Statistics, NAP_10031
U2FsdGVkX19iK2eaucNF7sRg8asSl0lM4wGBHOotlwvpfTxst3gB55+LiH6htCldYVkOgf2szSGyBj/qOGLK+yw0jTtdSOIO0yQPavub0Y7X0LORFwzAlNbdRsjRJfQpCeoIR/Zf1Wl4GCk9s5IWBmtoto5fNQIG7GROuRSQuSkGVMFcJFrGPJ6pQ+gKhlBs+RkTAAExOpmrHdp5SxbRB702aH5ComulR8hwviN9CYpSn0TvST8SMmNrRgh8tEqTGg4jj17jviRANPXCHDn5FWGf/2BvArp6oycQrxsCbRmkXMsQLCRa7nZ1Sht1RxIgvVWkO9jLLeRehcg2g0PA9Uzo9WiQSVaE8LoOnd/sd8PIKBd/6eRyPbr2AkA9UO9p6aUUwMKE1pRwx6tTSyOmqbPW2oZfFMpOvvptIcBtUqogOzlvHuumG8urXd/I/PlhqDa7klD6OLVbNV7suadga3tgpVYjffbfvByZVB8zYoRcWRdDNVUeBnUD1G23+e739mPKx143VigZiVUUWicLVm6eZRbdIZletBY/SMZew9DNjgLuv6/IH0TgxIcHNzjh4p3waJywX5ns+cW8R9pQOLiD/PHEhfJVMzMGDDl/1CiOfINY1hK9IzQbnveSQ8WU6W9XA9VIK9k0I8HSPn6FmzPaxWKn8lKTDcFD1gKpm3M4RZbglBWEz4FUV15+0QpGjdH8XtN0A3y2hmXNza9oXnAZ4E3DckfIm8iYcx4yKCZbDdx4mAvEGyapbssFkUPzTbaQqtwCG1Bs0lArxb1oecmYpOQ0/EVxwjxV95oNApYC8MKtd1G7b/U5WWBDyRL4fX8EwoCs85PL+EB9bv8pfwrj4+iJ5Ozop9EX53fIw+tcLK6dNNFOzR9IEjeruuc0W/IbI/d3sFT1s5GaVxA09P3ZY/F+jqfOlaNX9W/dsLQAszgXG7NC1m/foDqLvmjoiRBr93kxA9ChSaazGEbtyXKhzv2ae6hJ1dCCtBIxTRb4ewOsROFqxBF0HA7k3XJDGSpmDPoDt1BJIVZOYn8Sg7tn7khMj7tePdO0UmRkkYpg4aJK9snC2PkCrCFfJ0gMZzkOoSPqGlEDtjmk3qadtcIWx0MPQvsLKkKe68bEJOe9dtuLdLak0QAW7fcK6TmHoqXlVLdfbMCGAjlUHnKRGQ1sh+kp7cTE/3DhuIMeGpBIEPD0rLKz75P03FLL4oHbXMphfy30vglgWDextCY/j5MUuybaIh5MYc8HbB7Klr42+quDLLWJU6vhUJzJqvGHj12IucfQLgps115hF/GSqjEY+CsvERKI6l9CoxexGFxeWpJJsfpzRYy6kCb9GjohC6DwMqHlX0fa7XB2Yr7GjFKpMn7ohZ1u2RagW4rpfxNDbzAyk+zZgskcDKXvbS/9VGx+BYHvAR79SDBzwBOtlPb7PugQEMdXZs88OGNF1Y9uF+LQEmZwRdLB6dkwO3HOnbTL4cs63dJEkJ84O92LgyXYhQpocNQh8q8kWAjDyDU+zguJiQgg8FwIBIRAVgv5QVZZu03nVZf5O5/jrjf0gW/sexxp0wGgbdw1Mb0My1WjpRWmIquRMvFLAZukNtTYM+/XAkSfXl7OevE1DVVkF3KD+vTkQMST6u5Xw1z665TqHHJKsamtIV03RkOwR8XURTKT6ocdmh9UnXh4QN/lNFj5GhNcDlU0a0UG+Id5tZ88E1/UyliUAyU/wQpcAiizn3YOfmh8GR8oSE2goJwqSznxAbZ9PIOYsnYxPCprp63mFlTMqZsBtuYbHBHiSgtOE0wSo6dXECoQMc/QDzCwqh6D0gzGr1xcGOinWVGbeUA5JJvHR5aJ10GnhXcoitpUVv5CCqnIfipm0Grnd7X8KLa2Axpx2/fKiqZP6xSg4dVzncP+nEIpgSzuYbe5k3/39oWj9qA6ZbbCilYsKvFS4ScgTu3kXPDxteqcvSDmhvGs+5p1YiJ8eMeFW/ODCjvaFNQ03e94Yj/sAZr0gXqzVvV6KufEh4dP2oPBzavEXPJG772QZ6+pOsITgklshbIpAgODZ5w/H6TksAuzUw+29HoHt101/vpj7EimK38ucM8eLojTCetDG2uxxZ+MCcXezDacd8Fqlld23VVvaO/G8IZ2wYMnCaE5C/+z5zymTSHiP6fFVllN2fFCBT65Zh7FXdntOzZta2uPn+YcHdtKJETI10swAWE0a3wANY10+iu39Tkdi3bfBiW8ONhGJQXOQVdR48HQV8Tkomqc0TbsGJA+QeHL4Fh9s5n5MZPAdqbeYWkCzBqVuPTPyPyyHSUvulAkcILzvBnShyHN7e91COChMn/R0Jt838L0NRk0qNjhkbtW7o4kclC4cgSf5UxKAjZxdK+BVIFLM/QsirI8DgQV18wLm6CqHF+td5fi3yKbbIKJ0F7tydtqzplv2ezZd7xZ6tdy1WHSsfbN4Bt6h0x9dYEhXC4DPt8pnyac05D5ze22u6tvrQiPzyujUXtsE56wvpBdbNimx3Mj7dxzInTe1SF6rGaihK+IvwKXVlfZOStMO5xo2BtMW68SrBuZPNaeNAtCuCseCGjiLdRU5x7S59AE49sP9yE7Kn290supr5Jduf8brSEao7d+nJC5o+ZIoqknLgInHnILVEM4yG8f6zGwv98CxFgth6USjPUpcC0pIz+m+82JFeqp8xfudqdAzIUpkI2sc2A/uTax4nf3kyjQk5MDz1VIM1EoHa61y5pYuCP9X9APacmNQOBpube2LJ+uwyXw0q1GQF8+WsfUVwgN9BQcnXoFlZVOtpzgHxAztNEKg+105xh6La091ibPj+hVZ2f9gljsT/yBnyXZAZXg5QGWnYtviCgnvM/55GRjgH7+YwlnMg7FKoimmuhb5wyHG+OUdIOhHcyhbstBkomAMgsNwJvPLT538pJm5JI6qCs5PEvOofH7y4ARL2I96mWiwQYqvwvFsZPWVHjdXEdweW1tSXvAVemaOQ6tMm4xNzOEiOkF58lhiuLSdF0SNV5nAzo0WOsr2MzUc7BiR00keNpY/sQBLeVL6hLdDMg4b7L2Po2tM2rb4XQRZglKQWTUTSmvx+CbO9fj3jSdOssbb4xKL5fnnBFtH3Aqc2E76RennkZOW+01RtInHcPZ0ahFECyYo713RMLh21JdemDpGYflHnxgjL8pUl//DYdGjzyY4YITzdpDC3WQNeuDeYhJSRA+IlBE1EXZw32jcVBe8MVE4upzCKxF2VeAZYd/KrJLPyeWay1FYHUy+JyCChlCpTbSk8onZ713jSG94VXskY8CJK2WZTRI9spna5BVmNoWf6Rb+MKJMLRDeMjMnLvhoZG76IhSCe0MIJPOQklG5I9Ueo5eiXjSYTjTy/BXTihUwRRGzV2DF254QLHHf2Cxbn7d3JKef2k0zTpjDfzayOmWv3W0cXlVwmkA1u5cfreFt5VImYWXCDShQ/Ek7IDwE0poLaxUsVNLKpnP7iBcsXpfwzpd3vxEecM0k1JUfv9G2VMlG1y7ZbHTApsFMRGBbgENOGXA5xn3ZDbzLt32rYMA0UazVzWSMjTcup2ugIaUfY9hC4C5tkoaDtSLWN40RKO9oRplAl4iK8T6NGxD/E/umpixeDw3JYCS+/mnjIR+twvQo6LhI6eBTB57BdgntEsG96xrEYB9P5r7n1RgQ8AzGpJihDNhqCk9dFEPZFImqB51vpdSgChblt/YpY2JUc8P57ZvdZgYmT8i02tbls0BVpKIHDxzWQ8FsuwCaO7J4yx1qfWqxZV1Ea4UaTOMWwtI5hOdk7Ee+cD+tXlpMFU+r92eKRTxyIeSoMrV0dnpjK2bCmG+q0ECVeiSzOt9XiHoenIEVnpsqz6tCsq105IYweTdVtZFmaqL3MPNF2Hk98uNTTHf/h/X/DC9HZ08shO0ryPuKOW5VGYN6GrOs48eurjDqQn0ixd4LS7PrDJIe2voYIG/YvmR/1qruJAG5vHj6P17K3LTlmEkf7/5Xb1q2pfwu47naZGb/WDUTwpZ+uRcRree2QwshyZsKklszJ9Is4nl3G1xWnfgI7JDEwtiUO78eugtcY+Yvx7rUGACfVkw1CK4WOgMYCuZ7KAjOoAxx8NST4my8U6rO3w+cvIPDvTjXdj3DQjPF6opSin583mwEJus1GU137pPwIlY8scF88MX0BDefBYizfRM7sEZH9xJF725T3orogbMOljq2AeSHZeMX7wJA26fNIwmOaKAtynoqEC61KyJlG7BnSQh22E3yITmdZhHS0OyJGgWpk7T+G6t/Y8vIc4Dwjap305bmcvgZ7Be2ib2eSekjzzlHo0DB2olvxE+yR7F2CF5VLGwm2WqwrJ698+fhCsGiMS+GgYRr3JKLtnyibSrkdjIbO4kRVBYaVuz6fegkxgCFgZEeYmIXfPlsKoKNS2zN1oXmstL80nD+bVS9s1+QtSRQAu+9OpmcTAQZublUcZg18GKJgkwEuM0tRdcllyX/4GQOVcCMiJSnitzw+zs/inS0UWWOYB6u2Ayby+j/ZCC3BgP6DGF+pyoneN96n7u+oD66Hbq3bm+C5s+F/BmyXobrgNBq9rp42Ne0f+gS2Qu2L+4Ba2TxPqET+E24AkZyP5+dilR+4/76hXZE6YQB5vqQdGOB9K/3H7FBVgmiT6ZNLugTLxl9MMI1OJySaXwtkrkGzmNDyw6y+NxNoeoI8/IHq/rtnuXKB5dehud9lR2Ng/Y6GPqjbm4IEaJ7jggn+dpwG1ffJrAej6IUecoBEbbm3rGh+00Lry4rkn3pekRQyNx4lFk/haV2e5Wj0Lfb/HrLgHcP/nfzEI6hZbD9+QGhxui8NkMovoiDXNLfeHRJ+zpegInDD9Apk/sQEXmmYzt7pJF3ZiMbscyXfRPZmf9zH0xQwcP4kA2MYtY7mx2m7gmUIQUk0jTBbC4F+A2YC+1sw+MJ5efL9TKm9oOiFLB/fGPeg7H/F+3ht9jsqVLPiwXjywumWzGrnpmmb7G8Wxq2rEw9j3SiwM2oG92jEvOh/w15RWzG1izCmdxdtbYl9y/irAGBU6xNMBEaK7OGCfX+U0u8UwyeJwwOb1iOvCXj0cG2zeD0qjblokrdrprsJnx+uU3Gtc6ZwYzSa5lOGii1B4jXWuCd3LEKVOQ4HckMn+KCNUXhaNvpbG+eUp1mAoXQnhSsBnJUXD7soPyDnPW6Nmc4abdguReYJHtAdv6wWyC84tgv2tkdVjIE+uxXHWtwVbxP9cp3ysubM1z/TfPgZaeEogXMrYpDHIMHhjfkRj9dLLbiUcfgDYRanIQnvMEr5OllPh5mEh2QRt9JD4ifGVOaSOFHCelAXW/tLco/LBWILbi03kz6XD0tVb395eZ79+b26E55RZgD3AOpB5vlERATotz4VIUkcFixrFGfDDT9YR8NwGdAcw/gUBByXUV9OsMgu15Lsvkk8i/euTky/ylzsQeyBsu1En2tqVRvLezkGgAck/WNaAgwxwhvjNDyICYoq2oItFfP3hLdZcTT6Fj9XpqIy5pJaiyYf93U4hNiADVx/BmypTYCdMA/pDixKsVFZk22hGTdGOk0pSYROTUzvdJFnEpwdKq0qX/mxHtIh6sjOV5ir0N6Y3gYCiKsoelETcKMf/h/l4kuEnCybzqlvRRM9L0FC0ss6B2jolBdI0kPOpYE3HSAoLkVfV1NMjsuy8LwUcwax9/JowUpLEacONhkxovP1djKA1eEAOl5PoxLj68QfSl2MMu1XuBIqUsM4ktwhIx3B1UeJyYqGJmh4nEMK+vqB0sHVvGKJ+92bKzxGR003gNmzll16w1YLP4X65tUh8Mh28LZqptWTxl3ASjUwn6RAbTf1fsCCY2QZ9QKUUvBzZP/gf2tTkWkUHaQ0Aq6IMK6icfoqegNcIuiICHul37BQU7ZfrIqM0lO4AhZSgG6Q2r9rpz9haXvzApy4ccFVSQ84iGMugySgm6Z13mhSwINj+grCC5PwXawkVimLf0Wef13o+fQrecmmVgku7PkIxy5JYtuEsBittXWIXQFqP927oMugD6JQOhq0Q7GDaVtDgvqvjrpoP5goBCMh4xMT+RP8gnlBamy1Nlws6+1ebiYeS371aKshk5jZdN+a6uxMC/CpfymgjFererR7ELqx++yOGZI76EsXERNM+9tm58NAeQsfzwnPKCI0g0GYAUx9W4clnjU5948PzA4S13SipryD5FYUaP2EEmpMaStsLBG0d9pqtRSs64NgIhPuenEl9e/8r1qHNKcEL/yVKHzZKjjnUW2rAkeR4bbbC7XmVU7qFFw7MlmM80D1vTwHXIEfEiVeRyM7xNv4gq4tyBcYmwc7WUD6zO4QoUC5kGzUbuWTPZw9cYUqXFF0MFfOETu+kQtboaxbSdkZSYjkfoEUIMsHnnAf8FySPbvS4m1bTfvQgZmVNq7pBY9/zGYw7ea0OP1LtAmf47Kwf64P1gN6l4jUgqNfwOxUokTfkJ8RhijRJNAInmSE3JM4gfKghc0ZFCtxW7zhE+1o5jlBGZqBP4oBR4GYW8Mj4Qb4FFPwbnGJEag/bxkx+rtLAuWEi4HNwufjtRp6YZmGRkznNI
Variant 0
DifficultyLevel
408
Question
Three families flew from Melbourne to Queensland for a holiday.
Each person was allowed to carry 21 kilograms of luggage.
Which family took more than 21 kilograms of luggage per person?
Worked Solution
Checking each Option
Option 1: Wilmott allowed baggage = 21 × 3 = 63 kg ✓
Option 2: Bergen allowed baggage = 21 × 2 = 42 kg ✓
Option 3: Tran allowed baggage = 21 × 5 = 105 kg (5 kg overweight)
Option 2: O'Brien allowed baggage = 21 × 4 = 84 kg ✓
Therefore, the Tran family took more than 21 kg of luggage per person.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Three families flew from Melbourne to Queensland for a holiday.
Each person was allowed to carry 21 kilograms of luggage.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_10031v0a-min.svg 330 indent2 vpad
Which family took more than 21 kilograms of luggage per person?
|
workedSolution | Checking each Option
sm_nogap > Option 1: Wilmott allowed baggage = 21 $\times$ 3 = 63 kg $\checkmark$
>Option 2: Bergen allowed baggage = 21 $\times$ 2 = 42 kg $\checkmark$
>Option 3: Tran allowed baggage = 21 $\times$ 5 = 105 kg (5 kg overweight)
>Option 2: O'Brien allowed baggage = 21 $\times$ 4 = 84 kg $\checkmark$
Therefore, the {{{correctAnswer}}} family took more than 21 kg of luggage per person.
|
correctAnswer | |
Answers
U2FsdGVkX19pxMzwOdoh/OqosY+uVL7pCJEaWzz4zHTfroi7d5+35AOR1NgwlxfNXM03dCdBckiT6Lm6fuqWkdffmLFe79gegAbRjCtWrzr35ZeYnuXfA4PPYfpWGTDTFc1gI+d1vKb4Hwf2ovuIhJZGLD97T6uV/69f2JWM7DXOP5zVngD2eYAQM41L5m35MGbue2HKVsf59iE1YdQ0+AcRrCXHwJh9TrSZ48Zcr9IZvAZQKkujkY5G3mcpYIREOjAEFXlTPI/BZqkOLbiie+Bf6+0+396anW0W7AGBaD+Q1x3Yx6SGlTbKlG7bbwO4eMmbpLDnytqLUocH6xqVH2XU2XIJEn3k26DhI+wcfRPTKOK9Niq5HVot6JWVShUF6YWDNIfpVEKM8Z+ldoOJFoqV+IpDm82JdPBmqyx0G38xwHutjY+3oG2toVfCpoRLNe9I/FJ1BTohr8ThutdV0/oXBzU4QL+kwFJ24dHiS2jWvvlRMgtqYBniEHezbq6LW9Gft470qrpEQ6zHFEVvRESFpcBixNVCyGiLOzP6xn8o/wMVizEfLBn7vYO5tGQrTJhlOegw+GBKstQgbDKVrG0S49Kc+Yg2YVy8PUU4Asto6CdWw2vej7Jmn/UjKkn7u6Mh83FCAgqbn+9DDBj1ZgVc9yBED/+L4XESNKytKS7VvnTIHahQWBhhHkTltrwsY0Rg7ggvZ1+/OhshkrlG/G9/b2uKHB2U6QTiq5WfTl7aZwp191e4xBTUFeaAsTi6xTqJpV98mWrF2L9DEU38HVKlbIxYDQ7VcWt6/K0lN0sa5daVS1gU2FgOrVT9RjU+3Y5QwN4Fxx3UfxJwkyfvDXRYf6OkUG4jO+dCAkM/HXWlBDF/9LUK2Whdr/h38jsCAieRbVMVrkI59wt3Zh4TRACyTmipE96rDQzj/x11cx/fmV8AYW8zr4rah8OPBR88SlMZEnnhO55ToihtjZQWmBpaCQxS4Dw2DB8jhfXG26QUG1+CajArhMClknLbUgp2TAVUAWrKYkGqhtszlK+YItxDuObETEbol1gNkYkJVD22ofgd/qaJavB/sQwBteJdGZoa0dDLAwP1HRM9GN1BhUvZ7DoLOZe63oDA7oyV96HU2Oszt1iS5p5lZfybLXiow1m6BhDqdSXARX/4Wat6p0jyVxFMTXXpb5vORoJEt3tzLANE6vrBSlQcvJgP1K4M35y+J9PWbE1vbG4KjfINR6uK8rP1fSVNcTDzz/yYOrJC13axt/sGv94IAJS60RfhWBplmpVJR2NGoFV9lk7oGZfyHpTQYrv6hT1wlxi+skaQugTg3faKWmJufp+ADQSATljzipPZAZSrSLUlu50wF49e/iTyUREXVmW46hLhd3zODs372JLvqWHRqNQdql+jnYq+7RjtVv74PQKgtIAeUTnXdx7lb2lUgx73e9/krnw2KwiamXwMS9dEwoUzTSP+5e1WS6Ksb31xDIfoZ6CfesidpTAAK8u+sBjeGkpvJQuUEpgDV4NSr448RFmxw9bJl/scCpQG9oC1F6MbVVdYNdcGOE6awshRVBRmNHVqofBG6io3r0NE6ujfkWlz+jdbBjMVzR30F3lIO6A1/0Gc5SWtmQKROXE2TONnn86Vl6i2ee4pDwELCdKWOZ6mFidAxnZN+bqNJ37/jp6z/nw+Mhrt2kFvksEVUL2YIdqGJBKcUzY09o8SveurW525AP4i5B8Q1z9tDEDW9fWImS0/Lz/lKOZABSARM5FbMt/sbbxozCqxJ7PzjLSPb/VrZRp6mMymI+9lIcTYaC3cYaJkJN4TyS3vuIeul21LNx0okYpKG6ShiyuSHa+lJWN5tvA1PuQtvKj1AdRfabjpsUufc9Kr8fyju4vl+gg9Xvxe+lsPD2IzfXQRDk6qrm/4paxtoLlLZnOCNXPIjLtHQ9ls7j/Io0JY8fthTqEVSNFqr+4ipw86THRj5mTF6ohvo35io5+8njUQQtgbnJwPWw0I+vWQyPg8dc86SOn2dmGy8MCIerRs74E0+26DTNYYOv9KF6FEBWA6PNlDyi+SmyItAQeSe0QSRWmQQ/36xiwYaqGzLR3oersDPQR2iKKNfOAs49C1oiAk3yqBeOXjKxasL6mGTtzuSQ7IdAB/YXPEkV4rdEdEAvLA9f3Paaa/iuJJXZihRdQFjuT48JejMGbdz6y1lR2vGOgvg+P40z2prFHJ4pZ6EE6ZwyaYIwOSq/LpgAs9HTuGCEjpsEm9pZxsjysobOPIFLkkUKfPFN6gpyAI0qfl5tU685npxYl0KcOxJBuRB7qors4EeFnJA4hdXddmh7SWFRqAbYRYqx5v5Cy+BGXDYnkQ2MqbKbJCMd2nlUDMbwxIZ4LmlHvwXeDgmLkQQH5rZNZLovJagtC6O/6sfOAQSBt9QV6EPLu/pbyTssWnnZQ5Sb430Btzb43UnKZr3FCGXozONWp/D9CsTLeKOLDx9gXBZOS2SQMHfTOFg7t1ThVcmwJGw/mw9glsuk953bvVrJ+daY+/3VAymmzz0t/LvUPRe5gZ4IAdDWEM7UFWA5iVZoisLPnmiSFdRmB+ODhApusVihJvRqG8tK0V8VOP0Qp1werc3UKRk+J7s5dAhKiZei5sM/uM3+mzvxJHrICOC2ZCXulhCM/E9NHIR9B9cM7n6VbYTP28wGt4JUSz8eBd/fdypzbPgSwhENuuTfvowHUXlQVzx4IR646wS6C0aOmceeRbSbUVzJOSTm8MZK1aTFjR6KsCJh8aq1U8OV2R5xWoARCbzw5AwyfWhRMaa5Z597P8q9M2IsOB4SbhEPJIw9BsXogUsncSsmVQ/YrWUuJ7n34UGN8G2d2n9H8u5x9fxKCdyorm0roKiNdDgZMX6ieBQDURL5KI72fr0g96otyUshZRLihI5cwiHnPrPTc1XeHqg7dnymUnNqve1zCbiMCjUuD+S2Nqq1P7B/7z/gAMAXf6JFJrPn+KiI0/xi8vmtFpduUhfKxufAXtLYBQKWkSARhHJHLTnpUdX5GYz1rFckf1rsBssGsSvTEyvfS/U/XHdaX2XrRYBx7yxHIKCpop37VKtu8/Dx15Ckj94BA3ZRCrqlPMYZDq5LQrZA3t26Q49IKDXwni5RJwoqYWTTWf/0ylulJ71Fx5p/ydKdMQYpeUGEzXpRLp2wOgV/XF2z+p1plgmk5Tc6GjzQ6xetu8WRfUbTJCTJr858breAxfftPic236Gs42Zp/5ClFDh1JQdXIessdwH8lvh+x661bMfbmHFW/vDGxXM9FpKi4C7NdI1D44V59sv7KF6kkBpmnDjNuXbEXBUxqfEy5/fpoSd3mq5gywQXrunJ2m+vZD38qpN9kBOZyCBuICbWvBLWzOJHz/tJiH4whtRnFigNqTPEr+NAQnaYXE2TWsvaly5drhrWlHq3IH1SIcf+EZ41U54/ySeslrruVODhqcTy3jFCDvb/9skSVr7mSrLHl7Y+cYqL+mbKn3lD5T/biSHCPebFaMcHHH9Lt5JmbXWkbgXGI87Tc7/oUshlWuZZLoTqrFQuIKEVfqHwvO8Y6pt6dS9W7aNmzinEP3MnvoSzx+1yiecduHLmYLpI7R1085S8avppG70HT4RmVFgI1L8p351OVQ2vvRo4PERVidt/wjhdkTJ7C+jHWLFbr5GOoW/9VU/tgU2aWO6Lb0vUTOuL71Ii8cvEfnGHgchnJzVN5nBSyd8MqoRfOax8o5WF9uNCRvbOOO3iS7me6UY5Gl8UEBw09clyiz5IAgwPo5FJM91YP1Zo4cfBWfz1NBsHlTBCR2WQ0Ojc9AJsy40R0tuktZoMZ/4SYTU5Gretjp32mFq7Xl5/j13Fpw+PCBpJuE2xTfzFW4MKr4p7yq6wRBsBRMWI4+ibftET2/Biz8bNYcbh2WOsUZrzW24qf0Q+MNVJzL/LgidxpcRLMVn63Jam1x8F3LoTv7abA27HM9sHaOeibB7QonM+7xvn1RjfZ2IkO0SXe3AL+HiZaZEgnXDptnKNlWzECYw7Fj6JczktENGolamMfNygmZYIwd8VaaJZ4di/mcksccmShCA22NcEl+66UDUPdsBgJqc5bTUCF46ENJeNBIJwnsZXu+hIUv6WhMHZvambcmqdCef35/HEji0vCYlllp2j9kfsTTT2PaACY1NtTlDmovXXaVE/ILAqXCVj68QRB3+DYZqfDESzv1FTn31Yv8DmWVrdeYDWjg7oUzqhlJWQEO+rHd99PVdmZ6m9ATn/xFKQkBWl3cyInbL7DFq2ur1CAZTo5DBOW8af3ul10vtK7VmWGdZPUAV+WkACXJEpQ57si9NyohSgiygp0XbvupbdIGQ7Q/MHGquhYNZzAMbn7x5Aa5zoeZmkHFyzeH2MaPjQvkHhsXYu4unwR9Kj5gmqZI9ulgfzege+AF5Eihkb7N9zQMKpMLQcST2s53EWycCIesVtJagkra4z9zbBP5qwAiY2bEpHZHD7GWFKzUIpr0+EQGcI30IhqAJZvpCBLfvtTfhVkdunMXeQgJb6udWN+6RCiDjfaQtLvjyUeOQuTTZdwR9btMPu2OdzyQqa4PM22Rt8FNTzR3PHKYznmk2qrYxf2uZSjaAxaTgB3EQDkzXL+ULlwi1zm2TnH8j4l8CzeojDsAKWgyR60JYTW1FP3eXbfbt/r/dHmKcipZp7P1m95AKSGlp0hmWxWfKhNXAciHekB4gyL5mk0b3TJu+Bm3Sn7nZpCmj4mQRGITMfmctp6uzyUqnH0M+aA9HFeGOX8mEVGFR5spvAPZf+oKP9uU69uZ39niXJMYTS4UOVy9X4r16p/NFfiQvLrGHeSZV6+iePH5O8muHy7mhaqoiHKSbZH1uCk9NiTE31YVlZB3UV0fX3TKyqrokUsm9Z4DYdwJVfW7kf4sacu6uAB2NV3Az85j89wWsEa70Igd7CAT+5dvAy2GesfsRr/W7d5e9KTqQ3FcR1V7rHuGDZ3ADaGbJFd7bsHPmO0aOKrC0zA97bXZ67rdMQjOv6T4r8GMsF1JdfNue4HN8C5UvJoL6Wtc/LLVyiqKSqr5sDU0zLSTt41T/6hQMpfFUJeM2t/M3xYfuDu4es9CfO3jXQBMeJ5gRH9fCLCz6kLaUPFWf+v73hYVXUGAVmhaZpVDe8qhIYjAwUrayEDo72tSX9CNjULyr51cVCtRwask8pVoOPhRJrwKu6Pv8bKPE04X2/C1SnrQDu7E86nNCzgMT+haqDUle+ToZ7BImlCB25gNUjUOsXz9pWSiGcqbDIpTvqqwTdyNsuCpWr4HGiK203avwJdZ4ku19Np4SwsoRkzgcSO0+2+gu43Hfa9/3x67t15adQ4cVSLOddKAZm8BQ1JbIkt4rSoPWEDoTGNb/0HHYqV7s+T2cVvlVsWmiQ3paPwTc95MDqVjzRiwyXXLUfq2jwNr3ZeQJvovkXs2s3KWpyA2/0rYKysPwkc7bC08J9dCrHTDxKiTWobDs7kX1BMUWnVbIG8+O4L4uvpQQ4rRi1Mp0NlV+Nw1DATEdGHmiuSYNPOriml14OdjmR9+LFfYZq/tH2Pib3MxRJb5AQvQpT7bkzdgUiaXbJOpUVt2KVlPjgALlAcINTA0EsYkMZb1qlkQet1NgHP5dX46133Z0p6Uk0xhRNgeWIUBQRUxyZ5bH3P7lMFP+GBTAIPsVUpOwyhJUYOyIfEjZYXVieUAnsItJYYSBbLmbJOvtUiX9KTNNlhD5C6jskwhMNkzhnk+XnmAFr0rZ9P3F1xi1V+kP56i+DEoVQbcSku8ma7BW6dNNVmoFkulg08KO5ksI5P96e4b7Nr4z1QkO9Eyf0jUPSip7/LtahDRE9ekVV3JGaCYmduyjpJZ8dSrZLE8UIGJbuM1M1dLZ2aq4HHuB6oHGuAqcuHhDgB3AUp+0RG7ideQsADtuCTFQzJ2QwtIyzcI3HCCyFTUyrAPVkjgHOiZW4ohllR5g40Bjhfg9wUG9iTQia8E2NBZ9Ir1hywxEmzMrxkznXMcfkdDt4VQMZpwk00EcZNNIc2Z+r6KcHznK5ZSYqKupPXHUt0LvNVmYv2gz5Z7626xnv1xcl1Gx8eM7eE1YK98SwQ4VS2TbWa9Yqkx8tzpMOpBty8OJXEqKP531FqoU6uZk8S0Wzh+c97RNjr+p4UryDSJZRJqc+Q5x+N7PFKk3VYMqrZhy6VgRKR/N5fAPyEt9HOblaXbuxGy15opZTkk9EwmkhWwYy9qiXSg+keLepAXl5vpkIcD3KqkepBXhHshI9CEtB/ft1ouh6dxRyw82W/SPxAe5sm1e3yo2AeB7tbqEe38ti9rF+sn4wkXkULMzevGyICv6GlDvMgt1Cl91qWKgoeNnnPc5zeKrQaWo0JzxNqIk7EUAWYoe75F3w2JOMbBZfFDJnVm+92zOdSq7aiYSP57+/7d4t8whPxXp11kP0tnkiR2fjWbcY89p0xLym+nRuPlNDEO6WYtB+d4wktiHOyGqSfuc0Tp2p05IH/O68ynHovprlLP4nOrOlkQ8XVrwbQMYP2x0yXOq5Iu/lwxPsUauZ91ylO7LizEPU2Y8J3zB35QXy/73k/cJrriuzXBskV1hl5TwxbVqvMyTzVFSFnqGapvFZA=
Variant 1
DifficultyLevel
405
Question
Four groups of friends caught the Indian Pacific train from Sydney to Perth for a holiday.
Each person was allowed to carry 25 kilograms of luggage.
Which group took more than 25 kilograms of luggage per person?
Worked Solution
Checking each Option
Option 1: Group 1 allowed baggage = 25 × 5 = 125 kg ✓
Option 2: Group 2 allowed baggage = 25× 2 = 50 kg ✓
Option 3: Group 3 allowed baggage = 25 × 3 = 75 kg ✓
Option 2: Group 4 allowed baggage = 25 × 4 = 100 kg (5 kg overweight)
Therefore, Group 4 took more than 25 kg of luggage per person.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Four groups of friends caught the Indian Pacific train from Sydney to Perth for a holiday.
Each person was allowed to carry 25 kilograms of luggage.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_10031v1a-min.svg 330 indent2 vpad
Which group took more than 25 kilograms of luggage per person?
|
workedSolution | Checking each Option
sm_nogap > Option 1: Group 1 allowed baggage = 25 $\times$ 5 = 125 kg $\checkmark$
>Option 2: Group 2 allowed baggage = 25$\times$ 2 = 50 kg $\checkmark$
>Option 3: Group 3 allowed baggage = 25 $\times$ 3 = 75 kg $\checkmark$
>Option 2: Group 4 allowed baggage = 25 $\times$ 4 = 100 kg (5 kg overweight)
Therefore, {{{correctAnswer}}} took more than 25 kg of luggage per person.
|
correctAnswer | |
Answers
U2FsdGVkX1+9/wMs5oyYwJKLBp0M03bTAEtmKEqJRfHMgKT06iS5pI2jUvPDy0sriKe4GggRau3KK34XehB40phM3oX/5yOrdbSXoIk2aE+K8d2sw8+MlY8DcPvOxRqEiPJi/aBQELT24pi+jT6pbtMMLFDbzyZpol2PQhQh5OOsgSOaIEzpVg6f00/P4/3cLM9kqFGxo49G0DFA5ZabEHoreO6N7mC8aBsLqb6zYjyXlunWiN9azJHlEMVhxQtqJKTo8DVdaeqIZ5i4jPfn3cJ2gJdHrGMGubaQQFPyXG2VnMdKaUCidOM8mgZZ+SDeXT1/eiQQpt6rwHrxdGKEHu8hBG9hhRjCw1TamKI2+9LJZTZ9+IAi8Qs5Os/UGZXG0W0kraV0Hox1Onp/MX+1eC7sg1202g99URfZbNGK8XAqcbhEpgg+JjZEeTORgLpd2035UPjXd7TviSA9flSVnlV1LLL7NOcZ1yrH1korpVJuosus/rVbQs9mKdJtpoDhQS2m+Fcy3IV44tWPjZzi/p41slO6oNohhjLd6QOCjx7Jl38FqIUee9cyYpMFhGIFgNmlVGgcrNJ2zto9+YygcqeB4bTcGetot3PrTsN1HE69yUNNsc0mWJHg4qepvmmOexraKmznpHe3Z/OyfYFURL+70a+9wqph4Q8Aco4/RWms0t4JdW3Vp9rUM74jI4z6TO2siW2v7j9FF+LTlgjHoJmeues+kt3MPCxyO5jfMWghK6pWKLpforhuD0Aqtbqa0VEYNuOhraA3+hboYGhjcE9Csjmh8tjBFn3MM1J1vZWLnNii77y6C5d3NuOpJy3jtXl4aK3KgkK3FNfGRfxHB/9H68QzSDsEBZDJ16Dtkqbym/cilPqngAwXDNqMEMZhDKsqvVA+Q3/rE5jgZctU7WIs2aBOYxIjk05xatmCyeo1q759Rlvcve4PYv2yNEaBLEwcXb4uqj2gvb/dxuGVE9m+A/V2krb4vzQPgAnFlXjQ6tkxIXvhz6heQcleNe3f7zNBM0SF2etRRg6q/tieKXRGKFKDprUdk2heXpb1+jJ9DSNfhlyBm/LVyr2NTa2zbT2bXhaNxsbiVH02JSTYOTPhiuZ6xUkhEMW8QGdqwL2ks3AIFlimxRRv3qQxmhzv1Am+E3pAisJQ+HA9dFsHixrVQUwuNW/dagaOvi3wPu5aQ6c4rwV9hTLsvdgFv3zjXQFuyz3fd6Vo2KHGQ1TTc2TYNscasgIEPmf5k5KMLDQT+zJMhNyiOkfYJ6ii86n193MafYZaShmjC9odxqxmppbc936jOAKZWceia4uHR60L6BjT2i05ibcLW4LKgcvy2Zp/n01cBmW+mjN71q6tUnvFkNYS3pR69nNTK4suRvaXkb49drMlWouHa8Bxq/V08oijAM3pOb1VGLJDoo/fUK5kdcKA9Ncx1YR6YJ5LX+WZBMpqjf+uGA9zBxnQ1iHCQEudIzPgpF/ilRUsXOPcC+LLjr8nh3cp6BLMPljUH5i40JIGOxMSrRvngxVfPlITBC1Wz+dNhj5i1Vw56Hyy6vWLBTT3c5M20pvStfC/ecEOBIq1IFWiwX+1VDJdz2We2VXwYoAqSJwKPpYt9s+A1oEimLyPZsWf8bcUOa4VBlyNs1leijK45Whs50dGa89l1dTbyCe0ZUm6rUsdg9zHiMc0y1Ri2f+YkkbIIxKRSXTzFxvl30aVcorRUYmAUHQxdFjsjpQGJ2R+l6H81OaRPLEe5Jyxp5JodmJZ3jZ2Xy1gFsm07wNFc8rbQfUJ0CN9fcSUMP1dO0/CscD5eQAGA1VPAl7bIODzCONgSAJ1JBqHA9OVCkXoZiWe+ZYzSqf9oGg7nXHuxUiE5YpbTnJMpfsIeIzgdm0s3itQvhiJVlWzAwb0QbO1a3ZdXXxZ/w1u2wXk/pxxuisu8E++shScWmrwv5GMOJSoHQ9vA5ReSapImYlf0XM9C5sCkQI7pGnNRANgCvJZc2TWZyjrwrVgB2RX7Y9NrtAggqSsQRXHX/MAt0ISZRPdkR7rDgw6wX1rq1shzIJtWu7ch0x4BvkvJeknlp3zgl8DvGpzreWrx+P/aFBsDjV0yZPS9X8cdELcnNUnBW0gVQF2tE1kwxge76P5rN0IqpopLorhov8g9AzT0uN2wo9vw2uwUgmF/ubfLUxXCXl0tHEu+wffS3J4zYMygps6fXz6EVVPm0KnzG2YrGtDqf1AxrUoNsoBvpjM01OYq4d/DyhFWlzLpI/+CSDnK528H2sItLB57o3EF5Ke25REdgw7ocMqVIPVBCh+j8XtxnOn3emIItsGLvQrv5kCINXkUNJnu+I9ZWR7UAKBUo8j87aY2ua7phOqj/cFpQmTtnVBIooO+z7ZuRoTvc9a/QPh3aFYLLTnc8QruNDN//hLMrgwelrJtC8mWMZUalYVJ99k6iiXlB0qyBad58lrCB+JrrPw/eHvy2U8ElVFhz3Eri2Pg+x3fUwisern4A4JRZoeX+muZUha5i8HBmjvN2IifN09nM/uISa41zQ8HEK6Uog8zzDYI8zxgqiqD0tqRy7T8phAqqSTATmvYwyPkTsnNH2oR4MNE4Af4EZvbPxNULPRRooO2k5rSposKClAQ55DDyE5t5Dogucbjk5kcUprA/I+OhRaxnT5BTYqsZMzBk/CR09+56YRWdzr6nGlYjTadzlb8aS3SW00gYf6VWK6EyMBG5XaOHBAU0JXi5WZ8XV3hLgfozw8ZEfztjRiNpRqA5zUBNXuof63sLkxXOHAo1mIvDNZc1oBIdp37uxNKDizgky5WzAVYt6pscCyG/yNFeH+8jRAPUfF9dQ4I3Tk45T6XVwMZduK27Y1BZNXVKvnQdADgR1Pk6IhQRY8qL7Gk22lQSzJGsDq0MulrdwnQupbOQZYOPJDa043venrdHV1FZ6TAl5p/AILRO6qUl/ovqdw3IshaYLJehHv98CnZ495f/NmvariWu9nXOMdbLm6nDFiS+Jc118Peee3Nq9bTzLmpHmMNHKq4xJD1ls0S41IwTcYxtaWLlUe2ZB/kz9tjwTCvCWOyZ7c/bZ/qa/QJtFc/FVbvYYSnz4GTfW+hiO/xdBe/PHMVMxki1OcH/M+++w1abEJ9X9C7RakI0c+04jZxHX/CjeibHSFD+jdqymBeqZDnYP0RgG/57hBtCqOcrgchw5xnCxvGXWhNOhcbBl37TKm3N06lENIr/OseUu5RnnsTfXFkvcMJyepRUoXn9ofVm/5TRqp7T9ztMl/Lru0fSFp8+AlYcD60qNelsvCDhNtxsKRQ0hA0xv9CPkLceYKnuv+MghlkEyr9PsaFYOL2qMFK5rLg7uBlFzCENZifLWyj1VKSuBhkLYtvo/ZDZR1LZ0KL+qv2VY2Kcd7PvHKdWHgOhhAXKS3dUSdp2E25J+ON97Jg6f1p01bllzHyxjZkym77qkMlfiwtTN4JVmebJGW3vdlnDFMH0ox8T6k2tkQy4vQtmaV1lMC0uHnPo0ZFc7LLSgirh7RVc/Ov9VxQxKZzAfYDGw2skF++T40drQVs6Sp8Mhbv/8fmoDpXfx9y/sX2ahMhjchlH1FylSbySg4GoGxnulDR40/thlbbPfowqP3xy+tEMYmM3zRfNDvbRGdVYMi2DKselXDXYeoQFIUdW3Eh6x5Z5X1BWdN+YdFcBOa68BoYO/9tKHOlRa9Ymm1Ai3c6Z41myNYJpVf0gA58vePX/0PdSVu5VN0/p3ebxvpyCzZEYOIU0V4EvPR3PqBjSJfW4WFMvZOr3JG87T17BDCtmFOK2hm6OoTNOkJ5oR0ltWbMzbhhJVpAdGtsSXxUiI1QeR9R8SZK1welTT5gLTHi9ieJBRwXqQFTnW8hKJ4QOT2/xzK6UJi97tbvJXJxe8PVqeqmUQVvaVk7mC2/BIzX+HQIS/NOOWPdYxkAW8glfeiV0n0KnhgJ2cOIB5LJvnOlJHK1RObW2lPPVnly7fLfsAPmT1Y1KHhhFgjPm6OSdPA/TBHkRyE7xvn7reH91Q31AMrPonIT5hV8v1huT51Vcc+4MbhTX35GEEhzKOWT3BBCbeb1wGhAnEVvc+Ch3Ac3b67yfde6Fcl+VGgzxPTfqzagxymuqMfXkMIj8ztDhzrSddOpVoD+2sUyqeJiEfBDL/gN8yJDcA1P0zIEUETuKQTbjCQZB1BFgyPJSMykdJgf+jeZYwLZw+n6jacq5cbBAF0n/RqYpK21p1fcZT+H0/6775vcQgF0oNNv5dc+Yms2ZFCJvQiKGs8P+MvFOWq4dSoa9gGqxdWfeBi4h/YuOjsixkENbbhEDOPxq1c2PDv7t5NM3kRU1UG2U683M59WNoqBYp1tJSimzUkiltj6Tqhvx6yucpfAisJKcYcI7/p0/+cNMTL8LPjalbMJ15RvlZFYJxT8ODl1ToFqxVYUBn3P1XVQlp/wQJAt5Q1Ue1expD0x6Ajh4oVWY+FanBShzlIbc1JCpHfFHXyGsCxxXirQNAWBAhiWmk7veuWlQAkx5U6/dQegmg8ChuV179JUXBmRtAZIteUOUEc/hIxrcgPsQ5HnYgXmsVAwRs67D5V+BLjNOkShTvFarTvalMA0GL6GevGbOYk29GNYDKYAebo6grfmRAhGJTubrSG7hFwCeyoHfZ9l/Lrov3vnkjtOtrur8pCnh+bTA4SldKULwLrbzbMUFJFIsPGts82sXHP+9+LBmiV2zTy3atGdpYJbKU7UVDQV458JqRUFciRjCK68ktPUfy28818YVD6ULgHxdqXA/ObG4LugnrngX7aPNMR1KBKw0pOJkOryYSM4Xifsbmr4tMfFb74CX3zZGmABQccKtHlhM4H5O1CAi0umHE2zwF6D6t1LiDlTKiIjJqu2LUlCuSZO+ebmMuOyQRFX1x57r2oIhc+IyZDC6w9k8VgeSRQxtPUeV7UDdUmTXHxg/aUqYseE6HYnODmYCTO+DWrjVq8G/3oAGYzIIsCkzpiWYszcb3qd45KZ+EYXab9oXvKmpcZv8NcKyxqncgVaNk4GxwZSzEMg9cYzXs5ikLp3X4R4QaFWlSe+B7YUGFVujxeogoclB5myAXg7F4g1j4NhjRKKlhC5hX4AsPS21D83xNCVgJ9YoLFfOOYR7cCp+Hpr9nSHODN9Pfp0f7klV5c/+xSSsJJgmBapgcXg6ljuoioLgL3CCyfB7m6DSckE1Gl404IwauPp3sBQHkzMlBpbH9r9jCAD1nB7kifOijbNAfEN2X9MG3XwFMT3jN57jdrkvQrnvU/sXvDhRPd0oErQzw9rmHo8CiBRCECS10eDiJDK3udiN0aWHFBi8EXGHB1ziNUxOLGu3IIRbQ8uoyuLMKvxs9PopyY0qcOa2nYDXOuj1ufyEIGPoK5Ab0gYCtRDC0uLEt47ru3uFV9OWuAOvy9QSz8nXVINsrgxshqitrmJizaUQImzVDo6k6VkdwNE7NXtd5uunfi7Oa5YozWWSAWya3il6iDBXYcllVN/sTfrkYrURV4nefs5H47lIR1OwT8GSGfeGo6PsRmAdy/YTBFivh3VxyCCcMlxDabLEK6Xy2+W6/yV8rA3b+5st2Mi0q/ANCWvaLBBFaGyCy7Gr3jFlqe3g5gXb+wJswEEhdIuCOA560TGEra6lncmtKiSddKQt4rRBl8AzP+wrDlTcky5xuGdqzQKYHD/8eaOF+9Sa3G06eUglSs3Uz/bIlWu67yzecPXDFR4A/qMQn6yTI+J0GL7oEuii3jf8tSg+r9MGGJ3+qFJnTUKy8oU0TjDF4p33p7vrT4wbe3bjHDu4Q9fnkn6nKisS4d+Tw2XvFe3V8Kr30RRzlOagoc4PC8dMT92eeEYPJo2BMsR1902sE/eV9WrihLuGHw690sbLGLuOTPngm51CruYb7wkcFPBoginyC5SW3a6mNnV0qM9dXv8DkZl0jO1UfLMVP559Jd37HYWhab1zTaH+X7J9oIEPlZIybcXd3QNI/5DHFqQiKSN0E0ahqAwJZbB3YX1GJPVDtGg/e4kPw4oSZ5g2oVClP7sw1xyfmbM85srmCYe6sx8JGTkqkF56/L7RhpZrhee0nVT5JOCjOpZb+PUudEie8n5AT5AJw/9HUavpH6ctVtPYmBCvGNcrFCXSbSFbGTR7w71AxHODZk7s1TRDzoLUbBpeEeaPS9MxpdQPRV+JBmPbeRrRitNSDbEjUB/Pu/R2Z7YDUcNHAaES9G4ulEts5hoFK5XqgMDYzTwehFxo8ylZiIb1RMBWNPlrsmdq0yBsGtml9XgtB/CGByHxaffDC7efR+chiEdqbLm8hH9Aeu9jvnFpEW2vVmLtEoj60CVqaVIVh2Pv1HTTrOGlAOXWVRePW2v3JhVZp8YtESlSQGSfDjwU89P54C4nPsdNSaxza004eEx/hdHPuGdR5PiJuCpExWTUKNf6T4dyh7KTZLGUWzXCucJp89bdmb133afFo2I1mEmeDW62cKcHfA2LXD2jp5TKqPIkImHAJ+yLKTaiot2CoKMmp5FC+w0dmhjz1Z/SxdqFsUlOJb0zwrGB/UTsmgSVIK0J9jrnUJ445TuFydDH3r2CYzuIJWLSnqlCjJAWK7RYMa3cii2mpCQYKBywrzBI/+uO2R/7HJtSueiJo1bNWqsiJ7kaH3OYyOsUcxkMy7hHJvBQ==
Variant 2
DifficultyLevel
403
Question
Four families were travelling by plane to England.
Each person was able to carry a maximum of 7 kilograms of hand luggage.
Which family took more than 7 kilograms of hand luggage per person?
Worked Solution
Checking each Option
Option 1: Miscevski family allowed hand luggage = 7 × 5 = 35kg ✓
Option 2: Smith family allowed hand luggage = 7 × 8 = 56 kg ✓
Option 3: Barnes family allowed hand luggage = 7 × 3 = 21 kg (1 kg overweight)
Option 2: McWilliams family allowed hand luggage = 7 × 6 = 42 kg ✓
Therefore, the Barnes family took more than 7 kg of hand luggage per person.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Four families were travelling by plane to England.
Each person was able to carry a maximum of 7 kilograms of hand luggage.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_10031v2-min.svg 430 indent2 vpad
Which family took more than 7 kilograms of hand luggage per person?
|
workedSolution | Checking each Option
sm_nogap > Option 1: Miscevski family allowed hand luggage = 7 $\times$ 5 = 35kg $\checkmark$
>Option 2: Smith family allowed hand luggage = 7 $\times$ 8 = 56 kg $\checkmark$
>Option 3: Barnes family allowed hand luggage = 7 $\times$ 3 = 21 kg (1 kg overweight)
>Option 2: McWilliams family allowed hand luggage = 7 $\times$ 6 = 42 kg $\checkmark$
Therefore, the {{{correctAnswer}}} family took more than 7 kg of hand luggage per person.
|
correctAnswer | |
Answers
U2FsdGVkX1+2KVovPmUTqhu3CHOoJjSXfa8ElO5D0Ej1maEtw8gdJ/9KlaCNczpOfH71E77ukE7mmj8QRfz/rq8fe5shJQNnTv5da3y1SInH38e4LI7CwWQfI9L7wCZYix4RvIuPpgqpluNI6N56Xhw0AQwpWlwkMCXZZ3bP6NLcAH17FyXVTAkgLo6vldoKzoJTXNw9gjBCZ4jSJ8wE4KjEFkHrQDzQIxSh0SfpqJjmkyc9SeWwgeWsQ99v/HUAuup++EQ79w/bT86sSJu28B7HTZfkyfbyYAX4FWpTKsqdRaDawQKHOqVnjEdWDQTtS4senYi70HV8IwChFXm1gg2pFXlMXvRPVfV/wVfRj1xugE2ZZZB2yxdiDx8USJba3I7NuXw1YlIyBpZn3OIUq2lqJ7hHBuNB6dyIQAJtq4VfGLVcMBAdRv83W9pXk/EUNKaTGDZ0eK1p0kwoXAc5AYkc6OQgaEilExArX5CKLDJY45eOCnGKqGF47Zw5hRAW6OmS3K4ZeiBt1w6wjoYmzaRfbZhcWYIcSiPFxzgqWRKYkasMIwueQzEPmJR1S5hxP2dHjjOHPnbtuAfkir4IlB78Y14QzwuQMyBXDi7uucZqlAuyMk9PQ7e4njj95jaS8yQ/ycKyVYTn5FcTa1FSfPeE9dhJkK9rm3ZX6D5leVUaVu3lORo09LU0IJzI8LWbydnFc8Khbx1B1ppoywRnlSDXX1FgwkcheacTGGGk4cxCS9Qp2DUMJSqDu3gJ/H93P6sPZMo0l2xMkObPfPOE4tyUD/UApfxLwIl+9XEwLj2wnk4gcRaJL0V52X8GK1l5LX1x1FJ7/dIR1PzlrhZ5bOt+hx0jPgur8oJO/e2spw2yfPdR6r1ZJcYoBUF/gbQKJRwchnYQQONIycUliANXdvYp5a3aJkbP63BPb6nGZN2dPZN93Ona4VJ1B/Z/ycK4jUOWWyt8mtHYEPlDSN+V9+LUSD1BzuCx9ITfdQDosj5I2QUDDSRjNjsti+HdI4TZK3gNxH9bm4e88HyJO09g8VBolGqUmmoCKcAIi3OJd6VAIkpT+h20ZFfq/end5AhHtp85rHihN5BTLFDGosep8Dg7SljGfSHar7ygnc/Pl1k7BzjUGJnM1818Gl7Z8ffZPNxCgnir43odj5ss6NVcmIeA3e77xhl4L08TRdl1v7RBR+y4SaHn6x0h4dMMc7JKuEnaHm7R6/Wmq2svEphS5uIjmu+E6o0c1CSiu9ZceeNJVxObQGU6g1XwyvbbnpzpYs3yIomBrAYlCcwaFAAKDhGXBVqHA+SD5evFDEbmEYiiRPVI6uW/yKlaxYE6j1V1OnjkeXVz4ix+ARfzMddWmxz/ONAKoxjv7t26Okoe74kLtUOOK1ki7vx/Y9L0XjANkML9RiRaC6/d3MY2VI5zcPHiLXjlOUsPv8HrzqwU812/bLTR/Xp5cciVxijmlmgSz6/Rh6/eLh3W7NlsYDiyJmb7AgYSaakLwp1BVHEbtCIC0z366YVLe6p67dFcLVCN0sCPNS7uvt8spwWcWzJvYj1oeuvJuurLf3RKgrFXTm+a5DxpWzCGH/Yw5X3oMSEWzGbW68S3rA3sG7YxISGUMtk8f2zMn1/7Ajj6zSBJQu/bEQrsx62u0ifCy/pEsb6lXlSI4d3OONpaRF5opEqULwqPKK1p3fL7VC14CT6ISbiKkjuPoRO4/ARA3gq148gx5TionGVQ/CV+KeyTNgzOZh7a729EDCOhiYtNEK7lEWAMbqjBwuylb0aAX4ghta/aCLILCm3dQJ3D10xDbh02MPF1HP2kyd681Xve9YGzCn8mCj5BVtKRf/RCzvUbaYsovdQi4O1Xlpf0XxFzEX7QwsQLIpidxliMi8PSyZuUhN3+i5QbD+ZBOZMkCShB0IPzXaZMfBbHeW14bIRcge/NYTlbAZqQoHS1a7Zos8YJVDLIr+VpD/Dg2WbFfoBi5xWwcaQpnk29A23Y8/xrw968aK2dLbLJnYHn4ZWeEQpsX6wQ/ZBemVuwxZ4inH1NAjzy83HfyMbX486KwwEADjEfqsxOhibMy2iVHsBgLizoHB1lOp+HQh+joGDI3lL3yC3tsEzH60a4phrYy094JR8xw+wMNXKGv4b7AzZ/MaL2Q+KtGJSMEwtYeeZMfKweAlQlp78xciye2HPiMcnUjKd5rfmEmAL5Zu2aVQAQCSdQ/0yHYI6ZHw7jhHmhbVKJmG1zKMpa7dPVpsnJas71munUvJzNHGlxh2AS62n21YRixHERMc2Ym5lW60fOt51ClzQ/Vc2CfHi4p/AySvTQw5LvhwHTIxZqZxfH9Unr9o0ope6CdrIvllEJ1yuxNliLom+ftOERC72KlAYgDBcEjMd9aO/hG4Zk9MCj0fk1VYsrW0+IsN1rb3kntjap8tfBV0mQ3qNhRXAsUE3NAemVel89c31bS1E5jLBf4JuYilZa3p6jspdBksKSGrND4tOhbn5WhBGjr4fMigSeyhMWYNk3B6QrPjxnROSFV2GcZnQzMyAcwgMGfGtsCJ880w2jAtzTqNlpbD19uUgaBL46rjWWuoCi1ETc9G+kyPKXfOnc6Xw4ovlLPs92PSLuxf0VeAKCtbuN7Zn5teYlmVlOMSKEJzmtGVqe8Qx+tNM0geUMU9PuGRIlfDm7yxbS3MAMuhR7dwrUeTNvrEtwF6IL7jIFkZtaOI+KYP1TT3Xy4iPegLlys2Z/d8xvRMTm6duxdcUahFgWhnNMMOA9eI2AzFHafj7h7PIhhKVkiAdmP7trr7vwi8yC431rNbahr198scCSkywAI324Dq2sXyC7Dt78VM5g7AZRlpT4vJcqMGwXWwpCanter7n6bIEZRHmQNLJXaVJOauCnl7fll0dXr2p5Y9bkzBKJNDkrI2la7EPoZWYrkWbJPiFOoyFQLfkWOfzL3JUOeIXuSMfZYxU8q3gKfNi68HbcXTantGOygeCA8d3164wVMyjZMHkTV8OBiMCHDg0zMyPYYtYwty+BlKxhEv7phGmjUurDSqMepEGOn4qgr603B/s5cyQcf6UYZddDlN64oDojCDvlXpMNWONAWz9YW7+lenVoQw6XH7pqovTGbbDIWLiLZPyrsAtifVMZlY9aTn7D8mGYWGwqYmibUd0hdazwHfSeLIr+rOa/Y3VXWDySHW/p5pfSjsHurXc0djB+90wiNzQ8156AygVBdJkOBSksVHudUvoJv8c9qm1prIcLzhlMk4iXhUyO1viGsmQc59mBYr1l2iZaplu/cfg+rA62swo4NRWSiXhlGHpxs5AGWKAoSWvi9uPZr3L7PVIb0Yqq7WfIihohfwA15u+Q7tNF2JbNJdjW1lVWshHovbPZ3dNpVmpBLX9C+NMFK30P9HWt3F4oTIpvf4wb9kH5YD8sgC8vucz/TcF9oNrNfh6/L18E6QJ97VFIhiX0O83g0yNtxNJFvkKiZYjjIxt/9p65PYkD7f2uvlVy9kWBY0LyW6aZTWJ1fG1CkXjHB+KVdVS5+EIy9x9nbvdqrXmu00xlfoy99s/sp+kdFrDyvvK3fbgBeoEMhQ4+lbAH1IE4gfsCfoQEzJGeKqt1Xqjm9SG5+hwVH7zYbcd61d36Ifll9LmAd/+JC/rCA9F/qGDUGWZa7CS9c73PfevHiAcyoIAGp+KxmYxwsjipfEQG2o/Q5R21MzfY+SDTzwRi+Fn1H64lUS0DNkoFEgCfQWXOP0HXm7o5hdf4BfSmwDCgKqQP9L5amaaUPtDtbjslVWXFSXJMwn0r9+QBjBDRspMa39EzWIo6BUeX7tfXJ0dgiDzXFs+V/3JQYfOnmYyCOYnRsNqGe1xAshV9sFyCVDnviVOA89yQG+DBcyqaAMxQStnEPw1B6OorRD/8KWF9GOxO5sYy6+gYGBweBVoXdn0TmBXC+DK88g1Ykm4SC/9JB1uaeYQO1DqEj1NqrweYG4nYSGeEtch52supCYPxhxLPwa24Xxt7yTXO+kG1VEOR7HB7duk8WCddnmg48yeK3dhOKtyS0h203Sap6hIGwZSau83G6IjcXwrz6wBPeRlyymLlMNU8h1QK90Wt4bV67htEe1zxqfYtCAZbdbK0OcrBXM7ynUzHzosiSxunRaUxU+lJLRB01LT8j9ez5tirkVJ+TL3O3Y12VYK+j+H9YDMKuuNyI2/UbdjMi9hoc2BR5lrnwgGdGdTyChhIOG0kLdRVG5T/MdM4QJXi6/u7dvwa+dJNXol5RVlgITGfI2rvjmeXk0HEtpc/2Aa91JrxLNFwnknrjOs2uUSyEgjobYzO5hvV3Yiwolq5dJXKQSmVgAFwjkHMnH0P3ew5V8+z5fu7tBmP0Va9NewPpSTwlrQSjznJ66TLiTx+FYffK/fUqGYo8tJwSXTwdHSv4VxO36cgyRnMLEeZAtQY8nr6Gc+8fKeatJCtVhNqBLWDqBG5bGpqyDL35K3kH7x403n5pydrn4l5YzjW0rKPCjSt2r8m71952OclL+N4VelcRdSOLea5/6Ux2WNBqnv1618ybkt6nbIA/gw2QSqyo6M6Mmw8wKPK9CCRTbQChQ9X8nFm52oiI52rVKYXf5cPliUuGpE6XxmFuZcAlGMu31SjMjWks5RiRMsl4u0pqvfiYMSiEb2mm6QCwM4Vh6iHO3MKP1uTlULMRh9jA7kACz2nylcNRCZXmnZgkqQsN90gfggWQ2WwuZsf50MIABSgEwdCfvCLwauooNoCc5WdA1W1aOv0086oJk63CoEdqTLK8AW37izpQmHDFXnqIMecvtpNNRu9pGPfzmkmnKoxoKZHHONVpnihTTRo9vM5wqM4g9CYoCv/f6/9M0Os5knIBGgrnJoNnFzdWPIVqTkHo5RftY+aqsn/muJP+Ra5nzAx5KJBNqZf7c+G5yWCQzWerdBS9ltIO+fmRJ0x0FQ+ESCGsfDa+b5C9bG29PsgDklFWCgCw8dsQIInuw3wac036ABjJZpQ0Zt7nlXw1k3scBGX0+l97d7VHQTTJanPZ+z9IAwxuZBgVrBiRKg1B+LVDOasvlalkGLHplpnIj/bsXQCACGi8NX+5dMncHeo1PUFEVxOmFh5wTjJa8OF/VOEq0X2/5JVdiqtk12Ty8yhrnKFldCLgtjuNnwhhZXI5pd/Jy0LBBd/O8IJp/j39owAl08n2HP/kIsD6+t6LJVL2NQpPM7HkXqd7YqkNdElW3r6VVzHhzpqRa56TLsLE5E3xbqtrYe/NNTtab8iErG2dGGfnSb0a2bwX7Qkp0gSVsMQChZlYPo4lEHzWlIbz7qxpPhjwf+tBsgTU+ow9McYdydKXAhbuN1HUTGwWhx1kNrl+5M7+lXp9Cq16IkRH2t/W4ge2b6Q4SifD5HCSfkXfPwONebOTRPfpoOyNTDYK66nxotDcYKARriORgv564DnzwOB7SrP19br0VsYuOlMwwk1BTF8xZv1J78oJmzG2jlfrVg5Faqj1pF2Js8ADBu0j2hlbcAFEzIpnVfcmmwa634XPW25lMMdroxnbjagBKLTsR3Hsymtg2R8E+sRhC6URtEvaX1BlihTk6CLj263UlWmtTBvnRsxfo5OfuG69OdAZTv+zwZGYKoJ3cS8Vbbaew/5QOjD6Vn29ycuWn4nbdANBoEvRdphi31CBSfg0aYKwPrOZQREniLUJ+AAzo1j2hrMqmvJ9qIcwoa2k0mC/VmGWNkpfMnMB6zcj2G2lTOjiiHP0Jqk23egSs5YeONNLaJf/rv8A4DUI+1jWo7lv106/s8AQjbgsqbsEY6nIKoyQyk/ztCNwYglBKMA+QqQtbOk41ZiEomdhkD7alzG++Hkouny81ymIzjDEQbQYG2RHe1kBvWVbKFJ+DPRVbC08zq7hJhh7WqDO19bOi5hTnQTbFE5iCYsbhUJnoEWWarcRHEiIG2kgJKEQVrengLIozV1XDWK/KgOS6ETsxgsU5BGajW4gZ/gFJuAraPrcMJmq/T2/qPW50upQOoLObS3btCvJsVQ9KsqEXdnK+Zb5b1WJ53UGS4o3L//F4cQw7MyUc9AEW4qOb4s1RxYyCo2ji0hq/7UM9aq/n9rkg39h/pb0iEUmLaISUf4yONVPSPm7c6j8x+OlMGhSzXPcKbu2V57JdgMhJiq6GaSskHYb8ES9oq/Ylnb5pSQtcAMuXPSsdC86lJjhftvjN6VyyDf8juaJeVKLD2zHTYwbTTgVjr45IKb8h/m0UYgEH3mWyi4YaCh3AadveEBpj5dWzOp9zmvrVskYdm0PY8wfSWW617/tvQz+309BvcLU2u5OUJaMG2MrU+fLQrSoiIF7IOVesu6FQuFm6tHGozrcTCJMwz7VBZP1DNL6xH8U6oOs+ncZIxrsxAUanNIvz2ySG+ShyPbNI1EYvLLPor0Z11mxryA64evYbtPSghRHURnF/bE0Qb1H68vxNmBU5r95eL0IWOsGUit96BM/0KL8wHP/8Cn75+e73tnrNmU+is98rLmtrjgByD7bayEQw2+e5tdIeP2igBRkx6h8+FPD6JnzH5xFOKUy+DMoVXry5U3YaigY1n4MyZ1AtcgTeL//Q3k+psFbEl5By3NhFf7yR0Xanx7NBWnLMTWLihz8n++SMJVt4iUpEpbmvgA+KjCUHsBHrN4Lo6csYx9JVbYNMe87DSVSw==
Variant 3
DifficultyLevel
400
Question
A company uses 4 barges to transport goods in containers across a river.
Each container can carry a maximum of 600 kilograms.
Which barge had containers holding more than 600 kilograms per container?
Worked Solution
Checking each Option
Option 1: Barge 1 allowed container mass = 600 × 3 = 1800 kg (100 kg overweight)
Option 2: Barge 2 allowed container mass = 600 × 2 = 1200 kg ✓
Option 3: Barge 3 allowed container mass = 600 × 4 = 2400 kg ✓
Option 2: Barge 4 allowed container mass = 600 × 1 = 600 kg ✓
Therefore, Barge 1 had containers holding more than 600 kg per container.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A company uses 4 barges to transport goods in containers across a river.
Each container can carry a maximum of 600 kilograms.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_10031v3a-min.svg 430 indent2 vpad
Which barge had containers holding more than 600 kilograms per container?
|
workedSolution | Checking each Option
sm_nogap > Option 1: Barge 1 allowed container mass = 600 $\times$ 3 = 1800 kg (100 kg overweight)
>Option 2: Barge 2 allowed container mass = 600 $\times$ 2 = 1200 kg $\checkmark$
>Option 3: Barge 3 allowed container mass = 600 $\times$ 4 = 2400 kg $\checkmark$
>Option 2: Barge 4 allowed container mass = 600 $\times$ 1 = 600 kg $\checkmark$
Therefore, {{{correctAnswer}}} had containers holding more than 600 kg per container. |
correctAnswer | |
Answers