Algebra, NAPX-p168506v02
Question
The parallelogram shown below has width (W) and length (L).
Which expression can be used as a perimeter of this figure?
Worked Solution
Perimeter of parallelogram
|
|
|
= L+L+W+W |
|
= 2L+2W |
|
= {{{correctAnswer}}} |
U2FsdGVkX18O9StgQb4VYJNehZVygjWzVsZZ3jJHuWz9Lt6WCc0WxOOVuh43XlrtN9j7kSJPAinEI/0u20KG3TUF+/ThAdNec2bvfzxA47yP/WrUY7H/appxO+gZWGouwLeEo6VIMPPCfYNnrrTJMtR3nMZM2OdcJBXRdv5/HXTg+gKNJhi6ALBcHZGzfm4v12ET9KAnW4/hf6bXGaaW3gaZNhq5ygmxTnigeTjCVnurL8EtC6HoGR5SFnFKpVHEmBM9H9FnEII/qRcPo07k3AVJCtn+Fm5zlOKfetTlr8OaMAX6tIIY9pxfFIj4A3TlVvWs3g/A7zkCNMMqNMLkJKbElCZ5z/IaLSVmeJJNPoQZNgs5rblCOI2RaOJ2buSLp9AbR7S8lKhBR8ffK7qLBV0UrD+bF42OFzyEFoiN9N0koX3gcaMsz8RHLac8xmzTo26i5uqAHjrelt265Cw9GHzVcYxo6VRBV5J8gn5wUTrc4UN5XQYwF6XEAx2kDocpEk9RHGnxC7geD07MDcSceEqDqTdjqs90Pcm8nu3ub1LdEpqdU5koHuKecA6KKZOybLcLNlmuU0sKH7Tn7RBCjfgopWqMGR1+D3PNfQBlc/ND+dVVJJKsU6QnYUc//tmYL/a94wYYb0zJccfl/vJj6DM7ea1KmVD9lSBju7NhJAWIIeODYqas6sphp0+pIDgswS8VLZu02Leoq2ijYEq1U4BJYyuN0zfhJnkq8nChyfB6ZlA6lRa0tJEpN0mRkR2W/qwy7WeAiVQQt5S5NUdX2QOpnyGJzuc9L+MzcJjAmxK+ra14fZr9fI6/sFskShhlXE0DIaHU/ouiPl+vm9fXpDdGi5WghiWnQd/ZRTmW5+aHDxxtedbaErWcxrTJNDSx0aY/pLIG0YNBv5dwfa58xIGVEOjvHfKbfgnvTkOi2N/QOmHUAE5UrDuzSGMc4i0kLSiurxiXPjtCCE+IyCgGQRpcwfhXSZTG6HQJ3gyCAeY9PgU1DsoXSeAq9e/FIaO9ymynm6CS9uyWL5IeoyiQDsvN/1b/chi6P5MC/TZihT2jDoKnW5cP1hQ5A7NIBGDdNNIw9QuwbLCWjFTYaugX93OwPneXOADvT3IQjoYzEwFglwKVppkGFLZS68dBmZVIiugmK1mSD5JpEFxMFKweTGggS4iBAWbJA7A6Df6mgDKiCAQEdmWdXEkWavsPuUBU86GeBHf9uywAFdkafXbIHq12UMiUUfwlah1e2Dr5LxrHZZlO61I3MeXOcLzPag9Meq1r4XpuqDBWKtmTaPFB5QVSU1xABnoaN9I+nsrZPA36T7BBg5nwr+l8EfpCQVWOls7OPs5Q2+NXnaEtNy0yVosbnItSpTx85bsCvD+q0VvcZ4a8uV4aIR0LMIZL1JzNbHuusa87tL5FST2fct/52BSV9U0Kqg2fLjUfMbhwuGlvkArAEiEYJjssa4FD8UmsuXvxz2llJByQNUvwXIUZfciwe2/8L4asj3KMqUnYpXhchfBNhWLm2scCm4CXk7w0yDWzgVGnChjExKC5jMqOy3q++/3p7AmrxGpiTOgjTaDk+e/sFuBPF4hz7ke6+U30lX4zJBO2Z+F1OlO5AkVnoi/5pVesm62aSo3cYnCb5FM3ug6U+OEFip2FHctcFz7npOkNvtFcWod84wGWDb3nws6LpZemkNEnTaCVTbVhByH2fdW3ieoHlkG0CiirJfE3fa9ZfoWj8/cGzfnA3ADzvQbUKN5XX0rvX22IvJ0kDWVhdomSCsMW+ElXS6IELRKIFAzQ8PLV7Zm9LCasx01z4dj85Xvd6BEIR8getbDjyOxR2vRlpRT2X+zc1hfpt8gUNimQxehMxzX7ERekPYg9AxI1geuvS1+hsViyKpEcFZ91+6Dg/F8Irzl9UTtCnbTinnTSbkMv0zolNEEBj9kJuCDEKi9xDCSWVrgPUGP+vO3Pw3oy8EWaYPzdb7Yjcp0niygPjeCbsH4CXO6T1fkxkZMSR8+zQWzaT1BaLGWxZ3mIWQUQKDzdApUdWNWR5vnHR1VWaFBJa3opPJBWmLsPmRd5qVxq1ZybbQf8Bo5ilSQ0Yv0hHurR3C6Lk+85Yzc6PtsBrjs1i5Fj/Sdud07DhrymUNsvUyvBnsokwLlB6cOb5MiDoq8kATyNU7wL4vnbMy2DarFLru8sCcdqKurwDA2/4V1UWsDm0Eu8TIhXHxNhwLOW5KiaupHrF8uSN/60H5dB+282g9rIRBHBLCWXwAEK7K2azIW+KZP65UIOc3pRE+dmni8kuZp1PXXFD5ONGa9ju2Pt5bw3011X/jesoVnT4bFzWpFm73JwcZoftKGM98WJIFNoyYuvYjQvGPBBlWS7t4XjOO5TYji1UoIxFud9WyrrpgQZThYmWtSi/V0ZBnRqWSXnxaL+shOWXd36ftkQcFGbmC507KX+jrh+DWyYEQVxmCQvbbkq6KlTJtvq/GosEGbEVtOvDtD/QmsSwiRtIolM4939Syq1RXAU33pGHRf5Q9NHLpVBnNZK0AJ42gmtKzwOb0Q+HrNkOFJ0L0wlrFpQGVM4Qcx6AzT2Xh0Xrmj9r3YsxVR0ZhnaF0aWTlXrpulf0ZFe8m3aTbUqLq8oyaaGw5f8U5vHLiFQE4waWXEAq4wsQQ7ghJgEoVaf8PJXPc4/sFORGTJNZ45ua5ElCv02uBJI2ysccyAUoHr5FaUOOVHLvJAb0YbcdHpZYqeCX8BVEfVqAbdUkZkAo1BUEelKd+9itn3c6eRyypAf3GSlD5Wwm7L2k3SF0oY5fRr9OWcEv/aWq+V6vmHmxYiGV1nenxFadBvzZoGTZYDnAuuPJLj6qqPPUAUgbqDbptmwUbmkUU/PxpKOCTSnCII3nrM09MuoolaS4yoSZBaDyT85sQdMvcWmDzahBtNrNa6Jc23q55FsuMBCz6HYeJ6S9zWVAgvS5IbkpcmSwio1VHKWkuwGLWTUonkylhcFoIxKfm8tw8coN0mM+SBsN2G6oybA64r0hB0A8IjJ0Rxh6PPa8FEIJcc5lQ3ganpC9eFNpoECS+973WWudwrosHgQkAYUyXfXADZiQcPgRJ7Yx5XI/zaHbL5vmHY1gp1lHNsGAq1wZ28O1a7qGHz/O1a9B7kwJ/OGhMct3dg5KHGJkWwuZXALDP1HG7kT8CXGZe4XIRwZ2P0+Y4WiVpf0YdzM5gMf5q9XhknYprzm7cyztiPTXOUZg1u8yrhXFcORlAr5u9PNOSKs7D1jggQLkEPNTg/Mi0YshKowL1yEZyKM9G/17+Z2Fw+OyQZhMG9sJ79ZbDvoug6WENMRShgT4LlcZbKsuKESqQrtRDJhY7VBsxTvXm7PyE4Gjw74UIXoa0BBkqL595lmN1POc8mRYWVq6kKxECw/nmdl4d1cASFmh5FWd9ZLmXl5J6ad+8gMX+sZe1mOo6V7BWaudr4Hr2bpOd6FFuVeuumQacS1+jeQuzgz1zOySRTQ7G9XyK9GJAYzGPQulL8VFYdXPS9VDWuU1c4A/TXpjMRwiHX44dWhxYva4wBsupr5Ly3TVuCGr6YtSMlc3NleQTtSzxg6Ucr2+63RM6kxQtEfwrq3XR9WlWZmrJWBo2b6U5bxvAn0Vs/l/natc7cpBlwqWVEJJJEjTH2DLnC8eOldXOXhYY00o0s2LvmjiXCzAC3D/r1xzTuKISXhmU0m+p0Uo2NU6ygoPvThzxcYWHkWBRjt32+mK8/QA6HDJ4CBm65VKSrsIl4irNx32ElIS8CopEBdVV9vLD74UY/qNTeza48FikFUp3+CirVjpHiScaEdatYqyr0A5PLReuCP2o5PVrLh0z+nqONsJnYPEVWALpSClmiXCLXr7g4A6rF0NZZJvKN/9STgRbyRNmzkFQX26dVx6VjQbAWvNCOiBAFjxLNeMugMXlkGWWhN0S4KlOJwsBKtEp/Bi8loRI2h8OHMaNRRFzD16uL1TMagyfkAFbMDlMpLdafWE2zYfY/O8nkj0YRkSlgTOoRVE1wfl0zuzsi26OUvfNYjKdOxXADnfmX/uyVef2m7vzhBvJgK6It6t5aApNg7Ze5Ipse0C0S2Hgs2Xzt1HKghR4WeH1JZcyvO6u2iYIiTD5EeOp604zIpigRMMQFXgR+VRVMH3ecbAkuQWh4fjsYvkFGj/bw/8ctC5+xPQWjaozdGMhtIkcI4/BPQhaFXEJL05wxbTV4jhjlJbwfPBvKMX7fILwTF4N6TMkvIFkBK+qeGa7IlwpPml0/fmkD0aUzs1KR/1FvdS0tnD5KGl0cvdtU+UROIQK6Qwl4q2VI1pi6BzD0unfjGFSmG8x9TBvHBlrqiwL52kH0QOPivTrza7KwIQD943XqQfRgDJxKMeWKA6XfdDHitMewH84KPk2oJODJrtWHXhs9pusWyBsOMH0k1kJ22ztdjfMDvsyAfnzJV47aT18SAoDWDXHz3p7qQa7PkKl1MKzGbS/3K0unVicckaM9SMW4dhHjm1NbDGgkUxGjkCk2p6h1ESDftFQwttlGJzHtkVs4umEZI8FdQu4MFL46PiENQgHYhLde/OUCB4/xobjMCSrKlEMC/EBXkyrUzHw9pq7QB2Ibwfv1q9mKmk84dbChC5wyBfMNjyxHk5ggoHz6UI1ik3fux2xeu2Neqc7eQHpyycSTioW65HArXTT0QN4kibHCFqgGrYHvHx/85Y656Hs9INqV7Fn2qQXEA5TX/5a3W5JDliuHzDGacRmg/sx1TtMehG4IlTrvC4EyEXUqWIni4o9srbYT1K7gmRTPwL5bcTAe8mD412H6Ppn6sWQgLklhKTWWx4HTDY8ajwJy7EKr0ckLPMRJQMl4FL0BPNj7JjFaFCEMMbtp6+yVSi564okTDDH8DOaAmwZMnYr6I3Tm7++wdqxSgUwrqOTsEq7hJ6bwHNJ3NK7PzjYzlvRxUnDwkGKXCkNoPjS/76BL1L68mmtA1AKqK8K1H28DkPL3dBEld6CoD9FdWK2OpKR+PWKPfcQru4hKdgUTFaThPc5f9p0pV1NOBN8xlvqrypgEFd+x6jUxDiJUL4DJwTi1dEUWQbEvb4UTBV/zbcTn2N6flAIprGCk3rDGOwCKqpeF992PClxAlaBeHD9hHIJ71MnSCrZVReNeRp+04aUwKEh6XGWMoPmQUyXZrpLVLvE9s2i6IYlEHhh4dTqs2cXVoAdRLqYr05hGKTywmhHFvNonn5mSmF1g56m035Ik+AX7ixAp4txGF3NakjRMIZ+rbEgst2sTSsUSmTd/C1CzbhFT7DQ9/BJ2EXfPdaDvtsL/TkWfT/GI5X9auruxWjumVLrY7cLqDYz44hQbsixrLL5BjY/82PA5lTpK1Hw3/jIe5FkNMIATjDUdQAo2dHe84g+DrBiDk0FzM75UxLB81TLDCKUL8kLyW4nHkj0JICxrUtvTWQVpzaU4RSon3EvIqCJDxnRv/NHmFXUx1EvdQCVOioT4lwHjM2xWYGRyZkR8fgY3F6XrpaJrnQJAV0f5GoRAkgGIpvXLdUA3eJ+d8Uuzm0UJeRrtWQZfXyDIzui+b86P4KtxHdm5Ftq0DlacAyP+KB+BNcEJY0dfcqwCFLY9uBOE2gdmj3IYW0miUFqYjtwX1BJVyjKe8vEr7WD+ce579o8Sk7Eu+NjXFX+bYZyBIp/M7TY3+uD+7ZkztAD0hLJBPrX/V8qux1j4/NIi2NJ+nVolztspKc6rZ4JN7vcVWPFfdp2u9ZBlczJARCxJugVLLiOFFtDqLH2q+xnbYeInrdyuIyAyl4E3yeWsZv8JCq3UCtOE9bPy1NjEkn6lyTTxCF9kDOXkuF8h2XejhtAA89WGsFX3tbwL4ypSZ4cLpjZe7f2P8xtyT9eRDiGgf0sFJZ1f9nxbXjahTYKMtuLY/9Y9kfEwyZnXlbQlFmofiAJmJ03WYQjaWkAAfLUby2dZUjCI2kdoQF7yzQKQ/9rsVNev9u6DMAZGrdyun7xVMptHRj4kNvFSxW+C08h1lm5nu0VbpcaIcdhs+2hFKJruG3wC2cNlGfj9QdhtxGmmxloWtwuLFlCEbmhkUVb4uWKgFw0/CKhFWlh0PHBQXIycMkjZUaNgVCXC3Z/TCbYXr8S67oyOUI8GRMqijNuKEMObuWGFkLtdhEnobvSddsXkDvQi5mWeN9Db4+/7aJEql4HhqOPVo+mrh6li9Kn2peZIXEP6uJqzvkrWKM7zv5YOFd6wP6qbQzNDpfkz3XHLlsUJT16WAKJ8DesqkXFRi6XFwR61RuAhkqDOlHAuKkoSevCPNg+SUC/Zn/EUiabuacgfFhoaBmopH4uv9D+Cig+w2w2jyHWUxiD3K7HOLUD/k2y72hf1Jdo1eeKvopdcPuPovKqcNFvJHw9KAsR1ybgj0f/KpImUQbUnnDpZcVRvA+jqVn4NgtatGW7PjjAnaOA0ctO7c6q989/hZolA6il9me6ZJ7cksBQJai8ZXLjOVBv+FM+lsN59/Ouo2dJTUWIlHyCIJgHXORsLeBrAoYF2Two6VLEKz/wQkSUx+RIJoyajTM5ZWqddXjgf/ioatDBGz9A3MCeqZ18UaZK4mp+LzPYeTJIvdi8Kp+7r33hduwt/sPs+IA7406sOn+Pzs1bL1tJJXDAA1+UFfTS8W2eajoh/7hWR2QYbsO9Pr7iZtmU4P7H7xSLV64QHCOXLq8Pm//Wbdfz0s0ipXiDkiHsRR8UGEZ/yvlVPP2WHB81BkJSKQVDGkCzq8CHevIP0BQldWIAi3ED31y33t/Do3wb3O4vlBZ4EDK9cMzgR2m6+Pj7qYzTdca6SXU6C35U12nYn0YIdYf45i1b/31yyCz0jfCecCkb4CA6kZj3XUSxc1Gs6YkvwUhHigupUNZt4Vy0EUZEgRFYKoQPidbfedwqn/ooWMjrFhPXg8RmaSeM/iKZssPum/Nj01Rm3PxJPPAV4E/7zdYc7IEj9Hf5DTRv0eE0S+S+bwTzvrbN+Ww/WQcvWWe2vkATp+GLsfUJ5tRA/h8uAs8n7kKmqykIsS8vpixNi/uQFpZrXeWnmzduzvzinS5NTrd79FOq+3OAaW3GRZOZidjQ2nrbkZy15hWTFiZCzrFBMu7q/+p3t5TjijOryhywqAGEoVa7cuxkBpFwCM2qzmlxy2Kvu+wwGfAhfU9lBJYzIk803ipeHW12zON5IALbKEzgNnDQff42r/JA6ZZTkl0HR4VGAhppUq9nl+8j3YrbXCSNR0hosVOdwEIwFh2DVGSsmJoT7jxnv4ULKrLchTlQ2Tt6p1NPmFEMN1KZcWX9Vg0GQbrywo6njumSYBa9+W+w5GsOrVWn13epgpsp+dWoUlvqD35ft9dLRpmDZIHMCJZx/IQuQ0IO1EbxT/qS0N8TTlc/1kaD0M8czBg+bAFOA3MFaXTXIGMMN6ktY4uoOUsh5GLMstoSrZqnTez1dyJL/vUL98VcEn7m+oRHv5jGjvETe2Qk4zWaau0YdEaharZ9Zf7EhCZcGV25r9XInJ/MiAwGsUaQpBAwPV+dS178gbR0Bwu/QL9iqMdmOTdkVVGcv176yyTp4GHlSIcMN4Syq5LNQn8TGrz8Nhjc7Ynn7CWABk5xPMdOdsblH13yi1VRJjFRmI3ZFexwUTnqqeRwk/MMJVuX1iON9+TbC5g26EXZ69OwGyT5Ww1abfdnBdjyuuVVILVPSJ3PEMoBjDNuQQ4ysOuNrscWyN6pYoeO2UOCXH38p8PY6vushIV5WsQC+M89wi41HCeyqMGFCLEjhiXXSNOJglRyo1LIAw/GY2cpqUW5i4/2fVBTjS0YJBbnYqashbq7qZy1bFYkEUoWAQAe7GOX4KKhrrqWWR/qufVn31gWo5GjuO5F2lvewNW3kzzKt+mhcSw2BLH6jKMklEZyx5PZRrXARTWKMvju3qAzLDWlT5yAhQhnMC8c5tbYClcQDbynaT720MR8hKvSjZcciSYyrCN+Bj3zPE4J4POn/IbqLVC3BEOgBQwG5jL2Echy2Q1Uw2G98Zrw5Q5goxl7aq6+Yns/l3VpeptZe7NOFyuh139FVvmNJMUn+6zK3BxDTh2KimmXHApzZ1Vr0VVc22I3vC0BrEtKfTdLw8yrcwB+iYYaU0v+8R26lcDF4+4zXMepJ5iqPHPl1NYC5xROvyNz6YdRtL9Fu/GzKLdD51SjZEqR8OSNlUVe9ftW9z6oyxxiJdY8g3jVJRokDAsZaJDi5n3aDIPwPrSIuSNv/Mlo/4PhGYAmgiW/pKRhk4DY12Qyez9l+uKfcqH9e6iwYKSBRnj/cH9vYZYD5xdHpY1d2vaLCLMm4laDR5aBS0/ir1tWT968LyEq2Sedqoy5ziftejC0Bqzufw0ulGG/9MVvAfquzfib9Dq6CE1EOpR1TuzR8s0hTChVJLoXRES75dfdrMbQpKiyUcZBzn4+PM4mlZwdTpFDm8+E/qoVpjlSLSO+AMfpbt3A6ZJ0fQbX0VD4tIbKNPHzh6igfY8CAmbS99Xhm3dk4uM2KujUTa3lcZBABhX9QjxepOyXbfI/tv4+cOuL5Eq2qLTknPto02SR03U3yGRbvetopr9R9wo2HTRpxY1BHGDnVClNagAR6KHFcMNv1t91VV3P6iE94cea2m0dQxBiB8JT/HtFjW7Zw0XGXYEon47tjl0COR5/8gNQSjoBrjUyx01CnyIJUIAbp+S3RWdSEp6bdvTsjXq7zp3wJ+eMLDUJDVxgK5rzLUDYtFHoFII+czYXDMg0l03Llf3K9F+4hP0nXIhIitig5C1JYZlXMOFHHriX4Uj+WaM7CZtY+rx685Z0vjSBKB/G4t4ZvOr1Y8G/Zfktu1/blU6rikjv+292OBUkG+PjV7xzbzqy1E0w6/1JW8jH+bbNs/yTAqEaxCUmKbE8y/XQTjXN828BOv2UKcLlH3LaA6IDv2zFjVPcwtrzRer50rlWXKzCSY9VczKwBLjlMsqLH07h5AqKQfw8NkODCsF1HR9POBDTHg0D5mWRuCff2OHUDt4nbdeVbrE2+kw3v4nBDMEkBtseYncBc8wj38U7P6SL+DZW1+cL6KoSQUk2X4fftVQDcSq6c7uvVs6kNK9BLeu1/5pYgwkA1VG88krY6dTSVyQ+2UVTl5qNZdSFwn6f1QyrVomPkhY8LScus9vLzj3eEndmC2JkPPpiugpssZbun/mzkYWjdTqSaAkLTPXt40jY9OZ+7vZiAoHd8f8opkoifrDX9I8wZqv/r/t3xQBqiQgv9ilcLsxHyZevlN5axaO10XXyAT8Oyrt0zudgtTycvStVus7X/zz72A4C2pc6hBxMplyNXYjVzCjK12B+8PTLRoZEddC909ClYdnUjPHbnORQ8+6k5/qD+ZIrEVTvJpkja6bnK40l/AIwep0Bwf6BNhSqnPkoU3PpvXwCZaKGwG4n7v663BzC6OJ7wpwH8tP1B0WsChwhrV2u7sy4iRXkrhjrV4/2B9Nz68ntWChv8ClRCvVGVcgpdBagynwR39927tOO/LfWhhY064gANXF6o0Z/KIZU7Kk8wF0TE5vKMNA7mEoMXVmYsvz55lSbvUJzGr2AdhB0yKzY8gJNTTAsaiaTRmOqI3ZKL4qJypBKtUG3VMy4kb0rxsVzx2QciIobe5qTP2cd6FECMZKvZRVGImYpM18oW6J8/CQrHIs9+MB6BbJCpmpxOJhmw715PAaiiO/J4C/N2aSHRooFI4yOa+njR92T49vkKjETvSoGzTMPFXDHJ5Kp7gNTP6HsoxkSUp2oMll0xhj6K8o4St2H8nHMkL+xWz/dZ/fuINZoxO8iaP07dzDVvAMh8tpkMzBIG313bqoo1pEqU623Ofny+A+/0kcancSwKInFmDJyxoLj53vJUflAqHK9MPhhFm7gDzePeX0wXeJTpgNQlULATPZKE9vCB/JBP973TKZiFxGY5xMkxWENt92dKkooU4E0C60848riOBp2TjB3/vxd4uQ/4WzNRFsv8OmQPO9ebkMe/5kePk1VVDvDx/bQ187WQ5YCWKR4SnBAXxRDgVIubn629isDIvweKFc3acr63YeDEQ8+mdPIAsiZwpVP95StZLFE95lwq6y5Hd5foI8uzEwKe5Tv6rtwcf1+nmJJC4uhC43G/k2/FBX/j+QJTzTH8860B1jdT+0BrddBq7etk4SPqonmPoztCKfhQAJRtduqSQYnRK7m7/nvss3ZBkmPY9F6lXg4wgHioZB3/YBcTGnPuwfqxkiNOrAMx1zd6AeDQUDuYNcumdN520V1u5ovKtS3jhw3k+DbkVbdityVvh2PwcXhhNC/TH0F3kP554AvNYhL1d8d9nKFaXIPlbynlGylknftafchAZI8WEjv6vmESaYmA0kmQ30hOSilqhHL8DywtoraywLqDpPxbdyn/NmiwuBv3rFW+OYxYH25uceyWEj2Cum0H5dA2H0/9/76sm47oyhgfheZhj9eXb/f2rM9xCBeTdTzRmWvBPhGUntjgnF0kv4c+DViiRK5QLpYXlRYG0klTjfTB29WGRdt2gpi4l6fOfr6SrLuqNKb7bUul6G0qki+qWfoULsWpQgwQMr2m4AZRlreOW9Ze0oi1CaPH+5fQojqiP9gemmHHq1vqCVAbzaZTHWj7u99FIjaX3ttvE3wxCEdDpbCZTylfevRlvbctkfiSKwuX4H89Jm9aJu23IcGBUbZhKPlUYsRKLddP+UuXj+tpcVRsQ1gq+1rb4THD00laeMT9jfS+38lzzyrREg8XgoeAR3OfVDQ2O70NXb0q9V40Skbgt9jsNwg8z3TDer5ZBzL1HqnAcIZuBTEUjesCXUUcbVMUAE+LWdWOcN1rB3Du8a/dRQB+idO28Ve2teO7JQ2U5YlHGQU4+3cHlSSIidYxEKjWMq4v8dBlc33zIT70qGAlqiQw92x5TXjhx7U6bK7tFFlqdANS6BQHMhl98GtGa4b4j8pn5KQa3Rf17dUs9dvcjNA9Rk8f0UUO3YpkJGxlXelSpXdD3lOYcpzbsf/LQ2Yoq3Ps4xYTAOXHsXCqRvBq3oVTG7Y2RQxKmi/aY6wtwO419fvNQF3s+ngbOXBjrr2nKdyvtw2LaIR0qSruw5+BWD+hTxHjRA0BawVbhKEnj9juR7vhZSf21Gu5/0gt0KgbyJ7kv6VbRLhAfrYxG2Fl7bqxtEwPf0P4XTCW0W71IAz6UeFclMQ6NPbK3u3hVl/iGTkJByhjPOcayHNk6aPAYrSUBhaz/eu5OTwZoFXE0ubrAjq5hWf8jw8+93DGBSukzuZUXXu1SqhPh89+/X1+DylCi+uMejtQYNvB92j2hUtdQMqPIbCIU3mOFYDTXxC/TLwgBp1T23fELRu1r/3/6s2vGXaNebFCQ2BLgwtRUyti5DqyOUo7xTxHFoV8lgi/Jkb6h8u5+tUeqiH/6VPXPDH+clS+GXv8VKZYBxxbB8VRc5ALWjR7+DYUHsv0izBoDcRPEBN6MzGurCoFu9tCR3S71i0LkZ6gQ2dXQKO1kg7hEC7ND/C6tpglvQPN4MxJd16gaLYtPN77RNEIhx16jxvGz5uwO4EVMPMFhg6K+J7DfWDNyai0a6c25zmVhWWYvimDuKw1kq30UgjJ+HW3v4DqYac914MkjQ+o0cy+iblUU/iXEIoWNJ/oAwJtc1WOHHRBka95Jyh3nEXX2HVnYWDQNNUJG4q7IBavyvMb2L0go9vx+LaLFgTytyddV38mgQ7vwghR/FeJDKcE7dGG1qNBO72iQuey8OMa2bIpn87aqZkBk/dcYGqc3zTUA/WWg4kMQoijlySSAmB5naQGAa43cpIXsiGIFuX6fIb1hqiroaOisIi8qIAH/OApt872VZNkxeEj24dcU+L95JIbbgf22t/AXt3htYeq9FxCtlvycSTisXEA8SByTSlmFBWzD2uk7+uem7OBOMSzxf30zqhIijXTcD/a5z+C4LvJfOriRuAIeia7TTT3xhjnZ0nlJo174XwI82oO1V+TIqGjKx/lz4qVxaGLXhFzW8inuWjG62/rRvAcb0CmstA0B/A54fYRtBAkH4iwBSrGJH9gAUH/uYsaXBsCl4gLXOINP/tUQdjSh3jIqCvaUgS2aje1g6DmhMocB7fe7aHpU+n0wXYRob0VUR5FskRMuKBSX45w+XKH3auqDchj9DNWv6mRDV7R0fuXCwu7STqbUN466U/zHQMgd/+6jKLJnT6FY+P3nw3c+/nImqPTEN1R725ptRwWWErpxCmFEFwOjBtjYnHKkUYDNgmYp4J4/DNpxcIFlrZTvwwmhAVZkQOdf2SvuA2aNP2Mpy8r1s0AjxsD8U2Lia/tyAweuQG+yMq9ZbMaGQTkDc2qfBezz7JaE3IthiW8Zbv4/s9Ok4syeuPSURcBEXbjD+NaAIit2OmjHv4Z4QZP+VoRF0jmAfOy95v4FmRawkiElIAwm+SVq/BB8C3gQHzEExRd69K/KYtttwX221C+KUTZB8lT5G1sMTuYFIaM9aRaePmaB+NzSNHOrEMMK8BT0UQHW+A8vnvkTYhTUaOGWf2tgrGqBCMywsPzkR0juFi/SNEig+H6+G1eB4bFUvGZoQT/o2JiHeBZ8L4nAyVFR8t5sUdWkFkolnOv5rtHMR1cYzjMaQDksPTyyrz2rOsRJ97GaNHGM2HSUEgv5FULfIiSiTwwhuWlMAgrr62a/f6P6Hw4yw7FqAyh98w52mRvzbIPMolnOW+MI
Variant 0
DifficultyLevel
554
Question
The parallelogram shown below has width (W) and length (L).
Which expression can be used as a perimeter of this figure?
Worked Solution
Perimeter of parallelogram
|
|
|
= L+L+W+W |
|
= 2L+2W |
|
= 2(L+W) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers