Measurement, NAPX-p167302v02
U2FsdGVkX1/6bV2B9s+DFZPqqVGPUCLrRVnVkpom1uG9oR34J3SQkuJyey+Vm/zDrMLT83JkSyemKZdBeb/O3k5wE/UPbEi9C9fy1F9GHUeshljFQZhx3egsl34iYrjbhc99HrG4iZlqjerOOAYIItawjThW4TBE9uoSDvxtwJyn2tU1agM6E2vpx5l7Ay7+GG5vWbOUNWFJkQBnx19fork0lnDiohjuI/4w0sMPZWOJIAAAz266okX+HvoHcheYAPI92M0CUq3c6kME9Xfy0zELtNFkwKL5Cs3FZK//FvIZjGOxfTL96kVXtHgMllWbcqCS/TlcuHNo1lKCMoBoR1GB9X7qCee7xltYBYrTObq7/BeTnfVS3y0JVNm8apgexIZqlxqRjgoJ6PhEr2K8Q+wVMaETsw+CdIGGPqw5+Ol1MNKceQ5cVdd2wtk+754dfxemi6ASogxzw/eLY8wBCqgGArpRm+TGpcnn3cjMqTD9msYgEnw8pzTDIuCa+1jrFyeEn0ohcjCchVDbpVASmEyIKMiQqBSJZnsq4QfOec+FE1Pjf9AupPr3PEjDU/FyG/LMOjKzp5hq/X8u2aaUm7dQWr2HWoEIWos12SPAmRgaEwUE/nWZP2HaJl1VCpW7M0QoOsUyNpv2SgkMRHWzwSjdnafNbZufTh/iKoGGbXBt10lgSxFTg+dk23m8TSPRoa2apf+f2SLExi/pV10iEedXu3jd562IFweZBjGjEkFAc1txH+EVEI/ZvCsqMWXe/yBFlpy8T6wgv7SjF3EXbAj0R0w5JIQggD+x9v+Sp621j/kOd6J8MsZ4gLta0I/Vek4DzTeynf1u/JzoitMB2X2AnwNmNnWl//b7b54VFBA8g+A6MC+lsCt/W3C+JJuFwy8YRFMZKEnLTU0yJNeKAMd0qopwU6pxC+4dhiHvEEz+VpuRKNV8Nfn2q2AXf2OhodKDB73keCXfl9Y4GJCsHVgNcrwJRpXidAMxgxq2obtS8OLkZEjSqE3l9LUhoksJ5YL+S7H7Oih+3mf9s2OwPZFA2uUMeM1sjwtCJYhOtghxlMzmVqCFqrSnf1t0jLri5ntBbvAW5XyKz8cv+450e+7+6PumJquJjB1+tbvJVMx5vz3A4DvgyebWiCYZBtxceRrtK2P5Ikn5V0DYLHBLwFdpeUg0dHFiyQvCxQyd3cR275I96d3gGmCxAE9CcGa1l+uhFmRjImLlYURVGNotbm3fTIivTZLAYt4o6pb1WDLGuWG0JGjbfiQ73ABVdHLlfW/W5pprZuAW5bNw8TDAJ7XiIFeogGLB6wzU58WKmOfLwXRyp5JV7ww1AUcNjDTOKn5QL3BiJc1l9RD7HKboDs4gS10SD71f4UuUyTeANHuhafKVGXeDj0vd+t6paONZvI/rpBMX7PjfKlTSCTBXKlFCgTUeoHuxgomTKfzfqAnQwCksrTFXSn1cte/sb0H1NoSura0tcfz+LrYH/oUrkr+3v8iwWjvhm3lhr+wHvsaOaNrQu9Y52TXTtqBN2bHS0F7mLjvMkDxS6DiicodD4py9P1BjJ/bsyqOlKxseISDqA7jhDG982Xz40YCojDeMfD8dqDph1AUYqaJcYXQSFuYkQuJ+lTDfbc77rxk+f7xirebrK40b7Pe3ty0eVbO9Iy2qudB3l9ILTwpaQgH/fk0Ovzz0aR9cSo0BiOPAM8pyWAfRvWHuwcsW44ECgFlZXXcv9HTn8lKdA4/vbd4c+G97SwHU508URBUPtpF7CtAoxbvL4Z4AuUb9Gm0pKxS7pcQzroWQHsEEMHdQGwYXDLGTe8InSaz7WDoYRuojsigmWlXmSeXJfZ85WmxR9jOWFJKJ5gpw//kBKKUvuZbE43w+STXOm/E1BxjLkCMnlBr+LAhX6UBd1eyxuOs2rVXmul3CtSs6S7EXJWpz04tNGrx596lV55VwMYSb1cILQTxP7PZk7SB56XC9F0xKcvsgB2VOVfkEaht2EqPB2aSAQNkWgdLl7C88ECj70Zim0L5USNSK5u/dLym44Zx7qoqmvtJG9ZcWggjcn1MuDcBzZHe8ddj2WfJmWSMBmLNHXFkrpk/PqxL/jPOBemGLZtXFeC4kKhS2LYmW5qs7vnFZo9mXJIKzYUYkxp1MWxDA9nDwhEKvUnYrTQAc5bjFYFhtqNj5PnJjm+lD8glIpvjZlJJu0e9DhEuBXRTcGbry3QH3ji9sreWZ7g2dECIOYS3tyQI8hFt81uPtApYsjuuInQ3078FtL9txm/AZb8oZ11Oa5PuF8BOvejLlklMBi6wMtVGDRMxgNw8voQIx0TjtS9u34jykLiQ2NDPvuwhiOpxeUc4k5tzhHbWCKPxqBwrOEFDLeELUaeUgthKo4TPk6ag20J9PGN15KgljKKXEReW026q5I1afqqlzpHKtMKeW8jGdsGv2tv9YJMHLHh27MSy6K5NtKIqePVwCcWEHqseQJuld7bIpp4XZ78dVsT97TPTYIJuchTs1NKvgFqnLqYZZ5DSAVtu5s/PPOGe6Lsb6rOYspLPGTBqsSdyfrnAyiliGsoq3MZMw+qj2eGFH7o0dr17x4UdBku7bkiCyTL0nDWnWUuHSgq3mUXJmyy7Bt7+HeH5cfJl6u7rlDalfuVY9lcX5dB1BrGPZ3kh1A5ucegA+zJomY4yhpiafVkgIPcNHmTDbofjHD0QSETBg1WO0k0j4Pu1Ypzhizge3CByTOVt7D1KSIcnxqw/WVXSPJb06x/vLMXCoirZQCv8EqtlTEBCMzR++YNgUYpMEL+Dv6Hmljg2P5x+piUAuW0tHoJoaZFdpFC2OEE1tgLRu6Z9GTD/VWr9t8NDchmywWwHukz26J2RIxm7O7iWWgcKOFzBPAnW8LSWqJtjfDmP88WOtcYLgDZayqG1BW/BLWEwhwZQVCx7d4cdrmL8n/lX88XQFh4LBhrXIIeg7SQnXq1QMjV3VMvuVP6XM8zB10dDOZiFpJ3i70Szg+J/pfgdlj6+WqPHmcBBiSSk9cdBJBThaaOcb/nlSEmA83Ekizf9hnxIDNmAKiylU+IRba2SJXwOIGjqSahjDku4hYmI+ChBAXgfr+ZKw/rAqtlpYV8+USlxRszOA0pk5C9s1zo7/1epe+a4SU9gGm2Jzra+vGJdZkvo5WbW/4APcJmYJR5eD8vl1y+we8sV02qH7ckB9/suS5kKAJYamA7UkbZEW+xqgucHPiPugPXkFlr8PUPQAWtp/MYJRrO2nIvhPnCKO8Zni/z+Pi4mL30wnP10ZELwPPS1Kuc4JDsBBP1BthSsfgira2HdIOCqvG2C45y/VGuhPOEPBoFT2GabR+W10oJk4GpySpdB4UoDGwNC9FUjCxZcB4ioAPV/C3fOf2cQFI7sbCVSIfZwwST5VSpcHSwZA08/ig6au0PJ/ZDYOYF5go/9GwI8pZROUCrTC638wSSXU0Y3BPPNK3DkE0JpxgUAgHz+BRfO9Hs5BisoNWBXQok6RxX23IF+/hZMsxuA4A3fQGlGdfsMqJgrHxOIQ2TO85M1RS6SD2euBTDhtQ17sFRIuAbvnmCZGHPDB3zCzZTvUHXe+yqNp3GxsU21Y9BhSncg0lMS3isZ4ly+WiAtBP6s7jDWx5f08nRLY7W/H08mJmI6fZz5Y0dYfuUm51z3V5rAjajeOfn59I4qkyy31Hs46d112Pag1M8e38Zl3wbX4Fc6UfhB010+dLWcX270v/Gsxuhf5ER35z0QDLv6qZZf3tkCxJ7o6XPH84FMJS67oHbJFNpgjxJsrp7ke3ntYf9Io75zJWAuF9TIdGT6gdFtmCebt0/8KEpuTmnFrfGWCE9tjtve7EEFf44q0BTqxdkGKiNiZipYIW/AZHJ3mFcL7+BMtI7TwuTjcjhWvopTM7f8o6spKZaLz+UoLSj8DbgIrhVVEjap88zg96sI//ghcyUkk2xtTTfTO1Sz5JIPrymlJBCVU2kvodehejWtIAQF87izx4ES+4PGCKnWkaQMEP/XegbV4aSk/dnnyQkk43b2Rf+vDnGx/vPtzQDA58pJs1ePReHZkHLZySdNZTk96lbUJe/kY7Z78kpuYmo6AqF0m5vBJhHolH8e4wZQCA35bqS+XlO32WqsvgncGoNag7vzPna/0/aKdOdAIn8p3r4r5eDsmsGOHuuAdSz1mW1V9ktVSb0n61EUWnSQIztg/QM5GvZv7mWYReIGoVg0RAwLkEXpJvJFwYntaoHLkLdkm7EMpdDUzO1iE1EOJ79f3YyLYc2t71Nh511CrfOzjOXo8xHwQNyxgQksNYc4ocN1w4xBnlvt6rBMYUvxhYOdMKKT6g6bC5Hh14l0KVzRN6Hmr/mBp9vFbQWlq6spmJaxGY6N4rRCknLZfDLMXz4pS2h5xHQDg3BAe96XCgcSUpmnuqkrkiX3TrfD4TaE+xmmX4nBK5sQCF3AvPIj5yMmvHOLyYoylPMMJNd1U9ZNmYXVILH6cXJyP9aSfEnxrJIw8nHVsefNwjmJBKb/W7VMxSpD9IjLXtdszZQWf5LkopdiOh3UodlY79t6f+/rh4/Z0fIiYph6kQ8NRk5LW4ckYFY49H85LwFsw4BuGGpLPjxhzddzjVipkG7Sj0VcbB9tim0hbg0Vi5MHURRV8acaKuwrr6FLN1Q14Rz99miDdZEeLlyul4JL5fXGeHs/YuYYvg4lR9EBSGIaiERmnZLoH6JheDn3pF2JRtAOtHwtJ/h4l9TFm3Cijs+0jBnZXpLG6YU9V+tXRdN2XRmumKCUmUcQN+g798GDIajnBN37r/sxfXsYVaxFJVr+iOxhiqj7U1+zceRYkCPyFe3V8hnd0iNBTQ9nuAITrP0Hj7PgLOwiTXlOr9yjr0lpzYv+aOn4kwdpkbqiAaHSVWGv8WtBsQ6TbYTFeJd4ZXBYJ76KG1rXnrWyOKwNHXMjN5oNxGzfIcSD3sRZHWhzkXi4tPKAbuaMXU72iN2J+38Dl4nHpRpQPPdGVZqqp4WvoX3WEghcPQp4wopig7Ui5JEY8uvFgil6HGuMl+CdIB1eAof3Qfs8C2I36UAXZdlzKaUObJbDBdX2hArn2co2YD2zUczaGhSgZs24Yf9XRInTTQPmoXmZaN2mTdAv3dIDy3+ZANfo5V6+nIzOCjpUUwQ5c3Yb6Lj5oY/ByykuqRuXpYg+BXLuAOkq+IQwZ2qHfHbSFgxAYKllFNsaM/6EqqgrkvD8rt3CrKmkGM0sUfUOwleeNEz6AHAvXLNpI/QZeL5q6GE0fxxZ9I1mwp2j9Vw/lKTS+MfZhsvDP1Bm80c0FV33JOeDKJRCSxm6ahTsyn+7Rw6TSaS1/40eWuKr0RANa64cQdX6uT0oeZqTdskHTpH/2gGQ7JCAZbLGeJRPY51/CLjdi1QB5+Kegx/SV5lOHi3xkKWcJbuePl81yHwoaVyBljHYVlSFJjJoOWnD7zKQOEYo9LlMSyDaKRA9PlORr24CnlBss+8sel538Qc/DFCE8HDqIXj6oXMOvIekovneZwxa492QyhcdaQVDR74wBdpX02gAyKX2zNvofo0K6F2Z/2+Q/2vTBJeo71AvPogcu0rJfCivHogrok/nNEcDnwWIhG+6jEdM7HSGpKUBWvdKjs+5ykCFWxegoOjJOrKGHjOJOsiA/Aphg/uxupQuKcPertGM5BerRDW8TSOw9jfWG68mLuK6U5NpXkBqOpI5wfAnrmWQetY5GB/IEva9VNXfBWAXI2dKhmrKq1/cC51/19yGjKZ8pGCup3G4wveG+DknEs4GGfS/h6HZ0LgUbYUIWhQQaf1L90YgjE1hUObWOc9deMmqWCy1BBJk/dkfxhgtpP75ADfbq8qqo9COJxqSsZm8sRM+JruNiLA396T5upkBF9rLMzhJvwNMB5ijAb4GWM971vYLXgCrXSyAd4HElKoBgO3z0+zysfHc6aOVV+5UpJwfRDr//RzX1KbC62h36rOYfAWdtpNKxf8LAYml23KvFq3PVkiPD4KBlU3OV/f3T32+aZ4JhvtCXsbCms6yDba4ffPIWWETusX6jr7tQqXb9nMJFzX44CohCwr+D13zJ3SAAyWQVUYCa4KRACi7sS56i4okgA+niPvY6YI5OrJ5xYTRpEMfYyQxBJg7u2azbbqzk7mgu/mPQSwIds9x9DmBOeNb8A7mTI34ezLyh6DA0N2Y5Yg6fYUSL8RsWpNP1W17cmdU6Qi9jQLKtd9D9TWnoMA3Vflh7asbBBmob5B28V2HrF4Gi5aAjQZmYMRXmOckO8otocPUawL+7rNQrLgXAgQ1/0F7skKPJ6k4qSWJBTUjwY9aZy47/PEE1NNtZXG7dxTb9RzQ6qAGnf3pYRqUWztkmjEvbz9Yxes64mwa7R5uguw5stHbVlmTDb4gK41YDjoI8XcaLLy9LuODu2v2ngPTG/Sghj1mXMN+AYUHCN5qWlsbMiqjJDknFXORr6McNCDTp9K3mrya6Dcaer3BtHXb9lNJfcZUiUikV1y3uxBWjdVXT2iTuE7o4g22/VBmXhUMw8ZKHwuXaFcc3+4sbqweY/3s6oC/SughWvp+aBT6mTs8fpknsWPo/UW7wzliF9VrYnGfz6itZWgEpOh1VPSGpNfjlIy3h6+SKiZwtBMm5BWHsTA630elXnDbiuXyuq+yny7eQPfUx2MpWi1STOshf7jYEHqWQ1HYymP024h6LjVy6lp9hGknOmC5k/wIu4f0K3pJLDMpzDnTjRh/KjYREiLZKTqzzRaioqU+gMEwN3pGU81/Ci0/DxOIUqGDGT9CZ0foRyHv62kPmDqb7dUtIHENlhu1c6A0uF1fChmCBHvts9GRwQVjVI1N9PV+z1wR/SJjT8tAlVmhej9LVnpSfHgpdiITFXZgIcstwsnQH6KoNhDGxVyWs1EnPu7XH9Jh3UK6jyQVGyDk7iqF+ZkuRC6xENd7ZptHsYyYHoAoyp+HOpICOm5KdXSw06KNM/Ci+KrsC16j+hY0Pnw2NWqSRiEYfkctA3zZjLTMOmgw2wIb/NsNtGLClYDQhBCKisbcfA0qca4UwaS7AFa2613r98fI2w7SFAABQw49B3bmCL3R7udRhEQQ0149EifAG98WJWfWiGkUSI2Z2sXPEO79ft5B/IDttw6EbyEFbRdmYIUuXSTcE9z1abzqJ86I2DwyhvIpvLiFGZMds+ChuwxuYbMZo+y5QrPwjdTpc2XdMsZyYQg5/FFHz5NjYdJS4KyzcqB//UVBz50MvsSbORLPnGN0rOmifNJM5kwsPos8mbABxM7d4DcW1ZN47psVIj8hyjEdm+Gh9dz1ze+FUn2hcdw/dxbAEZPHmld+SzEi3SYisqVvZ7HEJQceC6GNtcz3QuEMzjq/1/rvccIYv5eTYWI/LRhbnAFtdzTtjmItM7ygYHNR2/bYggleTTJLmhj3nqCUhy9ttL+l55qds9yLGcLgDOe+JLWvXfTAzhi18v3YVjw9EGz4lojpzkkHWe8Vv3+uuM0FqT0v8fOWmqMnNNIMJI6xHq2e3ORjiz2D8uGCBxOOGdTpyxUWVU/PjBcpujjlwbfuwRfItaNqDf1cM+zdMtue/uX84YDCgkEg42vesIVwlt4H24+B1OVjuPci87IpSzY0RNHoHR7WCRpYiN8O7w4qxxKioJlRUaqOeFJ4Jn/4aif8eJKsYk1AS6g/hNE5BdqEWqq2XohZNCcbJo5Bcpn/8wyLDNgobvomMqvKKdWzCG+LHtzToFlvGAwHenlmmBwYmi3+6ZV6m91aRHCZZJyAqWC1YSANzcptRpkvE0CHI2cJ+1FvuH1NDaP+SYOh2KbjZG4W9vJcazcZW5KXz5Cq9opN5JcrdUWReXu+X7UJIQmjiqEjiLU9M+s4bt7zQtrz4EkUfocMnx9UM4FwpqlMvLvxRZz/S5seHAu0LAoyNr2WiwBW7F8YkdSfpQKERiVJtl7odJBozMt3/0VBiOSW1FXcRPU5fyUyUHrJQ/xeQ71dsXJkYhCZO20ggEEnQd9Mpgp9mrLg87ElvRJHZgOWm21szODEfAPLAi0/fcrwDs4rx5F0ZHC6EXqqjh3FO1lQimndDsplz9cCfPEG4O/eGL1HszgT0+sXXjioLUGMMLXhxxn+Plh7zDKJ+g+5MlsygsSUsJZlTTFI99Kx6AGFwnHisZOz591dj86rjiztxtee25borLMhlCbnyyALp60H2SPzplOryAdFyG8DB3bNgMcvlMZQ92mUOKWea+/XfRC9Wrd0IgL2NLwMV/gMIsFB6XEhq1GhFSW7qK5nmyH1nlgS4Q2Yv4ZIIoJ/zkdCnETDPbhvqjIqc0DlIv0+bN24H14P1gpPKmk2L7PmrVVubAmrVLzqTQqDXV+eL1soBzXMuITkuvfClglI8uRc0zMiSxSgRqUewAOeU04Nzz5hQyJRX6Jq9AXGm5G+CGfOM47xGX0213Q6B7kXWVZ07+SWN3ukrPLlQG7L+kSarSwqsYMUuLPlfYpSFBvo5h1ZmNF4fJr629n4C5KzRxjjc5SPqH7h9ojjIBhGstB3/5XX1Z6PE8mCYM4TN+DgrFIE42ZqI45l+TyIABwcWk+Bf8wHYbTSlMPidKTUA2M6QQ35FRpkdTzIcKFg8n/Z55DmOo1C2T5WhtKWW3tB4DGl5YETTwKPSCSQlOhrKPjJ5P6R5OzpUrsryIZS267w+xjL3YKOYSG/aFWjjEI6y2Uf2k7ck2PPOFMy7LsLCkwthTY2fl7xn3lnviFzyHeQM9i9U2Ldw648GcR12OKJFWvzkkyPougiHZ6OewX3ED5H06gZVZTRcpPUpBuiZn8liQ6p1w1LLE+gYruCSQjeA13G7uhTYdkZO7R86y9mm2NmB7BlwGTRPCe4gABNJYLOGuUJ/1AwV2z8oAQXTZRvx6fC37s4b+AivqhIm5UBrlyttExvrpv9Ia0MSvFPN+xys0JHALZHoQHEXhWh/pVrHLELZGZF0ITAb/NqKArun/KNwYvrD0BKsWKgLpEScWia5hccFXi0Cu83seiadgArJJScS5OpXm+63+VK4diWaaakSbgyS55/duAWKqh+bZze6pX4RN7K3ZfFCBVC6qHmLO+AqgC3G67mj3jrlzIlBzFYQJL7mfmj9Pp1bKpj+cODgWcdfZiiK/bNC6xHpbm89GXHzS5LSaPg8qu65aVGNPbis5L5Qvz+FsGvYEoJGLCxC2vu91kaFHTy/sQBDf+ETa13ohO/6zmiRK9i1b0qG+zEJ+Ugag82pxwXqFWshRaGUVCPPFyFX4vlvXQSiNS//FjamX/jsJVHTZ7lE0ohmJS+RayfXal7ie+qltmj6YhkId6PDk9xrCrM5GimHB/7B4ze44bni4vB7tBifbsvRy7UkbuY5oYxMCHojoA+yysTNjHgMJ/oCx78ojZEdo8mk5GM9mwNBw1MPSTaflZbFGr/sjue1/k5l1oFOTFM1tiUwzbcjKNNqzdQ/JHrDbq7qcmVGv1t+jIvfQzaH9Cp3utoHS/vfeen1c9/SMpDCr48K30vJdpdGBnaHBnjAO0xI2PnWGPkuEv43qO9f40vyTKFPPiiUVzOxIBcLMIFRRmWAy6t/TX6C/LF67xXeAmpeNx9Y77clP1FpVR8K89gkE3ftUaf9904UL2czwyJ4UNSR+K9TvdTX8RXFB86zuW3ILOHCRWE6MkB/H0uWOj0rsh+nkNMXROcbRkMnWBhBPv5HlalaIQqe06T9HfOa3kTflQQUqac27DlJYFWikR2zL/ZEDniII2e+VKJARYu2I6sUT4suUZ74yku40/A9/dnxr+Slz4uz2qrVUUyxNAQFB99hMBrMsDJN510vhaOiv/JbwBusUwvMkKDCOWCfNdVlTWxAu0oY96tzxT07XoMygmN3UzMokpKd/xDDDZTjdR4XEVWf0wl5Mdfm8lJAPdLKcesq9reeLEmbOBT7oj8MZuHxbwpdI5Tv2j+EH4eY0ibeHzd6oUpeX3+RW3H3xCLhYAjPoFm2cRIjoJx2cora3g0qv1DSH4HozLDM21MLH6gZKTC9v4ac5RaDrRUzMy55Iy4M9BwyyhxEph0aZfB7vL7rjGAKWAK0sN7peomzwb4atjWpjsJkxo8jHIVVkPjctUX0MRUsGs/zmxrHcx9PT0jO0/pDafX18gWQj/hMcBWBnzZByRF+Y9ooLuQ6W9cPh4+/rJBNt3/taW7iFAsTuaMaPLyuNo94fC5V8LgTV6plH8utpuYo8Mo8iHut8kgTwgUTyxooQgLmgLMTkgUBItsE8UodNWGzUpjl2PhRHuhFejuQmD+uxlP8VrAFyYZbHxB73skUddaO68UKoeCAj2saR0L2+zHjBoZOJqZLDz4mL3r9EP00ceyOSKZv/o5lilxEbVSgm4ZrD5keiE8cCVmLf23Ka6AoSa5dHhECgLTknFtGDEfIS5Q2mDWJDDh3ct33AvYuBOU02RNsCGxPPosGJqe4UkV5LeNUHzi1J+j+sWNbb4IK97PH7Mp3Q/xmfcFOMg==
Variant 0
DifficultyLevel
580
Question
The image below is a plan of a commercial garden.
The total planted area is 48 square metres.
What is the total unplanted area?
Worked Solution
6 planted areas = 48 m2
1 hexagon grid = 48 ÷ 6 = 8 m2
Number of unplanted areas: 8
|
|
∴ Total unplanted area |
= 8 × 8 |
|
= 64 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The image below is a plan of a commercial garden.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/Math-Job-Q44.svg 340 indent vpad
The total planted area is 48 square metres.
What is the total unplanted area? |
workedSolution | 6 planted areas = 48 m$^2$
1 hexagon grid = 48 ÷ 6 = 8 m$^2$
Number of unplanted areas: 8
|||
|-|-|
|$\therefore$ Total unplanted area|= 8 × 8|
||= 64 m$^2$|
|
correctAnswer | |
Answers
U2FsdGVkX1/iWnfo7CjD9HS8lDUaN+OXognN+XpmDIT7Rccm+t8gyjEqTepm0ZNNzVFjoQbUMXb0tYFt3C2rGx9W8a6MQXjAtXi1GtYOBmQuGpJJA9JuHoDebZarxkWfszaXRUJGc7SblN/QalAYt5pSZ/OzbDh5DcRQAqThq13zbAc+6biVKdusCb9ySkmMs0FTDbGvu2ZoYYxpsx2Hw/p3OlWSpyyQOakC+eaZk3xNcebeQsLK2VSuqymZe0uqa1Bu/kXytOwvrrD77s2HdXsT+2Wnu1drnxVUhKgN7goCjlKEkn72aaFfPFzybhbpWHDR/LcW5wgGT0jKc2lWKVc44SUWZnvvf/nVwtQnfcQKk3ym1ekLGGB87f0/iKubsVQuAUTZRG5bqst+kBZMYGCNbzHPP0LCd9BJ5T0UAMb1xteshvaQkyFFd+ecu2CLqAjsH+r4xMBFpcdagBAcJgYU6i1iUYDZoIN+oAX9udrdnF9PW7yc31JsR/iTN5FpbuoQ1lIgZRQFHSLkidlcP4FdtjnZqKZ6arIIiFkCvYS1FUDFaOuRdgwsBd5CDCGAzWSHMd46vV4TJk/J7cYtWn8OW8BoPBXc3HkxL7RKL6MJYkd53nnr2H5+9LIuf2anZpvvP+bGRrp9OfxnobgK+yHqjZDKrTmBNuB0foOTXkLJ1fKqGPqN4k6x66zFU2BPW7EyIskP79p3o4yohdu0Fejt+pHkNK5iyuww3Ys1e3vKnunwYBpRpoNEc4pqz9TpEgwTDl5FVcep5xW3uqjTYGIdJAlnrgC/B/MwdcHPGJnGjiXWMo0fo6G8mnnCMEOYaDYyqfKuJooUF6Yk2T55KcWGgub6IX+5YQPMKn576unLPACAjsqp+rUOOkBbtRYN4AF7fqQU5dWStsem1QEXk0QcvDjaYfM7b5RQxxmqrLKmWnBWnt1M+yY/7TKE60aqc/f8hFaQfKn6oD/LvrSnFXgsn9TOVRu2sDum0SymVc/yM4T94bWaRTF3MwATgRzjjmsrbv+HrN8/FYlN9ipUVA5kZwvZG+18R7K5F54PbWbIqQHOy5Z7TkXiFsNDHtEQ/wkr8xXpnx2f5HcXwCfqKFdRNG9TZcEyHmzKuMDBihKu+jEMNhW4tp3l64Gxono9sA18HwSF1CPIF1XbKaj3gqMOVkHPRsSeJEq3Tc17R+TYHCERpP3ioWdvgA2oKMAVmjGvzCeSGEOLE5O6TLS2PiZCajSygJYReu9EEbjF2S/tdh4Cdu+aTotjShBgC3LYagIoJZfRbbEKYbk4qN6MVnhKDHCIyK+pcAjUfzMynf5HLMtny0VFGQvfzRafdWA7f9M15zEuZLN5d9nVhHofzNGEf04A4d17xrSfigc8NOM2eQrc03L/2UNugleHD9IqjZPYLjUltq+Xp7q2u5oyZVsgZHYtgF2hYJt1qqO2YoD9FVGIyjO02kY5IOULD/BE7nrKO8UKidFBsDQcTqtKs0KRJ4qsNEzoqZGDu5UCNYJUJkgS62O1yeQmB0DPu/8Yw9r7YhB9yuoGa4p0vJhHKLzwjjWfjz1xejHhSKtVXcpFZL25ArGtPFcku5b7qJYRjP1XEq53SAMz1CceTs7NjJGZ2p8NekYSLtj/dOxwveIQf36yAsKGVNWPkzG8BlKvcG6upohRv8r5yy2/OQiKNBc/kREzH0viOtrWE/drPYFt1xilb/HAHP4tw6bviam12d/jqShyHiZ85+5KiRv/84mXerNvMYk36OvEOB2oVljpdBl/aodPK0guUczV8yxzN/zgYLWzw0spZBAwN8rfgcAA0eSf67KlVjqyfvgVqdwlB9mdPBshPVgPW0Tv0GVZCJhIfzlCCnQcoTJPn0KxlzVET+mWNqfpCjjO7iRY7BwgZFt0aiWmrjpOI3Wkn0jZOQu6+ffqEqMC9DTCXAnGNWGmyqEziJ0pyig/jZyjL5wdUF7AiStld0qpwzHCg5l+23b4AbMDqQPz1QrUDBdFOC+2yk6C523bXaxow2EVVsFtI2nsoaAMC63HlotRy8RxaLSMWA9zjmhO3xb/zyK7YbsoE0I6PznFzf8Pt2I3Rqh4tGldEXgghHeV23NkMBU1gpZTao6ekF5wXMfsWfOP8JQoY8fc2F4IjvFoD5NMO1H79yRo+Gt/7cZt/7cibraD3a/BLlVISPVEpoObzvhKplXDh5i1kiOJCTNw643nI/paUYQI+oytbOqXBbZnBK5IVfMPh+Jyo7b2cbvU2k+ccoUpklJKKmTVpKND0xnH76Cs2yZGKE6IbJUUDn6pIdL8cCcdw6SkkOrCiGApM+OjNg5hzY0h4u5KO5E91Z/ToTMiy86QstVlR3mxQx8IDMYZbhuWZmljao6UlKuWhyVJtCk95s6+j1uDxVyLYWAvUhJ8hHVPcKiGkHKfEmHDs4gns+eZouw0k7SYYsoc0v+gFrDKmnaKViKBGq523cd7VVR341XSrwqsf7xWEIaoLAUErHqai/fk98mpKTO4kjF3PPPHydq2VsB5kAjlkfA2wMmZP/wmXs9JxxmMAndBBVkSYNpQhIXqcRnyZCC4dCS8k6UYWRvVME1e8H8PezIYy0slw6qi4RU5z86G7k593fX+jZ2v/EtIxLj1h8JSMojrJpYAwx3wimJndL+cwWfpbqV0VytVceVH5M+0aF8NxRV60DXlJ1ProFHvDHBaewWZUmqbEc6a0KeUcZjYPxheIVXRfpGKnAYzeEVrjNm9v10JjtudOvOr3///25L0nZ2YIMh2fUpEhoFu7lc5inH97j5XxH5aHhVMeWQ5wEoWkTHnqfUuWXDeW/RMUaEBPXIEJTYTzDNQ3DC9KTNtzMg4rgGy/ux1N0sOCOYzwNy+gbab56KvbctVJI0B/fyzdJVGvUF5dlFWmf9wyeSNfEUELNrtvjOrxWq1Qv88gTNfi3FIV+xYhEMW6OgJNS6gpx5/++AKmlklwkEzzW8oZlc+oEIUcz+I2+nrFR9NbiceRUhVRaIq5vWi0aWm65E848EvwA02COAgAj2viFcDrvEgfGvWfH5u14Bbf/wfnaPEnnN7lZhK11yGFH19FRFwOJTvqvZrdxUooSpTL5Ha097HMTpvFGYw/pQiB4/DLB97LoJVOrYQsa7fmXdfRvys5CV4XDkjaB8/3bAhWIYfkNH2dZ2tjiw+5mqnHQo6sDViSZJQ1S8gyvnzciCmFjcXaTgQhmeCROJPSKOq5eHurYL2HOhq6eKI8cV31/DKXvagzIaWCOOPC+dfaGNvcCqXt+d8v9I7ySBEutFeHFpVRKennamS3uMtXHHcDfYEnGAaA2vFzOqMtlc+yvLr1jqchffIfbxk3K5oPzToyVg5KHEzvym9Xk5OFQULP4lgbZLKx+aPRh5qVm34j/7cme3YTMjtG+LlUtucnDKHjPuxpYVT5Scj3zylFbXhN7qQN3pz18OXrLwcFL7M/KE3LOgsQhPxriWT/YJ5LVeFq54GJGFcdqR8gvuR3ILsZt/M8ONtXJU/NiYY59CM8dgyXzJsNt8TQlLK1CAJAy9pxnqmRl75DaVI/cfutkOCvQB650fps83nEVn0YI5NETmbFsH4N/HNiPJ8KYLz4F+IjLpoawUEIL1rgapMKn/WPWm+F51ybHZ4AQlgtNLFW3gt+ylzUTHtc3nLbdeD3efXzSeq0g4V2IwHBTDdcO+on10pI05OlhhN2FPcR/pyx9Qx+JFTAQeJFJWbjng0x5X76dwNwCiNSk2xdJ7S+B+orfymvNZ1bzA9bGICg/s7Q6wM6wRTJHmes+Oq+2/WziolZE8KV+MCCk+H1hrjS190bUz8Fx/BGhpS3TtpHzsE8KYumFGmftjrHmDbXnl8NfRZi3xQH8yZbhNN05EeFcyclK4Bn9loBqalqXyXJY9YqLnDoZDzIS0PMGJ5ihxvvASjCYtVUTlWfJNAZAsiuJn59+t0PjdUGy2HkX7RIog4CHNKyrmAIt8LVnxonzgbxBHsrLBIIPOEVnmLB/CvZy+9Ra37fcS8lYA+49/QRv6odu9UNTHS+kXGZj7R/z2H37HYEkUgdolceZhxCUhKpCqsiL0hT/jO/haUEBQNNC6rt+PffA6SxCqi3DYz7dkSQNC3MYItrmACk67MxfPuisnIFX4QN+mBDt1kDVzFLdPk/egj+iEfV8e0rGoajOCSfxoNpFQM/m1FJJUCcUsapMbouggEgjtOhhxre9VyqlCMjdUd4xLq+1FY+ce+Tze6196y2KqDKIpfjFrKamhw+e9i/lrH++Se70BMmMMHRvjssluUvucM4wL/bqVxRAvtVpmyQhgh89JOkGPIlob5YFpKrb2WN2zbmIYpbB//LXaMjLRyZn5JXjYRfoBNGwfl5DeaL1ZH2JLwy1G23wpSldej8tLj34S8iEXfLnviCVdTnVIoqYmegErR/2/u8JY4ExRkVfQNXnCyXNxYbKoUddjgRPDPhTaXO+MAOaZCM1K8LCdhOE8NEzIKmXp7PYbEcVo7fQ7XWfplbJJRUqG52ijCngI/MQGJIxrcWf2dVhs+zxzs7FSjV57YDhvqglsXGRls4Lk5MGjx92OTFdf/P4bs+9jVl6dqwef7YfyAylb3CSD/UgLWSaYh8iaY/tuJqFKG23BwTBlFDp58pfU8UpjH9mR45WgIylA/2HM6jePlPNTxWyov2we1vjTR6wLB6tSPcsFDiEGvaSTY4endsCRKAc3EGHMVemQ9LfTcqc9t2B34xMMoNCqsKGw8Ly6NTYbUOWgoLpWqnzyuzk+FTIRPxsxL8CRJhRGYxkNLrZprTDgS9Jalo8biGK2QnpKB1iOPwPU9PX9GVJqOKUQ7IIBKEvlshYioNheQyDjUQ+QZs0V0yH3HoDkStNeyENmEGHdXae+dEWSCB0V0PiGJemze0HadL2SiLaYGJZbKnq6SuXUs98QUc20j5y8mbFYKwN7Xc1wkZz6axAwAAj65A3VmLBRS3P2f+OJlb9PjK4PM3zzbMHHdRizz/qkkHfOUInvKUBFpi22ET4izpuXshRsgzAORbDNCnpkf994FIg1vRXTeq7+W1U1Myj684tNCNO2jAgrPhUGhQqOkl6ougIFj0SvaPcFL4O82oJK5xjAnLcqmGffWP9y6CHxqQJHzdBdPnKcsL+qo90TkBCTXbDsSDaDpgbzUOglrpllVBLy0cp/NylBRrc0rljOi1e1xTZIJd5F3yX+WyWd5Rfvu4ey7drH8nnGm6REDDh9dGegWkhpFBQFeS30ar7kvjQIibbAiAz5iRQYGUeOOn6KI7jqLn/usxzTXlPHQ5TyKhM0GEHipCD/AYifUoG+ZGztI/ybaFrW7yfHltBHzcnW+4hW2qiML5lJ6gLUdyMq/tXbFIGBUWt20Uj/kQCK1hkm+CPIx0qXxYK5ejeFiMABeV2AuOjVA2PPF7Sp92sj9y/sOz2UxsA9RhclWmHX71ReNZcKgJF0nKJ27uNPkQ+6QU6Cs0P70Y21IchMhUgGVMWMBGxxv+PDlRxVrW/30YPfMdiVcHBpGLLXo3ZfzuiT++Z6HrO/n/l3G4yEfVDg5kEyzUtsWcTDnMznDZ4sEEqjppixqrtbgX8zI4y1aX2KXTUQEvTuE3K6UtDGjrXmqB2uPTiQ9BUCPUwmLFZiJ4i/a0k5965HmkSH3CopAWQnD6l72FgTsrLjyfhJkaUAnuNXgGHqjjPlfx0UOV8RQaf2yAQBxGT2gYdlteccwaOeEUfGFBRtHUq8CKIYLI28KiDVkYIUXp1QjP2sekDxFIk7tJJBMBPk0AEOev9dstD2I7W5rCqhiGzi0+i9vRz49/UocLRpm9UgDuT9gN0blnjFZh1nLNSb92+ISApkakMg6Cf/I8z/sI4d59wQ91cYyJF06OGB1Jr8VwMWDTimYKyU9vWiX/Yz0eJzZf+gPXJgZGIhGsTHefQgeUfbZmR4wMFtNvyV5Sb0EKaZyRu3vbx1lbXsqiuLSvH2RbpJIbmSztzJCTIJ+FXC0gp2vzw51UljI531XDY8ncBgVWbD3DVKh5/uWLuyIgsS4nKO7RcbSRAv4SNcR/ta1KjX3Q8IsSjCw1DTnTfRPaRRWzgZJPhhvbwV21R06PQh1l1U5C68zTwHeNVldrrfxHM5tflPip1f3GXmqZJlo+aQ/fvkut2V+eHzBV1A9HH4iHq/Y2kdRIK3cbdHQuckUX9F5i4oOq0Appb/hSZ9lkcXZu9p8in+LSGOC/DuCxy1wTNcYFHMwVaMgxuz+8GpvuM4Ua3+Wzb7FHdCE4krwDpzfamChgsBkC7YiXB5BHWMIdNv9gQR1Tg9it4MxJ44WWQwuK3Iw8jjBtqdlKqz+eSaefmCQevuP0n5hsXOLXf8cVL1lFhzEzryD8o7MvAw9yxO2wZW6jxNvRbcDDsWk6fbe8YRzdTFxshVGXZmrG6zS44EzwVzkn8egBIE3vBMfk/4pc/yGtL4W/vnwIeUfxrRptiaAyLHCFifw1Je6tH0OW5d4XVjis02DZo4UdNWmSFFPM4/4lj40UxulI/s4crPmV9rXkH+fN/k4UtQVSpPx22EP+YWZ0aE+3PwhbFipi81JRzEJOHIa48UGM4E5CxWK/OYfZl3dcQEq9ohOWjzQUtr0t0pULQSWM9aOyqkwG3iIWBjo61IUJPf2X/yGSZDZjkMqQLhC6IERJMD3gpfr603QsRDy+kscRIAnj5HvsGP3ZlyBY4xLXV7L/ENaI1FuGi6C+SGMfXS7EQ/6PE1gtZF1PnfHGr36ybtG4S2j4f05TVQKhVLXV2kdqTkzLDsm3lcv7oJzH+YBqaXofX7kETi6mWWRYR2+byc/98aV5NrzWWTA5B8BjJII65NLueriQYNtC1OiYmAw9mG/6fBky3boteMSqXh8zNIBq4Kp98eoPoSV4vABBI+XcHo2DRt82Od7F/ia4b7w0Aa/rMK7hnK3XAmLtIGCOlbRi5NKg3GbL1e++2OdLM837aBySM8Xu9PRbWmDXCmnsT39tZ+gbrJK922+8GfQ2MNUF8zWHNcZftPSS4R4aALHPVFuf7xXNUvsvA/UEYkpsyXx2l9yqe6hNe2YZvOjm8JMPkcRkeFXAp9ujlR+KaJ/TyGP/IcK1SSpnmLQFv13OYBwRJqVl3f2FqKZ6c7Bqzex1TzAs69KoJJbs6t/tCCk47wtDkXqvW9XsEwiXDmlV4To+kWoUvYN2sxNOeDmmfYi+r5fdvQvf4lIebG1aWgCZI+oZll3FiFkVgWJQxp6KGYK+IKBIXuyQlZcy6AylCSMZJlLByVr4CELMRE2U2cffPv9yo7IZLq3BrLt3rA1v0qc/CeMUWQumQTlFMKVL1RUUCWd2XdydmkuFxbRHC7bBxC0AjHwGKA3x7Dh9BSG3WAM8UkB9ZK9T7VvUKdjrX9ZhUUbOlz4tFHeouqDz6VRlmz+WvfLzpWfauBnEh8Oa1cYfEBIqgATManH9jqV7HSli5yIGYHb/NL99LqYg5s92O3CRttMcGeQhgBKpXUTlExgygVRs0CInR+qiButP+VmpJlfsqRZzrU2W9Hsjx77oWTKqlkxLbDEPBM65FHOYGMQbxc9ZBw/dDckO2Y4G6GoEg0soo++EBLdC4r1FAMjOTHonw1qzCLJ23Z6Y6JoUC+tAZs6b0nPugmVgjWfx7hbWFzvZkeZUaOQ8odg5RQBWyJaZZ1vcDYyURFLXHD4jGAyYa1adeP9mmK8gmUYWv7X9xzuMd6P5zx2TrAPvW8xurkYrCr4pTl1O9mWg/K0vOjImmj0V+VTQcVjPHLaRMho7Qv/uBk8F2vegm7xl3AnsCEnYdt4B5z6cEFHtAdvCYjf4Zaeg+TsSeeIzFbn842yuranufVI1Hf03QbVJc6hN4LeI9wYRsEagc3iht/SOISSkP+Dn+asSPqYnUm1ulKdlbx5Zjm6K9x0N8HHcMi20uFmRdnfbBwIU2ZS7MbdXKnAoVOXgbnRca9onzIKh2gi8BlXA6GYMR5BXxuvFlttU8/l1nlNVh2R3zTLrYPQHic6dkbRiVt2cdqugJ5/fi7nmO+mZgMUFvowSr9/Srg1IqEiDPNqJ4CTYlE9DXPf7Ic8NgzuGxFAK6i1KeMGheiU6sreTEIw5ldt+fYFX/kaPWkc32zvV91+CxENomt7gtYgIGNW6Qrj/iqqlcBj12BMrpknPCNSpy9dzRuwBIS2DcynsoX30mdT5w7DlMnZRz7B2fcFKS6ej/zX7YCxQKNwhIKaBC9d4xdlIbP5qEI6qGF4mGPPnIKkHPbDJR8iCVtOm7aQsk1x9ZHtOk/o0KC/2tSGxUgl0D1eReKuEgEvDy8dc/GyChnODpHcPg2RnsXZN+Lri1a++Dep//YEkeQ3+wi3uyNEXyP5kEEWtwSZu/69JbI89S9mkvYYdlrI2vBUZFBf4rjDxXFuaMWM9teXGoFxxEO6oXAtyWqzIARKelPtk9M+VeM6k98vXStl7H96xDKn0zm0UThJalkY0Qc/+ATyRK7EnU6hPKsLtpNtapG1Al7xRqHLsp79+kICAbyr9hpF8DHdi9eKs0Kx101VqZOMnzkSRXXTKTUKzQlIIKowxg4a/ktUZMesBuzoao9rc/imejPEkTib3FHLXiEYU6vxOsW/ds3kEP/jn3BsSsqNjMXXy0Ls0KVnzWuPPOcNK1Gtr+kqqX/X2aFDbYXSHGVZ6LdGW5cM44Fkt8s8bthjZkwHNw/DUY3EBGs5d0tQcA4w7ypcG2CVoQnr8h3P0yQQj9slvKZp52A0DkDJIP24vaTzdLGRR1euqBWAQ5HDSJjL9BWlaOKn5/ENe2NGq64+cTsp4jgYzkJ2RwU9RXWzcRALJlJqnIZQCJ1qHOnZebO7PTuYYv/0e5Hng8gqWt8Jg5mYhd+EHdEYqkW0NL8ybSrPryJvQm+pbraY97tD9cmCG1aONmWUezzWbthoXvctyGIOf9DazPVVqvAhBWEYQcQr1DUYhHkJl0BXqy4c6vtDsu8amcrDxo9jcGfRMPdkRc3ZFjk7V5wt7zcH/R+wwmQHB9nN5YF2y8GgNlpg6pBDXdbpKbU30rYImsY3Uo6Biru5+Z4ZdFaQR+W9TNcWgEbKG2pNK65NJwi5NgkDbXe5dC73FUVnsGPbeaViciMuhaI9sIteX88x8+EX5U7S6ZX51OJbR7n7++wUYbjo6rHwkL9Mugw57MXaQLUt3UpdtbTPQHlnMDXIQs4bdG/aLC8LFSWrVKf0M/W6zZf7gRn6xS11vLXc1NE6kspQw6+IY8ZJ9ICzCL5WRLl22sW8jbGGVnj+3IzG3hoKPiGHlMEmC/eyLNkNguMr0ZDbVb47snbupjbhni3qNe1xXRpxWBzuzz5e/yJ6xNAWPbF6oINVcCe3gaIjekH/bVewo7PE4vmZQ+L4qLNCs/GNdhHwaJCCxuK/SU+ddhteJEFFC41KEZ8Aw4DGP0qTNKEA+j2WJUBiepGqVJN7ci/OnGOk74h21zLNDABzPGGjQFugJbt2OqPidbYgowTaZNyyjkCNplKpbGrSc5b5RCbJdfKtNJj2HVdu7JfOrQsbJKFrARcGz1StNzCq1mPAPAinHWLF4ba5k6wkctT1KH9YYT3mSAV6xvR60ghdzHC3SarOZGOGUHIfWqa1z46vqnP0aqD60oEMMC79qsFbCYJOjTIGrS8RtDZy3Ql18w+i/+mkTMPPLjdw4dMWtYxJ14NN3yNMAjDpD92UdjGrGlyxkcTQewjtjvT/MJixeVQVbjCR0Kr+RSzi6AsBxbCNA7Mo7Q4U5dVDAcSGnLJ4BwlxdOsQSGlt0lJxHWZZtAwlwTjIZHHW5vLNzL2YVcoIb3ASDoQNxUBbjpTyscTs2vofpB9fATenv7dqoJgRNXmMmERzS7hwkV3Yn8pDuvAOCRP+kqs5692wAMIK57N+YBvWRJFn0mkWXcTjzMs70EbfPGtVMkJWZKVbMyTl8yVXj3TVWIecU3C+B26ICMjZxrfdeFUyjdKXnYy68OX3k/UH6V04gryd1reKP5j99ybUezGQniE+cm0eTeXIxYhfAB2iBll0FB2Zw068QkdYv/+5sd1fJ19Q8hQSySCZCY01oc2Luo7hljejDLXq+zTazCjC7KcuycFKaS7VxfAA8U0gnBtnu+hYUiQIfsRmvxd/dHfrlA+WQRdkLoALYvaCzqz7xvpq1lsDXHw2aOTDxWNUVSXBC/8qGE46/9yHwpoHnh5tEYX1KtecpbVJ+0ocidvka+KRppW1GwdqZiRbWYvrHZbR8pCHRpz2cLdZfTU5WSvx8TIO01vHu6q6hxpgle4u5QpetpGkcAacLlcMZfKGy8n6shQTLl58AnRy4bWIiYuBxgWVhB/RHD92GqqP1qbF4kjVIj0ujNiastVzX3UcOa7VuE0pmnkpu+p+eQXD64B+L9J1gfoCyIvmpVeWVgl8Hbrf0SRUYa5n8loMBOdr/5koooOzKOEDRWgX7PYq7Y8+DcSZjZkqzAVKSuwU/Lu56ZbwgcmP17AqBMn+aI56Ud/rH2UUs0PpRAvIiMmAzjF8A1ScZRUINHP56g+vghLcOYA7HCPnAZ3cFbdz6LzpNrx3+OWZ0fE/zVizGnTJoos20wHcOdB7jUmYJFNiYqkzKrAnRoMh9oRrIYdBfsLk+Pwo27E5mSsGW8Qa5H2bYUu+YqrGeCejnmtNnl9acP/+5MwyOiY02ieukNTha2/5zLU1RbiEN2lokjRjYZRKfYU7euAXYAyBfmrZ9650UC6UZeM65MvBxgK5zmZ2j3ZCGXwPT6dN9By6yJw9cB6yBKy4C5Mn6PHe5dBVJVK2rGw4h1L4NFtEiCq8/mnqjKlH1Lv44jOD8xHNtB4lTP5OZJFtdyLWCEdOke5og7GodkIwtQ8GosjYp2IAQEOG90iJ6SqVfuLOqBBLtuSRZc3wRkHC9bdcLXQJODRs8nr/w51h3CsEGqdIfDksXZUK8w9WC8GpnQnr+UyvHOzBgFb+qGvj3o4gEoes6DitJRAimPNc0K6SC+Xv/LzFhWYXO6FZwY2mWcbNPXcc6hFRaVVlAXDuPG4qoR3glp8L5pVXmX08V1RCn904V1D76ikUKGpw9wW8Tj5pcvSDS38QT6sDkjvmBEqNwLJFDf+EhN2kIZCvv05IgjTw2JhXzN4/wbj5xzA8lsc5DD5n4FWO3FLgiBmAQ/NNOd9CajiUb2v5DFw5nVMRR/NZbgsd4OrPuTt+8fPdNtQMYE9JN0xgI4MDmyd/sFKQZYMU7jxECPQhmIvO/G1vQh131d+55+lMyGPV/eCycjC37DNQ/5oW+My9EMM455W0ug0EEKlC+zcJByDceYJw7/GB+R+MYRJBp6lq2sQ7wB13CH4OwKgJjDAVjRoInH8/IzScGikgYQz/zH46LX/iwtcyVPD4dvyF7YUSrsYXf0ihQSglEvD13uQFUaXZBIUi0S/ExUWvD0aX9r0v4T0UYzjzf7f+pdAfjb0Y0tCpwWpOoKtl0Fkx1lhXm+X9/c1/Gm39vsahnHXf+ID2lyUOYpAMOPYs3BNc6OK+FLwb4VW2ZZK/4pP7H9srCOeUKhlm2S+gYND+Dc6YmifL6yUHqRSm4tWDXPrnGd+qf+7vGwO8oo7roBG1FneJOgm31On1U9sBCJZYj9jVm6awd1I6/DWKuR2mywWSZsvHnAcaTGDuMn9w8Aco+ttDlY8mL+mzcV5r
Variant 1
DifficultyLevel
580
Question
The image below shows a layout of a village.
The total area of the occupied lots is 60 m2.
What is the total area of the unoccupied lots in the village?
Worked Solution
12 occupied lots = 60 m2
1 lot = 60 ÷ 12 = 5 m2
Number of unoccupied lots = 10
|
|
∴ Area of unoccupied lots |
= 10 × 5 |
|
= 50 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The image below shows a layout of a village.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/Math-Job-Q43.svg 400 indent vpad
The total area of the occupied lots is 60 m$^2$.
What is the total area of the unoccupied lots in the village? |
workedSolution | 12 occupied lots = 60 m$^2$
1 lot = 60 ÷ 12 = 5 m$^2$
Number of unoccupied lots = 10
|||
|-|-|
|$\therefore$ Area of unoccupied lots|= 10 × 5|
||= 50 m$^2$|
|
correctAnswer | |
Answers