn1fUjqVHHwdjTBbJ4tMJy8f2tMz8LMKWQFLACkfuTVBxUAYxomJEBEZSldjGmmbpKlU4Hrs61iufCZjt3N8kmAYcbSsrhtYIPRjSybYrdvvUL9t8xIjYCrk9Ujq7F+pYdZz5MmEqbgaKHwfNMEwhzmJpQ7TEcSOF3RFCRbqBXqA9Aa7LDukHBeKmCUkYOtQsiO2mcFTDdoWrU6HLNqj8H77oZW2/9u7kl3383Jy3dVmbu6Vl7dqPI2r7xZmizvsmnLvOcmKmziZ098+TFYxoUJ78jfAAifbiLN7zc68JP00MYtSHhLVppU/74WW7wrWq9CKuetKeW0xzO+bIbcarVm7rrQsE210XbbixLn0itJQGk/q1ByGAUz7Iq7GZHFLEwU7YGFExkNimssWfufah1Z7kK0+i/CM39M89ewIDfJPUkIwxqmc4Te1J56QY/pt6BWFI1DmIh/ChCWOZwFWCq/Qf+RdN74OPiAsWN/P1jFC1Oimf/v0RxhOvRveHT9bsK5YsQWQs7dhNh0cue/VXZZY9+S4gxd4d4mXhuao69A+ZwpQkYylbig7YETTCBwbetyupcqBIlGe+9NHaRIeS2Z9lRxtWERpfl6+YuHIFxFyLZdJLUK/HpYLCMlT8Gv7FVuER0En4zm2rXErNSu6YHu7SWkbOE9SfFRX9InClHazBeAOv4dywmzHeXpcl1G0VYi8VE8QNiDkkUUiAzY6XZJjwuVwe2QNY/ZHBuXrrwXeTZNhfW/de1MtsgfpjbAoeta74LjOWL7hvi1RjyNOlwA/8efa7rO8Xeu1++tJmeD3DrpE7Z2m58eCGNZ9DyXU7eAT38jbIZKHnwtIYVGsBOKQufGjPuKdSOT4jmPD0N7WHbUraIvUiFiA/7OuATvo382+Vb1C0V9Ocni9M+lASsXvXAfC18CVUffa/g4fCUC7z5tQPyVh40JlMr4H07MOBr2FnU6wtArQ5o4T6zIcF8p+9foTxlRWoVjjhJX1zIFQugDZOC04RNIFo2h9Y5plrn1nqIxf/a2OJ0b9uGua+GMA8SedZnzazfX1u3jibNAHaB5i6KR0COEh/QMLAiPcrYXR95QobM/BxISKhj1a8icsmnLz70svFHTDzOk27w9Dtr7HpdyYrZn9j+zhLeEWsQNCUolWg9JDfQbKmkWJ2OSp9nveKgMd08qT2i2hX+uoLy2YfZEbc523e0oxQ2vtteo+tNr8n7gV/FtmQQHePtCQ1IYENSBVqoC9+5nAdm2WQnaHbXRQZBO3HnvZVIQp2cEFLUJeo+XxhH2I2Gw2p+t7tihvAY2CWdlIita2IBhfz2Pfdcvv0dNVy7R+lL5GnKNSQ+KC5qUlT1H7wS6oBQ331jG8AYpdcD1xoXPumw0sXZ0jERmPvb4D1S8dPybhYKDHQoTNVPxjt3RPVr7bNJNCgkHOf0WTxBFRS0NJzw0rmj/IKMm0StS4FRwymZFQ+uNu0CFioLqvMTXki+fLo2Y0wIBbAHPZyit0tAgPHyCbdmXGYvxHt9kIXQ/dVLpZAtP6+DucpS/wPAk8J/Dx8AUScdZ0xHbA5CcJ8aOtcUB5e19nhs2s2VJbKV2dCchxpuQJnDIyWKoGIfnNYyl+YkKPb3Gjre3wBxJCGLdnT64JVKqZgtfECagbSfxrGSe6YC4xoorCMoQv+ccAMkB9cMKs6sFnCV3OXwZV8+4cb05pVNAX0MtievjkZGDKjn8n9inzaR5deazR6IL9OJWEHB/G/4ataV8wvbhifpR6DkDP1jmV78eEvM69MzHTLZ8xuTs6L11iTe/Xpm/3+3hLReJ/zwntjGcTcEFNy7KhhXQUoszwVhjKCm9QuRMG+0JN3wMXuaYOAwJvO2FtOaXRLjiVBXmlRBetKUsj2l7TP/unEilw4xaMdSXawLhO31cRglU/QSgt+/aQ9sjoiXcZl71hDedXtpRGqnA0DBcHE86FJc5gMMT2ELPNAb2Yrs5PObZnhblug1h82EItA+x0Zes9/nJL+eJcDNv9XhcU11+fKOh6vEvqCXr8Ln4jtD59YfcYQOqb1kMRWPM+CCmatTwe38WTbhEmLXMkmEkG4/agzNQ4MPW6xaYWeHk8FG79PMcTtU3xx6CEn6ryiycoDWT8cxDtrxGvjqG8D1UopFZlQ92fsMREeAhpKHyjO3hSCqn80o9Z1NTGT8FVZ9wVQ1VzjdNKRsfFCYlztTT0CgAoDLrbRcF+bunjjJVIY6FBBgfFdtYcBv4xKRrIYYxYnNXYpkaD1Bmr+KZtYmAkHxqy8irUvZ9ZfpovtKadDIMbz7hEAXbKc4CFHorGpweyapWsib8RkyjRztFlfDxPJitNI6kTPKERb0hM71EKX1IwmqUXuOLB+xIa7iQvYFWdvRyoXBHdloGPTMQhBJ1Uzvg5/+c1WsxoHArFyv0WletiXtbebYbdNcxbV6iHC4Ed9PNf5KP9MhJQGMF5LgG3MNKSorzb3vsS0oz9VHMVUMCR8LwoNDDMjUfa05nc0RP7nNC+TcEesJdyv6NOg4BLUIGWQXIunRU6vHqwliLobD3q/tZ9m+bhflUDZ+9BCIjzBb8p7s0JU8p4dqauE2jd9sLapI9bEuo+r/VUxrxFPyIQMYAEeG6vXdBXXtcdMkXEWkHIftzRPr2veimeOuUYVf6PaeglMlT+J2X8m8h0TZEeDweFeq004/NJwYDg==
Variant 3
DifficultyLevel
590
Question
Ronaldo has released a new shampoo that is available in four different sizes at the supermarket.
Which of the following is the best buy?
Worked Solution
Convert all to a cost per 1 litre:
100 mL for $1.05 ⇒ $10.50/L
250 mL for $2.40 ⇒ $9.60/L
500 mL for $5.50 ⇒ $11.00/L
1 L for $10.40
∴ 250 mL for $2.40 is the best buy.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
person | |
verb | has released a new shampoo |
place | |
working |
100 mL for \$1.05 $\rArr$ \$10.50/L
250 mL for \$2.40 $\rArr$ \$9.60/L
500 mL for \$5.50 $\rArr$ \$11.00/L
1 L for \$10.40 |
correctAnswer | |
Answers
U2FsdGVkX1/FhfFX6Z9cBimq1XND/JCLNof/4xF9B5pEH0jcvzod5dsZ29V7W5Q8qujGevp/jLPwWHySXu2BR0Iikkga1m8EMej6KY+lJk61EW1nguL67P3IYAj28cZR04b3GhSoxVacUbAZCm0fpOY3LFvGLtUXThDSKHsSo1TovgEldK8h/M0RFZGw4sNtUJ2AB/5LOPNv1VSLKy60zVaA1Ln3RjG8kecIEuEJvReD0z4N1wbO3fbmZUZFEw++JYo7rCTEotpnf8xbwuRkOopwvv5RRpzw29WE9xSMOUK++3IAhOkIL7SwuLj+hlvWAQUPnrPfOEK3TH0zBk7kr7WnFLk9Zfc3t4E5ACaYXV6b8vcGvIPPax51yW1YBpm0xKnMsTU5HTl4woV52pfat32MsuH0iR8hxce/xl1uxC7ijtF/c4GrngH1lPau/LE5RX3r2H3DO8Hdz6kaYkhonuePrLJqDf3Qy7uxCfwL690CwuE3NN0CUjNvum9uQpUEeGaQQwG7jE6MZva8SLIEowRYXYPoefhpSG5N4gJZqFZGzd+F4eYvEsKHvMx5SSAjijnxaOFsA1h+YjpdT8fJCjxPsghfQtPh+CeGxO0/UCgFIgM0rLSmaAxMZEgMcZEdoLJs2SslfuJ9XdRZFoFJuJ5veTbkryNGG+ZlnbjeluKbRTPtJuQscFPAzAcivqCtnvsEHtv1XxBb7vdgC95wEhr6N899c8Yx7kIH9+JtXoQVeCmhEuj4r80TaGjfjxu8M7gB7BuWS0f+/60mkExbVCP0Qt8S5U1TVAC6WSyDRV+JyzgIBzUl0B/PFO69G2fPnVrAorDx7k3K7GThng0g1w27GWa2//q2diGuAxGZg7qTZ+Xu72ns7/j5NdPQu4fddQ5rIMuDkh9m7gdSVNvMnZkGbBfVxA5TUzIkNHrxgXEMRsf185L0VRwWZMl3TIBkAtmwzDYk9ziR/Ey5bnSGF/6kIiUANfgbHQBp/NFZhPBYp0T2N6XPPbSWqoZPZFtk6Qdvn0tifFnSijg472YrfQTWr6WdKrq24kVAD/eYpEvpffoofZlZiTEy1x/88/sKsaBlnmruqkkW6cAXhkDS+KTBHJZ/0xg22gNGrj8KtImnWal7eUr6/XxuupAHAsqWjgS0Y6DiDAlPwI2x86orlDvEn5sRwYpIiGr61dcf+V8EdNRD5XXDddH7K4cMVActDeB1C3RPCS2qmQ1f3PHVGUpDDOEHrWsexTUyB4zeIxGIrlxWSMcamvFpbtXcLJlEFyGOO7m6sFynt1xbq1tJROZtG2IhlCiNEvoxYJN5j5wZySRZ8yVwx1BqKj1O5vQUEPUPOL4fVGR2tsq8JJ5wDY8K7IRgSUlgn/ffVaE7CvoukCGSuNLc1e1TH7Ez19a0n4aozTExkNOqwvI6s5ID8fbeYh6naOYM6pFOfmjsbodpNm53/GbIquqoMobv9s4+IgtOG7RHTAiBUw0B+E9Rxl3MIRbGCSNRQMhU4+Ye2iMPKWr7Xk12iPjTZcYa7b2rM5Dcd36xfigPRLHhxXxSWES1ONWZW8CoASCqgz9LyKdM+ztRB4tsUSf9TtBshfQD/NA316odA8CDRAySC7pBigA4HjYE/teG0mNNbb5eNnKD7eLQLhNtNQa5OONsvFOMc0R3SNn1PCMKLuOpDnjKS3gbPMOnkdG/AtPNqqrn3cipB70xlaq+KjJ/5y/n2FCyZZk5xk2Bcmf/5Pr6RU24duADVCMM6KNqK9ffkIY7J4CC/zCzRkIDROOy4xNsD90ZUxmRv164M+ExGCUmWaSHr75Q6NWZL4jD7JvnO82gtbeF4YAfUHe0kWzb2LoP20bA+TGOTMLQQoX3ghpzYhRLz2m6lA3uKUHb9gd0ZIIqNYhoeM/vPtG6+WkgOKA5LJc9uLSxkHoTuvvJKUPkXGDOYfYXIztFUWq3Yb7OYAj7MdHyYFSx3dRnqYVkMOSKjgdCOBGCeRhmyok6hJaGdAgQhaHiDA3/j8Q29+UHR+9G+r67FHOx9NoIkh14xGHrlqr8PKR1kXRhfUahikzY6H5FLX0NqXvoVhcMdRWGUfHvizUPEKFm5UP6Ahebm50zD/w7+NsI/iAa3oIqrfcclmqOXFU/MI5jljeFoqE4OfE/E0f9F6SFW+almcFq1ymgzAQDBB4tnYU52VFPs2TtSkICnCuj85LYBxiVkRDb7k9lrckAZtvOlijLotxtGA3Cx7kQygWTUJ+3+KSYzkpAwLo92GwP5BmL8DmXSqVnYBuMfuj8CusQbR2QiQlyjNyBGJOf+/jpwPvWEhues2EF3pfcP9744JEgND7JC4lmbOBxdnI6cEiRcO1tcUGhX35+pIaAjxRf3oitbLGYhxo9ta5bqiAjMJqoegeGqPAh8t6xWIad1+Gn0k7HgyCtFs0WKJ0AfFyoEnE7O/ua66yzaPiIVS1Q+XM4vBXNhwOrTMzpg05GMp9a/TX21zccEiPg5fveQ7J/xvtbw7+UrrM7QYxUNEB35EEXzY0lnIPi/6sNKfkD+8TyuKa7YdhGnGFbmj9slDHq9C2QLy+TlJrdtFOXZ2qCt/BYdRx+BOAAWJMNNLtgosQRS9aCusHFKMYhx6rT5o7QoFQVfACUS69tZR0gX/VDuQcC15pK8Bu3xqKWRo+1UBqLi2DwAuMOEM8kE1bw77Kh1jt13HHh976r3Vf5SBmkXeVImvNzOGYdXqQE2755iDSHDmW2JIjmCpvS0jBBW+VUepCJFu9XzUKxZZVt2vdiV6Mu/MxEXEJIkWe1Tz98WmdmsZ5WLyFLo9ajJApM9El+h+1fcgEmT1guAkL1Wwr6TFPYcfYtOOgmBFEvs64Gq3HVX5TX0MVOSby7t/NrByo+nD5NdiL8KTntF5nmeGWVQSv+GGw7Lk4QL8wyJUMXLpRqM3zIvI/tGyM+H16N9ZIurRfb+RhYwezD3Ir1Rq0BhbWylNTIrF/MTSvqT3VHzUAVtnfxxoSND6sSXjMdUPLCA9ZYfgEWCLM0NJyDKpIIB+Q0+v/SBsCjoBaVczcC7gxRrxbqX3zsEoexdizINkD+ztxFKZiorpNuxxPHD8i1P3ayPY0XX4YCN4OZ6EvJzYt4LYxDFK7hMSCIiktXOtoqjvd5hXpNUDx3CfZQEGK8yZia6azMqwlyUKarlbg6LDRMMpyWubuuoOFxGHIN9FfLBo3kS2RlwoQwWCm6SkiyrEHIgv/hWw3VnsLBERaXyl4g/jU9yYBfSVFcI/pCq6f8Nz4dgEnzuYYC/Q5LW591a6ck+Gb99F3aQbVx9Azxy4xX5BCArdO+bVc3KU0N1uLsKxN+jlcAINs9SCFOao19ZaK1r5Opco4IX6OV8vZBmFJCT2exZnwDjZQZacP+Zo+5mVdxVUE5PxbrHt/izhUCplfDACUbCb+EPk1PTUxIhDdXna7Taa/poNfDyPR9bO4yuho/0Pvvdndg/ryv3mGmDepqOv0KoTF80ZBHGiuAabNvEJxTgUF5xYuyjqvSYFzmlQzgR1lLNtZi3ZeZEGktvNbMkJCSvY9PIZ3gKNllFRNNozYIVA45Ib0QOQJzr1YdSyjSS1eCyNQ2ZvVilEFm/Kc7HucTLaAhkVCD29ranDm9FeWKAEymeiGTJLrZVpj+rioHVyCNcGkg5m76bre40gAscbfbLqh9kCwdJhIYvr/tuV8QSmD7L2aSlFmOa9R60Vf1a/UoBrmEfqtfwgyAePf7d8WlUpN9v4KwwzDiNg7CSZtxcLk4w4QA4++VmXVQ86EXJG49X10xOg99H+awvyuBVRt3+qGETqupkf9Vi6xKuJUlOipw+MKuxkeeOTO3rsUjdLHhLjcIYfanAw==
Variant 4
DifficultyLevel
590
Question
Woof Dog has released a new dog shampoo that is available in four different sizes at the pet store.
Which of the following is the best buy?
Worked Solution
Convert all to a cost per 1 litre:
100 mL for $0.90 ⇒ $9.00/L
250 mL for $2.50 ⇒ $10.00/L
500 mL for $5.10 ⇒ $10.20/L
1 L for $9.50
∴ 100 mL for $0.90 is the best buy.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
person | |
verb | has released a new dog shampoo |
place | |
working |
100 mL for \$0.90 $\rArr$ \$9.00/L
250 mL for \$2.50 $\rArr$ \$10.00/L
500 mL for \$5.10 $\rArr$ \$10.20/L
1 L for \$9.50 |
correctAnswer | |
Answers