30147
Question
{{name}} produces {{product}} that he sells online.
The cost of producing different quantities of {{product}} is graphed below.
{{image}}
Which equation below can be used to calculate {{name}}'s cost of production.
Worked Solution
Fixed cost = {{fixedcost}} (cost on graph where zero {{product}} produced)
Cost per {{product1}} = {{varcost}}
∴ Cost = {{{correctAnswer}}}
U2FsdGVkX19mplArtfGXnJTR4tVIC1+82KySh0atXgFU8nWGMb0mJuhqfJXOxZ6ANsmeDGlACjG/1BFoDZxnbx3H04r+BlRJymJxcHjWORWDmSCmbVPxZi1nf7KhJno7hwuMS51gl7r2njHMeaDK54ty13MPF61o90xPy++bltDQr7x0kaeGgby4deVfdY6JOMl+xzGVyBSWa833YZAVLOLsQf1YXrxmXth3KoO9innhrzRl6E8QsEkEjsEL6lJ2vO9e1eWrR52cR/7WTi+S9EgcSwOtdpSddCmnoXPxiCxnprSVPRpVAmztqkKJs3Vr94U0bK4+lnyJAJnLQhxLR5Ty+itYAMy/P2KUVa+CpjeIFtoGYu+aNm5gKAPPBl6VztAkcHFzZCY7W/OrCtdxbFRRefsVnH8B4vt9zmT18MT3dgOEeLqSNIJjPls0cESXi0XS6adyk5f/tWC8Cvjo9ZXbTYy28SAmczhzM5fpn8EUh1Wm/quRx5sjdqTgvufTQ0A6iFzJe78A+ED4VXPpsw07Ie/AiWY1bizTMZQPBZi3gkerJkjA1xpaX53YJODhLoBjic5FfGJicypBlqm2ppR+DugJGOh7PjZwiiuQ6KPVEUMf8KOO+TnUCkWqezYJ4KLQoTEBCag/rTZOovt2dsAb7hyYxQzo5AuXLwxPakw5mnec7C/z1AoIlfz7fymLxAv7vqO9+eTPXovH8oAOTNRH2Q78d2R1n8tWowKJpfUC0v1G4qNa5o2T/1lTvnlalr72OtcvcpLHBQBoT5J+pwLN6QGL8X1GoO5imfqI6lq2QMBHRrAeD5L1kVDKa8o7ptm3HRYN6t9N06JZF5k6x5oxIZXnxrTlKGuhFnkPS1GnpfrEyv/Vujk4DBlaRlG7WWQ/Vqf40foc+hEdgaPo4UGKcAsORTd8h9ux9Dtj48YJYOJC681laN5YfCS0p9YF0w8UL/a4BPErx+2Ed7f4NxpN7XJ5cKde5YTzH/hfDkNbLEOD94U8HS/jHp7ctosbT1EZKUDidGtFozX9irLZguyq6sIe0eWCubAthl+gu1g2n2VmIu4WJbZuvCINCjgtvpvZfmFpQR13EI5AFh4dfsKznaCn/3kJV3E0qS1f6wV1SpUz4kJKr7tP5vJeZAoyUf4erR5ptT5mF1uWVpUs/lalJw2g5nWja/yo523vyirQ8Sh1nCLt8XiUBqTDY389YLOz7IEUKEgBeuLUyJPRv+xvJ8mfeAPCpBIH9iPyvuyDE0gXPv3irHx+PdAPyxp8TVHP+O4WlC14D2CgQbAVoMJDdHjXIFMMxOrRCWTKrrAGx9yfcga00d5nRX7UgJEc5uk7GQw0b41rIbO/u9VFGeN949kmX/fTsjYHb1rovtpPSysD2PCq1R0TXvPiPIpEryP5RT4Q4j2dE5MRM2LRgvUZkHA7qwd0tA79jSx3bf9MuZU9jxvZIW8L15KkwjLfW/Kr0tpN3ASp/D04ETWW67ggEnsXSSzlEf1O5g0uiCnLPK5BcZY+fjK4ylGqe7c0QtAk820Hd4nbh1KT00GvLh+hw7Fv+sCODV7KfC3XXp5FkL7Yf2X0Wb50pz+ViX5Oah4BpkMFkREcY12wReASbPbXWQTJUm1pYLn0tg540Rev3fzQ/WxUkl7/+fo7Ryx6qYxTPKbP2HDup06/03FXumka58IGg4cjl6Z4bZrX0PZK0af1xHPMnnr4WabVICf6su4h/OXP57lVoDH5LUYuEiQujL5TGI+PrQ5jw5/S0nyK+M+wnRdichtyJ1YWKtzd2pyIbmbdDmYH+M226zH4cqKBaADxXKo8p3bEBhXWMBh4tlfYTN+CyJyDxsjeN02GFsMeeUelpYJCis7fKQjMnFvibK8GkBacz6oMvIdyV0S+nIiJ/WOurlfrJDyto0ZDQwN2lxmlq/jGaVka5Q0ho6uqhoB0tDgtglIp+wqdRANsc3Uvc0N968aMqsYH6v8JQsjQgNghxsHRvF1GKGM4IpwWXzAmwpEAFGam1C8MJ2spvi4Oh9OUD4kZnjkneUmqQlFCeDTNr3ag6z57GJ6QgvPJ9W5dvPc6PJX0Yb34cWiTHjpuRfOYhuRURjxGTfQw5s1MS0AaVGzzFzEkPkwTsIIct/qPovsNEE4ALy+ePE/FwVtAY9w213DfZxFmXz1wLdWkqnoY+KcuZ2rpfVZJ5tgcIWdhlcgSMdSeWjqxYNUvs9c3hZiIZ4Ulkr/NKwwsanJXNeoX2mvjsXHm8BOui75D5j277+ZbLDcbBMImjazSwOGE7cVgFLFSZ4nXkfxTC0RNRWSno4ofAc3IxzpHG2mLty6cy2sF6ecqJuNLclDc9DTrWHvCQ0d1I3/ZChrLmwd2R48bb0ADEZBlbtHvarmN9Vm96qY9UQk7j5308UnyHGv7j3Roac35Irx315RCsEGEETVJOpZ9S8OHD0pYJPoxuxeuxjEn3PoHRNfzOnxrjEEpUZjgc+b1kc6R6XM1Ki0TkJbUDb/eWKd2AKgp/h9am4oaN/dkkdIiMezspkYG24JpcjxJkGi7OD3bNPZ6LbgJmr0b369C2eKym/JL1FgnL4CQRyCrvMoTFSu4xNuc2ZUXcQpzFYoxvfTPMQkLywjcNmikZ9yP6YYFPmlUuwRMpGU+K61+qeKvGrYQo7/BavMzDD9k1erH+Df+DxXhxpdTeErneWuX1g6inomFmosibaZqgYdeWfPB9DavW/RYm1qpQmLS/BgPMElaD44Rcnwm48NoivtCk0JeKMCf65jP6ALjK31PqVyvcI+UtoV7GiTcIxss0FGdF/RcsZsOLeNdkf/ubzwspF2E/7KD7SUUOpUMUhoBv7dp1MIMSMUqwPerGFrEWpn8JgJPKsRIc6qDY/nJf9zeaz4WmnJJpCd7VXLAxsxMmdQ2H48V5mp6jSZJ3jZ+HdcrQfRPnbk36+wCds032/0qbIWhteA5t5Sj1/li84g8JE0b8pbK5vuaCfFDuYABvtlDe0UIcZn1BwcKn8/iazUjVbzD/McugIuDAqNT2uDKzIfLqBgAZWeJgPZ4W/SHtLyvWWsRXEJlS1YsshTfFR5XRNmq0DWUD2EOC15IAFn+6FTgi0wJatnZUilXKxwfB6zoKyIR8bnU+e+Urt4Qhb/gYuXXd1QNaI6lHROkj2v+MKubfaz+wkOqH6b1QQpF9aQS1GBdeaicrQ1GFjAO0F4ABZpAPQdgvHab0YkrlXqdb78EFTRFgbGoTzRs1WLioT6+1MnYxcPw5K8a0Jzlqi3z+fZu5o3lzElDSU1q+g8R+KlGRzJLPN2X8lwoZQegRAlyH6O49ESH00OrhCP2iwcndteeLJz1UY2XHOgPuzDYgrZSlvljgIcR7/GW8FWdhWojxmK4COCni0Jz+aQFpokx1Z426U5E8xwkv06cqKHNLwyXUcJ6t771lo6LTWnrNRNx8P4BHhOQpEMjoIJk2CcMis3JWVNsznn/2q9sz2WnqJp6W/SY1ehx/O3xf1HDHTw8FzAGlLCkFonakzn7FTbUH5zSYufjRhkm8v7hNZlDRe75smHVP6L6NNrS+muOgAKrqucl0yIY3Zdg4uY4GVUIuVAh43hwAM5jYRyfSmQun19CiW/PcPlNvLuBl/OZ4rQKX4MwYu1F60MuU8daKBuJc4EryU2dqFgfkJ/gB6XZZF42h9ihQgY4dau2+7UvWQdM2fIfzXNO1/Kxe5eampOZTwD1Z9Ot3JkkmBRPo6V5NJ3DVFJ0VxCnWT5JJwX/SfYoSww4Qxli+Dxd0NCeDPrFKsSDwRbUiOkuV4DbiewkR94XTdZLQyw67ZbHIGwLlXuWOXtkR6YtWBUhP6fJ5+y3bMHtOLP1n7b3AO5s1CPCQXfCxpnXE/aDh7ImsKmg+mlsnqU5YIR8Mh7FLA2QUu57s+1wCFGGZgAdlaRId+BH93+TgTgPFvSYaQvPqT7w0qMwAJqL9er3EZF86N9cp//CgMgSui4Bd1Sy/AY3L1tIdSIUv2LgvWoKJ0uhfoFxhBttXDnngRK2b2gQrYp65/EPGDNe7moJfTVLQBWxTPiKCaSbInKR+4YSwbmP7XgSbxfH2npGZ5Rtu1RCRhicnj9OKVFrq7b8IC82vvBDu6pi4AVEX+dTQro3HCgAR6KLQ+X3J3hA29T092Mv924Z0VLrGoZ4bOND+5VJ9g4MZEndj+wlmsBNiLRok0ybMDeRXZ1wU2s2Y4kRqDHo/uf2Lmvfb2cjaFsH0wBkGX18LAMG5MTLWbBnQyAdn/9rsxtHswM9qI/HKUNncNmwpZ/rWbjzKutQSQLTpxf5+oJYS2bS/66l0zkokIF1NSg6ycOO7gOxLF5aLX8okDnuVEvH0m5QcDUhMdjCB/qxqBPoH98oNZQL+u/akapjdULhre06g5RiO2b9ioESKeQbCG3kD0bGT+UnbP3tVfH7KehejOjFergG1BNs7FC7kYqrSWEjnZyCw4rBbSzqzWMi+d5WAn3MM9VGQdJW5z114JNAB6Wy8eYvOWeTRdCsIpL3uk+OOhsnMjwN2kxmW2OueL0QjodBMAVYJ8TcFMliLMOlxDUYVqNPDa5o+qtWLJsP2e3WaJm9BMOnmA4bNgW0jCG3rJziINExXoEkv/SFTgAxtco4wMYvpf/bizdE7VW/iCNdxh/5Qx4C44NdcE8ZFG90g6cYIZ4C2aXM6a1U+BbRSZk+kyb8v4G2+jeDdj+dYuryEBSHrNrVgw3TedHmAycXOvgUmKT5gsABN5iqchoyzwMM0ofprAszXaxCF10Q/XOC8t+eQkwqm/9y+Qz7zq1GY/sH6/k7O+LZNw==
Variant 0
DifficultyLevel
567
Question
Michael produces dog bowls that he sells online.
The cost of producing different quantities of dog bowls is graphed below.
Which equation below can be used to calculate Michael's cost of production.
Worked Solution
Fixed cost = $5 (cost on graph where zero dog bowls produced)
Cost per bowl = $5
∴ Cost = 5 + (5 × number of dog bowls)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
product | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q38_var1.svg 470 indent3 vpad |
fixedcost | |
varcost | |
product1 | |
correctAnswer | 5 + (5 $\times$ number of dog bowls) |
Answers
Is Correct? | Answer |
x | 5 + (number of dog bowls) |
✓ | 5 + (5 × number of dog bowls) |
x | 5 + (10 × number of dog bowls) |
x | 5 + (100 × number of dog bowls) |
U2FsdGVkX1/4rFCBtppxMdCAon0ZLmAyyVwx04inGiqe6Efg+oL/dC5+sw1e9W9a7cFZF5o1jms7x95ojKK/RVUrj39rY8C1VckFNEyqJ8F+soXXCDntFGM6aLDcRdvOV+p6FttRDgVTxFms2RH17KnAGVc0iBcvAqfSxdK0J513RRfAPCVSe1LPsb810U2pygh1EStz0c+Di1IvZHqqr4ZopPBh9bK7an/DdYgXqc/Eg1okc938xGGujGI6Ki2NNp+rlA3hNDX6Lax3+i2auoAYCjzSmRrUo5vqefT5F2sVN9ZyAfvTByY1uEof0Qbd/nh4DiK6lm6E9UyHe2jOs8OWHgjGR5m8GijnRQrCLK5dNx0Uw6RES0o5nctcIGRl6yaR640+6jrqRgVoqKjFDrHWqWSLroWy24wyr/qeKBWxx4nJ6HGYNMMSyvkyEtoXtBCH9acEWETCD222XZ+KwVDyLmi5ED36Akdhb2YgoElY9YqaYj/OcQgHrFaiw63XmsxStV9k1bU23lLYAN+Y3lZGPRNDPDh9D7UZA+HQ6FifFftSo16ZU6UI7/hld0LqO1ikPkIMkn+zg4U5qL3RsEMVHQ347o5OerY5T91N10slG/3MOOOpQmkY76wci26oCBhr5HkoIbrCIfEuSAsxhQjxxyXEhmgNCnaHRwnGwkqA9gihxyd26bdygT4SH2h/3zjs6GBHpSf/ayQiqD93R+kZ8oRIqQo+TBNWp+j8VdvSyMjRFpKaXhvdWYQ+7YPwIaaWMJDdSxhncFZjINn8wFNrrnwziOKSi7B91QyPW9hcukN5R4fWIGIddxxTIYgOrA6W/v6Eop/IS+le4Hi6SlJN5y7rRltZHR4wMI6QgDgaQMlmP2QiXMEUNzJ54AqFZqZUrhXq5gH6MrSaEYlXbLm2qR3CBp2Ze7UBycquhdJDWEfw0GI90T18W8sc2sNqUsWEkNCBbg4aATlV9zVMFYygYU0HLI1XgIJ2cNPjtSfpk90uZBAGnuULmRZhvu12vF8HcXfa2QDpyP64FVfMkpfsnIPJlpYrzpQ5f8BbXnptyZWviLaeVfp08z4nwZ9boIhhTgwwqepZz97FwcxgqA0UQ7I5SDKn+la6vwzdrlEJy+wEvkpCd9p483A82Gw22rT8evBwYKvbur1kMRV1ECwKoFII+xpSJQLWRVUB2znJU9dfc7Cn0rcMGIo4tbMSuqnFhyQwXjFma2sCDI829caIHYywAlWVQ5mYSPWvtWnspuKn/pG6Xfs8Fk0bdSNkkpiMo76Ykq4fbumzd5BrOXxHYPe+hWD7ESVSmsE1+zF18iWh15vJEVTHCUYI3Z9Ef2uAh1CXm8rfV69ipyPRsRR0QEBo07YENIcc7sjJaCjmCnh8D64yXHW10cai7EsBI+5YD3Rr/JoeRskaj2cGuPq3GAwzvRgUX1ftNfJOFeigiHZYLFJzLjIcCG65M1ES1zMhswCKkKwyDXxZAqL3M5gyeWWvI5H8BYQDMB8ScVNmYRkEROA53SNuf+gXKlONnw2DfVMNNZhk5iLei6VDWVWIDzBGK3JNKWA7Vu+toiRICNRyADPsCSlMip3ydEUU7BqsInj5Qq+/BMAMciSFL1owF9yRc+f3hsw+p2eu197d248ttCxoi3IMpGBJGgvFqdP2WEtvet4mGDtm/JoIlM15qvxpkCdMADfyBD6BBa2s+flFOS8z7Yrv7BH2cgy+MpcU3EBqqKydjJsDywGyUvxo0+GAe1Fd8OwbsnziHFATVha3jxRj4BPoVKFuonZ1TzoxdiiXooVcXEGGtZZmjz/iyyMYu5NeSLaAUvX0nN0Wm2SWRrpvy33QJYP6y1HroUqIqncespKOonDHDT+K7GNkb877RwFkcaeuS34MPZlT9Vbv6pSUygjOs4GyVZxTIZc5dw45Dmffa3xj4gDzyrsGtcuiekcMA18SQUEdzK6ugaTh0X1gAZbY74obc+Ix9q/SplB959yRs8aCmey6U2ECe7DSKk8uQ/nGGtfeDhDM6YchNJ8eqL+whf4TfpCOS2SANvzNgtfKW5hgSCqMCKuwm+nSi2gajb2ASZ0q6ZI23LzTbQYbHqfOOD1JEks+DmYo8l36WIBczvwNMHkycTx3XCHFIVENL2R1fFYwHZOpXvwTnz+oaPvzG0kyRmnyge2UtH91xoL20/0oqse0zTmgZLVoocwZnDMZKUtIaZm4cRceBVddXhOkdorlgsm34xaredSxI5RqAxH5yVfELQHhOFUSGl8i+yGyFcUhmmKpbhzuUw3umLqhLBkS00wLALMjc3sJc3MdmBSanKUpyqxVTfAnoxDuqV0OtKbatNjxZhUjoKFVmxLBKB4E0wqeqJSybCMVz1YJ9yYFsR/B5fiJG8KoZfu5b87VkCOUgrZtjEroIJjk8isGnm3GvD/1Pgo5/Ykz0wJyAGGQEzPywMtREPCqjlwkRJq5OHTk16OK556yTn9iF7aGksrjGndJeiRwVSGremBGipw7uWKxoSqssbnxb1blNbeGb7AmwnV4hPjrcgPdsG+My5GnSg14FT6VyoUhiHoVKI0VxXvmK+qxTxQT1aLmW2EwrYW1v1nHyypCqOM+PyxKKG39QZ6RyhiMp5VeZKQ2/v2KwUVjidbUXvoQ+jsrh2lSfkScfmZyQ21Dgo9eG80y6TjgMV1m1TWiJeIRaxE3znCaOV+ihQUHTpL6FW4fePwiImg02ZXzFr6IA3JLN4o9C2ridoIGKZYcCkO1/0GM/OeGay+IT2DoEC0htIAq+LGtkdCYhzHTVj9aDYyV0YQ8BgFOvYiOFggORBeYrbfYPxb8yHNefJxRhPrfsBs15qDidX/pKXn+N+x0DfhybGhR4sM4+OZJjxnOj5Zpy80qgmxamStG1jquyTNxznHais/MvXmeY9XGylBybguoYEeKSX31BK3yJkiNmlKu24WLj7LyPrlHpcVRMpm6gBYx44+1ogdBYZniX9P7ppyuYumRyQcCizhKdjNc+ufyjMF+o61PH0/9resP1x8bL8IcQwnO70810QrOr63Its+ILn/VFr0Xdb76TsZvMpT0frs+fPRUR00dhvBok863xDm/vrc5DRov2eLdMkfxfP/GXitxoXOFeUQOn5VQofbDrVw3EgauHm0YywXTg8VYrdL3J3O1oP7w6SEq2GdQsgVS99O98tIja9GLjIsZxxAX58nlmMNtbOym+935cOXgclAWghrhzynHll/uDNusbhX7mvHy/dqJlB2jE3D0CdSSMHeqN0aOVujgRN6d2m/Tigk+THUOnFqfa93h7u+N4QZLPlQuJ7oRTA7nO6szRtB8PZS/aU8GhSteN7xqe7HHZ/1EEVAhAm54+IbpzInUHW/ayKcRSbQQ7zTw4nxD5DbbsnbZKgrSxWhlUpOTqBXm0dSvabseyy8fJe9ZCKDs8w+R1vKEyDUAi4PPzHPdAoaUXni7lAkgov/ICAawFAWUQFqHgTMth2UgSJnU8uZPKNqKUcko3/jECYLDgcrOfhM0KcxTSEN6Yp8mzc/Gq57OLrs5vefmEWfXBNIMooeLdwElNZzoiNRKW4T9GL/IVyOR2KHQatp2m/a2JDPAHjYkGKCn97IYLj/A8K+vzrgxleY3iKw5SenKAJKrsCyPnpbiw0Oe+cK4NlhNIIsCaERe/WHECZNStV3sBkA6tYGLdakfB9MAsZIs4G08vFtEaJJKJ4cqPNUVf+vqetArwaF1YTthPfxDPOLCNa4XkicXGFqP7+u5JtgSlYAZF55HA/XyqNGXadcCa7cMQbtRlETWHKmVQiK3l6SdTD1niELVkdz1PUHNaxWY5S9IjmLd0wfU76sL+PUJFx5Gq318wWgAHuYN1zvxwWcrOTBND/s2j9XE59gWdgry9AOONhv7FWDZNvVVx0kBOnuoubaferOTr90ninCRVomEu68rI1Gj5ba3fiknco8UQjBrRhHvysGlyoUxHhSH75yKB33Gz1joXwixULDS17rpvLzBCB/bv0Gsw0SYx51pCVbr5CB+ZS6W6H0csa1uTGUpAWlxvSj7WnBUo5Hx9/MvpIepsM/Mr68ocYAZbkOGePr/T3OQlgFrP4mfb2xYkPOjWGd6FyU2ld3IjIKiEer/cadQweksVgprCVX3a/fpxf9B4R1FsbvE+0CLh2LEEFdxSCnGY9WrfMWHmqriExtYQkO2bTQm9+MJB8S3D1c8p8UWJhSZhBr3V2ymfNTPKnDxUjCZ4QPU89clMh2nHTfn8YwVEt5+eDwojjuZLZvPlLIuclh2+X8d5wjuKU+LMcDl980z4YKieQV+vHTwC5Su4iivV4XVWHhum4+5S6qv62dG7KHJyUTzWJ+bVMi8LqlbGXmttMUVVYvTp47SOCatZSxDE4GHh//dcRvK9eKUwBfLbddDS2rynD1rx0SA8N9BySE7+Qtp/v9kqVsawpSkHTBHCKsvLR/Z/DWBsr4cnxiI6gHeLKnWB2bLdb9mxmKacUFL6lqq2kGIHyhdCaSK3nFV0BE6i/s+dq6qE+ztKdGYiL7Um6oDrtyczllbFiPJFu/ULETQtu2EzBSszxOG5vOWIgtQzGmf1cP2p2ta5HOw0K3OGdNl4JrCEDFu2GJqNg8mbcDJNPt4jyFUPoKFysS7244uGot3i7nRow+aeUisXqjf/9yys7wjzkYv5XsBpWgLNIiSTAdwpv8pfmM8eykQWJ2rGhzjY0KDbox7EumLkGpFRiYsIs1uc2o0UvHD/jN4lqq3BCvtw1pR1PcH8o6vveU3/0KCyLd1PWXhz5JV
Variant 1
DifficultyLevel
567
Question
Chez produces bandanas that he sells online.
The cost of producing different quantities of bandanas is graphed below.
Which equation below can be used to calculate Chez's cost of production.
Worked Solution
Fixed cost = $3 (cost on graph where zero bandanas produced)
Cost per bandana = $3
∴ Cost = 3 + (3 × number of bandanas)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
product | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q38_var2.svg 540 indent3 vpad |
fixedcost | |
varcost | |
product1 | |
correctAnswer | 3 + (3 $\times$ number of bandanas) |
Answers
Is Correct? | Answer |
x | |
✓ | 3 + (3 × number of bandanas) |
x | 3 + (6 × number of bandanas) |
x | 3 + (15 × number of bandanas) |
U2FsdGVkX188UztJUrJBnWN9lcY8USHg64i2O2iOE6G/AhFLSWPGGUeV4xwBg3vytcH4RyYKWHMTJ9kKvdFMVZOUj/1fgIUY0TVngf8aVY+vdGOPF6rYs1Aht7qB7iVB8Sb1yzuYLVnb8QUc99Tp9uE9dwPOdBZW2LPAU/lnYe/GfoT1yw/t5nvU0U4Rc4dyLYjmY+bhVvKCd1XE2XQOBpqaUvcr05MPugr+zMU9adDmRIgl5USRJY+x/1BZ9K2bMHuNhp5xu/qYpRZV74A2txlKF203IT/0BltxLswS7gq8WU5xoSNUI6wt4Sp8+GhNsgC+DiJTXM/E36aEtXSk0qvYIge4qERvbwLFFUAcZFSqhrsQJQySqj2qGKsIGKWDs0Zp2i5UPlIGW52zzkuEYnL+xVuo02lfFqKNIJgULVltLTI4O1OWMDR4r58gZF17QrXSWymbBq/nYZfH9tTvcc3poQ59uRioXjuyp6M/XOCUH/86SLxqN7V6OmiIzj1i1WlCFzehpZv9YbiA7NBOWrHGV2N7tkqrCD2HytvLu2HTbOzXVjPzJqvxy8+YGgmTUDZUlqRxc/l4EcEUJPW9A3CMoPMn9BwZs0Db5zho1nkxr6/7VBiZ90/M7yA2QwQs6rTLzou/28frv7Rja71UqGNn0O8Y6EfuLY2G7FzQALikNNfTZleEZOQPdxzSxsDwAKQheS2+nf8ie/fYk9DHV6Q65+KXeaCNqnIroG007UUyhzw3tRt2eDwYqiSuzk1PRAyzXiTlUBC44BcwvXPrKQg+fuioC+2SFvvOsPnWjalgKdpdlQwH55uFgdBvUoXc0+xnnlrrl+lwdZxMfGpU0tPlaiBdGYRLo5DfgJm82Hg6jM2UaYr7ZBFX/+79nIGFZOiKOS3WmaybXGjn8CsjeclT0jGn7XemewNg/v1dGetktParP+ozKsMs9wJLHYg5HDe19m9hFqAS2h65Mxy51dChhGyKo++bN56YRDVTP7ZJk02mO+paQpkZNFyCOFlx4ugwDbBd9ZA/Gjf+uNL/wsNGduniIKURXq2eAMJp52gPfZHh0xUE68RX0Cc2Fw88hZbpfNGzN5yX2f8GJCL7tNkGgVxSfbQJPwE2aGyWtR7nSQvaxYwecCV2kPvtIAVxtgFE7anz40ay1z48s/5Ms0p+A+Y0Xlo8JMSmiEMJ5FS+s1L/pE8T36mEF8GoafgtQXBu+CMX1dQHgjzIFFJFCclSFcodU8BmLnP/I1TvtX0aH6pzfVm3HHrVrBMgmpDugaVBc6B/0Fz7dqoNmqmyFkwdDCnJD3bZnKQ6ij+h0NGRbGdt4fNmxWdKhqirh7Ek38wYeaf+2YtAESIARoggs34osaLrduoOK/7tTun/a44Sr7XIyw4aJgZFrVsRAM3HS/Ep4rpsomx4PcRikUTazsV5LQov7jPy6IXsE33/v7YLttxib25i6C+7TAGvJDucFzq4OnnjLLvhNfsTSt12MII7lh4BQ6d+t16isBoGbbk9oMRrgV5Sf5XsZ/zhATxibJB+YviRX6fLrcKG/Ewdw0UKL/7cN4/Ugkj8wzxCoWRXIeW6WiaFPIOw9ZOdDhwSvNQ6Lki5YYjlOcyDKgd0sAEjv5t0jUcN1J1MYJZQZOLAcN7SpCJ6kycKTtgxlIuAq9+ddIPoUPxqeKA44xPnqcKel2PbDSHinB6IGNpV2S7bMU4bi7ynWC18mmYdpBOGPoBkCDUY9O3EVyRL/2ssGiRJ47rTSHibMii+0h+x9oKX8TTvGgSsicJRjNZ1K4QuBvkJXrgIBwYjPDswx2B7DwG0DsUZRw/LcwNIpRkFcZrSr1RZHHlM4I3IOal60s9AwCgfppQzJZ9gsMFBYTo84gt3bckxVq836oxH/+o/5oiGIHRLEn/6WkjkOjjv1ka3IP57suzMSI12sDNahodme4uKIpdvFQZai8SSGwo0g2Y/cOMycLTotd3/YjilGBiLK8H8PLbmOB9dbADzJ7IwdnR5ouVTxvNfzEyA34B9F2zWi+jL5kbpK4uHoQqSgKAsOBh24XjeBLis0ZybVfO/Kxqc319zPEPnbElSdKlTtfw3ixDaVn5FLrfbFTxFdGafSZPe7Du/b/0uZstl2FLLZjCeV+NOm/eCH0NdrxK+LfPEEQQizHJqPYw4KmpLPKctXLn9cIy3wYfKZWGMgQgAHaQXk7rzj4FchWjhLGaidgQkQEPPUHXKvrqmjK48KAYmkk+bVApZar67VWS9ddCJhu7J4OCUpM5ot8XPj0GD5NKXQJMbBBfRrO0OzFZWCRNCo3faPU1wUlCLpAhIE0bWyA1KbEAXoLGAnUDtwPuIGi8hi3ESAGPwWaTK1/PlC4c1useFRcgMR7iCR/dTAp2iMaRKO7y5PeausbArEzewXB+91aQ7qKYuncV0LlP4R69QIOPvmmyhpb0SmaBUUUzgXEYmN+em5eSoC7H0BAKUkWKKG3qOIAIvRctBKn0DycUNMDl3/HWv5ByQZ/w2b4wbBaf4+HRT7CeHbySvXLWaFU/y10c7Sy1WVtlA7iHU8FQ5U+h75jENZmaxLtbz3LmiQWeKHzOHdYeT7lahfch73EVoXudlB74LX2ActsErw0/nrROghXqA3PESEOmCar/OWoXWhE19EiJWQ43IPqK3C3VBxo7IUU5AqwEJr5Uj899B7/4A3mqQToQ7mkIm++fVFCzPBhx3+Mre8hdqNEk9vzMCdTWJgW2UyigKUbp9Hp2K4A+cIU+pXyUbC/4VQqtvxQEEyjkOMtN7PF/yZMpsWDg5aW/SAzR1Eoss69DA2jF7/8YGGB0u2isXzQGBQJeMUaq/QlliaXplpZTsVyUx+AIbD6L8YyG8QDIxyLefjqSiJVl662BeMrkgWX7wzr97UlpnVuFagkHkcUctrqBZp1PF0Nf+oiYgWRnCB27Hrz6NEZEteaxnQdSZZSK4JGkc607bMWatMmO1ClmJCBBQQPov9MU/gRXo/tQyWQl7Et3d9O33c9nebLlsKYHmup6ZLorlwf1LD94Z4MSYLhqD75bkMjUkqaOa9sqrtvXJHNDJG9eHbTID5F5suyjyqhW7trPnQW2Xc0epeZN2D/KMIeq6U9YAea1mQ/LdcfsHynaUXHk/1fC9MEOXKg9uy6vFVSUMf9cPuL8bFohtyR3OZDy27ALkPXThq8iRZ2avRcAMnH3AnpbeyA4Y9YIZeujZyAulsbNMeytTo2OAFqa4Dvq1sftMek/xKd35hJ/SJyUdKUk0K798fZCPRWnqU7oIuQ9TVEx8JOroKFBVkhY661Md5s9BQxl3fwoGrT75qjS9uOk1wQHXirgDBl/4HrcqKCXXKseBRVatJK9z8L6fO4RbXXFbEhWODO0k8F8pHoLZex41FNnwEklXjjno6nL3MjF+CQ6i/SD0KkJuVuQRBwTaBzQK/KENZzrW0Oxc3iQ6qGcjzmhtjOKni7PjvxNlyHjHCVcGPZChly2VTIqEeo7uHI6f4eOzSuo8j2RFqph69kx46fP653N6cxUNkBuM9UDJtc8aLhZpQkaSGpqgZ77hIWVRdx3i2lqLJol3hBYW+u2Hy2ihxYUjUu3f5qmHEAyFC148IV5Za0kHT5YvntdoU230XVAFl6JwUzwR2Q0tUQBXzg5+z/fJ7ec5ZeX2QgRlwu3F3SRQGtVUAl6D2tj46Ibsf+/XQ4evz6ghPos8ZgKgVUQjIsUVXiI9UpbdRYa4Bgal20i+zO7K7WndZ+kGxAOUmp1N8kgAbM8AZHEakMitDc7a+ujZceoXixxbKtgj7or4+Uip8VHyVHH1LHIjUnsYCeLtWM2QKW+gyxvOXYnM1L9MNAvlB6jQudJp5LZCMesw6sgRIUzh7N8tVnO5b4jK6RAxLrPEPM+mXItizTwtZtxeRhzrcVo505hMRWk6GqFwLLrgAh1uNQrjgnk2ZQJdcakUXtDIbgyCRK0EfxJyHNcAjlTNJQCW+5c3I35yI79sfOMxPFHIGepzuW++25+MfCFNHYjodq7+Z+7Q6KeImMIJr87t1aPwi0kXkwBBVH/peszbaxR+JO5XlB4TZFNTFMi+71hCIhee4IO3LieK3Wf7B/jAO/1ob30Bvgu2Du99lkgX4ikoWv3dfRCCOnwK9iZu2ScDvRMmxVrbadlavjgWv2ALVkMZB86e5dyKfX+sTpLTqMXCj5hy8bFpLHujD5hPW2jo/1pzS9ycvpEVFPeNoyjQ+BdIQrX1gf54qjZOW7LaFwaCL3W0y/Npjg6qbnrVhk5I9jxowg0/q9yv+WeX8NGYmRCF6ymRisM7HMoGDxbDS77CBYYZmGyl7so79IeYYu5LKD4yv5Vri4tFSyNKc+bJQDZl+RYvyQW/q4UluzePLK4zK2hs7BLrvJuMq3omSkYGmmKY2BW7GEKJkd986atGXbofrXEzea3wJcnqgYYuk1Cix+DV/9mtc/pSttrEiSd+5VoNo4asM8B33L0ehJ4y5zsAxVnFyArNvP3rFl2SIWmavKCv3KwSUDoV6q+uQGwsq1bGyuznyeI3a6g8EEW/kK5oqJ3MeHgyquxBJ0y7c2sLeIYb12MN6BjhiNtzVTDm1vlBCIIjX/38z9lDLaQUj9p6yU58uFA1hJgpkrcj8wvqZi5weycBVT+z3J7EgnuH7olQnbapDhfYWAwCCSKwre61Ci1/6tSIZCDIJGbFc8IKkX+Az+XOlSZLs9P5AAQjWR5rq6xlcyvjJSi7ixyYNsLal2c55qZ9FlAZj0pKf8M+mxDCGu8yLchxeBAN4Wn8BwkvShXwaDAQVeXkVn/8VSzNZcOo5jsoc3ICojZI2oZVsXeVf9A=
Variant 2
DifficultyLevel
567
Question
Mick produces dog collars that he sells online.
The cost of producing different quantities of dog collars is graphed below.
Which equation below can be used to calculate Mick's cost of production.
Worked Solution
Fixed cost = $40 (cost on graph where zero dog collars produced)
Cost per collar = $20
∴ Cost = 40 + (20 × number of dog collars)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
product | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q38_var3.svg 510 indent3 vpad |
fixedcost | |
varcost | |
product1 | |
correctAnswer | 40 + (20 $\times$ number of dog collars) |
Answers
Is Correct? | Answer |
x | 40 + (number of dog collars) |
x | 40 + (10 × number of dog collars) |
✓ | 40 + (20 × number of dog collars) |
x | 40 + (100 × number of dog collars) |
U2FsdGVkX1+db20bNdnCDBrroNdA1clrbGDsD9g53PtMjWqmSA+dOSP3ni4zuyJ70vRWbPkD5o5+0JO4/mNVBkCO3Z7dxFL4mtgISBMSPgZZEu2r0hQI689kVkRyIif6xZmC3b63xSnCYgJjpsIJl2JFUw934ex6YuJFVawoXkimXTwhGXzLKRkLJtcn9bhoRC5IrmJVk2tdE7+mxl03OMMuZJCF2siAqH5ldX3UMTcwTN5XyMuQAlqBDHpI52OkUMXFHChNt8ne8JpC/3cQoTHo8UmCDyHtLREbKFL4qx+NhfIJXG9Jbx1sjx3egmu+06yMCgvsxar5KS6wqV2hT2o8VRR2ARAHqjoKqgsvcm2k9Kim5KK+ULqooPVPve25WdYrCZKlvqa7PzI6OYBBvkCx1ff1zpT3Lq0xNMEiXmqkvvnHIKD5w6FtxAtmxPGI+WhI9VejAn1IR7AnAjGQSs+OaJepxqTzPGYftNvxloeagHNqAE2xc0lUQh9sYrb9RTtPtdpMBGl8ivFUiRZ5xKhVEtARyflMFjohp+pAFSCUXlLH1Xp46r322FHovpJwjZX4E7wMl4hTkQNc5ESNF5Guw7Cbmv8xv4TaMO3yBYsPEScmquqJRK0vk0hf6fRlhR1QlxYxpVSIDvBZfhx6h0MbpHLqG04FdzbSCRH8oXKUnarBtdBRwMdp9eWs40BLC24u7Sy/zfl+RJy6WvRyePpd3hzDGqrK0Of9y9CNwor3CX5zXf5zkLEOMEIZIM51OdGepDIu9Lkflxx+m0q/SsbZRDuTMVj0lAzBSEr5LnnTgg4rSumvN0GafjD9X6rqLjDyklFtDXo5dyCxfmaXj3TBjco19WIjxteAJMhbpZPxWcCM6t8bGWxTxv9qnERLMFlQ8WVfM8jpQxTNRfqxpJl1JurSQ49hpck5Ew8P+BR1/YzDqF5yzbVTn5/822Bo4y0Miy2ElzhPEawHV7XQISPglujDJrOg1m35lQMTC+Qi6y18vp1jT6mi3aHHfa1G6LiJPHobfEWj0td2ZdB7JJ6Cx/yFGyfoxn7YGDNN/HUYLvTXtUgDuPldCLSsjU+4xtvu2ahuCznL28WztTBePUZTMPfI+r4sJ1u4ZzGikkiiSqYj7i5u+td3MEnX92Edd+gPQETonWYMQUVCx090ZSHenqJbIvkij16N412MnH9io6Ll1+9JLv76Wu9MYuQS/2TgA5PllD6uO2jvSRP3KGM7/Wwpc5Q/I8GRzG6OyyZO/LwYVDz3N9WGMcZ4DFRewcfKCyCY4E4F82J7jaG8ldnwf1297fgg38HswTs1j4uoBdbDf+KzEejSmEYLcP9oMCPIB9SiZgK4sOLSPbl0LIytiJDFu0vldFFWUagm+yJh+BaZyvTd8/QpjsimWu8R3kRVCc+HQ9yqu9LZemfZwPAMLd1C/Y+eugxB1p3DU5gy1FolfjwXnODMxc+qauJnaxxlrNVQvtWOImH3UpyCg0QJEEo9yBdTDTlLvkTP8/fYPG3t0hso6SrN1COFaXlKWXcridzan0l3pxVySCmYXVoXUGU3xIi3GKoJNXrfYwZQXqzf/6jVgjKbPnmMHiGD9Puj/nDkjYrTuR5euFYzHsirvB+oNIqmpRswF+3pzjE7YWGP+dCxhAO/e4TfL0fA9Fv4DITdmVKL5MNNWjUZRyiD3EzJ5Z1gZ8FOhn80iRQvII9JjIRb3QlFnqBwWUYuHM9/hGiOSVC3UtGRW+vKfJsyOOYO+fcJjPdoxK/oYql6yw4JuRGch6JM4WU6NzV8zLnQWihPXqrq+RTxblYsALlKDztLJXo/A4jHTXAt2ZZ61LBO0L9/uc/KaWu28Kg2sOElNNEmy8PkjsWDDM0PnldGNTzD16fQFX9QrHD39woevmIRBJbA9eUtE+l/MnMLisdZrdZMusaus9ddYSvrb1XkUoSBv2ly9EgVRZqWHoVbsUrUxkJuZ7rCgsrD0OE4jJj7M4p8ePbq+/DP8Khr8r62t1RHM+QZqgab18N5OOxCeC3lqUKM0YqONgzgyKmUoC61i7JwoNz52vg9c7/GhbqW2nVbgIvYM7nZHwdcm+opnYxDSuLCY+FCtt40Y9LS+7hEzl1/jC08gCgZ8MeGRdZPbZKkXKz5nm4rGRnPQ9GtWkniPGLPz3NA4r3eRlKM5enMwYUhS/DyNGEETeo5xqBzenhZRtRQWPhY7DGrUOnlL2qAo2mDHpJ3bkKr625AnqQ1jd6XfU+VujSLOWdGdEAW2L7H0FFAXZyIeeD+umoVk8WImcKnXGnCqcf3CmIy8Rb+Aii5c9+CIT6/OTDtQ49B25k/hiukP2QfKIVwoLNRx9cp2byvZF0S1NK/bHrNfWYwEF9ddMUGU9kXQPxWDq5FFNhUnFHS3tzDMYeuwrLxCHv378p09qb01my4V+Ga/2hadEpYblQZZWhiwemYDR0Hcy++EgFh98SavXObMuAyjJYn6PMwc3u7/rb+Ost8EHwagRq9P40iUht/NwM16B3XW3t/5TdW9ucofEe48YMpXvjuzA5TjBUjUa4sVWi0sORGdWEvHvRwiNTsdpqN+DExaySgsYeOr3ZEj8pdWrKQsjO883l5xmHxIKGSX/F79zEQ9eR0D9mwsvnMPa0hf0mLnoGIfdjuEnuKhncIf2sm6b+gUQekfc5Hdce4e93+yB0XvIsbRmV5WeYCLETqt3Q8H01ziY/3h0M+PWUiMlQVYmuV1IKoGaXMukqMGHr7eBLNWjTkhbaJi7HVKEVKfiG/yLkzaJJw+uWT8mg2768/MKuJ7Gf0j6wTlpV06+P3mQcVLPChCm4POn6B80SI9Ta0mt2Dvc87dFnSaq+GpwfCeIxYIh/+n/dZWJr6w0pfUKCiwlQfxRnGGvlff5qE7etoqo9FdTkXHzUBu8ud/lHFuxzNJ6ahJ96JRj5xGf0dJDFOy/QH5OUhJTEiXUcF+6P/nMId3VNTGzsVAuFt3kHqztOWg+gUsCIxJlMqNi+kaSfIDSricGcLTLU0Ny6X77J1Nzx39wpw91/sTbE6wS56MhSNT2sJ9J8qfkV9jOXVC+/NEzRBnAWJPUgbs28jxxRKFxedFOjSpKfnskFZyYfKNNjKoTQdH9X6Y1ZYmW/7gpUYyCx2T9r7WX1xvwez9jQiBxbdijL1NqN1/3iiIn2CKad+pN5Hn8qvYXDwOHlhHYcPyoG0N8n8Uu0Fq9vYRXdwhGJwxYYYWK7S0CvcYfNdzfZU4n8V7UY1WCikcLmr1PNx985+1haD3VRSEpp2ECnVllPaXVFLwbCyoCRt60ClLI2D+gFjn/84Gi9nJlHf/Nbb95abcerODMOwG0IQIHfdU4Bl3B8jLoPYAIy1xtkViPYjGTq8A7aHBYupL6D1AW645BLa/o4r05A7xsbG2jE1sF70wyF3qdWeb1TiQ0PVh1T61wUtB/705hoAvI4RKjzhIxq1ImisIq+9YkxaVdXxBXhwpKmd9vue658rzyDP7dc7BxEGCuDcPV0RM3aianDcSI5JQ7mHfmKZ+VlaBGjwazWygk3eprqekQiv4xpPXCt0PNnUcemsc5vbjf9SdnWNRSPOjmc46T9/ey0y0sbwypYXI/GFpMNyn5aQ3SxLzGBAQlgcDlRa4VS3hm8h0Cc3aD1qD1giNgq5GCyoP2OP3ieORC6tUI+AtkK0SKmF2IF9GsywRhnsTn++jGpfcNo9SDoHR48rRjU4hf8Q2IhY+G6dAO72jZQe0WwJHZ7+UrAokFS4sV8sNzE+zInYQX0ClkmLMgUn5jxeZjDqJ8JzxvtNSijQfFht4qIzmI2hbxhmM1sWTQCxi/CDd73k8sKni6bwhva9g5qpVIGXGJdVausfm8593Ta8U1lyDA5/w+fptbwXjYJ8En3dcGZ7MPQ85zitJmsKBGdNc/0oseJfdxo7g+qP9E/3+5uXBVntb1s8zULjiz3N2JSVPizPvd9H7J2fh2A1tM34OXK52Iluq4DUfpz4bzeF8VWaIRtnduCSkpBEIz+ziCUlJvMCQMRbYMVozLqunEW0lFVCGbKMjXdP45MDMqgnXQHebsJNFrWjYvckI9jMv7hzSL+IIh7nAYlsAogAnPhJaq8w0LDVfEL46lv+P2cVMDfiLGWkCKDRHi36cd3FhZPgpkT+gBKZu7MLDoHoRhoygXzSaNLCgE2HZu6luCK99zZOVvNmshkrwRQo5xXnFxUNu96xdBrQanpIxDG8UAyH82sSia7mLOtFSALw4CCUoSnl6tarTXbB6/X606iuINzotf4NQ4nksZ8oYw+6/VZTh2qYk3XpeLiKkI+TKl4YHdJ4O73igdMLJd/r47gVElByumlI1MV1nX6LuNYc/kQqIiCNEhTg0S+XcqNdysmnn7sqD6tbMKC+J6+o9Hjl5USk2KbxR2K7DqIlsvzWpISP1u5X28ptmFSkrtnOjp3gLKYSEG/gmC8EsRICMrL20WYncjkk3N+XUTUSdttvsdOzQuQ+ERsMO8MY9Sl+7O0/OQtOTeojLWcf1IxcGh3bP737HjgJ8wea6cW6mooCpo8xA16NegFl6kucH95a/V1sqOpUx70NXaswsnAC19hFdS0GPbkcMnliLRs2QBetIvddEWlcfUG8QX0i3NxRYxnskBHdDSTGIWZvD4P3pphrWN7j7/I5+6LCgFHr3WQmlbOi64RgM9upAdMizrQ+8DcU9NZgy6YjD0u2h3fZUWVYYcrExR/iJapRcV7gGEW78qd4Z7l5Esc4mWhdyO7aL/slJToXK7FXTC13YsODuFp++2cX5hPSq/4AmzB997Ckh+MJGrIIej2RjqqGVtESjLpSwn587EiSpVENL6vSbKtja5Wg0qwX
Variant 3
DifficultyLevel
570
Question
Kilgour produces model dinosaurs that he sells online.
The cost of producing different quantities of model dinosaurs is graphed below.
Which equation below can be used to calculate Kilgour's cost of production.
Worked Solution
Fixed cost = $20 (cost on graph where zero model dinosaurs produced)
Cost per dinosaur = $10
∴ Cost = 20 + (10 × number of dinosaurs)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
product | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q38_var4.svg 450 indent3 vpad |
fixedcost | |
varcost | |
product1 | |
correctAnswer | 20 + (10 $\times$ number of dinosaurs) |
Answers
Is Correct? | Answer |
x | 20 + (number of dinosaurs) |
x | 20 + (5 × number of dinosaurs) |
✓ | 20 + (10 × number of dinosaurs) |
x | 20 + (20 × number of dinosaurs) |
U2FsdGVkX1+mH4P/00jSWjHw02eK8JgItV5UtahnZG+R4l+MJA446sCb7jM5UqOL1bGD2lPzf39hAPJ1tH0dgUSdwnVITBILCtW4IYEABCYeBZY0+T1PoSuuiqYwbiiyASdnBdHRXqrFjTlMTaBOTAi0WWcjWqBDPl95FJ99FDBBkUbqw+g7NGLolmDKNe3e9ssH8qlS0ZXbd1RQHTn4J/2p4pOSdDGCc+URCZTRaEbEfVqPX9G934AD8qZ421UeN9XXffaABi/NW7BOvRWxnI86QfiB+bsZJo177LGeTN0s/NC5uHgexFTb3TIxH9pSZPpSr6LCB1QyMQMzPFKuDZ/V0vLqDIayc+jF0lOmFZ1LhhdLDI1yRXr80QI0j+jk9orXNY67TT1sond7sI3XPQg3hgHNRIfPbomtnDUBydv+Fa5qvLV9xU2O6HOSUbJBGKAh7XJPSoOv3IayAzmrgmrwbHxGpe4PGbRsnuhsJ/3+9keWNSp7QJukpAQMJxarG+cBz0RMdQsPBgY2XaVuRERoClBnjjCbOU3lpaFgfZFrEbYIdXTXxoWzJlMNPHF6qlXe8HxfGVZ+3j17SZEwJf6qbDhK+WgOweDztJ/qWisrDKWY4WClb9kk8fc2YGTgT3dEsX+GTpw3Odx2509S/ADTceGjLXpxgAwLAZdymBisI7wtedqS6mU37vDy4g8yDK9jTzrDgh8uy64nqqSdFelobywrn9w6pji6LyZdxVoRUUl4CsjbI6MHhes6DpIp7XRmZ3AKGtGkfXEO6QgWUa/sJggYuasKPttTfk6wgO6md8GASrBjpjPyvpACT239rkBiRhmaJCzD/4H9cy2ENmcP0PjUh80KC6nWwG3gAC30/zGo8QRC9XsxVj6hKfZZLZFfES5+OJhQhnvN0nONavwLgemlmxjcZGr7ty78hnA3INxN29VrpPE+tNYjL6kxppfk6XflToMlZxdvtbA61xZ6O1v7j+Xjyj8v+fyHg/717fMZgdda9FZ8B6DNgD13qLq+CHnCaWg35VFOYuYGt9QIkRzTaCrKazqQyANie8f7UdKc+Q1btYwUUSBcGU5yxLwRLXHFVIZ8cj4wm6nGH0YMPXUNUrddUQKYKFFCl6GgImXXnZgOnaPzUAKzw/9bZvcF3p041HDwQoEh9j8x4Cf9IoQU6p4oRkrIONnDnhex+ZjsMLazIpbVX1Ba65ZjatfVqZ7aq3ckLf4EPabPJCSim/y5ZY4OJrKhPCLS54Ym4+s9xU+ut2XfPno8X30uzMZj7TNwEoru/BpUTcLo84hNDjggJhp620iZchtLsmMTOStk+ZF2X0gjpRLq/Y9IxI0p96mM+oGvKOpW05OaWzNokXsRdV+dWCaVwXRWmRsX1LJl2zbzCf2tPwWk1JArerXBUTbBcCZHnZU16Uvr/UWcCS8x9HI99QqMLHFvuz8AvhWpUKBIdMVIJFxJRn/E1PYnEMsAV5LokS+5zKm978E2g/YwHkSBylM3UzORifZre+y8CeUqyd7nn7Lugouk8mszEtOWDPQf3Vq6OY8cQ5tEfpPyIerxjym0SUFRF9xDO8EUCrY+nGfd2IIt2jgflcrKxEE50216fcYetqOkryUE/lUYR3Q161iK9vMKpUDPRLG5KtrHEEpyc7tuHXbJYUHQXJ4hnx1tInOyCeX/Rtvd4IqcQvC6+IwtA6XnC5DeIWAFhWYA+LvqV1Zoj1KOR0qnBV5XXLV03VY7XhPcTdDRu939MU3zuvxuoc52w/QMH+7eGdSCgbM2VuLwMzUCU4OVxZk1lZQmWsKaQAn8VL+2XNVWrbOLTntp2XyUSAllqlhmo1rdrCCyOHOOH+d7/xnldCMN4JBMm8bXmGhLcW9WcSe24ih35uLeukTnsaL1DhlAi2VgSnImZef7Fs7ZS1TSn5G7uG9vZH6Ki4tfMNHi6Aw9o1C2V7ATAXeId2WXodyvRxlXcFIDLw5J3bHs+nWikgbrMw6rdXU+Hod5KsOK+VVb46DK9spmOO+vQp31hRy3OfnsDa2JsTONXGlsBmNl8mSTXxwLIB+kghARDYwNUXS6Dgs/JhLCivEOKrDn9lhRpp1hfJ6/NHhJcxmPqKHeMsmjBIRG2hj5I52dv8OHJuHaLSSdXrgGJ3O4DBw0003W46bg2S5yCq+w9RA/hH+F++Cbyr68qhHjnFak1B3xxvhkmzmZtJBRicXzVNhKqvHz65QGwFu5+JOKGxTMKEjXxfflcbOGOvG22nWaViaMzDZvmj0HAug+Utyp3KrazwL4xnLuiY9/1Dqxh1cOsdDERlV+q86bu88u6+i/LtzirFdOuyB35YEsoEc6ZcSw3MUiSzMc/RBBmefmBbeJdXA94A6tzImVhqPKO9rlsz1kX9iL55AsnYQwidkW31wD9rFU1AAo2ClwrPb9Qul6Z/ErF4n7cOGc/trjbn3thKbtMURmi6fnqgyt5RLLxgvXRQb4IgLmJeNp7xWdp/qf5GhWE9oEDtGAebJoOUWldB+O7IOgVk6u+VbXr946bY8GJtUhecsBG4U198DvrmkFFbY2gQNgUV6QrlQ68UbJljNOvQhXXYAMyaZyzPejRhDLWam66OoPzLyLNF7IH27vXMoB/YMX5wVZeEkHN8vnB0G8K5OxuQGsv3fuE7XA10hwB7/2QiBvszPdUomoeK9HximawvRHv0PSaKm4J6/tJOkMidtRNW6++HbXVPAgABW/RqruMifjLpq/7xjp9EM40K4PON5s7EHvN3EL8mNnPCvI59rsDzmogevU33QDZl/XpM327bPB4ip/lTYa7Pn3ZtNWugKQfPAx6ojFzAsT8PWaqxz7dhaKN61zRyIsEuJNuNmOYYm+6BhAg7mqgzaQT67W/DsLH3t8QZKDAahAbtuzOdaaYUwJlqtLlVf1sqxXU0PHVMQd84y+oiJ2WV/yFFKtw/vRgqjLxUsjxpBLSlcit+90P451Yxk24nsKUOaFQEPHxFSMegdxYa/Ipw83fx/YN4rQF3PJxesjEWuQm5vIqbteLlIvZZq47hJVO3k6mhocv0zC+dY3isvfXOvXzeU/fXtt1OoPYTcgSfDmTUaYkKeOMMoxWHz5U9t9AfH12VIdXB2TxMZo+zxfyZXqX46igNfLWq8535U+74V1iPsDXE/Xdi85wKMkQ/JB8BOekfneu39bUoBg/3IOFZmbd1Cxs9oCcw+47p7gd2XSaVUSla/D7/RqzkRITrE/iNXmrVLYqJzJ1Rw9wClXEkiHQIelsOlzTR5mmltbO9wPtafYyw5jDDvswBRYfosk6tVVqwK2Sw0cYBEw7tbVEqCq2CzFWf1pz7DMHqmExmrPMYIFvETBVtRPTc3fkLv6ztphxqNqJ/csLDH2x8tFIOrv6nxPUUQCB3DZ4qDfcbVrW/0MGoMlNuc1ZIBMc9Y6eYKOzNy0q+KkEtvKbMZgVzl2Bg3HQM5eh5dGVanqWVAjHP/cEmiijkXOFt3hoNIHbZPKVkKPuaOTh+fXdiZPTujtj+pNbNsISPiizB2+en9YgntD+ALsEqkwFUzpLx+SrJ1XGjYyqT6yjpRkka3A2yuP8pUemGYnB8HCDduArdjOAEw2TcBgEYP9xNxsNh+ZMC+YJG20kKu+LF+QOXjzCyPWzSKH7LjOFYJg7icPM02FQk6bG7AUPSypZOmEIQvDsyzlRGPMktAKUESQk5CNQyTFQ/3Y8AbP2ok/DKigbxbtLTbt5nafiBNcaqZc6LqaWGB7zYotHnOu3cXqZ1IDaYb/ppdAHNeu9PIEpZjbSvXgYUZ2bT+KNF3f6FIthcaZn7MJUbxwsOIBji3VGb5XPcyEyt4phQrUYVpiSHiwyMsD3+saCIB+8l8B7sSV9F6WnKx7ov4gaNGlXZmdko1PLWQWnDiXwK/aBJH6dIEFEJMT0jx8CIMAMz89zGtvsV9FALveliy2Mw0pLy8ap3E8qeu00IwVMY1bPl1T6JUa6iLxaKq7FvAPh1Rc0XZ3qe5LSKnBOHD+Tln7ZUaMqabSLTIPqmvgVvOk63KV0hbOFpFHFKbNqwOoxzWYzFdFjMEMm0MqOcEr6MUrXvMubl7tESFl3n2p/vyrQRPZjn8sWBrffWycv/Ayt0xgTYjZcbbq2On13i/UKOJd0R8yeXMdZy3bMQTh/nuRahUOQJj1riUXfAw5qmmPVE9dpPX1w7jwcIoogGumOuRUv2eYjczdG/uRNtccO+uhKeMyS+Oes94dd+3IzJ/URCkViW6sRwXYfPmcBa1/O1g8x9sSRHfa++8BA2a5tKR/7FxUIc5DqTtkawJ5zPfdw7Kh108Q0sSxVJopWTMFIMdf/Xjxw716yJNOuQjnT/9QHeLyEeRwWGsxmB/0rzUOpexRPs5MivAoL0mwwsx5BSBFPL4x4spXm6h9qpa8+wl/gl4BdZ/MRP/C4Z4TOHaCGCDKHnkI5IQN0YqB9mTZm3+V7uhaioftaW+uwMbI3YYmfqCGgpamUgg0IxOYBxaFRx4fSQte0Z+sOE0+MVEPGTJxDjOIRYTBklBTPqvYLuaqfsbptMy6tarOKnvZmSrYsKjxIB9Ntg6Av6IeK9eAcYHbBveuu4HiIZXkIHOVaMyx3Qn//TXoofQzn2l9OVxfz4MblHOwWCQ9hPHMQrSpq1RqdDR5Uk67EpoYLRLv/r6BfNzlQEK+MP3GtLNfIdkRv0mWZEODaVPyeMnc5bwkNLuRaqPlvOIKP7abP6v++DWFwyFq9dzNL+5qYQM9QF7G3DmLzkwndpUwyF8ndh7jQJ2YPZxqwUmbew6cvyyV+PlpAuBlxv7IErwOLA==
Variant 4
DifficultyLevel
571
Question
Lance produces costume swords that he sells online.
The cost of producing different quantities of costume swords is graphed below.
Which equation below can be used to calculate Lance's cost of production.
Worked Solution
Fixed cost = $10 (cost on graph where zero costume swords produced)
Cost per sword = $5
∴ Cost = 10 + (5 × number of swords)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
product | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q38_var5.svg 450 indent3 vpad |
fixedcost | |
varcost | |
product1 | |
correctAnswer | 10 + (5 $\times$ number of swords) |
Answers
Is Correct? | Answer |
x | |
✓ | 10 + (5 × number of swords) |
x | 10 + (10 × number of swords) |
x | 10 + (50 × number of swords) |