20200
Question
Andreas has $8 to buy batteries for his toy racing car.
Each battery costs $1.60 and he buys 4 batteries.
Which expression shows how much money he has left?
Worked Solution
U2FsdGVkX18KYVVFcVx6RbWl44oIM1ggDkrYh08tod6Cc/PR62w12/RGPy3wW0IvT31aq82kpa4K59mDK5UuAirW55yTx9PNMI4VzTyWwm1EZDGUfvBjYuYwRx5X/ALrKJEjTXQ+/vTavM3iGFzMOOli8EWfl+YABm8TKtzqvBuC8KTmzScEkK2DpiC6Wl0HWnHCQTC+33cbFGgO8+i2SOblvFqtZfzcFLDwSgRFNMRUOtqdhzAwe7nZNq6DJwzagpsHdDIfnOd4zNGjbXN4aZpga1V2RUdSIUuUJDaHE4nd8YgjhGwXJKb4Qvd0vZpJJMRSdq68c3iSt8tDkFC/55dsqZNuRDIisUYg7lUT+FKRcC0n6tlmjcVEU0HMk7aho/jiEA6VeJdQhDjgo++S0BL8UfETHY0PfGDzld1VWUpylzMB8tHIShkqs5LD6ky7qJxcJ+NU0S2IXEnOLvyaSqf5OrHWIbJBs6au5HdmBlIoC7S4T3VuaYswOCBymV/Jshr3cETL+R/AYtFmoTAe+APMtffDmjzbH35MziJKT/fDh+Jo7v8ssdJtGX1Ov61d9+j97BNNn+9Tu267lau2NgUam85braM86tuC4zZzbQo72eIoXgtMl11oFhYe+Xxl6S8QIILw7uGhNH/y98rEgnY05OacbA6aZn1dD8kFlR5srr6o/yBcv9G1bvm8ZjI1I9YN6EWe/zK0gns1ZQoPSeRMfgL1qIN18MYFtSubJPzIjkGwJZdEPKXIPCGxdIzy+e43njsgypwmohBTHJfU6QAlwZkakx6O/xRa03ykb3lZIFULYZXSmvPtGDpUZsSay/PFMC8SgQwows0Xl7h3pNEMWtYidDnGkQZTXwwmj98pRFaaV7N/RYPTMaJ0c4qUdtuN1xeAlQjqmPYwkUtHZ83uOzkaN+G3uZ7D+8593okXIpZmhPHj/bkXmHjzPXxoh+IFt/AvBpekz8wWQ6zbycuV9k2ndPRMI+6njVcCeUuuN+25wCrOVURRSlxXuWXbVaenoscI8YP1WnVb4DsixnNpS2RWe/0zhcXJgsQWqt4b88Xox2Y5lgVN33WGxqZUjhGZHCf46uVmHP0j8Zu6v16AvOqEbIUIPZG01DdmDpPDAs+c2wQfxFLrplZHtwKl2FQTB+208zEWsVnK4+CI8P+q1gaYEr20AIr97bk8jCQuYOsGMguZf1LtCpxUDjXa2Q/O5LoMaXVEGqUsFsZ8CqJ3INJb5umgTKEi9UQoaFgs4kICGG1rUr9QxEmKI23/SlFsOqh6n44AKk+2N70zKopmotQOy4JYoTG1o7ln+o6xUOLutbi+whovq1oZ6fRyijVyghgfWsy0DVGI/op4dwWmkKwEgE228c12ZqfL4MmQ/x/gR/bpeaLMrsPVZ1rrW+QFM5c7UqqKFy+fwMVd6R42y32+3y6gJWHk6aYK9m0ke3aLvVqC89Fi/bnZ2kgDcOIZEepFjcLgxbFV6dZit7DPyJwONRTme3ljWnnIiT8hzv+fOrak8ZGFSFFd3GSCJYHGF/cltUYZJHu568n5X2ZEnsGSPzjn+b1DPN5tqDaLa1xOJ7JNDRMN0ptVzw6iPKmhOPP9axoj0vqMgG7yL5VW25tveanZd1tHR5tQbheqBhHkXiCu78uyb81bjKtlYAnig586arcvYKgUA3TlzDCg6+zVFwrCTfd5hbBue/SeS7i9N9D2hDlDaZTES+zq/+rdOfc0UVy7RhsEK7iLIv1dd26J0gkDNRrpCUWb8t+BugTN0RZKdTLksMa3Kx0D/TTMivSRCIRN6rc878x90Whh16Hq+bUXNZG4jh/oYT1f68yWz1qvTm4MiqRoT8Dh1zTAM8Yox8q4VQWMpR1D+uiRCJ9KyCUNMOuYjhlEk1pvIsJIz5FJd8iEh9029iKm89ESiOI1qiU7x7h0s6D+fBdkVvwcRerfTJtmbNSCJlxqtorfwOmHlMVWZB7Wss+tS6L39cGu410GDCOg56w4D4B3n9emTnHkOGLxvthz/V8jpLD0DoqP/NOYW1EtaygMOrSrpBPyeJDGGPNNYrPWejJ2B09f/T+s3euTjKuKzkDEEH2GLujQXDpy0Dn8ItiobAWuFcBhOFAKgpaaaFfcxSszpvEv6+wUeQT8pBsM8g3U9j9wq2gllXsFm3b1+uEu9KxnzvggsIvPX1iYqx3T/OpOM/4uJSAetOE4wlO6iEqqIt2URZejm0UoTHklNtUNw+iCN73Nb4qKBK2gfutvlD7i3hu5oDilUCtpuJdzPaNATmxlspWsS24XDzdu5Lp1VLF32QIFLj7KO6fE93mA8ngHN5LGzIn/8aivxOphMv9r9ltwd921o5ejV+IAhfqYZt4vwHkBOqe+QJSW17pZRF2OB9IGDwnknVBVDsVrRhReSunHFOMdZB0r2WRZFuMUmwLSy8WJFB0DaD6fgY6BwxQyOo1O4SiLymEwF49unYdNlNIbDBdU/HHnxyRhHsw2xKXh+GUZRX8Ns4fHdzdmzIwpIUjrNzo8Ew7dtSuO1i/KJ/hv63nNwfmkWHSgsr03Q5a13a4znxEQEpuTEffecL7KyBkfMnJZ1mkouFR6S0Gu3JoEJkzzZoibgGY658spG8WWaS5oUelzMofM1ny+UablMD5mKMt6sx4Ezl9o+QpioWMWs/1WR5w59ypLAQElNPe1JvrKkvXOrfptxOG0hbb51vC1DCcXtR52XNIoEGp8QH/X6aVTSLqN5ZRnslPDfuHlwGT9wiNAwILVIZQF9R6Wp+MShMgB3BOnh9Jvs89GU+ll5NRpdzPtFfhwIFxl9kNSHGK56rfVDCZ2Y2LHc8w7dLm1kL8XInlCv2nJmly7P+q1euOO7ZsQt67geqfeqACJD5hEJ5fmogh0zSTjTFmCfsnovtwsA6auYAoCkn+RxlT0L2d9I5x9beZ0FFNaspihcsggpouyYxfyAYNed3op5I6jPgRaoiAJZef79cNlJEb9291HuxsJT9KbwIEyQ1lhS/evSZs0u3VAQ8tuO7mNioJRPUdVSoRPDMHXqUAtgVPKCiJwXi1BiAjmUmxw4laYxAb98sGg5Zp0lg77ZeRUoWGdJiGmWanIdVH0rDdLU6Wma62S4P0aD1yVi1/ef211+TjnBW80bx2iI9zZSuJ8itmbFwtVmT4O6ka3mhXd9hx6lCdc3J3vNZK/MG79rXcV9AjlSNxa9OFCJQ1x7sgU2hzqqdSWJtAVgRh5Lnes7v0VvypwrWTwpDRSdMJjEhXW24WOt3v3uKa4FX5sUKDZShZi0d15Xjk9ygJ243zgrrm1RVwJ/Gu2hhLcTNKrHnlBuE2Xe8SS6xxUaVCtohkRIl2RwxVfx+pw/JTiRVX39VOgoksp5VS2usDGMX5nfuEIBw1isEw+grhAw0nQrRDf8aAUiFjZdlmwrKPVxQ5j0rFjDUiQFZtwvzTxMprMUmIalXrU1EjTGnFpg1dVh04+UrwPlVwKpt2FPzYJlIkkCZWxtAiue5eMMHVmNavyMt3ptSZfz8CtFHtGxu1e9CnpQbK/iDVqkV6KSehW7seB07IgobjTxAjbqO778gPhLcNqxRGhb+RK7ZlWKsnd2BJWZ4CoxIyTpOEn+fNF37kn2vprVwRa7c+vKWeNI5pINmJEwWgyGmGKirhiJA9czHX9NEuZaDciWv4cOcHVPzkeKR3304VGfTAN9LSxx4LNFEKwdR4aOc66C15K/mh3eKH5zF78bBIvENYuq3UHerCknH0RPtHi1wdY2py94EjtgSbRYj4LwoMOCCFynQsYFRXh2ktoQdTb1yo0Vg8MigRLWsmyr/X7Sfz2TBZhDaRxlZYaEhC2n2lV2f0TCuZCRISm57naBBvIk7cZZX5BBN+HHFOqpq0N0TIn29TyiB6S/RW7/A1M3aA5Z5BmxpCYhjySs3GEyTdUcmS7O0ZjEL4H+oCcculbl3NC1VV9lc/437Dn0uPtKS96zENUGIuq5qFubyU4IRijmu+IUd/D4uDCDwJYnhN8/1xpQv6oLvgTNgyP/ClBllaXWPMkcNo+h12tcpLv66eT63BVoCkHM98+SIYW2CZmy9B5rG9SZ50nPjZ4x589PxpTUCg7x9Zccpd8Cw908jqA4o2pdCwMXHDo//EUMD3FMcF0c5p0Nzwm3W8OgOnsd33Os8mAt+W5Rn/F+hprNsRAw/NpBXiRxmmOxlcntnvKcRPUOb2JYkzqi9O2w0sJDEnex4NKZeJeLNdMJ8XGjAgkovSlSd1BYIOzFzg5KIlS1+KQwRv92CIabTnw5Wt8NC7JS9yM+iOCszB7IM4MZvZ2q6xLIff1A2rzfeVSo9bZygMuXFEfleqY0lmhZLBVK1vKgZ9Je/QFaRtMMTH8uuelMhAYmyncClntSBMbYU5OieCYlU0FfmnvgFimtX5GO4tFrnCR5BwFwmM8N1h0fryFuIFn6/BLugO56eZRdkRsP8tcRRb5z4lan+VO1vxB17Ha9ZiZ5SVCJisuI5y3+3HGQHgorKq39O6paCtLU7BpoNxLQk1axkohYVpY2NmaqvEU2NwB/KlU8U76rWo/M0iGVmRJ0p1IG+1g6FoI14m23Bk6KuNb9dWpyf8Bydg1tVDOHuU0eEBef0uh4rm6AuxVoY+CWHaB0bB2RnieshmH+s+ykTkgRvTGXhsct2zueBYHQIopfl01gGJqoEkwI8CPG3gC3Gt2nV+RxCNpSbH5STVWQYkLHkoyWNg30iza/d3rzIdyqf4F4JOah6ijftD+wCOdj44AieKCH3GcarX7JLr6aL+WbD2IKsEUXz85JI1xUKcaqOoRnBSgOHY4bqPp/8Nx5Gb6c03yr0QJC4DXtLa+ath/eiUKg1/doBFCY7VcCBn8wSB9+L58tM4Lb6ayqInz6VrRThXgCABjcDyLg9R7Hi0M00iUO/6lg6nXhLRQG1dUWLTsmlxybd7s46W9Va8yjka1JJ9jF/QKd3z1CFZsjm42fxfgxufN2S1Vkdt/cNYqphfEngGC/Bwkf2H+eEpwEG8LYYH2R03aaQMF0lnKvP5AEqm5oyqyPTFmHfa34rZXcr6hZvqiUSrB51HAuKzcvvqBoQu1Lhy5k3LEh67M1kKPcg6+mCtr19IS+1+bGG/PRdfu6XUcU0frJkAtewVEO7zO49w2lUALXaP31YjlFgTREOsHUk5Rz82/CKTI5BGkxw3By634W7qqaYXw07dJuxtDeus4Iy21xttaxwfd0aZEHLw/zyiglhpPhhZVf080qUOu24gbiHDCfcJCPwzf12uj0ZL2Lr3nKkOGNwhi1QySZ6il729Ua4yCNTfnFPc/sKblJAXoXrgy5exPa2XSkKtw1v7uOn+lKJ9TJeAO1HRAZ5zEcnLPK89hGmU3PMSA3QqhQSvKFbzzCNiWditq47VaXi/ZXDZSS6CTOzx6yGHK1g5ixszToGZPfxW/iMX1giE0KDlG2UGy8mnDjdJ31POpLAcqODYoK10x/isRHX2QmOgs2ZGLMA052aRDovPDQhllM3peWny4Hd63EyIs3fSKzU980Sxf9NX/jU3ALbWVVApUey9Y8B4C8HfMChUHHgb0UG8bsanvKXoRJ7EktRBHAZLPzW/qdNkZXcBr4QUIk/CTVts+nTEPos50WgV43FNpez+5SZjcqaCbVyXU0nh0+E8B8Wldap7XLLUTn0iUvvFiNGjCx4U6y2mJDxoT+KjVRgaiTHH3DXHYDnPXi9A7pUFV4D24tbxY+PSl0lh3AFBrT9r6jMh1/Tq3or2c+uWVdvj0zYqc+DJA91+JrpP4R9Cr6rwHcU9s3h9n3DvYnAgXCKIfatmxNIsCLbiYhlytqjxHqB2rMG7OcTuh7YTnDrkA0ggWqFKQBHmycj4eLoYzdRZAyMMbz0+Sev6yEIKusiTALaxEZsS9kDDllAwxGG+13t0n78/XH+JfjAM2/SjNKHmo3uusYL/9sJAm0oCA/UJjZY4zNUZadjnpwngHXSkBWzjpPPGECISgFpGTby4JPa2YjMV1ubLVfhjJbQT6H9bB7O528zHoKsQLdEOFoGVpbdw1lq6oepHOnJW9vBnbXhs6iOivrskq7cJ0i/O88CSedcIxZQMFV/zOFSQxXANkVCwkSGliaZSh8q6uvRUQlzV+D60sC67qiOXvLPn2ml38iqiyFT7wd/GXxxZ6A8pOT+4dO3PiBkr92OANLEN1xJDXrPp+uo9ZIItXOHTAi8d9tTmuUaLYfxfek8XfUK9WcVsQ7qT6w9RhxQIJ/vbA3LwxrP6WOLDWJdDHu2MEQVZ6xwCxx5CvCPB/E/q1+XPv01GFy+1mi2mYN2W0D305aLvmBYHf7aMXijMJ3LkE8XR04nf0pRbamz/J0WwwKyGlZ+hsEnZOhzM05qdXn/yOinEgfQqkuhnFK7fi1X4wPiIo7kBdAvcG609k8GTdEZK0bmc/Un70ueb34DKQwhMKxEdR2ShvOgHTtR6PTOmp9H9A7eHSZJT0h0qaH3diwepd2dPZ7KqBA+otlU9l2Quzy8GnwI8eN95gHTjcdkeEGUm7osGKHeAk4ViaMODmZ5jTIb+CZhE+2W49nhKufJnAEZmbGWfnC04GohSoAzZ9IEAp/zqY5uxRBViOc9M5c2kIZyjFDllSMtPiigkBl5wwe4lVKzSHP2jVQ8RFt3/mAbwRroNZHzQ9RtlZCUvL9fGptDqVTLaTQ1tZq/gygainJSLwkjTQuzrAH5cKHEmipY7NquzNHgFSwliMs6pqx1u1GwzrsQ5UgWiq4ko8Qjf4JT2gnQHFLPo/nXxXFxlU49GJi8UubYYAdGxT762T9V9adIZaOQid1k7UlMXSiD7pwu3o16QQZMEH134R//FtuR5Ie2K+5g0OP0sPCXMaKDMLgq7Vn4AHY7oZdiMBfpoe72Ap3UhbJmAWiolV/KZF9NdjVCrMXaCbfvR1fqMweiNx83TWIyMWu0+KjJQJzNzRJd4qDpy4WEaQ5dbBWS0vSidU6g98dm/E8IIzkNULsfZ8DROwSDJ51J/ZRDaEpbvCjPbO9AqxL66NfAgkV2hN193qIj4ZUaaaq0QkzM6s+CBvhQm7hFWQu8WOQ5ZtNLmsf7yD5i2al9eVlfZrsV23SgUPm1pKwIz+G2/W6yqm/N13nOgKVuMjkCMhA2Ja15mP7/9EzjJHe/EL3mEpCkCFFy40INkAqZhv9Fixkx7oaSCE730LUtijAQmYeKmvWsNmA7YPvNwEcMKCRMunwJp7n/pq4SFrZdi8bFSLiD/bwC5wxYrRi0qwt3BIo29E3vbb9h5uRA4WSOrLgs+QKaxNIjSL0Ht7yqC/ydXAAKPbdHJop1bXXftC7sccW71ErZWKUtseHxvlWk/XMkagcnDY6Wd1Ad2ysCzF//2bovKCIgVkgcYVMaqaT/diO3BELZF7ahzLphKfp9UvwbXvWigC9Zh3YXnBmWfg/jfi5zQCI3sKAsEITSMbMpDA2fizJN86Wq3/pX5MxuIpKrESRFSybd/b5qBZgxls7dg3wOG3/LB/FF/JJR22JV1UKJzYLky2vVIR+IZ+w+KrCZmZFWWUixuFHkQV+8CcJPWRTSionykijEf2fM1XX/qcEGTVQOqf46pV07XIdC+7eYnoFA8Ebi+JyiEhZ+Yca7KxUdjlBlrvm7fU5bCdRbovnfNd7H6iF4zS6aSQeoezb5ycTfBi4PCE0QED3NwaRvG12TZnpJcGTdlAZDNHFjrPhGs3YVxyvuSTnU9zvfAH6anBb+BLRbTV9zBmsEsHBMdptuwyzlsXFymK62ugtVlrMQZf7ujZyetRmS59DDCLpcLsU5U2ESpQFSkduY0Py4Z+gD9qp+SrsFBQWcmR70EXtilhh/S5oRldqCgRW/EAA4Iq4ccIUJ5wppmhxrO4Dsj7/KDEEaB8XP8F7zFfkvqFyIfX5Rc7Ea3KlpJGIDHuJCwXv/jOuzVnb7FvhFqZrg7stwNmRTnE80KU49VXfblIiaZxnMu0rPy9FCqpD+83hcV9GY5xekgbCXV+iNJqe7EzhMgK2C+aCuNJ82M717YELlkc23N3WGjglT8KrvYc0HnlaPGchnXhi67pyvoVh8dF3fgpN7Em3nYOarxi1eJTYUzPc9WzvNtmODtylDHJ6QDJggL+abCB61WI26j8zaso8RjQFxRruSeBZh6KLF/bNyuyi0651AZswtY6kFSOnoZKEMNdL0Yt0QQPipH9zE4wnSG33Gz64rQZNgcngREcsx+VMQv72+reRA9E2ogXxarbkAwBwlvEcuMEmvRehVMigEXEsNmUJn3zK32xfjUw9W/X6LkkGC1sahvyaIZ7p+TVc4ERK9gMJA7+ax/GkfxHXAnJeZGJdv/mydxPFfjERyQI9rNqWFovayQ+ZZ9lHJ9CLAxAQGoBzZJn1976uD/ALLmRIG01oTYfDwkVNnbbLCsl3qxYvrSBB1SzSQsUNP6dyvEOY7WWk0qQqi5YpMsFFu0L3XNcgCK5FRYiipvSpw4O5cGsTDLD3rbO74NMsunZXRggbgQXOUUC/nxUxrpufVBH/8pLnQaP0ztV54o91dRmZSUT2GI3kKNO1VpWd0LSL9+mePdSatbFTn5dxZEpXURledefigbHBnXjoYHXfquY3jXlvbyIJorQYe51/PKAUfeIhkfstTU5peeyc+1FLd8iJqtI1/PBODG3mcY58sSyEY8ca6r1LFQVblsdb2lWYTs0NXC1bdjc5dfCsCczEP9hA9ev9+hzjZNvaQKLESYSjEMdQzEhMlYsyxsDGMs/E2klLc+Su7+YcrPmsB23WJ6zX7XtSUSDf8EgNCGkvzDav18rYpl701Y7mp+4xX7KeMeaRMVC9Kwza9VV9q6LaclzCViHXRfC9f9SDtSV//Tfb6bAdvl1R7r8VW/Kj4WvXi3wCHBVjMfeWR4WewBntcVlz6QIEcGZFxy6aiARE8pvj83/BPq955g9y48OJ8XTWLag7Oq3OTcPbdWwCjwutM9retc/CB3FuP5MhkvRi7oWYtgIyKa17vSC49rfoXHhnkg7tGNJlm+VKFeFkXanOX9KIfYxeNKrfqDKjg0sthvCMYE87KAzFNDpFsJ2gPvsYtNvrf2ANpdvRfLOLfSHvCe4XlAPiUPX1cPfLGFMRAPLKhAyMLUKYuoGiBHFymkuPYorhyT2Av59oc/2IsilBPWNkSHMQrnTKWjJwLKM9SpG2HDZNYEW56vOrzDBoxF43QSoX7r66vZmT+w3QyTLy33f/XROIYQoyxTGfnb6/t6L9uswfZuLSqAiOj1phTYEFwxe0Vg8qWAtusFTbcNHK7PQxVcM6CipOetqJ7DSixsFe9glfyOt9L/DDxESuUYjQy0Lyohn8lMIr+pJG3q/mX48oqLinN3nMfzorUuKBpTJdKQhF4DUgUPBUxjAwsPP3O+WwHyBW5qVMhcLcfLOQbURg/r6QJgmIXY7da9oz9CMUqR3F0yCTCJD2nkUCyRookFc3/7Ree2eXdXbtW4JC9v0qP2IQDbY/Ja0DWT714M87NjmVEjAeA+h8F7hoaTfNx+m3OG7e6fpYI/llT4vyZdTmbz7PvBnBKipuTadbRCBqR8GxS1RhcXpRr9ZhJVNNx83sFSRQgJ/fQs/OjhN5J8I1Arrsweykfa+s7fA/F+Z3XV4B+g48F902PDgAC+8RVRdRTNcQOfbwKfr5G81/BQRMu11KD1VLqDtIObX4mX/aY1DmDGfkaA5KS1G1kwTrFMkaG7IRyajipWUlWVr0M2XvCiw9hvUijYXyNs+IsGChw5t8onRCxSjUIuPrYxZUO8IOH8lg0uhdKeJQc7LCi+FtbKAaTgm19Hhx/+otrW3YPv0cEgsjTlRi9aI3R9F+quR3lD/nQmAmu8csOoBeoe46R3Yd33h6tJ+ht3nh19agvjnt4G+OIAbarCHl2zRkfmPzyFg4i/o3DE642PIwkAbNy7M8ZFuWuDsMHsEO3WS4L8B1vyi0gZx3xtOLpn08T0d6cc6k/ps2j7jjHyBRNwx4dCjU2YJPo63DLayVi1dV+SbQrZWj4RfZJ2Nc0jFDQTAExbP52KTPj4bO/nIw4qzqpfU662WSwBct2FDlz0am/gxtgc332BJu6t8daazSviGAr4g9aoC9uNGLZpqdap8iVPyfB2RUKzAIFDlygo2liAJ0Z+3TprVFzRMKnsIQ9Td9EsVxm6Cb0qGrYYgt3hFD1G9SVwxDc3AswpHlpkvs5wND3C2P2wBWE2CFNitZypCgbyX4JwQFjk0AwIpMQID49HfhJCJeFbUnd4D6U4PW3NeyPAFrHpQ3bERcKjUwL+cu4vFeoOqi8Fwg0noHYvR52Fi1Im2xhLs2teIM3TZJ+TI1/683A7llH3OAOpiC8sEXF7IQrGi3kj2T6ktO6qiluKunROSeUZG3q61HytoZVJvipvqrBKjWleRepQhCLzxximvg0jJCxIo4PMkA5v8f3o4sLPmv+HrS8UVKpztmJbMhZ7mSzF50bcTmrDqE8RR583rzD4sJr4P07JEXVGyE+F00lvmBIVeIx1ptpgJGCz/f3xAhYB7IBaam5G0gLqVuh6CJ8tq8VdZFAAoAWBQo4qYZspJtgvAcDluAcAZVXaQrXypSYoR4a091c3V6hyU60T5MWOJycXx2jWZeslOmoB6v5/JIxc6dE+LxSImr4hnibQ1tg0Rcgzt+icgPW1hxQYDBX2wNSz5bCK+4rrmXLX8xD7MqLe031aQJBrMmse94f1boxzny1TUEHgfbj2z7U9HSWx/t27ouGjVa25DhN6q4iiHaIQb0QLwBEwOSB8lXC2MvHjj3xI8DM7OvZR3hOTbzf6BcgiDm9KjJqAjita3PUmfpZvfOR5gozBI589P1AsiinKs6lPgUCcAvnDSjSKbClpwrMlLXFWyzNMQJvOe7hkdphjmRWsItFfhalyQBl+XjFX7MpaD7FXC7g4WcH1toCw1GCE59OoV01tfYUWmsnaM3xthIs1ibC/ZFO7iUm5zmLp/R3Me2FLmVR+i66LO6XTseazeSBnYMaIQ/PZ1wUVIdS/AV0lCqd+9B/AZfFLEdWJtiiWvj6IyIgFopkzJKEOyTAxI/PyX8zdIpxLy1h8NP4ayyLJnm9+QaVFXtgKyZbFdraP0IFITx16CwGp11ylWFlD7FriiUgirvruiOUeGpr5mWedVcO26QXfy2iH+nj8KdsMleXJz3UcDoaQwtQWf3MAyvb7QOfTEvP0yelEHAH/lf2DAGf5PjpNYvzV9c/SShzLhJ9EUauQOMm8XIMesFmj7XqdG1bv0/mvCe1yW/UWkXGrq+NWP9KbzHat12O/O/39YxoEu695pedZR4hfEYzPYNH7u19lUT8rNPZcdo/xCH/oWMAC31iAtiSKgKqvshkv7bnlrwoxQWmQNOUmZr59UZBMadq5/nQo6tRCD/7DC0Z66HauEJYJB1hbrhTCr/UjMGmebdAAh8iElfF4SMv/G6k4IsmKqy1MSl3qUs2mJ18ZatIO9cbTjrLR8nsGovY3ueaDnwHUBUTAkCDJFsnW0omRMPND1ljKJP4tShlwSt5W+6ZLevIQQ8Ja43hKVCAHai3diNSpgeuleDarOkroeViPKp3aEIJlKy0uLbizdRgtQUQgls/nWVHZDpQb4gY4UL6XvWLHTwf4VnzCABDETp0+/kfJPC136W+im3YT6IoWp95hIeGE5tH2np+885aOPhDywo4AwW+wS7LqsGY7Ux83jNccW00FEBtiEWBEKJxWHE5rWAaYSAD4Bxsn/EfVnoH1MhWuEvtFwOjcy8KGI/g9zGZrU0IdCyAbXzkEKL1TWWklvR0vt
Variant 0
DifficultyLevel
488
Question
Andreas has $8 to buy batteries for his toy racing car.
Each battery costs $1.60 and he buys 4 batteries.
Which expression shows how much money he has left?
Worked Solution
$8−(4×$1.60)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $\$8 - (4 \times \$1.60)$ |
Answers
Is Correct? | Answer |
x | $8−$1.60 |
✓ | $8−(4×$1.60) |
x | $8−$1.60+$1.60+$1.60+$1.60 |
x | 4×($8−$1.60) |