30203
U2FsdGVkX1/oi57JWVx2mxtehpMr4N6yPcqAi2sC+gCZdm1IFlpYfq+zsF9ljVBEoWEkkxdmvMVjXottYbq+9mkQDywWC+yie0dIU7FXXQCuK/Y815IfseqFXWZ5XDcPI7xCe1TQWnpJXEd9UKleECIH2P9Vnp1j9Tukq/UxqonV/TyQr3uIMtVGKMak850XoR+cYKH3Dl0nBJKCptMgHkbbVJeW8vrc3WAis/fDACgCzPII/ghFNcGHiHvZP1FF2lMFXolGFO52fBCgrYPpQMkwMH3yOOkbm0ZvI8vVM/dud3fNcAJ8GvblxQ4UBbYgpjekXxyuzAlpjhoNezoOR/Bgdk7wLZUBY9/kfylcq1n3XKpx7ZvKPoZ41APOTeemt97HqSR1qdUbWrGb3lJuPzEpZnLBnsE7QgjazkBqkpfpBqhckbOFAoo64uzBVv2iKrLhbg13Xy4UvdSQ5B++oa8w64jYxG1FwWHfK5brqwMcP0N/pVbFdb9ilr1bRrX2AFXmCv4+KOc9ppTp2TQH5zfEscRGcwHF2atRWvlL3waU1cZyoHKQma8GEVmGWE2+LG93U1INpaml9J1zd8poOHDMkGAW8aDuqT/JRL8ulKPG6gHdQo3CKKNh0BiMDwBzBwMgzoHGIVw+EucebCGLcI/v6QA/9Ls2t0424JsbxHWsRQEMLbSvDVMq/If7/jnUCQta2Fsm9HlTuWXZjRQDuYMW5v/gM9oCS+cb1DAfCen3FKQfaQndUT35QoccjPCMKxVIkBMYXp8MD4+bP9P+B538t5odHcD2C/HOnUmgLVMIt58zgDfMvbb54fxyRHDN0qqZ7yL5mwXH/Ugz+1TcYpCiZSmPhW5vNUNZxGMxhfzeAnAL0XdhFrVYRfNFSEQ/wqQ5Hyxfi3t3i6cP8RvhSoisyOARgejq0/QXHiPNM2dGezRwL73vwxPULEn2Jqm+P6OCG5/PbkXotHJ5uLYwzapATrZd/OTXneTt2yqpTI/VVmJ+yDxHS+7t0QwuaNj0zrg4kxWkT5ukh6gksozv3qFO0EWhsHSZxsdMiTEc+y8lolsYvATxx7hv9L26kODhXufuWGhFQuGxwbgeO68kUPoaPEtWYs51nGPacU5CM7Z31rL0wpliap9vc/QpNUOJwa8/yAD68S7L7o2LcpMi2bp/fjhglK4kjkuH/Gjmtwd81YleeNJUpG4YUbWKYzg+Y7Rbq2/Lge3Yk0aXGOndqPl5Z0wUR44GniMhPz2KaaEOMb4ZyAORITQ03xl15vaJ3tbKfHeslE2ElUHrTdze+jVOLGwU7jddGnNDQmgifOdwF92rbfsvy3bDZIF9wME9a65HZqqM8BzeVt/m3D4TJLmH363qDKj4NSf5NCXhzhjUR79dp8E139J3Qy/gh4u1JkmN1O4JU99O807+nTsd+Uhrs0ZFYE1/l24uk7qgYAlQUDpwtwLOXTumH86B4pFDolm1g80x+t3YS++dvaIx9NwTTZrAJGYMMx8kYqZNTGhsxALEbdBz2d0WfYPzk4rCSVgMv9e5MzzahEiHF4bl+i/W2EsfXEfGEMcH6u9daGcWoDFlVVl8uAZkahzyLYXVVzQaCmJ3WBdwDB01eUpKEcT1T03lagJXQGDCYzE0RqkIFHmPLQWqoKcbW/nastmVWRUKrgOjiF8aju0o+2CWsZlBFnXgFcJzrCM4nhA6beq6h5iKnXV/lFrVfMhyhhBQXvwblONQDdQ9SGn/MRIYHxEbUixXyiQmBb7PaH9mvTCq2o5iQbXB7/7TQ4x/pmktkJ3WtFE614sGMS0a/gqNqrF3oPL9LbxbNNNsKYCVbCMunDDTMF947p3+7oDJOrQN7ok+EmXzkMTAvQj7jHpVZ32BS2jH3xYJr50y/kvrUQGggJDMNrrvMcGNaQPRYMxOFAMvRCb98goII5Ko27w+LdwiJvYY5deJ6ZU1qhqw8TPEIEUf/zaeCBX/ME6OmrUSUDZYOPWmOJeSsqc7J9nV6M/BiDLx9msOO47BBY7UzcV9tDdRsY833KEiLUDRn+KOYNZQ3lWzP/PHyG0jspqbNIHyp8yLeDTzBk8X8iddsvFX3rD3cDsikblKtbfO++2vo4WAEEDhV4KrOyMVY4N5HENBKKiwFFIYAqMhSe7JDJkBtbb+rSIkj6NowTGS4n4PDZdv3xSnq+W9LgXuwT98imauQdW9KIUdnDtVrTE7Q+cSWDAqaEkF6njtTlYhjMswDlLeNvXzEaKTzNfAxLNuvNJMrRB+1v94mgIVLVFC+9hEziMZM5l3DwIVmqMZb0Ooi5nM0Uew5eimHQ9ucm1EtJDX/oL+JHq0z6K8HTa7LfVsWuPwOShrkXr5vYjcHKOjnDrvrDgIHaT36Ms2xX7tUYfGrk/EzfQWQZoIvUYX/UOc4Q2OPN3lr/q+AiRaATdQVqJ3APZVMrpJESL464l2UQ1l8p0sfkeRXPkxBS7HjWdYBMLrQcPK576B7Mw+s4aAG9C1KxDWBngt28hWnO4etNYaOMvDYaWCdBxoJu5qyrQl+DMR3hV0LP8eebhgVOVM2U083rTBc3PdjyPWFFa6XLD9oBMNtnPWMHHVdA1FjEZXIAQDZL4RhUZs5yGJdCgw3MluzQ9MFpjitFZA7yeUDz8EdOz/GrvsFRlty4q/oEao/utz5JwDqY80JWY/WXZC7G8a+nIK0w0ixdKFMOLhYpyKl4T6/pwXWZE6tA0aDzHdmOOKX1xCG4R1KnPW7HJ0tOnOiOT++qBWXxQdTurJBmunpg7P2DHWkX5GyjoB8qmt45Sg/Bw1ZPupTsF8YNXzPDI+yyIhNuVgDMebaLpyZ9uW5YANP+ZRMX8xQ7xER+X9TUyfiZep28AhaGGRS0YLcd6nxwFlT9GiPbkkwXG1rHQb5aj5tELprk60nTiHFONOhtlIswfgorZXG8Xymgs9/Kqed46U1us28kyiqtotQBznUPCNqW7TALdDggXFHTpx9kjiMwwxsFWdeeIHzpGrYFFQIo8iEn/OuwL8CVjJ+kR3K6nWZ0bWS1Ygg08G3nUxELjBVrSiyl9NBzgFVZ8PERV5HoH159V99SKVqFGV01M2DJmbhyFSp6Iq+mbEgSEVwf9lwD9zFHy0AJgfRB5Gx40prTa1BuWkAyvD0isgU6LLaRveDhIsHsspGQeyQAegCv4fFzOOUSxSt/KcVK4iXQMTmqrGT1ra8XMo7BxO8eWKCAb680kMVICK+viYFqCLIWyyBBygWyPE4FXOQoml5s7gJfsXXqndAKfY5uehgugxIvvwEdk+8bJqQyS9t4NIZGUKMwecd5zNke4WgqrQ9MWaqCMAWJTHfRm7YjRn7rOkrtQORYXjJ6JCOlyIXsAp4a1t/ZeUzS98emxVWubwwk+jUYB5UMssYsGCjZByyGBGsVnvGfWvsKImpPtgKk0guTE4iLCEuibLjYn17or1XvAHFMg1K+lJAQzSP2NOEOzgt1yfSIVovoJIBmPmIQ5eN4Y+smVH/prJs5SXvwRPdKOvuNTNUfgHd9ltSiC6mgyfu77ACYMJlQzQDQ+pdYQBDcoKMLu9M+KmCihtxFztaa8Z06L/XE+1Hqd/BBWW1jM6PIlGO2/mleNqpjTd7FJvhjSp5uHPm47sfH24rGUVEs7fbVEggws9xDFJalBqyvuvLRXAAsxx9Od/Z+mkzdzDvzDCaOfB1Jg0npegqGqi37v3a52FS85r3r7iXY7ZMfh+oRnsKFXaBkbf9bqnWSlqDMlrAM2GPc8zQKQhZ+jaP/9C7N9TqO70oEHWagV6UibahUvb+/xXQr8cK02EGD13+8drtTg/wUMjgcmuht4mpFlkYMHwV0vjhe5rFLRa/w6X5T8sCD4iZr8UABWbx/4U2LnbwbuyyLMhOfSIbkfDWbzRtAB2fruIsALa71N0pLLrNp6rn7ZT0zOAon99B7rFpeq4Xon5ofvWGPuc8WWTFUZi7MC9d4iSa8TfjVCF+pr4G27CCnFNAgGGbv63onPJCnWi4aj5tYF/X2TWaXNpbPnKT5yqiy7TcSok6RF/+OIg0rl28VGukK/YihcVNg52EElc2xJje2YrAUYEbbqlRcDCKFg2ZRCgqHJOaTgBjbVqd+PeTVWpZBrhAW7TLotjpq9ZLLe3GX07FGzDBdPTbn58EJiJHOyWBtAapcADkSagNh9KKKbPJvdjzWbzzYOHi+8/Yy6HfqoHU+FrtgWwUEr1JVXCdjY8nVazc6LxOqh0KEx3ZpQGbA52IyALksKtrkaFtmjYJbpEI0B+tXmPbLBO+5pA+amyumnmPjHEUUvjK/VrzfAM3uvwW7AGPNR4XhNGnxiE+9spenW3FnJwZRIUdOosN99+ZY31sFPcDL0rDwj3wZXx0HjgKOJDhjUO/8a32E/DqXyoMi8dyC6qAzoOE4w8gRtO0/YL+c2dclHbuvfM+cB//oY14175c4UwPBNO7Zbcjcx8CkgtDfWP+QbqF1kDtXZCE5zYpPXP1d4TTHYLSorbAcaDZwRjlTsD0NtY87NKO6iPMVa1DlSB61ETT6G9Mt3O8L/7shnKubmQV2ESHY9vXtdTZVeu+Sx1naUrfy+z80piHw1Xb+mcUiDVZVYMwiqdvwdNIbVVE/kuk2lPF9w4v/j4Mlpun2nb0liYsiwnnLBB9/qt5f1F7bBNnm/iJCJKIbZTqss6tMDDyfCzSVoAgsRA+yFqd4BJm3oxp2VcdtFzTxOjZnnI6D08JKljzbsoWiYXcy5pBYrnsrL1Z2//uQHngts2Ry9XyH494vOby5r+h0i7bCmteGwNLk29sYCirnzERPuust7M7B4KoUfSjKgO6fZUA8F6cG3G9FiYypM5BlRUgVsm/dwAcxTgbVnPozoTGHd3jvczObr6jHYoKKxffkBuVss1toq4v3964mmfW/gLyv7RhVa1Q5rtDUHdqIwMtIISA1RsfUPYb3QwSdRtDAohG8Vkq7yMWD0bxnrpVem6eyhl0r0jsPf78lW7T8qPgF3qwH0dCH7QDrwmSD1UBUuhf2X/viADC/G4WNTYOmT6tRtabo3NCgkTFuzcKYv6gzkMTjE1pSMUwSncXCcy3OcE9EhRaxxHWF21xoOyjuwVugiESHE/cnszg1vQK4kEMRXICaFXPjEg4tPFYI8h00pI34C4yD3HC990U06/ikIFnE664ODP1jgVJZSjNmAVcKaMRSgS1JMlzS7EoJasDGN3xmYqRp7FjlGbjV5La+X/3L2CY4PgmQ04XgzL3PVKrvjJNi9iLGjOnc70BUaGxMOYV/eyDg9VGJWEg2VJ72rXkdGsCx2/XU6hdQIe1G5Ku9duHqPzUewTJCZ4Qpzhk7+0srXBXek6/DTs5VfcOGCSa7FxE+ayMNORfsQ2wxzNAb3pWK/WJYATlDn981D2ovwJeZi2Q6n/K97+kAHfnffIns8MtLO3aChnCHIssX4LsHXVFQLoh7A6/nQmnWmBP1Wio9uQbHkbsGGetE4FwHsDY3MiPEcQSjHH1v28LO4OSVK38aYsKh+ZZ+AKBm7hpF++2bycizV3hsjWpQb02E+Ze/YXum4p5miv92peR8oTgFjNoCchxAUk0TWEnEweBSQ+j+EZZaJia/vXT8wvf6aG2PRwR2e5m0dVkUAX9t0O8a2vzjSIuD8WLut2wQeQtCdw/h/63hwEWyduv815mVyeRIoWmPTdBePmSE4iro2aoFYVcxJyFR6xIYTatKWL+R2spOwdCw4cwkHTs2IyYZUc1GbedoxTnBYmum1GdmI53NnNw/mrfPgdfSeQC/qNgeskZ6NeoYjnWNPCgVUfELyN/+1H5OYEYOQT4ms6b+REgsNRDN44gKprpQy4Wp2mDjSeFw8GuAh86VbCvv0OUaf7jjDCG2r/JigK7ZyIObWBhl7ig5Q6JCQgPLhyliconptYs4yGVnCMRoc/iFuQASU9xArCYVrGx1VVEg86jEKMvV/0Gf90H5BOviifbX6JcY/zH8taFrsnszq/XONJVlPIjKLUdfZKsv2ZXoZoaX5qOdAGU+OMCEEG9iqtk8752Va5g1m+qHaWJzATDkLGRF5U+bv+8GQGwyOSxPiCXckrdnTxggLG3WaRx8YANgDXTghtpeKq7/qdyDYZaRCfm9ZQYm9/LU28nJEw9TrNzPUuC/ws4LhWkNG/3WZZYOpURcwlQRMEKx3TRX1Zz1Hfkys9XHFaP8WrxoDuEdt2/+aoFAQoTXQ0gczOPrbA5l226n02gdSMBo678RDukJqwDrw/bnglgajGhnaaEn8Fd4UmPL4uY8eCEGzFwHAwL+6RkeXhjBeHrawaGQqVv9EBtvLYp9fNkvUgCLMLet8WMApcOBKsCTCNOsxFiHRAhgjifOGDKh7xRC0AyquTzv3UNa4gm4TM5Hj6WQI5M4mxKZ493W17w8fSG9pXKoy+uWU8pEXbxlHMyac+nSEg/ViZrrpDnNehHkTQ1azY00A+PpMzITTjFdaclgIM1QAPaVTPKd3Pufvw/zhoKtGDl6Cos+DFrAAvAhOxWxxl7Z+AqtNktp9Jhi7DTf5bdSdqH0TVypEmc4KZprDliE2DafJTJbsjDrc4qVvBUOU41UogQtQpL8zYS+hvK18O0kwgsmxgzCPVFq09M2zcT8gezNXQ/kEe1wm2ZwlZyzLD886TdUgEPUBz9/s8P5keR462Wwo0R4NH6LWA70Lsw2Tvmg8V0UMsw0SSVHJiNLTW8KZ0mYGqWUlby3wCY5vxDPLY9is2yXDOBgTU7HvRXtbY6wULUItlwyl5iF6n4fDzWBziOJOKil0huBV/4gBLuPNxS4jgCEj0NqVVUfZvUdy9aYSywpuAAsiHExzWgK11xpkP7n20MtuhbogcJtK4xakPGg4KzRyKRuvx1XlW8QIYgaGEmXo3XoOPli/SdEplq1krVcMZJJWj3kmiNmHP5uDKbg/yvAT4+/SKcp09rjkMlpUCi7vqw6IT/LmYVx2sLMf/ULhI8PjsS2VIW9Big7J12WHvSrubE6TMi/BENSgVMwNmCWXbOGkSCwDGKdRGdA+of89g5YrucSqcOZtJ2KydZzrmBTxCTYOIgkuni0hLGcaYNOj0BG51mRD+zGjHealTL/w2qPtNFM2fFRwjCsrHEod8j4AfWeOqCNhjye8j6XgkwYW2XBpRc/EJ21dgTytMpQTxPIJWvpHacMY6QCqkwAUI2KoBeLY6bEhekoAD+MCHhS07Z2cszXRw6Uju9aja+mMLGIYFHpyl2IBK8yWk6l73Sw6W+C0NxNPV8i6wSK5eo/dXg+NeHSm5bhvzFyfWwRIToDacXG72KYI0JaPaE3DMgftcwDHt9NS/Ph4d7zJSccCorOWZxYboVl8OKBYXEPdjajeHubw6ReTwK+sz8CFoX2ldc6z+GAmr7JpFuP014r70neCHb+yLHg52/dvn0MsBpx7jIpFhnYa/XmMoNF5MifJ/VlM9y3xHKTmuOTJpU4ruoJXOMNMFAS25LtcKYxO4WMtkp5mefICzn9c2LF5hcOui2SAU3s2yOB83KgWwNW4aEKuaxzg6fpVigJo9ojTklYCRT8WmRzMdyITb0vccHW/mIw1XoLPmCy1ZdluqSWqta8KssNX4Au/kStMSZTHqi/2WN0r24aiZh1kvwzt59KmGyCVQyJ6iiaM9qigjjYQPgF8L6UAq6RWXefOrCrO9GkWVwwWiOT5ekZflBw/qQ5ru6eVTVbKTrqrZFexPosXIN+lMrh6J4yby79VFORuVHc2qhbds2Kbdvrq6j06AfgNKRplC3fyTel9WqMkpvybwAk56ym5jy9jnpeya/wfJFwnkpSRQ3l0lQkAtNRppHTihuNjz8aOFB0KWOK+gNYEFQ6qoGOtYpFT78s+3dHTsGQ7Tiv7zsA0aKt+5AwshYZao1KNSXAgurFi/dZ0dtp81i4xG11dj/y06xAfGXuqiEEQpYPVvTk1REoW3jNm/q8CctVn1mfwOjN2YFSiG6ju+PKmRx2XFU13pyWlI84a1CL+djtJs7MdkvMAMrOHnIgBLetsY4bO+Z1aOsuzeKWO5QejhU0GrGbgQ83ag52+T0iBp3iFeZUcfvLi14rko5qo/Rh7xuemdkHNmLmgUXJ+mWLde5YcjD7PE2XMmF0VufZqIwSfqZt4SgHgNS9Hw3tYn4/roN1SiRut8ONMY+Wir93/383GiA5y0F8ipGuKf3iEgMBfiHpLitf4epmSAm/imvjLx5sj5U6rqdnB0ldaP74xgUHNlfEVNXgqY92oj/bQbrko2ua301lCmyoz4aguFD54x2OnHOhNsWEGKOtYX+J3ftS0gUeSwQxclxgxb3n3Dz91QIt5u71mS53HYlbPj+QMuh3WziffAxJMYBcc32/FP748X0GgMt9ulld3tAAW5Ai8tgy36lUazQbhFJ81fug6akdUEGMgJDi+qpxsgTeWAeXCIqdzyjgxFpoE5TWvVZiYh27fs63wmNfsjPxU1IZoDv+risJ99GsLMwnbdALWhBHrlTJojmwhyu/PW9WfDHD67m8A0wQj9EptbwB6Qcd2SUoq0tQgQlQolLJa656B+5mcCHGcgjGzwfJpHOwsDuBNfFyIumISR3adqtaaCri+UUS4UWEpxBJa2/2WMQlclnYVENC83k8JLLx3iFtCp+bh9nFOJVGKUHb20lD7blZNqWqnriwAFHUEHunU00CiKHMEmliF3zm1auDPkByPqGTcet95Keq9ZWRarmSOKMg1kl11oURJL/ZKAuy+i/II/YfAjh69ifLHf0nTnMgMGfcMeydJiMQpt3NowxB/FyRVUGsmnXHSagqe0jFX9YrEVzELhL84HSCtCgFNnJUh4dxlcJk7lAKysbgD9xH1iqxQ30h2eQdM4Dvva9Hb2elBwtuGbAo495PMiun6mhryDc6n7oe9p2gcaWTBoLiaku6qKk1t20eoaGB3XWGwrGwE3m9vO0/POa4Yw4aCUFe6sUpASFV9wKDRwASNybSDe/apWXPW9Z3yALivQSvXMfmHzcKukqkd6Lis3+T1uXDM8ajGhfbXbbeBYbQEVBdqQs9KhRPCPAFrJK9bb51LnIFe5ZSHOVTlLjGREv48jo0iHGkM3rzhrWcEpxCc8dIUHEFfOrqjCUlLs1bF3Q5TLwmFr7Lml/4uU3NvDeQB9PJDfpfXZd9AeZFdBzP/c3WhPy2oxcIDt8lXEon3Jx+A0AhiYu1H74g48DM3qeyw8p0OQdOK8ZjpsM1fzH2TkYW/Elnl8r6uSEvz3V8jBevHXY+4tNcAmzPWHC5S2n4+FL57ZGOWVxBRMIXLIRgvNF0XTfe5PQa7YqIAOUzh8qFWtuCsjU24D8Ow2P7J5HzSvfFwBAPZBbcRbLKVMSM6bUTLZA4uzgq+nu8wn38n5uaAB4M0pmxxNBzwYcnq3wO6JI8mkF5u0SGVoZG2txUlxQEevSPL/fbq9BFDQ7soj320evwm1IUBoMI2xi1EKmBvsJlf+0rsDcuPfsrkrXmftUDMsZ51NGVS9oNVbSMZdyFtqeHyxS97CzX6fr9VQcdwcarM9lUJY78ljvLrn0xWS0oC2Veo3ycWzRVYtfSaJe/KOcjU6YO4ut6vczm+LwKWv6RnlNcGVv6RxEuS2xtdmzvqAG7QfCoJf7b8Ps2hY6y+cq6V7H6mev77H9aCpDvSB/JgtR8BcQC7LXEiAvFbun4KNyyFtFe/liyRb5oHDl3WgZHDHsqv7eXGVHNgnrqkbP6jp3vfogu8FwEpx4HeozNekehNSaClWFN7iKsH2IlmIruC27nSNFzNPeP15M5pX49SArfkRW/6CuXAqZ3t9t20Vkue4FEN1wktLYQYGgVOfApBp+a2XmKFuqMVrc/E1YdApN4Vvy8hKYX46dcb7IhAQl61UGvfITnGQSz2y4FrAHMZKGhU3qLXYUunJ4UiKF5Mvu7ltC9dGHO5+X+fp8ccu1dKpRCL3PG/8RwfzQnyB9EDYjYzMhlnJ+py0uK3JbZS4osX1yv2ixuoqclnFnFzLE1YVHcXSYpnfgHveKz6wswgN/QiBJSLUHXJNg5x2fPm1bC3P0P3q30cMzwGc/zFumxuoZ9DMUJHuGGjK8avkM9H7AqEqkxES3cFiJRNzsSiOhhLcqIFSguV0rXjTHMJnmzyuPR6KzZV7KIGMKTeFFEWhCQmCSrfdZNW90upuaNSDL9o8EWciuet8sAkCYIe3eb8zpm0qmT2IVnAwFI6bRPM0bduF0Gy78jmKjkjg5U53pohLs8JK1grnNU0anP2BS4SLXjVvSoCIuZgoaBAYWUzdRoPd3U3erAuTwrHAcceEq38EqGijM/TWojesqwh+HjwKVaL1QZxMpGjzvLNQPxlgjrIzyezzAHAfae9gkeu0K7vR0rXUOdezyt7AowLdwYel+LbjJgYrmf5jyQl3gNFqZlyX58KdF0XEbS0Q5JSLCVeNP9ng6TBgJBfjm+Zbp/FeeC0yXzXNy5WzLOcJkd1IdcWXeA0ZW0Btxy1GNcmZ4kvtiIh5GloRzkEdkP2FxOqG1N6wFjvO7JZJrrBLTImuQ5hOKpMeUSmdyJgoXi9hEgUdz1FpkMyx0M12EWEuS57SKm3jvoxv6cm4Li2RjL8AYMyOdN4R+J/dCfrQ2Vkppv5VgR3UJxE/L7FyX0tinQTaQpWu0J2ReRQtF76hg8aw5I7oeOBze4vCVXP/XRYbtPULBN2E2Z0G9+CtJQiQJ0Jm5uoiFCis2rQyPEifjyv5xrQp5yA1LuVD2uVj+cQOXNvX07oEH9LK1qkeps/ZDWuqYsgg2qXrY1C38IhhCov+TNiC35wtnqXenGRClUN+L52mD0ZTySD4+Ea+gt7Nb8BLejStkAisw55nGoiAEwFyc6Oz2QUENGDuNPznHQ1P3a0OHv1mZuXx6fFiI87SUIRN6W+t5tylt8MaNtBaUBlZIx0ee3KsSCQMP0I3I2xDFNIwXXgjp3S2LAymY01hPeaDsOsEj8vOxgdrN0GMrgjwGtoX+9vumBrYP4y4+Fj5rkXwKgCam3ogRX774sev52QCdKYxL49obuuXE3uWR0DmsDS5CGvGtjgpaxfxvKPMt1l7o4A0PBRo1JKzd+9wMidaJnxJdB8Qr0z0LAVYhMt7DMROU6ojx9jBZs5QjBQHzNuoANA7zh4/JLnv1zThGavUH5MC6js9YP3S6gZNgO1xijeuxcphOoBe90A2xJ6egdk2kcJG+jlnirKEuHp6VGpGEIvgNJ3bSWPMgeszkM8P7DB7k+h6eYY5Pk8FK26HpwLe8xv26YL/bV4ULKvoNggpK/2S2XgUzSxBOo2cRV094rU+HMaD0CkDtkmMgfdS+61ykpGHM1lIvQNfGcWdR6TwnrRoqDf8ae4oqgSSPjK3twwj094sJC52qcQrtDRF9FuJlEbDX5S/V5nx/rU0Mja91M52T685QBaVOS0bYZKqXZ6Gt8uvHNcYHUk4bmA/e3XxrwqBkJ99HRTGS2ZFgOoOHSpxZCcVfoVPM23/Rfg4fSXSJm468EEUXffKcWzhTGa45ji7hgTnif3Np3ibCp/amB/NSb4Wo+SZysSYIoNUiN9Wk4+0wPEpee0rc5xaBjOF82Z0vRxS3C11zOvIJNFo0DSHuMoR6OnCx+AKrVNC/QiF2qrf2DlOZh43PAYxURZ9/Ib7LF4yOgItkps1rM0UKQeMPsu5Z8viNkcq+2LW5LA0IdPGl40YcQfuVkRcmC09kAScK1YxlacM53ookDMwZ4MPKpr166z+2AZ5h+zsn8l3OQiJ0wqgs7UXyndXK4gS/LbRUFm0giVT4sVFkE7jvDSrEhzcWXaZwHNJT6n17eOXSLzYG5hVFmRsKgeA40HNePud9nnUyrawnrHcdns8H7k/TrSEpPfmgVHzb7lgAWPerO+ZakurDF4H+nb0ayBgcwTr2RINdq+9HBpY4bv2QtveZyjLEJzL0jO9B6ygWblEKf0J2h2MbMb/gcPjGbohHPvTDghfiZi1QYa3D7t05qlEuy8ikGYrwEIcOiiSt/g7ynArEdWbXGtAs2LX8Alpwn8la0Pvc9Gpsa/ee3yaJvJYRG8mv3qLartZZ0Gy2kLTx4Akd927O7hnBiQ112WGPJDkgrZv6y0kCUzFOptMSn1aLmlfsx4qPSCv03GFL1lV9AbSIk4mnSF0BMnLsBG0MBoAByy7h0vpvvfXDP8v7VcYsJ6kHsbndSyLnBdY92YILEtI0CZ5lYgk1r9OrOY2vggLmHICckAIHBTSn8saIuoTL8WUw5ihQAKMqSBYxUrmYPgUrRKcLW5AaYbVXzMz08limJZOeSEpbF1fFL4AZfciKoQ/DqnO3oVB212d2k1L6P5q4f1ksG1eoYl9fOzO6aCkT9DjdiqQMCpf5D7xlF9uOFIeX9qRGkfFkDMAhz85MpVWfSywZCl9AnO8Yj1dbFBpav0VnAIYytsY2pfyP07bRbQW3SULhR2Uau/p43T2kuzpxR9v1QdpK5f6qnZ4PrGjZywOiikQC46ShQiHXA/sKgRHqYVEy4J7FDnytYInTs/ltIKwlU/JjbAxMQuLmkKtYs/DH6wHKU6sIeQVIhTBfP8E5C7oPsWHxky5rGiDvPhvuV1DU2/VSqjPtjDIrubD8O7kG+hgr0rhaQV9qJaAvlnE4EMSFf4zYapFEe5JDq+OUZQ3hOxw+Lx5CfNi45lZYFVsGtlAmn/xyAzcIiR3ow+cTij5xOtmpzwaRpPjmLSIBSh7BQnP0IA9pt7Q3y5u9sWOsiIyLaorIoeKgZgC1FNJ4UCEUzjbED5gmpwwproWhXxA6wl57PvMERRer4Jnt+9HdZI5xqfPvSsm1zdaV5kQ//uPkS4hhhDHhldOxcoGyuoUvCRobQxiM95GA30dSTyaiKXIGKIbm4clI7PzUuuZvBhkW4wAnYMbJZVL1esRPuokqWzMvwRPUgBJ+TxeN6iVM8j75n9z1Idb0bTqVsfU6CAx5cXXD7sLvmlA4hKQ03+qKx9n2hsOUchgv8CA2++WAtd4yQwX/RL/QjIuGsYb2MznbsAmklrTQKY8Otd260ru9O1o1jSnhaw3AC1BrVeUBH/HemzI39QlT0FCjwANxnal/fIKEjk2FDr+sMcn0DqQAl4eh2PeE0Ra7Rln13DaLAenXHug75tfkEhgiMAZeUfaw4TkG7bBxj/sEVRA9vHYkrZOowEramsnJpwICI7YwYApECZcZa3qP1vM3ds1bfyALuCrMwvN3mja3X8wuIN2GbpvvhbIyu4wFKhhHPcwn6Z2TpJaTGdvMEMtUWBU1T2dFTAZdZBLI/KB/gCa5E3/PDVqti7v8pf64r3dnIjPgrd5D1Rr5BzxrS+SPFIiq1TNmGomBIEykDaMhfCuSRcjtcpLfCZQSA7dpX0NhVG9th7n4rNCejd027XiFtRSqS+tBsbd7X+t4NondSPRS9xv97ey3O47PNG7LIx/OHEdKgQsgrNLhyGUjQ6coI5J8ln8FJc7/ao3zOurP2qEALMFICgZwEG8Gzd+b802frgrHiXIa+HHflOyTC75zpxTTGR3kItGthPKJqWzFfovQizmh9vELG+xKKckb/IEcLFwD1Tl9z7zinpPNvkP/w2/uYX+tSZWqBGI4GpGy69f2hI3+JTEgM503QcGFj1OIGVl52YDbN2ElXe31tCLwwBrwNIDX5zqzX5Q53fUK6lAd9P91TPX143NvCxzf5/FY6MBwFMrhoyuqBKUHosujWMLP4ravJjV/0v6AWEN7lp06sgt3uxrXhyah6X2sHuF1KSmJKYWCX8WLosPpvfRJ3l9FQaB/FuGrMeMIrrq7nGfctj1zp3tgDJMunwVR3Vk81M3rX8mkS+lrHVXKYl/1dV5LU5nMi0QdQw2LGIZFMaBo1hEkpMqncAc3JauwSk1xmH/gG/iZd0asai45cEdhgR9ihH2opfQgWGeVmGC/Kf81u1aWWOn+gFI0nyZmADZRsejrEVN6enWQ233yZuxv+w8PpKSI7B0vdaBeqgP8bToCEZEcmjqjHgDj7EVm1gvdmwOF6F5jkEx+roNrSkwd9hhwKaMoVza0Hzb1pYUUqNvIUod745yfp3kpCcfrDZ4khM5oFwWpItyaUG2Vxj0EGiexeB2YdkQ8ZTAvPR3vLEcfHplyEShLsraCsz1FwzgxvGwI23jYSI+ZInA46p8RT5AL/yADQ1FQPJ+WMrZNJYzz9zjRsLPS84tMc8/G4kMuWx9ch9eb0HeYSkrlKN4iYOYPnvXj72mQ3q1tRQKpNZHbVoUbC+gWRNMt6olG8wrqh5By0r4Fo1Fw6C0kX3jA7YO+CpAoOONJP4M+i3/usLG5R8Z8rq4MSFmq9cp98sYmIA41nQWlD9g94n6h3rxExJ0FpN+5486hfQWaQnVCrJfd2GCOg7lHJvXkdD/jjd15qGZhBZLAZM5Wfm6LkHOM+TF8gdY3wjdbyPUb7m7L/Z1QBZr5eDxzvaRkFzXJWfUHSF324bLUNifAaopPatpsCgGHExP8RCIvIER2H7dszoYy8ZDc5LrVJtaCgVtIUSaodQZjMNHZBIe3GGyYfRHlyB+R8CoCwruX26kVsy6hlkNj7mVOEbmX2oA206jy1E2/CL7wv8zLI1UuK+B3zJvF1boX8DBywrtBv6ijRH6aQgetWqMw88yN2bzhbKHBXRLL1K8jrjHtVFVXuhAam00/gVvZ40weE21HQbeMf6/DpMOkkq3bT8AFBBtskTyNcIuAzQrFI7iCxqnpOTHSfhuvT/rjOnWl5mGXT1UCNSVe5b7z/6r3RExqsRaYHzDbFmiS/nlRypC7OEZeRzxo3WnMI6zcogaDx8osE+D+p3YNiXzHDCTqL7G2wUZEQfTqGPJmrolqSV2P6NuJ7Xg91CVVD4TaY7xuZDYl+4TqZJjkBs/le3GPH1iVx1WYxP+QQfx7HaadaBypC2e9Q0K4z5ZBkZEFyeM9sIwbRzfvxcNz7b+i2InONSjeIkadYZhTBsgyWpg1ZhNncB0xgkTCenfv68Z77tv9nZFKuxW8MSuIm9T62O7iRfnqd5MkNxluT5i/mKNMpGhyuFU/lwwLQGtX2MnXZT+XwM0YPD3sAWJpGOJrCg+Yp/k+PHHE7PvB17FnPyR96Ah3HMev3gZRSSG4gLZv6i9Z8w7iyLzI+pzYNpuG2lq7guMk4YQlbJVBjLAysP6R4ZkSmUrLUYHWGii7cVWGp2aAgFrf4gptELzQt2UyRLWmvLlmB+5KCW+UuMGzqi5uoch4qvx8xRqhX0BOhUEWeuxdwVw8YiYag94edB0jsHWDU5Bl49C3CLJReK7Tv1JqMENGM8Tx+e1GgdU9XEGaQzvozcVlOJy9bd8fusqQZAk8prtt1032375HQmcYSz5PA7YambgmTx8P0KfdjMoVsivUQF01fAgdwBZHWxuD+Oc4zoCryjLKDpQW07C58MWHChoqDkir08fLa76n10BibmqO+Ayopp7345GUovdwuNpteqtdzTEAsKT2zvnprVLxZnjIWZwATZWiVZVoKKUFmoE2okVpRclDzpFP6nHnmOm774sgdbLZwFxCMWxLIXzbA/2d7wli1Ph8Cmz4xfIgycK+1xdwFBIBCdA5fuGyOtON6uNtOYIK8ZYhrins9/P+mz+Zk85qRk7Fd3Geq7ksmH3xbGI0+fzDqDtPU+DgVeBO+WovLFy1DU7Jxyr4zROccUGGHnJno3TEZxJnPdXUr5DEck/YdL5739cdosFQwjqSsEgNy+2N9f6lPgsaYCJCUDA9yHdR0ohc7Maeof/S/ppofZEItLIYUNQEaAYq2WU/11wLLM+Eig8HOr2mQKV60oR9YgU+uZGcwvtmQRwFuDayE3QWhQiq53peBOSZFsuLIAnBuXCCJqBBmyff9rvvybjS1IjherdKmshW4mWEhr0XrmUy+R3f6tc9aqDBvYP6Ys+Y1OgSwzmamTA+psFlszRo7q/Yw+sDDn+7/FWPY9zen9p/sL0qXDnn3WMhrHT0+/NAB6g07hesMR3hvGi8hr32Z4JurFnQNHaMjKfIy7jYgzayr6Prk9S83+v7VKZpmFR+JzlpcWp7/2YlzaKGSu+ITpHfTiSu4fr3CKhYzl1TjxgaXRLnwdwirHpIToR1w8/F8ihOUZFf2Cco/mN3wGPVom6F3rJKbUQ0MzmvL3+BFcVgixBwhrlKWs5UAj6S/QTcyDLEkNLhx5kiBC9sBIHegD5mjVkIIA2YTtESvtq2b2fTYncd9t4BnFrDUF6yPyQO5pArbsenFplqqtlZ+Vhc+2yXjQLsr28xcE8d/17pYYqVUlq76r8oPhDQGOxQwXrOOt1alBBx37hUKOo2DPaUdrrcDtvpUiWN7bbVYGwRq3sBqF76mPyyJvTXG3qp/BrlXDf4UomZ9lwVYI63yxvbRC30Jr7nlresaJk2ELSuPBtxDb9p8YstFVn1V0kf3N2aeAw3A7k28LEU4+CurIA+9Bc2ONS1nfJ75oX/C8/BsQwclWhO63vnBOq1DNBokRk03TE9buK1VVjjoNZREGRjh8Ugd5TDjWpquHNyVxZY+xb31Zz7t2Ggodwb2c21U4q17Ydn4p9+wMofRnMKnKfVT/5nmGsgZ3miCxwyM7nCVRuKHuetV9IAhXzCp/q6D+S8ng2YiYOpRFuKxMy3MhuuK4ndd+WGtUoMaErkSODhKhZVESEe1WcaLAj6cXdO7oqDWVfre2oPYCJEWuJf3erHHlwsh7fYxjIknqTHAy5trOnkqLGbYVavZShlFciUFU19+q2Aw==
Variant 0
DifficultyLevel
524
Question
Which of the following changes is the smallest?
Worked Solution
|
|
−8°C to −4°C |
= 4° change |
−5°C to −2°C |
= 3° change |
−2°C to 3°C |
= 5° change |
3°C to 7°C |
= 4° change |
∴ −5°C to −2°C is the smallest change
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following changes is the smallest? |
workedSolution | sm_nogap Consider each option:
| | |
| --------------------: | -------------- |
| −8$\degree$C to −4$\degree$C | = 4$\degree$ change |
|−5$\degree$C to −2$\degree$C| = 3$\degree$ change |
| −2$\degree$C to 3$\degree$C| = 5$\degree$ change |
| 3$\degree$C to 7$\degree$C| = 4$\degree$ change |
$\therefore$ {{{correctAnswer}}} is the smallest change
|
correctAnswer | −5$\degree$C to −2$\degree$C |
Answers
Is Correct? | Answer |
x | −8°C to −4°C |
✓ | −5°C to −2°C |
x | −2°C to 3°C |
x | 3°C to 7°C |
U2FsdGVkX18Gpz+7hYGzEPfpuZrQccXzwh82DumVX3MEgeuIOzohYhEe6TWmD5VrYNFNj0hlTEUpW8kAJ+Lkk3CzeQxqsDQ4uS/VK4Qh2hHCqgNCsQsIawKHacv3tFul7a9BR4B4zFbx/cPDHCz8F0zGvoiGdCBD7M933nVS0z6u4siCoS982c8GIn6BwYM31XUTPRWASyWeh/FJDt6K63Y57RnBJ1LvO3wgq8B6KTFJT+G6pcrU32+RdSqJoXgitUyE0bKcIRY5xGN0VVZ/eCiBy3l8tgFUUhqBx+7G8YIAoqyNCB9DBqTqhOhDAWA/VOEGMlk5sdixd0rIVfTBlp9WRkzeAplMkoTHUyd5ncsTCxudUB0x3SmtUITdoL/yHxouF7KKip+ixm0CiAzARU89kaiLAMdWooDYY9VcO9YlXCBpiIzQ0KbJUf+9UDGWfcG85IjbmgyM2TqHlNSKfSUyrL+M8qP0jsNVlJfS714tmQrl9DtW457rg2jGuCK5l9U05QVETf6x3GuwvfEZ88qJVJaKAF2/kRu4MblV7fLXK485pDbRdQalTK2dGW+fuQmKr/Cw2JdBCXTNuU6aGdk6Frt4A26Qtkb7gJo3U026TwW6NT4JNYet//Qz+9aiFKOMe3+Xjdub2lcyGY2s7IAPl0H2MzG+aOg1dBvIWlkBf8PrPX5Gm+wVGQgdHTNHqPJCzJjH9Sn3M00ZSvP9XbwuH9Hfsa6iiegwUlHslkF7Utvppc5ftMBX7lBxiMVVjaHXNfB06rOjQbQNY4WwUahjqBcedFjeRK1H6hj7rgeA4+dcjGi0f35L+0qXajda8BOwP5jY7fKXn9fJoMGvHzbW3mCMh3v/biZvlGCU9grUmUtOjSltpfCHZIGtSKL6Q8CHENiLdbFQazIVWeDTWXQTwn6HzHcq0mFTMYXxlGqeSV6/t29RljnEGtM8em51QwBVx//xFtqNLZnVtMPVn/rkOfw4uAbHMGfL8J2Fu5ToULzzCW7PF1kQ1vP9HeytrgzyujURJkh+Rurj4ubS4LTzPF7jF5SUjMuhOPdrpB3U0ZbYdmjFg154FvP3cKOT7DInEmmpm6Z0EG6RH4NCa5KE0LnTl3r5GZD2ubpaCH64wWKmsiJKg8iGg4O11+cVJkgzLscjXcI0ofPbjDe6bxvYlqZdi6Y7zPZc6azQ7Cm65O3lShu+ZNnD6OHNAMsnoz8AZfInFMKdlezfI3Jvg1IRKsPwnGFvs75/EPUnOi2BxZYZi5vcknkhbyMZyx0hZH9yOlD2w9ivgzbtgHGZjBYAo9pNScEfE1znRKmS84isyMxR4/pPrPdVDqS2wQZDGJfeqBZKUVFw6ji2x9eoUrj2WuOsS+3gGAc9w4l+rAVcSJl3hgKvaUJkoTB+cEWabcaRES5XJ7zrjSfN1iWLLP39U7/SCMmi/jg7kP7Hs6AJdLg61jkl8eCATZMMwz1dwozaQ2A7b0NV+RE0Ek6WvislCwvEfPpS9sXVEkYvWRSrGkThpmGTFBbWYyac70UznxmddVPRAuzrwLBZ9ZwyZncn1+2iCjESK/KyKT0vSk2RcRpPOv4uKb/KniFo+yEHOBHxJXeDnIPIUQ9crzGu25dP7bzu2iyOhu2vPFVpbvPBjosaZPHJa9vE59UIiS/6PD6l1a9JeTbgE8znqK0UyJeSoRCiev/qvK0vENmGhdfwiY6+DMiscqGtpP0iwtOhU3fVSXtzHbW2xJWm1hV6FP49YlqIGlimypLPgT0Vs+VsdPJhmmE/rU6S0G1bh5YPgkmzM1+qF8HWecYT98FmTX2538at5CEoWR5j5lVPkpvaQjMMN5PIx1NhV3nCqlP0kFyRLgBDTCVlug3QChrux8M+xAzmP2Te+IpxmwBOXThbJVTO5A0SkrEQ1K522jRbPw+wuHHoghkdl/z1M5kll491sSo9LunAJa9j8Y8eEUMFS/XVMxQDV/k75Hd6sOstMgiDmPRkaLog2z2lImAvTeYP2Ydf5m8ZfGvynNkl3RpjpzjsGYPY/uU0X63HqPhF4+/RpouIFnB9Jl/twSX+G+drclbK/uuZCRqn/dBwaaCiYxtJPEhVTaqkakmDW6jlEHraX2samO46iReZ4ttsZzgRsDc2xrLGflkHcO9B/OeH08MK/7K1uskAa6AhDALS4pQQIpj6U7bJB0fuPYGm9QLUZssaI1nH3Xx9+yJT2tCIS2hTC9FRuh4KqJUcQrJbJm5HA64yqiQueRt0X5I/oebi1kaB3xMFjqEU8ikVyrv0UwUSXEJrYxYQBibYeS7/bXkMXqPmm2iAC081zPLpyawZtPvQ37id/O+L9TpMheo43toJ33J74yuEfM9FWN3Zi0BXUlpwzJWsDJSjVLpWZG1UOxIJKDmAYcAm+A2zdAa7F5LlEbREHapi6Uyh3ubJ5RClX6QlJ61omU4tWrFOtL0IlF/2mESg5M2+7bBb/R2OyVhkWREhNE8YBv0D31bVvvuNPq9MydsiAEt/oVSQJTuCgHbbbmjgEuJG4XZejdzYln6aiZlQDxNUAwE7kLLCWXK3zr4apUNH9s5QzDTNtFwowvtKneTwBLoTQNwvVTnYBaDOSTJTn8drbZFswe1NnflnH7wv4m9yQSDeZgKO2VQYaNDFJWk9mIVS4NIPr11bYNr4AyaUQUoq/WOEOAsr5yM3qOOU4zvy1SYfZl+yCVS1dpdUf4O6ARf7XMU7fg64hGQGZH/AVFJvBFzzCher6F0iDjmQZAnD/YzVJkEpL2rqPLKTgnis/bwbyzJxaxgaCW5NME9/Sk6+IXKrMYsEUcduUMlh/uL9PMWk9sda+ZGoXGpX/zcAmvnxA42hVIoxB8gQno41JHR7gfkPsdCyYqCq4+fs5izi9/WIvTk1clqdYxvEZP7df7RKXrAMZ/NpO5OsEEk3CFxeqBZDg01HhwBEG7nsZail3Dk6pza3BzcK7T652t3eP+FGhYuWfCVoiOxmLeH0wsfatfQWCBGdthWulqXEagKvPi+x4Du2zddA1UwoVolMUOGhJq0XXDhEPLLfu9zWImJ4l53xUU0r/t+pIKsRvkq5Jn8fvUMQTzwt0QkbNZTD4f49f7LMep0IUFmv8wcc1FQLVgybQSdP+LZltZBaA5olqWSfGJflN1VpwAivrwVGmVgEMYis9lwgZI7s5c6I/BSOG7FNCEqI98gjA7maMaQpUEuiqbOD9yH5diMxuZxNaPozSlZadI3/1cUiSbdbjvM3xK4z4HOs/qylVkXA9O9TI6yUx3rNdF8Tl5kfujvCOzPQUitFzG/CpAZI0U6pxIs/dro9lmCvkxv3dtHCQIKBlBp85I+dNqHk0n6jBdSmbS/XUxANBAGKwtfvG+7v/pJ8SE6yavZZdKKCI9TZuYEuQ75yRnIwZ0wPcTEizhzLjQiIN8IJSs8AQxXrRWr+3cDQH6fAOibBFLq+OQ30K76LkyneLVNFQYOqg0QpX4C9KLvZHmL1ydDYorBZW4PZ4FLi8W6NoL2Ewinc5PaxUbHoucchlud9yGZ7oZ2kjxGtiz0Ze97tnQVpI2io9bYB72MT0nFjL2HymflSSVKKtCuHkgmJv4Q+ECukFnjKF/P5tNvRsBPLhPUXc16cTP5G2ajWvFBunnkyDq7MtNPLcVqQRuo+o+5qM8cl0GaFYkgRMH5QX7+g+O4+lC5h6moVXNIXWYLG1P9rAFoql3X6ypZjCXpB+cEbIeuOHxuGk0al15sMTNbKnGhbmIgMOAVKqvcSGf1ojwWW0e2+nerNJrriBnH57iQI1HlAD/rXPnv3Edl/U0Jx+EciWC6F6DEMp9D+nm83ja20xG2VIN0JxBVZorAVdfCHidXKLhL8e/vA0nveRS9gJ0TQo8E93O5xd+KuBhyxBJtfFzoGaDhP3dJM0Ns/53QGOnAmQk8voCjPcKf7xBjGLNCTnXyIakZ1wX5Xh14jkxYRVN3iTuXtkAl/pCk54YxsTVcZiGWNEVp0gDz7ANqEzwORzINE7JUG/0HdXYPommj2xwqFqVO9e7c/m2p1IGeWqeXWFmM+LKpaiPlOAT+oUX6W/8HWtKWXjk46XNLKhMxwRAjByb1y1b+FRzJ3Ca/0PBJjFpkqDL9mhkeMs2L3XCPGhPI41UddVGkvk10fGeTvihVjQLO66qwBMlo5VRW56Z1KQUNRwmqo+J99N+zenaOIAGeSwGa40fCCzYV2+VGyx13TvR70lYQJM6nHCybFJGce0Pk2aXr+AIUmbhGWgAH/nY1pqzYb7ilsgog3amQSHfZrs46jVImdTkXqwZcPDfNYzuQcDgy2Co6cd2YSDpAZAqOmZClFJyjO/MmemrBunkU9h/b0xekb342DGycuM0S/Lwgs9AUtk+cuupL+l4i+MB/ZiGc3GJg6dOZydkTV26VNzvnePxJl3hlFO511FTxQhKLiCBVHx1RB0ZDZN+mlr6qLTuXsZPxyO74UQKcYRH9TM8NPjupvE76ZWfgPh7+YtaQjjBa/7Rtp9JBU4uduNOpf3r8ACuvsz5KabI8nvGmCd7S0nyPtj9hJe853kP1cBx2mSuwjblu8KhpVvDDoHhwru6WzdNXmgw4fsJBsF2+lYS6qbQB97DdhpWTtBxCCiB1Yd0BQnsGuz5MPUgcpBfF47tRNerPpphCkOFELt6xt1I6FN1LJfuis+WfPh6YRLfthXWQ5boGeVOC/uD3JAyUlF0lSbekNreAJV+2c/noHAqyT6P1oJ1z53bdlEBJiOxky9sLW3VyntFnoyoK5qwmZeAQz9GTpccr35vJ4lMLmrT8pEjKUtvTYoX+xZ63NjRgDMY4PCYasoXjDKDtdy7cCS0zf9jSH/efG8hhF5hS76iJUoLkHo3Lu9y9eWdJSbIydO3RFBsTDynMlqHHCcN/93rxJzMozOP3I3PuzuUgAGUseAdNb7/nSVzM46ajTMDJl1h2MblMwgb+VhzGVDFHBPdvylDBoq29V5ujdqBLUK1AttmQg3h2in+ya6+uicar2G7hU3EVZLyJeE6pex3Yu+X8f4uE7EnSf9OJVyDhqBXnX6LV8V1D+9FDrIOsMzZs7H7Eh7EUojpQy+X3JtCsqfxTt569T10+Uhnpzsm/j3GbjZX8g00hafVnTGRi0uhWE3fXaaFh51gTPoXUThkYwwzW+C7jg2u8NMU099gtIMEV/3Vp43V8Q6UxdPeQ3mRfz8W15TgK/KL1npzipYMlGit3qMU9JaXgmwiD9cgUu0M7Hc6o/HgKjQn/luXKxgUBQ4GzMlNfCYuzbpaT/Z1NaQQJ7dw4CPLkno7WDVm681t86PhOJyUs5ZVc39Q7FpZScjkQp7g6t8lMoENgLog9b7QJn4a/OnztHlfH1zw3a5W+qZngCa5ffWIpD3utDQy2y2lEYBzgBvAl5o9XkThbvt95je7YZ7QjnBc1w+85n2fvOSObluWaFloi9IUprdsS7RWuUWtVbcTfnSvEHMSxRlweDHK+k3wcRIC9p6RNhWU63SviBjRZVw3MyH5IUXkI6mZv9zBIeS7OfJ2efnxm51EQFdRdAWs+7ydQkbLATXWi4UN5t8JYdvy2YbarGpAR5B9F1sGkLyHiY2q/r1QSJqClt5COfNvOENR7kKVxBbezVh0eWjwIJ/SitD30baznZnwduH650VQoE+EhIXRsVw1H7ihlIZpOBaNGyLKPWUKpuyi4cGBnXpju0uO/B3lR0siB763UirdixyPfSUElmsNehARni9v3b3viZydjSTO8d/IRND/brz7momQr+kH2dtTWaLlWAM6QmW7RhQXt3crKcrXkD+yMdqwmTYpyvH1S70c7d/a0sFSzu9rXMqJ5peg5qavL6t4FegHR/Cu+oteyXyZjVFxhds1PIhR0U6/OFx5vu87r9oF+Htv0U9sajilPSpBXuQBVNc1qIRjzO/QKivJAP2F7aNzx85chdyG44gzgblBFvptCfpPjo1VJy2PBFIevz+u9SrIvm4Kf7wI5KutIhYsfmUdc1tWIIht6qyRF0GF0+sT6EMBTs2xShlupEEtmRs19iQE0R82H1jcsWSgZLxgsDxVuR4kRGNlLTVpdNvE4dtU4BqOxEqEB4YR2MveBiy8GBSI1LZbdhNEqHFhXMP34JLKS5VAUlLQJrYmFgmaqBSrMfq2x8v7DHzqQZ0Sd96BBHhJ0Oeh4LFDYP7UJxbQ8o0yJ2GUlJ8RLFhkP7SleDcMSlbfvp3yhzzwIR/gbDc6KfbxslHVHPDKf75qCbTkUOGnfVhgrT//HQU/ws9nw702epzqlf5IcRo08Ta+iGYK5sex0beuSl4pfAq0gbjHkDfgmmMPDELs93l0Gj5YEyqoXwtqb92nVbjrm+V2e5sUNlXE0Xag3Yq9MGrQohIyuSPHIweHR2hV0CeTR0zRADcFhtH+4wU0KFTcIyvMDm/scPYkkPFrDDpWDl5nG5VSXt429NoJtOzZZAwwo7ZmZlIfW7RONO/zJyX6xvzD5CXvS/IfPI7HbfTAW78OOUDd1hUe0niSO9sXPCrGUgTz+6CEq6GZX027xVfBfMwkM0Ix7/bH7plxiz6wjAOaezh/J/+yp1fZvqvNPtUDpEXZHsm3j21ODvLtHjCZ6Ty2AYD031/AKCJHSz8leDHCv1GQWZ8is2Q0KyZWYV7NiDTfQYt8wOiyAr8W56MzzGO3Zbh6KUu3UsQ/BqUgFIe8Ck2ujZsDkEYIQd6pyKMWNg/VUn1NAe85lR46wtAzEGqaBFpucLvbTc6GGhZsujnovVQFY+wIgMschaJsPTf6KDzN1fK3DppmZq10MD3VRLH6AB7zjpzbp1z8yMfk6NK/rwK812dvceA0o/ntqStSruNo2rtqzaLHB1r7z+TU5yS1+0WUq540cblSU68AoDwNAdskGYHi8U0rS0keMjWDMNTVtFURxpt0YXjjro6hQ7FiV/QFjEpixdd2klSgZyyQ2gQyswm2Gy+o+EvU2M+/6m1rp834AzUjEkeBl/MdAHRajg89WmXMmNoLFePusvJ2u0Hy07f819i5ScdorHT/D3R2qU3oLCzMBmEmlSgoMqpDqemVhMyG+Ct3ATos2Sqxg+3tJQMd7Zm7ulMYaYWCaAIIklp8ssMVnGop1FB6TCS2KHYooVp3MOtlSFNjjtFFNlZjW79ji11Cb4YoKNVmALf/EVm59Kf7qrqRg1PHvQq1Q5DAiQuNMOkDqvTEExCDZ6lr4OiDnvpgZeZubBrlZAxT55UAs+XdU8faa+gPNQY6gRsGBb/q9MEwIR5//A2mavdyKHR1Sp15JYHjSjcrGwA17RlLOTyftwwBSQ5lsOkvKGLgnSD05OCQgfs9YsPri2WuHG+T3KwrjocWdY1hQ13OsjiKyUyvjOSCF1qIVhYoN+OU7Juzd7xffohislQwe5kHmLvHPW2RHdiy7qooEehEYUah15wyl5qfFs08036RGtELene2Hoh8rfHRpY0KPB85ARQsrSxWc1VHu31ysFytJv1fVNjPUZ6PKjP5hnfLoh272Y2I19phazeQCLafG02CDenBMqjEq1Kzb2WOikN8zU+r+gU+wczaIo7tOMeZ1EcgiP3aqdSbY7AHO/CaU6aWd4eoZjxv2lbNWaui7yO5aZBHp1QKZ9SGIbE97Nw9JIlE0umLbdwztU9zN5ezet7toKG4gXygAmbtIbq6SLnBy9iuEz5gA2wHXzAgMT1Brjaoz1E7gIDurtg3QnWa5XeLOadk5SnLtujToFpPvKOxm2XPXFkJnopBMpsHbQKsh1Z+DUzBbWP1WMYTcN5rE2FisD7Zj/2skDsDu/YdKXREREJDUXUB4sV2Ww8UINU2JsQZ4XJbCSgg1fXm/MwC3dlMZxikqAdzCruORNSVKul4nmbY3eWeZCGHkkCO+pf4zTiIzbU+1gOloRTqpyrSFeOWVpCfChQrSWBrm1dOjTFChNMT1yl5+y2pk+F+aD2MmMf1mSnhFWKGnL4bK6RSWqSKuN4M/qb/p83GCltOT1GT3O1kgvSfinOog3GTdcH/C0Bo2acpp9KjLK/6JR3GJHGRK00idm8fryAjtdP7wTrAIpcY7cFFD9+zDrDM5AdEXBCHi4IKYANouFDGbcUy6CPtedIt7N+8rsDAD4QbgoYImouXYXP6pzFntY9gVow8W3wMeQ1F9OyzQN4G6nvjvLWhWQ/N7FYFlC8CM3919sOHn3iijLD5566p3ULxZRiiONjJL4Hrhh4BCQGAYW3AJTlMr1PXYg8QG2paFmBUH9T8QG82J2dKQXj9S0QG820jl1ttdSRt/UtMJ1fIjs1HnLSuV+6p6FL4jXT2Q/F5ElASiIDegxbWPwTtmjeLCntDBWJpdGsrRaSaoRzTNbSkMzLl/Wy4Ncd9fBpgVETs+Tg7reZDrVdL8l0IYXtsgza2dOSVWUImoVUBmv+aRfqSNMV8Fqs57VujAfcNkc6VHFod9LHNVuNvpENv4sgSyg+k4ETdPkgzJlCR64nooqkVQBqiIQezz9k7tj+9I8LdzKAUF1LBP6WY2efCqtqkxU5899LO6dzgB9PwNYgkRTIGAaHrKCu6Le+8AhNeNWGJKbQU/Ix2DhSEogQwSQAL72+l+Kk2kO7/GZdMP16q/NGSuWE6SxVAG9Vxlc7xhEyf4Kla34QOl3uq8kRlR82Z9/Q+TGpajdbak5vR5TxqWenpG+25/IVp0/XyEUMaJ57cMSqN9xnhC/AvHMspKBBNDDsXlKRBmL8tQqaiCKCSoVRMUHTuUsot1RFdVUhwJ5a/etrL29mHf1N2MTKqWblrs5WiBZp+h/cbxcM5rcEISPY2DYqeKZohL7J6sFGV+u7W/orxnWCy0FGhwo438Lw4fj/1Gyrn2sMoteQiT9he/r6Ejh8cH2mKYUQ2oiUgzV+HMbxb+uTO6zFqGcFbDM6SJmGgTFV93+UcC2u3LrRF8565gNsfLmTc24hk/nX1l2L//hZsPYraVj+Nri4c+Lsfhm3MKtUxwEKk2PHfBuL+IDwR2MqH9uoZ5v2EZ6EMq/32SSFhEdjXq/ypJBwNzZkqULjBPRLoqsGow1Slu0W6DEh86BtGtvMECC/2R68biPbZ9TEGk2lf8mgThsG+8zqoRed2dX4pNTQyOK4OEy2sftzL1BLwWp/Zm0UVf9mETK3bLItrF/QChvMhdO/bYvFdJnmnjovikUbANI99YkTURVJ6Uc3OpwuJPDakYHF+JTFkAwA4+oLpM1OYshee0Cwhe88rs1izCQ5Sr1IVCUTNoQmbseN6jPy9DvAa5jW71MQ2IheB/7Q7M3RzBT34mHmyY2vVwxjSt9l8Q7tdlVe0Ey7s2/wdIFQRv96Ac3XwVXzdNdk/QVsZs/Ty/xkUvk6lzgkdWdKIXbPjeVkZG6EowCTaujUWRXPwF+9IdFGIQhadhDSVWM7X7+QyjSEEpdHPv4YE1qaUV1tAxbfDUBFM7n/vNzdSAauXQwQeUvQeUm3/jYGBDo4qAYUU0aYGXPhzwqC9AQg47CDxyzNuj3JEak9CnBgppgV0EhClaoTcPYuwzTqO9KJtZ+XBTVpNVkslkDxRNSEMHCDY0j5tIIyuu9YJPqGMfb7QxLtFXgCLKlW0py6LLkT1cdcCjdKilavVrFuD4UmS23jrTB9ahrxD/5fLOGbQ+ST8SzKfrDJ8fYD9MTZU6fzcClPtqD08PfDXcgwFdOErC5sMQj8OEJOiMXNHnMcmAehD9kQwZ//NhsNEggrd45N40UZQFWZLUgZhsGwcHrMEX2/tPCyiE490e9zDDt/qzQDjosGfSRHgikzae5Wb+R04qMUQ03ZWijeYeg4uKZygPTUBOL4Lg7DjHrC1vx7+zWjMHnbKc0XXDfUc4tLMa+mG3V3hoSDljp6uY9twbCTRdx8uv+lVFTo3+VQirOWQM7ZHpLAv/SWun8ADb0NQD2NywPIZ429r358r5QPgqvGQg/mONTGx4vv5Ee9DtcOF0/UitZsm330l5YtSgiIJZS2z5Kts6WwU6czN1VQcoJqTX+1VQKTcuKpgmxx+3CAicMepH2keB2vIHNsg15lPi/EvFgcVph4GhLBLs7YSyUL0ErRo2VP4fUvYw+3n2RnhuV1hhWG6AaBlnRjYfrRaWO4lQL66RRBFE73IyGAC1UBEd23E1vLjE6nTLFtH+0ATkqUkxjOGbor2KIRBJ9Tf8hRBVPzSc9djoHo8TL4/p2BbcFYWLg+b1iNDrFBJ5iCFJUD324o2h9iwf8bUcqPYQpyDC+/EqOOu8s+GI8Oc+tnASTMA4R/hxavEIIN+5apXAhhHJ44soWlPLTnL1KSG7VG3NjYEOy0AVNDCYTaGhK+4eeXJ1uQk7S1kyBtvUa3W0GKEquQQWNRFSDxMGTLBuoTraABnwWsKDAytPCbAL5QhmDPcVXtFoV0RieX5aPmxDnwGh9C9Iw+ypPeS8iAl+fZ+m/C8a+HKpZDidqNryKOI7GnBVqzIDeloRdP5lAuXHdBgPMe4uFQ8rQ2U/ryzOqIZ7Y6AJ3LYfy3cowBonkzmxIGBdskAA3bmBL4cIG35PYc6ZxXJGzw+0D8Lf0/fIAErgqm1w1PymFJkqlDA1WJuUj8N+1Jm3GFI94tfPNGQirpfRgOOK3x8ZUUnAR/WNTyiUT2vAYv+g5LqO8qGb1Ltdaan3GAohWCEDtUIBzKvuVKUFkdiJeuZIx+LEIwb6BiP+Ptl0BNoClcrT7UKGkDj9fSEGp8H1dYNXncoEmcLyF09tlfI7hM384vIxxM5WNdD/m4Q0rODoXMD/ytAph1i9ha98549dSGqJHTW8cAjc5fzja/ShPaOftiUTsLFEdMxyrk0kiahlpkYMPmsusOuw149rBxMGGnYLjMPeqXXXBM8lsc5wtM0kZxMph8ZqiZLEZShNvJ/QY111AVoelHRpiGQFNvpEyJYzIHTjuMupICyzT/LYm808TinQjpeFIrQUbvebQFycUkE8PzyZgqTAcSyICWeerItpPWqI1o+qcZYrotWp1vLMHru80WCD+d0TNI+Hegu6X1a2VGj028zFEDD/uwmAvOQkjwgqOTyj5nYNFOBe5Vsl862Bgyfe0KCKkzqwJNB7C3fj072SPBwqfFw3k+yrrfgMsNdRUje4rFT/1TAf6QQQaUBLygHDQlq4KXgVTHCyFjSR1UO8mWbdUffCvhDbUd1SNzPunLZxxHwu7GCteXdE4qYuCtO/xHqZiar7ueuOJLTtTvSOYNJq1w5+HVLFjQG6sHru7cZUOqzFmXOLfXA5zcUvpwRyFWmTAwhCBxmI4UZuWFdUPqIMBsjMFtV6fE6pxvnupxtknueznY1HoiyniCvJ7NAt3PxAIYQ4e8q/XXOcYuO1oRRG6mJUwN6DVNCWMhET0Mlcuc8dbG+lR+Y39LidQvoswVsgyx8PdF7jtm5cjUisWa6QecFimhNgVazinnBi98PEfLzK2LVgZP8J6ddaA7qlHi+fA97FixawURciMChxB5c9H7UeeNjPEw9nuXUVd4ggjvxloPLkiyurlIzg3fFfHW4Butsoxbh857loV53mX7Lz+fsYpWD2insfXr4b647Sk+79JnmR7bWTGPYt+dp8asQn/FxnhJ+oYgHQH1br2OqrViLqv99TY3ztXK2ANCOiyj2RUr8oGMRRilQUSUVLcYdH/p2r8IUeR20Y4cl9AffIeLYCXhPpH594iInYLQ1w5fNq33JBeRUq9mI36jB3DOcllYlaHb2R7mNPOX7ZrXer9c3rvFR4uP8om7XKWSp+HTkb0z6jOvEkVxkW1dkhLfI6oveE5BBqtRasM6yMwjedNCdfuq3Y+6HRM5NzxA4b7u0STGufE0tB+OtlV/1ZW5rJSutLl1XNxINmadk2/q7CDOabvyL/p1VkSY4Cqol7Ntyl33YPI0/tZKUK5t7Mq6mHodaAih371MyNbMvSQuJRVWl34nG7zln/Np+bLlBvAzL8jtI7JKXvWiC7OVaINrFOPHhgOPQnu5GM7fx0lpRZCnsm8WNVvb8sA7kkZOlUnrNx0eEImgIxe6ObbKyccT7RlWj9Rv4tzpQNsKRNjZRjsrzbjlotdnkzwhpouCgDOkgsrRYNyTC0HeJ7DTRUePfaSm/hceHUFdll6hXvdTlGh4FDt9PSYlkFdwEIq7VxaYNCOFIMKgeR8RW6QHSesd8dBl9jIODLo1J3Jr0iiDWVmhiUBMaHK2+NxGtQT2ZCkWGHBapSMEAzdcttgu3NETbEteAlrn0ptrlb9FcCpAOIA2SeqTqfKgBdq1Vn/dT6+ExefaEE3iggk7NlAE79DJQ7fthuWwdJv9lD/8MkT1TspD9jzCQIypKIv3wdwGlIJSSAFrv7ycbDbA4u9JHti43hFzxa6SxL8n5AYBncUMWbd5RpcuBXR3asSMnoBTBWqRXomVeeUqYXj9FgZ5er2a6Fg08Hg1UepsQzZrPLtC4nZcntTn/eZKxtOggQUTv2+ttBcll/n5fwFNilCNeXF6Yuf/kwuXq4G29p7kBxxMrT3racslpiIs7Z0/rZEufXmSf7tnZN76hn+9pRyBzrrjquzk/yjBOnOmOcvgEsyjxay7n4L3I7vvrOJ68zXSIVfEIFAdPpjoPW6/jK/fU0vC+KbPskQk7Dff8MB8mvEHlxk60HVnno0nrWsInpIzMYNIUOSH5/tGo8SA4J25c53reJ3RNXUG4qvNSVUAZOmBsBlLu5dfIRFXSNnYwt+GiY6LIV8csD9AvVmzEjl4/34w2xLKWVj2UFYNvfFYjuKJrA+6IBwxaBF1s3ytuNnnIku79rqg4ouTDRDnXzp++A6epQDBtSkedWPD1XPtYXI+eadTxotY9Kk6dKYVWsTCtruY4j5567I6V5Jnvqrolbv8TQ++jm2z1BD057gAMdwmjGlzyi9BJDS6vdjhbubac6u8Z1gMx0zudvoPoWvQHruzjDQOezZh4IAfM6WsfjrJlzWdjV7EbOd90+GnIVige6GhvqpTmqkHDRuLtZ96VfH6xV1J166q/2yne6iCB6kK27qY7MKJlTGa5EHMq5gy4BbipGyoQoAnGE+IHb05vBEaYZnXpHcd4qaffdw+hvC+05RLgzp7Drie+3yHJbJBRMfclXT0GvmuuAYcp7u/Cn+Y/yBZPRBFTmYM+Uk4bkjRfPRscd76Ju5zgY/TIsDkG4wa9bIXqY07mEX6klgYey7zsr6NSDtg7ywni1eyuNgtn+BOPNE+18ubE0IQ07oBsrgcGo2DptWu726miHHyYdQfsdHOPrdZGiZvUonsazZBlNg1vLsvwJfMSTtqHyAYWiTcYn9/CD941OBJqOho/7qjk6s2tmiBb7LOFldb2v0MJ3lE4PTkNMg+i4SzDaAhIYqRU4/e92Q2Qs8EoLONc2DlDMquzvkMNtyw3n3FNtRYZ/oRgDIwuRgDfE+PD91gWFTVX0iobpVcuDl57KpeZoHoy7SzWTvhUSRu7/h5e8gVfkqAVLZVs3nwt+eGavnaO4GyMxMHr0/yQ/yG31Xw3l+1rwj19hsCs8cF2si0DDGctrB5QD4SDlnbH7amKodsbz4rvnsdBXr/Hx4duCfKfb0EQnav5fR3vKztM+NsFOUdL5KjJlSeVhumgmW+8acMrk2MxJ+rL1cPZ+1Of7CJ50CmxU93eETdWVsNIkRJBFLXG4gKl3ilp8hKkr108PLurv6dcG7zklhys33FbO575X9rvFybxTrtESiq4YySXjAwzX4TzrHCKvNuwl2uOJxQRX/uuSKrtxyiej+tZnQiNYiU0soVlo8aS5pfSkyvqSqRnQKM0f7xfu5qGPw+HaQ1HquMLcwoew/lhzwl2nHg04PcG4FUwyUHWzNoFLCg32trpqJ5Bx1SGZSp3fpPS+vP5r8wsG4GHzKqmu8I273aD2wu2OgNuFaxWNa2jVOZaFJOnje9nT/HiQp2eXtsQRGILEhMxd6Mbip+ZactFz0cXaFCsNP0TothH5p5gQEDilB87BnS2PYviL7ByplrBOoT7r8Gc817k5vBm68zfDO9d3NuujNMnyLZu5q3Kbs9sIV0Xj0P9G4mthO6Glw+Do34ZucZP+WtwSHbvdeiCu4kpoRW+hBsTeJNfBkuMCk/TxD/hz1qzfHdOamZe/1jyQXtTbhsXbAkALzfQXUyl9kpQgOF99IBEVhR+7+ZDOYpTB27sncCo5K1Bevc8BToa/23dU8HnPEbMDfmKiVNmqQlrs1PDsvsHza8n49W1/hGl9kB51z9lbmEyVF+vp304BgxgXbMxP6tRWA1V0J1CL9dW6F7f4TTdWwuNVK2p/Me30QRDnpKlqvsUqtHlBcz+RbLOtO2uSh1QQ44EA3aZu5sHBzvrfjjybCr3KMoQqjonfj0/Fjh5+I4vzVL2W1XVoUyHlRQ+0rzlWwTqnOgsP7NP+gA2BOgU+GYW9NoYYjUPvAKtqJLHzE6QT3rLqPRiAjQ5aU7cXclErNouuQp/ggFwT3DB9JuDwPvqcm1v+5pDs3EEaGLx0PH8vUxTpEgjOl8PaBuhAI5jCGLin/jVpIM/nNbmTVg5HmY7GaJGeCaJTvShTROBNgHrUyD8zibKap2NxUGqZL1yI9WR+kiXA1PRukEhGaKT+SXYTeD9cmaQHL73Usxjh0dN/aXQBrHvtn/Or5VdwmSS3jMKTNEFE57FdrKKBjTxg9Rh0A9GZHFPgECJWaIJudmx4VXFUiGEIYHZYKWPfEXoi555lHlxb7ND3m0XwDiRgp4XrzxEwe6D5nlUEUylmw5qmgw0r+zY2OmEu+b14LohPC0F29YeVxL0ZhdHX9TxuFbZK8wtguOTsiKYmg59VYrgzS8VYg0IFLfj90tra+r9L6sYVFdXs+AhueaOeDrGcVso4ns5Y1qK4aTYurhdvzv/IfPqU1/ULbK8BxJdlWfVwzP+uemdrgMKP31r3Zx65Qd4sIm75JKBd1jMYP5aPKSYXfUjQhDV+C/Cxdx+BgopCcnFPU2TfdkEkIvqOTu13R52QlKPZBR6SY8fC+/1afqQY6iNd+/hO9u7lSNwBHO9UIGAEXwcdE7Oh5VJEDrZx9ONkzOAFwkuqlqXW1ffjc5O3HjgfT5ICtVViWcqjGDMjZBwnIQ4kmu+hYlY1882rGSMoLHLPN+rLxdsOWkyafnAcYmbg1N+UnOX/arMe5KD3iRyCyQOaZw+mS+Ib82VgQHAjHitFIs0xJ3VnnZAB2gWCm3EInT2t4K1jNkUeHcG/XgkTQh4Ns/FOiP+ymFQywBXGp3P0Xpl3bG2PZfWMsAgriAqfmpyvrelCX4+RA2JL2ZgSPGzD6YWFsLylrEkb8ky2R6sgRtI7ytXMHdUJUaPD0HRh7SiLVkKmZ+f/M5GW3zM8kHdw958Ibf00cYyX0nRUaF1+IHDBGDN+qURQkJGbVRvaYu3+evX9JHZDchu56er6RXjewwaeUJHTx4/aGDvb0kmjP6WylnSWjX1Kc2ncMCWIs/1ahBKvxw12qmCeCaKuV+Hlw2lAbQG648BEvDsXhE+D0Dd2A8zCA2C0K4PmKdDhdRJjPfvEh+G3BBiN5Q+RTzHF/mp4bpd6Fy0hojAwW5ggzV3TyOwzsDPGBBMAFgFaR4QUQlzT7TwojheYNyJ6AggZ1HWEvBd4PWR9EMNF9UsssYCSodqU7U5GEsVREdDTVMi4hGjtK5y6/axLJYolDCUMzPwCoM8f+u2bpej2NhZXj16DYForHGVk0+zE77GUYTE9dUBdouTAmMwdUYD5XQu6Jq6YPomaWnh1IjmQD/KY8lp4F+484bvfbBed9MNJKdgueksAbxCRE44qGf08Zlapreu4QEMt8t6Ja/+/rRlCiWqZWAxuazdUt1qVLnGIDXl948gkigj7V0EjbHR2itwEOOl35PQy4iDM4BoTnG9p6mhRbfxVmIEVAPD5KVUBkbi3WZJ4xpPdqhBJweT6yq1JvN5v/QRG6CnpyknCEmZrqqA/rH9eYAvfRxvxIDzl+PiNOblJH999sSU8tv0LlLiPf4FL6kkN5t9U+SDWmVWEbNy/oIkNC8WDn7CHku5zc3a8SYUYB/7rIpXyDpEpJhqw3n8iW4KfWALAwZ+ZiMOCtM5339rjIm0gOEfNxvKR+1trMNeMDe2wQdLR4MdCKvVla2dFbNmoV6Z6EQsFeoHkSFMKSHPl25l7/f7+ywzQEb3BVe5K3cVToj2yxVLimhXCEGadIZhiXQkFVOua7iozy5tiWhZmrAQ8XOikb0CShCcnFvFO2dKEVBh6h2BoXarecPtSdYcCZVix1KPbh3U+/F7S+FNFW2CXwG3XLUfAVGAEWUhyBGMJqMgh12gYQi83eYROa8DwdPzjvQTQI0Q6zTvaoZnrMk4mcAFv+WlwPkYDXnOPm4uw2G0KwJoa6eUOQ3abnqgr21+DLNNbpQFGebGn3TwLlJicO/hjtW0mM6Byjv/NbuDQ7LwoDGMD5unavuv1cnSgmmolf94jixaGag5+64Otlu+7coPxRLptg03Bb5E9TNpJlQV0c1CwJhGdD5ymS3bHldxdnm4SLrfQIVMHH5GmLdfc42zZ1pkVs4uswRL/dIIxAahLPiuiXtkEvJBB2WfTd/54NyowlfEVvD+xk/VtSKtBVPKY17La257DKOCsw4m6mQD6hjVZEx88vH7kVfxYXaVhAG+yr6DWZp80GgywMLG2CkfS5h7ob8T9LcnUapzLUsiMEo5ijxmWvjoVn1AE8lvoyWSsyrtP3MVaCu41BTPFaxdlGv7mx/gum/1hgdzQ+
Variant 1
DifficultyLevel
524
Question
Which of the following changes is the largest?
Worked Solution
|
|
−8°C to −4°C |
= 4° change |
−5°C to −2°C |
= 3° change |
−2°C to 3°C |
= 5° change |
3°C to 7°C |
= 4° change |
∴ −2°C to 3°C is the largest change
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following changes is the largest? |
workedSolution | sm_nogap Consider each option:
| | |
| --------------------: | -------------- |
| −8$\degree$C to −4$\degree$C | = 4$\degree$ change |
|−5$\degree$C to −2$\degree$C| = 3$\degree$ change |
| −2$\degree$C to 3$\degree$C| = 5$\degree$ change |
| 3$\degree$C to 7$\degree$C| = 4$\degree$ change |
$\therefore$ {{{correctAnswer}}} is the largest change |
correctAnswer | −2$\degree$C to 3$\degree$C |
Answers
Is Correct? | Answer |
x | −8°C to −4°C |
x | −5°C to −2°C |
✓ | −2°C to 3°C |
x | 3°C to 7°C |
U2FsdGVkX182HaJjUvRz+PXBGU/9tr53JE7KeXWvgsCmR7UCssYnH3n+sqpze1MLM3ab/7ltntVE+s95TgQmdYAgjRuG+rDp+sieX/9AqVyABpLLTrdadW0e08Jr6NDI45qqIt6T7r3HsVb9nv5g4sAu1x9+cfk0nt4RkHFiWu0GK8Sci0QmRx1E5xKtvHyC1MfBkgQnZEyXBXJonnPPnImWr8s5tiGzFPFAWxDgzobOW5FpFGjkexGrgUgzy+A8AxOJSY5JX9w2YzV27JmY7N89xISVvHvScg91WLH6haQI/xpjMBMR7svbNmmMHxC78RqE4BYN0ZX4VrXET6oMFIxPX8nXZGGSYps0oBunvZODD4X2qwj5jRhdoBt8peQjJHJgm1CNvIzX+5EE1Y5Ezr/CX6rHNYVjf4xlR50ZLaHR6RCzXSGohiMawpcvWej9MwkkgzVMQhe3GqNqjJHZxTsmUFCO2tuYbEvBGzeVsCp5XaAIVQlK0cX6TQw0XtO6dIsgAEzkFc0MtEQuXiVrIsHJ06q/2R4xWt75JYwa/RaAt/0ZapKQW/M74kjI8bkYoKyIeZUMHDyQ1zoegFexo4HQ84HVOEulcd6AE3ULssn7U55JMdxccKSzGDQEbR/2kyNzFAD45NO6FhwojR95u9zfU6NWOj80MN+JwL7/1acTSMcI2WVhz2fMedzJUOTwbUuNigcLXBVbNemZuctIscsb4wq6/dzXZ5Ek2Kt+MaTl+toskHYATKXRqrxL6OJW949kbjFhjRBYw/WuZiXnb/yc+4p+zjPcMTiDvoHET1oEoWm8UtirS1BogEGiDuirNgx0yI7c3ejjcD3wFBISVVIUek1fN2niNQA0V/KwGw8RuXiE052MmbPlazQr/k1+yRchKyEshJEGbKNIXAXjw0d9+Jn66/8R3wVz2AoHt7ACXZhWitGw/Cxk5t3SBqf1ldEKz3Q2FJ4dByJeFrGV/tvQcGpGD2iyLRVi88TZpiClYLMvc/zyIVYNTpLwCm4B0B7jrHGuV/f0fVTjNnO2k0V63yRYrAEv4Thb+TZoJEawKa770KdcGe0kiw+LwVc0FMI935gqCYcL6XarN6mo8e6e7k0YoNwrC/Wq0OWaulUXoFbVy1OERq8MMs987q9JdZ5oR+UYti5jBkFjIuTzFEdr6GWRvAk4HebASmtAiuw+QBIfSQHMrfEpMgxZydtqVgLl2ZO/1DO8zSt700rN+CO+jSDub5n0bjYNL1iVBhEG7OsBbMs+a92TAaAsgVqAYqj9/RP1bwJjNDeRVI0yw4sev86SzXXLBEl/n/VC+S+JezwcpDX+gjAYNYnLhxD6lN0klgidZ8SKf2QdW12w9T0xfom+9JqkMIIVvofW2Xx0qPudFpyW+RA1pAJWT6CtCobBJJyTzMauffmGdPQFUE0NJrjG/S35YuqiGqxGWxR4TF6c69cSx6BqvfO1RyaL9mpmD8lk2AX3w1qkIEdt0xCufR/tR0+LbjdwJp367UXOyJM1tHm3ch+NnelphPDsdaDO1oX65nycWX7oSFLspbkGBna4Gpdnw9KbDxpiRt/Xxr/Bi2FK+ppdgC25oPd06hPwwSjv2nTC+Chxqs8vb2FcjjigI4IXsENfF+SNu02jW6SyeTK10rY9PISHf+0IimKP/F8SAanixE63TctT01fpZEUA3QxbDCHFXz/DWe6NXSzkgJ+mpHQ1jbEZhX0bIqCqH8idNc0nMb9lUTYyXA7/pJ++2TUuQiXqMiMUItwSIv4tzcYWSLFRNZAgkAjfPLD/Q7egazYH3JPrZLLlUvWhHdHVXMLhjr+YB/DFzA4sY0WZgd8VOe2+49XT1DeO6CcNwV9f7offrpW4AcTJ6opOZ9WrFtf8Gq2Hk14eTPcNHd3MexQN5Umn30b/LdiUWfG9STgZK1nZfdkz10ia90DCdPaxLW1p402MOw/PxjY1pWYDsZjGZzMiqKhLPM0v1UYfzMUaJYf9iIWurQesX7EE3sSWHoD22YhqP6xmZ1jkK5cgYWVdU3V05YPkT70nSkJ/uEIMOsN59F///g6GddHmoMn574c/qENRRlo1PuwJbXdQO9/jL4EbKdIcZDq2u0nHyGHwNHZf/6+0ilchJGCYQmf4QLmiLdLoubSR4hl+n3t+J/ewF9NkvM0K3gL8TaS4sFuXrNezORLG00vcrbBflQiVKIgjTV6UOz2v0hGbbFtjzc7Ob/Yja5/0AEXfKY3ezVO+fDCA0lm3WYOihW6zyO23UoCAbEUgNMk3G9VluJuAkBuyPNQkVkoEvoG4wPIh7eBUmb78CZgHIHuILtuvHrA0L0IXEXfDUso1jWMcnnJaTlBdHkc0Qsq0Ksqkqm9Idv2YiRiluz4X3hWx7k3jZ2HC5R/fM3/tXZnX1yUv/5R6Rst17dKzZYfpXhEMULGu8/U3yZRx1caFrGX6dZN30U3eKEFmix/sCLnq4X6YcjUygiDAzoCb37j03ksdjcUMWDjE9NIySDTBGl6kvetI4It8t2LV1wqBCzFgvNTr1f4pBvN49+5DvxOaguB0dzirD/+Jbl7CfZMEcwNa3IQ+s0ByE4W1h5m9HNFlR1WGjhnQ0Uk7idbt08QrLrQF0ffVlSKlsrnqOpjIs5j9TgpdurzIDjRL0VEhJ0WJKjtKgdSrHPv09SRl+zL3xXM1B7wYP/8EjfOrBqImUDoZHAkVdZkQ6CkTk8vTBFqabVQOzGCFF+AMuJVhEEyrQ6bMTfA8H+zHWVbmbsGSLKJrTkw3voiriqpKvL91EhybCHemNGXQWu0siw3eLN/vXZ6Vq1mnSBndmtEfg6TA9LUcaIhfXSKHZGodpXaUR5XF6hfW7Uqqko69iXkjpsKAnHvrKX21WFpgqDAXogmwDcmwAdTDdHO8SbCNxqVzMcVb0/FyLXcGZBgQjCehrYdN28eCgjCEd9BJyvc1QeOH/FKZQ3b+R7SYH1PI9ZrXSYW6ZEEvVn1P6U652wdjws8VjBJvpD/j9t5MWYnbH5ofiBq6O5PxcfCjiIe+sUOAXCxcZNbYaQStbP/zOsrzRFHTGHgW6y5Mx1fxNqvYcIWDKcOeUXbKMlEBDfi7BnTksrKuTYZ06jQsI5iOvHcCJwldbQftuz13QddrpNJufGNLOR2myv/ooFRQ5d/slxQyGZ/xABWF1DUfNjp/sNH13dg0Rjewe5iNwSBLeBjUEfmIF6P8c6OOvPeIr+/360sLj+poMtDvLOFTY3TK2TXXwOgsO5Xy5uCbon+cWBFUeMSu6g26W+zV4TltSVgVo5lvLxXxW0vk+O66VL8cHt9ayfB75+UIeGkM6pOhFTA+956bk1CvhdLSGn/4hofaoMXR2y+PSeOl6yBIyrV5e3U6gj4LuOgktXYbhepX6nFCqPzcS2kSOk6BLSsE49O/3ZjFBFENmTvLj0KKFWMPzbHWASaG6wqGWm+CgF5ksZC1R+U96TmhqoD98p7RxbYIze8r3zRIo5eKqHYHICdjhRrK0Uo2ieBKGsZw4t9NzSbjRjp6BQOpqWsayp2QL1iMF/ns3Osw2RLLgfvS6Z7Vk1BXFKqnynPUOER+UiVKfOaNo8wN/TvKHHlYPN2ijwIJs/NfO8oYeJGhOXd45X8XJhZvOFXp+moAu6sx1GaG5VOmmf01cBq8VC/J8Pz7IB0YtNETv/CxvAb6jIWFGivSQcsNtGgfpyggz73/C7teEq/M34E8OmXo0XfQ+lTekxLLeeiwR2Y+4De+K68AUAa5Gq0vK5j3bZ2p7+D3Sh7zzuq2eW2ocgp8eCVzZX31SOlBWHOvQ3uLZpTsYkMbf0BVkikaKkBFLo+JXA//VBmHMS3JF5Bi4WdtnMpeX1OEnYCTPpCnx4TIk+1mtk4Gzz9WoM7w/KVDGk9+xzYRSxgdtY1ryAvd44LKB8y2RUgdK1hv5843fLaCiqAdBGcpIZEX13CYtoS6sZ8iQOfRDegp6PF7etyQI93BLh+9kWh5f2uotEZLqon2tVWAhQ1Iwf1NrFLHrxFcIOOyyKjYkcf5NEwkCNDWxYZdvlSzdPJUXPWtXosOWioIbrenEJ7W1YXynPZR4RgwnfVCqv4bIs4KwZr0sKp1p3SaWmad73YsM52GGIU+fSA5eSbkaLJz/rr/AYkw3GMC/UsDb5QFa5ZwO14B7k42PkAbi9cU8Z9B/nnQzFfPl5tQ+37BZXfll7i9fR1z08TSOUXdlqG/vFAPl3KH7GR2N2gfBqheV4mUBq8PHs/OIXC/y1ZHhM6iI/cxhaM1I0tIqXU/hzIgxc5NLMXEP4HT0cm4NZq1OUPC0jI4D9Xg2Xz9h5EiOHjbuhAQb98sSD8/icr1H2O0KHDml6Dve9wD/wOtMG43icFVkEq0F02Y2jp6a2ERnVG6h8LCcPHDAlnwqw2+o0+aFT2nXia4vuZ7ukeCzwTYfo+s98mFqhcc8Vm8iuYuey8RcCwyTnQ25fx8hZ0eMlYWvt3RPryEBMi+F5KGrp1WHffAQo69gmbPaL2O+jlaQx/Hv4EXU06j3E6muASt9qrNQgcYysMDt+DUF4/WTLZ/+8RrShPhosQo1BIfcPP1ZHbhbv2FEXTDjJKR+c4XJFVgGy0/LB9lYCFF2r9QhG/7XmYadLLi/vpKlC3Gn2aKCX/KAqz5ippljUp89iv7Jo4MRm8r/LoaJPf0dv18KOGDDSvcEAPAAkikobbqUIGrF9MKsgilkFaXDqioXsYS7B/rQ30UBDTGxyJavSKkRn9oc1+ubYFyaAs3RkP/QZENOowp/xMQ0zLLLU5TNUfF2dmsmmotxEzAkqu7odn8Rdcw+zGYh4Ez0wv9kzZhqUveqHz3YR9nL6jYpTQLpbi8pOLXkRt1f9Gb12ECF6iYJ1NEpCGhYwu53ek17UiRETqkf8YccSmJkfI6yltfrusF/4n250Oillo1tXxvi6gkbvKch+NXeE+O17FzTFarfaCUm9hx046yCouw/V8HI2FM9F5rYzmeib5HumzGCaTNQzo8IEtxS/r3Q0gIL59nvJ7wMTIl7uXFUOcUrcmtq5f7xi+QXB9c2Su8t0LAhnGK6D5nlhm0eznyrPtoMB9nSy0W50AUvjbuvkT98MeZWjdkPPjen1v9pjgl6EotigtkU7pbpmH/QuCcaoKytecAEPeDc1NBnK/9r2BEY/Lf4d4mxOf/L6o2byqMsvULt7BP4FrU/HIF7Jvyd6oJgU48AD9yy+zqoWXWYma8L225NpgrrPqZc36+72faKNWrfw3r2SIV9jv3TPXpeya19/muk924Sa0yWvz6V2FyaSZXhDUoe9M5BkTGgRG6BCChLnNjGELiYPll535wdGyu9/XzesgkUeZxVbR6fYX9eechxZ5/b6upYLViatT9EhO+cVYbDloruOY9/IMyC4T/5FozB1U5m+FjyflM+ZaiT8KnThLS3dIWe8p0PN4te/s73uKiKZu5O2PR0ESNdH6W2nMoCTjd4RHihmP06MjFMaAKTqAvDfR1HPUTxPa2DXYZXvMr6q4qGodSQr3wvVh2y5SMffXcLJlbI46BfaiqM5yln8jvrN30frAAxclwn8Q8vyt8tABWDTuKbn998WAW9oiZuxd4rFphiTQauEvUWJ4bsF3H1IxmjUQ3Qunk7xoCxFzdSULI8jqRqFBFjGoOPX93NLkx92+LxTcMwys8oUwrB0HVg9jeL2dSyC/aXBF/saS3ws6EekFNxZvf1SsKgM3GcMrHO+FUuIBq24/Cz5+qBdmFL14xcOuLwqrs4mItXVNZJyH7tXcLB3YQpyWBbHi5XPNpGnz7x2X5/swUsed8Kil0j80nDPHYCJuSSKUcGftZORLew5sPCUjM3+z8v/faNvJeoMaW81C05sDHFb1nxu4ZWxhuI2IAdytXdx75omlprNH0uVdf1hJhQW7/f6GBC+m+IHP3cG2zbKvTKo84mmEG0jPQGWUgSdevq9ntgcnp9KFlXJ0YbL4UykhSzMnkcQoLqKyKWJCw6OO/SUn+1m5XHQKJm9qoEG1YQkI5KzcX5uexFts2cRxGe3HLRijsyM2NTV5BX74j48zAR7n+xPINxPTxRam7WpS7zrph9jijs8Hs0qn/QHtmtAKZdroL3VkbRkwaAsOZYJq32gC9S3PPtqun0lSNoqXdUZ+dhNSAfnkItrvRAMVTpTyzwUpgD6nPQxjzcbpuwtVd2O7WmlmrfQOBencWGrbGiCQ4agJHMRgTYq5m5eXhnnnshpBOHXjhTwyqtIqCFL9yeQvTgYVNiKqyDWnq3yBQy2CwsGRuIV1nzX6fBKgpjABFvOSEeiyEmsoGwcWpY8GjhRB4IHmCH9d+SEmVDjmslHqcIGRWKYIeJJ2qqfelqdLfZ5ejT5NtpG/DosX2/kTPPsgvGylmUPsJdBTGOs5DxORzdBuYg7op7sx02uVs/yHN+qk69pNdYbwSw4w56IkgyKopxIy+BrVSFSFqqUZZdmwb2bNecNXgYIOY62StHEs8wqkLv8ck1LtxC1UpUlwYxVNt8gyxI35xoda0Hwse5F4xFQ7KYTIBeAee/wHPObVq5bTFKzqG7Kt8i5h2GyTewnMQyKpRAZ5g6KLN1zLbulIk4trdULMRgD2GLVTJzd8HW97hESjCb5A3Exr+62Pw/p/odv+VmZuyVP+ZTdc9UeXvgaAAn27uV5Z/FJsNpvmjRpdEBNVi4L4SHhQGoDfizbQokuvCmtyK6eb19DH2ptf0ITycVq5GGGZ7ynEd/85B5NgGJizEB82CguBX81qLo/ZorNuVk9z5gBNeNjK12PDjewhylNokTwyxDPWO7X9F9DGDPnCihJ6AA9ZaAHzFJN2XpTncDKfV8DJQuOnsf0XxDpHIOkXwVma3LdPyrxmv5/CcMhH13cojj2rDtnGCpNREcjqqLn0dWL5J8ICWE83xBFflcInpuIJ5ynzsKb9Lda2zVa7eQveEJ/QHGxVZFSIPkDCie3Y9UilDaj6/QNpgWTnuQm41YA/o06k6ElNTSnXWMrdNgUnZCxp8r5n8cDx37LITAra7qsdgnHcQI9IBPMVdHv6WTJ8Es27W9PTQir1md7cSpzbGKrTVYZJbZs3SaQfYIaADi3tnl/k3vcPl2DJg88hfuSAvsYYRUULOhvLZz4W5nU7PK9qQZfhEHdeOCfpK5tJz5966fGc3zQ9WCTmfBxpGauD+Vx7j+Orc1ytaBvW8q8UuOINuXQYvwZBdaEzbxymPhpjT76+Yacr/ePh1g1jCQVMazfYSTwrHr1A35/Q15lmnjGwPa98cOJApHWciR58QLeTUFMwghO5LjwyNkfPF/bxNyAVcMvvMW+OtD97QSkKir+WDiSNYafdFHX+KQBhzonsiRZbnujvoCPva3wRBy5oC4xZCkct8jSsRNUPY2OsiXgsiyVKckTqi7eNSGpuCffcd+dhoNn5MkhtvxL0Gcdn8f2mhGiDk9zJJczxjNNz+cYgOWOLga/P35Adsqgn7moKa4+kiwpRSExnqNMreTdMeCnG3bv82hQ7B73pmi18d70owIH53N2ivoCH1qtVX6W5k6Bzoo+B4tLMIwh47A+EA31ZFqwju1JxnXnkKK3ovuf8pSRJqUxMzqBP04cp8/of192tdcAULxW2X6tg/rxDXtATvieweRThbtrNtx5QPR5xMswO2hiKbDhV4x5fWd3vW18ZP/H9f9PdWa7qUK20KV08D/kxOk3Gs9Vbi/OTiWz4s3bkQtG9dvy2QDWfDAJAhf77EVOKe45wmw1nNzYsvMX6e/wQmHozybmyyE9sVhWH4kYif48OrrIf4fKdHfGLaD7bLoMcfCIuIunD2HpL/IpCk4pXJaTONe0hMyD/yl1bhhEPjAT5l2pKFQ3X+S/10qww+hg00WRuS4qZG9lqpJvBvP4gd9zsm62p88LUAO9BKbODJrWMcgreeVZe7aq+/40WQWz+ZVgcuFB2To4JaMTaehKM1p8ZiTbWEfSFlIiSwyO/i7c8D+KUZnzkuw3s/xMGgNQs+quA+/p2eSP5S+RYDRX344Ot66o0snWLQPXhdQYoKoOpZJhvZdxnLXr2B5Gy0KrtdFYtmahVjmmaTj2dXK5BRfMg3CcHTiozndYwxlxkT/uvggT0oCU4XPc1YRblQChesmMtrbcvoTHKeTcVSrKRU5PAuRHHxG8i2WVA/IdUzkcMMUaYIAOQs/NelP4/c6JIu18gzyPGA5pYrJoXKAZjD6gtZrYtLAa3JWzgzDJ7n4uMu/Nr/jRbuRQXVOphjiswu0QsUq6qOqHRaLrzigQYZ8vI1dCsG8aNBgiJQLXjIez7JlJLjJ6szXWBWQLISn+lLGpggd6T6SF82F53QWZB2CLm0XgfTq5RXPoj77jQeMV7agvq65hc3S4MhnMxFIBFIer6QCCbG8Adw59BZYvRVZjrzTPYFC2fSFNE1xZce1jsh9w9EipV1ymS7b8swNGcqdM+dZr2q7an75YstlY/CwTrco9pueau2c1fe/1fdr3AM+dhVDTkXzb+yCioGEKdtCl+1pzQCKtVSiwKBUwsaK9eV4NDCiFarWbW4xGyM+0twOAIg6vrFTpIcLHLJDV5iuuUdQ/Gv4GDZmh9nbEI+B6RdYOn2J6uXkuA4y41wDLocaTS5uocJNMzj+aQ7g5ni31ksQew1Nv8fCy5V+mxrcGLf7jtvy82plVpEW3gLbYVGH2giiK1jr1bGhiZcH1kA+Herx2J2nKx6/v0RWHCFt2mV/WqmNGx6CyvB2FAAJ3Ruplv36PqjgVJvpWRYRbtzB1lYI4hZojRunkPFkx77lwMw8mZ17BJpCRQcQQWBHKhTpKNNtw1ylfRYXaaKDToFiTU0X89GKxnjBdvBoSy76wYr4hbIbkVKwQcFoKLt1Lu/NWQGKldp3fZ453FpTv0kIm4YxXT5/xj1bKNT6oRl63EbiUk22Iy5cfd8Z0KPSJpKVmOkCz5wMnzVcgiKnqIBlKL2Qmm/DnUuo9sbCo058a9NYyZbCWoqUX2/Ri6Kiq87VS050P6DLbzrk4q0oMCWmv2qv+3eN1nwpWzfvVOjVPUt0Bf8fctYdcaZsR9G3LZQD/5RBvi/iezcJQoT9liiWfuX7sdOKqM1uv+wAh1PP6/hwfngQMbl87+Z1bVqsFPYn1kR7ebatKd9FLnEur0IR7LYakIXltGgDHvkLqHW4tRRmkm3crbF5qPQSQOKMpu3ty+B+tgtVA2MoeGlpEZouM7iihYBU05ts8+eAvlMINLs4A90Se8Xl2UrFZUn/XoGolBawmw39Clrz9CNoM2YFPHIYPMmbv+cGqS02ItHh6hKgO8y6pNUhM80ro5ZjJouWFcTJ3qzePr0erURdR/oQv278D/SS9k6yAcq7nqCJ74Z98dPLTSDr+rFFmSmW1xrbaiNRT/uaWSzldVcrA7mxQ9TquYknpo2gV4EfXyJ4Ktu7GaT/f4CTsxK2PD/N2YlxdXf4wOj74u9FVPyCiMtwV/URae4Lcb45IKOxQEFQ6Q5YSVB7TVE1iANC8uc4gdkH8M0gGTnO9dmCgwBkhcgWVTOI80OrZblw9rO8n2xKDJw43amNlJchAU1WHEhkfi1SlujDbeTT9HsNTbRp04s9lPE4PAWtmmgq+UayIKdMrOsYANbZ7BRtBZ6F4A8+F6pqF0L1rb7zHuomxJWyfZFQescVd93R7Z9ZoYxkcOjdxPGcgC8BSHpRm6/G8GfjV3+npg/pLUzsCuu4Xg0nPvA9Qkb3wJ4nrne6hreZWMFgpOv5xMM4ZWW+rQ9kYwtJZQJP6kgK1lZfY/zFHRanvXg3W6xGzq42bwTcfIacypQfIflb8z2cfmvh5gtTxd0SlyVE9GF6LGO/Q84LzhGtGSFT1/EHkmxvDM7iYwgvpFNJYNZ4exH0qkPEFwF9m9QSErAvIn7kRCZ8KUOXyEOkr2dMAwgURphj6gYL2n9jtTY35msG7CgHaSWPFw9hI103h7AvklL+nvMsba21mD/QKDP8FZS1ukfHRsB7O/IGKWhBNdy7RfPwkcg9YqX7HHZg/85rTQQ07ALGrLajK5jkM9K6p1NZpzEQGgaf/fMNLynrV0x+8D8FMFoomFV9VpfKuBJ8bxpSHQwbrgLBqg0FSdWrwPHTqLYie4nbBz0Z80aPbHB7So5cS6YfLRF/4aUZMyiHVS0U3Nld44vDghMdZJN0HuyhpCCK7+JVIkgF2lug755tjiKg5JwAd1N2tIwDQz2sTO7Nb6RID+nL6MVW0QnYMPUOqKlWhyQm0UmagoMbuwCjrk+Cpz4mIE8Rc80kKm/jh37pA87Q47ql1JNpR3Q8dackUf84UpI2bmLMIFrBW/FbJIqBxF9x/zOnPWTemaJMlSFWv6iZab7KQifNdDKII7mV90avQENSkcAO83ErCyD0ICJ98Nu5W9C17Tclb5/PJROvAUsAcLaRbTEhHD3H8bSJS/lQOJC4bJOLWtfb0cE9iUzhRLlyQEZRFuxA1A4hGyEJuauwVQKbF3Zxs9ZDXfOqDPhETnpbvtu1AtSV+YzE7aPhFKnfwRgyvpuWtC3rnHpaUc5MDeYVgrgXtYgDhLrzeRbpymdItx3flN91EDmoIo8RiuoClD7oA6kqa+W23GJRceuCPAIYbx1Fia5IXM9f3knQ49kBZub7vesJQ/UZuZjCr8iQ5f7h0EkQNLn/feV38eCH/gxrAixA9a3IbvkkjId6bPBwZHjKNvfCfYgYlB66LWr4E7WCzUeRQQLvqUghCehw/0ar9nMPQFyN0IXxotJx+eCuWqW0TNF8ZVS5mkalAb9B1DvCqlvlZk45AOBwdry8SC1JguR7ndS9KWENFZP4piHcAGwmca0Mq6BK2qR3lfQTlqKcSbzFQZpRikBU2Tow3ALpdZroGughzB/MqSTx3mpg9MzDS1BCi1XGqXFlLFjF6AbrfiMxqvzSoWgMJsOk/lGnIPiVOpHd6uPOZ5YsNevy/kdujZAUezEOCL2cS+bXl7qwgUrgcJEuIocVibnYZsLZxJ8AgIfcIbmryJ3mMDJDhT/Vf91SqOGAsmWTjKFnocNdLEGV5tRdkUA4zs0s3lHpoOWwxRBAiLvguc/Tfp46rNRKWy0z/42trswyZd9RqaVjrVpR4Dc1utqvZY8qI4TtYGgJaji/8GKeI7B0j2ymTqrfj+NmvoC5hgF2k2gIlacG3rmrrhjLnh9S2SErIeG9lqcAyoG/gJpJPK8vDZOXpkQIQqureU1+22s7ycrxRcp7H9eQTBkt1Rxk4LJfCIKs39lR3FtZkQdHEMHbDQ+kZ2+lmQUZsYF8w5TdeKtlETLJsCLyISIs9rJtKsEZ8rD0r9767dZ+vtVc41eSBsocHuClA+snQ+86ZG9oa/J9ogQvPgk9HIF/FFHxqp9w0IxI5BnmR761QSOhL34Dh3nfKxVcyOovHNHrJL3dvMYLkDowY1KDKoz9/maGflOHdBotTgVAnNRo29dsXY2r0wnklQwjZalBaHKq5FlDWkcR1cNzEDU0QK/XQwRwoco1TeHfrV8201TTmfnY0urtXHbeDHde4BC50X94dtGgowLC68ukin/v2BMOCty84EupGwh1OIC5saasFt7V9TE2cWTOLP1fQuymZfyj+B+Tll2dxsyrnisrtDn39yTyE8czguAT4yu9RkJnW/7ch17hAW3neQC4MCjhYT5jVQHTJl5/P/PcdGHEAZnF8hYw0lPTn7Xxk8ZZ7iY8dk0smls9dgReD+j0EdInW3LMm+JVp0BKS39D/WpMgTsgzon4L34rlWe3P1bOtaW2CEmeugi/3erLl5xMM1GYUoeOd4TXm5/uZsK21LDq5QFW1a41wUYXn580rUJrtbAJTXc1zPjgR57SY4/uVcw3WYukHI3V59cd2nnARmzys5o1617dxq9VmMTA9srhyxqipRLewisFjzIDIEQ0eaXlDpvEVvehF48XinSa5qgSOxbS89UBpj046tr7ZZ0KpSjQCNDev8Vkck2c7weUXBadT+odRoAjtOesnHqjvkA8djNp+i6FLS3JoiVDlGqJW/LzwDTLyv7itucu6sT+O4vTi9Ffkh68XMhpSh99cBAlnq5w63KuGqIeWk0z92vXe6c0vvOfa6JW9+3nldGVBDuA3Y/dy0BnbgyNCrPYwJ4WepoZaDunq9RL7VSxCYzr5bt17+kgc6gPcYl2aBTJcJTC9Ki0ETg6WANUO5nE+SOzVx2kRLg0iBLN91ePscBYuGw5wJ052KyUPbYeLsNS40rRvlKgBmAk0yCo/5zOSJoGLDCNsrybyVcxOa+WLNjNBLURwLyodbb+vh1d7OX+BeOe3ZnhxVEbO+NECJqJQOCj7YZfKCsWN+nZiIvuX1p/gd4TUGzENi2O9CSnXQoXMd7JkaZjfgvEt1maAL2VS9gpzI58nQZ//lvKbewUYzwV2QvJbS0BiD4QbYkpSWhf1rlxXtgRLNIwyvY5P6GCDRwj6FE5TYvwyoIyrQ53sNwdX1t1SMU7wLTPXwHhE8kg69VJtU3YWYOJH+tPocauU/xB1MJ2SJd293zo1aUhvh8jvE1F1C6bdk6GwZGPUxKcPWw5TFrx+lwbdMW/2Jup9Z/yIGd5tvVGCrVDvURRcrlXR5R2hERPMMqZJGSOeiLxB+IGVJUMEowViJQvZLCBZNkkoTVOPZ6OHZ5+ZMHGo6r/td6r5OGIl/tVfjjZOqIiqoYkc0dYs+WVAT3YA4nU87OYj3/zvgw7asOSt4kR0LLZRHYA2Y7BPydzLEMqag34vMmg05Nvs1pF/EjQ71F1Dt6oyhp72msgNjtKseRxQta8o1ZJgW7iEDk5onpHsst1/mn/OEdt/rwbssm0TSSQgVkTGB54IRf1HyavoWvuRVa91O+4cgNyFhjMucojvDFb4fn17iJw4toKhjLM9sJfwS6//J8IQwEx39bsaAtvIl++uVgG2xo1UbWsQoY1S9lECzTzyY0j23VLQn+JxfLmqc2W00hlfiqDC1xJYRIRFFOmf4VhDXeB6cYgSx+JB8o+tqJ1WEWJZA06Xq08f9F040cNsar/U8CF99chRCBkjswVEtN5NWruiCGx1h/xfrcCCD2RC09plHXFk5AWkgFCFxR/ZIQIXUlOcLl/I/1UN3feL99cmMaRiN7W8yZ3w8MZMj8FAhwlYxTdOnn26+q6TKLcseZLfHxnbLMTAAoZzW/PbbXJICXoX1Co0mjpqM+8Lei1X9GhBFFtq9ep2p33M2XOuK6kLBTp+j3f9LxOS5V8pAoAga8uCG4rG7pyUEcHJJZS+mSNqS/yBBQVjVR/BGzLjticc6pzJDronOpuPNwZOxjPviZnOw7Tz1MdKZCFGIcpKXUWx76ZqwJSu70W+bMsRPh0OZJxvFLgw70vyPWa/PQUlgegOiMrSyLYUTzyJmqwtgzftqp5Ti7Hugi56m/TTUUmoNvCVm0gxFTS/llueudUrhUuu4S/MqWetQzOiWWTq52X+h7nGo8px+xA7Elkp1rWkhrJbvOz1iSg4f5W9K3f6bz3YKttUk7mNobOKb2fETW8Z7XvU6fb4C1upaFhErNmcdiaamJ4bf4fJcHiuRO7wb/1XTgh80nxgmJoAO56I66La1Bw0D3fgeJNkggA3c/l47OS1ypkI13eFxp2DJEmX3YG0/+DeHQmm6Ob9rfY/hWhG5UGuGY6sDPGBfmOQ8zzrccB5BSaAke2svdlKjSd6exc/Rd6KL+bLo/PCqhDaNpH/+16l0g4QKy1Fl2RTm5jQXfoVesEj67Rf/avEBWgVIpRaD0ODNzRr04pnPlgDBK7E9gaLWkWWX/qqUx8jsFcA84gTrasDidVhPRRf+69wGmJ6C1p+dqI7TyNBfVgCurlTeFvjQls824cnYt1cJYsql5/JUktQMh53MnTXVcnnSCnEUBhHbsUWeJsB5ZKy3CK/r7lK2Seb6TBCwoDVq7JXXi3TRg+RnOs6F0Ey0LuH3Ztl1sx/w/wNI7XxLQkYmLjQTJRKIRimm5n6+9FQVKazV6wd5+a1DuXAsxLbwvylf9UhTL77i9tfrqhHlnxxzzRM1WNu+qWxu8tf5QsOJTfL6SBJOr3Ev3o+OCSDhrHGzLhsZXAbICvUg0Zyu5aw031/d0urzxBPD4/GHWOqzEO5EM/yDEKw7JjGVDMYcVl0CppKxAlB8flhiYV/ptDBQ2bHg2y7jKb5B+oT5zzhA8iLFEi6aBymzn5AiuePJ24zD1Ye/4hrCu1pKyolPTti4uKiZpeI+56IPf5rClvrXvLUaZTQT218NFVnmXSnBMZWiepEIP4tFJtq1IQTOKFnRiEvA/L6jb/eblNjdzyKw9T3mZGqYxBHhagAMHbR4JwnvUhkjKO+olpIIPArKb9BQ5MDurA4SCRJo0aKjehIGQuOXFkIbU6IhrFDwXYH/zRx1YudVOpoqwM1VHell+PeHvavuITU1RH+0Bhy2tvtrmR4qb1+6ewQ99XhVWM3TIvBmN3q6AavD6PZXnA5m6VVTgFHrmfarJ4ZqK44Qe2cbaQ11qUiIlZfryeoyF9iTam+R5U5KPKX0wKydQlQ/WWYEyXmegJpZJKiyXXr/eBzzxlGbagXmyogAtZx56Z4PbElUTwfS88dO/R6MnM/Agb0XgdHlzPwq/X7KOD+fQubzBoOmoGqPmUNBn/O11vq92oYDwLYy0djelBKBLjApiwj155iycWayco6tvdZRbLoU95iJOdqbH2fHkw46PwSrpqKv4x4NmmqtVAyCgrWpl1WPUwUDZChNPJ05MGPwob6ZlzDOFPJgbBbwlIOO378sNnToxkzuFB8lAzBEO/Jhy6W0IbIj1GyEQWEr6KMXk9Kl5JhkL5pxODAWrpOaxAkPVG5+I9yovrpawWcM04MRQHsQFV217X/8m5KWNgvFi8xbcVcfIRVN6ePtvZ66SRmWFzVS79WKWOoB0xluROW9y5PDaktZrmarVY9a4xYjcK3FfhatXZIyacFbz4h7bsy9ZOt/MJOl7IZOc/Omk9h4HfAQVp2GssMWtV5FdQlfxek5yDonBvEIUin/ee8gKzKmL+mZGncZiClETJUFLjgT6heghbbYkzeR/4GJb0L64iBS03EEpbnLiPzO4HBKk+/dfVJGLl6F3vKGZFqjWVJMVQ+FQTrxzLDVhDf+9tCVLOQNswfwF52F4Ej8AcyzhzXPT473HcbnaLiQwQk/MOAxb8g5WcEPQ4iDVZM/ZeQjQFTfAvqagt83JGC3dWgT0tBgWD+gJKkqWPKfbxJb817q0Wl7SAOmfxdqn0plWkfbcwrI09nf1PkEWLfLJSS+2XFKU8Yqkj9nl+XeGd1C2vQX3hHCllBfo8KbvUSWaY+8gSLwtFqHwfvjuilzHuOLr5Qz8Wat9T0EiR4EN2JWfjYUzLaHWaNqCY8ncnS5G3Cr46+sfVNJ3juef2d2XV1WG78OMR3QwHmFSO3/pCVGEIpQSkH9MQ57Ce1K3yAgcqJqFVwboMOJrudJdUOUqhR7/wuCAT0cjcJ9rF/q/38o0so5pHdHsjrVPKuEZGHILCxuSQv536q44Hz+u/ra7xjTb2e6kxvi2RkAD+Y+E14WdzaAe13UtcJpBOM2GhCBEhcTihHdW8LdwklB6uC0slU0bZkWGajdOIzrlpQRr5Br5HZg7UjzqWQCAPw0Fna7X0lFP7c4VmreNhIfmDaQJ44rjWmwMQ01WYS3Dz9fqjccdx7h+MPPlLZSeQgslsBEPn1gNiKG8tlgX6l01oF4OYBpDhJRzQP/9rIvq6ACvwVQki8tbCHpKWB//xoN/ArfIZUfcKHmcvr58NsbwuYCT9auNXb1M9lSuXjX13iERqyRqxBYQiHtGwv/0ghz7XxszOB3S9D7/BjZliPuNOnboO0y8NoUPTR5N8hpiwlsKARQ8lLHlTDZJz8EYBBdAnie4PUNOG1L5uevxp2n+7sE0QXzi44igD0cdKmLzqPYQJpIfzA/nJGv6HpJhkUoLoYu2se2vdj0sxTZZD0XgnZZHbzJNrihD+D2Ts6mY9fIgBDtuU5QUpxwFymiwQ5LOTGsrIQdLYzqx3vbFnEv0qay9OI/y4CFVSaecny6Pe/ofJR/XraMDN8jm8ukBuhUuiYCf5Mg9fX370/CpvyAEnGKDFjJ8SqOikdOBs8g09S+Hb4cn0g+4ESzym8KOHsFQj9BFKzldql5Ga6TKYYKDQKdJsghCJ0A1PQJI/gKXkD190gLHX9dAIq4wdo49hPDOTTw8tYTLwvxjsxQ7QUn4tv8bA7KXH6E3rr/I9Ada9Ps77G/4R45oslrbprMvc7jNcI+dnLyQUukNVOX3N8z4/QCkgYQp1a6o2hBfBcj3BA/HmyvNNl9dLjtRXANSKCBwZXcxLJA4VPmyoBIxe9krvDFvStsZAaFyvDYuAWfDXBW3//9U53w9uVS5oXl0qHH+GWPZpmYl1U7eN6IWBRQxrnI+R2Y8H5LCWGgf91WIUQ1fCSVEys0PI7IRjcm/7aJdUh0sJXKDq+cWvX1OD2KtNxSMqooxMCe5bvkN9C45+n4CPB41c2V2LNnPEXe3ueqM4pyHM/i2JWkGLr4fJwUrEGIBZ8sjBUSltCT7q9aoXgXZOIwsx6lW4f6vmrFUuugYVLUoc2rsVRQCJSSwyzJVf5XUF+TOIhMJeLcZ66obAES2krmvZ1LaJ1D+6/5SwrjNgJIkgDQxwwB6BNFR0r2tl94BNVus5or4AukxSZiF0p5/fpc7JENRZpOIRSdZ+zwCFLGQ2wooOVh80Vle
Variant 2
DifficultyLevel
523
Question
Which of the following changes is the smallest?
Worked Solution
|
|
−1°C to −4°C |
= 3° change |
−3°C to 1°C |
= 4° change |
−10°C to −8°C |
= 2° change |
1°C to 4°C |
= 3° change |
∴ −10°C to −8°C is the smallest change
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following changes is the smallest? |
workedSolution | sm_nogap Consider each option:
| | |
| --------------------: | -------------- |
| −1$\degree$C to −4$\degree$C | = 3$\degree$ change |
|−3$\degree$C to 1$\degree$C| = 4$\degree$ change |
| −10$\degree$C to −8$\degree$C| = 2$\degree$ change |
| 1$\degree$C to 4$\degree$C| = 3$\degree$ change |
$\therefore$ {{{correctAnswer}}} is the smallest change
|
correctAnswer | −10$\degree$C to −8$\degree$C |
Answers
Is Correct? | Answer |
x | −1°C to −4°C |
x | −3°C to 1°C |
✓ | −10°C to −8°C |
x | 1°C to 4°C |
U2FsdGVkX18ELpoo+lSFlVDlJ1i7THDsrYLyVZuKVU5pIO9BxxRpwUT9+fNvoVllBIRScOnOwDVwQrGNff+I9CV9pR2PF4EhRyi57xG6k1yAnZk0jdCDw66oq1nrYCabwuKtIq+sDPSymLoYSN0+1iUnwBifz5oaserWcXpEN7vP2mrELnuzFcRqe9koktmhTm7FwAFM31CSpxTI5v5kqdzpr78zYDYdEsQFT2P73nlYrDxZR3PHdWbqZq5FvErDmzXEQCRJ8sNA87fvASUBzutYi6JPGWnGrG3y8Z6yerA6tMnKWs0wpSwjVl0rvP767tyKfLeD4vWDbzRs64fd4kf4/J4K4sv0G0ypChHRCvQK/M2p35RNf3VBt+Ic1ywsp5xCrCbSeWE+Z5O4j/tHREM9xykjfuF2AV9l7dupbguSKB061VUJqNnGd8Ib+ak+79nV2kSx4okoZzk9ki84hlpmFNTFxrjtEFURyHByavUPvA/soZ/6hiCYW+bopuAEl5W+6TyMv6+5lXHQIvbd2lnE0L32qzOO8BvtGvWw/beNq1xCaEFxC22CkQNPS+pOY/IR6baSroHAjtSI3Qx5I1YhfzlQwA0zdT9caSx0OwMiAVpFXrXzBARLdJTYjifG0m7QfYrHW7XNeJUR2senPeWaLshc4tATyO551yS9+C9NIVlGpIxX6KbPUl8grhyBg3ZV9WI7W2HzzNNiL7JyX9a1Xx+Qvg+hxo+VMvSWAjnoLE88VkzGPLgCGi76rMzHNs4mqCsarscqYLIGj97SP/TBSwvWES1ZXK2I8HsSb37yCdQ0Bdpc4l0k8RMucz8T/cBD3A5BUmPWs3e7wi7ExxC9r4TaJlAUB0rVVK72ghvLBRh0HLL4T6vIdEG4xW4XFqHQEjByyY7RMO6Ezh/nBjvKrmyMCHRYmyaLGM1Q+tRcVNyz1jnosSfooH4afMhn1gI+Pqqw4fdrD1NWnesd49oVf+3Ni3BdRdZF63QsQM9UM4plFOjOoVMMQltEkRhyPXjy1gwJDGxC13A9nRKZuCxgMfgrazw3hkVreoTQnGFllO6SR0Gw09fRQDjFHRSSe6uw6VzXGiTL/c++27SK/6sXZ/2LGmqr5hC1pXQmhV/XcmBjWxuYf9dFVAC32p5RQuugZikgDbYXiM2qHzkdrO3kExg8F5zgRAgpser+oiThKC/UYyR0p7uZWMeswVIEUSrGYa8Bw/aJt4Xoxg7NJpKpfhQX3gqWqOt6AJ8xPw32KLaQw5KvUUjFKMg2TbFS8i3pwv2O2iynLq0G5XWqq/IASupLfHoXmNYkA5CGPGiORdyofOh64IRqE4nuIMbemtMJu7R2ZXSRmW0PWA0F/NVfseNJywxYSOvh0DK3yEb8Jth7urmBo6DuWceLP5OwL8Rqk/wFKQI1b5uHWvva35szGhBYnvpmtMOEOzF1kkgrIWaVPlyMlQ66KHIItkTnsQnOst6m25XLwrax0Oi6VQFgdRgypLJoU4fYwrnZSmlHdw8uNS6S8e38tlBDnDYJVs7wlTxu3mwB5j8Xa9F+cw16lBNjOTbm2DRCYh9dPjpmjRABWhN0ssn08bfkAULdkEFrtThoiXVZsTTjVjJkEcDOdUxHjKj4M7GCsPLbE2GmUKUH5Hifv9raAzgwpExq1wJ1RwBj6EjSKReM92v7BonRRbBd13yuOa6J9JJBkqhjeQYPd8ncyjCosRJCoRvtQumV38KZH65/pcZXcxlf5c/+HWn+q4eRB9NBKjm+iGbpXcySWQjOBQIPCxfQPIPUNm+8UvrwlSULHIXohHfVnnYfDKZDsXm3MLQ5wviZ3e55/1CSWIr6EA464mZLgrQ3v8R0eOltS1Om5q2bIQoXOlG8UFGNrWOPKlDOS7OHH57u3QPsru8mvIDIM0Y8e7D5Wl+PnBDtNGpSgR7amDwJXwW8Xx5ozjrOn/9bas4gAWUwP1YlVS0caKLc9R3uHeLRUFuqXvqZS/buBUyapjcb+VJtIcv8ydxNYe9gfSClN6j+arKFa74w0uHFh2REN7AB+Avje7gPet2y2pGKk9mr4IZ5ziFMUM/2fFodIyatOTQ7YFcSmI+aWkvozhkDn+cZoAPZZ10UFpzA+TNgSeDpNZM1HJgzWJLIYYXGd1Bd96eZ/oAVb0ok+H/JNyVbP8fCZj+DF4o6OysHmqIn+QTfS6m494fllv2T6rSNQE6ngF/j8D3o5KubjJG1EebhGmQrzsVAfp0Vpg0T++2lSuWYRR5NXl0ckOXnB7OvatIWSp0PsZAVjzxPi2aBXHdu1WdZ3zQiC5yAMdG2jAEIfFWl6FISFQmQNkF3b/OmBPSip3rC9AojpcQWfh7btIKCsiQXg9OBvd/9AGEXEbExr5FXCy5m6wEPXlcpZdLDDxDr62pRMAd95s5HMiBIQjZnFk1/zwiiINz0CLQloDefB0UrYT23Rq7o5PFpWmkTutui1WKH3pnMyPThB3giITdyU7xVYRjF0oBiQkzLg1MmBaOgJ1n9ETCa3+W/VprpP3jsRtb0ETQvqJJKc0TnI7ytaDE+tMjcSnPu1hs+fv4xzls4Swrofr+0NgZhUR2hNsiQi8Le3Cy9fv3Axca4T66VjbOfJX8kcRGyqvEnnrE4o/yjdnFZ5EdG0ycGq+jWMZ0GvPLjHNe/3h4jpKn7BCorgtnrIuEOcDl0vsijHgaQGi+p3iR5dVR0HWgYa8fPt9MfZZrk1xM2wE8dYrEuErm/7nnd+Dq7S/1HpeYGIzzkZVfmsTpDQrPpRNRRxfDilgdpH0UR/jUdZyK6AAmiaXtErXuClmJ8FXj2J5kLm4RtYUREWqZGYHY+sBlh4d3TaUbRjK+1NyO/GiSiPw85+J+GfemloRb1OHVnmxY+Hk/vuVaOOBGR+qZ0SpKsUsmvm7HpdUBEyt/juEgJwFPxK+heEFy9OdMoxdbRtelWe7ExQK4ZeGkW8X7PAGSsh1ztizDHP/SN5PbwKeFKfCnTBzFjVJj8o+CXbiAsfqYm1cdutL4leUI2C00U3qKzL33AnmVSUipmg2zN5ZarkwQgOym0aFXYf2aHr6vNaa7gp3llUMU6/dgK8pJetlPriG2Ri+dvJDOA6/s0N3VZNpX6D4kDyAPPB1Kw2B9RvyHd/9cipWPZY0NVDuyIv9/MK603oI4rk1zvQ0hWWN+DRaA7KUvn5gIZzzRrl7xByb+o7gmYC3IGVbcWvtlUy54r7pV8IvL4u5e/xnHopjTYuRD0eUKzzLah0AcSsVv4fmZm+EhVVN390AIUtY24eocMIKkCo6CWwdUn1G9rDTCQrCpFehmfj9DlMFWxy+lzsE7qKr4W5kw8HQ4ryum5dsYeXzaYf8cmtM8D0zcmABPET+fWzxNR80+E9cthSiFisqTQX/ph/PuciL7pLOWXm3jlNbP5A4+/BEW62qsvTK61My4U2pOMf3gQZ8x6psxU7+N36/jPV/JOinTITZPKY/UIqIL2MFUZrZ+6kay3kWkPV10If8oj4OuBwr2zrTBHiNdJk71bJVAKQwx1mZyTPIx1o68TCZrUFlu/Et5yVhV8IoXpt/gl+9LBMDEqa/HZQ7mvsPGMtBT5GXTq0Xbz6/otRDxPgQKkvrzPlnFrYjW/kBqTYrF49RCMXllyl4G1pDfPwcAFC81Y6ETWQ2NCyd0cN9B3mVejI+9lqbi363puenMRAmGALon1q+WOdJKvEKjb16SvI4HuDhFi3wNadrwWZshThLcQDax7Tw5PejymNhWfCAWgrdiI4xVto8XV7AsYJxXfiDS2qkH83boKzB/aDFi1IUNms3VoAGiVsnLWm9OxfQAopgOpXPOykhCECmIUHejU10/dwi4o7L3tUo3grFx5ODwFAe0mqvkEv/0Q7J6qN37ZZIA/k3XzE2QublnCeBRG6dhkwTvXchZCn84vGVgGvgGxX891I0OKyCHLz3sIfh38LtaDYZaFuGNQLBE+OHIYZqp5CT2hJl4EPqhvGCAqwqlFpj6KM4jxF5xs8Qs6JkGMIotflFh7WiED914T70tue4a9MUF+GXE55vw1KzahvYGxNtvatSlqME3bhnk/cgeyzkky+9jbnoOZOCVTvU3lqT2uvUlqzerSmxb/5ivFBBa1qwysHWSCqLE2FCFMHoIZ4Y0P8HTdqH6RCml9IeWVcjx/TIgf8XA5bgCuAph4ZZur1YDXMnrHcDSgv/yIsr6GVfCI8WoC6cQRl68B3qVimMpoJzwllXLhLxnd6wMZzWx147+WyLqbkZO7Zi4SPG45067Mi19wD/QRVliWEN+mM7ujRgb6h7d1+E6CRIuIBYJj2+WZ1fiotgeU/8o8qxNZpjUaZ+y+XgkoZPAFexA22Xn/d1+bpHdh807ewLdo9PRYpmUDVwIwgIFalwONhSMV0nj2a929BKrLa+Tefk7l8gTZA2o9WNnhuWHq6Aob+W9TKeacA5Pygb7PgUdUmKBzHQVmzGJVGBFTdJaehX/QZfwV7DAednxZ2JLRd3Ixu7w6Yo3r81s1G6Y3zzlVojmCjWjgJHOd/JkpTTDjci8UAXEzBPKGIad+aJ/idFg3zikW0qpkajZBbWVcIR1hCj4Rlg5SGkaqp3eykWMa9S7tbixZgOd76M6bD/6VaEkp8Wm2vmaTDUKjVBm5/XXJfo/iAQlLFrKR+bZXmDHwOqKGbCRNMFsy1od+d5mxFO8q22A2oue5GHuZsoZ07MxKrmzLgiImhZXqQS8Pe4XqLgkqgvmSBHYtCRKn+j1M5IPSnETTf4M0oiQDHwFaVx25IMacUNAZqT1FvANrLTizNX0O0AO5th/jJM/k71gRgsED1oJtqtW1aVWL+IGUwIyMhahHMjDdd7qlhAEgQziK0gmHpUrBMxfgfCXKpNKzF9kyrphRzH89UP963xsjNSt1BRlFba/3PCfGbOOHk3DN6pBe5I5yeqnsDNiUQzeBNsHbnHyGwLCA3FNwhshliOc5YXEUoO3ikDFwrRLMsdov8K/t8qAXMaTOU75EFEk1PD6AKlYJmfxnHAyNsNUpUzcZEb5xA4sTUDuOUHiPOd+uI4LuAqNVVuq+OmZ8240aJQGI6od0wXaAvMJKUKLsfrryE4Ad1F7WGVTQImfuly61r+vDLmKcks5z+U7pKcRzU/CHXZAfPKIBuEgWnuWQ3Wqg2TMJKN/4jXVPha1SEC/nS9iBVeFAJ38z7isamDrX0sAcfMEyLFyKUUuuZmC5wvtbl9cwQj15CntPi0mkS1g3RSIyjgWpS3J7YGDRTEO78fpLk1PRtDxTUmpJsXS/dr1Gfg3MLXyfWusDuGnjvEl3zZtO5awAWlE+xVuXvSjdYPFsLOLip567HeO2AXX51TIaQjApIxpFlt5AwxX1Txc6jMDGrGd8kazZybRGNmtTVxc2p9SF4yldmn96FxQYKFoP9RQQWnPW3OfrR9eOvr2HN4SBKeUxJc1lLcWuhF99CH7yi3OE4omf4W+2Ck0dgH2a7IaFThWpdfKBRxOPCiMe7NYCp7CiA3V5BtPaWgjdenDPDpzc1EKDFfCwwBVkCe4PfP1k4K2ZIuOCyONMMQlqYkIEeNKLuQnepquu5ew4AM6/vQlHONpnc9n4ikpROmIhfwdvCMSA9QgjTx08P6Z3KovMSgpY7s9ZtxZECGcgdb1IvIYoOYIZgZDGulgjkYREWW71gZRCyVTkLHuDqRMz9yQz7M3Gsjvi7z5TNZ5cDnFQHxDl3tid4dQJCZBhofuj/LAkKlSgbmGCEenTJ9nLijG+6f5LS2yV5KfpT/MXWDLfhW9izec6ytzjmExulWANfSigpURl2JjG6R5CriGRdw4EU5lu6AfiP5FEIWDfNCJWyK4qBgiFlhU43nrDrXRk6FnvxaHxrlHABsg0W1wMi3ZL6uBi14V4nUN8UxFZKYdGOAXk3eCnqZ81iygXmTA9PMSYZDCgxtzZhHxRjRKDnJlBTb/lZHFVnxpaawi9zF7+nD+kv8lG4jxxsZRYD+bLKUibCP7JutIGbv86iElGxYbwtxa7r2r6dkrcGjppcrkujB4fCfTDWPX7ecUGJZCdiCXXYEg19VDIvGCIp8MrE0ybc6R0xwZhsZU8L6QBIuEX9rvvNolVYIWgsWk14FPLrfvjqLcxj+IJlaDriDR1TUGA4hiVG6VuuOgok2MVaiqU5XGcpqXEAa+sU20CW55P6+cPS4wcLgzt1eiOZt2ApTr4lkvCydaxikdt0Ub/GMYpVy6cD7vqJZ/9EXlUclW4KTNJEk3GfeKOE1pFts/a29YhBYPUBH2IeJmEjkqpBWXi866wBwkgSy33PjBix1P+QORc0aMxgh/GBRP+XerUYp5Q0Mx6/bGH+pE8H9MCGQ8pqPAafl3nko1rio0QbeNEcLiSXZup7qJD8wf6ypWOmzDkgUPmBeIEQzeJkQ1T3sLJAI6TyuP6sNunxP6Imf2Q6JSorQed62zYZ4V+7VweO0HyUk6xrSAKwn0KM2R5g4lbVDGXLnIQ7p3bV50G5RDUBqadGQKlyNDtpBmsoXH1SJcwY1mrXMj+1WMHiXSWUnXsSAFTVarzvrm1y4ZNheUW9/uGQls3RBBLwphEpSi6bbCJ2b6lhoUdXzxgdxuotJ741Udf/B9vGAkbJ7Mgx9brFPYQTgeuaSCj/LkFTK5Xyw4iln2J/muHGDFm2Yk2visuPZ0E9YlD66hRSmM1yvOWm04j8gWuNTEhiv/Pma7hvIstqHgROfl3BZ7XvIr207HUP9TkFKdO6VluVYrQ83shwd38cnpn+Hzo/pnAslKvF/qUkBI//lrlzhpPFAolhXJZvCCgs4oyzXGHOyY8zbQOXUzcE8PKsUBxr8VGO2xZuohJg/9DZWB18ieisOOTqQ6SRyDo0mvJSFZZHiwNztTFRqm2QLY1BUf5OGEZBWuSz1v4O5Y2TqA/t582VLN8HDISotbPyBvPwxZRnVg1uklkqtqDQqpgeFCUeCin/pb5QQtaDN5V3TE1XOP9Su/qskNjgQXrkMCl86++DnU5oMuGSWyoqdoHcfiN3IQx3Y2eSKYzfmbeEUsGK28u6ja5xyi7B/Ougx8K+7GQqR5ZpowYgk1TyYEc9G3DsHCNW2yk9/blAKU5MsA0AZk20L2RV2D6Jes+5xnZeVNYom3P9+2Q95uJ1p2HCJRa/K/pwoU0FVMxLJbv9eDS58v1EmbDsZjEVou6Vk8V4ag/JqFk7wu3DdrZ0YegbJL0w/6HRmpO3Pu93d6iMsHUUBFIlfbeiIm3j5WdH2W2dEcZ3pN1+1sDM2wRGFWd48fIu2W562QgQcrgUssiwINX4cufLO5PTD50IXHIGnCySckHy1EfAN2Z1l+K1JuyoMadhaR+GURCgVShjyGJLvln4D5HFu9G2exLvkKc3il2TlOHZeKDIBY3eksbkFzLNAL5JSwbl8rvdJWyIV81APlayJue+oLcm7DEZg3hnIwkA3tnKNEbP7igb9iErNsSclI+KTxo8h9yvNAXFGmAodjNBt8yBGTCSs4UWnGPh+MvfBGV6TXg9//1tceNUsYUfLUAS5z2OML8/fmQKcKz0KAdf6Ah1NFHojLPvQS0AQvjsJD/fHSlfWQKO/flH+IMGZhoSKGl91BrLR1/Yu7edh65+wYW57cERzGzAyvdRb0K/I9RoqyDH2L89Vuli7e2zX+GW+Dg80JCd+04PA54nTADXbKVbhLDE95ubdPINod+iQp2SdM+6UeZcj55X7rrSOAjuk+NpOVpJt8oiIr9/4WRBvq9/cAshyi5IGKSgGlKsIqgqEigUS6u/Qyzs079AAAlEqk9RBF1pEuspUgh6DTzaUWBXtRdAab9WB4PRMiQeKmSGV8Lm9PHYbAQG3IYitiOiLCHVrDqAYFmZ8m3TuqjxGR4ouX4Y8iAu3NsQL9Bp4t4gDYbS6csNnFmxdiqzfwBvqINfjhCFMKfts1w9JyAMqrnqcWnrVYCBzN+coi2l2qJ9+uB+t96f4TMkdn7QiQIsrfwsLAJi84SfAUPBr0lWhjGi3BS3p7ebcBT+ZaY2RAly7JEncaHeJp4Hj19V+AVy6dbf2e3ueiYYXXgMjckX8JAylAjlmlDDm2QTZom0SQsEqy6HDIc2ago6S+chZ9erUFWwNR0cWy4ZIO/uYuIgFirCfZdGDWR6RTQ44SQ3sNz1lmgJWuboobBJDKJbzzTgE7ClgI6Be6kNGj6sjQspqchqA/WTwjYhuMdP5Qec/KQnbA9MUT+QNjeLK01coAo0BFJB0nwE81fubpVR7P+zxXFnKOcLBRpSYqTyuyIl6XI4qnwAUz3BjBavjX4z+Vis5Gy6GbLZPROctfieERZsdGagWB9/IwXpQLnpzUWHY07eWZDNEwvBxE4slwjBsGlUvQXDKpt6uLY/7S1wf7O4CHpK6Cmkpo9T2fJKPb7uaJN6VnYPgHCR45UzJ8dN4539phmpkUhzand8I0kSSDjl/3m4Q3BBub7ymJb3z63Gea6fWKp2Mt5Kavk7s+H258KObtjmXNhcfyPOIyEDvbojDsHHBJh+irnrfZTW7/pSNlk1VOl8JpY2fOmNpDNdhJjAYPlLJ66g9zsnauyqSekpWqQk0udlzhzJ8EEBPLA4FDOrvUV79PcG0LKFLG4qkqkLtIdf/s6/y++s/DmTwGxQL3wE++BAL9rQx5sJcLiY4AcS7UJ6RrlodoFXtPgcaLHTi03q8imvxMvw75oNDa2vMEUqN2i+stQCMHYZtCqX9/w4BsW98xWAnz1H1ObhgOJnItetjtmynfeLEu1Z+OLyj082o13mbMUG4dOPosvv5ahdtnfQTrB2HR+W+YgUCDE8SNpgEGZgaRUFhi61hDuZyOJuP4TYo2tMtIfcy1DmbHFlID0X4o+iycuP48i3Jly7RAPFKLrBX/Afq1vWFVWo3zrVeGiulmDWkn8nlDiHjr+C4ryX4oDJK9WFY1qutPqyhGTAdKRXofSVqpjIq4ZHlYrutP8WXBiYrJtBTGKrm5cpAgFdwJgdkk9vPQP6L3PdvuE9zHb6A6F3D0g7Y7ch79oR1uu5CInEcme6sTNtjRbMsoTo+aplUFY3uJwJ9lqSxYbNcRZJiZVCz2LIjDJg5yZPxI8ek87ViwIhz3n4U8VDv7RHj1YmWJeYcIJdGvMsoVIc8nC69nz/KWB7WQKTfZ0RhTA/9ClgyopIjWqIh62H8BGq5Qp+U/FFBfgmwde3wpt+Opxd9LV1BB1/VZP4Jx3+vDwog3A/7ckx0lMteRsM2PGqfChlVqnIhrq8ZD/8A8mCuZvFDX5BG4Fk5nzqF5fX0cBHknxK1+EbhJLRZ27xuP/LSgUsildWvB4UVu1uWkps/oTPRk79nLaNCtKgwUbPdT5Xw82YBYdlyELYHPSV2sgZuhMYTrv8n1HehEYB8e7XuiGrZSZHOLHwIU9NvxT9Boojmmq76YlkaQhuRR4343EyVayvXbGSlgrGpD3aidjTeAx2XvT/J0S2FZsxWEqA29e7ayqSG56sen1vgJXQMeys8JpKJBtTNN1FigIM4MlQCde0UIgByJ+dd2klaV3d601V4EORP8NZenVHc1fqonwDqVQj7zP62NrWKx+Gq+5GGRJ6EnvaW4pkYIdn9VD5R1fzaNtahtwkCsT8VfT0pdvaWBDG+N8U4KCQt7+BeyA2IvQYiPHaU1Q+sSEFcpy7jMSM9lwcrene44HaEqinhpHpRttirbIj3MDa7HKUxS45HHY8raO6USZH/JgRXfjtGJfnDxVVXeo7wKqrhVPA4QT2NO7vmXaV53QhTNxkdiSAofKUnBgSNa5Qm6QiFEzzg8bziHOz1UdHpxZEQax9bYvhmuYgE13mERvubNevOG7emOoHuHZ3jvWaA+xPAMt48vjd3FnzTyJHZZDTJ0PUC5zh9S/+3kaodDk8phbno4acEXR5eTD+oDCssiDjSBaZ5pWjxodY9t+gZjb5UCCjk3xm23Kq8r4gvurbunPzpIDZt4QZ0y/F5j8wLuQeLsdoQuEDhB+qwez9dIn5sGJcc9YFPEpi5774ekcAfg3vmwI4nmlPPG6sLHn+TNYxLfVVa2xesrZWjMtuVhFfbuvTt7TMGkJTO70TCoREaP6xnJ9osuUz8/jlh2CghG8rQRQ7F3b2e/oIP5RpyGUDdjIrked4aKS9n30xFW/VZpqDKN8mW7lyuku54qhtVXXOT/Xcital5PmkdJustWz9cPvW8Dm9kfDkVxvEY9mRuLNrAHDMxgYGAI66m0DjNevDjzOwNpAqT/2eDnlU5QtKHkYfRU3RGRI1yvc+GRJWS97/36NBtGgh9AAgmGb2CuK7HcfIQqEdYyLVf7dD1vxCWU3BVHvQn5GCJx4guAv5qItMUcN0Ljd18nx64E9MAFtLhv5PprzLfhrscUzPCSPbt/LF971vB1kVo+FbUUgPSGLeeq5WCQX+4qhefR1FNxxjDvUGIHvjSkcDlzKiPyDuRKe7MTefpa3XWJE5M3zJ7eyW2m1ReOIj7YM6mBl3tNhn/l+e144l1sO/IfSyn9DOTLOQ93RNtzJGdUYWv/bgShwocj1ZIBK02z2FycWmsXgjMcLzZMGUOFB171vLyNhTa5BPFBoz5v9JLSUqITca1zttsix8peFXIxaqahowvgoLdA9ZupYwf7U37mK7UIPpdKR6maRBolEWlnljb+vcSjCOfhiOxlPdfuDW5moy1+sbZw0ySui0/vD1ZqUfNeeFqQTTRhDMqeN/VmSwaLT3DhSqeVa4vSUYa++SObjebaMg+ZaQ9bZ42nw+YwX8WPhY//2YTQlBUdgsstYnLhsV50USezFkgysUX5b786nIbm6GN+GMZAVEG0DI2jWKd82a214aSGpGZnHmNsFmD3tKymueNaMdSrtfkHw6XnV7t1105sw8A8hcv/NzuL/Au599XUuys9fu8t36rfaOEVqZBCKoJH8ZNOooU74WaWOBGEc3NVKDLMb4i7TSJs27wIyStA5WiV6mJZlWMwjIqin5cr10a4ZQ0FU48Hk8rFLCPcczuDmANHcQIOW83M5Ady8FMyMCSqOShAxNCYFE7Czo9HJf2vdqx8Bq7SAPrNzkpNeyY0fYs6HA030fewkWNjU8kYynyNWMB5an/MpPVFV7iT5WwhhKK6dbTf9CzoB+ikxqRWFkAWn6UNQO+ZK1qxtFlYD7MIcrE4jGitDF3nT6jlyyz5eAhtt20wEUH6byvR8QDDQnQxMoMFwcfR4MSjjuJsa2sL2RONNtx3VeGGU9gDCiy3TnxHyxv+IAmg6V9na+V/owm/OZ+oiiX1VpcHl7auF7bZMN7I7P/3/vbWmOla1rXB/1HeNM7hXLDgtBzmqNSenNeYnXb/DjrJDOb5b3LvXS2/4f6e4BGVSe8imlAQByyxK0s18ryMFj3v4okRR3+Ku+Xx39vCAi0eXNiUzqqf4lp6qGYFOJlzR59mEXCIPqmVLI6uJvx1Q20vgmfecqTRBu0/jNYGpCckMNPhI/k61fMaBTLi3q5eMvhSXEufpGfr7/IbS7HXXWVvzHO92Pa68mW0I98yrs2cy8bcsxzURgjjcq1HVu08nUBGLE+sk2LteOGMmjzc5XDh4Z4ADoEOOrSN6APovmioNX5vwFE7gUSuAzAB9Dw7YlEK6nhIj43Kqe/JL0RO/PUuZGVdE6vwhPuk3xXdD6ayAiiEyA3w1A4ijJI5YqWAVtwhIWt+Eiv9BSUwS0ZqySOAw8s4W2RvsIesjkp4p/TPK1RMQTyS2UPiGsr+t7e3Rwmih4M+KOinbG0gTWC1zEIOdVUsLcwWEndYCscn5p0D4gseazNQ13RnA/V7MwwU0eT9RkQzFILn2c3I7ZVLiOe7Mpqf6WAuRAzX7gV46zEmZNKMKyeX56WtuEAsd2LvEA+KN+qVi4xmC3g5JsekD1IxCNisPAi01qxvOrta5+40VT1vMKOZQ3LE4Qr/0eA0yJVILbVpuKor568KGCxqH/HFuifsySyTWOzedWtUg3sdYTpHAtZNQiLNpRAKMpaF+kWjIOOBnddhLUtS8379C9kfpIloAq7XzsGvI4SH4Fjs5+UQdhOf4+0C2LwcwkFQVNirEbWRuTNH9RHL8E84dkWCsx/7PKlycUkXWWSpYJ39gV2QbGtfDi0uhXxgVX5XHidgAiGkBsmc6JdCl9TLK0pIZ4yg1GSUY7QpY6snUw3iCp7uHjxSwcQTG71UaRBf+RsmN+iSnk3Pc7F9PWGQPI/xEvaTtqkkUZwVfsRZK7YZvZeUqZex/ym59FIwbqOa7aU1oQ1c9+ZGLW4Y+Bz6gq1INGatObJe6roodJd0XbB1DIdFC2BQQPM0eMX07RWEkdnKkw6OqTjUsw4fHtm4x+mD65MUoRYFTk+2npMo5MxweUviOy6AVEr4n+0vLD+8kVHbRy1tNEM9+D8fsDnXnicLbFCp/490uyaY670RULyXCuGjoO/o6/ivxbLbcs/N9X17soUxe/jpdIvCJDXRuQ71eRa1XSXRXmxaRfcPnj+2cO8CzRKPcOuGgDs8WWdMSjpbgRN/4IR6EN4WaDz8HKdYY7Zr0dwAu/z5WCzXUnPYX2A6vP4XMF1aAITCHU+uFIpY5/e39Y6baB8Pa9KwSzVshSzWdp9VYi/6J+9P/Vj3yQhXKbYSImL87Ej0kJxGjzcbySOYGPF7loONgUsSe0zh3wj5qDjAbx2VtcQ/5IQ9oxuhm98orVAczvV4FcCLSimjjeIu4e/j5WyZmyY93sqnupqHc0C2737JhXGhLvDTScKKVq98AjlcWAj1cU+Q+sCp/viit2n+L3+yY1yAl5SMvJ7oGtd0KwaopH0MJEgYGcLMnu7/rnnWhZQsCKE5iYsOJI8rvd3s8Vu5/WW1lFdgJF4X2YQb3/Xb5mwlnjQATdzZCdteMain4Ukc4RfNe4QZ8BsKyKGA9HV3YTYduRdVNVgvE5WVF8ADUdXr9C6exNRrrt9omqQVY2QQRu4GcituQPc71Ipaywj5UTblmIDa+ObNQU1h8ovfOfWd54NoFyEU0mqCuQdmbtqAMwKvQrMn5nfGPZHBm24moGQdN4HCQ6cPdw6rO9fMWyb+I7YzOS0Fop+kAoOsxV9afCSqrx+cNw3PMxArSeDQ8ZY3NrC+WF2CnOIalyZuk0WTu4X4eX3GdouxRdFV2q89RdFqQr5M3jYCtKV8vInDDgcyzzxFQGFEXH9jOzv3GuEnoOqZSu1TZDNqDMrPT6jLNR+yJQ6nlpXN66T3J3wu8a+BbfCZhzCcGyT0qL7SXa8qu6wBxrqmHQV1b30zNN/7WOKQb9RoJmYsJNYilTnRzghisLNWMKKXlXUlvNH49zTrK+I+k7N7t0Sbs3dnouh4J0GQ7F9wrzYQkg/9zYY/t8yeN1inMSxGxAI+xI7OX0eqQQHG43CZcu25uRR70EwNX5SahaPeMN+xUCGDhHhggEqV8z/dHiaPsOucBcO4QoUGEbuUg8xsUBoq22UWyfDUg2RG4Zf9aP9yMClcn9+eWV8vpNNICJfaJttU/+kW6B59kAms0tnRNpgQwnUkiZv1mMTwegxjeDvz+fUMW6Q+7Zroeqek3zPrq0WvPexyUAUSal5/va0WjgvVFH1K7TwGIr0Vi69/SpgjT31P3HqQ5etTkAWp4m+UsAqy7lQxKFVq9l+pulu6NUm1g7O53uL7LDcO2PlVRCB1THwfnRczD81Og1Y8ZUfFdowRLF6Zg8/Uc5zUcKIgyoPjJ0gGL+sioNWUUNxRPQPpsvIgOlUHD5p2tKHipAjoqQ5EWM49XyQhk1NdsPPCyl0D+o1v9Ntt/HL1r/tzX2qQftW8drGvyyEuMG4cN8WXhhJIwzwUrkj/IKz+BWvtT4G5Kmu8mZCc2m40EWKMKDQRabfBt4kkMfduKODnz2mjpeF3/lcFVBBrsBrjPn1quKPL80gV+MDijg18LOlzVhy55pHJSTdgX+h3EPkXFeKpnQBhOWix+UsaLjxLuGy0wgrOjSGd7SDEGMhis7t802WuOvxgDNdBedUJoOZhQNF5RZQ6vfl885PviTIRPOULP13BhfIuAAd0sdHgee7Jin3QgQoSjNxib8UXc8W1vvlw+gUyNIJaMWcsDL/X5LlTOqo3l6F9S+bOu05o7XTWvfJBdH0gVPgJvHIW5YEzQFGcdso5DpuKR8rFPlLMmCoX/xpUyH7RVx8co33JZ+/hnq7gMxl/fk0ea76jAickMCjvvQrT4RwfVPsUONjEFS5DWVuJgy//SLMWDoGAtvQVGZ9J/GTxszvO0aqrSAPjvSeOzLNUVrbvRe2pWHQFqZiD8Kkdya4RoxM9dxubku9vZ4kS2k7W1qJxNqrWp/ow5cIavfnJlcao+L8H9Gf/I722qwpba8Lfsd7b9Uy+5itJZNZMsfOgJ5kfqmMQBCUixhlRvBRYWVBegeunOjSiaZVgciWaesAr2XKJqynHa8n08Lo+qbHNWDS1S/mPDrHI+XRF5Qk5UaXCOqMNOQhWe+i2zV6XvYiV9oRvTAY4bumDUxsB0YMxGljaTQjG8l13AqqixQJsc3r9mgoU27+xLv2Ke6Bo8m5CbZptb6yV61bZP3lRSrwSUZtneaCEZKvXTiUPX9sH71V2Uz2fuFPx4FoRS59GwngATX2MEKuWYjxL4NqUXJlD7kTdivCpjDOVcTbsHEj/5taYCJe9++fMyRg+7Msf1y3w0TyyyIqN8f5vuW4/ms8XOpnC5TBUZY4Vt3eAp5oQaPfSWmBOR/hNVrWpK/24WojkKUPk8Z2Ti0+mgYLQKNniDFm7dzspX5QIge+kNCWpN6MhQ+oJmnG/u5YEIzpRZBghiZHQ5rEC2utCrLZJQtKzy2iVNcgDg5QjqZ+xhSYUb+LKxPALubK8MKNOVJeftj6DIGFjtFMHiTxfGSqtafbujO1QkWBw+dbWO90ar6+0PsVnzUjHzQeADolmn555mdIE+ICZE9FNP3SsQh09AO72OvxfdY9IgzJPenfv+VGy3usdr3aWA/WQaFrEjAvfbJvJ8rRLXM6j7/V9MfAXJSAMNVn+2ZS5HgVxs/k4bT8fsXBCmqhlBeZydluKxc48NbG7na+k7cmFdsPX4jS4P7sSIYLHL79evFsjjMAwpyE38mUtEwVHaKbHX2NXTnLaow2CWS4Qf/ZZMnD3NkiHnLg5CfTyLZy8KEx/sAK/z+R8Hta3urjS5Vt/q8Koqe3rESM5HMK74HBweEF1JaUjj2/Zysr4bHjAWD8Ln4n2MeQGIvH2bY4a7itVSWQ27VvLaAO4DDUuSYA5gvJ+ZdFnfH780nkDg+C2knj4z1p8vqiX2FkZuoNQa2KPpEKSmCJs2RMlFwHat/oy1H7eWwDw2eHAhaRJFXgkI/Gw1HLreI+cDmE/yK/20tTJkKqYtHvbUfN02Lbm7wjJAAm+R2c77aUEMiDHoFp1zCST4/yipqee6MOQ2LpDtf/AZLczCNdWFCrTDqqVe8tMso6Qmhil5Wvyif33IGZnRoT3QNbK9c33gIjDCjnsWPa54OFP+u/ZHuw0I8II5uJM8l4b/E56YQJj/NtDgwZ5Y5pEM/FGIIvXb3sfBMSpmn52Ezl/mykQyqcuNMnSwDXUDKUk9W7YzCIiAPD7k6lHYkzWW1bHV20szp8fUavg5KbcCqy/yt1y3ckBQo4qTmseWNHy/g2C8Ogk31dLWWiE4fSAP+cBc/Z1VLMZda2uBCZIJ+POwq//BWudmdsd/7+BKiWJyDDxKxj5RRiXD32fvWkvByVwgBv+6fmqWmoHWwpINkUC7BrapN15spJVK6VsqnX1gdUrRw/210LBfCEkq/U23vo5dPk6v5vsqkUtxwbf2PQhfCG1ch2WzsaHtf2BjB7qa5k35hQlvjjqlFWJF/efrgHucTvnKfGZmYgfIRnr8gxXggwIhSv8ND0qK0u+yqRlr59tVV3uukJj/TeMoMB3Q6yz2V2OmPzmEigYVh2JepWLUUIVafbTlfPj27h8f4i+H4AWuNXtvboE7se3P7hT3ufSSDU68b/BnUobv5coBlfVFPFhHogTVu+KeSj/4IwBiW3NJPquq8C4AE+FgckEwVvJHiHPOVIBqRx5ELBXn5lMpkimugdrauEZ+OrpM4OWJNdqZwPfI85M3atnpH8xKXz+5jONbWzHYE0ovI0+codcPgnsPRNkBiKV2ihRVIT39gu7PxuXuAIN42ELVBTzzFY7yajEnqztF8cgv2146dGrMA374ijjLv/6tYJy1hxyAjzrpX/VHwfxggT/PFnn/GjGQE3SCU5UWxw2aDu5CYdOAzlkHz5W4QxDFBUPcXzx5VE1O/yDZguCA3Ezh/5c5e7RPx5YZ0x4H0mhRT/Aen4efqRlieq3LA7O+DRs97r4UnA1+hb/L+X+HBkDHtV5yayXOv/34kKJbVo+ulYBuMMappv3a0G5gzNkovXIMIWMC8ZIPHwwji38yXp/yIiw/Hrp9TNQOKK8xmLS58cC9s5fiWK10/qIJsQwSUyJWQpW3w3SQ1pq3nEvFyLIU3giK6RSCbSgwAA5dfFNNhTOiGXiR3csD4rRmHIGeXdOvRe+CkBv9IcYGk1xGJlk6TyDkksshkufS8goVWT/MijNxP4lfgahykIXgnZfVdlbnP7Jmel62qJWCPfyLG4Jfb8s3oq6L0JzMYYdAUYMnVcMDzp6K7HeVOFpt08jgI129bIwWhphG78uO+hnxY/C1Lcrg36tAPBiwPeYu3ZT5WPgcKkGEgWz5LgyTWLXFQmttdsjg
Variant 3
DifficultyLevel
522
Question
Which of the following changes is the largest?
Worked Solution
|
|
−1°C to −4°C |
= 3° change |
−3°C to 1°C |
= 4° change |
−10°C to −8°C |
= 2° change |
1°C to 4°C |
= 3° change |
∴ −3°C to 1°C is the largest change
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following changes is the largest? |
workedSolution | sm_nogap Consider each option:
| | |
| --------------------: | -------------- |
| −1$\degree$C to −4$\degree$C | = 3$\degree$ change |
|−3$\degree$C to 1$\degree$C| = 4$\degree$ change |
| −10$\degree$C to −8$\degree$C| = 2$\degree$ change |
| 1$\degree$C to 4$\degree$C| = 3$\degree$ change |
$\therefore$ {{{correctAnswer}}} is the largest change
|
correctAnswer | −3$\degree$C to 1$\degree$C |
Answers
Is Correct? | Answer |
x | −1°C to −4°C |
✓ | −3°C to 1°C |
x | −10°C to −8°C |
x | 1°C to 4°C |
U2FsdGVkX19wvPWBmPPcGcHOkylcTH3kkGl9uGnnD8uyqLUWCki2Mbrr+fcN9wdMDPRu/QyZG9EfZ50B/0irdnMNhl9Upb780lfVBhUEWNva2fosPlzgkWIrQc4/lMJkt+/NiDnz4u6u4uqJMYOOCj38eDt7GsVxto91fg2mhdxM12RZ3kca8Jjo0C4B6AHOIdVTEiXoY6NO35XXtmhPJ3ubgEZZnTEuf+aORHK96AyKPFOiuORww2FrFT89PLdwxpq8OHh0oC/pXn+e8PiB8h8DnFARLFK299nW0XA2By2MOVWNhIkAYrEB8aq5NiF4o+ZtSsxqG7RSC2+COqss8zDudIEfvaEF2tRdrLIJJfCwdv3nduNXWzX7vzN4bYNDv7qWQTL1lfX5GCTR3WoQqNmGE9ANkHd2RQbOJMQdEWXC1UbbouB95tqCxtVvkFN+0ctDRESRXcmDlVpPIwWWGypPOXutIux3a2c8J05IM3+FQ83iFQK8//gNCFdf870fR6S7OWpH2Hm/ZUft3rpd43v2oIQCh/Lpf6q30ud7f96lsU9Q+SO0D1pI2KHr4DOS4YFbQujLhF8wZggkjRvrCHvwzhGt2k3KodGm4BWr6eCyPc4FNOz/Hp2dS5vfn3azKKDeQ1mr7u9x/hbxF+eAaQbjNbeiDtI1wewBN8VuLMcBiyaUBuXwj8gj0ceXnj6XvhpA9lQGDkNy7omRhr6jBs6DFWTkEKtmvc1KOwrdWgq631uelbJ7GpQ74vwesyvK4oivb7BT5NbW2WTh16x/J3MM79Gfw9masioXtyIiqaOplP6ULZP3MP3nujftLqzE53nblWmAB5r7+swcR5DxdaxWyfIMCpgqf2bicJIxyN5vHIO2daPeG4Oax4C4zDL2XCEIhPDOrPfiTk/RxRLg0zWLXw0vNLbGNAzBBWnfujb4XyyAP5CyoA6HuSLdg4wPXcPiTmAyggV7ZtRVDnea8j4xcopABptdo4Ae2wn6936rYPQRVI08xN/b5J2jRfUrk4P9yzYi6vobNik5HJ2VblV28MWbSymOfHYU0UQlcEU6lk865ixPpTtsQESmfIuHckGgil6hB7gmPWXCNke5arR5HpKSfOg6oZouE+Tx5liqyRq0VvPFMG7rq56O44//gF2oEFUUSw0rihHuWPl+nwUMb4i+MioRV9eS7f24gD/8JSsqoMGfosrt5Jn4QMPz9O5Ye0dkmfvE/UDzYf22zY/AcplFPbL34sCCF34U5yRNETBBYCPZJu8+KsuVpEhl3JExSUvlFZmbV0JLcnLSfJKUOzQ0HY/27vLmM0nLpy8SP2kANBfUsdBOoJdQU700ezSVZWvy3Sa2gCnNavdVdRhycdOTWYiF5lVH4dnPIpoINwYdRqKxSWh5mAS7/wz/L/oAdVAWibHcFrzpisVScqEyM3t2rHFsdCXPv9icsrKiB0xeAyH1rOe1EqxxiCMtudCLhtwVlotmZy7qYEIlhYkZOyen5tuaMMpTiPYbz7Vgs4ycr4pIdUtKliRHrzxacg42DguBLZFM1kKTpIPiPsdns4hpTCcK3Wi9gw3FynR/bUpeSyuy1U8oF91ter0+pCBePG2LXG+a3ayQludZBZeqiZMcfaEkH6pjfxX2cQCD15RlBts6YSEBnFVh8TcDYLXYdZSjzWp+P+Z+sI8Y9Glz/qnCVbFap6464mHmWm/TAQRY8pFN0FqXTdcTqi+CGmnpTadf98oO5qrecPNcwXZ7quhVKZpc+ThdJe/TO+fT2jer3oI2QKyJaK+BpAo8/kJMefX75jZkrBYLIY1FvrVSFyRiRCegDaWhs5zlHwJMHEMphR3/4GSt/XaQ60Lgbnh6nzNhOrJDLP3BpTdpGV4rNhAq3TcmG3vvJFCygb9DHWhPfpK/so20EM6JQGeNqYcGOu73KiNrXAg2JYKNdDtLD4aGswGMrr172TO7PTwFYrfifAVXzChlrUaKhJkiI9zgQ5mo6W0rOZEimFdM8jqN9kCLUGNYttcJRclMfm2u/ciLBLMEgm95cV/Dw/ifJn5ytMNgeevl4IR0AdFF5uE9R/rcoAGL+L9VSBA8lIb5yTEQV4vveHIBdHhQqIQMvWIgD78ONxG61GJwj17XtF/1h87qg7MY/xgAKoRw2U5YeHakmhNf9j78rfo5lgL+IBUQgnrE6+h5iwtUqMjUSzLgm5ROyOm0S65tP1N1+zJwANb9VUZYxe2ES384u5b8kBOMBD2NdQV0biFOy1jKALRAJM4kvIgeqDdWAjQdM/R9PO0eayTginq6cNw4CRZhFFGbiIY/Jp/GUDMDaQltRb5eMfRmQgtU/ZN5SEQd9ptknxFleY8xS8UjzZAyIy6o6OogvZFdfunZn2rj4GBoCJ3FzJm8eWr6tCsMDGlIiALBwxXpkZH6iYSJCGqY/8MO1VfHhl8nhEEc2C080yElJf4PPpFSwjCPIbburcxH8mgUw/VnSdpfE/oOmAgC3EQQ76iguEZb2ZsVdaHIeZ5GfqHq6NevMCXF+jx0gHciT+URvRx+62RnSYMzo75T8O4+NenAd3KrEoevaEIR2iVyoH9VuTp7n3V+10JSPRdqetTorFBPf3+1mrITp47APgizGvO7v2ghhYNNRFxEl0E3gYN7kUwoCJwQdu6RKJHuPRPmLFBKakNUz8E8EBicZbWC7LE/GkTy0eOLDX9PNFHbFlRSGHwyU4d1adbRPQYqfSHuSMJD+H4kNrjtDA2KtmP7nur/CgsVdd9b9pi6pgReiePqmxbpDbpSlN6nNBo9zUPIhhFCBncmoPTlrcDNr7XJZupEsiYrXmLxqhlfb7BiDcdsHkMd2MJbo2+jzwUlKvSauf0vzYizuLBH4dcrFfoA3A/yGqI+dpGhKzhaPDHyMidxBn1PQIKu7U3G8I4BJ8iM6AdvAyBAzEhvAJLOeSYtht1Ka/YiAhEyZ5OyfKmFazCvEJK5bDMtlMJiV9ZuLFBiKw0+pThXFALk6s8MrwilDPe0AVvt7z9sGn/BdJTbBR5yL1HiJ1jDLT6cxNCqrAYBbg5iN/tn0mPP/kBds7h9ANHsBcDUSLm6kMMiSsWp6KgS/+OK4wuZB4Az2kR07iFOWgTH2Y4uwjgMDoC4K3Q4oZ8X+e3vgenIa408+xzbNO88ax4FQ0NHVy+MPEeSv68Gei2iYmsS9EA6Bse/Ab2hu3iQGdvKp6Xvtot1l46UCE0xzieyEVznQvZ1UDe/XRYmzYHZ0uQLdC2DZCKMDEUJ6CFLhq2QOZBTbUxW//lrqZrX0tSNX+4NX2k4Pbx+WS7V384HkOAY5c8I8CvvKrVb6XB5DawM25y1p4cw1ZKPLk25MyEOUi+aGhGSz454xZAEepbIAUh1iBln7htl6CymrixV0eW97pzH1+YYem3oXFo0OCGfC2gfngU3W/vhcNJwnNtHkZ0QYQ5rdBB0JuyqbcxWAEYhQDS/7I5Z4Y4gofft1M6bdoO36JI/BcHgLMiG/TC0md8UCAFaWWb01Z1LzZ2gug57UYiaWzXMAgkHktsqtHBBegUy44tMfEvAc7LqiZm+S+UgoLg5J7Rc/PVcuMuR5GY8v1eIbcWYyz5mWPPJhtwgSaHAL+iCDqlrJK/IEYVncGyTDCKYeDWSDXTUXrkMTzXRuiqhH7Kkyk/t/vIb3zxq56rBf41W8vZCYx/lNpTyIWoZtPkDYHt/W1tXUTnxC7gnQWpIZ3IOus+KcT/EKHDONr9H6TyGiPNzxc7cWJDSQGFdNbdlRysRVqYbiSeEh5H4dkrYeHwD0x8w3m7Txfjmjj0wN/vpWHJwNgnv3EzQXS60Qf1FsuhTTbb9E/Lbf1w5K/Tx9WAPh1C57bfszYYZEjAowl0+J5y6w9DjVDNPWKDHz+km8YNc24aIMZakz3f0WCZ43R4lFwWwpwKQUusn3yZwIFzrIDItt9Ss0LLkExES7TwV5otQhH3d3Vyu5wed2ecoB8vep4GXwsD6EiZhhQNgDmUFR4mJHKZ6CnL765+8zPK778xIroS278VCpS/l+GryNPdWmreeqkRNSyY9tQg8AyrIwGf0/d9/K5oWhWdVZAy6LhovDIWegwnIsy+RBrBOKWT7SvBODRh82REwkeRF18+6ebmJuDt4BEkJDJ+W/SfFEJ6t5Jcg74Ir1IOn3rOFbZe31vHWBshgvmpfsARPlpowgT2RiwUFJF3VQ5RvJTBJ91vJ51chQwMJVRs/r4DUfEsyufnOf8EyQyzpWjJNNmwoYAN9uH381/xxH0RURHw7UlwWIqPTpzjGFMauE6LEhQc3ulESo99YRrM+wHMgcpgJ6D05zNmxHEaeVcYC+QrR1fERXgdHGmth7Y0hVhNmvXKMXvPzMrVCysdy03mxN8mFSvPIdz5u95KkXJtqkV1Hb7Qb7q4IeFSXtcsf5thiG8tPDHvyjgn6I9DHocl6PguQQqAn9M7qk196Olge2xmob1+0Lc+T0wPpLrGxhKfKARJpzG7m4EiJaOosi7p8IxS1ANPskeRn0N882LgH1EWWZk6pOMAu1redFIoAef0H3nAYpZin2S6u+g18zlIgm6zcwTI7UVXlOkBUmfskpSk7dXH4xysAbqxZ5EF6gNghGJbcDiqUcv8J9IIVyQt47rU6TcJVeztorhLIT3mH892I0K7TYA1MTuJwkscZ59utZVkFyD6fdMYdJpREZ9+pr7v9OzOcsd3iReeREuCqd9Z3VyedkZ3C3RUHvK+l1V/3ansqDppYuuyNuLxYPXeWX3BirHnYrqp8DAHYP1oMz1YmZBJq2TOqwvPWNTFB/biXORdDMG394Eb3AWSNc6mQ3b6SUf0lfNDkMfLw6CjcKBKDwiH1cpxD+IYTwyHo7h+9ak0eUIYm7e7M9h24d3n17cpPoyZZWPb5AtZ0zHa1nBuOGf6bB8Vqvdfeo5TirIuehYUH+JOVL55aOz+8WwZhGkjFIqNZsLt+5AMT/GTOohVl1ny3qIhILdv2M5m8yZfyZ/N3w8cvj4LcjKhP+5WvonqBZj5RJZ/4LCHXV0W1W8FhDjGNZmMHFLPJFT1IGPNapmGAxx/xDZKyWtm6tStB4gNhc7Gddw+ccHYuPrSaTaSiO2Vyvkt/IDDDWbPlAMyFvccACE4mMvb2ZRLQykRiE9tPE8xTMtRV7LrktcIykHp1XGa5ofSHYPCLvrqIVAnq8ob4wxdbpFB45FOy/cle7AZbGMUz+PSVvztEzz06UYfycmYZUvoxWTdAjEti9ZBn3jkNWGl5KNJmLYEPkQGABupSBrqfAymnEgq26W6Y0Wu8vNJotdRjG8gMmZakvh+p2Vh0FnymHLhTiI4NmjkBxIj0B0TUSLnJHZBJbVIE0OVusyPd8whnfk5CtFpWyWqO6ayRpnUV2mQ7LP2unsS2Exjsx/i+g9kcVEhtCkk02YGUCoYIiyTgUTHE2B55/QRylB8CVZFnYk5pOcbmm3XULKP6TI7a3ulHlYqZib/XFmTVTXW7x2dln2vKAbdrP4lK5bkqwQQ/ZhPqbMmTnWlzdq7kryaVUOGSoBLAiVnP3TWX2H+6EeaOKVYA7WXTA7gyH2utTHGCj+5tp6Nrh5FwGQDqvg0kXJuaiH/tqa2GkIT1CzHlyuuYaQ+8xEwKX/ynW3SbcKyCankErJhHVqHdqBjmVTPMshdzTeci4s7p5xq9qG6v60tBvh3OdY2zttar1NTyaWwwf6eWA/jl+334Q8rj3xwJjxPKLqxxVJsK8Sfca4SZ4rsqYIzmw6Q4b3ReOdHmBk8gFMYT12lKAz/oLZgjHYjbtuzd4x1XH2C1XifnNd4OAfhLMPfYksuGyXYIPEKGrUVnPSkAgxJ1s/xUQ3H3XNIUMBuOp+n4EAzu1GcoyUGlkaIv7EbtJNQ8XG4DfSAWJhU2Dm+I/Crz418chdbGEmJio1Iwjlx4qdBeH7YaUcuwrvz/rAILo5ajv3aZDM3WHd+YFSkQ3d7LclXl7H1Sli7WA+9ln2ZYAWfAbZOr8xN3izRZVROuvlrJlOzap/X7ys5XNvqHD54nARv1ptbiw4o6wydyfbGucb6imC4JzGObhOsuwaNFXAHFMhc7N47vNOSFyqlZ8h9wCIiyBy7kj6XLFilzSRWbZ6eKIo80yTeeEedTeii01VQOOuNrkmTWyeAFdN7LzWTrS07361ueqvd0TYUCHgHAJM0TiJBd4k6UJnzMmPx6ssZbVjxtdMDH4D6L+2eA4VSws7+P8vEXYJBqX4kvAWZdYqtDjAfiaKfhxhAE2SHoJJYhgauqzJ3Wj/i4uInnW0lCwuZrlJMQUxd/ol/Ae2VXfC9KUQfiVhEIvoK1EV4PhMl2lY68H7frMA1AnV2eshIvSUaqtVr+mV4PdqHPW7BGj+NpmurABRGCoGiSNqzL1dL1Y1/muykolHBBLOgAKrLuqAueY6Sj8aiMrOsdO6j3Zsqt1Q0rnqUi/A1qmHajKPRYZRI9u9q3FJXSdOf0bqP4FA+tXNtk6avPl4ZibAXt3fk/xnEzcbd2KDIN7z0mtRKEKWCDsZuBnhnOMSvIOzDz/7oOgQDf+mVtl4XRdJkh3Ajh/MlZCQhlHqntoxdn7234NUDO96iFRmhJIpS2osZMRTBaJesbHcMxp2dYaCFzp5TcXCG+qy4xFsHQlXavyIk2z1Y7e+rxEuhL0J0hVjuXFzAy2chezgvldWRgRZ6RzBHEgXXHt88XaVZydbM5+mHq+RUxLlXXnepFqiwWi7Amuy5VjdWZDyKSAAXfNAV7/g6h5iYxiXACYSax9XNsoURZaarbFlZuu5rKXadfFvyjSYLJLDAo0b2bxer7YngaHPgDpCEOXJTWQYI7/9lCgEG8sfqiE9o2LysglimIQBBIyxCEZzhUcrnAIBfybcijaZEbgbpOb/sOKB9YQy6jHFfdsrXgJKvmKW8UnpP9b9Zkoxf84GLh9DARxw5hIA6xko9ClL7ZpZXCUWuxtfO7i6D5LaPLBKmAztjsrDgWUqGSUdCgNxhLPYOBPpMe5TUqQkeIxstDkcBEkFzzNXS9Mn9GOeWsV/YKQ5GS3NIRIX1j8JVz55UUiATie+J74uNAdUZBZPcSmNwpf9P7wmFeH/UCwSDfT8lCxleEnv1fNDZltqXJovZfSDltqGHclddjyyXQCVSbyGnEJdFp5FtAhke94htbyf1fhsuUFHskKq+1/f10XE78/oUBSiIVUhkJRsjC7KsDXRzv3HByu++bhyPW1DNj6k60Gi7/s6aqVvUe804dJNlkPEmlo3U4L+J+jVPV9bDoy/TdX3N6ngiJ6NWSpwat5qXjH55mmdfJBBpb9Zhn74JnDIMG+oHsF19MgtRUrhyUYjZLLzXescxJskH0WbzFeayoOcJ3bPHVE2YjqcqrhLFC8o4n++kudOrpniuEH4LTgtqoz0sOI+dKc0f5+tZCiEvi/Xhn4EnhvO+yCQ9nuK3vpcX4OveDpJNfIPv2tasUS4AoLnHsNRdDQRMd3wvact36z0Z8u9UdbcpMW8NCl/CNk+A/dBReoDF3JexYQksB9RReVNymFSPCKDDf8SjK3qPgVYLo9gaMHcA9nz2qt3vLEaKgbglSbPg5hGZHyKL769FileTm2R/kxr+gqG7QwngEypFcrhKWmmviTco0nJhhF9IN7tpl2u0A3b8X2oaZlvWPLRu2gVUszdI/JQef8pkCIaYA3ok2dBtv/3wqeMrI43udBP8yCXN/XAddUCwPI02DuyF6P7WaTzyHiit2oyXSeg5GySUojoqybug0AWvl9wS26fHc5N/sOQql35UIN4Aw/r5E3pI424sit1a7T7huo33sXoJXVYak+NhocWl5arwoQUFndaMjDswr6bQMY3W25hQQA2FJ54zfToWhRb9h4ROESjkf4vnbZyb3csh3N2MhZ5b7Elxay3M0W4xlKBSbDKk7awYuoC2Ajmd70XUIOtaZ5Ih3F7CQEZcEDsdwJ83aDIZ+WfWErd4x/07J6xZpeUDiNEchy1zmj/PANb6DeWLLCe2drgjTjhFz9fCUsDJRyknfMlLq9eIofb9YkBOugj475Gdn18Ll2r4dvOkBc6P3RmBWPbIIvQ+QhvFMR6GDpjXWXoDGgaPm9qbZyT3e4/tshJsDgm9w2LhldG1umEqzlLGyVDyUxlRRyoJZtDT8FIMInXvYX4t7GV0BblGEZ5cTbODpkw3EDTCKB0pMo6ZwVoNe2ViGmYW5/SogiWgb/4NZOc1XN+z6iyfBxOsq5/dpt2HU9tqj022YXJIzlLPo8fZAUVBmy+1GfW1z69BTQl2lDs07pBaPaZpOgL/cbuCEfghyK9prJd8w/J+X65Hh9YnA+pg03DFGgpbK7ygbe91aqvsaxgLqpldcg4goh06G+39jVa5zdhqa0tpaw4eG/QkllAq+0X+lPKFMzAr1xCEgfgY7v9TPqM+ul7r0prfM+yTTzlfohvTg7mMTw1TdBqdOunsjjuUqS5NJD2sBaI1Sym1yLmVGJbMX+slAGDDjh141WOwgtTDy85ntFCijzww6DV2SnZab4D/oZc6YQaVySVy2A1yDKLfxellIJYkGl/UdVyjSM0faW/V7/eYZpREF0b6axdfmMpQ8EaPZyzCxVteZy7xniZeMGqP0RK6qNEFklutYrKOHVkgkWF93uFKWCztduPKK08y8dPD+R7QKG9YYxviLome/oSkP0g8AvA+Y1CrJfRMLeH2JQJ5Ij0sgJ1TuC9KHZ5kYNk33FOXkn4eufyDcoPMsJeasIO9bU4UwDr7xBZhgcUzpheyNVOMKEen0tDAf5gv7e6+8Ud4pXQP4OwrvoavVltQxmpq9E93awj1n8EHljK57N+AlU6VsOF7///G5rR3R/bHH7mhz5At8l5VLNvf/C+ren1UbAnObND2hrObHadsEl69K/ng1Lmd49VCt042WwoUuinosddMfd4+1cerCK65uTwzyviWp+ccji6kWHjjb6Jqx+nK7SDb2sBJrCrsflJR3VBgxXP6z1ZM9CzDw7k9pkyotw/tH+HnFoeRJjndYOWPUlWbojzGLAPMmEwcWN0TPaf8z/XfMn+NzF47LZ492uil2Q1wpfH1jnZVzsKJLkEBIJgw1XS7yVkFMgqlcGM/acnMhqc67Kiylum8jOyPQc+tvoxI4FT2BvGOM3mqd2VsLI6NxGc/kIATXc59fAKjuC3y9Zr9cWfAcf43p3FPkuUgTH+GrnYZ0/Ma1bkgsVcO66Ocjkj1msJxHRxT87P211bOm54fFm/HGDIxTRR7T21K/0CHPmD7nrd+ACe9igZuTu9PXuqIQBNqElHy4jFKwZoNfcPjYtGyRfU9KUhBAHGy69YpaSSm4emhmwMNWch6kxV3AWTwNhD94wRahaNcdVuBr9QsvEUyEJbMtWfTH1h9rd/b3yZirlzmySVB8OTvERTERRie75ce3TokFpniczltS8YPA8oj2vr3El+M76P4MIpFT1hl8S18E6HxPsET6m+s/H3vAmgwUoRLGO0EecUCcwpwEPAivfkun/9WcKoW8BfgzPye0aHJPQorEG1JXeNZ92OhZHCCXyb7ySQUCz5NzudmFC+5SMBGhthfuIsI8dnW4LuA37mc45qlNeWIyxsgk1ZlHdnHvELydl0ivA2lURYXbYT/ecuvHslz7dbuJh4mlnPavjAB/O+foUuzCC43GeSTsG04sX+TX6BK1RVcaPwAlWxaRuRx9ve/U53r46YsouSm82C69gpii7OQbtiuc8+T0O7A+NvWn6irt2U3T7MAYokJo284f3JzK01ej0odZX6SKWaD9/8WyB2I0B+EWfG4eBXIf/a/LCr8hcm3T6PoUTzJgNliLmgXWPCSx10b1ONbzQoNkO5zO1E789tgyTg9tD8eeYCZr0O6SMc1papvyxCUULcB/wlsLo2kiCE9OiIL5Ib6NIv7DW1Q9PSDnNjjboM7ZpHBOigXNX6VEOcE3Z2/Q/xkVBmdr0Ir9UzBArzjox5uQqvfGQjQD1u/JCg907yr9HvuX8lR3s5XUex01sPA0Hta+VIcvv54lgGzUBdHgXT/A7R69f0PDMtlhCRMGUG1CfIvrhrdJ3m29Gm5oBDjuVoiWms8/So2O0vQZJm554XVWj5lVSKnSDVcXTpvTHV6IjxkvNUM7oSq/GQhZ164XEc65zzCUtUSNO3RFaf5HNAKN8YpkKKIShLT6qxWlZhutdfNxbo6RWW8kGREoDeHG30t0H5V0bjzPXR3y0pHSu1AIhpy5cgINtqPpC0WXnKia191W1G0A8gkcPXlmL+Ge7x78+K1HKo8ThKDVIRv2RgE6QxvozMuB6LofK0C0w4eVCQY+NLGETnUOy0q/MXnvmvVbKo1WQo4Kr2lK3zGlI+AtpG2bmA6FAt/OKd1tW8GDBdUs8FrVaguCxDe1pGoo/dw+QNrbdm2hV9zNIbL0hABA359LUjpl0ffLE4g1V6/quN/e/9yDv9v+4m1cT20I9VMzCjwKuMo9xYk6uuNwU9co2BfCwFcKPPtWLD235T97DPnzfE4T58d7l32t1kjBbVksW24HYZ/MCeqDOvOqUsChkLqN8p2WLgkWAwmdeocXbj1FRL1ZfA35XQe6wlkDa52War0F8v3Upq93g6ScSadrImlT39oAszz9j03qcKAXOvYCKDt0OTkn/Bl1hXkr6UZJT+vsXFUJM/F+DtHp4xmDy/5i4JODpNHTw0dPfBuNNM0l90w6ZvQTx7DvAr+X9EeQswI4uqBDDucPkbOhsNiSPRyyD9I3yCja/rxlA4M2kbIaTJTm4bZTdhsC/smQS8FOd0bzVDgN+ik3GKg95W3cJkpRrFiNOJrkDYICPRHyabHCaJRDJS2ReUxhkmBRbFOxNOMHW8XeWZSgN4aI5nfTgQVfNyzC/q8Mx18a73vtiGxSkbA8qgnmzKafpWI20xTybIBu5ZHnmDkmnljBx6ZQdlskonmgrjAj5Qex77R1dgP3RPIJwFxSS4RW4o/OK6Io2Af1YtO2h1sZ7LwSWcQPGi7KIAZOCnhFV+zXYZradeAlmKk198JWI1r+UWPPixZN/Q8wQgCGs+zj0htKkHW48tKKzNSz+OjFpb4j9m4kzSBnc4dctswOXlKOcQIduh1QsuzFFVPgQGDyGlxocaI/n8xGeto6YgLMy6hQgZpjMMsBU1pwOyhg0snXtvC6FjSUdceSh8ldlGyMEL0wGUGG1aCy043PAzFBBlKANKIYbsAqxnukkTUQZN4P1UeioOWG4g5cwuVvj8MrWyOO68KO4cSgttyfnOk7unKR0o4fmCzJZybvABO0Bub2TFfJ/Vr4WpSBXHAaQlczUO3FTCdw9lqU3QhQxltABuDGKGSSNwpqtGS/lNiOp5FuM2mOuOvxcX3jMFrzFryeWKjh4eS4eXUGfRdz8p46g8AuqJzgPgy6LeRnTSDhgnvEXS7HMhpR/BQZdTQ8M9H2sv7qVHlfcwo039U1e0F338VELgQXfpGuF/TVza6IaMVyzCea5ZEogkUdnYM2KAWbVk7McKqoZ7JAowWuxfXPlWUTZ9uiKPeiVIApI8ao+ZFl/qD3kR+OMVctPlQlN5qjyqwHXOPVQdi1fLU90DfU5+G05EwgdxQ7quD/g6qB3OwmeGoQHfkhLi3eLDCr8kW5/xpR1ig2daVa4n7xfNzQ0vYR/J91RnnL+kH6lJvXGC1PGz9M2maecspDx8Bb5SUkB90YFEDi5oEESWq6Xj+uphxejhbUyn/pTMSUnZcmjw/57jhLRqP7/YWVIa5Ok/5rTygQupW/Om7OeRXuBk0HwppuhByfeml4SMFzJ8E2RzmvwKIqvkD0gjCXb9KkYrEUjs6gHmjj0EO96gQkwq8TtMBr6woCB8K5IuQZF1+HKTMxwneFYCi4G1VYc0lvi7yKYatATvEfpXU8fz4QUYoKlU3v/+UeLObEdxVcJdzgtUAAVI/UHqxJ0yp80pRKHXlDK7pTVb21TCG9QZzsqjuiN1DizXTFAqGSQ+hiFCqV/+beY0a8zuimyD88itSv0UYHNYgA7CYh21lGuzS0PVr5YkGGuDDC38CNxp41ePPtKagNWpD5Infhrbwo87vJkQlHeb0umHo7qqcH0OVTfj2+3eZ84nsZB4dE85g/+/njk7G498mm9PmdEp5UVWTMWqi4mm9Q89NHwyC6BuNJde7gkG7lIBgTyz/aZQfGvsElESZQ/+2MUPevT0txrrYHELT8uC10O5/CMHt0b2V8ixX8CPfTVineNbGv3u92iHZ5bAfZXSACE492NjG0gR2a1anGQx/f4oqLNuQhfj/0cmnQQaJg1VKgsxbu6d49smDdq1zpTbbdMDzhfGDquYwCTOAmGzjxUxFNZddr5iNb4ONFSEgDzuuwp1H4dej8UuAI+FTff5x7O2Uz1OtP5ybKIWy3tmT0rD8Tw4nK1imdWrmIHkKxUmVO/ntbWgLzT9FGJ+dld3JYRsu3jB4xVF35sgs1IK4TbKQX2Y0TYjvwkajv2282pyJu7LiOjw9WtjHOYYZ+jbT1/ChbTIpku6ZP9J8NEWgF311R7iLab0ITsIiw/Mr5vBtnJgGwB7McSPNL01QvvAis2gSUBjDlls8NpZQ6/StngKCV6vPB7XHFOy/ySTwhxz2iqZOm2rzWCK8ql2vP4jaogOk75Zyk9+WjXwraV0KX7XiEX7j44psk0bJy609x89cpvJuyRhEIpYy5cTo08e+ykt+EQlDwg9DS/9XT0zb4FbB2I/7PwRiFJa40YdCiFKDvVooiZCayrWMEoWbsUbpy8p7sKYUbRoo4CSwcl7stoKU0cZXFMvsWdTJVBVHdQxrVcdyIK/R6yosAu/O7JVnTwL3WZmdtXAiyRPICTgMLP8pZRu/Aod5UzV39rjByCgT3H1jR8VBRNhxRYnBgqn+xWmpcT8p879WwPtzsD59/YC0zGBBEasuoYFnr2qOUVMKyqk9IjeJX90ItDDPzUOrGlNsqsm8nrgI33ju2mVNPahLDOgVhTNK/VrtPRp2Xdt5CfuhvBbIa7NIAQswtM9+eyvBzydjCRGidAi7ZvAeV4EuWJUSJOJ0Cv/6Oroaq9bs/1xzKsfwOWYsyvId+1zYZAEiwRW56+v/qKKSVjvIN8/mDLwpNawGlRFV2jdgFPKCMOyy2Usd+L7LvzghelmUFS8GjxTe8KxK/iXnAqo1Fxvk3JQqzRyYs9tm9w0kiutTIKoR24JpXtf7i4YCC5PcHqcmpF/Wfn8JiIDDZzikxJdsDuGAZ0PobXwwKkWLJKVjM7j09HNFMgFai+GDDpnrOdmEH3R8GmAQxN1eJCO319478O7dEO+vo1pt9m94yvfDPuL9TGG+rm9wxeq48dQV9QgSmvQJLOIeGw7kAPI/zPGL60Zk6h/KTGf7sN3lkjMINIbwSvY+StVjrTbat4y9WbmAIld1r4EaIggxfPq+tNHehqlIHWej1en/u5ky/XPVtX8oaR/QvvkwkwIWO3WgBFtyqiP4isHSUO2qiXsWOgwCaTG5Pd7no2oM19AqLLViC5LtNFYiDKU+kDVfWFRgccwLH1qeTItsUF97jymZLQTFvjF63WMEHFNrawF/DL/3qWHKWJhZPNYD/feUzKXso0FH31EorQxU6OzzPxUikKDkGWLq788mt1SuiM+d1wgv8x3XrVd33C9Z4YWT43PLtu2PDTFrHjrG6Y+HuvOdvPMxQarM6TVKcziiQUsvpyr07vbK91AUw+KvPdofu6t/M5gQnOhOWcm4vyRXyniF8mCNsw6pi1pg0CFs+MAAX5doCh2oj71lDeNAXuf3x/41fp6Kbq+RKOn7okMVi6zVu5yp5WUMM9m8D+USNREQSiEzxEj62DU5TYM21Zf/FavF1hr0yHJdNOGLpxob07r1qzvJREpv6TF6ilnHcE3PkzNgSYKsA96ozvTHNz1CDmGLlShqJpZowq5attvaLqqhDpKpcPWpJFq+B634qbUWyoBqBUushM1E+lWGMqnSWfvKi9fY2HN8OJgtxHe5kU72UP/Mr+EEyybcAnBxJhmVMELQbnXNMl/JOqYHEMWYmc/LUV7O8dVJbM72vZVQQwjcZoo0KIiCXchHD9daksmjhqhMXAWbXKYB4ilCjdz9yYikEQv1LWjAPbAeZyZY4OgO+gZ+sgH7W3O2yaqKAl0BOLb18Jy1Zx8suhzwg9YivVHheitR5+opzwlNajMgid345D7NjbynEbdc53mhxJJFyTCM1ce+jkWkkgiWfs1/XKaxGqx5s88JN8b9CfLVGz3+J8YGGm1AtWZ4iYj5z/J1hN3UWzPdfF2h7OsjOyiNADxYIzL/WZY+AsDST5W7bq2WPXfSpWrmQQqoAZZu1Ipaz5PtWUtrgV3IjQRKxd8+kUV3/aPjIxF//n8EVtwHg8JqNYRQ+yWSZQJtA8N4v2j/j0YqMWTkk35kTXqzIosgyX8HFTypsna3Ap9wvOZBCq2nZCPZF4oE2ZkLRgMbDPS6rZIUVIb2OlKrtLHu8BlFzvK7ziHXhU8o5yYvuoPJEf3l/VAUP6aiDMQTOLbbdxxiSngSBJKZpgxW5BYsHU/bzrr1lY6Capwx0Jc00iw4SrxvctHDiSsaXVj3mp7C37ENNIdHgAhDGPl9J7NUjeaMbaNLP4rYlHPvnO+naULOVB6AZnXiGI1WNx4ZeF7y6zaDz88tluUiGTfgjpcgQ7pvlD2lfTZUDa5lmmNVEeQYEhdH977vavFdANfqbHIpi6v4mzyIWhUYeGIZIVGCaAHUSiDnR6lpKHTrwWn9o3h8APqHnvfxSZ0+ouJ6tYhDy/nCtHTcTsC3aNVgF3f4CmsF7JDFKc2pXGH8ybixheasCbok+sMRhr7lQsIr2PGfdehkwSIUNB1kUV8nbTLrS60fl7FgLN1yTkxHY8fYOuAd9vp2bVfp+FrWt+SRlsGDmFXKyrF30q1naljlgRB5qB6vdwRjB45RcubAPHTAF/sdBqmNkgfl3XnNtcjy8M2zAEgQ8VDitG9wA5W6qaC4g/dofdmMEr4u/rwahyuUSK7497M3IDtryKGy9R4svAuRcIPMYeMHu+nSO22ESKENCILzQL7pnbZCK37VveOlZ543MXd6flEwevEK6bTgvaBiRatXBHdh2avXsoaAiGMt6Z4gVYXfh9oHVzWfu1uFRlWDV4LHK7cnHb7BEPulqAZ0pXUC7Z5g3nAeBb6OkyOCM0C4r0grUxg3ieR9YqN03GXUc9WnprMm8sEP8Xe4Hy/WaFsNHm4cMQh+p95ZqQaqgoIQ3nw5qet75/OEIj9S5ZWfk3g4Hwkz8UG3TeLPwfsyx1Nr15F8aQoRjmg3N3MsZwb5gjFBfry//cq6B24U40PGlnZ07q0Mw1CFharODkkLzdPpBHtVyQ4AjmFDVdpbp9u8cVN2d6X3D+Bhh4BU4nmBvIdAck1Bt3zqnolnDC9m7geq4oLq6Nsduq+2PKIb+OwWWvXHAg3OqognUYJbFlDhQt2z6obJAn3tZv8xuLOKd1cYMw7uXV6PqIoKr1IZRdnIVJle7rd3+3JFr6OfAeKSofy1PVTSuo196ewOAjTUOi7m5tp8gQlZTTaJPdeS0FjIbF15hEAziw19IM//4l8/sZmYquOHu/oxxVpNfD4KcDQn709zfNU7jVWAGYZYXTEfcu8crVYBBTiiOlwNfm4lwHxq17vkCKLgchzbHAuCa5QmDOIOHMy8ohttKDxTayxm5RTTqYjoq2U4nhrMwnqdH2AFV2rzfJIO6ie2LkDL8Q1elwslwgLCc4O5b31t5XoMhahwEEJ+KcpCZ9hmKbw5s7KPkqthqR/vEwyZ2Wnr7abDiQMDE+GFMA7UKmJRpW46kKOouQ/BSVYHOzfZvH0Lkxt6bRN2cxmlfS1eVL8xSQE/AjA47wCcrCHfrM7Izwg+2YFdq+O/MXnAOXTmy1RJCxxKcgwU7H3BJGNwlQhiKL6vsTlPsLWORZtpsSfcUIyHLiNp3FGNvIiOCHE9NcRuCryHN6HZGz8Sv0BMGaDwXsn0l0i4q5vMGFuKGvM7r9VxptlU5XZUvTVI1BvNXa+vU7lT2xR/szvuH5pTdMh1gfGofKG5YKQX5+Y9MKqoy9G3INt8EayCrc1RY5vP6tUx3TGrQkGzKytKqksaB4w6trf7pvJONHcb/cA07MGr9OdjaZa2O2IsJw4E/7vomyTRX/FLO6baHiSvtJmUr4p5GWYWqZNwGoxDM+grIhjZoFrnO1sZiUwMKYJ0uZpYOGiEezGpuTZUvK6j41i/4UXpFTN9uWf/vzA6zz0ujLHH8gGNjeRXjA2jHITmDqRLSEp9/R+HeHnzJpm2cSpY6nCzsLFGoL0IT6kkZbGeOD+FyYbWAJzT0UGxDe78evhyhAOCAQZrbcn849z3oTvVazEKdZxwuLx1hDh1mVTs4WFu7EZbOEnlKUzS2riogustaW+NJK7BVsJuOCRAyBHd3NFa9L+B+9A1yZSqxIF8QGPkReCpD1V0mDVgJO+MpQlxRn4/fK05b5hfxLHcAFfFOXvM+fN5GSO8SkSntSe9ZaJJy+oAfSW0UDBNysLsoHlSJVx/EkeumtDGKPjr2vA98G4tjI0wt1b6FZ2SsgyF/5WjeWOoEwEoP6QtvMPzLahbVQ6bEip4rZtyyZLU2zxLjnVfqheu+P1+EoE+EYJGCcclvGfgU+FmH5ZagF1sSTiCZsuOFx2od2MhVUz1EfTlWr2KpUtBg5kcapGmhqdxFNv+7BzWXC9joiKAf6S7RVswjq5OzZm7waJ4jctpbjYk6pA==
Variant 4
DifficultyLevel
521
Question
Which of the following changes is the smallest?
Worked Solution
|
|
−7°C to −3°C |
= 4° change |
−1°C to 4°C |
= 5° change |
−3°C to 1°C |
= 4° change |
−5°C to −2°C |
= 3° change |
∴ −5°C to −2°C is the smallest change
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following changes is the smallest? |
workedSolution | sm_nogap Consider each option:
| | |
| --------------------: | -------------- |
| −7$\degree$C to −3$\degree$C | = 4$\degree$ change |
|−1$\degree$C to 4$\degree$C| = 5$\degree$ change |
| −3$\degree$C to 1$\degree$C| = 4$\degree$ change |
| −5$\degree$C to −2$\degree$C| = 3$\degree$ change |
$\therefore$ {{{correctAnswer}}} is the smallest change
|
correctAnswer | −5$\degree$C to −2$\degree$C |
Answers
Is Correct? | Answer |
x | −7°C to −3°C |
x | −1°C to 4°C |
x | −3°C to 1°C |
✓ | −5°C to −2°C |
U2FsdGVkX1+PgPt616RukJGbiu0c3uqrH+/otHffIDp+93T8RP/xjXPddy69GYFAtNDVGLCwRWI94W5+KdWld8/uJPBKj7frCiZid/NnhyM+/Y39ZXc6jHcXEWjGMZPn09vIz/colEY/71KNqaqMkz/ieS3CZy0l9+V3gqAJ7vle9oS2xzuavoNk4Bu2iHSPyHwhOzSiIVvNZQym8WWPi30sp/jMGBRX30m7RoRhv+rQinenPEHmQSu5GyZNcn1Uqexh6s+Mpwu3J7LKkiQRHJP7VF3Kp34aTuISiR7lNbthynEWtqHBwWzfdQtTHNk1Brf6u5iRpRuUvTDPJhpNO7IO0ayWUZ8Y9To8yGGoinYNx1Ee1QsLwH3KzlCW7PAx83IM7aR/aDn2rue1Lx9G11jM/u71z21YGq7Zmv/Ejhij3xKc8S17g2UHsqqREwBucTxg0W+vHYPUFDFOvKovaNPgdBdFHsap4hjPQBwOtkBNXLXwHQj1IHwHJq7wBtLEMrx7kITLbv48q3TEVAJcaDTdkHTm2zrYQs350MCHHB+McSqkAqIF9TwwCqm7urNWVnAacjJavKMThZx4Pg7fDUf6Xyov3wOZ59j/cInSTfZOA+Sfc6ijpyncWsshy65uHUEUBjV0vHmQcxQO070mqAgrvqCio3I7bDjG27EhRJfS+plmrk4RIEWQo0jWPq/yOKRPbNn0HSvkSH4z1/d2bC8gycB6pMdKiX+Lwbby+0112WUrizCFVvtx9AxVPs88AtwYGb01GZ5QpcpLfiOCbjw7fmJfTVrAnkUujQNYgnTQhGUm24WbBCoWZfOC5d46iuYEdDaLub2fuNgGCaUlT0XadpwFJnfQ0w8MyUXagtzATIu0CKe0kjm7AlBINjrABCjc1tiin5nnUZ8q3sItkxxArj3+9NWLG0IAGilA5rbJ6kXvIZhdd1ivVbelQfyLLv0Yvrd/tvRHO96Uj9JRvXqRwJXzNGtJu7w4mCgfU6SKgIqMQ1Yr06eCKPuWvE/cE06bW2v1DsSC1o1EkSVq6+dIi8MkmrVaPNdimA1dss1bIeZ3LRtNwj48wRl0Cube6iDnT4ium/v9RMchtaOK4aGA0/dzA3GHcaHLUeZEZxHOjD0R/x58r4wg9SpjUCOloQIPgijOAkVlN/cxbQxA1/pMS1qWLeg8dYlz+z+nYAURs5mL8xaR9F2QEULAKOuG45Y7p3HWm4wvWe1u9aNkLCGkk5najoo1BpUSUnxIKCNjaJuoSdGx5spotxIEw2sbIQARMXbhp3FPTi6hDTKw/2czaKEXMpjTHv70Fg5SMb7ZsZ5Kfp49+/nagFUZ6vjFeqvGeAexvRIs+Iog/lm2uXmULiHMjcn1JP4l4MFINMk8W4F5IBr4Y5l/UpyKOaGJEtfuy0Bd9wEcpwbQQTOmNk1da8nlCbsQf3J0uHmOW3xXVoGrgU5CiVd32kUMrhYCPYL/B1MIWMzwcCWaGIqRABWrRvPmcIcWTA1hLnmttJCQnbOJXifUhs3UX5zM/2PNwhlOVz6vnjQz96v8gUXTaj0a/cYm+e0r4n8FYMTn7gejr23aduiuvn9ML/DBc5TUk0Y/F+v7aGqG8nRhSnxkuIDffComV2heblVCOqP3/mgtbN7eRLyfP935+MB+H7UhSWaBwdYYE4MNhGa5p93eJh5i4CNq4abszIdajm2/VEBMRfmQoHcYgkhm4YQluT6Yldqjku/VZUZageoC4vDHRn5x4OEZ1adGAbueoO9ZezHUwyiA7f6TZ2du9CBx+PeKFZdWyp6t/tvPvDU5EoeVesqw1HYIzm8c3kJKlTDYFF+M9+r5IEBmcgxbi4m1XJkZy/yUZhvuTilMQXlUomVQ2QpOACyToiDpn4DEY/yqXmQXggfheWIPZZJQuFtjWyi9ycbEgH5VrjwfiswWiQCEaGdqy4COWHBOEKxHfOrQSOz8faTSeViE45lCBUfqwJgF9DlLfXWf4H1dSth34tT0qG48ipcTQtVyuvbY0sWzbo29ZrOs+Guigke6MoqjKN2BLBNmc7lxtDged3o9QdN9q4WVKfzQPOmGHEMSJ96OJLeIIZtGBDXab86WHnKfqa+0I0tGSHxH1eC/4Rr57WFmQzAR4OaWn/W0POgtxuLqghZnhX+n+0NAWKHRsp4IYuxIoeb8PMiIoj2p8YjUsmHhc1PesS15nbhXdawAkrHdUvfuYT2RZHOtnOe6Q5CPxcEmJ93QUDiRncOHVbj+qxvkNwwyYWK2zKLdbFsTPnQKLLNPb1fn8/vzKHjKyMdQaKjw7MfSHomsVKq8I5vsfW69ERqXHUlnbFO11bWZUXPJ2qAsOmcXmXrEFusNft/FHZNN0qDnAizFTdepza8zqLzoEo2yMbg0JMRkCddxjDSeYY5+o3LznePNFOPeiR599fjQ9D6v+p79XqgN66IpcGkZp8zbj/5aywunaNoVEBzrP1ViSIrkw7CUX8fj4GPUX+sxECCUQ2yc2hAWf22YPnBzVMc46rYLNVoMgm2tqvET2BlEbqfK6ANLuvO45iIT08HovPNd4og3nhc8N74970VBN3f0v7bozav7yobk3PaXYwYkhKY0tSH2Xj39HVB/bilAuizqvT7RxprAH5y/K9K5RQ6ZuhDWPMmhPShukUfTja4buzolvYxBxp7KFHH1PAi+/MuD4bgjzuIUSxBhBkd0gV4c9v3v2OQLr0Eo0/DPY4yBeNOrUMNRUFtXTBc0BGjCfHsGXk+4qvTlsijjx3ggJULsOaMQsD7+S4Hs14A9/70LFz+DNB5Jgq+oCpc58b0l1m/CLwsJonuTKtmAYYwBJKp8n0gjF5pI+82wtVnZw/PUAWbRfO5NHP52SulTD3aSOxzjCEKbRMQO9joFwfLKW0GD8yRv9zGVyrPXzCiic/Xxcqj1NI5JXsPCRjSql3qt4sT97AUo/VyQfG66gZc0uqGEA8bdjFWi1uyXrBJcrWzAOKwy3nts51og5XtlEKMMttGCS8vBt70pq9wC6Lg0mDtoqC7Ani5oQsF04z9KtNE3yD9rICA50EYQnY4jNKjn37uoGGxMgcDc5vds+LLuWtNrHI+vem5NCmyyQZWYzLYHmkHWsNHvVSSSsxqLQEbrEmgGIUykags7GyfM1F75FPjQ/j8mch5H2GywCHF/3EMrLmGamuwFRl3934H+bCm0ALrLLGujsUYfMKrKFmA95KRMiNz4ElefOmx2G2TCvMk0KC8EzkCNftFCOKgsfdrQtYoXjypT8QNHM8F9lOIVVkjg0Bs03eIhZpMbtac+S3EGjMExldX1a8WmlKGm3OaJHv0iiNnwqfEd6J66EGFAcRDFKSIoZcK0abfC3crYK9bZx8qiSIAimbreZUp53Ntk/8Dlfhp7lf8H3WA0vq8PEdQ5/Z/C+peT+snqHZSF44Ruv6CyChykkDJKmy1RF9Tj+roroOYCAIToonMRHftV4WKHKMxKlOd8NQy9srGRSQH+bxmP+f4Vxxm7I7KFAtgduFU0y+xqvFpn1pp7kjbtPRUYNZY1rLhrUbmpQLzEDsJURQ9olr5MvFcxBXkjOa+fLwdOxiWYxmXrSUrJ8SkmQuwBh63pety2Wnm4Yt4ygANRuVosO7GQs2R1n1mMav+p/FThlzLlunLJ6V6RLKkGLF6Wu8tbxldIlWtciyEi9utQaB1dG2jqAcgj1KBplsfKFVJFyBguEk3FrXFVZBy0ua8KPYXmAsnvlVn1N+DCmygv3q34sTP0I+XzkCt/c5Ncuv+ZTXiS2Omm+V3hkQx9UIcBWv6fr4h6gjbH6YPVgrN17GSjxK3cZCC1SlxMq89aoYdT2y19WJKWJYiGNdgYYi3r06Qn/ZQQYc67Cup8wQDLSvWlpY4Z/1V+yo/vszYRSpPtxX4ekadXlmapULNkvYQmchGTuSNa5dhWl51N65ZLC1uBsoK6bHaj+tAwCZ/7Pim7IpTReyLrVlpmuEVp+pprNH2R149BO+HmJNjQGDqkGx/Pxp5I8rjfrjAqkKbgSWwn7f3tBD6NcYopzMXGJwBuDerG3cdvU3j07QecFEdR2h1sy7/I7EvWYp/H03QCrH8PJzkfRMkyJZqDlLFl+PopUEnN5/B8o28MZIMcaCHa9/qyh2stX6shfbBkmJRI6rA+QdDWEG0snFcVnKM9E5aYgeo5LApVOIZ3WxkAoHsqk/9pgKtdtPeXUrKw+Wurhv5OjL/FF+EBPzkRDeyXNx9bPzyoIEqxsb6ckQydJZXHdauxaZZfL/3/kD+Bswi92IkjqHrgJO0OHwT+t+wQ0yQnNVCtzq2In/PxwnYy/xXJs5Si7w996oRW0rCm0t9Hupci5oBEzTsasWt0xmjZsDPvYPUfxEwMS9by5NfmMp+nmuQbZu26l/2BOUJtsZkpjXAOHlSjh230ASOgMEGOlqOgsC7wU0DP4eT7qS7Szl8XKb20gKS+qTCWTULjUV7JwUTloD7eZ6c49Dqb9VFt7r1E5qlqoCRE51ESCkfDxTa5Yw61P5rSbo+vv+Olt8QMfCT9iM+UKqOYI6MqEc23qbNoPhttoezYB0qu8OwMojxtKBHyrZ3W/zsmxNWZ/vCbI6vKK7OWcCzs0eQrjUzY2d3+6UhEiIn6A3Zq69a4DpwvDrCjWiNYUFnEpjV56QlkZQ4LT9g2un4gjxhX9wH1YRyh7hxrsD7kojN2NKmLscpGXxeByY2gnUKFRv6RGGjUQs96cvnj+ZOtlqM/8XYKs5lLGGLDXwyKsGcVx8lxqChQXGwF3yXgBtHWoNQaGFdRjUVuU6wuEJ9TOENRwaqsPZrXXdajb50j3gtb2MiKDxQhiJixl9wbliSkpbah/rzqvVj7/bju8nW/qOk9tWZldBtO+TYIVkfCxsimqJOFvAceGrlzkyWTHQwDFGAJX5scKGlU0j1xCk7RT58mySllFPU1/NT67U2OFXSiPHkjnaLgpvxAtAjCf9DRnZih7n9qcBJ930iU0Sd5EMSVYj0PguuhQKOBgB58H1I6UWB1i7JtvyJ4D2nybdluoAHsKb/tgHG+hf3aPuGEFckr1zQ87AiNiItAIyhEoejbR5geVk+GHCmZUY2v6HnnxEQ/tGED9Q/ql8JHxllaDjVw9aSIXnQhbntYsJl5VH9cynd/tq4DD1ddfocpYL4Z81arroYF8HvfTdi6HmfUjjKsTRYuT/CvmmIGTG0BxQZVMkcm43xHuPNeogdEWpXiavuETa8Y4UOATnidMNHR5itAV+0sJlzEExgKM0HNmyXM3qTABKK0XU0Ddym2Y7LevVG53bnb47iGcmPqdkXb8hEfKtkYvaZWgYTYOrdLz6PG4grEBlJPuUAwQqLOdgxuhUt+LJ39aQXjVZOEuU9rQihkXONLycWtiIFeumvw/o/i1P6R406KRVtXxS3Ic5LrT9hkixs+Y3bO3fu4t8GaNVuWE3OkHpf9wn5mMJk46m2TUaX5Rz3mRRKI0bqAoa9W5Q6Hen8HDgkK/uNymZ4NTrEGqEVScKQSH/F2LcsK/mKr6gnodLElzGxdI32Tpakp9upfgXfStl0UTEdrJCkS45kaIJWnMDLktQdjJQwjU7BEzREii7zY7cyz4VWaiUGIpC+pYTWzRrNtOMiorN+jdfx6urejB8U+/f2O0TFIKKhofzYoVZWR5KbQpZHK2+rPTABRwzh4L9BFMs1eKZgw0sj195+tKzL+5hS6iw9IfydgNWiCNJfsG6Eduml2Clvtapm+jseaaCjKo/IlqgPSXR5jmHs6qIq80oY5blGpUyt1oPUCbjnpF7Ij3f0cxzO3f04V1P20hgDSf5nVVBJvQZijzq6IEQaOTzDvjQRGt2yVrIkbUnqPxI5evHyYHDJirxeXKhBbUQF8g4OXfM74WKnNJvNY7BcHlVU8VTW8L5APl0+/3J/uWEmHxmKS7PZfusFI91R07E0GE4ux6eq40qnYY4Lhy7Y0x002KAFZ/6xRHk/8dECr2tjlOHUBvav2xbN2OCXHZH8DH8ZG/we5NOxodVUyOu1zy0RUQiZmKNuackY9S8jJJFdBw9sFa3rjsKWfgEA+PCgbWR7dpxCZC1XnEW76kNHZ+q3hf1v52GqBVEuPF/IH4vUa+e84qeQuBNDtY51zBuY/mDoPjskS/f+eeXwnY1WsSfwFolTb35iYpQ76zC98+rf/upH2+s9uIFXTaYiGq9KLRnC0aV+Hi9lBzs3m47bhZy59u3i/upziiskiHMkN/h9aCtPSVJNo/kYScCv5EPxRzZHFr+QiI+abX3qvfhmSg1TQ+YhIpETwzvu8STUjnwgsbnUV2+Vah5NzJpgvr6wqHs9f6ftbmnt50QUWugE4xOjQMmNTzS7/sPB4jQkzi/SGe04MrM6K0C5YJM1CW/BPW78FDa1MtASRRjMOjSG6NI60ou4xr9NfewfVNjRlKGpj8zuqTr2q11CaGqhuWGX8fBfbkT7xEm6RJ5ZN+7Sf4ZSsxIhijvVUF03nRO6bIJ4wHayY4x6nUJDvpbxJDPy/rUdYLyBWFVGmsYt3El8UrQ89rPPKrEyO7t/gZ+6B4sl7KuHKtoPcgUuk1p4hQ2u1EKppJZb190LtYlHia3XJCYlOfNcUq85A/Ek6WdJ8Kss8QoC9TNQVuTTKgXeW7vTDrFLvFx4zCP+hLsJs749bz5FE3OYxMkLleh+AZA8cmns/u1vnZ3qmzNesScCkkXbV8X8y9Pjta+IocQcE5GQipyj524zmBgU5bkANqROZVhv1Lxw3MkIPBXPP08MUJdEH9ncmW/efPN0EfsmbWcjg8qWzY4WsF6IkI+2aF0wzp1iPxvgeYbcgz4JVmYZoXqU9NvA0IFSpduxnZYH589wvBMeb13VPUQnuPwImOF2CYS0PXybVnc7zdvwL151p+zRVQ57BVIwLRj6h2PND8sv6q16qKVo3SwJ+VcIVePUDeoly6U1AOvkV5Jl2YqJ/q5Dn1bVA/kOQFOFqX0k2cOfIP67azp1BKQSO4WZTPjxeRK3GT5ZDL1PDd/W0FGhoSLahpUXmHrYdg1Yd9z+33SubPwSnM1LHJxybSLb4hgPDw0VXrwcG0gRmmtTObXUNKhDn76CLgKu42qNdCciBVuzDNVX4H8rwf63f08Kxys+bb1T+3rMieCphromvO7SdTQPgzfYkj8WM7jkb2k0yWABxZUuZ+BE7oHjBsck+vnimVElUz4StrYPvwRIOKXB1bbeSVqul4xogpE/+vOEgVOgY2py/8Ywdk+5PV36sarwkTckZs5/fP1D9mfjzC/AziHfcE6zsTZFJv5a2XLk1DyyCuRoBmFKsVvyesz/hsjlwTBvNeqgdErhCuttfm0kYMBr021nSY2ZmH8qJzYHgkLcxKgB333WPwgbFNrjWv77oVh1vsoQkaqyUqYYNpOWv3P5fZLPRTohixPvBqgX34rG3JZijE2dkmL2dR505kOP6uIfkaDpljuxWaBQto+prdb68lS4B1FRUCsno/fLthZ53/dwxQy6uCT7jcj4ipn9nb4lmM2l97ZI4ZUgRegiBEPcFrsnGdSl+kPO3SSYXnSjF5t721LRWOUH90M32GH9Ls3fsuUtjh2n/nZLLOiPFP0fLT1cxhYuDDevHspeozsI7X46OGCyOW1chzVmkVY+iiMtGVU0I3wrN6MZSDDLQW8/JDu3IeIahT32mq2p4VPAssfm2sYPQurlydlEVQ/aXIrrtWsIpemw604dK31kYlJw1OVjveptdxjL9CwXMp/+COc1apVW8wx1k0VgjgK2zg7WvqxvltZ7TSfPO8LdJsXDHXxe4n7vd3uPA1eJVL+V6yn5V6QpgL26fdtSpIKWmZv1v7d6RBxYUlYdMeQwP0NLrZEJahlqYfmFJzKziYAm7eZjrmOOnq1D916hKdywjBwymWOw6xKN+fXwElo4CNDTl+WnFN1OQ3YleWEZpwp63TKPC202Tb7ga3ycRdnO7dPF0TwEyTerPS+EthmZ0CL5Qp4npThqWDfaP/BiTj7w63o4fqSenkNeou1vGhNpGU93u5GF50RvpPNu0GV3HFTPqudLNGjaqOzCUV40XVtlRixsxkleB2Nbd69gkzHbjelZ89eY0EMUgEOKkFF8nWLtKRiO74WWPzxsoCvAvyuKhhDF8rg6DeEOOuHHJqt5gKvGKBH5KUygtBPVaMRQ6U9Mf4K0ps6kz39gi27DMm1PS6Qql+w/UEzd4qp3dGnHZ08TO4sEuh91UM1Y6n0HwFOWdJDS5l67G6uaPQeuXy1Gpn3QWR9g9DgV7rIxkySz+uh3ed6NlDmYju6xdMkyr1ksmwvwhWdX6Mn/DDX9g1Ivp0soZJjt2tuoFzARkuwp9Htz0f0n4L5TNn295Sa/ezn0bjUIq1b83IZg5DfYOFV6MSON6EezK8zEKFLLCP5NAuJYVAIb6Gd6B3h1yGQMiLU4PgfuVqSF68OBz+h2W/+mroQKztBPByfqkY2gondfQ2JnC1a8/3c6kOyeJD+7nSFgaCxwJzSRmWDbEarnNhOWw1fuQ4vvczgTF1a5cwHiZAnXOEe95dlw6oRvDpItihYEt/6X6gnJcsk8GS/Sm4i3/hEs/06lq4zO4k+cPfNJl7EZf7AIqU/74A85lp7p9UMs2CQTYTgGswfDKYVZXu9DShva6KjJA2qnzxX4xxV051h9PMUCRDMvPm+VTIV8p8PlHcfPY5qLIefQLtKqgsvL/qIYC9CgPvmjREe8Wuxsjhjd4H3tgHTH6q+qGo7SMYhjzDEkU+i/nNRm27Te5N1K4vI+vlKygDShqtk53BKayaSV6gziaYpMOEGRv11ua8NnR3oYIqRQ5lKTofgG3Z1Rld/rwakXZcKLCHJyx8HkM+do/0LcMfyWzaZQ/NqoN5UBvYqxYMv90jpqbW6TNews8Saylh9Jn9OQr+3+upDYank/DuNQ4i7+lW5NJatsDHhz74ybKEu34gFFwS3vPZ2ljhusMkNkvafnyQz4WoJb9KHEs91wdnoMPX1gRoAkZewcWtnQQ4BKgdjkvHD/gSoLE4XDuNdi1Tt9WVAthA0ukqFFPcAqm8uBNPhPE6Fj0fNZAFUKdIAp7mxiPr1SVSdz9SVSC63HxiXFEeJfi5TfbU+h30CKQTvvI6cp+yhLTdD6XzACHxzOVxQi/5RQxmu2/h9EoTdM7jp/uVnxb7fsver9Yu+uHZHfmtAFb2yHGjGB4kw2qVyiZsGHByEEz03upsQXAl0r10yBryqymnV2HU2g4eS1tpekiovTuGvbpQ6/b1orCof3g1IDw4+bTIxbqhbV6vv8iGAgBPp8b3ZQkMBcQPgCc0bBj6Y5CD/6eWOMnQjIlp8+CX4h9M2rlVYqLp3iZ5HqCPOX74ElAFPFd2BqNhPK7Jsf2cON3th9RIwXAoKSTRILPFD83uK6vaLkavNGGkiOp7yBKlkaMUugpzPdRm7c/yYlwRqdYKZUm9J+7ZOcfMH1M3nJ6/UW6FyCaIqTJB4GUtd8Jbw7d/QjgrDubNQHdwnJxoFhJjMZo/pnMbshjaZdk3OcUIU4bnrCih8eo040SJAg3H5IbrEXZaLg5vbb2LraqDCciPEkP12oo6zsgp0TJS90cXiOXpkoUyqaQjTiRXoAQ+YHsy8Its1L2JNj1epBMmZzJTQqid+XobXtIyhwlakkbhKqFnlhc2dQ476RM/+W8EBJfpmCwX4YfiyxmhHE64lhwXEazGAEYfyGUgS0HKeagPNANUBjEOosGUq5fjcc2w1sKagsHehly48ThoQETTEv+YXKU82aKmke7MLmYwjyHSlkOqttHRJHiITEfHNrM3ebH5ku8R4mX450r7qzZ5KgCKGbEdAwn2lzK1I7wKiNgVIOC2hl2YxgkKHxtc4GQ9PZGY//JwNHqNaDbt4QsNt9DOKTOczdZmNDZsq0vutXrj4KWgj03kv44+6T6VkPM7h2hnAgxnNxc9a27YyYzePj2o3tTpKK7qf75yl7bmEYBdImlfcHxIxATC1MkhvQvuMQsnn/gnFGOs+hhjeFdBtmFIRkjoIH+JNoQH0iEyyWukfvvTIq9nA19DDtuegI7Cao5PfzrhDRg+Ry+UAzACj1aazTmnBvJM8QWRB1sfiWq/pQwgInrY7PLvyamnWytK8/jQxy7VDfzn/nnjHB1174VQB9AQqMVzAO62NKK9rmRNLSqkpRrDadKbMqVQSy8o0QVpXbnCnVh1RTDddn8pVMLrXWLL5OyYBAJqCbYkGeUvjc/ebxeZ1xpm9u49iWksuQr60DDK+x98fhh5KJY8w/ZlHF0yaq020cxhI96Bahs6riS2LE/JYKIuTIS0ZSW6KvUKlwRQepFWe3akB6Hv3ANaHR/Low7Xp34wxbu7bOGwoVfXqnTOFUzgyHre29bPGcbPBGAzwmeFbEKV4Pwh/I0JcbtTAhvDxTnYvwAlwxSFMVWmJjEvUMdNkpFrPGJv15Eb57y4WvSJ/NQfKfv0/eC4QgZdEsf0bfvaxhvRzC0hNxs1OTD8Nj8tohhu35rED8iEE9W3MKJsLvgQKAqFgEuPAhmVYl6rzG0QIMnEOTk5aTDnUqp4hpsYSvlepUxzJ0hbBNKxi7CUU1Bh4+EtIzuOxdEGrqc4R+ukFgijIuA3ie245FAX50FRGTLh9K2Tmwcybi5uRTCXz//dniHKAtUrk5co1f867YS8KKySnUNetUX43aQrjK1pK2Qonipsqm5i/VbcuS+jYLc/k0mLqOBUuQ4+UfokEe+9WOOnvzou8plTQwL50njiP8qTt7Y4m1vEYwTbYsjQsO8KNp0tYCebDkUmbyj6UoD9drPhfDtwcnOaMCTDPAG02cOQY8uIEuPGUaimTmTQoGduZnhpUNOys/bZ0bY23bp7TR+cFGRZcNubGsIujuc+aGlJB02eHAD6N9E27+FwZTtooT461r15IE9XFym6lv9EV0/5VXkmqRySUJ2EqcW9JJnQytr3VRKN5o29NOgghLf2Ph4Vw+JD2oWd8rLj5vcrf7frvfYvTR80YmHUDlYSYRfCl+Al2zxFvOA1M/6ZOHuWsboRPHV8uflfpLdNwEGMSe2ymtwn/te+FZ6KvE8s7Fh6rJdX1yFQ4zhu/tGtMkCfBeRjkUsCs2NqlPtlNKpYGnVoy8G6bG4svYaNM1rPDoPWX5z3nRIOE4pdZuoYq2KqGST/LYLNkwT/qgX8EdgDUYtw8PBUcYB/SBaGHiUEnJtES04MMDsbqs5XA3nxD6aedXrVUpGFXesXnJCvF80f8zRBkephF0Ogk4K1alFaxf38L2Uj/E3ptIH88/04DVEgOrdWAscM5o9lXTYbT9O2Zj6iIEGhubIcMiQuBJgpBB5voLstQrb71y0d1vwqUTvI3EzaJlD+m1XPKSPswwHQxYpelr/1Ox7sFDoXOddEF2zA7PlvUbhYpdwhff7ahPgPgMSZzjPhPOReF1/UqW+eaN+F21bblqjfZjr6EZ1LJ5BlNYnZuT7lZNfFTYyDTYkif2AGcI5DZgai837Q8biGOeYqhcqAIA44DuerpdPSNp9qvKktVsJv3X/VNcRRCO3GZfZ36gTVEv6ExuhtWgniTagREy4sAfaSdzbmzPW9ZhPXjkdLTAiVLsj7wvEkkpAzaO4EuZjq0w64UjVreit+9soEa93rrycwDcVwAEPmYswN4tdMKX+LKUjl0m6+zJdlZEeOt/hvyR3ugrFO+vT3AVg82nUZ41ybLjrW1E6x/3EL6W84S0QttCt4p5t/rxW/RufYkMWZRIEJ6zGRRp/jFvkeYQq1lEzDXws//iMBIMujpBOFYx0EP+jxFkVT7aTm9Houn0g4jqhk/xwsqu/HTnjcm3jJjb4gNKB4McDRluFqNCK/5EdjLkRsYlsq0QLdkwOBTloK/t3OIDAlEOL0xDsoKjYlg07tXPRuZXnnfiHz634TAtHGZUQXpwhOfOdvOVPz8wrh392qVYjGNNOX8BKpsryMf/u3Mtp5FusnQ9iYCkR67yV/g/BGxd3hq5kX08z0pFPxyk1SaiX6ERlcCvbLapmPVgY/Be7DskgAxNVgnDFzceOwrZKWTidK8ZHx8p2rr8Lw6Z6G1YXSuuEzXjIW3i74HjvV3skpCGt9+LwzoCJglx8O9DPtqLOL4xCjad1ICbLfnM5agOKU877luV1OXv1pSULQK6G6k2G4QwopX/KbQ+dWKmfCb+zFFSFY87FzdHW1X+k8NvR8fMT+c7rdKq9oKrXuJEFSQc7oYVZRCDwjJJZCacy6wVNQRMAv24hGF/dR5PkqLIRDZpGobbZInhKGD4BlPfZYptmUfAJdP1vd/2mqotS+THg/SKDeWeijscfiyCRTNxHZyHnCpCEUsL2OFHxxZXYGzM6yVbaZB2vCYohMN06oa9aEIOHxCIDtaRKVnRoOPVV6z+JAvMsdumacvjRkEbMh54gzQ5JqH09MkI5bcYU58C/6VNExP89XbTJmNClqO3h5mlAKr77CNUP/ilgIt0FGftaAVjC3x3kkV1V6UVY0El/G5o3kllf+tGFeCgzHy43SvOpG8SZDOKCJBNcnrdK9nxpMPQP1GmM3rVirDbcWlpDbDKOWEpXkg8n7bEyZsOxlJd4FCEDeXvjDpvviUqMxjDu9aifv2mYiv7sgBjFd+EJzFGX7JVm9mvpB+jDaql/YsPLKnUyRj2IMndC39nacRSbkLRheTN78yN8AXZXiUgL82/SW0OZPehbgAaICGdYw6in3EE+NgR1LMGaCMSKyQ1RxH7PypL+tTyM6p90QfEVuGeq24KwxXh0A1IbqwCfivebxPtdqbc+bEb6PSOZX7GKVbwnqyE9/QJ33mW8uO5aqUYcogaD+KT4o/mbp6sVNjQRRUVYoFvr7c13HP4Vo+sancgas7r8edQ+9P087tdk/nNXShd4focErok7NdB/RDVGVtsINB1pwF6aEYsSrUkYeaR9wYg260Ip4dFY5wyymSip0DAHB2r9ES8RrOrufWFAgUH2VX4z/PlpYuY8BwwRvQsMfuND9mRLOyQ2BwKaiw12DivJF3mQs1QIrHFoBmhCmw4vLC5aM3iscJBE500C+An55heeGm57csTXLQb8cusbc7mndgvRXkO/IgrsrODZn5pLwJpOIZ51zhY/A3uE4XOIMIi906Bx3VA7Puq3qjR5SDULMdolPtLm6PvWtVdofwAArSNFtF/erYUp9mRXnpFBw95bPCpfHW672KBb0g6VLHU9tnB7pnKtMoHoudbrUsUlBFLZZax7j4C0+Fap03fNxhFnCqqSD7nT/s4OtCXKvCHp4I7hGnqVxoz+pIqokVOpVup922JIZbl3DUmBAJpC9/wMRokuFV2TTrX3YGWan3/rkuNF7OCqB4E+7I7sr2lgLtRDcfHeQ7exwkuMSZGva524Lrb+8sw3pR3jL3oqFV5gCU5fNaHd8XExFOYj7TojaroGTQRJ5bVfLaoc9VJnIKlMkdOrxvS6bEfqbBEkEvjwzEdYdrwKdnWrdbxKGVKE/4PXDqfmblIdwp1CG+7KDXVgz7GEgBsFXTlI4wpVNZEEr3R3jfORQloGzq2f/Cxd63M3N8eakQQJiAkvLBq4mqsUNWb7B0qkwFJCWYJFB6cKtaxvdTsnJeUe43lS5N1mvroFjZY7fDl6ynrBoi6ZonXcOH/zyYrl9WTEsZBrJyoFqUdLmN6MgWXl11O9tXKepZ8Cp9Ct+OfSTZDJ6FzsI4Eagi/XCsjSev/GC8Nea2E5PreDqEtI7V9vcEh6la/83O91D2i86akgWOMF3CrJMwBTuyoffpicpMZmcmd676Vc7MQV2X49kX4SDtQNjADl2hawWMmner/GunmTD7JWR2/6M+38w4zDm8Xyo9V44Y2UqfljSf24mwU+LjD26A85E0qJ0S2XxFPJ+f17lgUAUlmkNuL/kLERTS6sB22HTiODW404MURWBnm7fYaxjygPcp8ffn/eTNvgy0tD8yUfd4z47qfqTnhznjohci5h6ygaDcNR2Eurg8vOH1w0h7M78GemEkjd+p7aQYsel0sW1F+t9BrTFj7WW8uw1tyyI3RCcB959uQciEitIrHwh7RoUhmaG7b5tThBBIYTW8aF+810XJeSQqlA1MLz4dEV9yCPDJHOTP/ZyR1/tHS2ynj7Wrd2IocxD/YZ4mpnVNhKXA0H7WZVHR990K5ASlAOXiYSy07Cwh9oqYnJqbbU4RYIVNi8HgXim9H5VMweVVRBMk95Z9mziKPLzCA2xk8iWlhOvjqmTzTo3R3dNXWWBrHbP2FytjYEr6jqHACqIK0aTqg8skxOg2Pv6XDkLDRwpVaoOoCS+pPvHSqCD3z8P7vp7juDyYH3Vs75MzokiF9uLIHLN4wkxKzOvl/2EDh0Sx4/ldiud5XeibkYsMVR336nrxlNq/MDDsh4L8L5yvRbF9EL15UqXxJemtdhE+iRvFGDA5YsHUIAnAv5EUIsCOKAqEKwdV0EfPi4zJ7Tnj/V6IKqeMUWxevg4x5hEU50t7iuu1IeiNQuDYI6FunNMXeFn7gx65+UbtZr2NpDOIVhUpQyJw4CaxXzwxdcUoxEfzobbi4/VMn6LvZJmDolq+M1VuRHZ80/fb3Gqe+39CM6wJqYCjTOsBf4rfCy0njBiNhjA3MulFnHyfz5oFDgpClamuqhuIvgQgPy/W6uOvmSB96+ECHUcE0v0ABISvOCeAgLLKuKKvAl13ys2Eux3NHUY7WOVAIfIB84gNf+6yvLSnsvmJ46P/FmnwDATENnURGYVVJGlj1c6tbS9THJR1Izp+ghspt6QJbm8eMmfOMN21meaosPO4mQvpDFJmoIrooMDtiIUtRRHZJxu9xOlda/e8hq2JReOdqgqwsqj47jjrP0WXxmGY5xq1MNzt7brrk/12XzuG05LR7qe+jE8iAoxT3NEF/7SKJHl44AnT/rcuSr/Cw6FtR6Fy5EFOH/QEuz4xJLw4uaBkT5KSXCDM748jUH1iPXQTUxrHQug38C2o4VNIno5F1WLei4Nrg/f7U6EzVXSkZVlWAQ5BWfv5sEXjINA16lALQrMYCa4SDdoFkUTIOEKt4tbYCOjjAU8DUKAlMnh8DOdbeze/ahOWgDzZ47DVvcl1ZtQxB6xrU4qu7c2UkPCqgT6r/eMiEvgLROY4tX7235KvLGmexuK7/ZO9kfNyNwh73dh+tSi749XwQEuSqx13+HfIO8ScufMNJgjlSQ1o8h1Hnk37oq0y051+1lpbIoYtvdbxfUmz5HFGgRDOgDggEIuOGNZOX6dgs80IcAsDAq3NvgVeD05aBI00JX5TbhgUmxtNeVVAspa5x2ass56pEJftT96jTI/pabqyacHOguxW3eSo65tYnHRgvoZ60Aaa2sXL1BO3RTlH/GP70zFWApi2naG1gxRfSniPP9vM0lKesldeacSTV/a0XObkJZGmtI2kPl6mUMCmf7cKEAQCvjne84lRTxSoi9smyPfwUupfJHEbqIJ6Ybbjg7ueudL0/5bCUunNdy59VgCt59GLkfhtcP04Deowkx8bErf8WkeRTadma+dgHnBV57BX7JRZ8EePWpXTulxa7ArVwJ72u8ZEkbNJNciypehXqkP7alibkyJXllSO/77PjegstnocFRfrOvA+syTjV0KuVXw8fLj55Z6lUbj8MaugbG2UswR0QtJCf7SsOkiO27H0XCsdCta3bhscPMvPf3EcvcdyV9aF43d94GAA0k1k4vm16bQwg6hpt+Q6liTu64IpE0Q2z5FU3IY8Ks1o3dVKhJM9+cX5RJqZPvyUfZ9haC2urD16aHuMKWpoMDdIDY8jrPZEOVnUbuunJuEeoHMA6GA2e9ZbBXk8NX4xvyrH4zBf83ml1+NxeCc1UeC7puSpVfagj/ga0lnNbtwSuimLGO0YNCrlBrzoaWI6DCWYqPXJXjnfRb/YLyDlnedlzyNHpBrQSQC5BTWX7IbhB0ACA+ujKRhKjt7A67EUGra/z3rwRkiQFtFeStgnk27eweYuwDw7JB6jvefrqHN0pmuaUIBsta5T8PFS1OlChZ2wVF1ZXnoMqom0L/usaYF8n8Wp26nbwoWp9B3z00g7tO5IwR3rGexOVC1A0rhHxpc8wFvcg6AhWdahLtpmBdvMGwixzuHnOfZNZPm9mlfjBPJnJQmzqju24ZpGNMk4fZfr0qBhY5NRhmJ0Gsh2iPqb8E7lGZfbAvmGcvu71+kXFg05mqKZgJ1KZkSoHsBLIEdJ+ufC/DGiddF5zJinQcByCGVNxvlfY+LA6+q0NyH1KjJK0UhAnraMBpIz9lAgK5VUZ94mX1B/4Er6fOeXaSNSddJkvB6nzhKfCP5dnV4tN5D8yMR+413VY0ThoRzl/OV38ktwU3eXFpk6JZ5yAwAIjOVWJL7TngOxeKPqju5KlR5BhP33c64c8TsqGsA6mK4z/6gQgmNCv+0pjUYWpPjkNunZrOa2/ugmWyXQ4YnZrH37h/zBTDpgaBjnuWPVWH7c+iFRBkXApaVAT7s/VS8KPiwxzSQgh4Ti9HtVZDeJGDniBmzuBnpbs8YVGSlFX7sIuARopvpBVBsl7uf3+1Gu2bnASuAcRlc3l3ngJoipxDdSjX8uxHjGy8EibaGuKry0Yj7CG5n/Tk2CP4bVGCaZVVha7tY9Wq5LZuozPKdgApYm1v1hEIIbiwmIiUU4NhAwHMwcJUepJY0/7Nu/n7oFyO3/m4/Y4gtoRaK/0GbJ95mGfLrXxQMGBGdLGlrDgIhXhouNyY
Variant 5
DifficultyLevel
520
Question
Which of the following changes is the largest?
Worked Solution
|
|
−1°C to 4°C |
= 5° change |
−7°C to −3°C |
= 4° change |
−3°C to 1°C |
= 4° change |
−5°C to −2°C |
= 3° change |
∴ −1°C to 4°C is the largest change
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following changes is the largest? |
workedSolution | sm_nogap Consider each option:
| | |
| --------------------: | -------------- |
|−1$\degree$C to 4$\degree$C| = 5$\degree$ change |
| −7$\degree$C to −3$\degree$C | = 4$\degree$ change |
| −3$\degree$C to 1$\degree$C| = 4$\degree$ change |
| −5$\degree$C to −2$\degree$C| = 3$\degree$ change |
$\therefore$ {{{correctAnswer}}} is the largest change
|
correctAnswer | −1$\degree$C to 4$\degree$C |
Answers
Is Correct? | Answer |
✓ | −1°C to 4°C |
x | −7°C to −3°C |
x | −3°C to 1°C |
x | −5°C to −2°C |