Number, NAPX-J3-CA09
U2FsdGVkX1830dVMX+aNAQjGR9R5RIldwdgjcRhNyuc/5irNYanWlSY3whMKAHzXRBpl46Ho5jmyHEb1iNftk8G2709l7JOICQVFlXPCna5m+Ueh5AL9X5bHnEXIAku8gwrexrFQIgZINVF7wNNz4xa1oBpaWmfzTi741GTGAjQFO1EaSln922sWcPy7cEyei6VZ1KtDtcrvaXh+IuE+F++MMo3gUU4gIhpFf9rVP2UOrrTChU7SZGW7XUWbmz+ofoNZOgHnJLnuJDnnHTmsO4jpDDYY2hfa7kRq6zI0DZuzlm52MY9Piqi4tNevy1RPd6hVX2bF7O/ZlRL2VRCemKZUG9TICMA4Xgspaq7tavlSw5Usb0ZkXsbNezbAuN014NwQiT2Qwzh4rWo0++ohquNCMu1SqzGpgdJBYwQxRYutgt4ve4V/97UX68HfOPbZFP9z2AOpSsWmvzJqQKg86eE/HR7GdiXhlzlDpy2ajr7y9RgX3Efn5l35QFbBm4tveVksMO/U8rOLcELWcfIfVLkxQxriLrawXywfmcDcyJpz5ybL0wfw5zuNgyauogvsVtzBN6wtAWIsSdER52ZmSRm4M+hzDSr6MiQSoVu5U2wzqD5haf0MDSFjHomKcG/kHneRsgOiAXXMdNXZQz0eG12Unbsb3XeZOOt44+0DMpuZAcOHICQ2Cplin5Un+ZmGbWFiEst4b/eqvQNZmhFGrIi1EqxtqeYhn2eemAF5vgZ+pYx3Jj17ONwfYle19hglqooMmT2JUtioLsxLU350p23G11pCD74VoH6ykUONh4/fRObqYFudgqnKK3mum+RZfOOpNB8Yv2RfaZjWpqqXnufLRoBDgk4pTsNfOSRBxB14d2KnL2df7B/aLzbXMkLw5SU/DQBNr5s3tbGNpHsSptl08GsoewWjE7SNdm6sb5d14BnRO9ln7Uy4Br1AR1JWxWCobPJe6mfea3M6aygTeBdI0l6mmySIlRUHs5AEhMwsL/3zXupvLwwLQgXbViwtnrD7YlZJ350RutXUyKcvsV7Q65HerC0gZ9Tos/iI7FHj5PmbZV1LOWTzIKGw4RQgMEsqwBP+VX+qmqVFuGMEZADqV7V4DcHpKNUgo5kfLhVvdeRYsBTYNUD8HdlVocQ+PsiXFSVf2zAeZwFvlDpBJUFueMnxMzY493EZqoANtzTxE2nC6eIBDjXklW2VLQygxwbol7wK18UKKDZIX/uP3Sb+q1zEsuJhnaS3hi3/nlTgUZ9Wmups2gS1Kfw0gyKjsXx0ORnLCakwlPHB8q5cKofw8GObqRwFH44iAepqrIo1iLSjFuNQ5jZgaqMq/YCc9IwzNPEF1RLfIkrzRbKme/SRvexiSQjWujZtvrujwVJskXIoo5/xmcuO8Bu/Ru7YCWnST56FcEA4BQYXqCNbCy10UV/5ywp8gh8mCs1j7DzqBtvsniV+Alx4L9cyYWI+1nfznt+f6nzejWOZA1UfaClAOe7XDdUUypTP2OmeOl+e0oouUuTAVBWFKNx9Ob3fVDEc0rIJdIzMldBrxBy9xjFS4pQ3Ja4c47dPKhb8q3drrKG8/oL0b09JqLgErwkBNfYsvBQK1DD2V+Lypcv+G2AA5iFmKbSrVGLcyKsPF+O51uQpqZ+dU4zi76OZ2oqOMXiZCJcxOWpzDOeeGJoOYfoHRWYGhbvgX2P1VAonAYxeg2SQiXXy/fL/K2SSV3bk2ERnXnBWWzWWLje3VjbGGoPE2JwBGxm+S93n1ujyV83x8jO4sGZzttDwNRzn4gqcto9wbx04MCwkDCZcIzEZBmG9kKziflcNok1HVfEi4IGf6vi4NUbWVsDETPASTpu8nXE6iB0oe1PxJ7MVO+o9UwfnUfr4cG5kDbZe2flP6YyRrwbtt8r2vs/d0P378fHCnjv6seMu5TZFBYdTHrhPrz6vLPPA+Q4O4CXJA9uy5o1auwAZxuhfaHV3KAmM9Eo5+mZMViZorNKYxvlEhHm098Q85wC6DYrARXZXqsaqjDwIm3PVgdn5U97v40rRHC9+aOwsM/qDsnzJ76WRsRgv0aI8CotGgFdhrqKRCZLHnkMoq2tc2OaoXf1EF4LkpD2N70ry/XjjtB2kFaPyuajLMsUXiFDHG8HOnGV007ElEh3E7E8eVDtbAiInFDm7dPTZJ/Iya3Xltl/xE3GlC2gDKAEyn1Jydqa64m9VgsWzSq9xDMQUv9xLNRXYVMt1YZSjfcokTTpcyB+vMZ16djDDOalBfLtla0OaAS10isPhfYFW6EshhjN9IboQBY2U3ycn07h/mPO9BAPWuHKSfqYIm3Rh5F+8ot4MEEo3KSXoIABgKXFghCrF+UNgQlPyBflDNQ9w4+sGYXo7QvH1qsr7pYMEVpHcja/GvB3kn8xDfQazL0kPmrIOa35lv4VhDta9U5r7Vpxfts4QzVam1xKJHCd4piYNpRectF5euB/GRZg1mCnzwr7NO3bKv34ibxv75vlZNTW+YlFobR5r1CRAPTmyXg7pQ6AGFH1gPetwLgQKnAwQRht4tMyjPvLUCMY+1afAP7CuPVO8qxI/jqyLjUeuh0uuPd+1hu3pRGwS1exZngABnOxt410IYUOPPnSq4WmJ3m975xqxvYnC0eWbuEbnDQlc3FauUborATVZ4lZTM9q6gaO6jNxSxhkqsCx6HQbPZT7EZ3b50VWnTS0ECWlUqUiF8uGqcpKr97L+PaM+RjwvGYnsh4cpR5pug05qgmh00Joc2hKZ+k6wW6GbgXqzqQDtFf6RCAWFSu/GA3bLJbwkvm9+/wI9oV75rEsoHD2IIpQvexEj933qkKIOWFippl5DUjMkcF6ynfswpMh+1R3zBKpKpUAGjr2WWkFG9eGCrkkzvTklZhi1bOPinrUMrRkldVACMVGS4NBc3g66K3RdKRAnoOxD/xnzsZaqF4ho8Ofb7iPUdfT9sQr/mqka9P4EJirjTeOImSbc3ElyQXUB8x5PvwYYxS3Io2hJ
Variant 0
DifficultyLevel
501
Question
Pamela is a teacher and buys pencils for her class.
She purchases the pencils in two different sized packets.
Pamela buys 6 packet A's and 4 packet B's.
She then divides all the pencils equally among her 6 students.
How many pencils does each student receive?
Worked Solution
|
|
Total pencils |
= (6 × 6) + (4 × 3) |
|
= 48 |
|
|
∴ Pencils per student |
= 48 ÷ 6 |
|
= 8 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Pamela is a teacher and buys pencils for her class.
She purchases the pencils in two different sized packets.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/09/NAP-J1-CA09-283x300.png 300 indent3 vpad
Pamela buys 6 packet A's and 4 packet B's.
She then divides all the pencils equally among her 6 students.
How many pencils does each student receive? |
workedSolution |
|||
|-|-|
|Total pencils| = (6 × 6) + (4 × 3)|
|| = 48|
|||
|-|-|
|$\therefore$ Pencils per student| = 48 ÷ 6|
|| = {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+X+BmvWkoqPwr9ocFYPLt4ufkFOK38j8rt7rz3KQO7vJ4McezbnKxPm41qe33jgR7kFeX6oMNGaEM+MoreueZlpaaxs0DZTnfe424EIIYK2uLrqVbrpBXYLsY0mMjH5Xs6aN7DjqEzQb3Lu1ytLPBRDLByddflT66XE/tQgxJMAHjIwgtMbi7lVnxKmvQnbiA+nFyDaOaJrP3CmFhatpwC6tEbfdyCFUWGz9Y4GDH0pRjSdyttXp/dRSYpIgaaPFVAUIfhm8L4yn1DZCAp9vCmwbNk1WNm5ofuvRrUFCeluZBik1eav6aetVda06RZSTKxOeC2KHekTmyMGdwGv9XGx0gjmeMAIsk85zHWw6wksniwEMUR5lO8nY00BoNcuMaLgVqiviMQmv3OrlT7yLIWWWAytdpyG6J3m83VjqShmjmceZe/L+cl9zMhMt2EOMqRpplYRFgYIvG/Ue05QcsMlJHHvF3zdulku9hjlihItB8GexCBwGMQGW3uGaA3FACIEWHVvjZYl0Tx1S09JAldHzP/DZI1glQ6cloDp6ttkSgV65sStFdXtQuTg8/Ci/eYyk6cSRr1s3yMAhZw6q6v0YJANFWCFUetKkgqBt2Ei1m59hFwd7sEwggRLqY4BJSHdN8p+cMZWQs4qUoxTGDIRoV4SSDpa6vScBo64k5z14FIrQ24FLWpUJeTU40DDTfrNd4plDDbeovee8pxc2mfZ3hqQfXx70holWOyOMZB1+YiQSVkDLKEZ4YKucyUmLvI0lgFDK+xPEMSqig1VdsSkWJJHbjgizjdYPWqaEuZDQylcuMnhquV379ERW0i+0jTsnCrSp+XWMzwk9Kz67gjTzEz/R2b34BEkPqriEdMYpRW5HlNQKhPH9drV3S7EDWwLclcsotiNdHr06ZJf1B1jaMA7JHC9BHt2ymsu5iQlyGs9pjwVB5j2EYXilE1ZtVxexo0OApxk5mJhn8LeIQuxk+15MVn+sh/8rJ+P/VcD2JmixWn7MaGS/pEbjbGf7nmXdH5xVbjtVSv/7VhHg/z4OCBVZbWMfq5HR4r9uX4ead0osuUHXkh18Av2kLfKxSJ6yyhljsExbQKsxghxEbJcAhcvxjLAmTgqRMD3QO7rVaB0weQosnJDRgAl5xPURUsQk7J2PNC5xdO/u9OYBuGk4IRjzKyiwYI+EhiHHjiqqx2Fg/Lm9nCZ2AbEE5eRL/PGU/hKJyd6pZjgumGztWxEwBz/u4QL6ktqRBCwDUaw3yFpLAJmH/c8wvNKJdpUu0ueOUVu7fWO51g1rPqgUbebx61wCcK1rtgBQf2nUcNrG79W055HqfrxJxHLqhh/xIVf8yGcz63pbU0/iJEgUMaCLawHh67Mm42m/lXHd/SHRz3Fh2Ply69g68Nu1gp1r5dapUCutZgy+Io9FkwgAzCZjHcTka9l0FmpyGeJToIv8XBThEfh9LHQ9s1H2X28emr95OvwRQ2OXWg/weFePU5Tut65LYcs133V6Fl22uRhEuY/bN1a9wx7aTaSz3AWAaJQef+ZFkjQOqEGFTXe2dkXUMvyLJtUjysd2vnequkEcd1yK/cQnCZKYlavD4kwkp6xKYNRxoedGqZse36uc4JNBbp2IABBVPeDyNi8Dek3zdy2Ejuj6VLOP8UAGddygRi5wVHyJUD5rMou/Oi67wsTcoLL+WyfBqmNcYBltnxHjJTBB69ErJNLzb/8+3YxtcZQCFX2E654v+lKKxQeWcrutUX7GUDgaIQv2xh+swQBEEv6SKeV62Y0uLeK1nKh3v68aBcCZPMZzaMPqEUSPD0PYOIaIS7zey6zwh+TGHz6U9o0+wiZeA69yBQafAsOq8DGX6zsVIYPi4oknSZSjSA/+KGyGRGyhI6AMUBtDScuc6dTViJQhqfeAnbUP8epzG3Oquu5W4/Y2/M1g7sc4mKg6yhTwGDKZ/0xlVy6Q2xaXOTrRmVIUpnDtEU7eAD6kre9BryZbrxRl/ubTY+UciCK2w1Ur88Xuqko8IOSUvc/l3gJMLieKQ8cHw/V452NVz1MMBORqbwj3iY62+M10qcCDVqVj7JQmEJKYHfK6lsF6E7paGG9HaFJcB00dndSHS7cU0QyAqCNgJtxHVct1vYlZSPXO8LL2G10lDsXypEMd9Hmad+esyUYbZDGvulIM20ACzNzD980wDel5oX/VfgdkI+QYG0MdcHDh2HAKGZzmvMhztfM5Eik61UEOKq5gY5pahbwuuB2vxssjPMhtO+AqIksMZ0DInBF2G3XPz+kI1sjM2cKP97qSfj7VD6lFMKH/esCacYFvE3NIFyu9TkdFuZzNtD8n9gGnpaznmjgv0zuNrXbvJTbJlAOubJGyQvPciyEpbw2SGYaoWzfoAgEvWp7sVdwXXjxG6Gd/+Ex3GfhErTvm/mOUnZb40yQLzFV9pzrQrbW2PlQA8uJk/ffGsZp+Ly/RLX/ZErmd9f8+GhYd/aHIUgrzhHKz/2nEyaLSzVMNiLpYYstZ33GY7jk4vx0C8AA40jh3Hq91xUDj8CxKQu4g1xbr3BvdJDrF3sHCYcPyNaklgxht+ETy7+OxC400u/gyOpmz0BB65VxuH1qHo9qY+QrxrZNAsfWMfLYS0t9zCfuxOLcaSvIoyEvGwWKN0CoYyonkXn+W9FjHnBXuTOr3M65XirqXvLVT+ASswKIQSnPOCDZ0oLpLBJ2ZVSYvJnrdlw7nhBTLsczN2flw+rGabUEH8YGXMLWGm1jWompqeRacLAiNpSF50J8E5rWCeqe/+TPN6AU/x6MLASxgb7hsXOzRdBXmrnEMKwW+U9srUuzsTRR6WsqgHl2h9yoovccz5HkwfVy++U+tpCL2cVn5AY+OPnUHli6Y9gebCMEHke1IzkYI+CQhYdHiS63JpHopqQ1V5VvAGW3jaca5TCU8JeN+s/sLqZgq48d5OSH4qPkubY7atSaVHg5W05nCTCn+2K2+g4tDBAaRQk4GB9UkR0etdQ5a+we2fPEU4AWnPxfCqFxZW0WFwotLEPlHhdwaBtOVg1No2c1YbBDc8UQOSGwty+5QWxY5CW6BeBz6bfUQ1OP7sCQu297IISPyFwqYrcHTYRsII7x47C1Ub2hdsA4plKu+9SOH1GKJWfMys1Kv7h+UzbaAf6FToM2C1VNZrcZBmguCmiOMHlfeGR1+nK9Ixnxzx+A3yBc0FH+8xSbM1zXjY5d/rlH/R7jR/TuvTGKDss3akatlN9odr3EyhJe2PIbI2FLwPotGi6wRfNu6LgrCPPSSKJ4SbpKQJqwWnBAfrq1DA9QeVmKy7XfaPo9zxZirlDkzZuA+5E5vN1mml06rFOXJK0JLlAaFKptUcIfg5MJYYIhD55sRZnvbDALGpe1+qGjak45Gl91a88Ti9vViaO0BcIAcUdjb7h3JRRLqUIsisV5PGzzTsPgAWcceNxgz5HRFr8tG9g9tuTnn0wetRjBxKbgAGWwfVlU0+VaHNKykZoMH9AiyCnRNjbW4rsK8Dv1GH58EVx7evLNufcoBJMSLuuHFM7/dDcdMPPuc3vw0Y2Dix85+RfdTM8bGS+lAwcR787GcUH6uh5Wf0V1Wj2XeDZ1IaDMSnh94fB9C5HQiP5gZiorrXeN8fBuLzrzFssP5McQBXpwvsX5A6tA2ChI4HPL4ANN5125y6hmXxvh5IuTj+Fk2jsESjQVJ22Ekcms6mPV3O5i/wlj2GIt5bIQPz6qsv6/3cqZ8EqdfSDZxlA5E1opYYToaIu7ndDSOKNnbh2lxZKkOsYe0pWd2an2nNG2aYUdZ3y+TIGp42McCSbYrQdCtePeMlynxSC95AOnTc4IQnIeXHCPcFMe4E6hECkz8kf65QCgYS083E9wu4hf770JzQUuWWp7ZOqUGAO7hroELapq09AS/fI2uAjGFWi3svx22MKAQSsCUtj1W7i+/SDhWnft/p6Ur8NZDEo/NfegK0mR6FnU/uoYV9eC+VVntAeWQRdMOg9ULFOOvggAPdoKDgCE8zy/LX0kEmwF4Fjwa1+VDL4WaeXRhaRuUGQ5i4/dAIRpVdAr7cnDOkdeBrul5iH9KV2oWrsHyD9zCGA62ytQEcsO32KrGvCIs7pddSbmsorfkpyNctGI0Dqlaj9w68Ao5lfmCuUtyK7ci/y+6YFJaiuNX1MNg6/E7ZCBxuq9H+KTUI5WEXoAQ44qBpC3+shq4XNPEvbTnhavkeB8NYzn6RW/7Y01eyQsBilaqH4LMCACTJ/WtFcU62ByslAiV1VwA/Kf18k4lLTZrd6zBmCd113sPGqJyusVJZ/yC0Ssm7Prz4BNbnBrRKov2rWszbkTRYaYxYdegucqse3Fh45JEUD4QdpyFtlLBPyNGfY3cTgrkM/6ztsEHbgfMHhNDaVsTBUoIccTndb/SfJNZdcxZ1M1QEAW52stE9zMEtSsRQ8G6W0QhEV8S4hRD8LqXJrMZ4UfTHyiiH2YmJVEwGu5gpDlk5+vbR15XXI42bFXDlfFcx4p1PBxVytEjFYRRC9zR0qnB59+uxYdmGyZZnLVWhmxl2wJ1rH2U0aZI3nSeaA7tNNYluWyLLxSpB3VaMtP8ccVyrRLfuzNdJ4u+TQBKURI6HjGQyAPaUibzoTN9QrtRkBpDXHf87RV/jKphMcDyNE4eMQAovWqCdLq6XNCqBMr7wggT5kwiHQZ5vA7AJqD/YwR+5XOG5D6RgKFwuywZFIixJHMTTmPhy8CyNSOJ9ER2PEbx+KWJGoXgdf9zFJUdUKwCi+qVdsgUGnkmJQ18vvQ1xLANfFzemRVVSdvbwHYW3NjAMsEqJ5nLFEsWuEHOcYtDxLGYnrnsMDQvo74zgJaJfq0+3MiioBtGwzznEr9c0O7zgWzJ13zWN21arz8LI=
Variant 1
DifficultyLevel
501
Question
John bought bread rolls that came in bags of 4 and bags of 6.
He bought 5 Bags A's and 10 Bag B's.
John then divided the bread rolls equally among 20 families.
How many bread rolls did each family receive?
Worked Solution
|
|
Total bread rolls |
= (4 × 5) + (6 × 10) |
|
= 20 + 60 |
|
= 80 |
|
|
∴ Bread rolls per family |
= 2080 |
|
= 4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | John bought bread rolls that came in bags of 4 and bags of 6.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/RAPH10-q45.svg 350 indent3 vpad
He bought 5 Bags A's and 10 Bag B's.
John then divided the bread rolls equally among 20 families.
How many bread rolls did each family receive? |
workedSolution |
|||
|-|-|
|Total bread rolls|= (4 × 5) + (6 × 10)|
||= 20 + 60|
||= 80|
|||
|-|-|
|$\therefore$ Bread rolls per family|= $\dfrac{80}{20}$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers