20222
Question
{{name}} budgets for the following expenses each week:
- ${{amt1}} for rent
- ${{amt2}} for {{expense1}}
- ${{amt3}} for food
- ${{amt4}} for {{expense2}}
If {{gender}} takes home ${{wage}} from work each week, how much can {{gender}} save in a fortnight?
Worked Solution
|
|
Savings in 1 week |
= wage−(amt1+amt2+amt3+amt4) |
|
= ${{total}} |
|
|
∴ Savings in a fortnight |
= 2 × {{total}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+7fW6flrzpehZoJCHCQryhGit6FAYxj//OCfopzArmBFARG+BKqFHjDX+wRMJttmUCTNiIBczudbDZM0V1xs4fcxLwkNolTb8iIPmFYvKM7zksCZM3Zah6kcVRoCp9tubr04JUKwS8iCEewlpz2HKHtKTKxMqvcA0Ostxr2z+1rPPJyUul3tik1A1McFeLj49E0P/GeO/uQ9HVDUszcSQdVhqczEwGj0L1HwczPQkjKxbIomxH8vx3RgiB4Mbq5c42vXZUXFF0SAYqQq+Dqu2J9S9JK0XPFoz+bLuL2jJyZWTqqKX2gOQkgNMG7yp0g4dP02keS6ibP94b6ssMiyXuQitJTkRagJJLLykTwFDCPF/JZ7VkcMDw8dBQfWs9NXqEl08M0PNvr2YHzIYHYX5Z2QYFF32WUP9JScuAMSg9seij+2PYmPBqdV1Fhet+YWMIRcxjDVi/mpIlccQyqW6TaH5FNXUk6RzcqNeU1XkPWt0Bp2MXdaP4DXRPzBfLcxCe6WhdCtk0gWl1jMuOQygbhEONlQCaB0fPP6sirqS1Oxc/hQgDDVQgUXO9QYKKRRDRT+gG7SgZhi7I5pDT3k9BqWbSeDkTmqjoshf0WuU4M+j1necvaOh4J6KYrsiS069IK8e1gqM4/7r6GXaFThel4exkjFByfzTxX+IQjnOhB5w3yAp0Da15CjFS9C7iV7F9PhfZxP/3UwcywYkBzNMbjfhMiyUm1aBemFD0/SaM2imn/WRr5bIT1MZWWbDquw5IHj2V3eStf4Ecrhf9IIWRXKXaTbfMYoE5/dGK2zOjmO3NSfhlUyiheZPEiY8gKnTceIl8S5YFFLaIjbDSiofLqYbErBdJ3uok0ZHcEKjRhtjPZGJ8EGK1PyRFYrxIHrBF9Sy8eks1xPcvHi0Wlf3PXDhnyo8SUtrSal/o0WfokOhWB72encU7m2syGRV/fhqlBmWP9palaCnvNuYF6coQlAAXLh0J5arSHI0bLZiHdBWYWlkCsX1SUXJZLm2bYBicmrb+Rwj+3nnPZdwgzhgzW0nooxtdebysb22LLiEMxcuRE77XIdBo1Fvu5ZV529qp4Ur72nGbQaxuycMAp4zPQ1UVyVawpw52c+DScf7gHLvA55zY4/ble/mHqHhcjr9jtCkgLpxDC7td7sE12NbUlLMOxC5wjuPLbLuHs6JjzL80netK1Pqa/20yjatwidNL7MdtC2bzJ0hQ9cAw87i3SO+76pu8IK/GAAX7X8XltQT7RelqWOsdvHXLm0aGEpDIg2M+z+j8RzX70b/txpWcElplzAAV4LPFEFujKa5MKkHM/YUKgT4t5OVu7e1abB8SVjCn874yjwidq1ldvkY/1bm5uhAHAupQZq6zsZiVXbUzNYo1nu2PIp86PjaKBAcQGhWYwL+wnHp78jAzLH4N4rKpyVrHcgrSyWZrU4Ng0waeJlQiisgYMJgBmHGh+Dd4suzixIi1OT3qGWW0OCM/NL78xq8TC32QLip8OOU68vRlGEdrTCuHJ2A+cQIBY7M+kpDpr24Dvcc7FnMPVHG47N9ZMM/DZOEr9X75f+/jIwRCug7d1RKrzb/cfAONBSngTBUPjgyKaCMmux2lO3iFPjI8bGpQj3u7d0u8fkEzvhDt+tF8WxzLjYvRogW5VTcxKtBISKKzPUA1jJfUKvSqqaawhZQIOV3MsFzitDpua/AH2qJsWmrAZlRWMJaCInxGfrrdnOJs7IPSBKoaG4g2RN1Cbck5AOALp/hgkGGSjP1U69a2Nl96X8EcmsHgW7wW7RoKZjrC92D2YQkOKQHUUUWi76pZOr30NaMuQ0CbrfEkZV+23rgEwrObthHmB/wrQ4uzwckAd05QgwFn9ZSNbQSxqhonsocLkBuS+VYoBfUOrQkYM03LD+HH2ZlbAIWtxNRNGFVRKT3W+TJ9SEvWjyfxaHYBqklA4bqinR3t2PiKO9ddWEuS1LDAeG1zIIboQzyod6FFJGl1pKhymfmPWDkidae/MbxRY6XHmtXZToClnnsZAS3avmVE8yzvWyBhdnDTljL8mWQD6YKRdxujai4LAiXMiIXkSsPFsBfH59ybsGDcxW/Q00KM+GQLf4ymtWf5+CPH4EdS1TTGchQwWGKHz9g5wushSUgheCBLEXs90saICFPyl/axiHwk6N36UhbgbMneLU7OLNHesEJMrkC1+gNGNXXQn4zLWBluGMJhTA1As8rBZOfUjA0fZU3XNimGs/Is6tvCuQLtUY8E8HjKvT67U48lAtIphcFrfhwbf1hFrjpS4vdfn6J4rrWps5T9IuA66/09KhltxZ7h4/828a0LIJ2XvTgb04ij/SKjIgrfjYIbiET5rwEu2UW4v67SMdrwzairYHdojNgpNjbBUkwtk8BXKXuQezc9oXtF2fucNPVEg4oMZ5wsIZxiw+iO8uULy5s8fe8/iCPigoDY4354tdrqvHY5yAVaGm9UbpfFGzniroszxIZbnyR/rssjR4nVGNGMTWVeP0Tvt7FdIdk8Wjw5ES6YEPjBZxl+OkWd+g00kBPkmqw+grUcwHHWiH7oZPdhx3gV6ZfIYpnLYMGJxF8kbK8R+f9j++yyrHwSTzFsULfBdb+lHi7oK5mKO0NC0zlSXCZgZEyqqncw1+Iz8VNDulS08+MBxi/wrrlHH+IEVMprBHY6HruviF+SgA7+VAq8UoYhyhMtnT70/3HDXGNC3iUn0YdvwRuEuQWtn6tJ1s60tVtBcXvnmpaauZ1VB96gMTvhMnOb3EPPs9lI5zLTHFxLYg720J9SkpAL9Ev1uHAANtb9mDBRx91//ll/vFTU9evygAezKAeeJSIg+dmNcP9MPLdHdeqn+HIl0HoJ+hv8WxqeU7RkpZGoUIbyuA1FRt6lAo3WH+U2zD7XwmhFRqdwh3VTo5cTM2bDLzZ2pYHt3Pdx7q0xp0JHUwmUg4+Z5Ms4uQhwj8qjQfY1xKlVKU7DVo4KAvrG3qNp0JtnETDxFkDEeMoMor1RCxl2XwzfE1BooXAanXEdPrStdGX0LWndjAR1KOPXVPFzJ1RxjDbhKfqE7GQnH6bHlR1ya0QfvftxqU6LwzA1Ybsh59pl+pnXRoYXG+RWUqfCX2eYloIteeK5s6f2OwR9SBY/ADJ4GrvIf6japs0+YSLY/XgcsVO4a+UW2+wKdwGr6R2vrwKhnawYNKZc9gIJM7KCJ5kppYlmLu2NkVhwsW1pIWSAOFvNq/mdIUOIPZmjutznARUpnk22/4ugl6RREXqb/V9B2urvQB3BoyCt48++dnQZJr5u0NlwcoWQCE6X6tqyY92QyNLWB9/iJ5WAKhuLCg3LjcJM9rCWhjy6E36BsJis4JOVtA/JKQ7q3mbpvpkAYJ70xj9mwDNs2Hwo57iGuZOdjEWd6H8vBIRf2eEi1R2zNQ0XlvBZTk2cWl+RLf3UCi14xK1vg4svPaPQn0+6/R5jaclXqlEscgiAVbE3Ga+zYIGoKgJiFm4X6WNmAvKbfxro7GV1s5u0npxKZHD0K6Hl3XgNfKcbtU+GImE5J/Q+VoomRJ/heTfbgeftZjK+tde4D73/mqWy0c64BEtfB+7CiptIiOyiSARGcEYVcpBya/pS9M0ovbpvTUyOSowY8b9+W+rvGm7m0jFXhgkK4KVvTMruz5z3Fxyw1GXruYrnkfeyHzH3ay0qk2GG5cCbucp8Ntd0a9MB8GuCwyxuY6OLgLvi5lDqbg70krFtXwiBxRBtnXqCbpWYC2h5ENeimbmLjLtwHNLhRzDRrMTI9x/nEkTF5vGgXWYaiCpfBXgXUA5427sJ2mR42nGN4hwcvisfpdQmF30G6vPvGnaSJsSqnotqm1bf/FU52vY0uCRIazwezFgtYirU/kEv2gfv320g0SLZdY07ttMK+D7YMpluF79r75QquH+wXjTCQdmajpd76KEyTA8ASWSUScpXxPTmC/zB4CQmLk/lyT3p64yH6mXaln1SzHbOKeUsrHv11vZE0bjNtd7IPIUuNnn+QECVGlbmEtggYNI3dEpV0f8z5n8v5ZoFrAql5ldSFQ2+sHUc89v1bppn53otDM4PcwG0IHjm2o0drrK/honR/pmWXXGVD81YXbT5oX1QdbLz0NYHeofMy56kXzw9KnMmyV0QB6e0l1C/WTthjx/LPOT5lhzAIYVbE5QZy3jY1usxLzAG7XAkerJDBBcNfDimdeZc/HB2D1unuIQ7ylpShw/wBOIvFc2hC2SUV11jKUS7RJDd45s4hVT6ED6DOtMVg2nV4Pfv9A8bYTbim3cce2+cnF3L527nwOs8KducuK7LPZgY1fUwHqISJKEbhozMCjKwTUoqTEyrqb12F4eTYS756Xfk9cjnKGlkFlbXDqz1jJ/iprDMPWWXS0w3mAgdvzRStkCSs0+ksmSgs0kILIwEnUDoxWsSd+81j6W2SbiEFUob1DdNEEmGLkS3DzcMDxT/VQ/rShjF6SwlUUgerV7THlaN6UhAlXZUn1N2krX4tmjYjZMRaRkSQ6B+0v1kDiGLUunjzmaeLeoUinOJbh3w1LSRH/khAqWIDT3YpNJKh9UwUysX6Sfe4oxjoDPviCuJlNjFVVKEOlCGgiZ+PIdyai4MMo3IKWbkMLZlCLEoNSIYx8kntCffTdb68pswyielTzUdyW9EHtosUXFF9vC/eL+tmaJQyHpIod8Y3iQKe+PLPIg/NungV6b1flQqMiHylMqvMV1qnIuByX+0mBDVcxpDR61sULgi/080EOpucPCXrVk/f4EE/2EsKGWSrnMnoQBBMcZ3LEiayF0KAd0FhSZU/GAnNkNEpj9DIx7/IqDY/zsbva0jsaq4c8tm9CHCYwZ8LZg9X2Ac7skYxiSKof/1J9WqO6gnqgM+0QY01f3E3BjNShbkPQbaFiEtfUpUjyLfT3/5y3CURcC6pzGxQeQhbQum4jBLZREaP0c8TyFT36wWpr73lvt1K61Jokh6UJllDawDBW0WjOwo1mZiXK5z+WwKO2wZ/8jEzrspUG3ItPrsOu4eC2JdrK3x3WTNQQT4z3+LBwBDtxnQCCtNmpEU6wwxzDIf9XeRILzLlRSQl1UzUVMM5zm9/4WMhyQ4FmFpZn3R7r/c/vE5gM3FUw4OszE7fwedbygulMy+guXeSyoV3uFtzsDgNGvg4XcJ1JJz2M/n8L+QnRWp6PzvCUqcOyTp/w9t26zNo2OPW2XfzpTqP3sEnMh+Nc1/3fwgJk4bhmqSS607Y3l7h/u71H5jgZU+L2+xfQfAd+o+7rjp4VfMF/PO8ZwXHUBq6ketIzAoC7HX91h3HAF4iCamnIsskPlNZMJVvaxyx35DNQPGO1kHfBSsi5hq7TUJAtK7/gRFR+4gFXrtDuw8HAR68BGhpGiSbK57LqMuVNEDRB+mEtaHtkreg0uMby9xEzLbkR+nmbvTZmGbNhw2Rx2f0Y/KjjW4dIw13JENYW1SwNCmuypp94Rl2Yes1l8vlz1knGZkbgs9pRfpdH2mZydTMgpR3a6b9lqUi9sI/6FTj1tqYUCjU9HUpF6J6wtKqdvqPoHL/XTOOEQBpc8gogZsQaDT5a/HohZSAyZGcrat/c2y5bF5vQJwJ/VT9zRCs24LO2furKT2Kkzy3cDdcOKhXbtnQcIvQ1PRBk0+TrrENRTKKaekOCINlxhHUFIQM1CDODd2+57FtzYcOp/yw3wDRG7qbn69qEoIZeEkpsKHllqB82MHI9nTCJ++D04O1KRKja3zN0n7cdZz0hVVUWrc5et0gT/K6u6xzOWbifab6OyHXo+ynLocDRaPlmImNiL7MFevgzqNRDWaPBfyqalom/kDyLt2OjmBMzQYGRAkqVkJtBmzB+X3jS7wGYEDDSj1NYaaBfnrM31H4kdziIEuXcfAkDUokryPJoVcv3zcNeKM3qwE2Td4tV8LZGuYo46uniVAzTJHQ3C/pwCC5buY/StOZdHMedlC800XDveXKaP4LByeRl0bML9UlQDeIo2hYlnoTQdB0VtBXk0+3JviIQUpd4ysJjf9e7K7Y2cpaH7e5tfyn+ekyr/OkKln
Variant 0
DifficultyLevel
514
Question
Karen budgets for the following expenses each week:
- $395 for rent
- $45 for petrol
- $210 for food
- $35 for electricity
If she takes home $950 from work each week, how much can she save in a fortnight?
Worked Solution
|
|
Savings in 1 week |
= 950−(395+45+210+35) |
|
= $265 |
|
|
∴ Savings in a fortnight |
= 2 × 265 |
|
= $530 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
amt1 | |
amt2 | |
expense1 | |
amt3 | |
amt4 | |
expense2 | |
wage | |
gender | |
total | |
correctAnswer | |
Answers
U2FsdGVkX18hNuOvVSt+gAKVGXn5mC874kIxcTgmvNAcwdDM0+BKaE+2yHXdmTHux0m7UuvfxKr7AvoYZ6ne/chB0V/8xP/ZxpKMBhiMbZSiuIQUDKm1kJp8GYAHiCUCiEyVDilYWl/JF0QFO1H88DxJlAj4g94JleBAnKWnmw0Gkru4tH0PeCn8Ippmu6dX5kpZfW+BTBgx2UKkSwOC68q3AlZPn3bz+KFSVwKzoqLxFL3ZyTiRU3jg9ofYnXYKSjbCcUQm++KYYH3pByqWg5qDlzgMz8eFbm/5kPfqwGYFOKhrLyTymbh0vfFnGkpojT6ccY3h2HEcAiP4QicUrcXS+mOmC2p92RRp7q7l87T+XeIU2sA7eWND6o/P8qjwntyPPQFeW2bRGRfOdUCMPZyL5ZzrNmWd9uNogY9lE84H9AWYnGHLUVgbZ+RkoEc4mDGpNvn0ChBQtCqQ+X42v1HpLt1Um0ANtcI5KrKbos7fzdl6rljOybKNOv18hBosT0ORCavujRUbgrBnFXEHkGQVEAmqmWbXOIWMYSfM15IW3vVbfR9HgSl52OmChfXj4Hm/K4znxRDgnab4gPcYGxtcp5GKh46NTl3TzETDiKSaYEu00RAthaoijRY255tGynWHrTVXlVZh0CrrN6HIFlylmzEQsy0fAef5sDHBwIs+nyWhtETMj53sukPzcrmCRU+ZkMkpqro+BH8Eu504lrf0ItIEhkALGSnwzAzgaHyw4mFWY5BvM1HFqX48gAIzCakeHvt+FwKhyb4xYOWEfT/vKMjLAsNhb9WU7QLLsslwM1qDU3b8jlfEP6J2ESjfZK8PZyD/G0CIBrbNWxPijvZ/GNspuoyJhuzQ+es8g5791ylN5Q1815X3toII9Q3umuBFUtgxv8SM9amNPT9p8NJP9m4yGkh8eTYlBY62uE1RZ9AtfYeuuIBwg5wAdFI8TCAUypq7YvdYtrbhozUT2/rgwQIQau9hjVyWr/AQT/24WZNTLThe69SxI3CE/OEbc24o7VnKSzu9cqQimJJ8Epd2zCijFFM+1Lbp4TfQKUDL3zM0ODbnNTQTUqNKR925dNHC/WG1WHGlyD36g1D6ImJrKcGzGDknr5Pmi/8xsDXaa0AxBovxp5PoSUG8DudEfjY1MSQcv3TMLqGPKrK0l62W6n7JN+5ZvFwUXVAEho2DUC0gFmlBFUyesX/9sllBUHrN6PcY3CLR/kE8AwjiSll2dLlvB29CKdnmL66zE0b9NyIzFlo/H5WBj4Qgam5FDvxH/c7PNkVRIXOtlZ2aZvWIqKGO3xn43AzZTIj6BNOYw2hVcZWK4rW53rEqc4tqCv38Cm/yI8wfwxnd9oxmTT5K1usOVDgmV4TNX/hmZ0kr5eBp+f5pB5hVC9yDOkWnxEIW0apbRUhuoGMCN9UvakIuWmfVLrD1Ze1qm+sBm3zc3iPp/HgscCxLmnOjULc4bV2T9ZPQt39lrhEZlKE3RGeqzbi4ccYCJxoTxMQ/9s1CGeaX3rEIf+0uDrxnf55se36eAgVFmoyM1GA7UPjgfbfuj6FAA4ESFcAHaRlCFAqBU/L5QU3RRITxg9J11cOXRpJ1BSSUQsAgDuWIjsIKPpBD8fHU2rsgJwNmnfJqAb5GmsudySKuJsdeD4OnPQ9NJcsCtGkUQ2bZe28NboR4jRFMPqet54RDyM/PmmO7aodw7yLnSUZIVg7SbaSHWtwI9SPfdsbprUSVKlnTU/f/5Cl0nYD0ZWwbH7XUUzwTxMD00+8r+gyLZiR5uG5Rb3c+DLyUIPGbCjYDIcauyq0PL8mnjxYcCSRr3smi1kqqLYcB7F/K4WerLFt6lOPq8eIpQxSTRDRkM4dguTM+z0DWZI8xXFB7dv/dte55KQi8g3vVMX0v9uVT03Rzy5VlRxfUzwBiHThdAWtoG8kxW9bxzVnVXLH1/IyXcKb21j7Tna6us5FdHOFx1YJKZjg+ZlUa96qJF30lf9p0i5BRyPSxpJhiUv/vPOiPWJB2B+wZv6/UplcGx8L7OJn/0+1KAXxkObpbjmBTSXNZWs43GJWK+/8PD0mFvgi5dLMHc5O47pVzkVzykfks9C7k8xOtRM+b1AoQZQT9C4Dro52jRxmgekbww+6yVUdAkMCw7HAkcQV6ghdUmtA/6ThcjKXAArMiBHm2rYAADHb1sdPYjfz9KcyopNht+1E2mrMlDANpRmgZ2WPtMf35BNP0OcFFncwmLqYgPmqw9CrrY5z5SMU0bc5VxUS0K6NV5PpHeYrvS1eP72idGUgQ8lFnPmshCwOMCgdo4NkY+7NthpKGLTjYfNVbAPVTZjFhFvhYnq0gfVfwTYTdCWKSUb2W8LL+ImNoWNLKskgOdlBhTJtIp80HBtUPwPR4XLQlhLROsC7pfr9B8YLOqZMhni6Kz1/uAgSdMS+I4Imxd0X1dadOy3dXGfKrFXrZOEdl1frpAn4uTR8HlTrg1igiq6K8x4/c9nzZBkkemsbDGHw5TPhZ12W/Ey788W+mIRomBAasIbnxWupdJdhF5YTMGxQotqTqTwnN5DWNwzqCLTf+PWoOfOWTrLHV+hzP8eZiqXYmPBRDvR8mDOqKZDPlbhYeio9x97VAKWgQz7I4ti99vetki3jrlN8AmNrg5FBTa0p2AZzDp4HMtNWgHfBjB1BroI360Og3xS35vIJXvExgZoI+bc4Gkuul3C45Voen9sTxqUZLG+fv9lhc4Oe7skPVcOvmvhDq7WNraFcL7tycoNp23CkA56HaXEjxV8BINCQO/CVb3SeAfH3kLAWPb1jKQmfWfIfdv9X5CxzwPorAKzfVpnsMJagVHERLknmATwBhTHHRVczDUjRUuQfsXDTNzbGh4/EcoTdQf93l/0tM7TzQe4IyDanZ1K7CxBjSibicXw0fXHWfZD5IawkI90PrSEJNRCvvZ7L2nN/zL7J0o3LtUWwoRIJlvqJHkFnV2bpxALCKGhv8nC6C6IP0h2jiXjYtPn1+LGjE1su7DKrW5McbyVgdxS09UCYTFikfv+v7GqS6c+gH9tRyZ5H6mX8L6hdJDUQUdmhC+4ByeuspdycqirGghooY+EcIkHFqaOpf1uU7qjzEKH21+cHn5YnC6py+92ZiJJ0ro9GpfVt/L7lo5BKsDklvDJ13C6sTfty4e++QiUK2e6t5DC8/2/a5yey5VtlbWO8chMaTPQc51jiswS+9d8Bdg09FkOLaF92iPXYZQBYPLLpm7mcaEM+OF3m1QIJ1FObZvDtGl9Rr66sP80ywwH1qOGDvUcZ1IxG+EJHIW8j9UPXYuXk1pbKpqyFpwea6yoShFn9uj1v56mZ2zpfmiAJKvMcjJdKOt79MT+gTXPpqF9Rqy+Y5b15rtsODZpsCsbYPpAtopsaCcN8LEVQHrxp4kqYkihd/zz/a2JoFL95XSZ7aS4loTp+0bzdzVWpCvxvfmjPbbsjXRRaUPMooGdtWPnIYEwe3wUzwia8jXvN/mztN2iHunXISPviecOVfyfq7YtaBN5e5+xrzt7kWA/ohtCaWDcK62tQsZlqXESYfplzOwEcYsydaAemqWx3Ahr8wByd+tJQ47Obbt5ayrqrtFfaWM/rLIFwdHj0aLaedr9O0QMOA8Qd1X8tbIegcYL6F3rXOTeB3sBOwgeGjlGJAGUVTgc+A7lm/8ENQgQiQxLbH2oXGdqUF64Tt9NtAE+yias4qhErwi9wcnGDQGFY1W9V6lpT8oyB7mn1w+ySgi6AM8TT3jTyVyhV/ASqmcgDjO7B0A9OTAz0ta7euHQW8xAFTJwM6E+VuzZi4KwFdMTnBvpP3ZSWmfCRpMwehxX7DZgoHvWzSTghHMhQ8mo1/ulWL75dmRS0fG6Jgrpia50DJIdiUJEMFKaCDb56k/WOsC2yFAhJeziQWvCtLtzB2nw7ooIoujOMpE9yGEpEWPEfUI60T/GaP3/zPtvPLfJVVkNl8gvLtUdRdJfGzXaspjOnAYA7C0/d+B75cIigjN8YeGP90YCWgcJR417s5rQU3Sce3UjFRWuQciVVDzBDJaVZ3kJna7NWLKmbxvDJfe2DPbv6xvqpmZKQtC0ZNFnclrWKbsw8YBKamOI8LPLukjq5LisSsb/CFK7/9pLCAcOzOhFChJ4jegrxW4mEe33P2CKZCprpA4FRAKs2Jm3mq4E29j8XVwbrJ+peSaxw5g3h1xvE42hk79o/6h1Zi0LglAHt7KAHmw6PdN2XYZOOfvXZKI6RVVqm2bsnCr8dgNEoP5d8GTA6QUYs0PLOHdJrZ4pbmkncyF6HTBBwQSHfCU+I60SrXKnzWwyaenx2oDLzwfrZLw73YITeyePFCUP/9n8aWnEQuBLaiwPVRSUnIc8WE4450xIYej05evhXbGafObZwRtDQ2VCrlohjje5M2D3nJ7LJz08EvIEECZiUuowSm5fkhRaOXfQaN4KgIwb7XS15LK34Hmi0hD8tfGz8s0RjWM4+5KalktLFD7Xs6LDKI4W89zmTxzd/eGpJXfnwLhqy/SBR+XoDPPs8YLieSFz67Jb2j7HAS/mZrqkfl2Xlt2VV5IJDOOkVxgIE55t5NQHVqOC54jHaG3P2dCRQ8wPyNqj4F2GFDruqqX2P3E6RBHXcajGDsP5KPwVV7NIIYZZVc13OobyMkglzdLtRjWSK2QqqAjyvhxIT2zZ3cmY1ntoFXIYdeCzc6sZp/qgccNrhnwHB/e0FFqpzUQzvZXJCqn8sPpQ8IaX2ewY8mqOZnNt/AfJ1cWdihDpxkWOZ4mf8RHRfyDTacBhSGtFUlvdDPDvMm9jlAe/1EsvPpcPc5sPwzloKJZ1DACPkdtkTGwCI5IbzjpIaGk0zEdJJUVWDzjua76a3emf+t7s7Ufxp5aFfsZ6q3IGLEbJq6Egu9JIjTUCzwSTxmLg2m9r15kMztmINPu4zpfrqI9ULJ5Uy2gQHvqm4u28jt0NnuDjiz5o29WTsVrvpU7tg8QYcdKgG7fHOZawY95IsqNcyWUFnnGPfy9SvFDp9PwOGZ1e00iyZdG+z2jtbGW+EfQVFchCKmYg2t9Ps3YlO+PhpYnR1HKre1oxtLs9+fGJruxE9CuUjK6IxBB5RsyXaSojm/nGM5LSv5VDBBiRY9yJOuYFs/6cFDgvc2w2+3K4KZzQrcmhER+fSAuzkrPIBpxyvFxh2eUl08f3/ITeNsux2xhaPPDMKHW495035BxrhLcRXZKtvQTAch+VLJNCQNTGECxlXJS9Mim4jPxM9ydwHJIbwt3MS2lVW5jg1qKHnIu7Hm67g5p4afj5m3p6IkK5Ebmo6jDcJ1dC7lFQzqbDd8LywhrCh+T5thEJ4yJHooMtKCetnLS0gktrWQaqFaWU3hY5tX+9CBiPQPybSOA1hXQ1rr1V3D/7mugXmgDuzKC8hcCV+9pHd8j7uBUJCC3Cv42PugC7vxfgPEK/+FAIRo02a97Ay5EA1lo93XWjjkwjtrZveSBmck7MOtyVxy07/yStLujzj7rQEb9/SGrqbxqjrl69kb+HUvY6emCreGV1BwiK/UkFiVwf3djBwFK25M6yzhK5WQE5b+a0eXmmNIMuFxZysFLo2KEpSQTMfBoYZHH+Q19dnoxLLAy++DlmbSV4jD1cCJcWuMYS7s5BF+KIYZdzFyZivXIJWvVuRMSYrJhuzCA6ztdUoIzeV0AVxBGAFYTixFu263lNz5wGb3DtTjkLQ/03kvfEDjHuCy4n7oIIb3vGDcTR4+Xq9gkSyt5MgjgtdAlaYrlS8jpO7JUV0fidK6NK44JpjsCNqkV/JVMxWC5dZWv4mrQ4E/ZNONLb0xopBhdWnHyH9m7HUQoUzoneAh5RYzPKdzNsple0i+vba+t1w3kRyURKv9Y1jmj6vZu26aLS4nwWea/1GC/0Wn8y2GlD0aMWyNsAe0U6qYZE6v+XS9FcEPG/8dECIxr2D2LnJXLXkLCLPabN+x+rr2J1w+NO6oErPnYFhYd8seVQf8/LHsKnO1bsmlJ0In6TzTPoTILeBNySQlBeHJqZOvG3gCxJJ483PomJxubrsM3njURAlCFTEGxHmo
Variant 1
DifficultyLevel
516
Question
Tom budgets for the following expenses each week:
- $180 for rent
- $85 for utilities
- $225 for food
- $60 for transport
If he takes home $730 from work each week, how much can he save in a fortnight?
Worked Solution
|
|
Savings in 1 week |
= 730−(180+85+225+60) |
|
= $180 |
|
|
∴ Savings in a fortnight |
= 2 × 180 |
|
= $360 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
amt1 | |
amt2 | |
expense1 | |
amt3 | |
amt4 | |
expense2 | |
wage | |
gender | |
total | |
correctAnswer | |
Answers
U2FsdGVkX181bTRGiYEMPf/hkC3YyV11+Nd9tQ0M0PBCIdmaxbWD7L1z+zHVC0NFjkcpuocTbAJgTQwsRI+CiwhD74ciI98Bahl/MNfXjlSxMkbYitml2S1auZ3VpGJyuxlg2AyMHrpOckqt34/37hKzsxvu6R0QH2fM8ZziMV9H14b6FO/iJ/CEy5aRebla48oedy54iHC6N4sAg6QWHdsRfv29DMgnpbZ1PFTP4UP1q/y5QDJLUczT8VHHwhvByh0lP7b12O5OIbYk1zNA+LdMFU3CLGaUX8K6HZ8R33Jysw4txzx0etx+66Dh++xEqJcQS0LccVK9e6Eut1YgZUsyRk6xjJtFJ2VQNPPqGwbcU/EPcBLaWqeh/gWQiFHz9+MJjo7j1VkmXs404z4nVpbMLCVyGLZUfSPKxdhoyWlXEVryR8Ly3IrqPSS1Njc/ZX9DWvNfxF04G7SAvSCRmExN5abLhef2Mmo3MG9XCsVVOh51RVoF47ASQyg6/ru2OUcKOQ9EjXKyBduS2yPc/OA5QHj3ngEOtWbbBK7MCxkAM/MiKJOAnv26mwBlkgFclzYSuPr4juGZ3QAWPwcLIxlOtVVlmyHriGGNx6UqPF4H9Xkf9weQ8Ha8pFqRmnSU38qQZWCU9VpAtlaSwPCO/efzA6lq6t3y5KMqOuh/LF52QNUvxviymDN1x/1rj0cFcGXZK1tDBv2IcjM+niHvnvD8/32+dsBdcukTKHIE7VtsttM9Z3hRSDaEqhAOdGDoehbdI+zM5at8uTOaPn8DxC0VSgpX0Ntc5zduzj4CtqYF4mgAUW8HBvD7vb3HTVmMyYpzSCre+B48tf+IphnFVYfXhGCcX2D666Cp3BvpmBr76CjmL/umEG9FAplrwy7Pd7Q/+L4HLcWCwsh6qy0AfTGUtzIPylnUv8ADrkstGih1WZg0kKbg1t8Mxc7qpA7Wx0xrlV2Hm4wfnD4pwX1tM8h7H1Wjy1KfgQ/XqBTs3JnrARjkSbnzwpdikx2rCrC+R4IVdf4mfUbFnY15+w9CP3+Kl0NglAx1CJ5vAnVS6wk30cPkfyBboff21OJbE3wbFnReAZWsilB7HDxM4DmacYr8JR03s/hJYqzF2WeDUXyQt8Yq4cAFrDzJ0it+BPgAGQHd/8H4KmHuBsK+h9dgjHH1dUZIqsXMELH8TTtmxZKACbLgW48tunK3i1YlrpHBIG4kgovN2x4P+sxJwvysmwU57uTbS8RG5A3AG1+vGDd3MypeM0AXuVlpGxMCHXTiXn/1vda4qO3PvFXHdGOlG8d7RajFYbAvD4cg6re9YvKfwglgvBpbJOnJlY7qcw+SfBRSVEDXfg5cqtZ5f5u0TUrOwjrZpdJRg2Z99+EfOzcaMfihHdZ3G9jEPv3l+lLJjwmrOL1xcVm0RNZSZ+Zn7aFpxLyNlwws4xQzB82wVvJJX0zf53pbfrERzlO8HLMcvFoXQmWTUS42A7FXO7Htamidnxg6rgC/tMJ/VDup1/aCQx9WqqtxyNjfvt37iTpbNdo1WKTxd1j4qj96UJ1f6RNtJznLpcWq09bOHd1zGc5NrQIKaHkdfLu5Cd9SDJgOTS7GjLs+yrII2nFbtJMFm9sqIdFdKpmzL0bLOuD9CCScJTwMCuCFW7+QZL6pxNFIokGJc9Gh0QEY556tkcZS1U/32YBNeu8O6e+tgdvSeBkQOqyu1G5p2RFJCVFmmH2/LtfDu8RIEitL3C7T6Sg8lOkgGvpzdCMDhOvzXQTWWUBhg7TvZtQtYBXZenHUQeiEMPQ9HdQrXQnsce4Ek64UCKk4aJWJ9/OfWEliRHegswvQXaaFlTtEajhQPZ4QDzEobgdYh/84lmmQMIRZ6gfj0koXepxn0VT8Q84iNuhXw4KCef9PXSSbOI1oD6sajXAYTNdceRKXWZV9zp+DYYnImgHGv5DEmh9PH2o8t3NK0QhQtbM1TFjP90x+6NETFex7GYkCJzAGAENuxicsfO/5ddqotyz+GSX7RnBYw4roWD5HnNznxecfdFbcoMgfkKD3VFZqbwB8/B2Qw4DG3hOGtGygVAoK4TVw/Hpkphpl5Dzc3+7Go4Jyol9vb/jzV1H02DAreJAlHEOKjhd960s3I/e0dWqU+fw639/+2bspsZs8ml8I8YMjwDwxZAmF4rn69i/41h8dOKhNAWsoddBu5bRvORWomFfbVJ8bIUbR5g7aHhdKc5pnWYPL7UD7wUaMAHyU3aIkJMta54Dgpg5Pbhy/cjFdFUOIXQYyMYNwLJpmRQ/9bSfjfCprEdFNwxTEBf2/3rOljixUuGs9v3itmqd8a9QMI55So6VobjkSrORmv0pb+2/CXPhIuAGeszYlH15aQu7MHhlExrvLSG+LnhvGALJltVJgVJfpkHDXvMjKZwP/zGVmPmjSW8G1AqDDrXiKsxigIUv3gIq6TbQOzVDF71Ev3OzQY4CEm844HwWPsrH5NJEM5t5sO0PUthQEidUUPsuJ0RrzzksYWfc5joHFODmEVxJ0nDq89Z8v9awRCodTT/P/u4YjXjublOEBhGBu3v4YEx47bSSbqURqB3qqzXGx85s53vr9Qmh5umT5bQDpyjSuBrFFbjnRmnBvpiPX82EeD6cwLYqcVu/JNc3TSk1bbdQvrdd7itwjk0R6gClK5LGepGX6zCgGEprVm4wQKqJYkSjn5qEOwWRA6zqrdyz21ZPYsaRy5qx10XuJfuK9mmI5Pgiz1wbrKeSy4Pq5TxLWYHv3EzJ2daQMxqVJDihydoKb7F6rI39tUP8xbbvzoK8gzfbzSLz16aTezY/c9xcYMHv0u7BZrWg6o7GV9he9afsjdB2l+bX8+zOh1ixQKd458g1E1JdHmNJDO7ffRhGUKOKjaPZEsZwxLcQStDKTE301ZfxEdw0uD4mbNLvTk4N55mfyp6q7VXYD/E5dqCVssxe/dPlMu1g2KlbtkNhfgk+U/BSOfs+h+TctOFqiBI5asZq0Sm8BX0Z/+khNfQAZx3fPrFv886294nQxlOh3TQxppy1hPREyYKCa6LfuHFe/2tnMaP8aPhmhrgBcej1E4O6EaaSaH87BOP6XblRByfiAwAAkNEyau4cCwCWJTOgBhvF5OJ95GOOvtFRqIUbOiByt2Y/fBbYxPsCo8rzZwKpkMdem0o5Nvo7/DLD76jWzsPS95ex5KS1pbSZdViB+/zlUl5uAeD8BQ8HwL5m0KgHJLdV6HwhzjlArVUjxfb4mfQk9bEE3TzkUNt/XD5oAZioHfayS4lERYB+wOfpuBI5m3RvAuHQSnmD9l0kcIiif8jO1sMObbkPPYSfuA0d6hYra7yp8Nv7tO1HAkzkd3DigQZ8cvyd91rr0dIvJVqLpq6L+FQh05R+9+CxL5ghnwP+pVwlrjVBzvkIB9nYkWDQUf89Gy9InOluw0p0alSDlndwAZbLeE6SrNRtAX6OwkEonmcgD9l3+37y8+3FGzVz8lR77Z4cpFk+RYhYFTtbuuGYIMQgfg6WXPc8LzGCqR7P2J+3Y2Cqfk3Vb/qRdyfE6X5C+rXZkbjAVB2K3i9TRv77LHAL/EWK/amcT3nNg+yaJM3EvEjHOl7Nmilk8nS4wQCaLv2aXeC42k9Mdt1G1KEfx6mcd74Y4g3Ai9iYizi479046Fx55ssv0M/1XeOc+cdgKwc4A2pdWPRQL89PSr4u0TUJsPzLQJQdgGUPEPGmgF34xTpORy5KP5JK/q4c1BzfM0qZ/vKl6jJUgESxO7aNa+XZy/YoHQs4s3h3Mneeas65lgv3q3tSor7lWhYkegIgTQQfwXY8KOqw49b8bCAj96umd+OM5QlL613dFpDMPhyzmssZbr6g5z+Vgj5W8brHGfvmH0djHhcRLLnh+OdAINox/eqLV4nxh5hV1+NNLMdPTxklvLfIqOwSejrbnq+nDRNZ4+tzL2T3Qar9cq8rUrQgN5ftrV5JdSXg8uk54umhlBK74qOYQ3NKlbvnHC1n6ydZNgdQd3kuKz4Hp1tPBQOGu5OlGos8RWSYR34BYvkK0E9zLlNqs5xDjb5YSkjCdn2+gtRbOAfNPHRAkSqtVyJMFdcblVWjrblVRo6g8AAyOdMevrJjkca5JeL9iRepUxtXmbHl++gzuHC7hzDmZW7dmnN1TTlop51uIdmSGsOlv19J3Yte/yAFuN/iDQPGXcZxYTuHig09DV3In8hdVk8xqLv+h6Xbzy+ZBnxRBZRyXk53EpZQaFb/l4MISSd21NrTkvbqZ8Fawu89u5Zl3ql6AosDnDj61DL7ZXzrO4rBckmpXVb/KHiRD9Xztm8pJne39UjkcDWkyPKKLrSyFDXjtyBBojAzK67eY6sZCrG30eWOqQCLN+Y9xOeFQFZNtDPm4TSXD0RBqQwIUnWaf6+hoi3ZTeDg9mdIXtt+GeMTQyloHv4ezRuJ52o0QjUc8Ow/+ULrlB9UBO7rfxdHXpH9FE6W673+xCR7BWM4C0zFtdtVkwGy/DfR/2Q9WgHfDqFlW+UFcpNcyqrWmO4aANNiDBpuSGqRWgNSfBMC/xxt1X1SyUO7/7rHFBEBt9MHV0gjXsT7njPpc+8GET5M23jogC5s48wzzxyckNqzeWUeGbobG2iqhZKERMJ7GNKfvsPCtHmObRfToEIFd0NOiYr0Qpzql2P7y01BT/ri++02md9qWfF9WKqkDrc2JKu9AmvRQIkN0yFod6t8qvbkD978OnSQQsO8PZNOF2ExXV3xcl4Zzqnv0grwhnW1T0xClYg/qvKurUqyTyyGfNXvACVZFxpLqDa+yvO5lVbZrtcnWV+CakFZoyb+AOYfBpjTyM1LV31YIAv9fsVGCV991Bfa4C1sOwQ3S8yoxvngilWDkXIpp1Bt/0HREwK44axOVtHXAZN7WhkNlHfn0s7aPGonS/PK1yajnXWgZm7727hs3Kxel40kNcAe+f9AS3Lk609q2qwADtEcBb+qF9pOcKJeLbjINjSuCXK3OZOHLpsuvk+CIeUMD1LwTV0CV1G1owFaPJENaEEg9eg5z5W8Sk+NuZ++QKl1BzUKAkD5BwydhYKHJzjsUquv80ebE2vn+u90WoLi2auBbUd0uZDtzqRbBYPC7bwmnvhRe+jA4BMLw7rZGvPDBXK8NikFztvyEaP+s+itK9Wg1XneS7GBNLBxTfK3uRrGZ8xMlB1VI/ylhYNrGYiq3JE4OJQrkjDsFDxN7bPikSVScOV840yWnkUUhX6jPr3VEKH6um31BtP7JYlhLqBb1kcrojHzHBMgRJLBzbsK0vm50v6DD5ptiW4AH7mn3tqIyWsBkNKz9ZttUQM8cByV65338CUOoUE7wWlfbXyAZ6HeIqSLeA8EBmuTrF7I4M0dIkjZvjT5rvnwJ7aHQUYtZBxC0/c5CTejHO9ztL3UZoE5JnThbmSnbMt3b2XYIgrjxIy0VVDw+OwuLHm3OqhwYCCmsc2eF2++LexIiM3X5AV2bJCo3iaueTGrzB5O9Ea4hOJdHny8X/zNjsTlbSz+dWliKFQYGEysq+OJ0LAYDXuUrd9n4fEXwm5K7P0BSLVAwT3/7D7jjxvumW8gZrnYQmH9fsn4ATXZpkVf8X8H56mi+5Q9PKKj8JZOm3s3pWJ7GhTrNWa3crWjm9XE7ZHx2EUqbDJOhndjzds0TumgXQfpOJz0NVJy64u3z9JJZNlZF8eNiz1vXYelWchc+NNmBHxjuQhOrjoBLYM7iTgVbhxZeOR4h+vyRQP3QPYlmqfaTmGI4WV5f4o3PdZfm4XgdGWVjju+nLysFHh+E+567+XlsZlK5A12fHLR8djrxn8tcR6rxct1JxAiJZyur/hyEyyPZwLGTxTQ7eDMxYLGwors+7aJPO7b5DGZHQZHqOhMBDCz4fenslH02Pu1Y3TTHt5px4agkenEoBfL33Wzjqf6yOSVTsJg6oqnhBFItKdPhoCYzhmhtHaKSH0NXCcV1iUoDtSyW+whpnB8rkw94ysLehEKxNnVW7cRfkTdXVzlzsA0s4+UsJdrbL5VDr6l/K/q8R+bTjFXGhD7Jxu6zt6nXkhKa+Vkq/OZly3sp
Variant 2
DifficultyLevel
515
Question
Ella budgets for the following expenses each week:
- $225 for rent
- $65 for taxis
- $130 for food
- $90 for utilities
If she takes home $615 from work each week, how much can she save in a fortnight?
Worked Solution
|
|
Savings in 1 week |
= 615−(225+65+130+90) |
|
= $105 |
|
|
∴ Savings in a fortnight |
= 2 × 105 |
|
= $210 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
amt1 | |
amt2 | |
expense1 | |
amt3 | |
amt4 | |
expense2 | |
wage | |
gender | |
total | |
correctAnswer | |
Answers
U2FsdGVkX19Q7tHfHzzpjrezUS5Zsr5uAm234K58Oh67ANGapcosg5SNzIWKDofStxql6JYwbewK34v6JCl7PQO41icl+s3CVraUeFKMXHXn7TdAqXa5diz9X/bCr8fj4TzcyiqWo4ioxk4n32kjhpSjr7xR2f2a9OvWuJuYDe/XJ7J5fsh5wlAxL1FS0ieARVKXBG1GIJHD0VUGeY11V8AJCaOBNYpksYeWTU9RE1G/Mpcg3HeGGHeUBTzOK2QrI/mt+vO5ywxxgA5/nA5Fx/LonM9MEzmyBHinkmt3snB/pOjlEKrM3nF9mNCBH9nI83ib13P8wVE9+yPbDgHFaN3LNjO49SeHoL0JwVPoQRqVljbeC38+w8zjujQjW2QcN2LU8B7sHpq0WqEDEBa664sUBNZ+9voDhPWy5XNWlDLuZho/FHGSXe0aiSF+JsFbbi93dzByQ9jPm5CvASvpSNZBiSoRGTBo+EPfjK7+uSX3wEsKb1LDaMo1efrdSvepN4wO9KPZjTEYR6XJt39CjJgKE6MmwxKyHTthx+v6r2fQTFTJ+meY1z3sLbn9g6QgUfOyeEXU/m193eJtQl2LEsTVzt0qCav0Nn3e+iJq+D63GMMnbourSA0Z7tiGnJrLJeGuFeEB30bybDJ+DUa2+d2r94aI4CGusglQ3N6yf8BpPIOHVfEjQf75mcHrYuFZYGYD2DekTYS8J4OYQh8oiqzH/VneCjUCZ32AD8EP0i1/weoZPlZHolLeXmhmmJKfwHMUYVNUfZ3UgHK/p0YGIqYKvg/wng5YWgnp/OnFAsfnpQ2P/Hpz92RI4KWvJx2cj+D7V84Dg5jCln9SYG0QdPFgQV15PHEf1FNIGFSMKcGWoOj7ILeCBDXZOdDmpv/vgsjyDHLW7CYyO6asUmc/mL6JtUnjl6vYWfKrG5lrBldSed8581f8jMqHGVPT3LQ9/F/rbM7VS+J83QQUIwR3A4fFQQWT/0wpqmAzdPXjJIDqB1NIEpvbrdXxTePWRil6xda8+g7ds7Nl4P9OAfElutxbcUH9mtjsJ4Fkm1JvLMf72tTUxv1nPGNcW78wF0vEn3MTv2J6H3uq6OVilt5a4TFR21/RhQwIbN70/BtKFUv+ndO1Sc846JKbv26lxEFBswOJISvALBU7T9gmcMwKFS8by2IT8VQ+23FORgKy7Qd+p9kX1ejrD6OVrRtGUKK9l1Pqqp0XCWo8a+lOwu5K41RBdNsJ0jlTViX3UM17tm+YIKP8w10wGfkpZap73bBP+LAK1/JIQ6LqduybehETZa9dbm/BXtRymW/WX2557eIbaiyZrGht9U26SyjD1cjUEVAhm9Z15ncgmGPYKIGFoMQVh71wpSu8wI0RhW3dCsNAp+aJACRh45qq4wYS7zzPJP6YWb41iIDOqV1Tcde2vMamw5l/fkJ6L0Lq22P3hj87mq16sKdvviT50SSw5Q4asFJLsFC9Gz6gRb6sQ9YTDeXAiu6WRTlenNm/uAERwEjgmu5eHhrtdtrBvQEEB7GP8nLOZw+p0qOXNjwjsZbVdABxJ+6TSVamdhT7+v8AfBxLCglO/UkxmMF/eS5aTxp931YXKZjFfI+t1y3CYA72aM/bNmXVU+uyIg5xW4GuuBkVHL71t7gitPNa+xiXkSHimnxpfvfhc8HLQi5yF0GyWj9m5PFz3cYXKpBfhQcHlzDqhVmZgG1rEkPHvcy2JCxHr/OPDneFiuuggx1YrJSThoGkAq16xpzWwFQD6sy84haj1bS6BxiB39CMRXEzhXXFT9hrtIgHhWX7mDmxNi6reAjspCWcVKK1Io5UfdzyrWGjpkhv9YDNzRDTZE5qlmziQ7Px+yOZfRhzItJgJfK8Zvrh3JCksWTY80ViUKqwlLYld1ZU2z47J/xl/GoBCga1jz0auq/ZomtnBcCKo5a9GPAiMtIxkfL3z1cO79YmqUvS88gA+OqejBMz1rIRV6+u16DbiGZl0vWbAwU5o7Dk6LYc5SDh06Md452+pqgY2zSYUdOLfDPnGm74y8dUrh/rYNj9xYsDdbNxOimJqazyhLzFWc9+rYZEnTa8LL4qDy99nJDjsr9Oq7nP7xubI5MQoXOzcXWwECqq1VULW7WLNE4j1g0MvCcR7fee19vG6n86MqtVJmUs7YydjKcw5k3fAZ7qRVicLqo20PMFeCoMebtypDqAs0nOwCo9guIUJd1OK5VGtASJYrFp0GjKyO2hWzDJZ9TfjJYRDOLnv7ZBHIUgLNZ94U4LlPqsqcKE4W/ScAJdBia8XvCpbz3nvQTocjAfgDk/2NYvgNwhohMSxYNvaZuYQtPIMzj0P2o2/jVHkCqXghK9zyokikovH1u7mBunclJuM19v6fycDc7jStzd0f8N04utozffHcskrKX/s6gYlnYfZOVeIuZXOHC+LlXdfKBsVdC39Qyjw+c7+egIFAf7FEEfRcU7ODcwqBwY2uUTqLdoOWpT0qo3aITpOucOrbxC1ricWPTI7M8m7DjdMEUHzcfoXx0Z3OIf57YFxDwU+9JAFePjITvIxmdwkHrMyaKInDxsqM084fJ1lCQz9WaUt4WhI7n1Py8QB3liBfSFrsURQUonU2ayTgR9wKgHKlP7kLh7bIqF7iGBOTK0VUa+XGHurBDZz2uEmz9V5fG1EA7nsCth9LpcnffXrMjs0OMlYV62h7AztywgjYpRQLiDAL0Rg/ZLvQ+XK6RcXQ4Hge+BZxggQ4L3UDEywlFnKHSGbjrNk+pBySgFFhH3b+e2ggNaNsm1Lq86RbTaPap0ljouD7hbiQ/VCB0zeTYJslpF6cUgtHrwR7ecaplizBl6Ok74MnPl9/xX2Y2htnxuRkIXHGtakYmRJ83KIkPATgfKAFELIWC5lp2xGp3X21ZuvNapH2dPZAdakSa6kNKwiVJ62ze77ot6e1KpuvDEgRkK+fvID/UKE5NvMgwso5i+dQcd86VOBSSZrHwIs3Km09+KQxfPj41DiMdRMtEQY/S9hInNjSt/vI90Trih9fYbdId75s0REdiU/PhwXny9+WiZ7p/YR6oY0fU+9wJBn56b9Hbm5FpU29SThiScBtUWiEhK2IZpUWYKGRklgipqi/geaoRG+yMZLlNMMk05e85JEeWqn/9mh5xJkIjODshtqOu03K1dIIyrK7I/oqqEDNAGgAZMWYpk0ievK1PpS/CckndEVue1Tgl8jwrl/bgT52PLm8MxXSTO6jS1WsQIt33bQjV+Q01zx7iAqAKmhsdKXudzXAgfZkbo4qUV1I9JRi1g5GZM9ljpZxahikNnTo/K63jk3oPIhKcOv7qgJ0xUF7nhh4lav8i/wnlNX17s8fQE6mw5fTBVJ7vnkcYlM/zLxrX3tBq6CEay9Byb1Y4atE/H/f4tlGjdQNIrgzpIRsG+pl2i2qro+6w3tvMkR46K+aZe8zva0r/UcE5HFE/1BuUqHWmYgrG4WIUkAOM46bGg0TyXaHTyCzTmSjKXFh2DlVdgjdeL7uzPaaW73JD2o+GzMgX2vYxXPHL4LKeHLpKvR8ebWfZZLToTgxOuEiPSrQ5BR6Wmv0FNTrlwh87IwebqtWT7zxawFHmnBjFNmd83WWpGi7TAzmNDdmj4JvjUXjdZGEOQs7+1DGDwhv1diVsdAiJmdOqdJxPJX67f76+PQ68064b5585EFDFm8JSBSDuLAx0EGzAqUKGAsfPbWTJZXMfKY9j4ja02FlSh5wcScUX2J2sfw8A2tuEMm8xGv0DzEkx44qG+49+pXkai+urVYC7gDm1fkp05O3HtpRSkR9m5vCY0MFBBp8YEv674QBYqeT1uGUKhQpBEIARaE7Sy1TG9aApvk3V2dkmr32mz36Rio0ofzE0HBIQ8CBUOdLnphUJ8+CLLMZOwWRDPId8x1G+4KKK1oaI5F0doShNT6HkWp7xAvBwSnoKK9jPV32K/ZsUY8R7dwjsnRt7qLLOsxeO9dGgSa2WJCyLgGAQQqRECiuJflPP+k3Eg17J3Zz2nPv8hhqMkK6bNrGiOYeDd73XBsoQFP6kPGU2jClOg71Z82vdMht5PgxBq+vgV02hGDJH6y/jnrlypMfe0Nf5WKJd4QoNU/cvH+D7qmIuwCrycWM/8Ky/NJzMqkVVFKnnWkCrONs2FrxVTx/JxgQK9fdMfndU3yepJatp8gg9PcnpsWI1upVCRYl98yALSOtEj3BOoJYDCacIgraPlgdtroVg/CAqeZI0rNWqddlXh6J4bRZO8ajJuF39gkWMhpapboTeyTKlrNWEjQb/i2NzsC/yjWF37nlP/0MhZmPojq2nKKWTvufaxUds0xZ/w8oO0YAodhov3bVt/bE71TuqfOJQf+56V0ZF9AYK/k9AExY95FbFbPZ8kK7R5/r9sB/tPakTEeXg/ECq63D742Je2SzvWugFwtXYz6GSQDFbOlaFgmC5nByqlx4UHW+rv23zZu6pegvu3MG93MdUeiiPP4G/Arqny1JYbcV1sD8xV5CY/lCaD0t8syMmJgJTS24+rpcmxniESA8fYHshIPqZyppNn9cqCy6CCPGLfnpFMFfSPszOGPaWSVaKegAD8mkELbPVbaWCHRpjQ7wIL2+A1ijRl7TcLovH3HXPrBdoox7JS3xCgvpDLx3yzis/nYw7ngdSkOhgAYrpmwMefoF3pm7a4u8ZnMeliYgQ/FMoFHWxmTkw/cSImJ9ndq9ZyG7elcoZAKA2dZfRLLCVVfIl6B6xRTDAFH+8axv5UJjQA/ndw7DfZqcMQVPY2wuJauvpN95gtPqhf2tKEWG/sFH48J92UU8jkmC/1TwJoW+Ykn3jfj8OvzC338I5rHNI37q++9+IoC0AoQuyffzzXi2CUxCrGgSSpzBNjuKMfAC+zemi1X3pabdeIpCUiZy+xq3OXoO8wLf8gnyZmIotesolL4wg61bldwVg/a5llCziAxAgsfH05Ez1cJ3LuJCAs9L5csXQCn8xrYfbIwyjmZWn0bZGbl/ExzR/IIDqNrvM7CwZ3Sr5ufrVSlxL602vVTAvIYpewzK6mqVFuwHI33PhmxGmViZx46E5aOuebEqBp7JyRkcNdtFSPbUOFY9OpKyan1ww9Y+ZjIAU2P8/ByCbrjhQSuZUjkJcCc5R7N76JNqGMbN1XRM8iHnqHx9z7SyqUMQmv+aiFSpCvNo/plSeTLKzw/dGjrFgUaQdeBU+iEOAqKZiWBifOVFzU8O6YsP6XYLlwB1hG1N8OLK0l7M5Cxt6BC+nI+ys1rFFYB+/GGAPccUTsCP84wLMNytGLya+gIfBactj+PE/wOX1e/y4f87DPv6mAm6L7dro7dScGkO5kv7McKGqu1nty3spfvsZeHNtGK49TIzjfBjYI0COS5YQLu96QhH9frpE9r+X1eiz4dojgJCjjNWQKWOhVAJCqn640GPLVT+FO7T2Lm9PwknLmNbejRk4kfgnm7si+CtszsLu8N8zndU9v/gQHCQbqMvMPBWr1lvs639GAoBMVt1/lrkBqEhjOdJdiZSzWDRxCu40yE6ukn9MfNGkKWgaJd/W9sVXC+wxpp171Gkr0GHWyTqKfYovbzsdTmlm7dGxv+w8/nljTyCldf7dYvtNp5cM48qWu+VawaWzG+xj1yQPQCDka4L6myQEYbknbGWQKwiq6chV7fd+XiJl6JK0vGwB3rtkzZ6cPqkxJUT+R/qDkynxY5AlDkfgTjYSIZmnN5oFKSB/+hZoew1tReqBe3reLnadFWnpEdwXyaeL3TxsQf9wfJQionW/3hJY8PZapbO5fJIDCvq5CzZBfUOELcPws3K9VQipDTenFJsWu+3lF20JonERdOCF1J5OwiyWOSd2IqqHsNDZBDWQEtNVABuCNEWvtfdA1yiMFu8MZ5+2eQnBaHUOyMGxUfJXXdCG8EpwlfTOFq6LdRQuv3JF8DOpfnb7KXKNK0M4d+EWIQNqRiWydUZ2JO5R0aB6OUOwV6JhzULsuvFmFqTBsgGW/y3E1/AXBHeg/UIKcwduWlROTQ/i3LcmFVPHIwtiC5I6sE7V0TxN9FaX4Cu+GFWbeqnPmktD6gBQSD2NWZudvQGMYx4UDMuF6vFJL4glne4wL+rLlxTc=
Variant 3
DifficultyLevel
518
Question
Mia budgets for the following expenses each week:
- $205 for rent
- $35 for petrol
- $120 for food
- $115 for utilities
If she takes home $760 from work each week, how much can she save in a fortnight?
Worked Solution
|
|
Savings in 1 week |
= 760−(205+35+120+115) |
|
= $285 |
|
|
∴ Savings in a fortnight |
= 2 × 285 |
|
= $570 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
amt1 | |
amt2 | |
expense1 | |
amt3 | |
amt4 | |
expense2 | |
wage | |
gender | |
total | |
correctAnswer | |
Answers
U2FsdGVkX1+jXIUdJKGTa14oWgmFgIqcZ/s0cD2N/5Ii3MKLvachpcs+HkwyseE26UegXWD2so3qdgzH4KohN6OO3HTthmiTYeX3fLHywnbnNW2/JMEGC0cW4hDAWUUXodIb1MNLkqPzqVxL88BbK6EsFvR/2vUczLTEqx1aMCHObs4DgAbUvO0w9i5hYVqC1N9RzwAj9lon3AWqxxVI03ODCvNL1LdGqtlxO61gFi/PPIIRYDg535Qqp1GyAFzEWb1294o+o+7fudoXImcw8AWGohKWOCNfxPhx7KPh9Qc+J4aOplWNodwAT4LCgK9KLyE3Sr3ZSUeAxpw0I0yrI7Ul17eF8ft97qFgVgArlJ19ID1psr/eVi3HFHAJd8Y9OpBMZU40yRIMkeJvNYkB9LJdxdkh3DMdm1ZXFIcwuI1CIrH8GBZs9CIthbdHTI5HxBF7Htx54qJy05ny/AQ06C9RD3z0WEpYQE+Qau7MhcF25M6Z3WDhxt65pUiTr7c5dRvGmBkAUsDZ8PkGnc6xgLOpAsb3K5OfmTKELKpH1HHZX3lAM72drqxUz0w5om9nK5otK0yp6vFudzCDFSf5tn1BAVbZZvwA9bvL4ekWgU2SECYa4iHTTu2UJrmqauZTEgKdrryAR3PmJbNQ+AjqIC2FVrUbydKVeRZ6djLPdIXwweVdUHQxAxIPATot5545UUMwkLGE0CCdG3OC4vUMfwVmxTO+ZtLi/ayXcwFF1SITVIhHWkTCoLCxUsLu2wArHtFf7bZNToIE5zZfJTxVeYeDN31JE4cRtep7CRoy7pP8OPzjtGizbJzqDcKBjuJGRD+f+RxHNigQAiBP+11cciEicyIlwhejvt676kD930B9MaFdekAXnHVSmsHdgkmi2x1bPRB1VTwp5enAA3akKlC1JBv+wvTWBVXcMahG25qvvlnsm8/IXeLFwcuJ5A7MlbUVsWS6D9P3OK63kq7KPC2qmSKdnYBUvuofghMT6xKIlKhMxlK9IdnoCAE9DgDrIatbsWe0vRq8gNzmBBjmkIq4KI87y0nyN4WxsfIVUTsJ241XRclIjmsfTpuex8KXdx0/7FyV1BIOZJUUGxgr3TVcQYPMJ9zjCwStldkW/xQ/xvNTTMI5M/IrZIslbd3Gz8Lu6cVDwWKCKRgMcwFbqdB/TgkkFhcl8WlpVQycsYw/abcv7YGk5vn6LNX7vVjp+qvl+rJuRdoyijUTPr0udR74+FxjfsAROdLWebN92Dnj+SvJyw52FrmrrFPbonqSkmNW9U6wUu6ZIqvxSQAX/8NDhH05xllhgCQRgS9282vlk5/mUMDhLh/sy/RsrTCbhqPjEjQqXi1oxZcDggDiEL5zX418gQ9rV3dYhSPZ23q/ax8174Hkl6vhzlT5YhhKX6BlmTxE4b6VbtlPGeAlj+DL3f+wxaZV2sJ7l2MmtmZ7MSiSAXRM6xsjutw8ZYpKnhA72/D/+DEhKzD1VEo5gP9a9XZmsodSv6NtnR2XjRLFHiEkltX/+107Jr7t488+FXh5FynTA/boJzYgVrgUyMeSfgGIBoONn9CXeGkQtNrXc1RDhsthmBt/sEwV13Lof+uR5tMJi7oDfQN3Rbhb1nWsgj3QZ8H01NigzY++jPnqZgN+8vYav60IUOx4db9PKVEuTwOaUwMWvr9hOeRy69oXBFzJRo4lvM21TVTl1EhowvZXzTQNRB/LuVVnNAWHMSJ7T96fFkkwFqPSYjCBIwa0o1KzpHRr5bSpX9P/QVHcgMkJQiwJg2EeUG57PUZ74IKnsoSlzS9blaZAXdnM4dCTxTPNWoP6Zunk/y2Kb4EorolLhiqE6qpCjAffmrlh51W3tS/uxkxKpdyDm4+GDA3bFC8GfLpVf9C7WNDkGg2LoA2buqebL0VPeMKfDAJpbYq1ThRCeTQT7VGRwtFqAEx5DI1Cd+soAKkYgok2chOmcwUNWmBOxcom8Eb07xyx02on+5TXxWLRTs8ubnguWfDdWfdJW3MkYL+67kP/8D+7k6vvXRRXKDnM1EpCggDeNG2tcdcxAM0PUNIEqizot0pFU2VV1bGuljtg6m7an3Uxy/S9OCuQePVcSfxTWKj18k/sXwVwSSsosphZ8PTGxtIOzBFNG6bTUuUfOPCtWuuAfCwohjgJlsVeNkJgJwVqXzi4GA5XnasalQsjG2RCaduGXVNMLu0Xu2be3fwAFYjiDHgWjOpSSTf1ulMjAsa+1LD9vXhUE8RP2+c1CrRq+LEw7VbBGuJJhmSO5EjHSu9wJBQnCP6JQYfbovygTpizryHWdMHF7bo1ZlMWT9ChhX1T39c/RKyXbmhMsIvv4TU16ImRvBK12ureF/JyYLzhMiKK/TdCdgQmaIzlNeQg0ZEVGnZOYVWLVH74m5nhJbI54bNRwGVmXF4uv4prZ+mSLlnhDGbWNr2PV72hFuaGaHfA9hp2H8e1jrVyoopIjRGhizG49RV5n30YvX01tWogXC0NRFJ8AypDLYmIEqU6t3gk44jwKEf4fxWwxVNqlKoqfvlapfBXEOkhiGKDmEll+2gjPSoVtAKKRhViy7QTtFdeWA6wCGPy/8KazIW3lNw2tINkWnMxKGkCBYryRSl5IPr46gnnSTptrf5H0y743/g+Lzfs2ZqGoL2jGk5jQIA6UQljtzHNMkTugsbm8xBov6GdzcBJg0lJ7y64MhXJCLT9sM5Gza10icZo0/T2j7A3nJc4OYUfytnqQFcdNfFc4leMnWAxNumS+eQsjOzJRbQOyjliAuRQ73G0eMLIf5A4HIvQl7L0zZFMbsRIs4PXCn6WfTq/Sd8yExce8fQy0RhsK2nYV0Iq5+fospm8QhK8fZVzzjr0wGOBao700u1rWDuRddRyLEt+T2IjrmDlaIsGvcv07FX4JpzPHvBT/hgf6Jz+KK42j0+6UxuUwQJ5Xrpq1eVjG+vgkA8PxgbzWPUBpovYm+40lB1S8Z884feyvHNlvVdO3l8ZaizF+hzA0j7SNmXf80FHfiZ5z6KHqqoxMx9X+AdLcyfxrq2Y+f9Mc7MQZZ1qC/4M84EfrVj8WQFgEbQ0No9cf8avmMZ0XZJ0YkanW2KJQ15bKC+DMMsTDL4uBOXGkNn2tguM+hqXZ/Si7m7Ot1WPuBHKHJj9qCqoPwzIcReBPHRRhSCJL4uuZJWQYEv1hXPy4UUt4oxi3xLXWC1FRh/LJ12xVK+w0DlnJM0B1yOs5+Nhwhbu/KRckrN5IjMw9B0su36Lnrvi4msnU3ehTRdJfZXmIWJQ9ruCqA1ojUtKj9SYBFByhxAeuTohSm2livFjJp7L1vcpT/q6J5B8jyuy2yaCmZZJHVc7fhOY/XREleEARnNR/tXqiUcC4TIsg9JHIKJE7BzIcL2w54Js0BOo2EwvzrBxTubR3WXXH9NjjRLsk+Icxq2uh0MYSDe3/NMzXcY7Iifhndbv2HiaqawiPAM13cxpmJ1MhP2G6XSiBNfyxe+wS3RkflztyOyc3+DuWZsWBxBU/Q5oTiinHnFjIynD3b8PlhTxHSY5kedW6oQJc7wn6ugS3dwRWEm3ZhA0ZHswBdvx/R6evH/PA0ZH+bOqJhAltZ/uzccQ6YFY7YY9lAN+Dx/3tEf0i60L+rNyCRXoLuizHCd8gJRagQXf+Lsb1QQROKs0Rro5o3S2pOGca6s7SLzVZPbJi0BfwNX3m+gYzCoi/o8DUZRSfAktYSJeFJGh3iCYP5bA3FOL3CKnGirCMY/bRyrjqhVEcWsHmsyoSEVSKamHC51P+DdoWcP+gLEZCddSJ2dJJhkds7KoamB0Q3lD+2LbpN/UH7fuFB64eELLEXxo5osCJJLLcdE6oAdMv4H0NelktYQAGDiZdoo5WHYbZWLzrElFLtTMke2mskjS9mjwGL07As1cpe7a11LWSof9j81T3SKcjMFeQTSrGLH3l4qhG/o6pbeT/PQ2W9K8quwQQR3ZYzgChgozKZsWf7VljSkErSdjO0FESMLc5KXb8b+Yr2MFx8fcOmkdKENPluMMUNRRQ5ScjOiB2nk5yBPwVHC+lNmErWKv3cOa0nUIJO9kiOgVJTaB0us+cEwnxnoZK7SI5DIs6vMFxjT0lkidK0zg3Tx2K3DSu/0Lqr1xJM9Xhj0cZlV+00xH33cYvLNrJNgXA8GRG/7tL1EosfBq4cEYNfqSI2SuqSiIryXqQwdwkRXMewMJw4D4dmNQAakImBYfCHiAZlmGQVm6XL8WnzrM3IS1pSQHMkAtg33MNmbtY7nsmF09f5qTAFYjoIfFxCpAxGrCsymI0JrnXPOLV0Sv3W6XwX87V4Wmo7TaTpMOm8jy4YpOabw4siBDYV/M9gQcGL6pHYk0f/w7504dK1yKpVvSE18CxwheM8+CssEKSm9BvyhIckxa2TEAimGNDOMcf5bcP9TWAolyEu6ZUfugCbS4cisPg+MULNu8ETNek9riJEZggx2fLqP264svQ+kk1iz7+zH+O1vAh3SXU5uX4KbjbSV1Uyl530GBu4Fippm9x/E9o+/gvzEBOFiP5+K6t3JORTLkNMdECmdFTqOWHsQgq5IB4ut+co3ZS4kJ/PGkhuH0pQg9cjlf2i53bqa08mZ6SpEC+9vzGiFTzkMsDNsXVrZHNVYunmD4/VQFuXslv04b3xV6Q1/K1xkH4OmYmdwo88B16BHRdu3xRf4O5DV0BVV2z8beAcq0l9rUQsSbD6FJiaqnbv0gyidSSHZBU5ZPUcaXDL17jY0mnBFjtrkxC03YRtPvFfhEqyEVoP1Y2kWqQLB9RDiX/ogyplmNVRlUbhpyaRLEHkpYCWzwi6XV0g3m/kfBSBLbRRJdmOe+aU23btgeBbVccWqhb2g5xC0786mKavimu+4fDjz/8tmwjbtupvnxeVzQSXDE9z+FfjJrGlqsdqMBlul6vkKCVn/hJsYWFbI/SEULHuN5CPvAgZzwT5KbrnqZDHdcQ4+vexuOzjp6WrO+wI6JSWaRYsVUCe2SEOvmJ5cUx3ujE4wFiBAYw3fZis0npA98DbscZ5ZVrWrwbYeFRW3LUSimZbf8or7PL/hgdBumw4JfMTiAyhZEDv+mOcQFLxJymipdj4yQ4dsyIbJH1tb4Sv3gSDTda/kWh0O/nrCvkq6i2V9ajDzLzV5coA8tyvO6IPjC7ohPwpgqbH3IsbAeWOX5TFXUaR0pUcOdsIzpk6EGe6wM3+PAfXvq/7myHiLxshQ3xzb+EmVlSe09Zc0MS2ifuRrjb7rZO1z+UIbPYQKok5tqXlT3pMTVHafa3CHIIMEPkuJpccBR3UueKqwermyWo3IXNmtQrKbFR4+e15afNID4c1T77SbsE5KJ/5VOe9Y3b1L9PSc7tk7Hbx63sClpQC9QlQ1f9Uk+cjWOmaJf7acN1PShQN85D0oVxoLQVlY9kvXOBh8Iyu64FyjxabtYwRaQrTGY37g3doUjrgtVIJzYVasVLFXkBISUO2XUka2amjJn0X5Yig+OVGriy3+XXYChFEOjThJYx5Mqvv37TAj2KGDeemsQMOJSOh+beooUwAY5mUQ5fZ3oUbobkzsq79QvgDFZZEDdAEDl7GK4Cr8N46YTNFLf+pKKEI9phC8uArQHoy5PSl9Rl5ACm5zvNufU5DASRKoN0eZVmF2rVsvVTE3eX6Zn7ixlogsrTJHgap8xxCBLRw/Xu7tovhV9doD1xu08cV54exqFFLsLOYjQGKmCXO7Y72yeN58iNSg82UtFq3c8wbPrV5upxVInzDphL6LrU4CCIOXEVu4jvaWXzJHLIThSUHZoZu+YcJsMERHj5JJNcV1sPrGSkGuID/ue2D7IaYYT/r41Ii35PSB/WyKPhpB7s42sFrl5JYfpWyu7skdYTTQDGR60B2tM6kATmI2oWnn4CvzLIVnjjUOQegpn+pTTH3pqMmuEspEb9Wz+cSlYAjZNW8pM2wwxrM19FYQ7BGxpVm192Jke5xtzNoRiGeJLEQp2MZHzaXot0ailMxO1j+uVVEpQokq+p+hDdOCmDlEr/ituYAQmAoUj8dt0CDv1oZ9KgWc8ZB0gGHWgvftK8zeX
Variant 4
DifficultyLevel
519
Question
Dirk budgets for the following expenses each week:
- $165 for rent
- $55 for uber rides
- $190 for food
- $55 for electricity
If he takes home $580 from work each week, how much can he save in a fortnight?
Worked Solution
|
|
Savings in 1 week |
= 580−(165+55+190+55) |
|
= $115 |
|
|
∴ Savings in a fortnight |
= 2 × 115 |
|
= $230 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
amt1 | |
amt2 | |
expense1 | |
amt3 | |
amt4 | |
expense2 | |
wage | |
gender | |
total | |
correctAnswer | |
Answers