Number, NAP_70016
U2FsdGVkX1+ITVJ8cWfhE5HPJ+KYGP0qR9UUXLBJ21nhGl7OPplhZG+SlbYDM3jXo3qbMyQVuYzLBs7BDCzhAX07//peO26zoR7T0bDmLSW9zJAhLh77e9xJIVfjhyQpNPRARsZLlqb2JKpzhbFLkOHvm+Ah7mNS2j/uZV4EGlTEoKHLtqwrOGJMVcw/j+21Diq84QtEJM1Ry29d/plm2uRTr+XSgrE1w/vD/Yg8Kl4+GBdoAcwFiQCVVhYju9dFZOqFJNYF0VmnmksEZX+rJh9pG6AHoC115lTXS6zSg92criIiqDE3dsV9yj72+f+1J1rze6y9kC2PWe60VyzSHIAi+cLkzj6t38Ij+ot8pbyKFsqKyn0tlKuyfkHjCRMxmhPoXPM6cpGI7Ct7s5goEgBlBVZY/CIi4EbMnZT0pdmY+8FggZlcVO8cEEDSd7v48VQxy5Z/hcycJix+gnxfZ3xDoYNVERuUwUoIgzfv74Z0bnda8e7xcJRBrMdN/Obn62PwksZ1lgYzwXPbaJVV84mmLyQoQ4LuvuurslmKxMYvo72DA2ZtJxGejrQjIDs3aW5dwZ634G+8SDf11kf2HDoEDO/YQdk4nNVCNAuVZiCSdfn13YSR+FdaSOdefkx+6VwCfGkZyPdnYuj9ED6083JxsXvjUwYVwvokVDFCvTh2LpKJodWEwR9Pjgs79TLH8sbzkMIjxjIpB75+GJQwXL9zs55lEXDCfrbvL8jIc+fc2B3ITqsJA4mdmxXfWfuChsvqwAqNXVHBX6cp3toqyZNlnY3htOr9PVxyex6TAPJ/j3E+W2kX8Rfsv8F+gtqb9VQTxbB7Lkpfv5LEgS1UQH4FD2j6PFCVeXmVNU2KOI2svychsRIKxRkFxv9EM9mqiuJWYO2K/EIa8mpVxqEL9iaTxM0jdvnAXT8eaz0ij/n6K9mOG5uyt+Rz8dZjzXwffO6WjO/FyuqvywEaUbDZnmLOui/hkvEzWsprNUVHoUu8XBNXQfwBt7L/Tw6DsqEOFXRY3CVN7p4wFecwZXPDCeUi4QlJ8A9RxpeY6GgMWW06NJ3bDFL8YQHyhTPILbLlwRnoePfbZv0q/Bpyy5VXPGqhP5vYgKFJv/A3YB9cjDyGWZz1QEKq7kOuujNpBQ8HQGX0nGgIlfxRVsCcIXFBGqMxX670Tdvt4LfoBX8wuM414JSRHsyagAMK0I2aYQbEwisKlBqqzi+HC1Wo1YetPBkNoxAzQ/YBLD6iv/AxRVZTay/2B+v5aKKDw9/Svn/stCcbrrAnxSiMi1LuFWxNFpqR58D8j9BFCJNAGVQyFluBQOXFV7V93SLnjlxi5vNmZi8IUYq+J6q0YdCUX7KCUkjSb3IrFx1FIPvAK/QE5/INfNHfGNUu5NRapx/2h5wmg3F/IGjkc77WVeoFMJSrVcgfrs94k7EG26n+DAHHYr+o0mDpzQx1RFdFX1UMsAMZwKiHYUullodY/DaomDmYF8Nyejc0E0uyOYvLcaj+hFrowl/S5iWFsKVI34WOCZM4ttHd6emNB7+MEox8XJArChLGteEznWZSJ+0UHi914BmyFX9+zSNDhRsxvv6f2hda1MBkAfYlq1L+E198xhiWAzhzZXUqYkR2OU6XYGiLpKnT1YEb7s9/dRH/a0zUS3Dhnxrj2fidISf66H+jaocm0u4/Ih5qEV1ItWVfMj5eCpBnkYVhj5qeEwR6jlsW0WRDQJXImMi7pIY6P9ndDEB0HEOzQR7j1i2l3aU+obL2eB/7ph6vtlygE1RpRmJGfE5OAmDt7jorAorddPUhgLbxLYvVov47mCqUM8mgGcSR6GMlmp0dI87KV4MfYqREuBwaN/Mi7XxtA6EJuORv+KG2RpJbMiuLYaYBj38yFaXZynfQJok9eXPmd+EBPIAaq/fOzEPQBwhwzlB5dGnh26txF/jIYXJ2FCDbRWOFN2gTghZsdUzB7qir93nx1cZyJ80guOJVE5GXu06S4FrjcSqpkpdQwZzneojmh6fpeEFf9NtvPWNVFImatfxV6x7iCv2GkvTjSH7DOH++Wtyk88fRv035wy7MjVi9cRN3zS+dZ+ZTzXF/dQ1L9VfB5843g5uwY5l56CrfRAOMaB6udONeO++eJoqud2KSVmj399ZS8hBshLK5G7is0hezyO8bwGSwHt0LMiww3otgJrAjyAxIgF4gGFKD10mUdiYrHmJuuJlLFy3C3PVcE/d7KLs7RS6tMdmWs5bfyuwxrZvHZB67/9mJHu43JmE62X3GByMTl0Qf7bvWIhtPhnjI03RGt5VBmhNFSy+JQNYDTTK6Cq34jo/+LMrAEinoidVNOWVeBBFuVskzK5H2mY/+yAENfoR5KCzKQBUKQ3YU2wgO87VIz+JuJZrteJ10uwP4oMIqmAh7V00mU0KKVKr/cj95dcIZt3bRX5EA4hLXxM1juZgChGOWl4uTOcRib6TpSi7dFu6oY/TujbVF7LxcfVDSzChV0ElKF++jqhjfPPc1AX2eS8hg7Ut40LsDQd9vxGAIuKxJOKVvKzpVdrEQJ3vgGXq3k/FJ3Cps8co3pAbmmuSr2y6KWQFggsDqbMvq4KfcfaffVMxxp1kgq/T+95bM0Blvj2ZcB34G98IblqP9nK0EMDhBkIAcuG/Cn6X5vleqSJ2Y6hn9m3W8iAqzZXgMv4S2XI5WLLeYc+41wk5qV4Ap+SLIYAXq0IXPDTLk8w2MPZXOWgnv2+FxC4BLCvg8vZ3LeWan7pQ98zzq3uzhtWjsxuKirpmES4rJO4okfPYh7RUd3GK0TddSR5BbAgAQ8cx5YSNSOyrRYMAGpUEWUNbLJGLoKMb8mLJ2LegmE7UhgcfVzORWGP63WK/1tQLGPlhYqR9EoeNz8IukZymAwx19N4OIenjVub5UB0t6V8CUfc4Pyh+DPDuiY5E4q/rQILi2pceyLmW3jiM5DviArGB6a12qCXvIMhboGi+dCARInOdJl5Y4YoghvxMrDC4EsluC29j0Qz8CocqpVRo56oXvIr8Muhy2Z4ZdAbSyuCUx+jCTtUK7BZh4PQ/dSLWwpEt/JDGgmdPgFcAd8b8SHgZvZZRYpzUSMks3bwPctzm5Ut9P20HPD/hPePTWdD8GuXH7hoSkr8zblRoWSzOvaw+dqO/cFyp7Uq38+8pYcLcU7oKpMhr+9NZT0R329v6KrQki3b53cwk+R4vp3LxJI5RP/eyul8dqQKvvSRESAibcJKi1l2Lfj5Gjs81RmZ3FV9LJIXVRcWpJCv5aQchYtZ3n6FW6mTP6aVYyxSauadnUdWe0UT3+v+qNhh3SF4dnOoCz6vFWXTYyuPBOzk1grLntKQxRVEo8XRhHAmLjrvCm8QZDTAIVFeEP3pKb72DnRGyokPonNaqqw4BrRUyL7D4m/YML0NhpkSuonBOcyaLUa39oZ43CzSER/gp8CYMKGOco/RmXiAdKq7DPnQXwkKyjkEmoPJgU4q4oQCdngZDQSsO/3YRcVOTA5WuUthTIDSWhZNLl3NB7FCEKjM2qzCxkm20OwbOo9mXGUEso1wS82jSn6E0qoYj6fgnBRVaxSKzg0CFvY4ifcVqwx352jHNx50/oqglb3ITPNOmc/ikWyLvWug3iNfGpg381Ee94xVLZ62G6xlPO5sec82IajmG39uHWIfUEbrXas4VNBc52jj2kzKWWm8QFLeNTt9jBry30oddzzt23k4e31KE/RtRjawQyCgJ9c9b8Y2lIaJq7NVUE6vwxafOqzte6Yiori3RQ8NFdJfthCZdvx+MHXSEbt5EsZV9y8ldBJcweKYhg9Q2KVrFzfOxgw3Z4BalgE7boMBcLKnGCsgT5ELgNQQFQPfNilLfKPqXV1i9iljB6P1CCBQjqOWyjKSDGvurl5zMTj3KguI+T/W4blxgtvXR6x39mESS9q7T11EZuzK41XYomeb9B3hIpRbpShPQZfvhp1cZqFIqdPijXj2sw0911tMMJOw/C77pdeaWommm2z3x9BxEHppGIgbz87S/xIfKGAXYT7UhVyEKuAIAMoUVN8u8ltRCulG1KB+YFPlTJ0PV2tgFg5T5tvzyu3QAXFy0hVi66pM+i2iTrpD377jiKdtuJTT5q1xQS/utKScpJDcnfd8U5eT0K2dflqi2q3QjFn9Bdw1/jty7aMbU7jsHi65YPyOj2YmqrhImly39DkDxbzuzXGKrztGvfVc4UJ83hrYOwmN9apuI+l4V9I9LO9+KsCxvXPlzio2y/4UpsYHXy4VX3RIa7rj4OBSe7WEq6M+s2Ut1REdyg2hgzLsJTliY3q96bw113Jl55nWoEYK5ml/ccIMPJRyCWhe4hN4bRqMiCKHNw+qA8HjSS0E3HO8moZFkFK5hOC33ZSBrGGUOsCWBz6Vye9Gsmd2L0jIkpjHviJz+uiN4NXVK5YML5P0bmo1t4N0XYEqXie4m8x7Xt60rp5+CF/kU3s+i2GWuTMvWrdCILqV3o6xvbrqIM6Sj6mNpZrVAV4WGk5L2JmBom9bBXClFo/ORQTKQmyUy1X6ZJzgPnNvxIGKv/V059c5WZlvp7bo/E16aSKtdByS/KeFGSsvg+gKyDTTgkriUjm3ENrI3aQulEmHImxLBYL9WLeRI6+qeaCb/kkHe+SHlr2/OrYaL9Gs7q+Qqw5oDZLKTnvfFaIEqyqU8UHoPNuJmHLjVHoNkwnbj5FYdpR36gN63fAV8SgKk8WWTI88BKF+ZAfeNehPB7VhzYBJl+E2HTsEiP2RvFS3vGJ/bIA6YRupyOLoTRoIrrW4i3QpjDQg0oqUfwTnjj+5kLXO8X94UnA7Ux3J5enRX+v0dWzCH5Snbbj0azDAWGNki4a8EhPz48Jbr8JdSe82kcCTcyI4z2fgAT9XZeSjHgJoFSt6GGt17nR6ZNWU0PJdqCCLf06rzf1aRm7b2qhJctl0+O/xn4fpQr7avhoIlu0FSQd7Kx1IOcC637eegKC4xOlhik1NPwGKXDyqZZWHaaJTAic+irFvNeO27j5WhLiGPgE6BaKdr/pvKUbWHNnTcR7czjSOV5ju7jHveANovwOLJC1myKtqNLtlnAaSwZLJZYM54jpHkbAWf4fyYvnL/uTLXcGy4TIDRChyPyGPWzPzgF3zriYaK/iW2XAihkb6aD00i8N7I3v9FddSZum2zP0ifwxcmeCD0hvX297wyMJy7LS9Getc3rslH8UBtEJT4taCm712Ow+S3YRu6vj0KIass2gg3tpzynDYKneqSRJp2/BAhK60JIqeefJyCLl9ge9joTYCz0O3zjKWwTcnmpiwNbfQWLAOnOANet9wvGd1pFy/GfGAoSdGstFmyRxaUlKcfUrc49kRwXMSv6P2FKJyEuy1P0AYsNReg0hQudXJh4b3+EAjKNXODW9GyToSy3/CwjMon/k16GkXWjTWCd2YVcplMIDeDcMLx4kMyCtVahBlTQjfvoDYUzhAYxhxt2N0ZeoRm7hMZ6+1wN8pU1BnzrtVwxV0Aqks0+Fhlf4EqXGWoAotS6jmbr6FNnZinpuVjllp7gYv1dsTTQ/KeXW1pEYa2NoHIMJ6eTCCqp7YJOs4gLUYAlazRy+XHMj7bszsXJAo6tNWEaIVTovWJqyB7TB2bxq5VBZ/f8uUFubDXvMfRK2Gq1hNSiu8kf2JwodzXeEkiuxk0BefoRFM4BNM/RaSYYzhemrelX7WqJfQ4Ae0jBXBJj2TgLVBgXnYr6WySvYc8t2AaRi+SCEDQIdoGj+tkyDueVLx+Yr7fHwq9xgOgOIFTy6yrSFYPByiSDvtaq3h6SplYlOPPFCgJPeaP/lix7ZoeK6zQbsoJGM11Frf8CCdRSTAzemNgsJ4i+NEIex+RaAfxuC/SynFCQsZisFxg6Q4Y+yQsijl4ixYA7EHuGvmRuo31OlqviY+aUGqj85lB+0Su5uQNXm+DYPzws5tQT+syYkE1cjeJ66jVUTyvaeaa1sB+gmzMiFj85efG6KI58wz2iXor7PPHc1eon6sf7DI+g59pvcqo+QeMp1KNqfQL8U6PFD0rowJStpxb/tlk/KFhC4+hOkxkrk01LRjzZ32W5JqVntP9HYPWtDzFLW++40EivXY2MmD8Ih2hemCPeyTAlqsw6l3CYBzO5b5Fg1BuZ4FK5ubCJyIuhNRVPSMrZ9xRmcdtv0tgZL4h1XN+uFsdaTytvWeAN3wYRVjim1rDUIUBBxnNuDxWULwfElKTIBfBm+QtbylEyskHYg/s+Mx4d+WnUjcitr/vP6mHL8KYUaNmCCpnotxCnAMGjS3EWOr5a7fGMgy6nlow/PxdKB3d9fKw+iaIhvLC2kpNjpEuGmyKslqpiSP/k9wMoHYq3fG6dUOfJFpnATBB5+foynQrGdjzPpXt2qi4zsMKuAjUDc+hembkW57Fi83gMqvMR6/MwsGNkaW1U04YxiPxeTW6FnfhGKDQLgN898Hg4ghwhj0PW/TN36h2EyUwk8GM+TF3bFzHyOuOO7CyMY28PK5m7uRgsO7Co3M0kpf3cWE/dWIcBxnWeKJPrqHFBfapnOpSAUYiyH0MHFZztUWtEnoPUV+qTkSknCiKhBbvRylvnIOSiXN1dqV7ZBR7ZNhH8YVMpdpGszVG8Uj1SSJEMfFba66IyipAj8l2HJpu+0Myl0ClNpZIWdw+3frWxs2a+yPCQYGhx/TZYvrnOtG7e6PtjBKPfQlWqZARP1IrhgoRZG58BhVkLceOqtz+fojUA+sXE2qEX3FEplBHTmZ62gSxmdoVBBdyDLemr6K21JGPxuIQRErtCeogegcqLzp8k3hrrTbYEykgG6o3x5a7CEHw5knYj6ih4gV8pb7wKFqk3wfoeLyGlxYkI8pAhFz1OHK7AEdzKdGlI1LhcvYFIjjo7qK7oRrsmOnLOTnfGC/0BoUYuvWL8F62CvBxoJZ32tr3t3fGAYBD4qiZjzQKQa4IwP1oUQHp5904iv9DhT9a878Fvapb9CXAtqEh5CK75Ph4UZvxYr/3UywNC5hJDjKPYh0z4KA/8aJRWMkuwFO48kyYk/uy4uhvodIrVQPyAHpl18ImfL6unbrqD1ngfELJaPvurw2zR38bd4wiJZvm4XbYAUmz/TPO2097/HdTkAxKSweRglVNJU2cAOdw6TpGGKZX3PVsIAIHyJ1EkOVh2KoJXVX00bpwxhz0iYs8yZFaVR/P+6LBgQx2/Hkr1LhaHioeVMRTMjaEpV/N8T2/nSDwhZIgbP/1m0qPl6ii+u/mRv9T+D/PsTQKGAal1P4SXKYP3N5uWgvzS2lyEgFHhmWULJMUwu7gxx+YYpsWeHJmHdb8LKCcKotrX5krAE6mnpAQximp+4e1bhk69Z9H1XDShGMSsZmZvrWG1XHin4VrXoWwTft96TYwRNEWg1AMAQPTOuM+QRGn2WKRmlR0661NCgj3lefTODh41+kjlkL2XCD0RSisfiEVnCdxszCITBgZ1XNdlbnGDQknti9UQEZdn/u8xcmFCIvy3I3bWVHDb8KBcKF+y8GfT8QR1taKmweP2ZMn9LUiwwRuv6Of1lDZPdr+AkE6bxYBAmMCmXqF7IMO8E7li2ZRR5uiioFNTlQ7qWMmz0xUmNNj48PjamT0OAtl/JVD7lNuNTZ96vyzBu3715XM/apZg+tr5yc6q6ztG0Pskw/XMfSBShymqNyxcqjmTqlWmSwSFGkHMv2d/i7SdMCMsewzwufakzSckL+1GKOSHrajIG4YqIdrQnGIGJTJr/BaVTg1lt1E2msA9ouoK20vJ6DBXF8d0VnwSZBGf+KrcP9BvPf9q21/kuiPDYqafTdN9U45DR673UHzTnyMminGbDWosXgrZLn1Ec/rQMMInt37U/MwEKtlptMOSNIDe/QcsCqOYE2fyzziTU+v17s4UlGKHABBTfi0pGAvZ3tsA51BDO4vAZJ/Ydr2aRoc5duBG8eIoeP45o0H1TR2WMJ1Tootpsx6UTqdvFIxUWjq+fUAWiJA+nprg598U5yEdZ7lG0TT1tlwlEfTjXvz2aWfDklXukm3oLRY6pgZF5hmJNriOfnw0KV74vp1QhJKAcVSM3HHrDqvtRju6jKpD5zBz+0bHV3HIRfsEoTLXiW+rfaNtQBp0XO8xYghASyxswb4S5Q==
Variant 0
DifficultyLevel
388
Question
Which of the following expressions is equal to the value of (10 × 10) × (600 × 40)?
Worked Solution
In (10 × 10) × (600 × 40), there are 5 zeros.
Therefore, the correct choice should also have 5 zeros.
Correct answer has 5 zeros.
600 × 4000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following expressions is equal to the value of (10 $\times$ 10) $\times$ (600 $\times$ 40)?
|
workedSolution | In (10 $\times$ 10) $\times$ (600 $\times$ 40), there are 5 zeros.
Therefore, the correct choice should also have 5 zeros.
Correct answer has 5 zeros.
{{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18gVXaf/c4sJRlQWwgaRbIhOdv/O42+Xktdzr+RAutGJVM33yjjA/y9En4UVM67lJRJaT7QVP8Oo6qy8rW/+tM+dDM9PIgovTyeeLImROr223KqkjOSWXFNVqcpJ4/1+XEkFLnh2iPKsXYgppTTTdUYeAIObIsWRSGYxkaLvRPkClpSgSKqjD6JX9+r7OX7uYCZTcy6RRo8bTEnU1od2Yehkl++4W/eBoCb3RQyLUV/52/bzbvzs467jqwBCmfgaoE02Id3wOOl9JeAdigHpcg1sGTpeFqC+wvXgBmO/yqNzQNvQ0nalWWbVcQMPx17MOP15dXLq0vSfA7GbE32jcjXT/EawiIj6lxzVUFkW2kJhfHQ8P+CxbeS2h0WTJKi6CCAtYUOQDVIstp4Blu1bZGj+3Qig3CUfiKtvsSPUgc5oyGtMZ9+GcZnnFYOkEE8rRG5PJpJJa85uRsALeRwZ8jnymdnjkcb6v39zklYw7R/iKrJp6YUabboG+NDLIl1t19v7K+1P9dc5L+0W7X0r/mAbhoC9L4T1J2g0k3MHhOAuVVKYU8mI52dbDxK6hP+usDsxdcA52NC6QIP4gt2lbxEj/IFvBVKhJm7gQ5+gSY+Ft5ck98XdJbA/y2KNM68y2S9bB4qFpyRZINzhkeszYfAjUBby8o2NwfSnHXpHTnoH5qEUvGcsYFmXeSU9HqosmhoyYyu6ibS1m0X1XYhELCGMNFTnJ9IfpJFQEsL9Hn8cJIehWv+RCFw1C9ySxzLXGtjGqZVfJRG3w6HGdREWFpNeXE0xN+bfY0qOURyCv4zZfNkUwyNcgYKXx6gPMmK6HZkCbQq4l+MhbeiyyqHiXDqsWyelepOv2XuREa/hchI+AkIkmlPZzXGTRF3g1Gyn5+siyqe32Wo8EUcgsJJPdE018pYfyO77sK2Zr8Vn4bbaKa2rPh8pCVcHd96IQ/hkVxuHwwgFI2DgiYniu65CI2ro+tO1zvnZVcGBTWfQTRirxa0dwWuV9cGqd8hdWSYBp7JZZmyZzVuWmwTc7qF2DzH4mqOwRt7T4hEzoB0J1cXOfcTdXKeh8Jn9KOSZHzgK8oNGadX8IFSoAzDqTbHsXtY1aTRsR+XGf/5CRDFfPwNnURQbUjFCbtHSQlX9MeBFf7xMDFYvdx7/RGZSqNg836h7E4JnhHxxwyHLkoWHtFFUYXJCmbkSZ79yXsa95/BGI3dCMsriEvSD32v80S7Pv0e/QdJSErs5yU8I4prm1l/J3SVAiIENt/d0n1P1ZZjdcgG1CmdpxcTnp3dkTnMhD8MVGqm/ch+6pwqwCEdb19wUvxWoEOZ+OnmS1CbUvdliR6xAoW9iyh75LRwsGwLZI8OuzOPKNutQ7ZWPICWTbpX9nAATXh7YnIOGi5x7ZEYnq8unHRa6zKXVEZnIntSdErduiSEdVPYa2PrrywQbHFbpY0aZqepdT12JtHVjY8pEO090r2UcsTzeaJr2nDJVwZ5mzi0I9S0dE2yNTEdG3pxXA9ntvU3gOJamKpUC9bYqQ7tNEk78NjUjuEZOSgtVgfqoTl370RM3m2VUiVmHyFu6ogqSbdw+mkRWRE0CHR7nUxTN/JbL8qnDFl4eF0je/DbHsFb+iZY18RH7kOIPkEEYBFBFDN+KZvf4uD3NcmH6GIkoH0eTexzQ8Hm3XkAW2U0YrhukrA81bJc/HwIjnsaekWe0McUFA9FElPe02gGDN0Ju+wiwZ3Lg+iwvrg1J7rTv4EhHbZRxI0PmKrgwtF0fTsHiE1RGohYw87eZ1LikzDBPVCD1YYgEfZNmosHA8b3wRDNxH/7CGHE7bYkcGMBi1bM9GUyvs90RMV0XsMgeFON0/U+hVXlms/uCiYG+H++RvS2YQEbTUDbBA2iW8eMauonyHAypa4a9/JM3msCzPm2Jby4TmSl9mZdLiMXgEX2nMIIBWm2XwkeL7JGb60Vi2eP3G/3bQjY6gIn5PIWOvWI4nfsgqoAEmXFTkDPe661JWKkU5xHkEmekdtwN5Eu7gn6uc2mDLGvktkJgDL5pQVk5mrZn4AYNN5VQewo/UCzxT69MT387h6vaBSQrxgrO+xhMy434q2LOC3jCeQknz1jeaimA84ophjrId37alwbLLxVK1TpNyCObPPPvnQlVBTmTZqGL5ugiDMbcDkZ3Ual7R6J4OS6898xpPVOEOPQ7RAjh+j/8w7lZvzGZF14eaHhxqPM84XU6o1XW7fS0Naw5mQTFVHlruXcU/mVOw4ExxYxnVLz8Q0SvM4RrzYniAL0W87/lK5ykwTAxLNo5q3YitbVcQMf5weikONYE8u1drY3TWUfJCMbKhvlMFFWvAqtb3AsyEpQBiXtCcBrxh5m1cATMotXd0nteKeEWAViL/bl4vwa6iLCDjBXnXK+BxOnsgqfw/yBdGaSrfotjXXGVnaTBuaZ7znRaInhMcDTyQERB9DO5ltc83ytG+nM+u3Fje/dOE6scMrn+2B3aXay6G/qmUOXiohiaGHI39IBiu58H5l+tay9W1yyeH/rWpEcQNpHaKZ8ASZm/nx/sxxPi90xzGGLdqRIib0MWl2aUnTqFpmfeOzM2wZuT8Km9LFG4ts00ZkrzbflcRBE2UXoC04iVqqhtZs9w7+K1BbhHvf+1lxPWbfSUSVwScXplD7kDUyTqTevNtv++NGIrmOgiL7omNZU/uWL40PhZ4urQvgseeyoNVsFWJLNbE7z9RVogszluGiXQTcBUi3bN741SXbeHpByeLR0LsOBTbO0UuqjmzntJDj4ZEo2TYk43Tw4mZlGv+FIsaQ/40gNREbf8w4K5OezPMrggMhZ+Mpv/Ahcxn34Oxya40h0wb9jnQdgUsSmGo4s5qgyUYleeCFoiRPMSCFiUXZGsbXqFUkzMytSAuqprJMjQg6qhjfgBSbvbsFPFMlhZ7ReibidWaX3ub/uYzJMy77NVjOUZd75YioF4A2M9i309/eMOWhO5+zu45CK+MyVTkcdfbYmX6kyUTtcq/CfuGwAhQtWkMLSsc82HzwWhtMmG95uB2gSXOEUSf7iT0A/WaBbRZ9NvEQaKokKzlSUYiOPkew68BIhfzLSsPv5Z1Jik5l9b9uq8QjrglHjI7M/H3LhvooH8zg5h+2NqHrUSkjp5HpC6OOyJlPdcZWCSUmSouZbf+huhxSwqpvsGs0Ie/ZuAcdTrhyvy+GFy906veSigmISHNaloVBRkWJOhfNrsc//7kf68SsyIy3P8MyymUhCP6aFtFn4+pywlQn9EbIC8siokvWZrN2yszCpnulp63/DZX4FYBpaCuXWJWhKHEUfHCEmguuNw+C1xi01GXnE3PYgi1goXsbpe2gELOOUo0Xkz0Q0n1UFEV2539muMw3eVeZuBw+FkiA2yki1pTPlVpnTuCENUEIy1TGyLrQFMPOfJtxNebvrgv69bFJCi7Qh8wjXpmv+QgsyN6MZM+FdzbEM3cF8RPQyfDe/PIUowadTQ1NFqDW4W3Md6TxzaRkrvARYEsLkKfyZbHCPl7cfGXUxV1ffo4MCeZUQ8dCbtu6EnhyP9Xd0AEW8TK3/72Ovrt80xkuTnWK5bDdD/M0V2Jr9Bdqc29oVs/STiyXXSKS67zNIl8D7+8gKMCWwdbQSeYpJWRiF/1xnABVqtGkalZ0FgLuVUamo8jX1r8vVHrZ36JzlUoXD64F4IHmMkJMYxLV+h86DZoQMPi8STKfjdK9gJ8NyD5peT7wj+SzY6s0fvvZBDN+xZwWNf5RoCYjnRHkWs8T5FS9px2RaJ3phsycbkOKAgv+N4F+znDojJ3qAcHICnA7PbOWWdx4gkY7BG56JjATESs3hgqqdPLf8JAYLxAttlPp65w0SHkGuZPQUzrRx9nW9zEsrozGD89V83HCLUkfZt40huh/+UXinF51yxV8wNwK7yRBcmAS0jCGdfnRJbOR/1URkrPmrSg+b8g+tnzm4RTvRJUKtNw1iOimOe4e/xOs1ENEUbjE39R+VSh5mHcD6uzPSMM0eAtyD7t+g6/BL9F/A4ZurbVq+lGVFJJncIh2MeSxGFF0ldL8rd3H2gnWYug3NayABK72ku8SZecAXWIzKC2uVXOgt9juZEuEwAF5n3AUOEJed9GMm3smzqELes3LmMJdKpunVSF7nsCsMjpnSd9mynAV5vCuwroI7oTkaHIKzE73FzNjq8UB5WVSZaLfvzardnsgMGu+/sZ5JKAxfvxE/IHkbzJTO8U9TUy+V8oGS+KGipA7usUj4UkCSm5bMpeEHxXx48LAtL/eZOVoLxi6lQFaV3zKCEuWJFOsfi+4z3ARkhonY7WzIr99gQOqD9j0i1A4nNtYfZH+bYWY4e28QreFhtDsKgswztoZywV90JyjXQGakwobegcaaWne2/DlWwRflN3lE98XD6P4gECdIGE+/QftJHVIYLRW547odKqJnvReHZGNNA62S2N/f+d+OW7bkrHWRBKdtGhSnkGiNuKnznaZACepWcozzpHMz1gpk8JvPlGOLp+jifLKgfd9W+sNj7xXqSBhEKKDktD5oVKceDs4k59OZDFGj3e96SVxyYWT8JezZ2sfBNf4q4MLB7NDpamdMYIBOBFFNRTGjQr//nYUh39qtMicxWX/uq9yN1vBQ4yedlv0krIXfvh0IaN1i8Oy1JOIdUTjXTj8CksQkzcGjZXHuLGRSl+oC3mpRXKQQS/nglqnac0l+0++dFyhwM1o3UJi98BK3BDYxbjExf0rj9ZCMaIXOVDD1u0v4sTshiq4Z3x0KYF0AUEI97P81irM0LOrL3/XRbUfmG9Eka2Locjq7/C61NllDiFtxwG1BgqgpSlhqVK1irMV/ssy+NEvO4/b9r/6v5ormWVw8ddhLCvUUu6w5ndxlmhSln+pb98PfC4jWG+BFKLhzlFnUNCeuzhqsDNGcPUxzTAyvQcqd5CKvRpROJ0QX5EpT9QdwRFsGWyeb2M4MDC2irtaCgmIezMVkT5dqK0YxwdI7s6ITeWtADd2qvA/LNfQlPkDC427Eus/PgXGKXlehh84u8K90sWZlV+bDBJrpJFlGsH9yxVEGJ/wLxVePQgRV+wxSPapfxjZFVPWVRntOXKQE8twq8629JC9gVhLrbMEgMp0V05vllhP8JN3bq3STevDMdzktnfhbw2MkZB9KZ5Hsj9B9/Aqb7R8UPQypWHpH+dMp29Qt5jfqOKM6oFY3LUbM0qFgX+6Ii9Sms39X/buEPJqWhXKhsk3zoOqH1lPxkWM+6wExQZ6Iib7v5W0cpmiu3h7yAA9Lcewdor0q1Dn0CFfY1/CXrn3SrQ3bIa9VObazJpbLzsZNWzUf4ecM3vegM180qPiVvXWN35nF1g7uauGKiu21k0wVliPKTbQP9qI15f/SpsJDx1j0Nxyu266PnNgeEDt7fIuWHWKGy2A1geVosGo02CznXU9bQ7I0ytgc+B/vcLxeTxsJEwz3nas17D7J19ODCUG01YZMmIc3t/Q3CY+edNS6gW8ME/Zj0qKz8CaBUucjzt6V6nvM6DmB/iIxm1Ppiq8Xj0MuBMOVzyRtBox1XtBR2jpX89vbJDBV9Uh5qoWjXODP86UwpkU4VDhF6wHrZzq59M6YXfQws/kjeomd2ocDAPbDy3oHR552QsZ1lllZsd1p2O0mEuvF8+rVL+52VV//uuhYaPkUj2pXx49kI9EHn0U0wJI4GaJNZRP1odnXlBAKI8h69bH/MYOUdTJ/Ka7yxWBim1JN22DADJCb2yL5XcQyIJBPGKGHQYePILmRO9rXKfGr4s6U6hfd0N0fTrbqXd9yBTRc7nrfClIBIvRoZ9I3YFriYvgnzgN+ivXqhpgRBj9+tcrMiKHE+GRhmjFiw+zlx+ieYycUAP1imtjnecVDEjzuNEjDZIRh32Y9st1nk6wHaeab7QRbNkscDEyGYGXhKtXY5yKIvMZpFhdAj+OHLWWTkzJdu3XOJfcI44pmHUq/AzuNX13/0puI9E9PAZUgOPtt3Bmxgo8VXdY+9s+h5YwXxf9AQaEez/iTgjCfcFIUQKsWbphCFMUJ7Jk887PK/dNv6fQRt7rMtCRPGCAy24NqwTIPt0vLFTaX2u68lbn70dbjvEP38QToOZsQI/bvFLBeIrsW1i/RuFReyE9JHUuzdkX90/rAW2/Bk8+Lblm6G17vFhLuwJEU8zdd4/CoDEgbKhA7FyuS6ANdgXWR9azRNCMpMP2vIAN9rscxm2fFppEYTJ6k2ljjxTHULgk+0s7Mm6zmZR/0VRLBbrD0WYUSKaqGFomODmca3IYrcFkNDEy40T/JGiesXwpe4fVSBlZO+2My0+qz1W3J9dgjuZ+GMaV/ciSYMLaaGKydU4goET7W5hT1EPD8uHpG+5m+VGB9Gs98MIUCnp4xlXOFwNQAUqQIBpBkMRDHlEG3Bg6DDTU97k49oOlGHVD3JiKuyiClfUCzIA12AvUPAxQQeJaIxWML624Ug3PHJWsgg+9dFbuD/lcC4R7C6eYXhs4MDwWnVkxYq51hoEvAwPnff5MtbogP9VxH6IcenyzEBKSBCTV6v18TgTUEZ8NPP+Ob65w/NIIReDmqm+HcczEeJQHha5D+T6gR5Q6ciROT1iBGWVpbyZstDZ00y5yKqgIKp2nxgBBcHVnS953j6oC6d+QXcHZxl9OPOvOS+YhTbVAgYRqniHgItMMsippC3czj3N1g4Ajg0Kzb1v2AQsCMoDdYw6QNGeNWGhRO/p4y65El4E77nEgIgk49DSxg6simNAf9gqiZ/CH/aQMnv/iiQZO7EqsqdATGIO55ToDSiP0UO/jGxeXU98KZnd5psqyMElrR2VKf9wyREpz39WKv9M+dA/SM0Lx3GO4QU72LdqPlCq7cV4GhWjd+wg56mT8+2BsAVGlJ4hmLOcx6vgvN4NUEtRdypJAUKsaAHO1ZcpsApOB9jsOY81Zy+hzsf0/PXhk9Zyv9XbCMc6eXN4hPE/2MPuqgcybcJAKL0Yzpn5iQz6YKHNn18ocP76fJ18OlyV8QQzQsEBmKZTbFjahU+cL2BWjMtx9IFvW4LjNzIscOdnkdzV84WpiVwCSFcIxg68buO9vG0TncDclazPHEWy46xOftY4EkJDsqpphNeGkaMQtLAk67R0GNGTigM8fCMw0sEIX19L7cY1d74uEzBXFq/S+WgK9UzeSvICCb7Syea6RUl1ar2c8o4Rx/zRfrcbRkvfyKObN6ZDqEtjqRpxHYY0U5fMoyneOJRBYPiltVK4ssthPQtRppvNUy8OSPlS1B4KX7Z4mc3jNZUPgEYlbM4kB3ZZLc2HlZG5RuuuvVVzQIT7BiOX4fpHpBCXDB7KVAwLIarUB1dCAqaHW/e124iqZL7+FyuFLEZ/BP7UozRLgk0MzcmOlizEU1q01tC1YzAlFUlxO24WpBYyAxKMCIjOXsg5VsHBQkCX4S03oPCQd1XANuXFS7Ptjas7puUHTaTlf6qju0bOpwYs+BdCEiYUy+L0UHfMEZVHUhfkE7cqJAoYJM2gxSK0k+bIzcFRe3Vnk8aRpi05YeNYd7SklGLT2JTXrIftfVCTCZSvo+UKd/xg/LJs1zFszbga9aUQtyx73Xua6jihDMj/Btuv/azWNNrPQUsvV+M4uqwf2FsKjMXwAH9gHiWiTNMrf1ZjIm987962zBE9g0g05Gr3qPtmKKhGIU396l0K0k3nQDwa9GbrZ/yhapyOt0xSCufoH4ykMrDmVqkXUEWv/E0zzkstG95hqyy9TvuU5IZHjlLFzOI/ex/A9NXpOJQOnpYJavchKMKN0IlLyzSsOsQLqI9G4Djl1MpQYTbMbbu6zzxxLlP37BG7JI16zrw0RB5NEn+iSHtTM+7Rt29DSRQN8V4d+V+RW0BzA7LMsHXUAaWuyWvvtTUNL42vYXJOr4XOQRMnWEZ9MZj4beHR5301H/5zL1tawHQhKMeSOp/iYeg13Bowa5elHoqu+E0TdB23jzLCMWr86NbU5hGg24bnhFtz8/cfCKRhiM5Fa5eXysHa5SuSI/ghAQBQCicI2YO4gRxVCaxQOQ78CvJRsD/kPk9v5etPxuGiF3R9JLQjmhsxaR1RtnQ3OizL9UMzHkIwjcWCMmOes18SRbcLdPnw==
Variant 1
DifficultyLevel
389
Question
Which of the following expressions is equal to the value of (20 × 100) × (7000 × 10)?
Worked Solution
In (20 × 100) × (7000 × 10), there are 6 zeros.
Therefore, the correct choice should also have 6 zeros.
Correct answer has 6 zeros.
200 × 70 000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following expressions is equal to the value of (20 $\times$ 100) $\times$ (7000 $\times$ 10)?
|
workedSolution | In (20 $\times$ 100) $\times$ (7000 $\times$ 10), there are 6 zeros.
Therefore, the correct choice should also have 6 zeros.
Correct answer has 6 zeros.
{{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/36cLUxpo4/z94HZ5rpM37WadMylHMa7F5NF8W6fMOvZTgGpwm/ijf5I7qe4Q1kgA0T1g9koKUFfX5xq1D8ofrtAO3+Qmsb0T2l0Y6uFFjDmBMCwA/VqyoJ9OuUheH3RIj0ohXYke/ozW3Yj9LqF9GOtyKiaWJWP1ufb7dK61h8gmwU4122LPnNAA6IeTzy2ulWDy+nGL0O6Xgofdu21uE0BmbIiBK6YaowNNpYjugNYhpN2iPqi3XbjPoNgThyx6A0VsFUKDnk5C3hbz/ZCvzJrA4XRfz59g6aVAUAUtdBR5GNXmAlnVaDpcexZHVYb+eSPC/TdIY8yt5GDlM2H9KK5qTG+Xk3jiyFa31dkDTEL/8XCUaq7PJOL3IsZ13xKEZgCm7/pSS3JleMOfAOumvVoJNy+Pn8VTXE4fW7Fh413beVgYHBTWDYITdkdAdCKr/yY4zrA/VMvWCK08cah8BUNowNMQc9gccgXpDY49cvf17L1IbVEGL/Vpxb0I8k8G10zATUP3tp93s7eV2rSRdD2TDbck7GzbxHaw3UpAVhcMxdingrWRnza7IwPGkFBNdNlQhymXVnaC3sgXUprzKXaLuqLVDP5ZQJs0HXloHU3qyyaQEqsxdoxxf/EGRzPjZofejc3roDD4T46y5OHF95Q98zsZs/RPwEkvdhBC0cdI4Mhnu05kOnnXja1d7Cg3pB43sWeh4nDWrpk+XkHcZFWseZ9BkYCpWrfwVKDDkXSVugTVtVGKHCEUeTrYCMKLb4S2B621czH4+KdmU1amniWf4dO6LtsGvo66fXaH7VmGY7HaNkoaS5ITIHg+Pq+QqzLTLDRdgkenkKCo07WxpNEYPQ7smEauqCjn6XU9DXvKFUEpqDRBhnVrtZLmbIe8/7dx9X22f66SYcx1nIBRpwPh+JapjwnvSUpohG1emS2ywZOVv9TErWNAfL8Fa3WXlvfum+7CqhaUGbgUDF9xnPn0urCpP4CM7kg4e+2KcrU1Q6G/HVfQZ/dZ6X9KKo0GA1HQWkLT07EbRKHVy3rbgGOmLtVy/ci6ZmvDoSJtpbbOMhlkYKKYzAOzIgign8dlr7SST9fuaz8cob0YbvG35LCr/00SRoikerVsQuX7lb8K18C9QbkEkMDmyxlGEuvI6RbCEZDI+839yOaT1AgDsF7XHjKLS5kpG+hAo2n0zJJBehjyjRiy7Z1ONxMj6w+si1Pwl4b3PX/WpvVbkCxSqJqEI9TXTIVOE+MsNFZb5YIpzLZB7w3yc0IoMcUygXVvQgSz73Hsdz+xke6i8T5Hpit18UYjbTLFzwRAH72MVolZYeiPZjhotA4vncMWl7DvZlMx6yZDNOh+S8eowGWYvtt1A6NdCPB+1E5WlLkCMCV+2QJuI2RgVhOiYTsbtPsASVyXRCiGa2DSpXPyQ+hGiWnS5VDCqM2cFDCJrZ4nQhPlqvQoMIvoo1vl4yh/F8BVGUgecAcwKuvaazbpWEbguKgW6C34N3xCHYypqBjUSkokJiER91jWFAGFpovIzcQH8/0lVR59zSiurM18dKC0AZw2JTCTtJ8l5nvo56nRxPZY6ksJWIe7z3qCTLxnKT7pNkCNjjPYs3pIxjp1m7xihfvHezsxkEwtd5QYKo8ik2byW0OiOK5jctKqe99kdPSqtdGnXwyCQ5UhnZLpjvdG9wqOs6MVjKIJZoyKCiSAQp3SizbBR8XvN09uiLPa02Ytum0omyTRLFJ6cqLs8m2eCzKGDS5nSJ+uV7i/uXbG0FuRseqHw8uxh9pJ8MP+PYCP7ypnU7ZMgLC5N23NNsdhc1NB1u2+CQTOiclXv19WcY71zFK1lRJsP2tQsg9Bm9W9Xb6d9rHuw46jqZSAQEcpkRlyPBc5YC8M7nbRXU6YqWUYg7bNgBIYVK2ietwHS40g8c1mUdHmETygGMQt48AudRJbD8WRnLd14ZBgobK338k5MhKbQofOlwnUYWSlKxzOtTM6rw0+JujAzQsYW6P2ryen6Xqos/6Tai/31bAzYurL9ucFBYsaFDOQ2JvwowY2MV9AxEoBrwUl719blKanb19nRZrhpCGRmMJK1EZdGw2Kb29ORnJkd3x2AQbM27CW3Zi8RKy+XCHvWC9pRMmL5elpUVrkdC6aKNjq6D13b7yFk/wkKgRUbd5/dK106J4OVfALXoR8KsgET+lPqb1RxVk4mzqekDwgjxdDCmVRkU4IGEynJt8mzI5FPnmDe9j02VUXrZw2mYa7D0ceTVVa/03YsBtMIW+0ocPJtJcC+01JH7bk0zFPFhZ+Els0QsQpvc0j64kiYuWAxP0ksf0oobHM2NfXrnxhQRY8dR1db12GM0GybLAkh/ugms1yjA317LM0Uz2F+WKKSbBnU4CLcJpHLqWEMEbhvaON0kynNVi2xqu4sA9QpFOYh/KP9yVawe9XR3qKachqH1ZscFisprbf++fz6MoqII3tmw4v5k3tIpaGA0B6shoX+5r2pWE+jebqVe4MisyPcukf7Xyt0sIKYowLlTE+h9FOKvQtrtR0wwfBRcTQ/sAACZ/g05d2gAhXAZ8UCjGYim2myVqZyiXSR/Lmf5y1myWA6KklkYmSgy6f3jIVEcK5byccpbukCvYBawua2SiSgvlFDxCfARtCGg+c9CL+UwC5tElULpxE/eJ9LimshnJp0cWZczRCMZPVnKNHbHMnvGoqzi8VCzmoHWvwH1DJu/7/tidlnt9dOXNOknpSe3Z6OINfQp6WkngFCwFYWxwLQdUUa2xtsRmA9+P+7ML3wwxpCWnoX0IgQmVy5ZEHyH6eiek2zVFJZaXqa5AxwrJcSqAZx406yl2QOnqtAflv3MHOKwlpii3eBXhIRCZe49mnVlsoyREOeQu/TQwR6EDm5bDdm5KzoTvfMG+BNQ4H7VuwyDLwziqjEkkY9c7WD8ks4bPf2rnPthdt3N6exqpNpJv7+gZD60Z0M7uSBoHcYMlnaSv33lJGTIkQ5MeK9Ix93tplhtLFpsNM1AoSRr5ch5RQ9yC7AUKOApJwKvhAYps4f/RmKIJXhLMSU/QGnHSYnaVdYLm8+97y5nBE2Qcy4PyfdaKl2+EhhGsczc9YGK4Wu0ufTdvqWmG9wG8ESGGkTSjy/VAl/fUuA19Z0vv2q111ibns2hyWCJ9c2KKAwnBpoiv917Dy5r2B/FoER2scgsmVIu8EqUrZY317GilaJx6FHoWmslX0sDVg6FqTNRpjcwPQtanV0sqIejOOMLmd764aQIYjMfjEQEQ19J8snkWmrpnTgHIRzVvcoUUrkANSmTNnUlQz8+NSJvxR8l6Pcn9u/uLm2XWhvs05e6Tv9rOblRYWRCIQp3YEgPWkZ1qHCIh/qj8FBYOmKDjCXRQaexknk9oYAEgUljuqi4dqKPVbp6yvu1XJBGoDfVI15TCsMYOS9NVEy3X619Ci2J+PqZczNRk0y7eYReogY2rlhzaAJshxCxpz17Wf+NA7jDxKEhm2bBpbut70DMVCbwZ08w47kMHHoDOyP9/V6P2npWT7sOLmGoJSu2DSlN8jVcuQnpsetFazDY7pVtkyDcMvB25ezdrWG7L8TqxkT8o80ZAXk4F7ZekbRunsSoQyZKyhMbTLwWZImNDZyDye6vp5N3MxZscM8V/Y4pod/SJU7mpLwNVCeynKSQRXQOWgpbG2zTTs+oL/YxilD8KJTQKvn0vK4hSi3aDJTZQ1VDdN7ai0WV+XPwsOt96moFzFFRUdTJAHffv92PcE3wBffJegOWtWD6CRzXtxYrglkcgBGmzBeuXVIt3XYOtjAgC4sJzPOwvGihJLjWpmlbuVJ+kjA6yjHXuxkTBdprj4BOrC7UEKh34qUKbgiHK/Ff2wO9bC2T31wbWR/F7e33gz611UCRCfztCb9UFLn6tGnF4xcOo6c7hupH5JFktP/yEpj/E3ceyQR0puTuwEFO0q7nINCXKpKAPHNXXA+RO7OCShyRLD6jBd65q/d2UlbXqTCd1BAOs35KcS/JjLzGsZjur3nbpAoBBfJM5jylh1ARri7qjyR7c1vQku42/1k92jbHqQKL/gWRzowmruahqP3p/YRYZN/K0ljmxMvgc9zEuRtQvaFycXAB4kWJ0Pn9v0JwT4HLXxA7wguN2/1WA7G6bUFnUZxWJrGRuP8H01pdCfOW3wGQ4wWX9CZtlSUj5eSB9lUfrmQSAOuqAxwgjKfFucQtRYL8YocHtSXUa2NXPhbRaOy+mA0XY8asxsfe4BcS0BP+f185RWSCuPoyusOyFeyPvBKf0wnx633ab9A1K0OJGeySRjeQJXjfG19DSNPqiAzhbo9Fj/Qvp2IOIAacdgJj0TS9HMdhthQThgRD5OPQPPiRnCR9zLVZPNDXEA6exWOsBuQ+6+pPjh+s4hkvQKLd/TZiLy/wHP4zEzl1MKQJqmzRD0ebXhtgSPuOO1GFsC0N9p89/BHvzbuOFefCN8YeTYDM451nMZxgPwBNJ9dV/Aim0lOqBzB0imWr7p7zzk5Dx0B8e/2mSI+LSfNemqETz5y8s//O17NKRMaqCOlPn98NGJQyazh6S4+4ou5jcT5OFiY3KFN6iABj3k5qBC2oZtUWpTcXJJIrn+vs2KITEW0kn2Lw8d6WHZKI40TI9+d1iQwL+2SmxKqdV53HYxGgyEKZgK0vp7lO4+xccDWqT58NjmghsuHqThRzPa3SBrGBIcQ5PgQaRA+A3FyPraMjM6iLgm77BT68osqCJH4nzB5+m2cF9yUQTG5gGQhKoQzlB/tDH1FWHFOlyCXmUh6VpFwbdFviVtZ/Vz/CeuAJFYR26ELTD9NZZCdE/Yv/gu2TCi72of6MqLgAYiMADWCQBuKkXW/VYzQAX2iWOF0uHFayAJjdIHTDPLCXTl/uGetVg/frgk4/tyufd+SVRkO1qSB5qOjPizkY+0RldewilAYAE3SMcGWSbAvFbiwIEHCZ60B+Elhngyhzzk8qcqOoFVOmBC/UY7MzjOeku8D/IQjk8TYtLphhkXzF2jRtmn8b2B4+Ja0oqSgkZ4RZkEBTdpXcQ7Q0SqPB6Io21c+N8h4H5ll0+ckUa8bWfXWX8JnfXtlpsQWZ6NhmCjmHyTbvNRwuZsLJNzEVIeIk5pOtp4q1u+TUNzT1kbnwiOuUcL7pVRe99lcJ+BVSh0ivIIItL5kplnHxYPWjHu2MpGbq6QvBut8SxmMPGdGZlB9HLhEn6DJL0OZJn4ib75GlsTAUavJv2+ETXbOPZApGqmlqHtVK7SAJ+TG2IVJoTMzJFiZrutX2VvqFKvaGFpIW/34UgnsyLvjntMICdP3KEzzJA6XVsmdvrpea5GKfRhAf0hbYjEzskxwBD9tAN6IKdMfJjtbjsINwJSHHhchiPmtNkh0xJAPOgYvRLfq2UDQ9VksMVR0rXz/AbsPjFH2KvuDHIppCZQnwKUuf51FfFAWpePwHq9yhM0aSTEUrJrLiM8LdGzNlYH/FINa0Qb7/2sDZAedTUPRMQZvkVO8q/3PjdS+XeKYMdPoSrYbEibGkQ/egBrloflakm+HAn2vqpFktP/eOYhQKfgmlFImM6m9bJ17gHK0QYjZUpvZdyMVV6T1STcJW/RIY+/HUNUeuWC+oZFGR4yajt8Rhonl//2afMtzmQE7iOGLNkhaXx23UvvUh8aU5TrPvu86XinXDhNWbxZQfILgj8DAGpUSmQ9MR8C0ML4h8kIYO5ZIeOrO8kUF/sFs0uT5OCnU4dJt5Lviq9fa0vNueQ6ElPBCSaWImwzHqXe8gvwYbko/JFGkkO9luDXhVcdScrJWFGBKErEzA1wHArLl5wK0NZs9cUCt7juKihfTK6ROTJclj1k1VKh2xUBnP8Jo1fsMWyZXuxMnn7F3/iqOdUwDR2RfWNF9De9IiphUHlMlJXkJ72/VfYsppu7W3NdaNv22AnSqXneTIsL106m2OJHE3sAMJ1T6lKg2/ME78Fk2gKPQxg8HHspGPyWzRLnOyjBR2KSIEFzrpKC588ft4rm+VJow2ywNlBCjpDkJbORIYPbwcdTxC20N7IHWlWKSUTZhYyHD2kUsxUdW4Htjo6yAV2GFdL1aws9JjyRx3N44G3SkJfADfNQU1M02IEKJ3GwjxPuHJfIFLWTrBpkwpgtEnmLBaRWDm8JLS7vnudIeLl967XYd9/JuXoHokRillupjCZuNbZ1y5zWkAVa6gLLOBINDOYSiwcczfnF06Mm1x+TY3IZvOhzwwHHL60aMqBSDjxx9RwoHpy2DLbN/yV33yFqtoSPODhmTCFwPSyzTnq3q0WPuo4DRvzSe1F7e5G7DvjJhdGSBvdON54FYfWjRtgPcLFbpMtX5z/YfnW/sBb5Ry6eAGPs6ZNnfwfeJ7zH1V/HkWMNSq8MtJC8iCRGPDE4VZDrXABF0QJn3mQammaJWOdYuH2LZLuX53uWS5OxazIsNkUabRkX0DkSvMBXqpuPi6xgVmdSqw1aNCISAblabaJ018dV4LmgI95U74lP3Nwh3boyWw8BgypypE9QqURzhxA6srzjgEWskrL/9iY+j/BDZYziBjU7jn9H9qvjLQDWpPgcf0W0LYAiQ0e5sT5aZRP+qmUCTOuAY+0W8lMlRMRHPzayTDRl9KNLjx6XWtQ0eNJZMRgzC/zOkD3jSQfXRt+hLJ2kvpy5/jeybfK0BwZ0c0yeNnWOt9EVWQUMVBI/IChOf0m5rigym0guedvRerWdR/uOSjAo7TJ7LxeVX9TnZxkHYzr9pQJ2/MragihDUajjJm56rsf0kgcm5+vD6ue2z7Y8nAyYFObFUzVf+v+ff1TnTwUVFFFZfKCPy0dajo9okbEwL0oE1X/b1TFCn9rOvJxCHz3KcGtqRZblv5+SCFxIfLlHb6jXtUpFtsj9z05CR2HIl0uoMHPpDoQeuiOJgLvU5KvfyO3OYCQQJFS1n+Q1DyLJlit4p+QTuUWie0qGYYn4mqePx6iLN41p1+t6YoyheYvBxdtKeIGCXRG3EQ9fLIim/C5ffsxsuxQL/gOPN5G0elQ7OrsYsK4+OU8LQo2wTwlDrPKABJ0L3Aq4ZmW29CdcG/a1wfKAUYkdUttFo1IgQjuchARShDrd/U57hbpE+5QGGzXJRi892lVeMv9dCMr931q7Lyl3d5LO8iF4uXIYqiROcrmeNMkQLypXyNB4M50ArGqenTj4xtt/Z9hsudZxMrsslZcnjhzy/CsUqF8YYisHKPzlKhBi9FhhOHm08RrGuDT2ItQ9IKrUZDsW9JHDKu0x093H75lAo2auEcUgEXl0T8WOln+V9VrpNCaiuJrMvbDfByCtjxYxty4rPUUlhp8C/uCxboWaVjnGYH7vg36E961obc1MxS//lE+P0PFch6uhAP9SxPuLW5JwpT/+uftEm9q30aMKt6MstJHmvGgN4EqL43eWkYb7f3wNsXMIiJDfjKZ9EgXTwN3lHKpsOL+yry78sJ5sehVrZtRNDEqyMxPCDxpi/EUn1t8WVLU4wWv7O/nRX117GYAzfytZUMrb+Uj1aXEtTam86sZkRxNZIp46brhSFo0VAshj93KtpvLcl2cLiOXKeRE1VMoiJdHVXO/BHUTy+QLf+HHSHfTILKTTCgje+dhwip+DtTZLpkt6/XMPxHdJX1jM8Z6dESWwYkdQjxVM5GJkSug29kTFDEOmdHV4oohDLUSWWe0yFccm5WAfVPs4/EfwvGnWzR9PIdBeUo8V/Ggkmtah02JH1lum09Zmp4lvhEfDuvd+3yLHs1sJ0zNywdrlPKRCfvXsSEQnO9jFAG503+PAi0+YmbOwYrOFrsRJ7DAbt4sjrK23WgAfHWRzeec3qZdmv9jrhYIfzDaRT92PicYzlgUBUuzkXALHNqQVQMwZJzhs6YF08gOADPgHlKflFSCvj+aKSUKj6wsDN3s+XSlvkFhWmSpIPLx3QtUR9cQGuooXRnm5REbgQWmoAZT2ZHSnyBFI1zwvBqxHV465hvEiS2OOtcaXL3VbspcgD1Y1ilu3Kj7lNGiX8SLzmBYT9tOsTBhLLRmcQ4wwT7nFcoinPUFf4BCnY5vRsTuSU4BQftJV90naA0LX6nKDpEdQQWq9DBMannOdxXiAYfeCGrrjUbqkAzuSMl8S9lzkNB5hUXWD4bxhOoREeoYE=
Variant 2
DifficultyLevel
390
Question
Which of the following expressions is equal to the value of (100 × 10) × (800 × 5000)?
Worked Solution
In (100 × 10) × (800 × 5000), there are 8 zeros.
Therefore, the correct choice should also have 8 zeros.
Correct answer has 8 zeros.
50 000 × 80 000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following expressions is equal to the value of (100 $\times$ 10) $\times$ (800 $\times$ 5000)?
|
workedSolution | In (100 $\times$ 10) $\times$ (800 $\times$ 5000), there are 8 zeros.
Therefore, the correct choice should also have 8 zeros.
Correct answer has 8 zeros.
{{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/lKFRz0ug3YBiTOKT/6+CueNb9CaD9Id3cuxzg/ifqVTJ6ZujDJtguXXAni4Nqp1fx88UHhF344C5PEMFqdQrmljuJ78gIZ7o3GxCecI8XxTyrPefCR9GLAr5RkYVME4U76nzAh9J9TldDIMHUiw/q4ve7zIZKo3PLpl/0kYu+1OkglkzNlttBX4Se2UtArtmDrbkvYc50f3G4c0bU8h2lts2L7Nor0enIi7tfY/jdxyRRM27kk4x+NsQNJl0lhJVg4eSkMGMUofoOBfcxP9Jg6Hui7TzQv7LYQpOLHwjB00CpGT1SB/tKLMMhT1rSE3fCyEcYfozmkk9dVx4/JX+JCe0Jrj6GsJGopwnSq3auJ4gyaMImy+zr3WLYOgpWcBtZ0E2Z22fxPFY7b/z98+R2U/LZwACwGSYCKS6ThYj7lMvkU01t4TYyS3laj9wYhU7pv827yk08Y4Fc1vTVEC0pYUaPBTdEi3S47CQX4BVpVBS29lWBP6OQFwv6tsfKmGXRiIo0Opbj3RBzj4OTlHuBjw3hGB7JRSYKdTHiUBcH1huetLZZAKF2RM5ne9IQ/3LmmsB8RcEUE43HW9JWmkO8nANgVOO4aEEnANLwcXo/cPhY5CxlJ5zzAC6wbkIj+K9ODSh8gqlC2lXY3Ea+WMtHwWYGjXjVy20tnxm/Xx05edtkbUixavLymOzuPvfFvO7GenHYbwVQQn/HPDWffEgJm9Fkos11CQu/UAv7/gvcvsXh+vlN/sV1GeixSsjkDeQfMSO86lXIOllC/F8bvPepLrf3GEm01BaFc4Ijy5TZLvdsV406/0RG8pXavIe+1ESFIeZdfHmslFwM0fBQQSFO4jYkgxw8f9iKdByqU3IZkhzgQ1U23HSRBYxbq6biKuMz8eAfYaaVlL53qtb7EVqWH+GC16pOpBllOHTqS5/N3dZ0/x6EVOz2tOe9MXBh93xnexFlqza6FSrsk2BlJVjd0xHUJtQCZ+JRGHgJhz1ZxkhMv9FPu/yLybhWOeFNrg+qs2hmGMoNwIVZvNx8x0XONUAgHwyUOIsuDaDno+cGyjKuC0L5dQbf9xUYUnBdvXoJBVz7/mv+WIJcD3i+t6Vq+7I2hIzuqKRKHykAZ/6qb0VfkceKY2cqqdYsl2VEAb8kmejTr5N/c0bxw/018Oc42S47OV3U5PAaGW8uDdTA0YSo4n1GVz2ZUO95mZH0HovY/OApAn5ZJRijcIKfU3ZbHG6OrxdpRGBlMZUuWCCJsYpF36yxHUKMVx+iHpxtM+RwmLIDZzq29cph27e12Ncyp9GpprJclC4x/oldHxO6wQ+zBBHG7oKEJt6fY3lGwM4LIMI8CglewfVW7seI+b8tpD1hjO4nga3JEEtwqOLzoPa7bsH8zUYwLqFzZMXWvJqxVdno8pAnxXb4Zcwe1MwvmzbsKywricrM2L27UyAWphNaMfiaAKH6iFNOCNxg3MTRsObiQzRC/dxubkWhdmBM8wDQFtTgeLjn15w9I1HTSnNp8gh4eAUP1ya6SR1RB3yH2Q6/3lTzOWW7zoeO1svpgsg/l6d+bEG9HmuoWYufQpyK403fcHv50mtoR3vFyEXi3bOEoCsLCHO/nlJLjWckTQdWma9Jf7Y+VslXrikFpgMFOonMRxzZlgCaw4jJoJ9C86OMa38Si+WRrGhMApVthIlskb30Mz5SSaJ6SJN/yKo4Awh27wa7FG4w40A6WP4VzPNcdF/lI6fmFepqtkdoGyT/880OjZqF6zoFZzJKDzaSyegF3K1u0LKp5CPc5IPT33afVVjT0/w6VcixqQm5ZwYx0rtsscP/B2cpb5FNFoY+PtOROGh96bejDzwjJ615snP4QWfn+mKL4maLDqErLQHiwlGK8WRj8G3LMGUsrSF0p5z3/uF29AUZljTxNFCAflD6Z/qGZejp5Mm5xW/1taVdF4oVECLSTcfK1noe4Cfv6mrCdvV8BtP6bzwt/yvWYUf96YWDUTkJFXfq81gyV76fEEf0fQqD/BQbqe25O578RCmdryseeQAqp3HwTSzMPeo5GJrs5WkcCAkUC/yd6c+Tp1jZv9hEqdgENsZYNmW88Icm+BXwW113dlSLshlALkuEnS1hI2LqRJVCC/FQc/o3hCEKEhq1gB2xmgHnkuOkPJSqlheSXTlBZ9EQuz48wvyJOnL7prHoJ/M864Z77cd7uBaKV/AZQFduy0TExmlBkWUDlnhueRgD6jcN2N6cXQqkeWvQ5cUokr4IMCDVVRytulaYR2tFSXZJuZrhT6k8pbcrR7KkYMiYrmwagnZw2FpmqFhs051j4FLj1MMnSkZKwVjO3zr4H9HxMxjDnrQSw6sUzOnACGyUymmOw1YOQ3fNdz1qAQOTkX1+7icCp2w9ZN1BqO/uh070BbKnT6F9AQORPGQnkIAvbJvq+01RdEIrA4hmQPIKhzdRVJ62f6AaPf8SvXYe+O24FShG8ENoYjeErtxhRKTMjF2ZXARtXhQVU+/vwIcJrLP++osFt0YjG5yoJp8j6SqqK/pT1ivHvHGrtUkmmiPuyIUZ9BE7PZnPk6hqhxFj39Ww/FaqeN7a7GzGnFJCrERRmUqe3sjzu8DZafNrYRKogD3TS5eOnLonHfNQ7yVZwf4KXN8lDh6Eyvta2fCZ5RO1Kgapj6tup/f+OaAbsDabm3Oo5Kd5tz4rP/d0AXJ6bqVwpfiUpeELBRVMQyQr3x3o5X7XKmX4sOOXxvILc5BtvFfEpiVblt9ZQOQEeVmtvVfFeJ+IKcR0bn3YF0/obZxq4JGzErTF40QzqWgaYNqoSZ4JewZeSpDtmm2uMh3m+zcJaexNmkPHvVdvpAuYn+H+LOMlB/HRjMthz5xwwA/oB5GnkzJvOQpt3iaQ3Bds0dywpJMMYyk7Ru72k0vCBmb4/UGnrFk1Yk1EoI0O+5Oq6z9LOsndQhC6/oqy17Mv1+QfKiX+QfbuSoGqoI4tcv84dJAbot9kHOuEI1guYTz5vgIKg0QcE3E1+y4b4qPc5NrwYs70Pa1jZYuSEtJ5VzvCHyLtV2mPVOEvfpP9fMWaU7mPDFeciF/sEg6A8zXLDwsPNW67zdpY7sbUXO9/jR527zTr/G/w+FMhr6f6jTEjJpH6iOnjNQi6bMQhvw7GaBObkIE6fqPDntFsnR7JBTkoLLiz7DEX6y+qmNMtPbjL8xs4PP+BZWdJJI7IN10gqWRTSk12wcv0+X096iD7Y+IUFerZETdJLTMzNdHN2TZxCdEH/8fR0z+1Zj90nDVjmVYo7sX+M63y1ggfKWIv7fv18rgfgqn1xP1nyYE3k0vzm29JnmPhfq7r/KEkecnSJpRTk8przbEUgresz82WxOdLMn9prz+HxzQj51w25WGIm9c+u+rUkLtF4UodV3bomTjTBVnLnXGpqsqGQF1pFTREDpXW0bCEcLcKoIu3es25LkG6u6M0X0W0adybCGhe5oJmLyFcBA+kZq8ss8F+4BHJr6OfyuJ6OdX24VtSvSiCSu1IuxaUw0uHx5DvnQmqummrE5NSw3Vzxfml0qHk8CCl/rap4zXvtRDB0ztwgx0r0giY2QRuOvFe1QAOUVAQl7oFXN55KlDWw52QwhNwqMcfwFDMQKjBTL5efB8NhOR/BECJykZLk7X3bRvJcyX3gtPdV53AhbJ0lccIy72mzRmXzQNTY1POEPTefYxsfxd2O3v7EgWm4hT1EwNAUUcmd7faxNFSOXRrhoUzc/bBurIPkDF2h1Q3y/E69SYJwOWIj9Og+UJehyKyuei5V1U6ek8JiaDPXAuYtRrKcgf/ffQgM/yJ1Xh7luxY61RulhRhZy+C+NMXCJJzhO+woDl1jnxq+Hj3b/f0fe4B1SQ4dLpoFHljVHjL0nprKkoGVeNhvsh5QPdGExgkjnmoRJ7IgEbi2KqBLh9H+n9p+zN1iEXpQIiETXOrKdkWpPtoisskdEBHcHC+CDuB61KqCMvG5vWybUzFJP7U7rW23VK6XCUYoXD49XFzi9b3C6itHPjpre2wyl6XVswb55Ok5AGJqdX+LIHnqzB6ztyLI3blzJ0zQCOg1kMZ6tTNapCLyjXdbi+sgVDadexBpc8MthAZooLkEyfeMyGsdLj5nBctH1jgQkSSbuZOHHTaJs40ikEbv38Hi6LVV+qMST2NG0fSNF+Jbg8v0cgMtq2zWxtksP4/zd8TkGSynMrNc2hr06cYFyIy9dn0g9A+GVpXdgkyE1AMCIzxO9KXLwuTP7K62tAX4olvvHGwkKmRfbz+ycF3EDFtyHEY4eEvE/yIUJe2j3D2j1PLkpJk6Xv5R3KTCzQ2JwenuB3tfz3quL119seZblfqRXaiAXbckXaBT+2ngOwN00eP5lYUl2SzvXeuu/6sESDyYJkkwQYe6h60zrmnHIaNL7B+H8iOJ2WYPtEZ09LGsVMd+0nSIAeebQaaGm8GzvXVB7SHKW7AGiZ6oaOMPmaaY0MxvrC4J2G3apSVQvc6YbLLaWOKcXEjlBBTy7LLgaLAo56myD2nH8Sl7rYQiZZxEdcCeNzNlGpqrAqMDTh0PluiUtJYZ8DhyOu07WJlA0Ri5DIW1JA0XBVaSfZumt69ad0jubdcX0jCa16e8nVjJpG4TilLoom4Lfi4XtjW2dlZWgOCAKTit3jX/R74F1nri66OFsBhTIThvZa8T9OYZ1rkgGuFTgkhGu3TOSuD/qoeDHS6Zc9mpBsybEwESqNRl8U4sSFgwH35vw0AVm/FFFjF6UEHowfbe6Q0Idym5fcr6muD1bGL0P3XVIB8cCbUXg3q8VK2QKpRFPS9pe68R8u8s6kcnY60XTJ1wBNuzpNyuloVuhpSGV9+/FLdpI8Y1pcTTdqDPqi1pl0YeRoIIDe3ZsRTZiUV2JErEev4N1vH+Sl3ThKjnymtrFzR7qQMPMQUMUQ/jywh3jbh42hyJ/ox/niKH/9Z3YRIqPvaFbVkHJvi6mcaQDr7INwyMy0R0tRplb62h1BhY2sTwsG+0iZ245r8aI1Ds7ZNYPZsEXfr3FY+JWKM+/vV6xXQcheJpjVyq4CHOaAtaSud8u/dAdq/U69HUM+Nxr96AeYgXMRYCpI0YEWxeVvucVWJXjhUpkHaJfpBzkqgv+5w+M9MGExLn5+EsQXIjLL/7M+oKAKBe6PeNhrtJjmpqbXLqqBw1NxlkmMLa6JMskHQ8yyGESsWGne+dCvwzjN53K9tRxY8gU3iZgIttYjmuGVMsriHqWu5DVSQIheUmpaW894elc+NnnVRhfOZmROWUVNybGHSH/bPj8j8ZW7Lbk6kMIaYB+uz5JbZ4b5jEW0GYe7dAaZALihEbdCdjGoCsKyXE/O9tq3af49V7hKzTEcZhHbk51icDSNVkmkDCRRUOwTtxJ9obT+g7RLddfJqr690Ezy/wdN9TtoYI9aJBjDXpjSxf4kyaSjC+zP1LQDA4oCD3+MqHBqIMA6s24qdk8kUPIFTIlgL8Y6QIq3PbyxFID7+HO/GtD/rR+Sg3IQHPtcoonMgitjofmsNwdOYJV5hSXz8aup62fjV5CM+/yZ2+wT0dFVloswC5wbkTdkvToTiITKQRX81+nPPAMkybeWDW5c6V49UXHVmogpQu9IG5HeMeFc/GXFuniqzaGFeHz2zuM4AopBoNewurJzT5LCw5Kjp0BgqHIGlVzVzLk+PyB7RB7LRS3lSHC6nSR1NE+ycecSzh03VJs2daVDBAwyZpl/SaFOnv6MS4k741CARo3cv6P4T5OEn3vrqir/8R0OG1CVbIaivuosLmMgVssQyrmN/ofh0mZsBEPJ5xNulhrTDsuizZlO+OhpWeVXPMyaexWYkfs2lh/NqA0Ax9Q85B0Hes0eqWTCeRZzr8SnXVZPfSTI025sWzGJrgaTE3ZhRh1dAcZz8G0+V4HbN1JMdw/GOmmhu/xKczAe83Als+qoKOVNwys8CMNrE8ujCfrs55mUtdj2ZmMhBytcVSWSZaDQusd0ybfknEyBKsuUSGDkxodhDJKX8lIncePCw0vC7ALE7cKBszYO2h7GL3sxmax493+Sm6Tp8Dju/TZwQ9RcIOvEtmLGfhuMqaaEP9l+WfDBK2b7jpz8wdveeWw8t4Th/SoQr/KGtLHR9B5jKE1x6FWOgwkAn5pGYEhZwgQFh9q56AoMHLObvnOTCTeNcPz/mvAm1AZG0N1xUaO1IFvXa/wffVJDVFo/6JX+dy8AfoQt8QshMfvPcw7UGwzsvBuVlpXf5VkhpW/UkLJaDCUBfk6V+rtaDM3bVR818YCwejR69EOcFxklcOZtOKNGztZCxS2nEBzYcS7VwYj5WzzNRoDeBqzsGFTNI986/8Ox9CUwuxsgnQL97FG8jDUAbQBpCjKV17npDGzjpDC1X3ApQwVtFELd73ZCi52ONcAp4/sLqUTTDCkSedWNgQb5aUtRPY1k+BnjvMbFQemYC5/gw+S1SQaMAtHDcSLIZd8Zhyitc44KicouE7psgi+bi71mqm+ITEk7zIRVkOPSbhPtwGzGoRUQur6urFVOS4JIu0rh1iP6Y0W4t6vb6Va1Qk27/5YjHy2TOWPea2wHUc6lmxiBrP+waxs6vDPyLwpl4UQcoK/mo2wBLZsZjeiG8PRUrrvoNPdYlWMIiBcFTEJ8aT7s0VgA1zFPjVYWdAE/OG97HYK5xxAsrnADJT/lFtI3YnoWTpdyIHtjkQXQUGCN6eX3DlLwd0oyFlVwvbXyz1bKfkKzvqKvcmDYtkhkKScVpkhI+pLxMw26OdEwtwvopjO6Wvrvx32jQpJEj/dt6RfMq0yOIGRlAL0J4NaRCeo8f99Jm+fPR5yjfZepqz9IhXyy2Nyv9sPlnXm09nslfkEITitzcadMitgCHlXmxcACZHn1qH245MG5eVu+NsfNR9eMfUKoXvMtxgtpAtJ35lBME+B/LdsS7pZzaOqi4iCJI6GJPSvqpnVajNJVKWGFM+2EV+3jwrz6zr/qgoNlKF7Yyu4V5uoINOLM++fSdOKyv6/p5nYkfWtOv0JNW1vBqMICOajoSrtjjl/PG/VZLd9xTZwMGw5a90jwxG54CAGH0MTNLk1CS1SWQrHr8W3R2euy2npnIp7tTapcLyKQAltHCyXqVMQdLQ6mx9sf1UYXAYaO5XHyWy2RISBOA0tMAztVuEoPOvoU8T4oJOtECpXuA19PZ/xjAJEzlShVzey3VfLHWnrY34+oHzWWpV8ki2iup4Qqj7FP4CNwAQBcDapJWwqId2CRpJZXFpXn5e1Za4VznM4ldyebdkMycBAjebOT9bcVuhGia4xwMLVk3KcPyg0EGRNZ5s8RgaXaUpEDG85QxLbT4WcLtnyja/cgA6Mv+s3mompAqzGJVjgc3nGGP0GPyRVd7HwysC696LMhnibO06BUHuiifbSexrBmAgwFRnEqMbwn7lS6hzgBbcOGgwwMyDz0atYy648guEFWckzk7Hbqi1KIyUUKD+LHA3rWjFy7FCHWZHEk/MKtmxmAx0KS0dAO8zpEOY2phWnj5qQiAE1fEqwML06hYscEj1Rnv5QSik3NfhQ63ufp6Oh+OMTvCn7uYtr5MkgQzNudyl3zcraF0epw/YG2Ktp+m1sjE4fOIDCtvoLBl3Mm59kq5Xegf+Byw0/820n21dGxOgJSbMfzljuYeblVcNMmfH5w+wBxcrx52YBpovLUoqi5Oj3L0au54ISusn40FDS39BTQMbIB+5Vs4ht9InaNhC3IFJw6F478tUWVy3nZyuuP4upf37A7FAaCxQL/Sasc+pw1RFLKAIoNSx3xPSJR2DCGZyWlPZVrLvauYiP3UFNHuUOjGT+8UB5GqUU+IjPXPd2qDLW8LPlhdueEosOmEVYeIHoIBL+Z/GQkvBLbwarF+DmJNyL11GbZ4Q3c+e9Qn4Skji4CftCsBvqqUeb2wjH5xwR8a+KUNw5IvbCGbzygI6HqT0Gwu3q+Vm3Sf6DqBJ3mmToxEKATgD1wdmfQENviPeEZFpvvygSBBR+UvC6kYO3GZXEBbt6vLgR2ubVDTlcfiB36j76IXIFlyoi3A2X55hoXYJqSsx28qTgWGlLp42zBTm+la8Exe6WF+ZW9UyOjQ7l5P5wNkX36zHxU0LoVXpbD3dGU2nqB84IGYgbIsxSkCpGP9Kj0=
Variant 3
DifficultyLevel
391
Question
Which of the following expressions is equal to the value of (900 × 20) × (100 × 100)?
Worked Solution
In (900 × 20) × (100 × 100), there are 7 zeros.
Therefore, the correct choice should also have 7 zeros.
Correct answer has 7 zeros.
9 000 000 × 20
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following expressions is equal to the value of (900 $\times$ 20) $\times$ (100 $\times$ 100)?
|
workedSolution | In (900 $\times$ 20) $\times$ (100 $\times$ 100), there are 7 zeros.
Therefore, the correct choice should also have 7 zeros.
Correct answer has 7 zeros.
{{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19D7lv+BVNyNgsKKu7BPDnVTNZiyCm5JjBtNHtIQGnwullOwqpZQf2u9PFPHAUOsVsXp52SyyxzCPSilwAwC63xCR7oLOjyloF9/9Ax7KAzV6ixCdikz62CAHqCEEGLSYEdaguCPaOEwMq+x1b4B3evfBsyyGWxzSyVbkknqt2wiNg1T6pBRPPauOU2SdlIhuhVtF0S2L8gHGKbYUCfWMB45/Op9kxdoVI2WDVq84i+wDiQVyreDh0tZPBmUg7lL7jfO2jUHT/DFwzTmdIp0cxL1pti/xD45dvN1tGjgRH6eVAh1rg9rO+ptSVSX0/3PIUgvLHdv/GLBo/jL9UpTi3eGm56Ju42LpoJVkg8Poe99JPvahEoECv9B97Ah/3swnpzvlGS/e07YTiXIqwlg5ume79lf09h1NZts7xNXi3obRu9UywWtJsm0NvcqH4SSQUEcL8ZjoHP18ynL58aOnIkPeYX97lBSyj2EVAJqzWms25lCtIKr9cDWkVL7cxX+jlVHxdHTxqot/QPhXqXvXyYVLeHu3xcI602MEiAHK4dNDt94FQMZoaRhrHGsEclXABIM7Xkl8jGXUwi7fZ4fMgs/YuicytTI3Hob5bxZg3phSuH2iyGPhdAeP5XLRMdU17mXnssAcnFnbx7ygj5Ijh85yTWJcVvtGNAxWaG8aH4daX+qf7ESk34BzD/z1JQtodGiMSRh4ZW4DWrySOEY2q2e185qbWXnz63WWoaceKhopWDNk29tTzJN8o08t/IFCxhSsJPoEcvNMfe8HVxDbZ1b+vvg9tJ1rEtT2qP6vVgB4t/w1scvaz1hxWBNl1pCp3ZFm4qIQqtvSsu8XGIIOa3o6fgVHGziDn+Y/1xZTrWppOihyNBlLgLk75MSq7cNmWHHxGOmHg8hJqdqaW1uTi2KAYMhLDjGmXzMcoWUi+VrDpvjn+EM/lnw+g2PnaxsoUoOk5wZgIbb93WMbhyzn+zi0sU+AO7iTP1BQ0tDAFwxjjfGCBXJ5+tGS+SwpHRaXdwrPn5maJ13gvq8PVBhtBaGiyGLe6IzX0S8jBS1xaOKl5iqVb2s4MMh3XRss46FczGjpHR2KjNHVaTn5NFhvPXaynwipGHf5htV0wNE25sGsp0Z908oj6iZUa7A25em3OSszSbuV9RboCtK5tmnDOi+990hNA+5wBo7NoC3iSmEH75gahyJkF99bQI8hONvXKAOEE93nsdeRiFhDp/LhGblhsGQO7YgWGCpu+Rzt3QwP/aZdNx/FITnna+SpdhZ55CiX3O0m3+oHr1u9wH9pojYov0E9QOQopB+kZhxDmwW3r7W4xDDApfqVSIQPYL0Ab7LyTK4SfsNQJs0yGzoXsO3bGRG6b5pCRa9pDj9S9IqCXLmoFsC3Jxw0FOIBMDKwa0plnYjBeF2xbctLhfjrFGBBVHLccBiU7mmgfMYnCDlrYnQ2hBToeIW6qo3YoMgr7p0wEEBWwhzh6YpoaT6oIen+vmYEva1s/xZguPA0jkbayj+1i/e+qoS0AhdY/H34wWamvBvLVv6vvdJm4fdNyKreWkTtGEPTeMlY1zDkH8KiO43j5/Xt/i0BgTJ4WeSth4wyDgGoeUSQKIdtJW1AY5mkdqwONaPZRZMi93R4LN4WfOMIVJUM4EfNCVp7tfHgZZZgc8s5mL3nYm9DosEQ2OMiJEGtxnNJ4gyAOdr64Yy8oXWv5AbnfhU+RS9zGJNWcjqmiGKiQNp4Nr/EymMdyVX0Fe/WkPJj75NMKPMwBi+sWGjc7RoG5QjPnJ+ncF5Cd7eTWA4uhDkM1Ort0qAeFpB5RgtJjZE9xLojg+GWyHmdx8MkN7va+6HFf8QMA+Iy+pFHbmMd+pKVBR30mA3CktRV2NgpOmOiczmOqCFSX1QaIv1WFg8vOuc4Uh7o/GZMNsTigW5YFzG8yJJ/tO2AtMQVbBgyjU2wZQveNEXtOtGfYSRZZ037eYij6sSonaEJLCUfdwVHS7a9AXamm1Rn/0LL54hZ7Ti2jjIYB3fnxPaWijG+k9NsriVTNNTIc7wxThThCxoUL0bfTS/8wIkblAHlJQrPSBr3kw+uiI8VkmB8zsJcHzAzDMVZdT0Qsx/kWEf8L8j08+GGVvgCMX+8mN1R9jDVBpVZYj0J9gzX2wH0HKf3lKM0gp3z9raZNRQl6uadtJ5So3uuA5896Hs2sM2WqPhwBIRdEK54vo1h6WtXbxHWTaKgrbYxeIPAgM9nyAL1zsq86WCyie7eFnQjkUZ8IQeqcQp5kKQeN3uGlqXXNW0K9zoSEUODxqROw3GRjMeTQoG6rc+8fzHFeBfvhYtihEaeCJm9sMYeBbvdT/wFbMixyjja0gOpE0pomJF3EMGYpst/tbznJ5tMKBepwu1NxbU+Nxu4JZwDU6ZFKt1nsI1fS77sM5GyGIkaPY26lcXwcm1KWvFi7JDUaUwT77LWp/58gJ57TwaFqWCXZAfI/E8kp9y32ouNT1Pl+/glNkZpf6ppx7VK0qHsO69rXCYOmx5VopDgaO+jOHGMfVSbNqkLYiFJxu+kuPn8/N0h/9rMbQAm58ftJD9HLP4K4tBqHgXRaASY1MlH9w5e0z2mBW5zvfQmkCvIO60J2VhG7YO12R+76AsupWV0uKxlX/PkAmKdgOpy1H3hFSYqzZqn2qjCClLMFrJ76ZEHHHVmwa6eN2/49FYNr+kFftpuP5jqJh45yiWV/GehuD1kZfJTnCJP0NaDyiQ0uXEumqsUlCE04+dxMlUFW/TX6kxPGBe6n4VPIW6BFBZlgx5uW+7Loo0zYvtD8roJ9R7+NN4KZJCnB3fMLaJKeHGkGFdyGk3uHNJvbGTzVG1up9kqxn/ioKY3XXCtN1uoBl4kYi/DZGdbGK6y2qUTu8R0mr93v0qKnEmNa8NHkOvdyt3w9/pNydIQpIZZX0wiKbjkIYhoqMlgWI6TqqXzS+N3KXht8hPYLdc2G29eS2GrabAEb5ncb8PvjwBM7leKqf9nXVC2qRsck3wHxCAbDu/AdAU2utcwoCxJxSOsczURJZKy0hwxr8dQhs3rgH6CB3kKDlhvUoVQIOalwXmZXQnyI7/6BuW4yqVIcUStK6chDDKAH0nyp8BCD6QvVxeZgKgkRBrP9fpSg4BqKpgEWKzqZYjjiV32jGYWzeLvYcMq4FtkTefFbplAHkat4Ajc53HRczcAh/Zj0USH4az57qy9fQbCY6dOAln9/iCGJ3aTOx4hk8ozrLv3u3tgdq5ku5AghsdzmOFzVy+xGEJ49tx79YCrEfj514/yQRhNhapk66T9NMN8289gJrVXt9mneqi6yTMzykZN7DfTAhwHCsdlPNVsSJbxCXbWb9NaDspxLuQ/KQ9c6XG/JGp8JYh2b54+0UEJzgBIjpgQeIhkUi8VyQWTzvQR8fybrCuRYTyuHXpiZl6PqeTD0DoFC5UsCghfUO4EZlLu/CNlSy721zFnPZJvUmafu5O0JqjF0zjijUb9YyGt6KJgYUnEDFAMu13b/PDMf4ngsS6bL6xy/o4SAQ9w/OjGX437K/uPatE/NtyqMEmfkNXOWl9AAcvGN63LknFrqapVAyJNM2X+je3ioLPCJsVgM/vfrEwyuPMT3KZtMzryJvXsVcQE0glwMZUjnV2XivrAOfEKbRXBa/D512Mjktj6/Fdfz9kHfp2ggiujs6Xul+ZDJ+1hbaiU5P+egMnEVE6TJcQbcveMVFk6UdjCQA1q4IpMt5NJ0Fvl+ff+BV/we2SibUTejvvWgmz+nWysTse6Bhq4eGJB3L9N1wKt6gRHlM4+36yRD0GRlweZ0FjVQegIlub+u3DH6/Ef5mQdj7hmfSIkbo+dEdmWeaGKnQhWkGEBwu2OMfGOn/Ro9pC3JfqNJlBDTmhxEd0R58hVO0WMsnNkzXsJCoNs0teNFfRjVLEJEjMD6DzZ+RDqZKIlvh8UnLpqxzn5Ff+OYrGCpiRyAGmrd6d6vjdzTQGiyKYz6ncWve5M7KgWk30Gx0Scj2ZzCP+mt/2Se7hFBZkQSqbJ3f2YZCZQ/bHu6n9A79DlQ7fR9C/4ZDtx3vo8KblUyu2HE5CcdcLQ7icQuJ8f0JO2Mitcu8jvVWSIJoUMhV5u/oePYUqa673ZlsZkne7Dlk+xIcHtOjYUpf8pn9kCUJOPIvwGDQBSyBFNtFSP/AcX1RCDeWJx0H0BHjgUq//uq/gWlLYGBVx5b6WNrfJQ8QP0G1ybSejNW/guNqLKGFudevjPo1xvzuLCQklBQn98p4JWwDOsDnGtasT7lIVt7NAqhREmjmHDqr5bAlpwCzIALbXvGTBoSVvgOpH7fsYhVRE5f83OnEpMsAx9FHg8gNVXpk6ZH1QvHEA7W1Kyf1eB83mg2jEUBou0xkRpORpq+0Kpm+w+izmblg+sGC4+fCnQmNrgnmabNFxzTRpp8+GFSWnOOjF5nceLoO1ftGIEw1YXjX9eJzRpgy8aT73nhdUCtK+4FlIbiUfJos7DeFGj25b+ta7zIzwPvZPeEkV5CbiuL5+BjAkG5q6NBoiEhKNxb6aYWGkelHzzs10NZiqH4lCVg/gVAeY7E2U3dUysEOy6+0D1lX1HeZtTsW4eKuWpeP17RJgt6AcvxP/MQ3mtxSO+x13+UJwBf81tk9CmqOiXHMU4xi82bDYsdU7RX7dk+R9hmcLHgQPOQo5ZmXUVZ1+KI5jYI+CNEFTDc8GOF3mBFjX3uH2cGZ41pWyNl1wQ2CSJ+oTEt0k12GolayP4lKBXT04LKH9UmtX+/HaTFGoD86RnrrManTWHRARvrpJ5zCOO9E0vaYuKNRgcWVJHfTPZXzN+CvUtqSqay8RbYeT1WjGiWQV12QpJ9sILTyXye5tcjlJYt92/PrceSd3ldXbuaHySo8xfhGxLKJLKaekdRVnZcBaigqwGhoiFEpHdJrZW/At0Wtr8nrcHgWx47RrOdhlekdm6qxSjvLNSzzoComMHAJtAVhyuwyFlVjgwFqTjDDHi2Z3MqS4c958XzIHkMDSzUBPH7aASBq+UybV5jg0kqNqMUOL6VrAiJm+sU8rCn/wYn8aBQ8Vz+dS3cDuHBJkZGQzYGnIJpK11pojFCtKIx1jZb7NDqc2AthYB6dIW6p3THScdo5v2APq6oZanaAtABdkVkFBYSNZ+L6JjRaujUyM2j8/6fL5mrM4SO336bM5/n7afghGQdjhNYHYCJB2Kl26WlX6/0KC/jOAb1DysfPTRSRumnW1ORmx9rwXNmyr89neB89jOuekP9hi8UkHr4AFdaGR7c+zMklIAN62C6h6W6X0uirnAiMd7A65L7hrXjZCDaqQF/aZ+AjBvUBktof4Qk5tf0EX3bNn+HZp3PkKbNC5EIAEDXy7p17p0Ad1DDTc3VsHy3aRjQqjgxqmfPmW4kQ50Av+3MPZ2whfZVqHEZpS0N9mul6PwXuu7znkOWbmPeOPKZU22aKfcVfI8PWZrKYOGv02JUqJbrgm3Dv6uAgjwmfkuYaC0l96/YQLkCcgMFrUmRYF/sw1Kl1hkysHgNCFJ1isSHd4U71AtkUsozJa/PErIBPy+wGooSDkROP4ofWil7MA8Kc6smdQQ8bXktD28RnYNLrv9giqLOx6jWdfq6Wi/t1wY63V9keUhfNfX4d8n/R+ztQ4MBJH0107j1kqOFkOGGFDTpZ2skEeOtpZka91iQxlat5OHpyWePZHoQh2kN1jzaZFzWyaUbJIxmkryw+wQfIh2IPLv3v4CyCJHYuCnKZqkW/Pi5l6mceA0r616Rr9xdwb7OcDJRiLbicww4sKpr2E0fhJZ83JDrk/ym2Lo7iyIUqyI+964QgBsJhhbL/jVJqLqeyjPqo8fhS0xnUnn6D4SD9UuabiJi3ARmRAfI+8J/3RD957dhxP/5TKxqi7Jf/0OZfjzTIlFAI+bxoWjSi3fgttisa7l5ZmAt3RJvfvaQ/O8fvxfVJusDdguceAYEWUxJNYPPN+/TglyQWO51bWU1E3JPXCdG+66+GhmU+vFr9XX9hiaWDws+iivF1XXwreQUi3ZIjKW6h06PxZDwzcw76Bh/VxQjsVoxpLp0X9m5lVz7pMYF1dkX/0NZxNebKE4x0feBIJJ1ftTBjekEZdqo5Ll+i2hawV06s8/FDrxTh8vEvsBb9yA8eOYcrejuYULAcGnsxhUA3NxEMMFA32tCnuEQ+gqNgNqcYmb5qNciRxddxpise+yhm8KYmn26fYF5SVzZYYefHk6cMUmaNg028+U9mZtUkuql8yaDegOaqbOgHapC8AwIfosC7eWv4a21waEDwN4hT5K10cG76fLuLMig4UghaCVgG76lJ1Teyqc3aX6dDzueuFFEnUL9S7cY1bP4HkzjNjnPcuSqX5bJhPsxxdGg7UJbsK76dvkAyRNXFlSWf1BQAU5hxZlSfbSJZYet3/K9M/Kr8bkGaS5mLVok+Dj7MZPBfBKDCpGNT3ewiew4zphh5xdp3MES1i4Cdp1H0rn405ZA3SpnGy0ThCsiawenhbQILCYd+ghfJXzzqtu2oD9NkljdOx2Rq3brYlFCLP2ChRmYQkbBNcm2SeMV1509VhzPiDVuMZSNYMF2s6bq/nqA0Jg3z9dImCr1q4yJR0/y8XSd1yIv777yL01hT5MxbsSHMCpp+BcPwB6gvUKOHA6d1zEGDFdC7+MqHnkzQ+rRs2aQtAZxpaUYlnWMn9I5bvMctjxnsjzcuBvF0f+dpQf+uQ/vHW38FgE0bomlt7exFVjgVAGaIt6wjsR0RCNn+7G7lLQdxBahKjybuj+4C7uIPa/B/B7LIeHIiYHJ4GbJHSMW8t3TM2hPjDCJtZNmEC+Y39xQoCxvVaJUTMGcEXKc70EbeyeP9oq1WLrJFNtACooqXsBsTG2Uq/Vt5fwYqVBiHc9Rt0GmDiIIMeUnhBD8HKk9MXCk1Q0f6r2FcHIZR0kt63Wck/tscw6wpGecexKwbhFIhHaRzYZf6PlAnmvgXFTpvMBAzj/OS6WbSzVn+jlYZNayswBREjh2tC686HWQEkCuwtdIq0D7IfR3hZs1iUc1LKjE+9Z84Yal1zT+92HC8LXF4fV1LvlImJ5qBYLaRc2PVtxGnE8m/bvV8R8/3ReY9k6D9l2RL4lIAZKDl0OL2TcE04I0zlNmRkMZGftVCgizSiIcd2EjpgBX5s1ZMx25yEV/f6tk9G4I+3ifoNNccviR/J6oM9XiVFlesgevbsQyIOM0C+0eZ0pXxQyT6fxLYqFQVc5Iu6zGRuNTDkuwLZ/lkz7iZx/fhUYjNEk4RqssA86k/aDkBmbdqrB1YhyXuvzS2ORKOCnbjqHxZMOOoSKTByOaAU76DXQCsp7mLIEywskS4jY4Guo7TQ077yElhDNR3y+JtmHK02QqOpctYtKI9+eAiBoqtr4Vskc2aUlfu4/e1XioKR4uAYayTkkmF+L6KjqihNkepXtV3JnwB1ydzJHwqDYJ7TGmVVQcFr8c+mL2MOKlShv8myJCVjOuYqEbH/ofLRc5udXgdM78nM6mQh5f8amcYWQqzn0BC0v++vvGsMQ352rjp2B2t0R1szuakMrSipeauzi/yEQXPoprxcSvnuFjP7nnZj1TNPzqf4LuiTe37ZK5KiAPB2PmJYgXAqyHLkqkmmQwrG9VDH0PcA8qSDDJP8jt7ZT4mHmZ4MQb8PFTR0IRUFOh/FhvE8L9hPIlAotWwuVovJ+auJGuFwaz/1Ebw2u9i1fmBP14Ibap5l2/Tq3jgffsNrqaRahVgelpRSFVWAO4Q30KEHrtasG60BVnf1JsXbSIqqMFZ7CTxyaqRd/Cjz4bwHGTgyH5yDQbjqWxZmt0jZRs1/ZQmlLRYW1OYvob25rD2aBA0MS/qQIkfeMrc7QNG7tYw9va9zBOHKJN0cuq/psEl0OwLARTKSSBKB6r5UXHm5qFolSji0d9r0LvOEal56RJtZSePrJeuZERu/NXRHp3vhQm41PS+BaV75HItNz9y8RE3ctdorzvH8l7Y1GehZBaw8kQgYLwMMCvDi9Ja28IpbQ5885P58PmSL82yRU0C/3ok+XAhlQo04d/dVzKJhNioqxxFCIfAvuNTlONUs/zVEWRdHc1vJfzG3Y5aaEcV8FUzipOgpLJ5kA==
Variant 4
DifficultyLevel
392
Question
Which of the following expressions is equal to the value of (10 × 100) × (500 × 30)?
Worked Solution
In (10 × 100) × (500 × 30), there are 6 zeros.
Therefore, the correct choice should also have 6 zeros.
Correct answer has 6 zeros.
500 × 30 000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following expressions is equal to the value of (10 $\times$ 100) $\times$ (500 $\times$ 30)?
|
workedSolution | In (10 $\times$ 100) $\times$ (500 $\times$ 30), there are 6 zeros.
Therefore, the correct choice should also have 6 zeros.
Correct answer has 6 zeros.
{{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18I74pin+A4QwHsfM/sEOmbmXb12J0vrZuAWOBR2uFZk8sMUIavAquLVZv4YiSrN4yGu72N3ziXFS26lX6QlwK8M/Tovt5luHEf29uUfiwqP3JQShrJ4hQ/7Zu6XAkAaiwGjRnp/FFH/rR4gTA5CKHIj+w9HcYKl8j/qnVguDRkl8Zk0f53n1waCf42UOLUiGKC+/JPbkFUKG+G/iYwDx44EzeZe3JPhSvwyep4Rn1Lu2jO+3h/e7Lio/8gWv0gkDNIOoC4xORJ6+u1pmwXKrdMmgsaiKmg9r2ljqduaVwAdZdBaOcMlr8mLT7trXDYarIPtpHWFMaqD62ZQjJW0WkR7zd+yHkB/dpWjgGwSZmmnbp4j5cUjyqXSILKlSIuli7U9h58lWXxtoUFh5FGqEgbdCIpISbigHITfIGyq0nVKVWKLKIiVeTVNLD4KYklkMmKip8mkpxYg0xgreo/Ynhzojz1AzTwQTW7uUtJYAKdHlx4APD0ygFlZeg5YXzua5ovqGIdN3S4VGEMJZYwGPCy9TRlwkGICbpyf2Fv73grcV5Jg0hmdpJQlBvZK9xLcBJS7TR6F+bNCTom8f15NJmtKIe5LkQMjw0bPb//rRrL/whpDJ7L8IKr3OaiTiGnyBjiZNrjI930Q1vbD07V7K1HZQ/NoEYx2kn0i8/CneVKb05hmbpTx7zEMPPj3Xcwd9awvFp6Le2/W7N3Qe0GRZzxm7uEtNIyrODLWT1Zw7Joi8QunwM4T4fvYLTzpBA6PCtNmMtlTAxtt6xOBDIOjJqgu6niYgKxtsYBnHeGXSKWgfvVNV+8ZO41SpaqZXhj9KrCiylfxAMBEX+ubB6Msl7KgSa5LvNFLo6Mi73FuRZ2rSRNCho/zHBwUENLJz4T1Bj+FK3fR5/peGCkZMJE1BZ1G1Z1WecLxryFD6lqWBzZEBbMo2qQIWVst2Eh/G8oK8rq1Cq67g5/QnkJMFs/cKOnJIBdWriFvzGDpBRxB9a3cNptGLuVILS61V97KRfNjRAOjBtuLogsgT+9J30GX1CnWelvSl2opKwRjlPbZIaeg4TamfR8ZIJY30xueKS285tT1SZZq4kx0WHDkR/L/xelaeeGpNOubm6uQP7YFxKe0D0k1TjmYM+c7vXLvUPsSgp7/ynjVScaYOezz8mPfbOlTzjjHErtZZ2/5Lr1LwzDc6GlBsukwQl+0mSwyEctD8Xa9AZs5ZAqWa6elbaZA1R9owAlJ/wMvWyaNNwnUKgsAFT+2MVMcBOmuI23JeFQ6m36uAvCZmq/EeEUlRiZQG49kolxdLvp8DbWjLMHYjrGGwlvQ59xtI9AhCg45op1dbnvpC7sTcp6k6Otk2dRIumabaYCnMjEYNXVkVmjuEicOeCyOMN+PnztDxL7II5CWq2NUAqIH+Sik/AdMgMb+PFB6EjjFF7vJWWXaB1L5LZTNhaOM/+P15x7Tu1ZhaQsPhUJKsM67PWtmTmRGFioCWGxtj0F/2NzkwR7J065sPwhH0htFZ2So3cLwtlql76bAvjC+jxadl9gJz11md7yU54Wel6Xdd5Cy0iGBVoxa9D/zV37PLl1sKXnJgchaDTa84/69mgTUueJtIkor8xVpSTHmvLPlZTXfch9TicjJkwegeBJs3JOkLXvrJyXcShPBEHS0jZcL2PEVqs8EnQrS5Qs88lJZkVxbjMuVGOoQR7/Q86pN6uWPz5Q1NzWC5+55K3vZhaV93Uo5PiTqFIidJSeRuNI52LXBAgLO3Z3KFHc5RJeNhAhG5lye9rsPdIw1ERz6i6jmLW5gyOD0QLBYEb74iQ/ZMD10gFqyH3s2JV+4D4jGvPiplCHw02+5Lfr9QWIQXgke2P3vOPA4kn4T3rnVbvnBBjuxCrDS/r/T75bZmIpaeNHf17b7YksMxOS6g7ECv3TY6J5uAxMBG5KJzAt+dnPxobkwaU/lHP2GoLbuyJzg+CZMUijLn8zsI5XzsyO4GfmzeMjNEkzxE6quz80ndzHHQ54O4GSrjV0XgtEQYE0SwYCN889yC5tpF8/2UIAWBFp1Hr5jFDZ6dbjCRE6oUL4h9nr/k2ZS8ie/aqIEcglsXKbnZDvDFecoNC7+uRDz2q38Lb3KsXdDXAF1d+Xo4T3cnWDEUg9UDSgEnQ5/wOhW0tEbwcdgr4BZvTGhu+1INOFWh9GwAVADNRCdjGIujE0Z3aUpKNRHSMBb6fgqiGJREg4H9MgNcXcVNWJw9O0tl10TurktqsVC+CUb358BuLewHJHUKcPcfZEBq0WILxywS/NiSe9pdGCSn6suU6NThLOsH6beVCdtTyREJ3zfv8QkkseIXydgx3KEUBGGfUmAB/QltO4FFfpwBgi5/2YjYN4bIbgdX1kfKF1Rl8Q8g3hs0nhl5DTv0HFH3tx995CTP1TUNHIK3D+dZA7OttFAHMMYUyds9EZHduyiFluW027Gts8f9uxCxEBJwnNiTJc/76s+IqY2VwdXZcNjFPk70Z8iiFFfofivcvQ3F6feLD/u8KXn4cv+hsVjUB9C3rAcFINIEc68Ke4Z3cQ/iDuERL6X8GA3KBI9eS4tKHPizEMrFWR7VWOJH93YfYOKfs1NVMe6AtJKzdeRDoddx1ZVpIaYOPqa0o9BWrf6luJxsiHSW7BqToeovCZ3+DP0VSBYFb1qhNFiM6V5sZyo6zF8prw9nXgvpEwzcr1ycNjGEJXFnt0ClSt7MeR69tj8qxKxUaZdQx9NHm4wFzi8CMIhtXkEpvvBogvQfdgDTSqaWUes89V9JNaruOF3348Z7bnyWoZujw7MMNP2ScIP4tmTXQ8Q3hwY1lFhmqLiu9J+fvnqRgkzPnXvfk6zW0H5jI/tzaCyypMeQkG/PrSHRVvB3nJAckhF1RHlMidzD7hhwzsOzHnpU7jQNQgmZstjX7hfGYKj6wlEREHRMzFHbP1KljY6ahtu72g0YkZpzx7UDVcDU+i0ajC59gdW0uk9YcaDYWYuzLHiZvlcMo+Do4EGp/gUqWCLOKHFyqNFwGw0vi2IPIuJrShzqoCBlIkGAcRGOUENolFiNemhG9U4f33NTu9/QgkZWh1l95f/w9Bh7csHlINoYa0VPCUMYcUwD/cCI9YzAt79L/WG3sA54xXmSblY9PVEciJhJm65fR6YAFPL4MP1Fhbt30hZx6bRMN0VA+YfY1VcEfVo4Dy5Wn0Xs33icml7d1JklwGngtKz8RxcVCgqZysJRfSGt8NMZajt0/SHX3kjqPtL8jW8He7LPTZqmm2eNJDFDETYGF1MQcvoUlzxk0/4FCOQxHRZ9OF7mD2UuEmoHcrVjkoaWrSenj16fM7BSKPZP9pmLhHLq92vK5p55lbh9zx9BmXUIutWp1AAX6cEbkytaK3d/+KxCA6PENmUqEcqXfIwm14TAqn8NLMx3QC4MCFrIRaDJglntCaXBCzy8TTSoA1bdcm1FhcFjhYHTBJ5nKjucfVtL97DnCQip5LqFlISLsScOXvhEbAqVk+YzQx1STfanyJMAOQKsrluS+wPBE00mlIimqoamAO3QcFP/gDfSZFvAI3y853mHQJIGWX1D6WguRLQLuJBTldSh/yB1GPSOoL801nP3dNeoPx6QXhUXGOtO0lDx25lh1FMClfJFHZsFiVYoFQ78B/QEzcP0ah5FKCReVEFgkOdy3vMmvSP3yrzz8yxYtM/SsUE1/phI0J4tWHc3DB4Qmr5cJid59t+eGxhNQust4W0VZuo4gWllmbJcmMTVoyyOJagN2raz9dxbj5ZYiRsRjuHinVSvdDEz/HGx6OET8jkXdZTtkJNbDAqM+CqssulLALg10Ml+4yNjSv7wBqThp5wiwZqPQuJ5bamf6XHENv3u5X8XBzxpd6UkSJ6hbh0XVcj2bnYwJCs5TrwdGvDVheVnWprG5qNdM5snKtTBd14HG5kNYNedZKpsCajZyq7R6nTWetMbD+HQoaKqQk7KFmZola83SpeSfEeNaL4huJVBCqKC3KUzuewyLMH3cZIBIb2ZXhOmrYgb7Jqc9DaxNvN70jP5TKjIU1Gi94n1GQ620BXN8mxjBScHEiXC2aH989R29s7ygL8tQKjVPN5noHLFhrZ6sn2nLzvFMYWpEdl/PH8VRRqnQQB8fZ5FhqnzrysmLzBGyj6iW6gNTp+ke1/NOxfU8sdzpdpFDtlk2T7mv7VehsHih4bGUpunkmdU00CoY/QxWT0GnYNS/Pq0uocZND2PP1g/Bzj1RSrupAob+zVQ3oYdA3aNqMM0FFmXSB7503WTL/ufe4p/MSka9ooeKKYRF5nyWGOx8/csku26ZJ5wSOtbIH5x+CCcMSvh1C5Aks++3sD52TiMxVpm/Uu4E4+ymnROwIVoi8l+L+E+3gDZ0eALK3NyCOI+cDz1TOE1QxUnyqXDjhhf7qn0C/C2Qu4x8OiUK9Wug/4vDOfkaNtO0AKP+N6JEUBnrTh6LyPZytddDgrCXbDK0zt4SMjmzBrNIEqtc7ysJ/5F+9ymPSfjMLEaqCHbwdt0AIdvGWeak+Y/0Hy0m0JUB27WJNVI7HI7JTR2yBJ7UwoelNlqvIlDPl20phcCFp9m/X7oRx2wJtEnjdFjII35vddzmtD2TCLJtBv7DUTgebc9ptoYLGnOZjTcIbuIkg9j/zNNVn1nW6RTHwXOKAH/GHvQoZE3tu9G8neXESHcgIKrMcCvGT3De6Bae7RPHBL+b+KmqOTEL4g7XHo2WV0ozApu6tQMfm+kYI3vdwVW8WudK9WmJtaGc+cYyR+AKH2n51Q/5TeTvM6WQGRifkCdj7oCzmEyaQcNC/DwfmmYcdFI6ppBYYFJrixgKScr1cGymSHYCsLhvwSiHIxp4fxnnjTUBO+KD3ksuG/KVQbHSEJZsvPds+tbxbLEzFVMsajsnEmy09dT/XeL8zD87MhDpbsVcCWpooc8Wf6p9c9F4Yh5vP83smMGo9sMFSh5YDZtYfea1oo1Pkfe95I6ilDiyYNQHXGMCOgG+1/0l1F2e9XO7tuTmkf5yPO6nrEiypzwNUBHm1bloGds9gjLvI+Mp0FvxuHl8NAUEzfRBKdyLvEz3qq1Gt1iyokNLUrG/zy/7aE5Xq5rKXRhE616sP3xUCGhZVL2VoAQLfU6Tnr4X5CVQon3sd8qa+vfidHHwjvSjsJczFyxvh+03DaoelfZdAzJMvV5ZLKrtwaIq0YHf8Mcn0c+T2KnI0atXN8JGFWcSKgnEM/UdywsvYQ1J8zcx8Eo/CgQ45ESQZtKrnIJ7+PncCfUDNMGHUuTILgemqIAkf9z8EKDVDVQhO2kkodLsBE25ns8gbHiYdY62G7S1uBX5B1lQ2EuNeHqOScY6G45fSzAfoDX96tN9UXC9X/Dq2YW/m2A/VLQrbuHfdJBUDlBciycWthT4/UGgIsRFDUNWvugetQKmzBEkmLxl0iEH9OgMUXsXEMOp9i9MQv+p1sMquKPFFLwWt4Vr/9j4U+Ne9NbbqGb17T+XEun1DGDeL8KwBtWmE+Jg6w+nElXOsrv/w0fl58Yq8+AmePKCjJkI3eDSuRf5z6u6okmA+9B9hNl3qHM3jGiKP9qaZMuKsZr9iC8ONG9U71KHfBk6pp+zcT59Qpkmzx7GRF1gaYB3oV/5B6slcEr8Swa3/0BqOe62Uk4FbzTqDzQTBULhA1zVhByiYqUqpc7B5Klfg2YuE51yOnUORaVZ0Utxf2grkhe3yyG+bg088wfoFACaBWg8exPQI1ifh7W/UCxvFIug6f0ldbLPCET8cH9K5nIWOSdY78INdavjXr74rykkn+2vZXz+6eiGNYQmUYxfZJ6Uakc+NQdcFwfsRXmdSl2eR4daajHuqEpQcChQBRP0xw44HuQParLpirz6lLC1GD/7Tz+ml4ii/aDAGHSXBkCFowOSwU1VEbbAnt+5SJ46z/6g9Wzug5GnsREki1B/2LPJpmNeID3bTrR5Vv0HEFKN61O1SCxdiXDP5OniPhRstx335XSLbP4l3AS7bsHEs2bt7DlOSRKBsOoXG90I9js6XyNPxPwWcQ+ksLEjtqBw8W8wl0woLwlGhsamvQwh+7HSXpEwpqC45oObIND+/l1AfpkOMZlyjiaoTtzd9aN+N68I+xp4W5T1IJ1rim7kn9yHzPIKRFwNbdVw2HY2uzZogWpJqdc2dTtGvQbLWZrs/USzHTJIYn2CAYCJvX9ITjS049ZvTzfy3HeMG1fhaSoa2tKIH/qD+RjnV38teaN9JE/i2msfmYx2/kvvRB90Tx3lXmiBU7Nd0ITn1PCGQvn17z7HRDxI1lPTc/OaHwmR4rGKCuKl5r2Hdo+8xTFM+ZGQGbPrU9L4ClRJ5h6kHfwBZUsOYGUdkE0LgepVf1uZJP5RKCHCMbg2KEYTKmRCkZh2C10PEPleH8/w+fMKRM4EvaZhY/jgwXMDmxMC7YzC1Aanu3DzYwwSdrLvjt5tn+5fb9QCWJ3R2QeDV606A5UjxbIQ+BVFa0XXoeoCR8kX/BDPI2k2+qc+he9RXmVBYkNt1sL5MsKMZgCo0nMC+uEcLEI9eEcIPr4Nnp9UIwdFCtX341kgPzwBIYn5B0qYY9gliRv57zvM3woGKRXlLNlHHEHPSKlXKpO1hLPOw1ftmFz64MOOJsFLLpjCJP54OBGUhSEPWCGAxJaiU6jGhg6eTG3FC5IZT+QSax8aGYjPpHolVKSJDO/5z7F8zSLv5k4zoOyfGiM0WsPXn2vUZuKfMNqPEwhSlGsZChDXou2mKPBEy7asdWWce7ghion/FIjw1VRm9YuIgWMMcDl60r1/yaKjsoZc4FLO0rtLEFEjBqXEyTSesBZXi5RACB+HhqEy72zEl8qPzQRkneRaTNfv/M9JnVd9fmwAmFXTQI8OXsPt8vAvrzhjs1fCFPDq+Huf+DYP4P4F9sIEcKtWk6ByHKtgBNZPHU3Bz0sHNgLqsSwBXWQ6KigenDD41TbTrrOhYpXhmHlpLY1jHMzgSURISSFlUTk2VngaKmNxiZH3HqHIRgPkqMbzjX0VATqbODQ1Zev0ZZtAMXrzsTcO62fYr7uq5/lL2kPh7bIwERMrEaMNAwi3sgVwfrEVsVxA0fG6gMTek4IDPSZ12XLaMPgekkAHLgop/zpG5edPbbVeaudypWWb55xzyPM6x3Rn4jkrhEmXWlU/IluI1jWuTLjArHzGTWHV3czAxIYMKYypmMwylJfWroOLRcNl5Ssv5QlcXVrxCDmEtQluUY06XLBIPcwc6pwOJNRxBpSnFfJl/SAekNiFGSJODwu/A2R4w1SHrPPo2Po/tFOiR70InkBYj/1qk0C7R56BT2T4589C6V96sg2as3+EGK8GbomkdxPIgMCSv85t4OR0ti5i3m84+/QzNCKpRE36zso8HsSqTc3DhdKveCIjQfmnEUaGwOXxN2OpKPRz999sAoXBqDwyAumvwJ7RV4cAA4uCCH1z1+3SNUiCa5g/IwGL1Rxju7+R2Tk868lvnYYYSwRneUCLBP8lt5+4Xooi2zN0TOf5HVHD7WnpJPT5l10qDZMz1TUMwdjBKO7RrzqkdPV8lldmX/xwh6hP7FoqGYB8npy718BH1M3CBfypPMjmvjsXXe1DJ7O9s8IjA7mohokkeCTYG5QgsGhaaWh0aDMdhN/6NBtDr/uy0m6iY0BSrphCT8a4YJsR+WuNIPziz0kx9jcPlcYMkdfIFAf4lD8N4hOKzQ5obWY2vErjeMkgFat7ro8xEBAMQLBEYNRwFYCQysQxof94JwK1hRWZUJXy7ZPtkI+Bdf7iwgKmgdcwV99p6hiZx15Ze8vWgxxQBBtsrav0K/0bAE2ZTlqXMM4KE3TE3IGjcadIS8Lkw68dky4yNntXWxD6pelkETZQITfpkTSrxkUCfhel5NtjAYwxzMFSzW1BIaf2RSlyWhNp8XTC4ck1GvBW9Hgr81FeyBPGElv/3lB5yr/QzqNrfgFP2GU9kfuOTiUWVzL94BPUvhtGSe93F++7GDIEZ3CuWF/aGQYMxRtt1BK8vsZ4+3TC0ZSsDjEydxCcDMOx+V1WxEYKLtzfsQFcaXstFTpiXiUfO7O9DIjblE0B45W9duopStQtgO8OXayviPB2F4KNrPti7QTaxYTbZog==
Variant 5
DifficultyLevel
393
Question
Which of the following expressions is equal to the value of (4000 × 500) × (10 × 10)?
Worked Solution
In (4000 × 500) × (10 × 10), there are 7 zeros.
Therefore, the correct choice should also have 7 zeros.
Correct answer has 7 zeros.
4000 × 50 000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following expressions is equal to the value of (4000 $\times$ 500) $\times$ (10 $\times$ 10)?
|
workedSolution | In (4000 $\times$ 500) $\times$ (10 $\times$ 10), there are 7 zeros.
Therefore, the correct choice should also have 7 zeros.
Correct answer has 7 zeros.
{{{correctAnswer}}} |
correctAnswer | |
Answers