Number, NAP_70021
Question
Which of the following would result in the smallest number?
Worked Solution
Checking all options
|
|
103 + 510 |
= 10 510 |
102 + 390 |
= 490 |
250 + 220 |
= 470 |
12 + 490 |
= 491 |
∴ {{{correctAnswer}}} is the smallest answer.
U2FsdGVkX1+/a3V4U5ayug6XpbmEmIbQ6IsRHF0qeeVFZtb3ewAJNxschTnGjzslDJ4MZ8qRITVWZuXX1tB9bfcKsCyWU3Qn9VkBG+foPd8+j7daJyqhGl5vBC1W05KcYsivyPS8aBEraj5JZet0oOC83WxLs5eA8AbZfTQiWZh6YrZ51o+S7298FIuIS29F4ERehb/rUsXOPBZu1sFywWtSLWtnON3NtSTPRnucdAev7ex056DTRMTYXyINHUFVw0vAtyQh8aEnVOc20lKLlI5aK34psQgX1SsGUtt42acKlXMT2CAgmZ8tfk8Yc0TjuG5N/patRqXcD/8KLrSzGnjxObH9wf6tu0qotnqAYG+D0o9SB95XmPgoyNp0aGgF842+UuqxXLThjPc20TjQ+3X2dITXWQiXFAHHmzoIt5t9dtCthAPFt9tL13GShe9XqyQPHtplFsMMGu2uO++irYwn9lTok71Gc/KOnt3RSz1yGQLCVHqpcMMNSH7dMhwmiq8Pnywhz14CNAu3SEepEBxa9X/9hpD7U5dThMhBJ76M8BAl9Jc0bflmqKNJ+DJmyrkdVZy8CD07EhpLdo769iPib1c2OEmo5CuQe4UdFUQsk76QdoVtRUAaHcVjrTEm+nXrAesrpepWJDhjSczDs7+AsMQgNEYt99/FwSeG7OpLJ4ZiPlxdxigvY1QfckxwY6ukv03JNnMyvYfoXqqtSKL9wU93BqMgXexlD/+vrpeif/PFsiO70XL6SPhsSendHUME3bvHU+/ZhGcAoZXnKDyv0bK2JpVz5UhStVz5HB4QVhhvETc87+9boUXUwd3/woI9Ffzjjk8k4//lgzkpOHKngoKhO+iFTEp/tVWPt1B4LMDrGOd0yKyPRBK8OSALF9AJ90ehfW75VTtONqUaaLKF/IyQMPiO+sef/OHvqhiKFaI6IHG7ddNfBSLvZ5dQ9atHvyfdnaJWlUKamlCYxfdLu8+lYw3F4ct5+vsxZxGgc4b9/5qxmw1W07NRTnb1d+fry0O6rCIck5iSYw58gtX4hwfsQmr0i9M09aOYVHrbSbbxJqqzlhSGK39lpgmGK03NL91S8X7Zf0T008n9zXc22smCoKdBRQEVxrFNBbm4h3rMKdv43qBe653uhdtQAvtZID5gMLzavzy72QLCb0Eezb1mQR60WyoHRiCF5XfWPHIU2bHuysFcIgxohhMYdt5FiELePni71q0l6eC58YEPTvgxojpJa1Luk2ai5wMDljGzMViU/thsAEAEaARb4uMcPsH5WZOBWsobz/nXKoRuxomN9UQHPDFXkZg3lOYEBl5/iKO/cY6ttWJYxuVzhjKXUYOLveMch8nanBrKOZW8jLkp8yExlqUrdj2oYsJuPYG6S2WGGrVBBbEeizEkq+FeAUoH5QCKElXUqGON6iPcoPK1CkeQez17cjrPpyB6OihnmLUEUhtqXQX0Ufx3/otddajT0LCFYxKnH6l2mHI8BTQ7W4Eyy1uJ7eNpw1ZcpjxtD3XyAdn8o7p2rf8t4GaGek/KPClOANv1VG5U4GH/uPOcIgLxtfyE5EaYq2CdAb32oO/VxCoKLotuGPJONvI4eXEdXxz1WTTZZeuMZK78cyA1+3I/vXjA5cvOLejvMlbtPFp2NQFxw2y75vg4IuasZCVV58xTt1yYfkaOHwVBOfFZynlFD4banGS8ASIDBzRI3Q0YgVO5EW9QVCiOaYYoieIGfNtzMh8+04Zj0vCw0dSrBbepVxONnlS8n4BMGEVnxfEiR/8mK++opOR4D5L3UXMBPr7VyYkGCROEjCbqdZyaSAiDIKQsb9AgpTB1opmw1qK1eKRqKymeY+DX8Wia7qoaep9C/HaP7IbG1Ez/EKtwGTjRmRp126Vv+5kRH/L50rhl9L74fZ55G8td5hBTr1md36nySF/7M57+vvS0lOnZQ9ete5Kib4dB9MB6KokULS0EKngpWsPTPWvZS/7zI8ChizGKMnenlF3C89AJ2KEVjjTc2UtDqWwjOHKHrcA7cyfkFkbLn5UmGhFjYMesOxkAFf1GZnCUD0z9v18HnFFQXOFy12MQHaOMYiXkHFsWMZ4btYOo8zTl6pSKmjQb0AwK0DO4J0n+Gld5L710yvokE2j4zhLXdrNIlANkFb+99WCKRFcEvy4I39CeaJbqmgZ98MyAp5YptsmHoosNJ++GK5oJUgPXV2b0fW9Dxv+iQm+MpKyRuBGmyV/hmg8IvMdadlJ9mTgu0DowNcgZ5RdfvijqdCfRDBtutrq2HUvWwoGwOEPlgt4QEJ9LZzHtixuShWpKVEMOGRkRuJqLdZngu0rFIRPjZ2mF23aLI261FmX5exFe4TgOjy7kjzgMOoiKUr/9H0EzuFVIxGrsxRI6Vro8qC8G6/okwwa1iiVd88I5nK8Znd8Q0jWnRrvcm5kKMQqtn7dZwJVbiH6PUhY35BTFr3QXQ0/V2u2eA8prSGcZfFAmjMY7v/vQjpSHTi62q8SNP56O+WEAiEoWBFBfwPdrEO7hIBcM4mqdipoSz3LjTljzQGpX7159wySQj1/acxq9HvBRGqdHzCMdJb1NAuv4IXK91HbC7uBGLOHKPR25o/Esti7W8hzU+IGHGuSPlA7RfwLxaqfhkk3ybcLA+8l2l9eI5A8KXBVFd+53viNg2YSNwkITGWsScPgetFRqiHnSizRHlVj9NCkA4FDzIDdf9FbbsPYxXVsSjFl/0LxJdVpT+VC/zP6iA1Nxty22Zdk3y5kC7ywFaxTwyoAKJHmyobEy3XYqEVLViQ0E5HaXqhwy9upfTMZJv30qzNvYhJxgv98ddf//lE3uQqVXy5O99cayEq8OJEtkCpsfZipgWs37GC+HzjY4ZGkTp98zz4SCpQ0SV0lnfksQLnvMwlHrikk2dgqKyHoicTGAkLUntAsdZsCTADJmuNEYll4D0pabtlR42oPavHtSKvXrv5WIa99uwiJ4BXcMH7WcPNNLkOZqaF+SMjr9aE+NmjJXRxTw6g9Rc9aMryIZ30KT9Fd+F2CaXe0X/LfMgJaQbUyr1UMcJrU5lZK+iSun3txdV+m5qZxB4lH/xPUCXcecCfE/a3HLsiSBq9ByjfM2z1r5VOIIF2f1pmwJT83AnTQDqtQyYIVtV8v6I2FTrjn2j2q8L8XT7MvdsZWtr4AEk4zQRCwpLVzWc+7RWhdKEvexhPDbjCRLNHoZdYYHiIn3bv105CGyrbq+V1UvX5YhC+ak8EjplHRtK/twhS0wWt+PYoigdoLydyy7DZ2LEn8jrUgNsT5lsCIMgZqyl8XwURKP6R42duAlJwlmjmzsJTmYsLvxccRHvGr3hZePrpI/8NwX9HrOTBOI1GkPPCwc6BTchqDH3oOBvwSIk3sD+lmWkXI/cPgMZalk+0CBdZLk4hIQh6Tm+QqXPDMk3CKEYNxnIprogs65TbGpT0W+QQleZgzYqA/R3lMUfHB8F2kzBopcHsGBb42GS1eFNKpHYPaExqbpmTG2mhpvYootBhQ/5/nQoekyEjHVneIGRY2O26BBvMy++UviIP5qveuaHqtwRsqbd6NpiBcTCKgrECrs0ozhNfOLwZOXKxm5hdFRmMdDhKdVZO+yrNfwyDIVB5Hvn+a54988SRLpwQGqqGNNnM6hr/Roqukt1VerXo2+3TZBv2KNs7Jt5059WNsDz7bt0aKJOIejb3pD9BJd8rtYH2kjBtkkejtmjI9UfwbMG0L354a5XorDHVjtAX2S/861woL/gT8UIY4FLKc1cyQJZLJC8YY9ySqM27iFUBMSDNz/kA3sI5ucrdnwQS42teu1PZEyx5ViJl03zYo0pPK+4nptp70djFBsGA2onzeARbHD4C4bpPOFjSwpiGUD8u6FpAZynbtPISEi32v8WncenaajzvyEHPfqkfXgxAVGMdrrqCxvqnIEUK2DoxuLlj2GVaJL/caPdSHmqA1hcNdUcFSbw9ug05w6FlcaxrIiFzeSbIDc6xcQozBrg5tNuPE8lNoIJJxIQz8WXP96qoYqj1pn52w1xIAv7fQsGWz9ncHgM/60HFD11BTqMuiVupPFpyZNlTq3SueQJ61NZI6cuy15XHKViUJ2FXFXvnjbj3ZPRuk68v3m5zPFo8YEP2bDri85f6yva1WMuqms59OJW92IZsLj8Va3gQKquxD5JLf8FNHlqy9Ogcylxn31XHKSa3zDgZkauWccUjAb1cMfLVEwqzHpC935iRVqOkdz1va7h0zTta3CTE26NIk5iL3TSvOIo5qIAI7EfdfC+i9zSdIfenzJfp0/OJmUdfuWaBCa6xcM2SBV0Aos7bpEoTDCP9peMxthqwOOf0QrE3PJifuflvTqre0yvxvJOdU9IZcciimcOHqlr2Y+690otoh2a0yjNSBRIXv9sug7Ca7uYctI+UUq7oUHXBcF1nS/gw13SZGOnKGoOZbmEMhDaxIy/BRbIsXi85zFDTyUS1Le7+ng2Qv0ygC+dtPcvswiPqFCLjT8Q2+u9ORbzWzZKOR0pfqfvpctWS0AAxWJBYWKcuNeWjW036IV4KqcZ6O3wHXHPtamysU0OV8TRqRpb9rOeVrIIRfko7HB5F0P4uyZ7wan8IwW6gm8aLeJudLnB9r4SdLhJA/JiDNfwpeot+v04ptbMQP3xR02e/5Xv6JlTb36IG0s1eBj+Vd520fEDuDq+y2A12tImDyZuzbyHZ4+3DpdqpPRLYI4g7peOt7DCm/ul+RSy6ajwtqOHomwOEgc+3fvhFJPn9KHmbslqzSW4fqC61pAqbv0x04qptHdPmzuUupoUeJWN7OTBKaPJYveLzQCGHN/Kh+w+m7YH9hqKaWbvCnuQ+bM/CU2XIHJTg1oN1egx5D+++yhJ32OSS6BtBEvj+/jClIagIC/7tRHayzjZqNSCR5vA0QXUul//DDl+cJSFbLc3SH2OOVuhUAgiJamF512s5NPqUnRoee8VUEJx7TcC8BJj5efMkfuAaRzkXlqX1S9GThLTl+BIWNZp8wcEqufoGcCY175wRwRPMqd4ugBkCyY/+S9VQCoQ4mBPDOjtgDOUfHw7bwP65My+LmBTtc9bYk1HarPmcdKNVNZb8PKVyHxUXI796ZKEm/zN/2tVNdBzU4ohYQHK/1hLv2Uhdep3Fp23CKghLrA3zgCaf9PEzaaHxTTlEeNxQ6lFeSPeOQoxmDHSnprXjAPvCS1VGeHH7ZH4GWZm4YmF1fcBbny6GqSAUC0K4ckfZ3TU3XVO1lkWO5ZyCPFk+viBemaCA0FzQzee4n+yacSfgb36Fz4fh5Dcc2HMtLknWspu3nsA27SV5xPfAQqsKAQvTwpAtNhmPFg5V4FaQr2OKhqkR7iFwgKifsAv6ALljxJIW9Qe26lk1V0Bzpw9mIpBqVucKsOSMpU0jJ+dYenwvBXBrwY27tnBOGipPQOSkWnc9JIWANq0UDUdgJgh+mlnkCLdQx+RaAaFc3u/O5w/lHuTbhw7kkZHekdNClaf8D96KnTXGOlgp9F3eYoFDpPRUPndZ9wjMqCDiT4rPXkCGl8OEpeNcD2dj6HAq44d0smkeExo+uWNpQR5m1H1lcNy6fo3P3O5yDAYAIjHC7kaQCcFgDJUWafa7ToEeWaMdUOItq6vWbn2lNpuM82PfiT0YBIbfwHvk7ZL0ZLE3X8crWf7j/UsQAJPioMRyhmKQ85Jcuk48a2hdr1nbrn/OknoeU8xVlBsmyHXVKwiDfue8G+Up51MQzju60wc6WUEYcNJY4Vd8ksFlWKoZKt+OsBGSFKaFtUP5f7MjLfJK1gm0gZDdyKZLsT5RS+zeydUcPqvidCgBBfoI+Yg3mEe9p+zPXICVXJFONi6Rh3SX341JckAOPPfuKrCF8NvE3DXxOqTWqPlEU24bCsBbtfy+0wqF7as+jbjcR8/laL8u/7qbVRmOV2VVWIF4/ggwhWYXauKM8KkLeG8qeH0bC5pGo139MMcaMVpQFNn7hqXcn7grPZkxyONBUVOwOopUr6Yi/+1PKoUYTgXqLz8YR/Wygx7zQJLhYQs1sTXif53R1OKDnOa71mLTpR+KDvY3skxKSjqoP3FQfjsmogHkwBcH/Ggd8FYxXAVeenwhyi4awtJ9wXzsOsTHpmnVWcjVmkG/iDYdo8q+L1SF94FE/WW2MgQRHNGoVqJIIxpZNxu18alySqE83B8jMsuLwzr9wwZ7CMxeJ50u+q5zIAmvBW+sJ9Fb8Tc5YAYwIORkEWNhU6xNBYY/tx5xzy+wqgAwtSP8kdyOxwCQxC1ZkjuihEtmUSS0OGcqXx/rqZA7zjuj45QpwCnVrlCCaaVUPWOK6wMHM/4X+5rpW8xq+N0KJk/SevvpfL0cJ8lYtw7LKjHCFpDuloXqUv0P7fLT8MlV4rddW2f+u8GXyFGesi665SV7/ANbUytdp4IWJf36Jxh7oHz3AIWOnXPw6X8Dr8qZhiZw1JjUDemWQx5rNqfAYzakNsnQ8ZL+8EZhEj98oW3n6z/xcAAr1HbSney18T8A2MNR2mC1gPlWLJtl66h9bHcw52deLK/XNac06acSsOky1HToQjATDLeuVU98tu8DkAOXdU70sUu3MC7zNaJTAdn0pQUNibE0fg5e2FiXUthtWNVmCskMOpLazb2e4AedIN1eQv4kvMSt2CYjkB1V+ZD7pF6vfqZuhbFZlxc66PVfWimbuBXQjiJZuf/06M6UeTsidIvhe2YMvW5gtoaORWghJkb1qycyXF4irlXbhNPI/FQJya+bJsPmecReHkQcKjhelTQsBsBYOASeTMmLfS9Bt4oRZLOyOezMuFQ3DsgegNt+RtVallwU/Jy7HsDKeasDXFoHrOf9l19J82OhSHSAv3mEKNEDHgjVBE97Vs3xa0hCj5a4WNL1tYvz9MFhm1Yts2ua4StPusNBVzG7K0Kz3xMSZ6aT5AcdLYa4JUi7EyelnycfVH5NoSJVIbaXB5aFV3xphWkzpOLmhUZ9vINdNHqswDLOglBhrXD0sIhWyOdws+10pwu9s7YjNKqLhWEVseZkmkgCGWztJddZgmPV3vZpI2j1Ufy7uMxE79RKOGW3v4DzXzq3Jwub6XH/41dde0MDuJZKSkulhGGwLXNdqZkAS6WnoIcco4ofGZEBsfoPfiTeHD0tc94FKgVJKkA3xUDDykPtYeVUFYmYQ7pk3f6lVrskTlnLGF514UHUQoXh8sjfJAow5l5eqfO0SaMStFGXf+//NowUT7K4rg5TAA1lIQp2dDcAqG6MFRf2zD8+EZ5lmKIWHEU2ZvjCbc7ccxWXSCZkfrvf8XaS94cyXA2FJSgzAwrsQBy0iB1aWPOQh9fU2YQp/eCp2+MsI6cNKoG592bXwmtgkYLf4Jv5KjF2vN9S3ndwqc9vH36NUl0x1aqD7/90xufF0cn5BfjNsG/L44NKSXajDbaxaOulGC9Z8GBf7aWTgWs1Esp5bAdcFA5e9UENQs5Gjk0TiEgmnMRSsCZyzNTgk60XFPanZanr6/Dj16BHVk+qghqM32k5eRDUrLfZv93G/AL4sYpnEZCHrhCvXObxKLz2uEpwb+y3YNoDVrUecBYriMYuG6s4iIpGezPKw4uCPWJYmjFKZF6zgJgocDBk1Ya36kzhiZIpj4bHVIEJiR08ZGWUVP4gEgi1CPKx6Wx14bSXFcW+Slh77EwHmwbH0qARHTINdLLUHwVizbkTzcVeoT2nGK1KDHao4DfDgc2Jfjn4FkmDKhMAJi2Fpnp9Jp0womDggtKLHtGV2Tz7CFBZG0Abn08t1hw+rkHO8gHoHL0zFvbY2of16G17tilXtYW212ncLsg3BzI2HJ7BeRL+nzw397LPlbDpjGRquRVzrqsUz6ejpNO+9M6o5LXGOVZRT4MEvNshrdSTe4orxSLygdkwlYrgjzfniL9woIZ2SkNdk/U9mun/TVUVREqUOXE7xnubEBdkL7qF03/ViEpGj7hgaB6gurmraVUnRhWa/Tf6Xe7TvKiQHdkJ2Jds2ctK48ujHQ6LSnMGGi7hPa5d+90JPPqJyRWVSHvnS5pq7VnwDFO37av0Pq++EBgCTKJKxqLqGCgSdlQ+AwlINsP2+frRz278X4bmDPg5HIGNeQeQs1zIClA7QXHcgiP4jo/zx75xZHo0KEvJoVNirv6tecUg5OlmtattUWM0+lgC83HB4eVEPm0kEtMEUfCARYNwCUE/M5Y6bSA5rbkv3wU5x8Xb2DEH/oIhkbk1aaJMTRPZrC8xFfUQoinYJD/PIpFl8s/TJjUOKy/waH0XtSHtsvbryTxbnPzF4APdQfsNqFWDrfGQpEro9e91G1hlTCkxZV+NGahwDBWkmZqCLhax83ZL3hCAgQsKsNQ5TMgT4zxraQzHFv3fTV56m/47yYktDPeB11GmzwzAdwh/DFwg/H18IZryY3EuatsrsstwwQ+od3lAbonEGnf4dOmkOTrlAquw5PLcOSliEEA3N8c30Cn+Ll9YMdFp/HtBQJ08aNaIxtJye0Orz0XAWOAjlE0ZOhzL2GvI/UDwjrOPR3OI2dD+hmSBhXRI0Sg3MP+XyWdhRF8vS3k4dLMxTK4OyCVM9ldzs8uI9jrtwaMoP3fetXUd/AqvpDoNbhdPpKWrwR1exQjXvOXr/otwsRFxHPBi+V4TLmOrD08c2HF7hrbVbms56A0sjP/TQeL0UnsFHHbAlVYwIwdj0crP9OXnpQpgHsUtYrPRPtE7CrJa47q+8YKj7WiCfDVygJol9DktibKZPDZlxJq1vmzx+Ni6kmQTqHh0FtdZajfYgwgxKkCLvUuZ7/PYFyaCo5JBL4FOWkkuESlCMygW7Uouwn/4WHbC7P5G7gx5PsWRg0/MEwHLAqC99U1l+9GsMvwp8e7h3A8pIU+HTHIeytxwcRBZjPOvrr1XBKNheljOw2ur46DS9NKXs5OyFtnQvOE+kP4sUiVfixhTRuPmXHUlMe8acdXMUEQ3FhJGLYCrqMrfcaiUG5k6AQfw3Go6dt34YQzsCbbWEuUjCiMrnVfoVAR36IedxcTQusmG0c9OcG6vU=
Variant 0
DifficultyLevel
550
Question
Which of the following would result in the smallest number?
Worked Solution
Checking all options
|
|
103 + 510 |
= 10 510 |
102 + 390 |
= 490 |
250 + 220 |
= 470 |
12 + 490 |
= 491 |
∴ 250 + 220 is the smallest answer.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers