RAPH13 Q3-4
U2FsdGVkX19TpysKNwNdZOP4XTl41ILzmpJXnCzn+/wvDLIjZQUmuIqKPqx8y108SaX/U2+bzJxfrAdHUump3z58hYM7uPF8lJhlbSczeMhtAXCDRmUiRkI3nU1eGOJfgrl28G0Jt56n8eQ+qs6ioCxB1yKqBH2u9uD28N1/34fjuG8iHfjG1pCpZlYwavnvbzDDKPrxgEHkdh0LNVRUaOF+XWlzLE6ViL9lj+eP2eEGlYVzks2Wmv++cdr8wFI/lZf+HrgGotrUzZNijR+j57XFFYX58n8VVATCjnUsjVKJvjnXYrJ2rJMO1WKPCJ2ZrbFz6/j0rc+iI+pjcVrXPDSrYaMubqV3ajNkq4QsSh3UA+7gUBn7aOlMingeJCKFeyb9ptsboMhwgjNkGqE6F7KA/+sAf6fLkwJ0O/gJ6tXqtDBESrtMmG0zK+ebVk+smEZTgXCSCqYnrYDT1atljfzfTKoUHzfV05Ozyh0OkEJvD2QePvNZFNKWaXsLgT6y1zjqELTix1SwiwhZ5iq60N4ziKrUHIDRZqgGisDPTmeja4yREXT84HOE0ukPrv/FKuEgbBWG9z/4c6BzhJVBe9xsvjI5CR9yhYHyT2/bz3/LXr6WmqYKZQyQASgGORc9yoG47A/UqxrOyjnbEV/4kR7PWo68f4BY1b7vSHaibt8O6GjO5mVqkzDaeqXdCYBkiNEJ0L5XhMYLwn4xxaIGzF7oOmZ0NXnTNvpVbyW/26yfQ+UT0FWvyLRncMo+zNRV4nQ0yg1YHrAskyh9qHZtGiBbDp/+nX+SJOgchAD/tYiH5Ks03ysP6zIxIX9KQoueqg90N8ZfiDo9M5hipuaCq1HuqWOjpDh9ykYpsyQtkXtQN5cmsdWEry3XymzZr0RbvX6Wsp/wVJAliYNYLF0MHTx8ONuz4iZDLIEydLJmL+ircHCOGJzTECKdL2mpQkMoY4zUHVH9QXN6OaaYR8tcNqtAZDrADVSN85VQYTNEyzY9ra0BjE2s5q2yupLyT9FUVKe/D+PQh5iLZ8JFER4GuDAY5BEUx90ohRDq/jA86LxvEwGGtz3mYHZ+G2ztmjfawHOaGpe4nyHmpWkaNzyGfdI3FkcDFCyK5lJ4cSSMXUDErturP46jvWxH2EJFq9aNy7duSrm2Wb78fucqlS+4llhZt418bidIVH0dEqh2JhEe4bLDfDcw8eBbDPRAkT1uiiiNDAdGNG1i6HKJm8Hgm78QdnImdsaQuBlB2ZsNIZrJaX5TNNgKrXg2RbeZLDM9A+F/HmrcTplQ+Zj3u9TpEPogE8vJEF/NijFKFMvY/HxD2lQbcAM/pfLY+n3TPhu1oZXEf1ueUrXNJeNSuoEu5wBuz6Me1nzbHerp0F6v1dz6cNo/u/NoT+/9EJJEpp6C0dj97yWlaH/vGYlsw1fjw0OKryrNor2rU5RXqaXcfVoRJ4O48fMbnqdmo6pCaSf33bjT2EqPK2I3OG3SkcM53LMhgUwDwsrJAjlhD7SKMPSisC3XAyg159J22Cbl6w37Cefvd2Lltx6SJ8TafJdApah/2j4qZFvuB+zecowBp3uwNUqycx9NJOCMIJKXCcDQCzMSSV2gcGDDvYc65K4+90VdoL//mycGcewM9TWUnvzl3A5zWYZZ3BdTKGIlvZgmXTfubZXmCBUYs9a+hF/vwCWITjCSVxdO9rYTCTmNKEu/UyrdYdPUSmnkhkMKZzn7P4uQJBPeVYR/vixAAkyhViRQj2xu3gfYE+xJ3oEG7bw9PNxm7kY+gGdPRji5wOehhr0ilnuz0sqROS/KI0eoBrunxUrUFvOjdtZ3E8YglY/r/nbJqEy4NHPfkxP2VnN2hb9eVAI740+Pli3zgveRq9aSdxJPAZKqjV4EfCkm6bCK/8e9sFkk+x0bM2qlPUc+/JUhgbE44RJNovRtHCV4XHP1c+qo1W0lfyBBusyW45hu6B527leZjubqugWD7eAkSeKJ/8fCERI1VnCQYaY3OKQL/C95lJbsXvSlY4YAv4yt2TixGhLPLB8Ed/6J07hh9mXhETU1Ua5k01V1AAn6Vk4FWcruPCX4yyoan6NA8Pevxqd7O1e/BoNSqwQXsotCKhc9/+Eo5+9zIhZ0lvwtgEPy+xrGlczK/43uROPfdKoPLMdNkaq56TXG8Y27T11Dx54a8ejCq8/E4W4dH6vmYG9fATDWLKHaOnrFo10x1tR9HT4tIdgvDPNWUMRLxH/6DfQkJx9N2GvFJkBw6ALQLlTRLr4RwKoJhiauoo3zZI4NrQWY7mvD4AX4sD4O4J7wo2FjgswLNo44DL5QBE++eCLfe2liwsk2piPipexufWOHQrCv+coO+a9PuyrdsyMzwPDS2+GsmR+0OmEg5Tlc0w1PBRvPRHiZ56MilUZSyGsmKjc6Ph1CJ90gLNk7wRUt4w2BfmHoVmrv0i7cpmJDb5EgYWt9O/+Zc7fakQGV+gkjv2QROs4duPt3D1quyu3fYQq+ZdN7RKL9fOXNtNlI/+itZyqYp8RhyoskSV0uQo8zNjNmj4dSXPeg/79W2BHWN50SXhErjpZmgs/4992q6hvf0ZJUIVTaNNIKmMpPs5FWVPAp9yLqI7px6VLXBSCftzPX0ZGD1Fdxkb3X6NhZlNQM79QIj1Djok8R12pn0pau8xNBb5uMtyhGT9+nJe/tGzw4CxxFV8iV72vVbppVcnhYLoC/PuMAePK/JrWe/5mOmysusRABVXGRRbfWJycs/ScH5T57FUkPDhTH8+FZS4PebYlCI9+yXq0pQ+k00Os0lk/VcrW2vr1JkhC2bvnDrtAixTA7taWa0Xkxu8mmRm6N2/IleC21PvJZ3ql8a2ePFOfLQrPIUJ0N5rTRzTYfL6VCJz8tsjVdhZ9D3cywKUosxN4XdKk+fS+CJloTbtZulA9YriG8kLvPI0hKujafblbbVtDxvA+vmhIS08dWKuneyPHM53CFNSViKfKLpsHZqQpPcJirFOdNjsWuUJ0QQGQmb+EmnwteHClfIXDCOKOdGyxJaI9KgEaPe4tNI2rSnXiSl9UoxwyCALU2//CHI6ZadY4Qgrz0ETTaZnEEboyq0nfr9FTqYnW6jvnA80nN2oTX35mueC0MBVIE0Y/kDJWJvOQk8I2vNPlEwc3HfRFViGahUKiM6NG9JA4FYXLItR/5/9XgQNguCTJahab++1vFMG6iiMLFpYXVyedtMqp7ZW3A+ajeHf653QrruTmY6ZvLyhmFmguvr5p6znHKReGb9yloRglMI0SO6JP203vsYYBegHCyb56jh+Nm8s8p1snXHu7r4JXimM6oyhCbD0nB7oCqUv/lLSkikhcSSnZRKdfWXerKYX/fN0X9ru0R8/HG7TKnMm6MHfZp1KediqT+/20NPEl28/bbE5Z79fh6MSNo0TCQJwUyO1VZdTt6rVFzMZZ1lMYPIF4GfBLrcW5guqJLrhPvdom8oPj1McwhUIfe1Xm26pZdKiBNd8nFkRFCsdqY/XBJimyh6LeqgAkNqevzhfhhLo3pNjc9pb/9lJRVQNtlPQOu0tTm2K2tN0G80I7u8E6SkSL+P4AY+CnGwc78jp9Wv8yOuvDN2xAoahZRe8BfO2d13Frn7cJCdajmXVZ3Y6aZDh0UNapVmfoKvUs+ruFXkZrCajzMt5jdEcLtzsGt1lMGokH8t15ijWwkjnnqq9wTTIfXyQnWkV7BY/8PKGNdCORwrs0I4P1w3s2DWcmA2nj+0RTmiHspoUQB2QU7WZtU2ErPVm/ox/eWZPOxJRWzpVeBa0au5Y2dMxSknEZwaUL10LYoiXUO2YgzDJxg0GpeybhC5lqGEQx5rCeEj6lxoSddLkzvlGWarFl5SAS126vIdE6x5WdTCmboBmnNTMISY9KL7nj4aNb5Jvmjh2XMC4RwaBWQA6w/rl2qrlkavzAwdPS0o6ymXIFm74l+nEQNb9DwYRdhwWvRbtfkcjFGbWTgqZWQYE3zPEq1qvnGhuJAFGBL0DYQj4jBpu7kp6iIAdLpBOwjdRTSVdUQr+vppa2uN8nhWbaE1pT/RCairtJnyWpXnvZkcPa72ErJXrtnRboUd9gKbxPPHOUBYVDGFhgSUHOUB7JZH/HLCgmVSdwPCQ3wMA/LJO0wOKEcnLOkp0LsohHwafKGkEvzZwWxK0nhPxJRGemZqXx3LQTyWM7ORSqp7zN241eP4vXq5K+Kf4j+IuaFRpPEEdIgAlATs2UlwPjxw+ReEt2XtEuNyUhwbMd/H2z/n1XBirMiryoqbWD7ko6SW9jWqd1D07Y4EeB7hxzK/fAt0fh1Tgfawo2ExdxZPjqJ9bJ5umvkS9zpMEJNjNEI06KgHIcpmU1xqRVgk1vwLj7CBBTyqXdP+7BMbkOXjaSPFhAbWD9nMVzU9mmh69X3/Yi265AFNLGnUO7D618jLTQRDRsslhlQ6kU3gH3KOkfv3pK4xC5kOidUxb6kcFRFKfPavdrFaw8j6RKRtOCBAG/xP/1xaWkA20z3bmSnXZWOu69zu+bHZKVJYVfAFKSKJtdfMmTGwciSdjiNJuHYwLP81iUAC04cFWR2Dsf40NfLTZ1qKOBmkR+sk1t1g7DWCSBNMqqPK15gKxcjpVDzY4tV1/yYQPZN/BZ0+5Ol1Do/HUPJmWbr8SpdZcJhrhNr25qgqdA+k0UrTgPTFW5uGkwRLwe6ScXcEkQDzptVINeU//GdpVN6chRvoWS3TFvTAve3R/IBsEolgbZbu7cAjfPc8mQ3+GKd0py29ctAW0Bbzm12U5t4jMF05K3KFh0TDL7EIcgd4tkCyA4ciqAYYsfcWjlBz1doJAD6jkZQGtZ16i9q0tNpATxBfiNYeYT1HqNI9BomBQbJveyDw4PHQPaMKFuZdNxAdDH3mvYhocRF7aP7xstMrUr2hcv7Qs0fKJpjJaCXfjDspp+tkmoQwiDwkcazKPuaprG29mBuFCLfZlG8h0JSJe3KB5kRr9XjJ92U5C75dlB7GESZmygaRii0PaUl7H0jXmOdwtITUTgcKilcEllZIQdk+igSdWeI2+hKzN2KxfK4+aX530uRZFfpdcyAoLoThwm136i1ED7wwft2npKAWZFRxS8X5+rLMuqHIQGuKjkwt2DPR1wUbimYVMmfNJHK2TpstO5j+51qgYT15Fybjg10MNtygWSo8g6ucIRaSSx0kGNpTK2McaOWARPoWKnw0dKhTY3IF84/yMEFEIf/VRh4+wP3kdeQcXeJbET6UQFf/fzQBPWoxYJPeXVZi2JKCf/qKbOqhZ+RBWqBlCWUMqcownbsHZU53D1h8S1rhQf8GOVbYA/Dso3fCmFwiR0sj9kyGiJJtsT/xJvMHh3VkwOWJWFPTcd0TbMyk564w9qNp1GO9jnO5CK6KNBkGV29ReNogd8HDcrmIGfPIGKUAAQ2ehb+v0zFzQZdYQrWOpZfKC2L7bnqIcpS+RsY6E+WaEOlpHl7OWVtTzPrnykZfhdsNNHpbvSeSeqX7S5Wc7iA1CqfRktiqd3eKqtUos7+rTQWG6J0UfdidNXPHHxMQVhs0BajOw3KGe4BeetpQHIEkulf4bhH5hoGuVItVJn6a6zQfIDmz0vll0RR4t1Bbccet4L3Nn+I759AjdKMTuV4onTNZPJUN+ayv9BjmvZUhZPannpRqXuuXWs+YFgt5JzWK2lgvWYKKB9SK11BBGSEjBQL4Bkt5nX6syaKrJSLIWeV0MlarA+Hf+QJFxHZnOc9/OQ0aiZh1hk99VszAPm+FWRhah8auosjbAlKHm4GUJAbpmt3Pifiht4bHnjgoNOPWgF3hlWDqYR2Evz+SOw4btimbZk0OrV6dayb2/Kur5vte8y4Yx01IsklAuK32wyZvkv5QJJmPIl/H3pYuTWEvWWKlae7HXCxW8wkCpqiZ6lPDxh/GrelB2cfQvANn3utE/EGNICA0W5cddEDglhMjZj4Q3vPC1XT2RIaPsJHkKmwznGkxKEpMU+ucU9eQbuyGw2a8/jYIEfa8HzMrB87k0D6FJpxDTSX8PfpShVelq5IVFCG3Hp+aArFQbhibxtRjpqNCf/zgcPuezymDTZvQrGIBj8vBfN7Ym/UeImXCb58I/3EcdyB2qnh6w5MEuDQlKmC7u7LNY1oaH3y6EmXXCP4oNWmy2MzbfZBcB2olNPb/Z7j1cENfTOcRWJQ256oCDrgBuzT5P2rrY9ZWkClasFbjNAt8+ySDGrCL++arbTpPV+vGw/WkV/T7m47Z4OFLHBnkq/Ktut7U2H00GXQ8SXh6mP0rA==
Variant 0
DifficultyLevel
620
Question
Tom has a dice and rolls it repeatedly 54 times, each time recording which side faces up.
How many times should he expect to see the side four coming up?
Worked Solution
Probability of getting number four on a dice = 61
|
|
P (4 on a die) |
= 61 × 54 |
|
= 9 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Tom has a dice and rolls it repeatedly 54 times, each time recording which side faces up.
How many times should he expect to see the side four coming up?
|
workedSolution |
Probability of getting number four on a dice = $\dfrac{1}{6}$
| | |
| ------------- | ---------- |
| $P$ (4 on a die) | \= $\dfrac{1}{6} \ \times \ 54$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9 | |
U2FsdGVkX19HaAKDEtqDTIZE/XpM4TqN2DIW/m4MHdIgCfHIWz1XkfG00zV04yfB2FieG8nwIz1zdxcG6GK84LNNlBPUzMb/KOEQyy0AxJmqBOZ2Kx251hRuNqMM1OfUpGxK3riemdxMjBeMpd1sG9p0/ys91Gru254rgL9Oa5WZ739wi/Ekye8fRJNfzQUBaKUNEoXWC2vzxT6ilfJZyGM0+b8Ad8gz5wi2ifRQU8ruJVSKEHuI/nny7kwa6AuxhF1Qwy0pARsqMmAv5Dmn2jECKYvTy2zEqlhOsBFHTVi6qln0d160K5Lh1r/ZF95V8+toSqXHQAxVAx1exYw0Qp4izDwbvhcqLzf8R2H5H/Th2Fpq0ip/AaBWNAqkNQbpbKnezUT10rodWJjt4hzfSE+l4WsDpUZMCjEJD48LdEX+AJVaLagpqJK4YlnclwelqrkEfDAHZ26Zbr+W7sf+ka7E9cD/b59u4hjsRuCwF1xh+KzZkTWBYTlv1FI6pDR2ff1gXiv0Q+VEJhEy5HTck64wtMP7/D/RUtctqs316cWmiRknAEDwXnv3ff7eGWdwHiQJ1hIy8gMCMBMeXSg6q8VjmyAoN5h7V+Xs9wDaoyBA+NiGVCf/BLznWuSjoVCWc/cmW0AdBZDAdhYsa4hLO7pSiEfP7EkK1WmO7aqFWGazdshcg327r8j7Od5+4WeLlP4t3zJ3vfnjqR+zZwuqJrbNhVlPMt98aYj3hz40G6AuF1pB7Oc2Ayqn4MgC/gLnujLl4rpVqhNy1UgA+SSqYm7Bf3WoGyyuQrEgTGt/Q0zDuk8/UvbX5k+fqnr9cM8KKts/o1qbzo2CS4jaeeg7DlthTAsDzu0pN5MkAvSriCzdw2/ztZ+CXQ+b5ZboEYO6A5ElvF3iCt6oIzXFYG6U/C1Ldwlu+qGGlDCCH9Zrb+NOT1ZevYJX1p2uch+wtQ+mT1E9E20wo/pDXroZSzPHyn0LNsSS+jH1xmIGECjrZTDnk9ISgYWuUYznEErqttBoPUrfNFh+7mj8B0jN1HDl114473vcYS4JVbr+KUyI6ZIqXO8GOBW7+w30FqI/2tBTqKKuXTLJOXyhu6knU0Oxu1pCR39a54gLmNFFWW+bbyGPLmyQgBRtY7v0VKF5SiS+EydpkV1Zhse0iSX0BQxHkuMfCFxsk1etLIevUKeaYLB7Lshu9EzPRPtrq+rAK1BMibwbWduM9GiiHfAmCEjGF/vel7XYp/JhS0jFNmXtUOfFRVFjswLmdJF4cXq2PHCBlhoyVY2Hz2E22HzgDpmtg9sMuS7JHj8PL9vDkBawMFouSHLd/BYtZKjgg3Po0NdkF/Ctkq3bdkE5aALSToZ9wPLKIAw763j/yrvTDZ4kJ3sQDuckUq5icnNGo9OPzwGy/DRHRViN+cJhXQM3zNqTga2Mgh7D65DpOEKICP/HuZbd1LGjnsy/YcVCpGrVPYgHipjeqw6Mnkoiz/CrdVJieWDMMMgncheYWBIlrgskZYs0F+CcWVZ3SilUNmPkTlPH1I8Lp0zlJ/Dp6aCCkpdkJu25MhI/EXZOMBWBmnN7fmnlZQeMWutis/Wro/sUFhYMtW7QZxoExB36/VU/l1W2mDKa9iBcM7T4GjiMP5GkFmu23DYGlYomy4Rdxo0oEDL5cZhgw+adQZSxST71c7vCv8dLihatekiyUOcs0Wv6x3GW07pDcModKCi8+bzII6A2a4/JKo52PKUABdnHGscpKcQb6tXhHjH00IN1p0VM9OoPHzD5uGanvVL2GIeMD8PZ+iWfZ9451rKp7qz8FmlTOlRFdsjhAGa7Zt/rMQZprekRkLdUEehu+wVY3Hr9gVkiHuHH2Rd5sShSAWloN4jbAwYrqDmpvo60WqY+bUpCooUNLH/TP108J4X4mvf+QjY0gL8icYNrVsX7T9QRHDLjwDtEBcIvmZsVkvTLdxI6oeYl/np5f8W/oa8YyQ6OY8mxKAHRV5kGhN3o/Q6R9F9QFi4U8CCiPYJgyQm/pJvCdTh/rr7ToIHbqe30aEAcsXCZbg2G92KOb5Hm6xATg+ZzxQVyjZKcgXUWSCzjPK77IFlotcKq0YZeJRnGdTV3L/dOtado+ftmmV5ovq5fUhmenNEdJXIEDo6YbtKJ4nH5BRIBijSaW9uNrMw3LDClGH6NXkdWrh/UwWmtm2nw4NnX1Q9MREFpAqugil9mKDMP3uH0pYtAnVekyDCJWsmceUN1TBPsqzjbvyPsoOceqkPqzMKFBLhoC9VbI84XeNL69GTuXH7krZ1HPS3UWWYL0yw/np3T6GBtgdfJSRBnrD9TTziPxl7hpFyUlxak6ow4+Lo1tMUQJZNXEwHIM1wrR+tOBC8H9+z76uVR10wD/GFZceZwbvrGMZXPFOnCINoHSmlZgFN0sTN7n5tTItdD2fhjnX3njjOi/XktvbDBH+UHTLIljfOUty0UvyqibW/U9Bh9SL8ltVUnKhBqaAvJs+F3kKn6hKTSr5BPmXVxOwcQr6ERqr6NS7FCGwhdrdlQROYRyuebtroAHWnDxMiL1uYhRlQWppQiWtz6ZVYMg0P2qKZ+NZNoU+lxm08CJS0zD5ORB8u/3AK2Dpco8O0kBYG9O/tVe1ZZwWUfsPHKDbabM5xfajgVmefOkVjs3+oKfXyut+Ovh2aaxe3oS3KyIjkyz9nkQrnxU/t5ql2/p1Efs9xeqWSlf0qNOOKGq2Zue1/ctB7YPWPPimOMlfwoDKS364/vZoEc06MlzErYp2GzleX4yEhRp5jxowil+Ss6cOKu1sGXPFMUszNM6dwTRwOog9g7TAZ7Zu4dEizXLBAVaTy6a/Ub2pEEJQMm6e5Qi5P8kDZmU9NQpTfTmGdsFG//kVCmrFozRymKudLo4yos1PMdf2UjzdZqBp+vAiN/J9PWUZzfKkT28YKdD+aX+qy2qaEWjBrrcKVwzcjiT9o2v8HlOH8OaZssSxQVVDmvdMDOVHkGDgQT8sMZXTQjE9//ph/fOVuP8B4Eu0l9pDujbY14O56vT/0A6y8GExbzqLvEGk2NGqgZ1SflGgPErZ1hnr90GNM9VlwRmg4Enn6aR2qlH7rJfgh0y8FmokZcGYTun2oyLoHEoeLZT+iSafxhFDL5U1A2PEMz0EOa+O9+Je5KcprjP9wgFE+l6khR6/6XtnglDc+GYJljnGoMsQnbrqw8j8Bqatt9EceuL+1ctbvbjUVaFLj4Wi0T0HRar4CRoBCDaZEnLHtQXM0Fz/vt6PU4ckZDReg2BtMoLKuYWtd4dUlRrj4VhGSN7QWW+zzry4feqlLLkb71caJcBJryNCOdlrF5bt6mAuQCnhKzDk4Twb68PVmbRNG7DFANlagqT1hrMwV49ijbkcWBdD+z5c++EQ7/yTnv760s7kCN36THppTty8+KPoRXDoMy9rSsnqU3UIDNSiO7ITVq8+hhwnSfZvqQRJjESTi1gwDcTmUm+mGOCtHuOkph8rzRl/RmfAXF50jGhwJnfsVQbzyPTGRU/VjHVBwH4+Wt/6Ei+mj0fNDLSoTX91i8AuSTkK0PiDUII7ca8PgkZ5ciQkDcrdnA8DjAA/gmzWQblI7tqk5ZWA5r2tWuO1En4byJrEEsJkOVyxmuCYd/29rkoPMmEUtfUR22zUqBbwtjlomohAGdyPDlRCXwuKaWntWQtFafgZKmcua4+CqLQD2TVrY1jCYXwEsER7uzL1SJi34BTlTs0jTCc529AcU6iA53PFFC13HbkCuIKEZoH3sP7vFzEGvapUUGVq/OVGJ9hLlLtVXc3b7yMAugQDeQtgU8tYaNyztWYNz+02XtDzJGoY87TWkz7jysLIfIVGfOy1KAkf/mng7ltS+nRgj5x3pErS6R+corUPcDieP9BVGP8j3fpKVTriwJ7wCV6tkBrMqnMvi5P0GGURC1lEVd1g7YI0Io+qv1ZGbpkh7xk467nAbZiBLAS37UNWDvpqgRGJ1iqNLsYXC4Z3+LXyVOXDg5pBdobqmvlDZf+7EvZKkG4c5wLslpHjfJ4Oprv15B1t2FFge63W5aJsR8K73qIdzgroiBS1Vw1iQsUoz9S8iOLDgb++D7kAN+KKTSLBKwB2qTB+C/FYo/GpN7I4QyNJ54+Q25BXBKOlwYhgOApYg8mgksiILIxEahkr5r9jU+mFA0XTU8XD3m/XS/j3QsiyeY6btKa0/aA3Z3niZ1Owqo9F1MVFzqfipv49VVVg5/FoBmaf2d9wMKBOqARCP0AQbx5F60um1p2edLMLBIdP/bii5/vnbUJE4evgS/V9eTh6/CRuRUTMiJwdvL7Zmt+H/tHUCIcJPEOZ3nLdbUSABYNW902hA6z/yqqrpUm9HufhR6i9RBAlUTl0Oaoal5JI+pIV7k6dYsEf7fCcAqvAvgRJ7R0mBNM70h/JK9iFVPSSpaAA+/qq4EThC+a5twIO45JCYQtL+l0SjMpZ6u355oSjKC1vDsOk6ljzBj9c6mTz0+ljjXYhxRHmxoUd9HQPsXpKEa4vmSTUIH2k6sn/pV6cuMj/p0AVMq6eyE5Tu8VebUjI1BMhtRcCA/HF5ygeUZ0qFg91DbUsQVqQ3gKW3OVuBy7fdSoX/FUbm61hw41K1UkKpiPxj2MgLMGK/8Z/ZrFUuG/3seQGaTlKMrJvCHhm6WQSczAycfjg1P//WzwDB3Q9wWftb9+D0osS8Gh/eXFtXT4tXQIvtJ9ODRQgnly16bfbAKfW5AitFtZwTKB7eET9mStt15bZE6njkcBnB1aZrCcKJssdgUfEUcxAc+mhEos4FUGESCxQSpKik/Mz7ATHI+R53/YbyDnvCYqnMD5RyxZUB7afXQ47trHkIg1d5RlFZUYIqNKhsY7noPrtUJuhV2gQrwJnM+GwfG7TeSg+eSA6BGee3CzZAXRQwnJfvMyfoxbaH5GjhFLHz4dBIuHGzIKJkeVAg7wk/X2t683icKfK/HYLn0xw/yRgLVn2srYHu8kiPdTNSmGaG/30kCviKAnof/0/mAgiKEqlGSNXXajPpGYIj6V3M5MPrHW6ZXmb36UAG4Y/4Xef5bRsa1PMTSIPWL79BPz27fGMVnGXHtSnrIWqXQkRaTCRfyGIoStsFWX+UDC4pxbz5PhoKuW8RiZjH0385plKkd8VV5MeXlGfv3m6Q4e2bfxildCBpcKFynv95Jqi4kWJGZ4fwW1Sy95+PuFJVF5lio1I9F8z6j5r68sNCTydwBfZcq8SVPCEfNsoCpgOcmzBB3QGq3ayDT8TZXAp4FBwvTPrFq5i7KY9KziAixr/VQUdXKCApd9/NXrkjBqDlIDwvIKwv1sqC4ZIH1LXDJer4S/CGWR0KJOjOEGjsYHx5BW+f/SxNiJXZdyD5ZIRZX3MkTXL/Poo6WaHyDL8zSnnzQAQs6/lStDcbV/mKmxQa8Wyyy6g3ZJ+9BGUXAaXrSG+NLbGqh1HhCsdMiTgTo+KIms3smkv0f99E88qKKT1Ku9ZQ4ss37xqb65LZiTsCYQ0wZvHytlZgMxWNa9i1LoVOqYYUdGBzaEvA0Z9AVh7OcPiJ1Hr0tLiBaXkyqV8wZ/CDe5ioie6AVqOolq5S9vx29lJRZ8W6OBqrirbILLfHyvhA9jqvI+HUxfW4vENe+f7Ua/5gEWphuLPBK1HgLLzz8iPSTDF8zQBbD9lyiIqqAhJBkaTQ9zB4neVcz5i9/QCQTJLm0QG/ay3EgvGN3Tz19IXZ3AFRpjsUAncfJzmjYNxYGfE7MnuEp4ZyYlloWu28JJS3efDDUBP0rpaoKv/cFZ8f0CcYq5SvIet6/CAmj+JgyQDDv8KiKqHs9lBFCe/b5fmKA5B6uOte6NJpgvsUsLJ4mLMfBoXY6ZEqO02VJUImMiYW881ld/SajQAfr7MXWID/wADS7c8nD/MD+KvDcifuGVxTl+AC7GmL04QKctRkQjh+9/I+1DsfV504Ar+TUN5fr/W3VGgSpGIGxHYHHFDAFZe8PPzvCxSFQ/knlitmSIPJjzGAYQ5Rd0xdaZr6r1iqTgbzayezt/m9ot2bOEnsDbmFFlPomR/OlT3Wy2jSvQBiNCGR/FVuNYpb8rn/3BqSfyOBEl3Pi/A3N5oQzFslENc8JExe26xFcjZjndf7n41zDfiT7z3JzHTwm6TSFyaweRtoYp1g0Zt4A6ocMNSIRG9JK9eF0QvGQuYYd1k2++ZbUjm+4DDsxOD6rjpvCwUcehfL/e4dBMGe+wCLd3hu+8ElXAiyvB5k+eu3/IakATNVvGGnozmQWCRtxcLXCsSSir6ymLexAnemr583DIQctUXjUg4xY2LkOdy97RYXwHQI610M9RZAAa2oeHv4xDxxnvg==
Variant 1
DifficultyLevel
622
Question
Maybelle has a coin and she tosses it and records which side is facing up when it lands.
She repeats this process 68 times.
How many times should she expect that the coin will land with heads
facing up?
Worked Solution
Probability of getting heads on a coin = 21
|
|
P (heads) |
= 21 × 68 |
|
= 34 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Maybelle has a coin and she tosses it and records which side is facing up when it lands.
She repeats this process 68 times.
How many times should she expect that the coin will land with heads
facing up?
|
workedSolution | Probability of getting heads on a coin = $\dfrac{1}{2}$
| | |
| ------------- | ---------- |
| $P$ (heads) | \= $\dfrac{1}{2} \ \times \ 68$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 34 | |