20215
Question
{{name}} bought a {{item}} that was on sale at 50% discount.
{{gender}} paid ${{price1}} for the {{item}}.
Which amount below is the best estimate of the original price of the {{item}}?
Worked Solution
${{price1}} ≈ ${{price2}}
|
|
50% × Original price |
≈ ${{price2}} |
∴ Original price |
≈ 2 × {{price2}} |
|
≈ {{{correctAnswer}}} |
U2FsdGVkX195c7mVrNGqejZ7P3ZfNN3NakfDWoAW8zcjJpVNT/jPxujiLyDqevi7jI2aFqnagGQs04z9HM2kf6gVAswOoO513YwmiiIya2MgzAF2RHLVpfNHbIcFMQ41KaCgRlEanysQfCQOLdBloNcVadKOTzB6/lxn0g6rKpLxu/oQm1kK4mEyTK3iIhz6sNb9iVH/ohdoEOsoXiFx1WCKAymm9kU1uaSFtLZuVcdQVmt2o7PZZkklDSWzuhXDl43ccTwXmMqNuYhczqRL1wh04zQOcC+pwT8tXZqCamj+BAkn9I6cNbVCdw0H3rnFSVZDEpCDzFKStGCWCpUKZ+st+pbSZndjI7la5zXvCH6TtC5PTWPKhZPkggN5wNcEUbhM0GVkm4REXTYxpYo9YLbEy3dQkDYKZeI60Axx1DNPVLiM/M464ygl3IwLvXo9zphzv5hV76nNJa1FlYWf5KF6LV7K7aznm4Fq7YeAK/UKEsHc+KoT4hHhFnd/Y+NMeUnMFN2mr0xcJHsawNx9kkcgnRKXmTVO7CI0VwMLEh5l8OrxDz+FpUPnIE7Qh5/hjGBxm6eFzs9ZSyZc4jzKF974T/UEOIV5gfubGyOZ5Y5kUrrVmMCwRECbe0Kjg/v/pUV6p9BRDHiUJYNn/I2fB/kMUSaD15JAGSuA5NM7HVd/vVvi3jxVhQM/Imv3HlDLeybiWZ2/JzaLouuBYsE4L8KxeRfV3vMH9/de7TRM4VXX/o8yP7SifDaR6fojgSwOHUtN6hUD8i5lv6E8dPIvmC9KeHk0VCPCbYP4dKIwfuqUbS1KQKc5ApBU6g/RynKoxwVOKvv3hpZjkarcKSKhuDXZ1rRgONcJ+pZyx8z3cTyZGVfhMM0P6KcOP5i8uc4eGMY0yZuf7eoX4YWuxAgdTUurQZ+z4OZTxD4+knZZrXhiXca3Mls9X6/uJmnN00zQxRF0XRmvEo69b5jwSQr+AdKFOTdXpWD8EBOZ3NbG5sQmRpeZxaRClGtj98+Lve5ovtBtH31+oSuveGmGcjY3EobYf1jOaTEBX/5loJQqOfWlOuM8RCe22fUtCK4lfLsr+X0tvhdT21EZ44FIN8yMMeXidDXsvc4I1jkvWuFM79vQO2aQnHT1PivHmZ/5wkXuVgGGUyhF1d52tX9VuON8Wg303vmtcIic82RsJ3Ed71NgOv7tCnviZ/I8VzOE2ryqWUqWA+DDtxbSONa/CDBHfp6B1MEIL165JHlqxa4XjFRIDh2qPo7p2h8tMsgjr4CvkYaBjmq9cChyeuH0w12Qt2wu3HdGoM5BnqVQVDwyWXw6Txq61zLImVzoE7DXrx5pGQA+TP/yg4ypokpWpVx7q5SntEqEgYIsvp/Iufa79tLX8yJVCJXi0e6YjCcEGrzhwxbqMvHP2x7QC3S7lAsCgMsNrwqrldOKLoV0q2H8jtEjTwJc0pgPSk3JKcp+tKOfyGb3VW8mdC4PLJQvaEkRs2u7Uv/HC9EPxFXQ50nFYYhTyWLyaiIIGPhfjunM2Js2oLrQkal0yI8ibP/4czUoG0ZF9FHD0eVI90zI4hW3i0JbwIv9fRr1jlGHnGP97X0juGprTKrmaVrQFuSOw3+GdZtgjPUtyypEowhbSVLC6rwRJBhTEixi0VUTR28mlxL9FDSOgsnJ6Cr5vUmVkbYPQ/w2B4IP1B9wGbTu7gewTrJvVQVqdGZd88jZLLUxsoKFQqM9rjF+oTVJ2QZwV4CF4sffzO9rVrVx6j7qdI5dzogLeRPau8ZMdhwpMmCyrloUUl8xJoZAyy1MZardIqW2BTTxRSGEm0EHLFr/zlHHPYtWYuOYg7hILiNKrhaPAwjkIKQE3ahtoXhVWgnEol37th7P4/HcVGzUHjkastTHWCw9j/nq71mbJwL9kdqvLbw4D0d8Q7TwYxt8RVAWSzlh6IKhDYFjzahROIoPc5firYRClG+Ids+gOav47qaYmB2MCbk8DzMUHFbR8AeW0Z6Ty4QMcZuyuju7Frycew7Kk9ZyM7wzqnTDELlp+d5+AIe4z7k3edyeGNjSeq3xsQUH75eTdx0UAJF1Vdu0WVvFhPSc02vfpL8Ybu/utximdaJCPRRuUarhaHBX+8qQ4NxQUAdrq1cpZE64tR/IAGEVypnao76VQbSIR2R5XlvJjWd41rkyrNlgiPjJLIHEw/jlFGcBpUn6ALRxBHkViOQtt73ROteTf7Ti/T9r2LGb3duMJ5ilocFFyLiKZ+tH3381/Kp5NMEdg7gEeRnwHgH7f8AX+ghBSaUDT72gkF4vygGezlKxefhoNYsr40rYaeEBqW01A5SPPD1eWSeKem+0C+8TdXZMSroglfRaBYrVB+GjB9vTAcg4ch0ywLpIQs+Io8V37RASGSvZcBG3fuQWMG4eqp0CCOocRC0hTKuKXRxyRR7sLUvRN7rThVgvpY3/mGioX3mpRdqPwOinygTKKHDq8xXlk6yCiQK33fa4EGqNNY2Guz1D7ww++K1WCnWiltMDoUTm+pYPPSUd5vOGlkkMElGvia9GV11DR+358l8vKe3tZfJly3jn10e3X8Lgdo9bMwHDoEzbdEWQjGNOlN1c8ocKEPae1r7tIgbJ44k4gZZqz+1Mt2vwEGvsmqWbVtUo2o2lleKHsLSChBwQpKBAbd8P7V+I98cH/VWVk+jRwKIFdg+5SVrnEWWMv0poU22zT0RgoWJ+akqX/kPkzBvchu387dMvwlrUJ6Dh0Fe8fTdIU2qcurUjCh1ZzggC26s4LiaX/Kb2pcka6IlVaLjO4PPsKU9Agi6hZZ8kJEAQfLdjMxT0eZeVp9MSTpn2QBhkvziZW6FW92yssLoCFafAa8jxvGhyzJxuGfyidAZmV39f7gxp3pqEA9qRwt72F3Ch8vqaqb/x/4023nNRigVzJbJ7a8DdE9rn2+hIHQWumGEz6iQxPQJpZYaBP0u3hEv5IRY2B/JhQ4ABlt/FszfiS76aMmDu6GsaMpjgknfc7y4S1ciK7AOSed2exaCDy7HpXkWEOmUazNnyqhGEn0RstV3z16OG9l4dLPWDoUUYLnVllQdH6SOtmOkLzD1YoVTPNkE7lCEMBEFUPDQnQip27lmixTN5+UWUQ4qVUCPJzOuPml7iN46F4LIPLf88gnpXw1RbtdvWletoiSTjIhffcat6sVnRFdIlA1QZz4UIuFW6xjrleJc5fmH8nsMJewbsvgr6hl3lT4WRci3niFsTLw06N6NbS9nWesh6xC8XTjEp3hpTAmG9IB5wEn+WtDNC3RB8A3bR8Gl7PobNynyh4nIb6SmhdC1RkI+f7bZHum1cKkw9+TrhgMsfIDTuT/ogAd3JTpwlrj0g8LLoa1CbONOJkysC0vioSyV8VHeE6xs6OG4cHf8U/jU2pEENyAWifbv6SjgjpcKgApJDykPH78WfLRz5xAq6QMVz3JkgZpwI1az9D3HUhpIk1RbyhDT8Txhs2LrRAkxh1vGekRynNbI8Y5T2AsCoylFa3wiCG9lxt83cOa1ZPIbqwtIRkkCafyjhrr42zItPlz55CMIgHp2s64IHzZJnQPbV78WGBDnsCv9fWoAR1mJTLnG/eE8AfdJcQjd2dKOXMTMOeywBdrsVZha95ZOOL7b2/dZMkAuKMhme6gvofcFTVZ9avUAqfPMQu5Tw3TgMM3+qav0C7KAF1Whl8GkD3a7Lf+/KowOrI2JiIw+khvusBb6hscs+O7Yx7r4PI+/l8ROL3YC7rvbzzCR17SFiW8ZZqwac37Z+WYEG81a4lem5OXne1yOAE/oOI7zBwnDHVTSNCGv9fgAcRTmJ7mp/otj1cuZxgGfPuQ5UellIFVieE2btPXeRI40nHUUgEwdImm1B8D6f3hSFz1t/jJfJTw0u9Z/FK6uXY0Xc7+GwqZJMQ8T5YMCQ7f62UMDcuZRYa9aG7iUWFEcp5/Ht0OoezBw6e/PNTMiwGbvZD73QIC2n7FhxrN7do72lYMN+GLRqTwtpufmx5WKNIO+z96X4uINTYT+KtC3oVTbKdhtEn0zpL5CmsSvFEfEKKgdZzKRDoOpVaXaKTozHDVQ5trTWO8+PeAIB6aZZo+5zQvp2ayxjdKo4TcdR17wVYNRxaiCLl/XSKB1ztd8pH0gpgr/i8ILRkZbqB5McjkMdeuG/rVJpHcp7lqQh1FpFxuQm4adjGNoDKqrMnW4vjwc/cpwr1PKCvUb5Nm7RHnQHgjEt4TtQGyLXrULPrzupV3AjwKZMFmqzjlTyk6bgcXsE03IfM6gFi2gjpMcWlR1H1nnJlY0FclCSdDkWvW8ZdfeOxnkcQfiDXxokBrANGiEA7353dqqLkWBXn/Q1PJCYtVx2BYkRtj6cKq6kt2uPvWHPQuv3tqMMXeUiTIuhodcdKSesJv+5N1js0te7HyguxA4Dd+8a7tx4lh/F7N+9bNgW/TvHdptQ4s8v8F+gYciaKi4h8UZcEbYoAVS40oBTAmDB20jso/pDrRxKH34A+c93670FKq8P5ijzni1V5m76J2j6HVqHobHbbgp/tcVEb/SgQRghEEdRjnnSFp+CNz7wnW2uXUTzt2xo/lrkrIANtanTzk+KHdTuLz2OWuO8r2Gitk+C3R8SillvtXy0Kjrvmep7++ILAaoeDQ5XMAyU/D/rjEEPRSjh6HY3WkWLXBrnq9eptaXT9VX+xrLa3q8UzHBEbF4IMlU+QcIQHxX6urIDxhNubBCdW1PMyW5euDM8bus7ySdyUYBcr4vuFo2ZeLscvq3f6ooAEjEgsTKaFL2iKKw9j1zzaYZOKKDRqtTGrGkuXu6IMFuEjWcbEY8d0x8YDX3Q1qwweOQA4yFifTBpJLSbSjNiPUNwd0ZL2y5R36Ga2117CCRKI2YpLOi9B6bDgsXQvgUxpheN5QR7lSa2yWYWw5RRTC8NucG/Aq/D9GaVj4Kji/vk/wtH2vrwdjpRxxoRS+3TNXvHAe7SWOJsrvpK2ebGFVwB1D0JHo7iDO4Yionz5zHjVwDHhZUyY3q6d1AL5RGUaL63E9caKZebPaFiqJKlV0PI/E0hymFuV79w+q1C2Hxii5vvu9Y5Q6WtMfr+2uwqWAzIxtoRcKEiU9MdZ0p7R7cQL+0XVST9/3sQCDKM/8o9qlgeV1q1pk/+3StNrCmKjuLFXBEPpHGKCmqyySO6LptM8YJmA4fh5mXW0KZR/9KkqQ3MD/PSS4Nof8nUouCsYkAZEu4Mcj5Ln6FrewqVo8fC0RWuuQKSDgAfbflalcVHYKsuSZmaFjK2zpr9F//Y/QQndd6OvCJzTsajZ7u2pE+mwsDSNIaVxvV+C3e1rt1tr1yv0ZxD4G+OMPM9B+G54nMS63SI6VpWu21iV9+rJbhRzOeoNQwRqmlF04VoswBfL+sQ2TMvo6IHqOvbcec7KmFa8CUxhopW+faVyDcAoAtAsNYmVkjbTt+uXcxJWrq5+ULOdIsDc49oCP6BsZms6DVELHcbUX74yhotCSSZ47YJrI94bPgoNXpgE658dZvrd4sUGHHg193IOfteZfKkOsbG7zAa3XAryb/4m8S2CCEC8XxGoQYOeLboSi6LZ+tWGxHCcx4Lx1LejQE135WLSfQ65Jp25ntmA+Iqqg73AFaKrdyhlcYUVJybmk5u5YuHFB3iSbKv9VZycNx16GxVNBSvQkfURSV+M2Dwa9EhysyqSlbeBPNLpO2EFZXuKJIAIS5Eb4DxZdyrOvlC8WGs1VKTLkjC+y78l6TSkINacWwt1pE0bB1IFxn07qgUdMWFVDGsFJKYaP5PYIJbFoYVJCIUkWXhFfw/qIZa8hYJWEYRC/l4HWSK8Ib439aH2MGjAQrvnVYkR3p+aVK1eG5Vx3XEQP870SJ08kirEZQ5aSWHYA6hpDjdwEp8e7ik77weIIPdx+ij0OyqfzSL3FHzJFtdy0r/UygopVW5IeDtBcv1x0Wlzc0q73ryeE+BuUCsTUNj330ecOaV9F4wYwqeKQBoqwoW5Fw55IM/dCGZGsYKk/rlt7zqUuDwoC/Mo8D0+v+zi+kOlPcXelJV0g9OGiNlhLRQOxwRuNeghvtQV43sR7DpMetN5ELKvyriZrY95lg0lxqNC100ON9uO8pqcw0wSrWakh2lJ4xFL93wyBO1u0aZSjd9lvQipFPdPwg8cRHUtS6d4jL8+mgc9YCuRX92RFvYX0JA6ssWYYjbcihwOklR6hYt+d3pq06GXA==
Variant 0
DifficultyLevel
496
Question
Corinne bought a dress that was on sale at 50% discount.
She paid $39.95 for the dress.
Which amount below is the best estimate of the original price of the dress?
Worked Solution
|
|
50% × Original price |
≈ $40 |
∴ Original price |
≈ 2 × 40 |
|
≈ $80 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
item | |
gender | |
price1 | |
price2 | |
correctAnswer | |
Answers
U2FsdGVkX19O+73bltl0SR2VY378ZDbZyT2349OrplT3PqsVNtGlUF/pgjQk1yvDXyGLjfrVdt1aAA9Bq+8IPDp0giUaDfc8J1M4b5PIr+/tgaGdztWF+j6l3ol4ZRd1CI3Kfe2RKQFwfqa7Vp4QNExYLpKvYKb71mnKs8rfCZeHlHwLturTEwsZEzrd7cj5RL/W+AREhFE+Znm379oVRJuZ9EMKS8l9ot9V0j8wQwDF+XfOEo8qMkVUOckZ6reLWU8AyYnilwTBOmV7Wnli+MfwLTY2mnRPeWlig/k9m1hK4w5vMSxzWDQLJIsrpV26n4kqvHcrN2QAl1ld2LVUbTFzGFl6JUoqwVRBm+NqEks6bjDPqUj51zChvWbw2lTcgzYeSqmd8B+MQhPXIuIwEuXQrYsLYhJJRuphQWYwQvsatmHrEtPot5DXCX3faxR8PU6RaLRkoumtN/n0QEJGuweflVI9hV7PzD3oRpd/Yg+dVe/N1qxHbsDP64XWGm8XucJ/e3CRdj+AJ30c0Pp3eU4QDgnVV7WwV2VimPah1MKnUX/+uG8lLxsxfy3AG7kxFkuZEhAmU1Feud1OawpEsww1CCBXBwTzfDyr0WIrIhEgXGhW+Gb1UkKQWHcVixeEWfxfdn+Z5yPexKhLX1QhJTR4eue9tS1Pn9nMekaiONe915i9LWkWjo77XUp7eHj+Cna0D8AZIzS2aCabtk0DmpW5EAGjRyVfSZ7PrJxjTCBSZWB68LQvvAKLXnrWEKhkqsLW3BORTuqIh+4ep99If1woG5RLxGfs4FkRVO4ReH/K6oZ5O0GFyfTE1Fd2VPEnT0OBDqilbIL8JSPzUAkn8uIhzFPEVM2sXC04JslTXUPEAl8PJkdn4IZsMkU/kVHFjSajL9zYUfnlxiVzrDjyOQc68AOKVyGHsmM4zeLk7w1Vc/wynkg5Wxqdf1W9aDLYpvdEgSt3y6VcoD9eASH5s+Af5U9bGmT/8nMdEXBVoJ5Uq4jN5Hm/yxIQyzj7sx/k/I/0vfp6fulLWuAdx3SaqnwI1o5RvTzY/pjdPBOHbaM0cA7IrPN0WoFzZeiMRcCphcc7KXKdDNJ2vQ5byXoHvty95oAnUwlzpJpSSzqD/xJh7QC8n7YkGzJ7ViuABGdwn5NTUWwCs4p6VZoMLR25qUi8mOFtH65Nkj67xl3D/0NlOt4vhmZYI96l0kuj7E3qlZrsmskCj/eE24UQEw9TabMax/DovBK2xDio9bYHWnEruJT8qZYRpqcCIeysLHc1rt+TTnL+YZzV/tcKgIE3LypflFyuS4etWYlrqhOCucZ9W1JYJEjxt3SQOnTTgcfdj+Dn9DMxkGc5+rFLLENbp/1V5LW7bwYCRbAyEdqun6l1MZiSusR7lYv5SRTLrqJkwzrRQNIhn3Dz6/KReyzE+ywmTEuRhFufV6rkvCmYfjlCh7ewE7SUqP5D6zcFkSd9BoOQ1xfy1z8UFENAVoJzNAqbaVUtjtM6JUmQ7an0ObmYpRgzVmYN5/KFqUdLn6N/Hx1JbINYw+bMRrk5E+XdFDaIqY+U1ODF5ds2TzlK3rtviXchTdekxoljD8rQUVDIg90jKao/ycYrPST10bVmj+6ofdumVBYGyRq/StnY8ceYCiLNFNIlcNHQ0k7IuOQCJTmscG4tgc74oWk7R8b4J9ozrZ0fRuVDxpS88bBoYkWBKpbEQelR23aZGZuZInOdOnj1OAFVVT/fM3ntptkAX+Hl7NMWN1H9ngdtIIJhrMOq/dnowpT7bLNYaJwGIrkQxD2ZSFoHsIVhohV4Ib9iOeu9OvPm8/QjO2WUjGsmvG4zuGBvQz9Q5h6Uj3NwxfD0kKbad/NsoNw8x+/r3HIBzT2rN3nr0hPlYhoCrCq6trqKuc0c7NAZbqZB1WGdvzZpZxQk7uVu9tK3m3ABHB9ae4nZYxmSBqnrhUjwH2II+liS3zsYefy5gBMV2I0fmQOE41kzsgu9U+RE/5m3xCRcQpUuBxgKVPePcomZlCiklqfN9e2dlP7/dapksJWYRPDcRW/Q9Kj+rdmhWcz35JZKcxbCyb9rRYZSD2oLeTT9pScg42vQDdXaZyuVnrmGk4PgTH0ANV5YyREfwDIkTMF3Vk6sMWawujm6cZFkgwDBxnsa3QRIGww9XFkD+k3/VLIB4xU8sgLQ3RhiqVjZ6U0m1g/D8c9+N/hgUTP37IRImxI7DpdKVXBstcOPKexheeqaItuwjJcuq4WLqlRrMGDqeZkhm3x4ZGPH0nDSTYxIqZ/CX5OW6VWnZCCdanYzDdLEHImm7TyVpyF0wZIk3iNBSfGZTpp5OCcSNL+i9wUcdNThB/O+MqBl7X7HZ3BaCO2xsknftdpWAbhNVkY1wk2Ev7ALAUJBtmfrGvaZk7/lYu3UxGI6usmzIc1++rqkV0YtHFkr+q2N4WTb8yHvI/+0BWYNgBKo7jhAmQWZahDazvtg08U/QvMrhXxtKJ9aPXjb7SF3iQLomEuafRVzbIVTB8jT/oPpHAoRL8AMQmMfRs9RwY7bTgCpaCWmQKYlIOtXUsJNVwlp99K5rGVxmypaBOAO/9sJJXQ4CqaBcAafthLi5vyqH0Q08sULqGyD6qtlT0XhaY0LzF/4U3JQAZJ408FlqrXbuZrn1mJ5XXRr7SsxjnBqBtCSJ2ixVVshUgbllgxAFEctSfIJ1bjOxcw0P7hOHzkTPf8hg/SIGs7lJsRUBgQIa0sQXQHhxuJRW5K9Yv0ev4Waajd3egfNNNUMqQomFC/v4cuMj/mB2GKisotDkckMJMbTIuWA0/+DGhlbEt3cbWNihVWlGwDYlh69gtqpq1T4Dh8L4qzWn5sxXhEaVYjgNMmeeG0lO4BOvAtBoc52VqdhuXvyxqPxVa4YwiJ0TkbuYix3BLazTknt5GHe/A4dS0DE7oIxSOnSxvmQAtmNdrCd/Ppqs+ZmrZiODaiT7a/0N/+OprAuq46Z/MJFZhBPSHNmWWup1GKBKQQWbgoNBdEW2BP2/oz4Y8NpaWi8zhfmC9SWRu1zGce6rG1raoCDXVCUcU36zINAET66zakGU9L33lk6XwdNHAWKhvHVafIdWIgTxS+QxM6DwM2+YhnUB9WdvoAaKQ5bJAgsS0hgZdGTmrx3qt3lqolBNpe5A5WKLJsuLf8A4UApHwopzNsMBE8FhMbUoTMlw4dLbJAYvnolMeIUukxg7qzjboMrl7hbcicWWWfsVczhgSzadXMoTUmZTJFIOM6Qc3CxILTWDxDOY83MTneoG0jOdjs/1gkDGdm25gWx7NIlvOl1P8VhS40Jd1pztMu4hniKMs0hk+NDEOtyDtltDxJT4Y6HKkGBgq2MIqUsi/pjY3ICwCgSqBsWsXcrVAs1XNvsob7jC2ltrM9spsqqgqHbsx8LinC/eIjsvhmyrgOK11rO5HCWPqLjvjy9JmsZ+moeueySsFJUgKj+D+JglAdmuI4S3NXj2Himg6f4puExt+jXxYUFeFsvr0DVmo4mc2jdyS2vcwrLBg1yoxVSVxCfXrj0olPx14VwKAcL1oFAZvoM9x/dGK7KWETl9EyQw09Z5QEg/jDHo8TJEaQG7EkDO84lwPmFmFGONL2BU44d+P0lvRcj67mcMDiEBFAH884GddcBH/QMVmI5XlGO8FrEaD+aM3YryeBdKIviXxDtbma1DemC8z0MyhrEBq8CS/103xX/F61V0mYj3Uu95YcB87UQsaBc7jUI5RkoxG9mj9tLjq8PGaF8oJ9YBgsiGFo1NEJgkd8Vz2P1Lb9kDtCNz1kP8jaeVc5+HijJD/4bAzbrm2KySZj2J5+uHBhW3kuPnCYWlElqLx6/yeHqqTjGGoDokOJ8U7EwlQqJ3Do7O6PFuM96I1Dvc1D2P4ZiBLAFk4zSLPWycB1Mk6hrONpJ4sdNgumshi5rjmlDXJHJpgAzeNcvQ0V4SK+nYZgtdd/vNGZhK4uCPaC7ybvzhvVEJ2pIZXhVZv9T2QFTU3M2Gm83lMWaMtMgl84JhKblWrTIO+ibXdQ0QyfuYvDNF5CSPBjY0oOaTtmpAA1L+QBgUw2u0zm6FummUxqz98BBwafunmJ61tqBsYbLjcs87Y/ki0n/+6juUVmAKaStlrW3rxghO8Q0iBxSWCKPbKc/oDyaSvJmpR8nESAK/lmj25UdskBOyZMkb+pVAVR2z0XyMmw5yGmo4AdD3e3kGzfFQddPNrPJSD2Hx+c9SG7oqpiMRxYlH/XT1XHmZI3vOz5TzmPIAxVqX7EG9cNoYkwIwHIIBhyNDBgRJ4fxmf9urDPGaiY412TU5wxa6qOkbaxezdKixlhGZweRAddwamnzzt03v1QFwOTYLR9MZD9sSryICrF9OSzk83c8rTMQ/YQpGWr/2YtxdT8xWMuVDVSjZ8Wr5hmz2NqLJXlbOzhO5V8tyR0iUWc5rLWMY2TVVOadz6+DzEstq2verjg6vIK8OYZVKtiuOIQR4sUsLD+m63kYVIkqEZ2nYH1NLtG1bmjO8ynO3QorOoqokEtUnuouP+FPg2OlG7Vr0UWTdDh2KcpfloEx6VP3J1MPI+XldWxOr2UU2GXvDgZowh6HnHy6ofqZmhhF1YF2hbNUCoTsnkkXtieXeNef0NpT+u8tITfzrPUJ2EIbHwYIRgTxvCKn0PX1lYCrlEYtHBZgLxZNSEu7cjor2+6rFHrj47nXLiYIyyIHimu7eFIRdYIusQT/0JLe6FIT0xDbqxtDoz4ofYBqyUFw1K1BpNM+Sm5hQJRTzzGZkIngChY07vWeDJ/hCx/hRfHlTpHzIVbUmBXJBqNyGqcz8Dhxy+bZP49YiDf017mOFgMJ/l8x5dn39ZnP7zmI7TA+RvBxPCKCsRbIMkAR364fFnzcsUdS/oMvlSp1iSrm/uq7gdK0Q2CUgvO9AeRrdtm037m52KMvgf1GZCEAYkPNy8H4G8aFj/VD1YEXWQNms95uN7/f+OygMWIN+uRAw30eJGt9atYmLiV3bV/579nCdFAJU36X2koES2hlUxmxfV7LSp/b+7y7AgPi5xi31BJTauLRoevHfC2honR7TxOscn5FJS51NYqHL87uMpeQaMvSFN8tTG3xigY4A+5R9g/w71mwy0ZYZ82RKiKVO5T8zN6XU+BumlUiiKtJkBGFcKqutdrqZXp+MDY5JsIdkxmxSi8nJV3CXLHuuFSFQLW9SvG1ziWDXk4wuc7nu27BY9YkhHuitIGDnkLZ9kQyvHtsJIwb/0W3DzcNyeAiA7QJ1IIUUvY408/iLhv1TCKdjFwFgvj4zEaUC5S5IbDcM4cJYB4Wzky+txEWfTcixhFOBvOkKvspK7OT4vS2IY/AeIoYy5G+7rTy4hYGzo/RUFD0AybmZf1QfiuTSj/x/25g0VyPeBmxPZiViwDipAmVauyjFfvq3srUxNZpOwrud/4JQPZiZ01MFjnK9wBJPCx8ZSgqBoHjmdiL0SCguZrEz7y1CvqEwawKXUka5qbxxh8WUsgwnivgQmZCVOmXLnSHJkzlE5311Fedu9jkuDmEdB5YPXxOQfAti+clleCLjy247h0v7+6kOs4Dxb5skRUqOLspH6ihok16sXAiJ9IHZQiZwMbyH8Z9PCv8JsYfKY86g/3wno9fsQbGPL/9pSqDXQ1Y7TAqBjqGfl3XWDmJo4iPXx63cun/8dL2WPxJuEUsZyWWk/qocZRrAWYUyDUcMF/6LTE26NnSNPlb6PEqT6avmpuUKsYUiH2Oz2s+mFptRHMUyC73j4hhLFM4wz1KJV3OHzMk1/7cpsudd7J7Ctb7RI2RACTqqXsPx3N+Wy4AgPcUdEihW8rAyZx9zphN7XQLDDkaQeiLKv8eitraNgm4irTcbApGBwGsq/db1UdwGOZCOZMVVQVco+4qZR/P4/q4su4I1uyjA6NUASKhHHqJDqxxQqQe9iQOp0TUgnZsLOykIwbiOGo0TwZZwVdQD9eoaz99pLLBbc1J5kQY15axOFB0eRQQjK8lDmhFT1R6HpFbVQfDgjGO93bfF2LdEBsGGHK2jnr40FyDXXOWSGBhxf4u5n37Wzkt9HWZfJLWttpARm7iOK1BxGOnFeST7qKvM/tQ6bpdCCFIHjiZVEfeC/D63r3iQeKytPylBPUnh3yxw/+2z+mpZSHYL5akVjFymOLsqVDWA81JqHOyml/CtnDCXXFM/2zHVlmj1y4XmNsgYm9RQLbUfVI2ag==
Variant 1
DifficultyLevel
492
Question
Zane bought a soccer ball that was on sale at 50% discount.
He paid $19.95 for the soccer ball.
Which amount below is the best estimate of the original price of the soccer ball?
Worked Solution
|
|
50% × Original price |
≈ $20 |
∴ Original price |
≈ 2 × 20 |
|
≈ $40 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
item | |
gender | |
price1 | |
price2 | |
correctAnswer | |
Answers
U2FsdGVkX185i9OYhs19q7ATpH66AywY+b/1Q/nTyQXkYD7oeUE7ow7bw6X/46hJck6vcrfoqBQoecf+JSSI7eKuAKVb9q90PM7E/zGirMGpA1ioaIeUUuWZfWeRPe8FWnOxIcycHPFzBKJ6ku6LU8mA7VTQbB3/ZyxSsJJvmlPa6hac35Oqv8bZoRotW7ONGUC+0rdssGu6fQ9/QpycrviXYogPDCAqY6Im3ti+g4GiOKjBZac7LOTLiZiPgQ6NjOJ378vYCOo5YpcshM8f4Ywi+drAJvkrHfkjHTwG7/TVV+5nMlmBl6ZsRZESK4NmJs9paTY9b35RLYzWSbfKuQ300mLyvFO3Zu97FteQ609VBGqqytcbCL3qLkVKUrKxrcP8Yma7nVTJbTpmIrfmU+6hvCMFHWeOnSN3nHgBaQxFn76vF6pZvhlhy7vZmt1sFc7iv/Vk8ni7WGXvVwdd2tR+P8LqwkLuVPsh9lCPjbyuvaIRfUlCQdh2FRH01lsEM83dp2K2e4qgTYM4m0IeJjdJDFB04Azq6gnESlVPS0MryDCFieDxSxTPViHfQAcUMZJS6ovglANNlctTT2RwKCY5EmdUn0qvTR3Ma39M5whyaTmfSbWoK6SmOly4y7mSTCXv8vUW+eklKLf4lyCeTLlwXkaCJJ+BRY/5O3KBfXaw65oyHpoBBEHbpXM0nPKlmcZW3Wt7S3vwAZ1RcNBzdz7641zadnrCcTZdhYd3j3Fvo1e/lAtKRB16ebpxXACsp5/Nsbsa4IgSfTENR38dyceiAG4W8HTxUiys3J8OReKCv2WAZhplGiv2WUujjiFq6Xf78sZIL2eX5PEpJt8X5W4kSNG4v1oftSgcznwjZ1K2b6aiZ6RSKbqosdaiJcWeVSGUrbsNF2EPVeZdaLNYw0JbSum0Mj4Cvjp88k+1twwPtowD6Z1BouzkW58NJCWixqBe383TBbfobZe6wFZKMlzMbZmII5Nuky7p40KcRhqBx9/GWOFFpHHdA59Xn/Tyb362I9kjm/h67D2HPFq4VVbtD+1kuchdNTyKmRgO6DWgmulM8VNTCh576ZL7mSraJ1xpAQHnIlLcHoXALR3lnKzwD1MxoRDLrObnR7Y+TUVksJPfEMua1JaYf9rhunRDOXq4gFy6wsCfGe1y14u0PBKJemBRcVsLq4JhjSO+O42QDmDwCZksSMZ0c/q4LQ8MFRIg+dDdoxFKPFiN2r0E9+cDDVRQ1x3v269mDg/2a4pBX/zsoY1EZDidVqDENaKLye8FPkpW+G2zBT1s4I7z9PcvVdVlWBUdAoe75yHEiAUOIcy1d/QRQWzdbpA+2ax/gzmIcpfOJgO06dHaLCcY/qt4pbGcP74J/42u3tcDt7mhY6FrzVJ4P10fc+PpRpb15/VXdspjP9hbY7OmNOnq9OFzL1HAWp983DmhrFxgAl7NyrxO4T3yULWFB+B2V7q9/yPQ6S4FBGG8l1Gpd35FXOxvYwK7yrh2NKaeJb34brfXQosusBXBCLr82psBNCV4wxDtZb6tMgENKoWowy6nJTEx02tz5a+bCU8o52g8VeHFXnO750sapa6sPwHcLUgqosy06rgXKqUUJvrnT+Fn15gN7Y2lOHqBQGsubv+5Pm12mlYO+DN77HXU5CDeFpKNCSICBeGPlMqzmQh3HV7F29FHe1CeIeoIZN0SfcxmKrMfrw9UkBx130sI1HtCv0h0RNoJQ9PlBADIY/MaxiRnXUr9JU55rJxkCDygy5myV6Swn4bJwGIyivSwKsCZxgRYOQDGCBs+Jx1jdOBk6HsEzCBNItUQWkZ4Ua+ja56SHBwjZBIwxQO1eHtwqqWrdboyThkJIoLopLu35A6FeXf6cFpVME3VuwwOY2a/0xfog9mxtitTxeq+a3Ry5rZ3LwICRvJ9iBxRppM/qIs2O6zEwK0A8N3itT9B3Slaj+Bfwnf7u6UsdpbnnpMWQ9OjGzbtkzlEpgTD5YeJsgVgm/C7AEL85p1Z5M8F5BTEV7cGHWd3aEUiube/sBW2ABhG+LSyDDGlGkpTucHWbYcC1vRsQjrNkBEvnJBw8RNw4y0X5dD7bNVIbbuGXT6iCEQASMar0GduQ02k0jr6VYLpD1XDuILv/NjuVU4laGYbJeyw5XiGCC0zZGab7mReGoC+XNGeIQLRX0OA1d2zYvIDTO+d2UukbbrTw+p6EQISy8gyTPlKx09QYYII5wif64y2lwXeD3BZmgKrvA30gO6RvdWEgeO2jaNWaw6XiRzqLX050OG94dLn06vG9QnpQJyGhVYsCPWDTK6sOuY8i7QxeHC2iWyYdy19HOFJphu+R5AAGtHlGrJ0/Zoedr/fqG5VNMM8aCh9JELx1+lksgqQo/N82RscuVWgygzhyuHu9XKTCUxED39D1CaqhICAFKJacP9jKQWlRGgAl8z41tFy/of76ALpYwmMvKIQfnp+P189YZUfjz69PuyVuw37g5rEoWHg8t85UQGA2572dRavb3mJOhJP5rJqQSoEYgRgxAqhTkDFENTyzjuTA5YU8+dnGhiFzoqT5m1ltW5fksXvU1ChcOuOsImGIqVhhfOeqxOgMD9I+0mHW8Uc+tAsiifk+BwbIAEV4FUOODrjDn1896qvpFrGA7Bxw3PJzP/t5rCKkKAVW4h7n5elmIehIA7I4LAtwgjBJXddXJfUEUvGZB0Hn2TGJoZqRJ2gB8w3r4c6w2VLBEvzPp1DVxGPDpiMjbdDXyoflqyh6odjKiTOq+izbPh/PPuORMBFoXB5I225E39d5BfRBavMys4mCxedjEpcQwksxr8P5M1YC5h+e7y1yj/4yYiI/kBS+IWjcxvT/jrql673e7r1uMbEJL00CvPYscBgkM/qay6s+i8tkHd9Y3YiaJqAyOlx4wFo+pdZb7iGBt6xWcgLOd21pIIWuSOSX04+Z2XHC5/WQ/NAPiFZdebq8/Ft/g4JfU/Gu3aiimgAu7Uoc1Y3CFCF8JJfHcg3AczypBFr1z2ke9kd5uzTVSxQ6hUxO7AdLmu5h1oEVBIhfgiVC77NHJW42jlyP+ESSlEtcwyYitprjsV/GzAvjJuihaTAB4kuKC/cY4KoIE2OsyoyekNMaKjhIuongjECHFd3qRFMR2Ru8/39qKNWDjwHRoIhWhemTXysvM9koriyhj8Qg5rPTx2vuv6+uZmcwuqW7SBgeAYap2IpnPSsJvU8ZGrnlL1pQYZR9fYVAyVD+GNHaj+sCUdybvLD5Cx5ambp+ZqxkigN1p/+Gv9R52Ehp2phXYa1SCjW2OATVR4x4OH4gmY1pZ0kIQmh5Z9AkM372mYOvFwMIYaAxOCPZzp1cUitULG/tKB4rHzrQPE5sC/yiEHKODShcjcn44/UiYjKIxhICyhnmWVDABnaInVFecbTmv2bzNSAnzvqwBDg89b0YFS8JvDwz9eSM4caJcY1Q6nKRmETpSqfx+KGOqixPgKAMY8ilUqoMthzYkJvQ2GLZ4/K/ehoonIrnxExa6CG6DSpc7cScUx/Nj/OZ33BFnya0qm7X36qbay+1Za0lXko0crwkx4RRwv8jwdLFfe/05n+mTQ6NWje2jyUgr333IqvsBg3uXvmWMByBceW+FTOMWp0Fbxw6/b/YJBPfKoxQpm5e55HvhvqkaCqykppDGQIVRtaI9AbcHgRoKhm9l1GCDWcrWoOwJqLYudCdWx5/Dq/fknVLlxmj5kQOcyUq1mP7h4iT0UC6sfZ01COglaVkNDH87BzlWPUgXfAmEsK6DJp2O2kXPeflmQCIC8QItWjvgEquW0nmRyMl1OGvDBClND30yM4kMIcMTpz2tJyvn7KwSfIP6VrR2s5ZdChO6w7O4NYSzfQ2nQLl31++jy4fw7APSkBl8HjsJkSRXLM79iH51LXhQXRnNYpX+rB6gKxNN7w7KAhYoZD2D29BeoeY1ild4hy25lfGiHS4wZ2JbXgdSpH9dJDNAvrg6nxMr/HlXk/6jyMRa57lHN6hkw6aRcworLNVaixmWtGZu8QX5cuQ2QRUjqU2ncwFssKUt0NjARjfMREoltIzMHKqJ7pCEz/HLv+UyIm0xsxpHVU78k8UwIxJjEnzPtBcXdyt85flAxR1XzGI5r7ZS67RqymaGACwGdRnV0qJQfagf4tkc9ll23S90O6QdXAecxwGnr0ik21uCsA2EqeJX5lyg0ZzyIEWprifF5yhDEcz5t/XM9jiY8pYvaFzc4z9T3WqHHvJTGY6REcFw2JR0bLLIZWlb33+ny3EEVAOwNMKv8iyCze8hkMPnhCg5+hwZokeFjZCXvByUkuOC4reTJ2K1chYh3DnT4WeKIz7JN5hcCs3UznTYb5a0EaaOtd6N+iJYCYyEJjISaua0iWUxk/HVHacHkwcrMqiljUanmku/haxmwYUHynpDcWQ4AOz7ShHx4QkpiJnl0Icc+eqiQY0zi6DayvYNe0Ru7zg7+od5RHJZOkf6ROoCeLjDkG7o+yXpRjWlaNjJ21W3FJVSrGbJdnROIYxgsJjbM6KN3n1fFuQCNaQ/c5eY9Fv1fNq3oaSv+Im8ULbg7nyv77Fu6jbNW8imnZwBQ/eqsfLtCjI59xxu4eqljV2VllmvDGDmEJA2hdZb4bU1NGuRz3rquJuqXzDOmHzdG7bhP9nySQWxNq1YRRV8UpvhlRl8FHK+Fd6PwvoPZ5r3MDViRoeTC1WZXg9EXGsenBS8aJKz9nAqo+zGaMdXYjEtfQCS3zEJcRoiakXokEq3z1hjCXniFWHSRqxxyhDfQRMuObdhAdUK2E3U0Ajc47JlKvqngjTJcKUA4KpHTCQ2JH7XQFVtDJeLvEnTXMDlHHUBBhWikwltBSO4qLYQP9O0GV74B6N/jdkd3kYpYMzLpw0r/dMSq6IULFrAmFz/EO2fUo/qtJZRjtSFeLJjbFiTuTOYT82KdzbQbaCDeZTu0p9me8ATeJu2uhh0BzYQXP8AO/jMcNZgc/7qHS9wBEy/kBrxy1EsNkRY0qoQWRBsj0Xa6rGMzrNviqEaQIJjVFYXoufjAfJEc68ttdwdsOIdar5XN6AYUPurm25GUKIZS/qpkmELaViuID0n1QLbP/A90xQ2NpUbH5Lm5qmudRDDEiMH9FFlUBOYY7QIEYKx1p1hc63kDRpFBcZKLOdy3aqC3dMYHz/Jt9aP4T7FpuM1pde6SKCpQHRdvG9ACqZ1aM1cKXWWtXeAvw7cX9ptQCC7yUYrM4p9edlAGSiWz99SMe8DH4wJIDzL62MeBJNn5NQ2wcqeunQHQdel9w0LgtL5eDt3FqCjqpUcjzATEMBj3SOn/octryz84+4eJWPGTZRCytEBon45XjWKxtPq27oTP4IbBQz4OC2h/rOhtULft23hRJNIwsJXdaRjSHoZT7NOIfAPe7h8uKPhspawoRRwwyqdiZpbJ0Z+uLS7TV+PhFHAo8WcBFqK3OE55qJtsyj7+tS6CcTMEy9i6J4SHMPxxx9qKfNEFQPY1lZon6PjbJamFBngcMG707QWk0tmfOFuNfOiree4aHl8YNBceERoR0ZgU5N1BKciafRegmFlTRTI+BwDdxHIhKn/FGAB5Qp8GqsDUmxIF6pWbtmJEF3WiZblhaY10vgjiZXJW5ZyAMcQH7h6vFOuSNZITfU1J6sV/evQPJKTWWDNJ4LDiKKJviEEbqvgBJB5BwVHX2S5ByEseuPSZQRtf2izmCyc2EE3T6j6DVf3uwy0/mH3s1IQZcLUQFLQAhV+MHeZOofYmvUDitcfMnUCxJrZ9AdI9SEbuFlZ0DZJdjjWnsF6F+LFnWxHn1zyM852EbE0oa8BQn9gcmVc5jIin+ALvoaBAD+DsswGBh/hVpJiVkAGFFCJ8uuU3LWbIbFqdYFXJwvVKK7cfLvDmigY4wqY4fYZBIJhMCEcibkvoFTOdffnekcnn3PECZ+YSGoJ+EnsEPdWk6YR2Y8lJWlSubmlTqVSY3ECUrHqCpcOYLTgRaO37ko7eDUnBId5So4Vl/8slfRo1UVioZdiwui9y1F/VtP/DGjFGoXrI+yBykVki9f3QDnXV0MxE7jIIgBQDR/jL3RhJvD0CxIZBR0IOhMqh10p6BiaW9XSfXlqp7ZuHPdsqECWUFx0ja0iYbbcWykvgwav55H8TN2FpWm3/oW2Yju1VNeXgdiqdn3mav8hvP2NjO+DOrnFJiYuw8FmWJCSnB/8a1GtOyXmo9HpqIZTuBv5bh8kgpuPAk1MhWQ5HboG8nHWhgxTNS0aFXGwVkUI4ss7GVNG/3Kg==
Variant 2
DifficultyLevel
493
Question
Mack bought a pair of swimming goggles that was on sale at 50% discount.
He paid $59.95 for the pair of swimming goggles.
Which amount below is the best estimate of the original price of the pair of swimming goggles?
Worked Solution
|
|
50% × Original price |
≈ $60 |
∴ Original price |
≈ 2 × 60 |
|
≈ $120 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
item | |
gender | |
price1 | |
price2 | |
correctAnswer | |
Answers
U2FsdGVkX1+c+O5tUeS3GiKQRrc+dEq9KOx6KvY/XHqa0k2bi7PMjaCmFyFiSoBAA7NDL8OmT2SvP8yr/khD4ZgS63H2vOk3Xal/nE5P0IrZLoUGC87UIACAvXrtO1sk+GPSQXzfTm+gjwSD14mUFg1mVBbVTxkULgqBE6q/Pnnrk8BxVge3uPE0oAJiYbxQOkdt2q1AcQgmbtmFLyPZuRHqaIdSN54I3Nw87iA1yD5nVDr8XDrGLFaOO7r1aFbylM182rqwTyPoZ2S0ORJr+Bq9q5UjJs9guq9zwrMx51JFWRrVxe04EM7991fiafgQYUVbv5axtbUN/Zlmuuhpo3PpJYrwgMapSBod/YceN856A7zWDYOT/tNXhL3xI2U3w7XG/n4c6SaD0ydNTg+XACKAVRfZ6j8W+A6P6fGx8Bt6xQpWXXMWG8YS69yVU8CTMSPxHCIT7tXwIgR7vH1BmrjixolvV94DesGfyTpXbM9IaILO0bMXgu3JVU46fB4hbjpqMN8zi1roCHIvHG8VGmuL0gohiSnMEXEqHAvWlCSiGVU98BUb/pR6QHtDKaTRV00zr3nLm+4haNvGo5S/xBxngcswGyiW8NHou+BbcJjUiYycCJPgtvE0nn9eHHiFErLejN452d6P23aLoeO9/Ov3sNsZJtl0mQV/7DX/s5kF2avhfNQdtoBwv1Wn5RMR/TbvEXu8EFMDBP8B5HF9YKr+dZDU3U7Ppf08ZNDnivh5nfc9sE1ZKe6PrycvQrujNS4ciYBJo0A8hsh5f9ayq4C+Xs8FXqdM8/Sbpa4wHzyawh39Snk0QmLc8zMvRcGKTWh8MhbZhxcVr4D1NsHBAOBchr6VPGJnEUClLTOvROiDwLL7L2V3nOQQF/B/BlD9Uw7fUU24d9AngHHSRDp6BVQkhaXB67JCG3UJdt4VF2SxBfWHhZfdtcN9/ZFtEFndlGuZ69uvIwqNgPKhbOTbBa1grF8fUudx3Vpv8ctCyw8JsfcMfSYZ3uU2whi+vufMCczN1McPl3tLGfT+fPtcnvZNhHS0DGzIBfbTJxwJP0bwNWosqfjK7e9ewUQkGhj7h2zoOLMigq0Rcn+7A4SGM+ptO3scuFSOIp8K5eTw5UKECxTYw5YJWbNSJxyYBSaewE/1rb/RxC/zAMQ8hhrK9Sf360zEtwUWN/l9SV1VLN7MC3i2bdH/3FQVAvTBDhrHqvBUEe0OQ44nMj2OuQ0f6CxosLm6EWPdVpJgHK/JIurzdl3rSMuW02nAN72lHLACbomIahMdpDeLkIySv71AsdUzIUTx8ND6fW8zIYxdG2OiITv+1duUT4/zTEvoKJM5aWOnd2wJ7lpfCzt4kf8W6HyHjuSB7bLhy14QAMuN1p+mgY2b96QixhfJSvK/DPZ+zdoV02lvSPQc7eSzD9RnGfbMc0r957qgOoDf9sVMcjHrjNzyLuSd6HlnXUSR32lXx62HmJQhz76HDDOkRhvtk6wsZC5gcaKRB3FKL3HsSLGGmL2y5QvUgUcTDsO8Z/MQJ7+rfHeIbrdNtWQKOaDN/HloOpe3E0zbu07x2aEuEUQJgyraXMWua/rb88K9leor+Lyzmnjgu1bXMWLU/QYuEpKIPcQe7FhABuayes2+dig+6LjcGiOt6O9rcJcXb2LepSwVLZq2btbs7FdcBD7dRvIpcrtn/FWgquvzDTJTYhZdjwrYzZoJvBLYT6fpKb9xVSshh3qbFltsjIVYL661ToMnVrXUHPy+SCeP27lHW7tvkeMlRDSptFz+WTEdCuB6mddbCVQRwS2iXmvNuN16jrk6zzrUnOz8N2tcJyGOueJ70wY8TDOWIyzjGWqVOk9thZ9S8H/au6aA0EiOtvr7q0PESy+v4FDlJBDfAVTe7ZM3A2Z9tQ5bz2BPP4ds42p/BnTaTK4PKcqTfaw+RYKQ3h2r5edh0llBI68wGfOvkphM5Pqdxks+y2YwnhJP7zzQha8YQjaWHv2uRxJsqrlKA4Mnpzof6izYeoGA+0FNj7ikNBRDA8dUjfuzmyg0dDdk/8F8Bg79F0bqm03Cv1j4ia25nVFOsXIee38gFp/Rl+o4KJiMJOQcnMesUCs6gGdJnvwF1NLDVua2TSIh+B4DLk+njNKNpMTMpuO0tjJvvsh747PdBAPVqpDPXX3q8cJIMkv71ipdS7Rav8t5MKDt1UpRBWXE4UZyZ0fvCrCKNkTnM+9JMzpDUreidZ5MRUja0ohxKlMwBK+ywRaSab8gDvEvqzB4AoZmcKDaSSDQMPLElxPDp3Rv01kQPjBM2Uh7I+Gx46qYE9hkwzxeFUHO2W4wn9Bjg0xBx2JXfwqNfAE69ZZ/vsFVf2bNbYiVc+cWipvr1Ktu/l1Pk130wJUzbbbJzMfVh1+pzKnboji3ABlSh2xEzGRmswJhksKin1Q8/plhGLkhAEerAXH5ALMamnEIo6hvN0yopofWxghmTdPyTltlALwy5wNrH2oM1xnrmkWbXqHSO7hRjwxg5tWIo1H/G+Uy2L/aKu+JzEmbKw/O7FduxL6xoDGIoScP/G9cevWevSCFfm3QRr8sHU4IzsYB4ZwH/u4Tjp4BW3KLpT07ht5c77oIXeVKPIg7w6Y9795fpPr97vkevXMHsF1RYT9a82aVo1pJlYe1uFxwYiwHQuBxy26hm6W9iX2o7LTf8FmuXqcDGmJoapbnY+UO5KfUdwI/wCSVovU+Zix4MBOW13ZV7R1+LtbA8y0G0snyy83PBTUzRvXMsoCelE/5goTHRWMZ7JK7iuu+Tu5m9CnptqfTgdwEXxH12nRHxyzssu8mVo73t4lPQLtaATaaJhYgqAaJmhTMClMyUbZWcHjmfVZoTX6ldhuoTucKvcNIY5/PA+zmO4kjbQGfgVNxdlN5lG49/FA2Mk6Fp5UzvySyVsH+6f1/ZqPnYfQa44+v0jRIFC9ufowW+GTErqiM3uHPmHEfwfc43QO1XIOnc98I3P7NOCOW5I27NRRC/e62JlTU1vXVIyEai4izWE9P55TG4Eow4nrjAUbwwhqrnrQB1gLmJ9Wf1y57denGzVoOFs7iMSaEtMDsmjW+fLo0Opclp1X5mitHzCe1KF6P1bkfbjup32t8izFxImxn0I2QgjGxM3igO+r9az5WGcw5xXzbUu961ohkvfr1TLpd95dP0ZQvLrtSVv3ChgDnPnCSibGTRPOENTrKOBfLfuw7B7CR25GDMnmmlW/zOwLiNY36etEos/MUsm+iLW+o6ezQZz0hte/cTn4rO7wTZVch2SfPgP7F42plqqpQqxBOyEnXx/7OBoVXQjA5/8nrLU9gJQ1tqLtJhw1mAN0cUQ6l0pkqWjfw567zPrQ5QFZpNMT6baBWRBpk76iN9QM6nu3hMbo0gFrz+ZUXejyvofExmVPhnL4sKZsJV8JY1DXE9lG3XhcAUUyEEvmXxcvEZo5wskjxnmRsHA+JWXpPBSr+cv9gP+pIIOnNGuLuuMqS1iRC0EwFxHU8MHhaeYMrj8Xw0CQElEjXGfFvvbYyzjUADfpOO3gDKD7ZF7hIHSIa9396QkHDogC3Wv8S5ZrBeGPH2DxsjsdVALYFRZ1kvtdLUqSW8BTHbo9AGZ0XD1dqJRSn4In6DjrVHOzG3e0vjaq1vrOKMJ3NsVNc41EQjrhxGLGqWFFYSGiYML6iSpXK+88f/Zj64GVlFlLCkIcuzuGXr+nWyAzcd+Ud8I7ySGotz86qg7dvGxskoLCx7gCr/sjA0FXfI+4KF/UbO+LOzcGYq11s9Ljq8mTwL602EhOz4ILmjgeJx5cnMm8uvcN8ed+ijLCd6M6hYoxeO6OWX+MlfjASVSC1/O+r+qTTX/P8mnRuZc+4J22wUtUMyjVYm1ljkidMQHEDSiGvRKjW95fnQ7UDxH7Pzipi7TUwNFtM712wUo6jn8jjVuIf65a1aezDhfx5AZV4LxerDytxJTNK81KK8uYdWcmT+9lgN6rQbTRpgsfGhH6dRqUVtYJ4EQBlUHiuOWjOy3AxucN1xLliBpT28aLeLHmigKUF4goXDq8KjHRbAVYziMSJvVepbcdjgPkgbZpwxDun+GMcEMiKpCpU+D9sm39IcBxt4meFLTUHR8JHvc8teUapgEg0Nb40CA8beAHpNxYV5JmGHHo/Ly8H1diLp6fV4XrGwut8gizKY2PSXH9Fq/FZPWpXWuX+BPH4UhS2ZUT+faN81VL7+Kisf5AW/LXp7XsQTNMfxnbI5uAdfDLSWjI8cclgzL1L6zpUK4vkj61EwpRQnbyGW0IZH9AAbKGA9t2D7ggzzcx31T4FunuKkUxxkknIh9xV06DmuoRe74O3mMO2gx6KnjBYP0DAxDAOUgSC6/0NP4GhfBmQLcttbIozWGs3a17G5CU5rHPmWEZtNeHlM62SPWVRzdLaTnwj10ZJSyzZNGcggVhAChobUjHTLYFLMX0bf+7Ds+ArOKtDGKGRSEhjcS7j39GADFav8Jbj5rUNelqRm90Ny60fhWee64Irjc1PQVgNICcJ/6xs6c9asBYZVtGUvbUNAGq+mzhiHOT3t+ON6lcbZD7y5oRGEHxQYy6ARaXG0beMIOsyvyxJPg4I1ZPDIOYasjq4xcX1EE4CT8lTmb1O+zklm1eWrASaKelMJ4NlSy5BoNY1XxlHgAZV+bKsWN+NpOKidca15ZU4SGkb55B5OLW+g3697DaZRcv/PUcUnQga02pRA3JC+5hUHnaup+N3XnSxu4vaU4J8PhVHJI6hEesx7kex5PRFW8cn6xHdJ8BlM2qau4YHNgr7OGZO+JnF9qwDT73P2xdQk1QXAWyBkepuKbP9EMhhvkiHKLLSryMoZDIQaz/kbaA/nH3r19ztjeLDV0hYpnhAKj623tnLjqPwv2Cydko4o+gBRCfHj9TbBnOkLU4ezisRddxRGYI2BnJH+z+yoAY68WKn43ZH7JcQslxwpNlbc8Xf4MPUi5lySdO4idIGJ5Y1fW0+sz7ym3ln/cQ7IF36khxCRPv2tSHN39wQD/oRkk0qzfm5lhlgR0klSoEPNJN+mNIQo/i/Jf7H3b07iFvXcbkLemKtwy8nYfV8J41rh6VPYT1eErz2IBWFipNXG+8I/lxuug07SQAXqdUlDbVzW18SiMQS9g+TDmREmMCy+eYMJW5SNXQwFDsnYwjEvgTUuxzpe9h0W8q71hyDI/vfRtkCi8NTuJ+CEFuV1H0RPddwSUu6QVaUsNSDVRCMT76cReKkNv8sBpHkDeCAlGY+yBCKxeCOQuE2lDQUUImEAhTbx5BOc59G8b/WJjylFozgBrDngWV5mqCf1m2Sbilng3mSeOTWb+yGepgB8Oz707t2Gpdx1vOwEr2sG3pFFGNg2Gny/h3mcU7jbn6Fsq4j9R5aYd7AfxfePIWEW74ILJkcHNBJ28tHRzIIpr+QbwfACll3QYXOPikAMBgTM30J4RermD7Co4qj3uu5tJBjojS/HGUQMk1x2FeEn3Z9luNTQHJWp8nt1C7+IpgX6u7HJHs0h6XCKpVg4+MdRWaP1ND7mqLlW0HeWA9CAcYJGDbzoob89RhqobN/qzO/jqiIAjbEZPgv04L96+IIUAJwCv0kuQ7Xyx+4sllLaQAaLibeyytMduQ7otpqO3ewcUlnzwXhPQ51cLpihJ3zPsPBxMJJZxF+6KKP3zG0szm7rjkSNTSMTJs2W0ZjXEeirgfJiA+icbjuG4eOfPyfzqSRR+2AKlk8UQc/8R5Yu0bJeLe7Ojw5/YbrsKwMD6Sz//av93LWSbybkSRViSOO2PT209oTeaKqeyJJTsRvrOFWKK0FJdUpfA3dhCf6ACo3LbEpsF2D1D7ntJNufK5gIpQnj37HrjwDSryr0+AgxSa6ZX1Er+T4RJ4nITsXcueYIh2bKiH96pU99s+VvuzNhq4qT7EQTf+CNrbLsJmIv+V2jFFiQejDvyeUL6OZkFZOqOzLeAduwt8xF7VmZByJzhWA2F65T88PwV7rtFXpZ/GYXpciQnEmOh2V78fMzmFp4vaThz5rH2vzCJiomN6ZTzLvbJhRFlt3D63EPCUjT47Nl3v3bUpC0UwEDqWtcH4xmx4B9t+xT0bzyvpUutchO93Uz++YW8fM7bktJlppVtbge+jXrdiWx+iaSQuULmCB4kDUJSLaw6tuPjF6OAVnCgX0jfQEHJQDqlXRVj2itbajta3/MSMIMbeD6sCEl5wEVghSDA==
Variant 3
DifficultyLevel
497
Question
Susie bought a swimsuit that was on sale at 50% discount.
She paid $69.95 for the swimsuit.
Which amount below is the best estimate of the original price of the swimsuit?
Worked Solution
|
|
50% × Original price |
≈ $70 |
∴ Original price |
≈ 2 × 70 |
|
≈ $140 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
item | |
gender | |
price1 | |
price2 | |
correctAnswer | |
Answers
U2FsdGVkX18hb12jqj5KqxiAlUUiAgP9yUHZfeMsnIHYXDee8yzcGeOQnHCTnbGBN+aomH5L8ZdiDyF5wqh9KV0EAY41Zrs+rokNUZ/xvdwgX6tNCufzGPwXHUd1iPRHqn3caCwnZRe8DEcFAUMA8xLLBzjBojrC/dIYytE+oaOlKikLcKiLqCgpJ42RO6BGj16bwRqvbx7N7G97G5O+fRWZJgNwBkFrKnzCvodr14S5ePYZEToepnCVO5h+UqCTWPqFMmnNJdy2zCxmxYA9mNNwPIM/MiD43ig3A1R3SU2DkyoPl0Y2D6EjG3JhKxKuCfgwsbZOBiBKfTx2h8/XHmNZd3G5QwLdqQkQA0wgaY6Clq/qtTDKw4EhWrFmxW5ngqDfaVL+h0Mq7y1wwoPBUUhiXy6//1uZ9eb0yq8zggzxR54LlsZdPaMifEqx1yLt8Fa/hJM9AEQKWOkOrjVx1h9ppGg2JsG8tKP9NW/q5obkO7NgtS3Z7urbTGP+I2zB5wWYg5BizyGCKuWl00HRAgEEbnFbc92CamDELyGXcDGOgcHD5yfTrZyx3gAyG0glpnspA5ugBrGB2uezU+aJOYb/zhXLZI2Fef1l6uOYjD+Avrod+nOiANQ+vGXIaLaYcisqVjOJLJ9KY6vDixEuaWeLEEBWyfbcJru94siHA7IfZAeRHxufhKf2BaKEKvqk27XWM6q0Xpg0UMVC+OTaFRRFYwYGWMzpX8Oo5GeDlhSllM9HjuxH5R51nSLGJDwSVpcHYLqgKleH1ZGZrrbgTEnqSVjUzWBsVNQPrW3QSz5TKiokNmm24D5AuKzWwhLG3F+Z0yE2ygPqUjXWDOtWJS28MG1WtpDh7s0BmQc9qUwb0YyVUbVq9q7zqsSLM1aaxVTFl4sVktCPfC9V0n7A/vLadNzMhHK+g3XdklSnyXR6ufwuJ26tJzjboR5QKeweXFGwYb1qt3CmXz9bh4rsY7PMXlPi62M+Itc5/rFlhIaONCgPJ0tgcg0wOSRoq3PIskxM9R2RacHrWwxZrtqfLTPzopNERnjX7PrdI4NC/c5kwAoA/LP86uEuHv+qNaQJhDzYOf+Cua2fJ0aRyhSe36MQUnbPGRBXRxNeIlL3s+/PsDoHrphKA33Nvt6GD4jpbyPBftn9TleK2QCP1XUZlrIN4vPqdGClUos5uGcqwV0Bpzz2qzx5F5NrRu6yZs/Egqmqn48a4xzwKWWeFzqlFwD1ncvfdWWdqnyzXb8BCKAKtrvETQQL/LfxvIzLer33Nb3RtbuuYJ9+QylLvuiIQ4+Pie87p4M6y/RWsoUhWh5LyhFP1OZrk200l/RfqXaN9edEK2089iJg44nAh8j+BpTJyBGckjrUfsbQh2PvdPO/00l+q5WvxLGRp8bNL7lbDrY5C/IraWUBtuhZOvQVmfgv+qdBkdZohNBjy+ce3YuYj9kyYmKzG5yFZFcRNQ7z83T2/sN+4+418cVgOz4BXZkTy3hVE8OUnjgKEdD/eiDl/Yn3g9mxwzzV+9X4tPdvY4htm84alxvok1lTwMmQeuPmh0i+bh+OoZEVaG4op03MGu2xi8WjXLcI+QmjEAuS70FKdL6iOwDxMDXY7Jw5B4u6vPy0sFtPOsF5/jx4hklTvoRspDFGP3AuIruL4m1oUlXGcYb9yQwkXNQxIDzS9W7cxMblSHmI5wDtWU0l+vRswIMKCMOkwmaOovq7CWLygM/uL2foTBgmDKq6uLin5A7duDBYSCRf6WbTvxl9Sn1u2roRGuRbfn70nnhj04XLRy82xBsJIRiRP/GrG40o6mYi8kXVALrwMnznEu/O99xetx7H6UhgUrLpCIUebLqEU3EH1+wkhB/dzG0LE828oSI954VIQW3FVnnyufawZZcC44Z0xnuFCJySDzodCRtO1dLLb87FPIMbmW+1nI7QGR3fzBe3pU/YEaAUL4i81xFGkiwmLTPQRQ5EOxLwGJIfuf5bXSfDMfAnE9r1COudBcD2ON3+Ax8hUqB3NujYVPVeB4IEfk4RQwWeuXUWlZNuhSK92+OIdlv8/wK3JGfcftBahq7BsOEoSi5AM67aP37jkVIO3zRlx/Eem/C0E8PPpCC8tTVA3Ghm9/FPsNatIhJb0ivA5nDFpGpKRqsziy7Py6SuC0LMf/m6Nsh2rrSV8ocszwf/WvukAkWQhUd5EM87Du8BW95x8MI0WazRSS4/R7GBgaJN8AURh9Ynb/DhCQyBZJkPsLVq2oAJGMX7m/4prWdZnr0VWHvYypcpTDW/RP6qmTVq9msVeUH2DILsAIXO6aS0rmoDFW8Lmr3BosgMGPUp9YlgsgnAqh+1QhGG6Yp4E/kyXh4Sz/tS2WUtLK4Om2GHgYgG5gYiunIfgdAePBPdtY6Y919jj3L4vcDmYgpez19n6dcbEDCcf4DTLeMUTRWXUjJsfeuE7xfsppMbxuCTBi9aKsPMn3fbSePmoqiCrTjdmRvYV5ddwDD3gNTunOajpmwUvTBbN5U0B2L1DGLIdrSnB+vviCaGHgY61wGMpvNzsMUaqAjjIr9WaTHkej0XCBsj5WNuHJ8u9B9Q98HjGvZplQX0Yu6yPTexPPko063BeELUIRKaiiUu2IWZ6LeNGiceOv70jyKeUqoXSo5cKLfuzmBEXqI0UM7y39CJByDiuwts5RYEsmzVx51kIegPgti6HxMzVemSzA8NSNRtecn8gNuoAwXW/99c9wPeLsjxOOCOksZXybj/BUB8lTmzVcqTsXM7PcXbe7RU/kimMjAOrnGqS6qUmyJa9HsClXYmk5cgwdBs/tFsX77l0ojMGQmvUre9isko6N+iSGjARhb9pnGNzvru+ua+WeMeyNBa17v6q5HBMlx0ZhQTamxbHZw5E7dsbA1kqmOPAe9f+QS3qot5Pc2pawxmJ73dhTb58vxY+xAnm0aYFwxBVKKeB2KntknfH1eWQ6czrB6uD2hhJ5uMP4dWEnIHxATG/0j51qlQWWXH90UlRpuXTCIho2FPG/MaJPo6X5FpEstG6VLck+4BxhvbHYd7zaJ+AgOxsOvSqukM1wfwtHQq1Bb1rFcpqtZw9Dqx3YLxdr6TiGfGJQ1/HrQTViY2Q9ZqKgsCtvMTQJSKGb5W2smc+TpYEfqRfq2zSO7WA0DxCDzlAwmHGd+eMwawILogdW8OMKO4sCVOhcvi1O6OmDMY/UzilErmMaUUbsyP685y36/dpwXGa33Iry4ZVFCThijj0h3y0OKVYq4YcDPJ+LkWq3CubYgJ6q1EoGoJN7gSKKaDZ0sOOC1I2E5ifVyZmF+GI4y8Aadx8nZEpLpnSjZLFXxnGeM7r5dLkcJ7cpM2nJa4AHmpRpDQu3ChTSIwcjfHqnn5EZ4B20r05YSPX0vPox1UkBMV6JtGmF5SVM1/z1Mf0Hfijx5cr4S2yaBe3UPj/58VKRYLWR65tL6PPR3b8cIdVQUr7pcPY1omY3xZWa2WuewLWLgZK3RbRNiF+PVrMPTXJn28iIIUO0HP3RcEIguu+BB3D/faoNjYdeVc5NnOKROFkyFjJNwSX6Ot7bqSJEcGMfaWpGltHX15AIt6jX2fANIP4QpLttzn+Q+CwWBuruvecL/rWWHu63I5MDshOPGo2Z6uq8OSfTqyus/+9eVPtNrUV3MmnDiiLOAAACojcR8uaI48PV04AQgLHSfEYKEQ0d0Qi6K/Fum3UXPHKyE7es0Im4cyaVKEin9bKUgkQKL7776sL4QkXRxzMQymO3P5mUPpXpsQfeEv1HqHmekGSbCJMsapiwUeR4WvME4HPvSUWj5D4nmk4UOncA/BtWmGTmPr837Msz10eHnHAZhc3wYrK/B7efHG5Kef4euez8zVKMesG9F2iAtLEt3ZbwJvsxJxqI3km2JAnSjG3fSgqQ3O/3mUcwLxzTjopRSlRiC5uQJAmEH22HqMWc+Im86E5MCPds5gadtKGmY3FH6QCCzQmIB6Qk3lA6Rr70/ndwQ8AnmuJjpuMDdGu/2OJRXuOQDr6eitrOgq7ZACAdIlwcf1mIzb2AJc+wNV2Ytoz/FoXCqnQS4ooQd3XCqi04ZgsKk384W5eCCIpEe+R5DHdvVg2I6rx2tFq89XYzftt+qBmRKbwXnlQ9ncbypWq/bf/egjEjWHvSGCRkb0lLnWKUD2R9jIlVyw3PwklanoClYVgFiq860ZCL+RJeuBSBS0pxVQXxPZO/9cdk/v2AVgZ1hybMOazBK1rZDeZk1SsHMh2vp7FlhHxc6w5MapKKG/WyJ4MtKeaI++HCn+7TyfQRE/sv/f7G3+F2nIxmPNPUfKD+wWZ221AuXTknlUzLX16mrxIP7R2qB3oJpAhv4ZDIc7+K5aiqy77Ia/q+qx5h+PBrTJ/L+/HAlCdfgjnY9cjOfbW6z8/ZgL+dhLIUUYP4zLANaGLluY8NCI+u7Fi62uo19fFO8Z3Uw1yufb7t34WmH2wYVHVT+zPPD7e0RUJCtgkO3jl38SyDN5QSnuCHeqhGbhdIBOQ2IhBClHJWZMmovguxoDyackKuAl0NwOIPHNTA64ekFQSNEZpGMYwiJZBFMaTqrvvfpSGcPh+rlGJ1u21fnxtyKEIaOlvV4LVqk+DH+JWUhcYVTVmCzuRuId/2MAn4LC6jto4fyBg9Ril7ENvfnkrKsQ+SaTQvUUzXJ8E2DaItFOpj5pwtYfzRdG1ceG6mQuezDpXP3weMNxGljBlpBUkn5ltjGLOJY2hROtFqWgHZd+KJD+eSnJ7KhwPX9CMHVgwS3Mcb0StfjRG4RFNuonEw57h71im4NrXmawJ+7oyhwNB/lpbRxbwf5zeSUZlmKpCAPzhAOYGKqzzaRX9QoP0VjjYHXrOt/KUr1EKrjN1aAHQMKj+4+HjlhRFFNLKOPEzXAAW5fESzHCCWM0skeLVes3gFagsRNpi7WG5fQwa/76akZ00n3Vypr8/fF0zCM25w4v+CDfRRwA9P66PxZrfjEGq3DwveUf8583QTlN1uuavEbIbUvLrXKTIx5s4ohYd797WRC+Q6FMBhWBfwDHslt+sCmXQm1UkrYaxCVxxQ6xgYlUNxJUMfbP9tPQLK6H0+0p4iWXV7ZJ3unciqSs8YVFnLJM8upfAWmVOIMTw0EKbxcGtaiUlYkqkwfi5UPKH2/4GjqVe00pZnOoKlLBwWhP0Ve3fU7TocB56kPld0VIEEXEOZfYDl8I9cDrWhVjNwVm6beBSycYMmlnd15fgFkvPdCsnFNRhgKYMzYSuoLHJ1CWXAappA/yQ45opJdKSaZTU9KbAsuy/wI/N+K5IksIV+7L3IRjEqVR5Cv08M8tPr4g5T8yagOwTYE4B0xFnX6C5dg4P0r0VcrVL7ZEDRTSpJtbdtuCZjKbvetWPBVGmVdvieA5LqLA2bpqxDWctw+7jaONSpEOaRI3WAr4z53I3hXr+7jopSSJEW+aCQKoUskcWAEa/04Bf6xuN1hUmQfklDPJo6NiEqL7QtJ3uXpzbn4sChudnVz0dWELet0e4CzN7WFfJpgHfcZasRnRqaCTO+w2V/gHb6UNxiCu3dpD6yGwhDpvjIwcTJro0SXWCwbdrUZmS410mfqnNKF8TK39+eU5Wf1/o7xqttSBCE6HTQ1knt8l1wXETLWYrl1TOmnzm5m7sSBVuowta2p3cpwXSDG0PotGeISiaciLWKOmQhqnchsJb5kY9UeCeteKVRf+nrZkBq3ARm7RkXssHZRfN1pS09LIxmyTI8e/rgSfL35MnIQJkRZy6GGXh3dH4NJ3FjHxyyDs5un3smWpQIDECwg1EU4vR18SG+MFAQ6J5+3+POi0D8EQhMQCacFsb9164YPnCKzcBepZmK7aap379pmYAL5JUOiYNVuwpA3x0bJtIextY9WRBc50GqPNIGh6u6muWGFD2U8B1IlwZSC41b7fL4ivqOxQ3+1zsaj3Lo29yhKg6OSpSvUeaojfIUeWVbAbLnGzHRZQgC4Vihmvvi2hppWuSuNeUbjFcBnpB0BoeWwjOzWO0uLKWNqANCKWiM7CZufBaC6DOXYW146XnhVkwpFulObg9Rs6FV7DOn/HhfJOrapT7AekuzDQzDUUh3nl82p4QOL5sP6spjEI1VBJxA2YT4nnAx7bwE+XOX750Y3xV0yWqPhZWb2E8+/9AKkWvnwY2exVoYq3yMCeivUvVvmzl92Ayj4Z/tzFA9U92VewOUTgKyzeLpnUfvcN+y/0H23g2GuNWCY1aVQ=
Variant 4
DifficultyLevel
502
Question
Charlie bought a toy dinosaur that was on sale at 50% discount.
He paid $17.95 for the toy dinosaur.
Which amount below is the best estimate of the original price of the toy dinosaur?
Worked Solution
|
|
50% × Original price |
≈ $18 |
∴ Original price |
≈ 2 × 18 |
|
≈ $36 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
item | |
gender | |
price1 | |
price2 | |
correctAnswer | |
Answers