30139
Question
{{name}}'s payslip is missing some information.
PAYSLIP - {{fullname}} Hourly rate: ${{rate}}
Week beginning Monday, 13-Jul-20
|
|
Hours |
Amount |
Standard Rate |
X
| |
Time and a Half | {{hours}} | |
TOTAL | | ${{total1}} |
How many hours, X, did {{name}} work at his standard rate?
Worked Solution
Amount earned at 121 times
|
|
|
= {{hours}} × (1.5 × {{rate}}) |
|
= ${{total2}} |
Amount earned at standard rate
|
|
|
= {{total1}} − {{total2}} |
|
= ${{stdpay}} |
∴ Hours at standard rate
|
|
|
= {{stdpay}} ÷ {{rate}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/7mJaPG2tOL6jfQ6M1aj8KX3bPbPLkmwi7xsKDEVfXJALdJrWyIMbMh7ZKbQGQ06/bi6UKl8H2DkNeIHTfYw1oxiQs1RV90TZjtQ21TNDxsp8fWr2M4mtP95MLekUyq1EAg9PwNbvlOjCrCxt1ay+rfkRNQISA7I/qNFx0pXvHAk84HNZlBrwkiW+pPVP+tNa2ZuowQBX+BDzbTQPsb6SzYgUt0ywxd/CeIOdyWYBofGlqJtV64tfDx4IN64P3mvOW66DJeWjhZ1nySfQl8cD9kW0cyE8ryCoptU0i7Q6HJhTwqzd4t+yVHtk4WfjutNexlxgjFC0ix1xhb2SSGlWeg/k0y5BGNfn3JpAEIb9cm6o4ForA3GS5rtH3E6qNaOVqPXtGlRI14T99DIAeoivBJoTWdV9iBttv3waIjLbh3s2PI1AZMYvagtF/0TRxiWWrbRhphcVAq2apCEINDrQTRoSMonZgb/80FCW7UYhnAAsnP1X2nxYAiFDJY65QOKLeNCfOfafs3lasXDtZkrrYy+w8z9bH2PcadPwoiQFnKDneKOyynrTTD+tkpoTKaHKa5oFdW8OHhdRv5k7K1CBwDKSi6OnpwnFN5OY/wbuS2rLuSxzLZ1kc8DWgEBRq9i6+3NqGx9nryQS9X2zdcanKowMQG83fBT0kkTqDjYoXxJoMAJ7UYUjhpZ+F8S99lBu5prU/3wUAiKqSS49kGf4E4ZpxUGVvL6Cd88TpBbbRtjY+kewaDh3t9MBPvlZWLe9I50lZrv/J6cvA8WwCnOPd+ZnPVbGRUBUzD1aBT9C0JWkP5uIBhWsxVYdcJAc+ifAHMRT4oCY2dyeGrRJ4GUPTJG0ViDQ8z9wzWHqq04P+7rup1jpWsvp1OZnVgv2t+pWlSZroiRc+/mLZd6sAbkd90ay/oOcyIhQc6Wp+5Oto+1P2YzwJjPwZzETn4QADzo8RYwhwUqtIqMnr9ubkGQKevGX/37L0gjfaCmKHmsMLF4h/Oe7mWj0R562mXzsfdyBApKkvcrkhIbxgeAgzXJxixjx6EqKjp1aeBR3XqHwc1VELPY5RMG2ERSrtLUOIr43AmP8du3JoMKb11UXNlzJDk3ghRQ4h3p9orimFL2+zvyaQOWZsGcAC7cYFaTwRe6c6+MBgsZXIT413wDZmRcuE1VBtM4cy8j7nZO1ENMDwCBNyDn0a0WRoV5w00wj+sOijIJyk4gdRlvo/uvAOhut1fTcX/0RbC9sXgWDBx1g3aqhvirGvtaA/et945zgMiR7+lh0mn+HxelxlLV9idhz0puXZyUy2hBBEJj2V10i6lXzShTQZCT01rZPwdqbffi3EsQrauAhb3QXDUz7P+8+1a0L88VWJogFXaziIGelJYJquNCAOnZNvi8CofB72l7sJ5bVI7XznHheAv7iJ/4Ksml+nITT16uZbrqDEXkgTPqufB3uK7pYpQbQtOundOMf0rhBffUxI3nAHKf62NQicmRKjCizHEbwFJUY9USmtxCATn5vEb6WAo3qobfwByBUVmk/P/72qnJJAHLeIdsPmXjZkWTqzfWhCuNz7MoMP5rQW04jgitUfnTngWJxva2fpOVdyepWHkdpQfFuKu/REFXIsTOItWG85nVasKjyXCkaWQdsplmvEO5g7Kwb1V3NmpP4STpWqVHrQ8r2GDqZ8m8ptb92JsuxGopXNSpo/GYHP6MWQbQzobQ/lPosn8zlqX/7SYfRRWQ9VTlCQ+e7ngwRAS4Hb7h9nKJCR/lgYlNqdVxaR7RbVlyqkgWK3J9uQ6XYt+i+7lsl8r+CWEGztSS9RvCtBLDuRYdY/6sFm5QiEW6F7h5l7cmaATXndg1cKQiixYb9gBV7UboYR/jPT98pH8TDicCQ+D+QZfCEhrFG2352ghEJJk5QeOaeGPIUs5OndSx36D06S9l5aDFrH8wYTN7Grf8uzChFILJflEJPnjxGZSf6m9IHRRWRwv7ioXOHGK3tYX0r2NVLFq/G17P9kEf6QbScbCuFO4wHOEwPY+tg1LPH3AuwWS50Eo6ybAShfiXBTVQGekAtNQqjb9ouNS3UdsjbeXa2GlmK2U6nkJ2lBKBVDSOKJm3hEXFayGKv7Y7ImUr+AlM/bgXsmM3m5tJVK6ekWYtEs523Ai2T+3dhT53EHOo/iU9hPmn+R7JYDKLxK9ODtkrg4gb67Z4Ka9bI6ZxFYNWeo6kyc3S9WcWd8//yKVco6RAG3GO/27R3aeSKDdC42gNlqeLV+K/UdM8xR47qVCaYrzepl8R4y3XmUl0VZyhCAVI3wDo/1MoICzGamH+RCDAObIKBS59FVeiskQ15YKdfuuNjzt8FuptKzBiqPh4/EsIkNffdg2x5PZukeFhZt3PNS7bgcJQfstICg+iE7rDpEmqJT3eW4VDhAcCakyMBcSxercqwQoP2FJiypzOFoOgac2J8l0yb9dnrqcrkq+6Rf3mbgvCx79Zwwu7tqTRjW+7C/DF8FUF8/AWDdXmVs4YkfPxzoKFay3VaRba+kS6U2Ls+ZfmK/vhEb/+KAR0fwAhmG4L7vhKTQxtGBJeInRCqrq3wtFgZAYZHwHtkzSRxv08vi0IxmSrclTl6FPXi67JIH6GvUzKujHLiNeFCpp4/nkuxfL8Xkihz7gmxY1zTjc6LyCyfaBIHNQDQvJtjE9jb67Gj0yvY/apdfxEgL2dfmvUX7fjNOBNzWPeMiYbkZX+jPoFkSpksKyJV9vwpOw2FHEO93+SZMLOis8PV/EHDuWE6zgMLUlDBSfbyRvveCreo1YAHra1Wyj4xb4oftBdtSWisCKX2YYBmxgQO8OoMjbOofPmFrg9IT2s/PV7/XD+4ee5unRh6c3y8ZrzPS/zs/LlxPid5wZ8Ok2IRNbGbIlQA9mLKNYkjh85fNDWlGv0EJMao+NVpXhU1vcsqVxpDeXXFlCYsRGiy9NxaIDVpQQ1f8UNp+sPKQEhY+ROkzX4N9Q+Pnj+LtVGjb+3NWHJ7UDKl2ZxVN3almq1tokafR3ZQTGWfMIh65aSrhQo8DLHcKh0IHp4GfNUVePCLqjD8dqwNn1nJd3WRkDrhm815xQ1CuNnQZAn7bupQRqoGxfmFvjw67JNs77XZ3et2IJN+uSXi2yvQnZGV1n1lsULZqGCzeh93pN+iVUS4h+K9v9s/YjJvucXNJ1lsP3ipKMrJbf3r8DxpWCv1ubUH+Qw35+9drPpH6G8qc5TcWsFLt7Pxgn30gw6xk5iCh1V/LghdR+Z2JYWo3oh0TI2eXYDP89h7Su1uLaP1+4iycNhXW0zdHJ9sWMsxEanFEQnoy+ke9vs/KNbpZ4zveWrI3s70cAgljvqdH2Xltq83GiRFYZ3SCcn7eNJocimsKziDp4D0gWvgk/oDESRd1io8HBMGCxOwGuyF4hNIjsmGLV2MkvDD/AcrZRPZm6qPJdJ5114/I6j+rG2XyL7Se8sLkUNjiaQ/AZn731uFnGJjEMJNB8RQpnZyh7r/Z5hIe3eMstS0Pdv1ggDE+StNTKUlIcHfFsUTo5hj8oe+GKxBHFQogxcSiI2MhthCnrL2+KM+2uXkxTxCL2IOLdKmraKLt0EKZxUbQjnRmV3U9Rvr+HxsQ1ufF4kyo8/TxiRaUdtaRmJ+FhqLN/Fjma8/dTkxs5ZAx/L5Pz/tvr18rle/hwQmNrOI/77iARRwAs9tOtnGCJ+K7Kz07u9QV+H+6sKRn+XdhYA4svHXKk27tnIq2pol5oYsek5IujDK4jqIuWyojc2hcfuMsc3hQCc42MJP5WIo6VTFaMclMzJA/xCxCURGiU0IGrEV+HMXi16WrxtE1H8ilY1XycA/gRyUMcUiOUg8a3URwqOXP9dn+qVjRTxfYqo/xj0e9PjrkVmXWIxj/ATX79KzGRgTJ63yzhl3foEPmprjt/mjEVJ+JEVbdIf7agW9zx0/iQmxgAEjAs9pkdKAyqRz90O7ckRJRjiUQqhSI6VKTvdIzQD1pqd//ES0rIXlYXb78aiStniRM+LCgtciL354rLh6R4fXzC82mk05aaCvQ+b6LcpK7m+knGmznbUTYbpui6d5xwhNopX7L/t2pULq7QTZ2YETqvVaJXvAbYMe5FmBujqyUsn4BB9RUx0ztZv/U8tHFQc0FhavSwxF0MJ7upWXqEg0WP/Ds0PfzMIWP45I65TYui8GRZ9gaGFO+fKnMXtSiIgffulxjplTvzLpfe00Nl+JiNpc2qMwcWKWfPhg+zuFrawj97RzgIHm+tupbSzOcbUBC6/pUhgltAPmOTm5Z1APiyX/KySuEK6ezznYqkTfU87xpwblIUwsJoWD+6fl+OQP8V/9LhQovklNjhiZykJN1VsGDT3IyzCmVL8x7/ZdJ5v6U9/anc/bfvGaYCmJ7djiNTcG9NhHfLTFBd/J//0Ni2MABNhGudHOrflgYf5awAuNDBWxuZkOGITNqjoE5xCahQC35WsfYos1nhVq05NOKc8NvJrWl9HMpD8zyGx8NSyCSLq9sJYF6FmA8fw0YTIWh1P9L/RLGBXUC/d9AEKBszK02Vl7M+exFOJILa8jrlVyzUT9PdiifXXBLtp22HuNP27iNMzdh4IB3gbeIiXrY16GBOZfxEEFLIaLTknTYNU59dHV0cNkCj/nuJNENyurZkveB7z+rKQFwWEYIssvlnMa8ODqhIJ3iqJg4YVclUCA+xtWVY6W6p8L6vyohKsg9ofvzJEbxCxEaUlgefYTmYQ7y3JqIOHT6mWGL5vYhU3D2uxYnKU9Lpah2tqy/Sjf1u+YZnq/lconGKbFD0SG26itUja4XpOqxAl53oL+KOfCwxivvn5N0ZnTxUCXdWhwuMig8+3+SMxV8fT8XtKsjOVWoCJXlSPRJFqxR0rvRA+LbZkYU4w29QquTKFooSIPeeIojB0ZoS1HmZT+v3xCYT30NeYQhPPr6+RMhWvxMHcDyn3NXMT90UI9yNTGWSQyN/Lm64vAX20oFOZAQl1nWZmKoPyh8yr73bU1+ZliP8RjvFLJCFF11YAIoD+q5IzNi49evuk/0oYkCHhWiirNwo3flqlchvuKt96WydvIDPraCv8CJ3+fUWjy+bB6yGtOvOHuYNAwTxecTfydtwk1m9g8KU8obJiUzcKWMp1n2WUag7KK9MBjX55zvN7wmqLUphf63QR9PeFzn3D+v2UyEsQf5Oh7+vymQbGYYdFz6+acOARqBeCxTKhpFQVqEhIIQRcGdxajvaElvF2vabkqXs6zBDVszcoP+CAebGr471o7ibt7hhmFc17yZk+snmhG8EYRMo5JACt2WJqjj+hzOBk+wcWZ+oA6Z1HxD9gAwz/lzW3m1QiD5P+RrlBLwSVxI4QHmYy/lrHpxNC4TLy5KYZjg+BO7c42vj0vJ8whkdExuwwt1uM6Ncu8gj2zSeTZH+1VmlbCDxWBa1+3WJO65fesAHMrh8EXVVDfTc5ewnzkfTN1liGYpJrVSYA1hJSP2gDLMgTk4aIGFZMa0V5bFYBbJKzX25teg2DcnMJSbaQdXDi2dwWqGs0WAKLhxr3ZCjLS3XjRT18L0Zduv6xOZQyXBR9BoTuKcI24UBehl+u/yA6uQRXIJPsfzQjU6ZPonl25RisvWXY8eZKn0bhDUrBNfnFdnHMMqWqvYa8BjFqNaMM0zF08VdhPoyvvV/nBKbfEozI9cnnid3BjLvSZQhDRJlbXrYvu/bQF5myXrjXkg73duY+GkQlHzd//VzsYcsZgadg92ZcmC2mhGhTePW/6hkm6GZelXcycLD9E5+0XvQq2ckwVqqwoXF9bPudqUHgfJ9OWXnwLKRDGCc/czjemuATG8fPUy6+M/VRgPBPLm4t6ecTTb5yED3Muth5M55IMndssiVaSoPVGT7NBFp/jXfI8o+rt0AAVIg1k9ZI6Y5PqZks3rJbwulh6NUdj3ZCKItBMFUvO4W0lWhnt+Y93Z7nQAozLfS9NpL94+gIJz7/clY4j82zk+Me8yxJ//nI9lUbdqSbAyst1jXQA2IVDYFO08Btk0l51qV/MyZE+YzgNawhy0niG49RugILkasQCbDD/wQR1gasyNyqwCDAQgoTg03/KaS8tAuHuGvMdChGAd5rLEo87wsGuxWICLyjSTcb2eQmRnji3nvGmxLzVpWnNixL24z0byPy0Sdl3litkhNvQeuJ7rIFyfQk90zly62JasA+Cv28LUPjdCoc6c3d1YJAQf3wUOuZDpK9ZRIAJU/RHEYnLT0csohj4SfsB4+U10oohpWKhz5yG4sHcmDtAHuu/lY23x/6Py8k36RVp6oQUz/6SEInZMG/nMxoz2rimCA9kYXLf/dTX7Kn06EkoO76tajhIzTrp9KHGz1hdd1m6IhconBdE9GZPQKPxe5AFljLEljXwm3DmOXGHzu+l8e0B1hE95QLlA2n+ZTV7BGmrBFMJ27so5h0UyxRnXJpImYfTgAVzB0d2d69mee6kPLrINxXQlcKjtrbMxicoF4FQHmWTz5VyrcR6txqXWimXf7RpQPf5JLEXVZCgu8Z6XAo/1xxj76x+KTzVDEIWSOcSP+u0FDHE23yVUQwfVQU53uSN87+qovqAqcYiRxgWAocT6Dvdxid9Ct6Vjxgmh2Z8JISalAS+Zui8bz/cAQSohIHS3GHBm6TXWtcEgEAlndBVrIP5M6caSvDwZcOpY9lbUJYGeMRXOcsxYbqEUsGu3p1Tj2rUGgQKYLmNJg3mVvgUsmfenHFoi5gUwcXXbxZBpm0gTLCe8BKfqIUafd04AwKxt4/dEMdw4M6SUqjMgDdk5QqHmJMMy5QcByxtw41yrkkUxJu3nvgazpgflPBUG3ic3tZFalTLCIfJFTj0KNEQYR1ZI4UW+VMZcoPGFbwOanPw32JNAMmdxGN9Xk1ZWD+ZiL6IQiyL/J7QTu9UZPODrWqEK0kkOHpg0+8v3erEy8Yz62/yi/DvEwLWssFUECSnpKCKg7nzJyWvG2P7bf0vUUpBT9w/10FYIfWdhHU/E6ysv2SrIVT2xreTNr6ZnmiFhaTJTEHFen4HZHAIzt0D7vx7SOcS28CfPXXURCbwCfOG4iI8g/vgJSGMLZ0pXlsJPdJq24j/jOnEAIDz55NQeZmS+afRa8K3q5Kd3S0mOwYSk4EFCiqQuPSYtbkw/aU+tCAmdxGUkpmtj3AmtV9tXRiNK0fZQ9FRak4kdvSOD98Kk4ccqIuTuvGe5YdJ8M7a7VqtGt9FX1Rdao6Eb96TIZe0K9G+vkc3QltIfwV5Td7bDBgB9QN/EgSNHFPcjJnW81EBlwSKjjTtB3HmPL3gFrxtx6zk4nbgEK7fbFxglBInLCHQwa/IHL7gEj3GlTwcy4Srk7p4hG/H2P/UPZPTQ+7SP+wgle9azyUhS9Fd1AyCfKi0bq6/vFwwwCC9ytKwu2lT5z3C7C2ri9XHV/S87EYgVgt+tD3ebPzstAWBvARCMF1B0lR464d6J/UyblkpXm9auOaFQyzXYVrdDG5ZwsoaBvKJfoEqRai5RD1WWmeMT7eAlxl4Nvv/N/Cfz+5U3XpcGP/1zOokY7pWsef4fbApStJwhZCIKBeWd9bEv7v3cKAXJFZslMCSnEPh+U9BrtNI0zbjmVtvsqE3JAwGSRsDR74fACMfz5GP+Xr0BXyZWACM1JLAbmo4W8DRF3Pc2M0w/cRsQxXem8hRrUfvdnPWu2swnkf0ilDzi1a7f4dN7xKr+QxwsSapOt+oiLs2dZE7e/l3uXvQsLFSbVr7HR122JQc90UMhlEeZDUZafzh4tbdTXm/3ci8SQ0OxzzMcrvOj/4tzEfS8V0BxB9lGjqGrtadT9kNqkH+Zdd5nGEfb8DV+YKZ4az6+g/5RjbpWtIGTf3UixvUlL/IKxSXn6F48bDBJS1WmbX6AOASzHHJumDWmc42a/6DZ75lSBvRve/hrmhXdzY2MSB/Aoodn/Gwmd08zCiqF3ey2S+m/RfqU8VgsuOQnFUf6mwhs+nDpUANiJ5lqCai5n+Ys36Jw4NVjI60VtfVRWlLoQh3TLFdn2uAyLLUwr4tLqKjy0w8zspx3xizQns1/ERUTv58TzDJVXyXILvzDUt4PS2TFfTKMdAcXSBPzODJK6pKPiHZYHBZgx8eZGq//qwPB7UT9Qtu1Z2mt9y8+xXJCCS+Qni7+NnJ8/zamFso8141VsAYdoa8GVfihQZ5pfOtIeRFNOf8wcVUrxSJ1BN/ujcbfP5KjWvzja0jByhFGQ4Ur80/SRmPRrirRCGuFvChNcf+dQuQdd1D7SdU4lC+ODjbcF3k+8og45n83mad9K0MjLia2LpRa9RKbPvzclxcCs422wehEvFMvgI8+x1dkyi4LOOtVCJv3XxRNzk13h9DB9tPRnxDHbqsSdndx336n4Le7xpntH27/Iy6vNDXBmm3+yJI/RzahwhW1hKOk5NrtnwEI0Yweg1Cxq5zcFBIz+ToD6dCIfH1foUs/fnm/X9HN161GwKjNT0s5ViN0mo3qEZWnIHIMOWzj9I4+9MB0RNLQmm7zwkcnZda1ay6v5NnpknPM9timv2LK3JJ0sZpsIL2Ph+nepXhOMd+nwutJv1WFqFSA4C+ATPYbj4vul1Bad9FeszF+R//NxsYuHpkemwe/N2peIZ7wXekQ6ozTWGEiiSseT8jYwTkhkrJvRIO/ScEmm9v7OLmGORErdrqEpvGDyxQ+QbdVC9dmsr1H6SbntlfS3d1Y1JWs7oBCI0BqDiUiKSMTPrk3JovBxAkBxpzfxSByCCQljTdlf8kiF9OEeceQGjtYH03ML/AkEtJam8nhMEpcHuVHBZKcgUIlk7zAiREsIxVRjxtmusGqH85OVt+Ic+rICVUL6Z/X7iiKOjMGAMpiz4UaHZdlEuR+qAh64+fe4FRpjW8avEtXDCU+CcH6i1AkKmwAVdiFEvx3J7hpfOVpD6fCUr0obMcQoSuVjB3MGkffiWk7msmtAhZotUFKbo2418rDVIrm7pUmlNTDfXJXRX3W6G5Z3bauAVsPgr8PoIjxWBSm2MunipyrJeCYEIkmrhZualrc+oZjIlHJUwBSbrTzQD0oWHgf1zQn2lEsMp0/D9p3RH+9CvdHuuE7lERrdCx4yn8vAqZdAC9K8C4dJKlM9BYp6vzlwYfyanw+7IJR8fhLFFu9NMVlA1zlu/dfjJVN4mpx+K8xMUMN8SPemfaltCambaQ6ELRxxNQt6mc2AjF+M9ygJOSqO8iZN3MLRKMMVjqbUQ8nCCB9UsF9j7YsgrPw3kmtOmbBSrJzIf19zKDWeLljd+UNr5Z+1tgGM1LNc/VSSRBTNKPcJGDcYsdBPjv07n5WJLfEhX1Cym/IH1qrkz/iG67w7gAAIVKYjaFYQzh06Pzj41tLt45A9mLwwmds98dwFR8cnrZ4e52ESeZIGN9PLVv26mkuO8Px5pP2qXVgFzlXSXmpgfGxI6JCQif66lWBw9Lm04Ri5/CI1PM3OZOSnbsR3+L4ZUnIi7XFUcI+2RtUoRyIMid2vTWr5qt577OcNNNpau5s5WHylZODbeh4bAFk2p3lffafWjWz6NIndLFw0eaUd2zwd97nRK10d+QXkoyFym+cggW1TJLK3fQcoPYfMxPXAEHAOHVxl1s+zrufMqVdcYHNKvQlFycUmSCtK9CsQaRZjc/iQA==
Variant 0
DifficultyLevel
569
Question
John's payslip is missing some information.
PAYSLIP - John Mayer Hourly rate: $40
Week beginning Monday, 13-Jul-20
|
|
Hours |
Amount |
Standard Rate |
X
| |
Time and a Half | 4 | |
TOTAL | | $840 |
How many hours, X, did John work at his standard rate?
Worked Solution
Amount earned at 121 times
|
|
|
= 4 × (1.5 × 40) |
|
= $240 |
Amount earned at standard rate
∴ Hours at standard rate
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
fullname | |
rate | |
hours | |
total1 | |
total2 | |
stdpay | |
correctAnswer | |
Answers
U2FsdGVkX18FAhFkbnXz7oiYGiR071zyoPtzb50uKVQ75vwv3mPYwXcxmQWpCPqUS1E5PYTduKW4dLMhCPLa9Zf0cbHaszyUNscQsbSwKOevFietI8T6XjKFhv4x86APa91lAJn3xl/8r0ZRlMICvVSpyUau5+cJTWnR9sNdH5ZgaithR5qSaZ688WfW0q2lH11EkBhMumEt5nLRoqHDLEWwyuZE1y0ASYC2m+3hpGKo360+esc4dq4kcPS3lqIw/KKJGj1b8HZzXQbDC7gYOjQDjhBKD1OijHW++m6jxjHrNOLJqyGQNK5s15vBiwC8fa8FDHo/k8kZryFtW8fth5TWx76nBj74nLiTJEeDi3kqUQAHcAtA3g00HwM1iw2AqE4Y4BdCzR5SzXPw7ZvPoSJ7969jtBTL7uwXfMxQHrZcT6f/QaYRMpTgpoPB9OTdiSGND1eyNQl7F6UgLaGnYN5zgMEuHFlVmU1EYZj1tJJ9jdQHY4/fiWTQeNHN7nKTlAF0fJWTATPgudpw0MryA9yMzWgMHlySP5SgMKKwQd/N1wxgVAi7pfyBhHZJOHF5bo0sz+EfAam8x+7sgU+TQFDsJjJ1yk7EnaRPOh+iyteXSXBAZKe0dUPEQ+ZW4NlsPUiGsD0kQnLsV4+INbilrZbcYlJ01JNdQHl5FbjyvWLxsqlrK/X7We8eFi2hGx52d4bomC69SBFrzJDV5c92gFbV8mCqKeBKMHT8T4ESM8PUXtFqBFC2i4ohCezL8TGZllrtYJSSUsz8VmpLiSvTvPmlaJ5rTmI985sdPFwXDJlBLxXlAYQMs3+jSOpinBLrFlpWTuFsfhncSicdO2jZ8n8MLS9jNBZd0DtHAEYR0hskbZrdY6ZKGU46cyecgUxeEugKkYi/MrtKu5jpYu45aXKmx223Xm5KXA7AxUlafkPROO5Npf/PSGZ+crJAzhpd5ihxfCNzdNddPuNDbFXJgkrBbe6Pg3Pu7p0/wTG04eJiCSeLB6Dx7ICtpstVuGd4UIDacb4uJTfMCzhrmr4hoxE/1js6bA0q49LxE/mpvVvII+wg2avGFPww/PM7ZXbeRqO9EElV5AEepdRfmfERSMwnN2vEg8zlyTzRhwWv8q9bPpgng4IXYTwDPUWQfx9n+x6cJoXXBP3JYpy64SCvEnr3tkgNQ17Hsi0hy7OHZ2cOM6H12mf/D5r2BizXOhGeHIPQhAa9mRldYl8e0fVyr+gnbo2B+AU1SCpwmQXGNNUPO2Y2IRylvCO3wqANUKNOoJsnl5fK6IExZg6DnoiWHQ2lBJDx58QLyXwCvIuSdkbwb6Zp/9PIB6mVdgHGPg+DWbiV9wqRYVww2YDyHbyay9QHX3KK9PM4ZPGiKQl0wRKHNX81nglvRcUeAIwR0e5uK0nOSBwgqjYYnGlHPYLTdgXr4BJYtbyEk6r1ZCoZRt9NzzwE4n9IqtrzvahwkWjdm7rPbDfZ3YoBJh2N+fZzETcOcl/cyxFW7vilHk8+lNiSp09TC2RwZ02yYI0G3mM9awueHc4t19V7IQcCsDJtjspzMxjyBcN9M+TBuIYwjBouHm6boPgfrJQUc8RdaFCT4K7DsZBkWC7b8d4KkGbVJIrb6FOpvg+J5nHH/nkbdFtgZpQzWeumnNlN3FSIDMrWp+MEvcTwmuqw62q/Ux9SgCYHvAMO7n/pf4kH5ihRmgVsBNaH5+JH8+4ypEqSBhf9rqwQniDRnn9P4UJsSKbBxhEtwzbCRiBfcVHGxL477ExlMyTfYG5hugYMPDAkvEtK/EE+jBbykCei6tAY0+5nfXTMCzteYu93OWfiSgVDV+T59P2c3tIbqFGXKBC20z+aQWnMV9SXxy4G3Doq5TUAGiBbArpukdGDLfTGYrJy/3InQKmLFTJPUFQf3ecAI9s3YPBcJzCo1QzORkVU6XNx6MGxllgIbiq4qH7+YCCBZOxn5Vzd4SdsrjMQPS63wvj/g6lLR7Kb9jbPTzl6dBjwcZ+72VP39RNI7NnVye55+/q4wT79yjRd/8V3dnLkxkP/iVd3XOiQ+Te409pMaHAhBiTMnRPUdjAepfypMZztVunxo4zsphWB5wGT796GDkoLa8es5H7k1CW2BQl+Pi6+lIaWZaqJteabRZ8ex5dGUTX4yjubY58vS9x8V9Ig0S7dHWHgiGtKwsfHeDWFbNDBWOctOrJIPL5+craPv/KXRvzjEvJe6xxdgCoZ1NElcgd/oSzKtrKuDoj7LzMb2AqSktiGy6Tr32flDvOB1Cc3ygm9xNvbCR00hgMjZhYc5huqoQAMzz0JtqUqNs1lpuRKBnufl73IMrWOx2LzgM4waoh558VOoqHTBFecrbzc/3iFVQiCyi/hCUyKT5NpKwMRfhsPD5yjJc/SdpqHsNV2AhEDYSfbalytPdRj6/kAbVpvJZ4Goo+coO9ER83i0hfDXbY+SkPC2BF/DoSRf7hd13si5/RkDNgsboeh1UTFtewlKr8nn/IeAaXdFxnydDiVFSZf3OswZy0tQX1DeqkRXqHq/1U6XmYnWuxvcLHCmjVF87nXgdDZ4IOGJYGuadgJSQ6hbl7gcfxpKJLw+1IeN1Tz5aXc4b2MDnAvRw/i7EDfBWVtawILTk6aUhsU37zDhbMwt4ro9KoBx7zxUXc1Sd5PoWvxi6OuWMPpQmv7+4/CvX3DTjhGArNsgBDmi6pt0Kw8kXF3U3XPdEw/cSumgZdrDSbaSp2KVmrx5VToYCROfFB8WKdU1vEt39Xs1QmAxSV3wAySHAszaqjdp0LhZqEybiipoE7sOoHKwVM7J/oI/JH1yCtc2v2S2rOcVHHTzfOzTrMA+RL60ck4TmK8qVnOKxR8IIHfKfAN5ZkhB+zn5laxDk5QYIIGaRxjaIffTng3h1142WLfHR1RqDh8ze2JCnaP6OgAufxvd6z3l4YBI4x3DElZyVmHMwTRVuH3W8ZMt7XuJeGC/sL+IjL+GBgbk5ZsClcWB3aynb6NGTvsWqX6svW8X1DFQXw5T6BF4HG/2cffDXSbPnQTwFPrydEH7IHzTZ7Dv3tMEiUOOmWvOuo/9Ei6gH9PJeZ1dbk4/z0AdFGIutWONiEfOXei5RJ0YJrAHXYXatu5fXQDIPKOt0HlMLfUGYFMMjdc0NXWhenesx3YBXjx0F4cEsAZWgA/i2tafnWvsDfeGWXP6PkcJV3TNF9w/CBeS+xpVpY4ronAH0fshIHEfFTUX+hqJ4vnPn/R8nLPLGftSdf72KEGGvQ2hxjKpk24FiRSaOSaY4r39uDhA+ns3D7cq6nxKKEelYy5sgi0t1+qUU6VSkVLcUuDzohIIqsP0gldzTR/00Dwv2KbqlkyAfGjUtUHy7T1FO37nNvMbtQ5URjMQGsReRZaOsXsKH+g/PV1Z8bAe8pS2GsPUHX5lKuFI0TqG9WWBaHtw/Gj1oPLtFuTKebO19E0DGKWaGdlY9SjHkt8RsV9gR7tA9Q1qgdKYF/qM+j3uRGWRE+RrVtxEsjYE5UlSOQxIorzYOaKJ/mT8bNkkqGs+vw6VcPY1chiqNFYX2wJx0hgmhyy/jWMXcF6dx05hlKe1ThhHxGCWPhHe7E3UCdRVDbbn+K5yn6lUT+BrMqm1fA6h8z546YjVH841hWiJCjeyxrsvVvt1l3jQdYrmJG3+FWvsdOYJ+sXVZoarMPQihee2eRyTHjGZaOvyjFg1mb2blhyY1nvrOznRrJWq58sQtFcYN1JnjBUeEDLzgRUkxzOB/7A5iaT8Ah4m8GpM9Nibgst1BrR8C7ds2CsBuXs2dLkol//6jMxXffu5VSK7if+ewvgwQSmgAb8+UZ2DTII5g1jqo+rlAbIS/OclhF7i1fgvTq6AM/m3SxnHilBPU20Br17uSztK9VQx7qY0etyG4IOlQRLgGnFjw6CQ52PUacs0HYa2TAGlFG+q9Cq48uvy0Pzl3mMt2vkjfGOH7OXAI7w8NDrfBY6jRmuBS4yGvXRiNZisl7DdWe9mle1irkMklWU1z6ijALLFBcXf6BDJYnOX0hH4iSSAsE25vhifJhqPFa4lIGDzbPO+jSDZ/zYG5Tv6hCm8JtL54if3y5x8dj0W3NcRYB3MFGFbww2ntbouVo0C4362lMTmo3eFWXyW4h5+l7OAmriw/AiakuN+j87G82Is/mJxlalEUkr0wu5IPSzym77zxxABNMQ0y9Vyo63MuxV4lVXjTqyb43GCg/EpQIVTZngWH1DZEze/jBNdBUh/DK1NtaVE7jgaLadvrdzKIorwLUsjsD7qIWAiclewvPrJDgYZlz8l7XyAhX3wgeenBTQKJyS2cavPuxwtKFjRznUoYu6GHLa74jrVKdYGJ3bwTtO24XixAMId3k4iD0AWcCO+QlGn8I9/V1mDpEOAXkY6TAU1Tz38oIQCismYzTgDTE+gndzDvyVZZc9EibCmXkmoo+MyhtB7ECElM18QmJnKxnLzk85WqVUjAKCWez+9UG7Uxh1TeG886z6YTsvXq2XrRindpL1VjLs99VbLGcGWTRtw6hT0CVfsyowedW2UDthPY07OqoEqpT1z5JiQHNuMigr28AEf0tRmroxrG/ltWFMG54ktkU3b96veAcQtScOXFfjxXuabBxlVCGRRiGUAXB3Hva+VBtQpybXPQpOilenU0X5Ul35ZgCycwm+RAs1PP/ALfIEuvsO/sqsbYQjGQy7KAdcy6thid3aikO8QMH8vWXPAZhG/8M9Uh82kflWx1yIR+XKdr5N/Mcm2hDdkW22+iTL5dSZihrWgwdFJtYTzg7UXh/GWEAe62ny+Yo8stpKGtAuzpgnLR0Mg2r0aJgihTY2YHUgPyDMz2N7Uij+6Cuq0lTHG8PxKkc+Imy+nUY7qyY2+kMmOTaPXCx4rxn4/UpD2tUA25CT19OA47giErTpOj9ou6/ReFhj9GHVXNHOZG9Z2xWXnf/oEvzhzO1h9Sna58hGTkl0izxAm1WTOk+s3Q9e4rtcNxj11dvV5hFGGKeUTusuJ44KVUxcYZtP/9mUxpRQmWZiZeg3jwt8bDsaDjAvQjDb3pkaMoy0+r8ycbloaqyK6aC6LMPsnpSXNXB9RCIIJFimecsKtoRB1mnuXg8SD7Z57ilGTLPzSyhCK2pAntZwPrRztVE7R4oPwo/O6/mCNaMaPR/sh++EGdQhL/PG9/iH1020na1q/TP5OZKZkVel3UJ9sgbE/a257cNLRpVjwtjuvBdetpnnUWbBLo8OtarlY45vZErz3hMFpVu8XW6jTNzQredgsRHI4AA7KiGYNUVUY4Clm1tJDvQ1dy2H0KcusiEb4gh6DN+q/N7uRizOcteJ7uADfuRGVjMcPmAdE2WHFqhy8SHvTDa/n6x/l5wueT/DrZTTevDWFWsXs5MOxXmbFZB3Tt03Bbrx/wf2n794g02822rwcYjh6kiqohcesboew/VyadHkax6+tARk4nOCNkhWg7nAz/zB18lUP6XMS62GdhZJFPozABTszaNkebLPd47HdpO52DlGX3C26KTwRoTzgyI5Y6VoZ0u0nGMT6DkiKnlhvphnDobRgRy61Z+kHD3hWZi8Vzbfc5xbuM3hZnDBxdEEciqV/Jd3fK70WKSHrZPCJMjM2R1xbftB3ch6wt2EBnXwA9/ULzJmPuQkc/fnX++XiLnHBspd/J8c7XByygT4k8jbXweYmK7BMyNSCbQEzddZJgPwijJRCXf3oJitZbZEl4lxD+ciymWlzt+ufvuPZnSbTyOYKXJCJdBeCzQ8l0x+4HEM/8m6mnd+4IZRheE0mtzIvq7SnqrxeXOtvUF6iwfvw6gsX7zVaMawNp4YvQ5wMlfcFZI3wY4pPw1ZGe7W1nRBXVg6wdplOUZVEo7gUbmi2ZlcCIN5aqoxbhRddLOyitpN1Lm/MWM6zNyIoj0bhVb340XvFptWI+B0UXm0FYWxw3m007OkUVk1I+VWinVlX3+7vhrSENW2gRJOt8wzB3aGIWM3ApVWz4UOgWmSSQodHrS2A2lKzQqa/7q+qEWNRkhc3Ufsm5Z4xC+Z+boim7syT0En9BjHbC95ih8/FTl0aw12T11pbM7SvTtbxUJ+PbkklkX7+ifj4yPA89aHK+usg8oEzls6voonRD6NLIasOc1fczaQAL9Y1kqwnwk4il3zim9D2LxnbCIbl8vQ5XThb8VaZuvkthlBhFk6KlivHbbqv+kU8uD3W6y8upUUBOO/HX8aKtTANmGs6MrtvD6GQi+oIyWgvLCJjihZIjTvA0Lj99SKR4Ikbe3P4ojAAj1sUURpVfgokrAZQ4zQrOnlt1p2a+T/sqV9xhJr7qNOSEqlmrtqaVkkaPNvD6suOcnqmu5v5pOj4ZMnCZnp5vYxouO5v3ppOAZrq4YwJgdKNItHL2U96UzRZhCpX4N37esHDdiN26Ec+HRLfM2IbyIz3qh5Lrb1cNStLUkLtTAtr4wC7olSqI/3FSvTk6eaWTZ8ocLrfxw8Qg+Ov8dQEvc4xNNPwhmaK23T26G/19QO5HftQR4KtFcPhaxiVFiK7BjQZNlFHOAo6RhP/T3FVkYOLM6CKXqSaNMnodwq3Zso7G95kkG9TB/F37IjrDdEuo7UVlhyou5VrLtdIa9bKQE9Fl8V/X7FBxOWYjyeXmFi0pAdqNy0RgYkix/eNBWWfamND61f2k+u3h9HWT8Pk537XtTfQPUjg2AGmYlBwOXNXGrjMYbMi8Qk5DBuktDlEJggzGF9x2JGBI3uVl2z69vKOk09OOYjDc9KaFNGRJoOJIIYT1MB6u7EbY3D/JnCNlbvBlH4Qndr9YcITSqj3GcXuOMBzyR/uPthaNAewifYvbPZbc9g4W8/pEy4rquAI2WH+nw2clzwhZce2uL+bCG387pIiHQ682vwF+Rxg6hEe/nWyB/EsCtLGoZBO+Uhn7HH411wxqOFSS3t18zNALetqc9WIpmvuoB6lUHFMlmbxiEZ7iBlRdmunKgEdNtVlRLl0w778+Wlo4gXHxLP5Ychz3WGvJ2+RcwWlR4vAZul46EFgYePziBB3Hw5e4qE7GlcEeln1kVRA5WRemX4mSRHFE9W3rwiLpZNMOl8f0Rp0v2uYtAX/xzOP+e/6EaO8g/uHkVw82+4ZnNOWpS8OJiJlf2q5IrEbGsIJP6QKerHBr2KtVW2bNrfww2GAHcctzw3EHb5BnKOJtOGU1c+Mz8lSN9R6hnhG3CKE/r8o0dBKqdDMC51uIYo8Lty08RarhnmRLd+lGCJQHdv8Tf2GJl0oY39gSc0E7YurFL8M4HuMffmOf74J7xKCyu0xyNvmljvCYKgU+n+xrJuhrXWSv8yf+daHzs8sP1tmNdRvUBxPMR1S2ffe0OrCTL7Sh9gsXHxe84KCDIyGQ2Juy+Oc4Ie8r2I2fx7qp4uptV/fFibOmMo9KkZ7S/lWvDMzVA1W9vawhPcwPAhO90F1RAkFIXbUyk4QGm+gAeOT1UnZu4B++LwApNlXhhw5XGFP1ukuXajhV/RmrWWWAQLJagAsCYVfGp8NhkJ6HVn58lwvO8WJ5gjF67S7TIzS08UNyf4dDI9eqV9tjwXkGhG5tAjpI+wWDSjTWvRXzAsJry+7jFaU638tceyH440hzsk6YaHGZwuaMJxIZXYRoJFhc9vULnQTCKzNHCh+Db5nTE7ZbZSIjqDsoFQKz4CBr3ajR+PomrNk6qn4fjAh7djctbr4uCVzrunUR2GZZyUxYhdwmGcVRUo5A0wC5EZn3OWTqc5LOrFLhvyZxd/ZqSN38uv7kYRl1ayIpVUSsiWMcRl6U/1oL/uEsgDgBCf3z4f/9Akq2BkkT7xkHQB+IdMkP6TkoCu5HR2XeP4dy40UCfm6EmaOl8UnkCyjqP7hKEILpCBO0MkWHYPO2sSkQbneeO5M0F1IdnXUDACmug6YeT0Pw1kE2y+oETGbc8INSKSv8HlFgmvSPWaHQGwubgSaXsHJ13u492xg5LmEkFHBpPz88sl3uXA4GxYZJDc7rfyQV2pyrbPceT53YYJvGmflQCe1YsnipFmm6Z07KQ+FM/im9OYhcNJKtlIiFCXgjsejx4HoWUxoBsLQHCre0tG69Orzu/UuygUalgm07LLnp21RxVAj+pVkWkAJJp+7LgrSrCTayh+WjnbvNxMr5jcfNA+LzvCvAN8es7yP7hVjxFKvU68RZeQoicdpjOe1wJa3Tz7NKOzQVE4SPQGXBLL1Y89m+xe0gs0r4u/ZXDJwdbEfmsnI7ZxmBGwW7Y8QtNaBHEcXcnD7qYe406pXia/KFNfL2+p45cjsHLxwxauz+s272EDc4v/McAhvs1satiLWin7EvGwIo+1ozhXPeZO6bvXKxMtepkYAGlNX//Z1rM8fGcJGWgQCsjp7rmE+rcXoOz2yNtyFKAkueRVQHIV6HJSqduhbgko6uq+NK9pikWxrL5AASBXRWFVEByMUvOvkFXFT4LJ6HykAeDi7FzfYuLwx3WBEAsAfuyopEr2qD0jMxtLGm23lOUH6B0m5hIG48H2Mws32SCo/zEeogAq3xKWsxApaa9RISWM9qXOssXjRJ4EzaFoxOUz48LwVzuHz2owGGWybnRYdY4TIQ9tday98D2nvNvLpeNmNP7Xr0eNiE0tT+xnz4RYSqe8lXmjMdBQLAnNL4K4kXeF/9l8dtOAxYvXjHM5LLGm4iBB9l+x0FfBbyF+f2EYX2JNyucN9OphjfVhxFTRnmwCZwtrqq0fay+ksb9XLLDtGSdRKC0s0U/FlwnsdJqmQtMhz9VZnS+M+daB/ieKORqyqV+KYUfnXbCWJbcEyvkZMtJYo2VS1WUK3oATnNIQxe/Jhz+vtOzXIZ4ktL+9drCDn6uTtgnRmYR035+hA3FTuFko3XCGNACREb9ixfRL9feMqqAzcVMIlqXiUPP49oL8MdtpEEioGwko997rm2de3rBI/tZ7v0zeJPToW1vpabXtggSG1ZMJS9u5yr22/P+sgv++7FtbKy85CUsC02fttyRXaoKCjiZfDLKj+ht5AoHXkJMstUynADEHQUnGgYh5AnZaPcDscGrM96DErlt2nAElqe2FpgydtKHMd9vhuKqkcBsjk+IKe2z7qEkcJQ88QK14SCE61ldQJ7xHUY7NOmkEey3VmpUDGbbBOldo8Hs7vyrPOHakMeeb9yj1afcR2651ye8ng0WyptAdxKJjtPrxJM/YP1UuUwUBPDxkpfGlR86an8T5weSrRDn4qqQQh+aWFfcrenzC9/H5DJUuaBLogF9tzec1G/ojJWHUkKKRRwavzw+gr01N7cYHH+/EbRGCcOS+XETPwIbwRQOh5fEAHZiAF4Wek1TZQaSH8kG/lwiW/MVA93nlGPglgaFkxpYL/tb9T0WS4dySn5sezrzuRRSlljVf4Tasa8P2lZBPhyxq7zFgi6+fRrlsNMcgpkL/I0oQWAOJXimyqgcP1Ox5a+2uyVgpjiCnAL4nNejWsKrruPZzvYTABPx5bAxSfT2bZFtlQ/soGCzmX5wtkmVqVJH0mC84ZZ46uqBZiWTgGCTSQIGyXeM3HXAVpD7ZgTPyHo3/mHw1rFirohW22lFq+DmlCImzvyn9YbWN98gKytuguC6zOUUoYkDcew0MQUuxMYC4V0R432Npo6OBqNVvb4H3JFAO+JDZUqPaRrH+1yCqz6pyRw==
Variant 1
DifficultyLevel
569
Question
Emilio's payslip is missing some information.
PAYSLIP - Emilio Navaro Hourly rate: $20
Week beginning Monday, 13-Jul-20
|
|
Hours |
Amount |
Standard Rate |
X
| |
Time and a Half | 8 | |
TOTAL | | $800 |
How many hours, X, did Emilio work at his standard rate?
Worked Solution
Amount earned at 121 times
|
|
|
= 8 × (1.5 × 20) |
|
= $240 |
Amount earned at standard rate
∴ Hours at standard rate
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
fullname | |
rate | |
hours | |
total1 | |
total2 | |
stdpay | |
correctAnswer | |
Answers
U2FsdGVkX18oy3v61tGlLHCj4Fg6DLGVgdnDtGVxYdpK7mRO3HlEt06Si3VSAL2kD1OCgW1ELiDFjIVPZgLRI6jgIZ/wyOZephwcSgWT57UT0MI8ak7k2w2WgZqs/J91apAydls4qeA1aAPNs71BNApkfIZjL7b7m736V6piYVIFKnCiFieaJWEeqvv9GWGvpkzi/RaEflEHvLboOnJucjzHCgGkds5KagY+o6hvYNvZIWltuA9Lp7JUF0Q/B6ZBlsOkCNZwOcEyAnhosR7AgeeE4vrUW6sApW+08RKr8cBe/LetCBjBAwiUb6mL4QzsZCbguDxUx8IsFmgC4lRywQvOFJV0OGCbgkk/nRmypADy28joOC3fwVmEqZS6a0NqmQoDpaaCdyoNb0nZz3TwQJQeRU1YtyLAVOfhWSNLBc6/81jiLb34w6j2jajbS6hgs4Ii+jxLfbV2GDGYw0tIjhZj+7gPAXU+vY4CfO8Ox8Rouk0voDqcCQ2og9tmzMM5tAgYVJkCVkTO/OL6T6wSsxq8ZcRu7ouIPxr7pHKZhGdUD/3yB/llywnuM2iNrOX9gSokFrvtrUXh9JofRY3ID+86MYiiW5m8CSK5HgMvADYs45a/iDpm6aEI/F4aalJoRJiqhfAiSbPyUzZRnbInbcI0csxkYBwXD49eM53n7RoKxspXCRCNP6iVZqVp4yJZKLwrzDFWzULu9XycLDynf87qoOmDX7C4q8PaxBY1mkQh88yjl3lTRMOtAEBIF7nsca/5j30D6yjUeBgYzwt8yAMXnaJWFygIJb4wL/ydWQSbkLq/ACXv2NQj/HzO+tI7rxHXfsp5adqd1vLZOsDRVd7tg10uADH/8eJAeLJd497EQAYiDwj2mNa9CvVX+A+3+bShczMduUXhMIIxylp9iuY6TUfA72tHRHgK9KmyMdwhgGax+BWeATFq4tR2A6N9hV7sMmDKjwh99GTnRgsvdMOuKgsSulxKmhZzAfze+nCq0ymcSJrKuKJEYx73PWIBUJn1sb1SQBNikd5BKRQkH0Wk4QDBmzX9mHWhW4Oj+jypVXdtQaqt/WeOgCHPoNI/sYMwwjzSelfEfKjPj9aEn2LCR85dUfySrrVlhI/F7qxirXL6gquzntP9OQAaxei86G+xK1ha+gAGKVOMz6rtyybXgUf+bvYaUgqwsP74st3L8Wuhwr3F0ZwNtlDgI/ub7il/H1cF9713k+CEV3X5gT5y0PfiHkDTEixT7Gfvbt+3wfSzIaPIJl4x5iHkQacuaH3nA6fLxXWVhuW9HShYVipxY+a4CInFpBZ3D+BC1zs4RXjHbKguRM+cyU3wSLujpI8VAapwM40cqcQ4vzMQAwJAn/odJakJM7qzEBThRDC4Lczj+ZYbz1B9EEv9NfQ5zfvDMbMG8n6nBrf5IILmUGHqvpTBCcJ0wn/a4Nz+Z2tr11znKZdy2FaLJMRbrcCeEN/R+zDrIufN0OgctgspoorH3V0uDXhtHW31SqIdYrzSqwGQQGKdAJfrC5zqzoZM0lHNymqeijcHvL4b+FXinCpiOzk5wizqWEJOuvIFDo1QC03zbldu8HC06c7zOuv/VglgLhfD+LbgGQhlGbh7EJm0kZ8qJRWgjAyCNwxpA40DuHSHxoSgyHN6yeu+MvghMZOFN/8pfs1bWHHX36DDt5hnOu9pdEHGjj7ukOIxfhYw6Lvh90Mv8c84AEESWC8AOsR99KnMsrLARmhJ39+j6KuLjuheLCG6jzCN7/nkaYgY8qAnupwVriCAduiXMka8wDU/WJsmhsTyVN3iJoYPUVkevmBWO2VRpnf+dgGcU3tyHTL7LK3nbw6ZdfhOoNmzR6peaTyuQMp0PFQf4KmeCfhy0RcBhpFENcaONnSea//euXgmVbfeuyyo6VRU9ILY7OG3eXnz5zwod+jJGaiTQPB2ekZ3Y+ovf6rzywwoUgQ/S++SzbMUMuHpFnlDvAlv25FkQ7/ZJzDxsnbtAPwN49VdYcxkDs1rHu9WyhiOD8gzNSyjNS6e5ItkjvrC/Nyk6zA6fcu7laOQqni/WjmvETKZgRsOnNmSduQ8uVZz6BAoEfh3oa36YcLSFAgQ01XxXo12nQv31v/+b52ACCeNNhMN5RbonxOthA7IJ+wlItEKojZWoKTKhqG1SukPILTUK84nIXle4z8om3MEv8b7o2Yabpr+PIwstyZ+dZC6YUN5KBiwMoja8a0P7JlpWF3DEZfWJuCIe7koUuxJjeBSEHNN9h7bwYUiA/ISC25ORg8hAhGzS1fGNY7/IcRFphgIR6NPkNLF8veOiNYiMkhwSSSkdyIEPEQZRQ9ERpngvMfys1tvLaWZ84/4Ek4Ha9ZlZfjai/KaBcSJY31yaRK/iGhQ43aEqEp1Ne6OrTuuS46G5yx0ctmLISytTH2uNdrNRiwJboAINMtDWNFunjk9n6bdDDmNclWVeXCcgn7cwtJaHDZy3gbi7yBTwv3xEv7VMIHFySgJe7vLyB5rLjSg/ZSf4YY7McQ7S6BZlDYSP3FDPK7GxeM+iPFBxk841WA82T5tkEMKzd9a/C1Rt2ccxa3aAHSgL3cXI9/dYVlftDjhjG+4nrPzfJDS2f4Tm288Nuho5HHT8HsONqUMLvuVjQLKPJC8fQxoBWDxgoeTw1vREXhJvJUl4xXW2wtHkS9mXjXEWGpdJ6T0iHFckbDzzhb6Do2hRSHTbqCc+ZL+eh2YNZgmwjKqQ577InmD3F8eKVm7ggP7nF6I75TU4syomRYhKIEveunjGQHRE4a9vl9JQY4TfU2MbUcjDeTeND2ospHDYpqgHzwZtwW1ZDMLCwdM1Rr1uLnBH5xsVdxgxbUlnWNav9+zLviRWw/pORZw7WXSMpZs/wBq5kvzhuH4jZWUuC14Vd662UJNlkodV5lCpmNV6NTCTkjVa7KidgopAJp/Cw00MGkjK9HrYG0JXjc/ldXvYrZUExQdNcestmMb2AVy0Y/asdNJhJFsGZSUbylVRi175GDmDN4faJUiT6WI+PqRrRXVWngPk2XqSH3VNGdPWFRq4Z3Q0Hg/90mOSleN/GGawY1a0hFVa7xENRillMmk7QdobRY6tugVS8P8tJoZPBFGSmVnM3DtUxedvytHjvKFLPQriivAD4cv9nztouO3J4LiyUN9ZdhnQ1wSBvkzMqV4b24Hs68/25GRIXYTP/BfHS4VVojXicQFYeN1fd9pg4QSr8a/MOicrqyc345oN/f0tuNsGo5KBlLoapWWPo43d5yAj9Zi/vJ0pGtkKpi1YY4ou9olajpmXn1qbTNJ67zd0SCs+dO/tbTVsbywU7wjGBBap941hoT/93qkK8ac5WgK6NLny3YD9vbXA2DN5dOM6gDa63BCLh5LjlfjzbmyI+2phGYltrzYPpxKFyWbrsW8vNN3yy+klfkd69hg+PcuHtjnj8PN/UMjaZFTCAHovGo8I3lXiJs+GNvFqR39n10Dd8hIIkqpm4cz0gkjopwtwUX1njK6Vo4Z8vsixtdGM9LlnrcSdHphW4pNnOrT2YfzfUP76rpKlxLPb9GNoHtnz7cYWlehkAxF2LNfpXgwPiN5j0AEax3C8acEv3sE1CHrSt3bpiTeyGYRcAAxDVA6KRH7/hgdaV1Wpi4/Niyeg7T9WZdelfCFxFYgNju4+T2AYCb6pilycDUUKiQjQzgC/zEsti+SELrc5BljODBPtpUZX2BuzGEatcMESdlGUKeY28dtdvHz/+WTMakAKqcm0hQOF7/y/kDInlnst0iFI7R4GHmg6QUmBY5fYoKubVyzoOrWVDzehMmxJLP381pylCsia33xPlEqGb+L7jjLulLlvD/VS6L9hoDL2dEx4qRKtGEy7EcqF/mkClJyxc6lBp8TV/68tUTTaW2XCg0NyzujAZqv6SWSpSnWZusXbxjNZJVrjBXShQlbOA47nZ1E5U2s07abJN4Ejr7QdA71PhQvQmlUoVX2GdBlC68Jwnek4P8J3xA1ZZECPDn++F92Y2qs5Gpw95P0prSPlpFh3OqCx0ou+Ccwdh1vej7gkdKLqL6xXamp3fuqs+WPo0fgUJ3nhV51BG5gUSqGl8T1VypW8xQySI7wZzu/N4gAE4GVpXYw+jyt5yYdjORWUrQbCVTBtSiv07jX/aozvJDeYp3nnNEat4xonBxxX/YNU5QRzbCGhcGOpEfRXMOO2gfW/9dE0S73KkrEUT0WPeyv2JCboIOY0S/YhoYKWogaNxb3AB8m9Ra3jHsRCLvCO54MAgMkqJ0e11pFX+gkTpUYNEkQHTgnAfUnRdFRsW6linBrEudgc+HeCBNnelpdg+400SiOistzK3wYQaMxP8iQsiYGDwaCOT07+3Th0OynrTpvdcN3rtA845jywTGciRE+spjiI9cBVexOaEBnP/tNCx4i4865dz6wujWbg9dadvdhB60492cllxyq8DRJALBcHPyZQl147BF2c7EkG+/Mmqhs2tQ4bJPH5QC8zE6j0jxZJKKWisrDQdVjLd+Hl2mtdxDilOp74ijESMOrxmDq6CnbeQN7gf8PixhWNZyiyS0lnx/ZzH+E2ytfbFsiUxC8j+o1AI+EzP14SMOAyOuHTAUK/zbJI+Yj4hko8hw7LYKrrm0S25v6MQg7DOfiOLkRomr9Jdc++OBeI27kKGJrKJ92Rs0IOKJGHdNqMYyecOuWclDFTa7s4VjA+DcF/H4QULc42KkyLwYRCotlEukESqjWdCj0Jmk2qTWrJ2vHTgvCpiJL+peFzf7TpOb45oIyEv2TyG704rUb5+4IVcxWGn4vOaMzz+UNzRnTyKYcO6/u0idYorC55xkaIetj3cv5WPMX2SUUUhGvoZgDr3k5z0V5/O9v7KbSjSwIg9Sgg7zJWVFqCL6EeeIbxku/Kkh+zbTxj2tI33nTCs3VH6yn0c1fL23hJpyHJwN5ZDAZEwKEI7Mu3J1MJS2CNjXHKoYILrgrTY4Bqjw1Rvcbf9ft4PtUFZqbmMZ27N9yT4ekSRk/6WLwfETvOpYrHhCHfeeV35biJr0JJBvN8A9HEcbnpoRkv/3lQKVLtWt/wCdr6mQfigh6PN5reHytuLJF9ovze2ESakRCsIbRxS0iw1GVfd4/Id/olgVv0vueBbkl6HiWwK5jtwzEitQrsZsNLMXZXF4IdzLCxTCPQcidX/vQ7UcbtGem6cfc5xp6vE+5N3eNlc4Tn+XO39edZ+cqYO4EIXBRqHxeCCUUlzZ6G9aG6oYXowabxYVwZDJvVkZiqjTMzXTrQu24Sx0fDoOO92xiQLXE03Qt20JK+Bj70eTcubHyBZO9AIqDWKycM6NV/5cEsetWwBLiJDTQsELkeak7tz3ZGwU7oflr2eGKdHSeHKsK2s3+6aqthFZxXdAlUH6Por4QItvRfmzEAgMkY4rNDTfzPR5109eDNX6Ecvjs7zyTIkkpiLJS9+8PPM5crSF0ilql3K+x4GG47Kga/igD4ynhXL03aMAHgx2iYc8Mq0iiWPNuzcwfQbro4ubKgd+Ua/vrJtturkEUx8AF7qUJrWlOKlOq8wQDaCOvfHtYd69rXmwTeEcAm/oJ5JQagtQVjXcZsqnSRkLQzbZaxVr3qY5KFfRyZZcqD4Oupx6cNZkc3EjFlNXiihhlW64GCosMvMyHypyp94qJWxgtNWmtARIPBkWi1o6E5c9EjCyq0IXfw+yVGYid3FRbpnuZuVeAI4D6KnEnk3Wcf8wbNarAjuDJUX+/KcqeWxSLaMi37STAiiDMygEhGKL968hjH7ILnhMVxyaOO4KEMJXJpLSunLriLgNFXU8tj0P4uLZXlGxv28jrlBwTR2cUYsGJp2VI8h3wvhPw8u7FFE1PcvI7doG+AakpaiQoNmlIi4OJ41qBe2qnutGnxt7jHPN3/Fu7mJaCcnA9nprJIfA3N45GpQoLVKWdGXNBGmv/mfsramh9QrVi4b+EZIa18uOQQQMUNOesQGATQBcPkBoLfMWTChzqw5QWjiNRr4j4yVvV3q+z8fc6oJkJ/apSQPsN+cKXmXlpNjB8dmNKdwp7BWJo6IAKNvXcigKlxdni7PQtiaKNBBh91wrNL1h2oVbo/YqMRapDA+wv4nkVmI/T0jRxxJWGadamjbue5RKdBSwqJEslWJ6x9gE2lRb/TN6h2LEdbgd5kPi++7SVmp6/37w3UEi5/LySil9a+D0QWTreUhqHLuse7h4AJSTzj3rG0GqktXDmtx99rHs6g0CAD3Yi2HJ8rxzOuI0oF9V9aKV1WO+wxRR7V8UxFJ6KHmd7e6hekoM2z0LFnlJo6M0NX2sh6bXgRmvFMUTX2cbGDbXYUinWebvI6+9Dfm/nD0Wlbl2qfsXnzZh0ULYlgFbBcccLwOhCYmDYm/4zPe6Tv8CVaSKURIs1Y9C0PJv4w7yRgpTbkY2egOkKz2tdKjI40h3J7FqKwewI9dtsrejV1UcWDDbYx8+Gp3wtTKP7zvy36yD72qRjf9IO0AuI7MkDxcd/PvyFBlk0tmahWt22w/VAZnp8TrY4EkN9+jjTfWs+rzD3hb74/22T2+FB/f5RNEGbEeeCCJjSH5IVQ2LEjZpbHt35fUf4c2R4gv4iV4MnYkhTD/MddETioxFQMeAh5lIBIxVa92J6xlgYwNZC/hZCcn3vOaXAHF9CZuoXCDKNgalmv7Xn+x2w4ZBiIgUhjiRPholncXE6iN7YvGMVN92VS9jdJz2Z32s67YjeUfJ5HNWyuNxtNL9zI8Gm7gSj1xJ97XyK9VbBi5gi02ltISrV+BPLcCMuD1mO8d3bGBDJSUjZ2r8WzoVGGkEQBf1k8APtopbK3jVjxtASEGRsg2i6M+r4fuZ7kLDJGXTJE1kTwny/vjgAN5hwtscKb3q+VA7z0pJHL2/SmsgVHRHaOwfVhiOBjIcgXTHJp/0z5i+2obnt3jSU+z/Ket+PrAjw43yAbiUZOt/7T4LdSBEiQ0dA1TzbnHcJ4hgvljfsBC4WOMpPSZ3s+CX0XIgirpej+A8net2ZaIX3BYGsn/pOx82O88qxAvUxHv7b8pYSaQvBJb+FWpZaRIs7VVnRNY/LlYV0uiC8d6zMdg+7h8MajQA18H3mj6ic/zmqEDELm7qsXzNgmIKVv4YovGo+9qsLfiU9/vfLKGU2gtwppycNnkB1+LRobxjsPA9r597SqewJ6X3qN+kopj38YmjlRTwYiYabkIZ6gLw6K0Ybf7AQhkQnwKZ8LMZoD7VFTD8PRJOSStikt4St2Vh6LjuUy7uzmZpANz34UQltB2wzgLqD14vTzIzAXodKoiQvt7DqLCqZwewnd6D+dHg0QidbQB7oaOG7zjkLMV/Q2dshQ7FSMjoOpXklCzNXpXZjkN/np00kUJgIfv8IoDI+RdcqXTc62tst+2UrhsCGbzB4REFQ+gORQQkDhD3sa0GYTmqDQgpCbhTiUxPM32k5wCWME9tBkTixedTX18807txTtUKnzXbLecYT2go02KT9S8CofgVUtMw/aGFaw9emktiWDluqNvVdnQIgnx5v1JVUzkH6+n2f61gjp6jMjxZcZScdnNOy2i38thR8mV7dmHn7RaD8mYQN8QjrMajuNIV9zQJkqjzwf+EO6tGO2GJrkzmqWA/lYGPNt9eAVGbWZz3LSDVTzuHQ8CKJNpBu8apu+o+mq1S2ic4SlELeURFa9vh+qKzlDS5W5z47ydyuCm0EKuqfwVcXbjSQ43wGhS2wO+8M467MBU2D0i/A4rk0kaNXa1Aro0i9mUiHCAbigeRgeB48VsN6wJHI85asogYnfEjFybVsMJdYN2+vv7ZBRRxWwoq9iae0Gtn+ahgqxoZcZtH0j/L32M7m9+7EziroEAD/yH3+0fqeruLo9bTik16qRTR5yRptbGdeXAOKi2gC0MFlnGr1qBia/wXpc89Dv2qfBIl2Qy5gFUGd5BRi9okq6GhyT3UGtJorQUlVfMDXeGfgo7sTtTkrBnh8f6Muz128CUWnL2vVaPa1luX0uKSrNDPDYvxPdPbCX2E3uUJT+lTwst0HvqtIsJoXh2fD+CZ6xnzTsQ0W7XQVhJCjnAniUoncO+ldMnMopZS9ZHBPHtkDcDginrph/c4fr9/N1rH5lRp4U56Ds974hwZrtQ0zf0QmqztH4Y6U9skyBDw6kBrYLv+zOQXK7iPYoZCV5TtCGcyXO5Ifx/ACQv43wEdD7IFwT5QSHisit2XLhEeFjzkQ9lWjYNHqzfAoBGTLh+GnXsT2lplUMCBGClZqqgzHWftpIc1J1jQRskSonaV2yMnmVtqXQbZZgNIKqNZLoJGsIKkDp1EdOFdC1vvvJxmXztbS6jCUiPm46HexNXtdWzdhBwGQSve0fWYRivp/0TIsaK6ZCBpGTiudeyZPF3z62epNJVR+bIaeRI1rY6YHqJISKOyN8VbnN2set650HGSea94kFO9lP7fJxWcNGb6GUfhpSUF619ugg/mq8Zy0JTfmvRBDHS9XLJr63Sf94+Xr9SjjNfcHEpkBEg/9IPrffOQkM+qYIZm0KZ9dS95UuJm65YpPoB4S5XZqnWaHXipQ9oX9vri9SlC83yMbkJq4QWi/W0NXY0l9BWDZoGIu/if8C/ag3iLNWwcxEgMJv+w3itoEX8nXmMxS9mkEygaW2+S2Dt3DilVeoD6VUop1puTnK8vOhs8PpqFPtN4CIjjsKCYKCHxD7tqJQSE4J+L6lWXHoT/bEPnxCzyMenC3dJsaPyugVISnYJRY8fAvP+xrLnp9eH8ICBPGQJarqVOlujXKmJrOKJnSposbdE1mOUAX5S7InENwfD2Hqf2oydEbC3ZpgqqSEZHZujLFNY0aLfI4h41chQv1lgavlDK06woDxmCgfKwljX+Gbmv2YKaCocCrgz4rwVr9Ik3PqXPs/4LYOWxg9gjWawfuavBMdBo3dYKrqF924x5QYlU82MVWYprz4L3gYGu0eQ8kzZV4yRLBKw/MUHmFsjwzUC2eFzLLIavjVnjs0ghkiC/uoGqB8CObCvFVanDKOSpfy+FB5Rsl8d4wYLkFUDrQgEgD528bSIJj3ho4xkK+wYgUVIcMhC9CE/BIJRkND93vAsNzeI/EAM+cB5z+N12kfMa/8+G5PQ7wRWzEjUGTkZwv5hHS2vZv7+Q2qGGzqvJksRMgvKNgCNS/qxhNHt9Fu/gZ8DJir0AEGjGUBjoACTI5rqWMO8Ztjy+W8UwR2h6IU6Sg0E520V1CGUHULjs9ETGesyJihPT2nHvkpuvU9BRgs1R45u1Pq+vOINGRyB0Xu/lZ2nMEHB3HFw86qE0/O97UBVnu6j40ZgNi/KjEiZBM99BCKwWmygNeCttGpAA3tB2T2FU7dBXYaOkT+o7VphWefKk4w3W94j+grKcEcem1B7udA7skajY1tSgE9Oi4lSLU8HZidIg4ORJVXP4vC4KR8bUW/NFKYnWBbNcudQi9L28UGAYz2JyVy8KoW7370AmH7yrzGNtjkEKhUt7lWktitEyYMHYKPJ95N5uaHYZ//yn2h/egxZKFBDkTC3B/C8LI/Pqf3UyHb46Fcc8MqrjMCZxkMmKt/5yZZ5ugVYLi7/0oM1xD8A/vntcaVgT3rDXdXPjOA3TbGAI9FfdVjLxBan93nMhiaH/IVLdRjf36BKZJDm72+ZvAqwEShXxK1A==
Variant 2
DifficultyLevel
569
Question
Ryan's payslip is missing some information.
PAYSLIP - Ryan Reign Hourly rate: $30
Week beginning Monday, 13-Jul-20
|
|
Hours |
Amount |
Standard Rate |
X
| |
Time and a Half | 6 | |
TOTAL | | $1050 |
How many hours, X, did Ryan work at his standard rate?
Worked Solution
Amount earned at 121 times
|
|
|
= 6 × (1.5 × 30) |
|
= $270 |
Amount earned at standard rate
∴ Hours at standard rate
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
fullname | |
rate | |
hours | |
total1 | |
total2 | |
stdpay | |
correctAnswer | |
Answers
U2FsdGVkX18ARgmEqrYra4XeXC0XQfeiZMOY2xg2zLGxKv6fZFtHO/ywDP1kpDVaUSunC4P49O46rKesuAmFeVFr17LCbB47ch0ZMRB6eXh3ML5K6l8baejFz8Jz/UBphfr96v0RJpBdgehnNP3rZF9fHU4cM8cu/b19qqPK/c2sCv17KTHxWOYwzovH/upQuStjbzbYFJHb7VusqCHvvsaX44GHOF85JFmYgtqoAuReGP2umUfqqbeaZ9MGWwKhZdV38AESPf0xt4w5/ks3EZKyQB//6CgxCINUdCCTv7fptIYKVqqAQ4ceCcxNPmqCstShOMjPO7z4eIG2aI4OOLcUGHZh6A7+gG5It8DUnhm1vaWNUQpG7XXPuMGiPDqlJMxIP7TzeGE1+WkpDuAUyWINo74t1kF1ec7Xw9ejr2c/Bb1TTeuIoj0Jj7nKggOPVKMy1N80LDZRD5iIo9wGKTeHYJ/NKo0a6oiSy47ppor09UDeHa4tqoflqw23lET2qy3phZi4At/C4ySp24V4zIQ94jGJ2VJR158zRa3unEH9lh9M6/KWNAOV4umudmVp4vnd7/5KTBVFUXejpICq5PkEk17+ID4q5GlE03l3ECxKBWakZ7DwHDHh7bZQSZkl46lf8eZPbITzZgswFBwGn74VirZoVOreKbcgtNYIQgAO+eLVHUsDxlcmO0md6lv6YNNJ9etDBo0VLIj3S3k/abURL+BX+Bn8OB79sVwVoOs8pUgbjjfdLi/ZLltQlAhWedkzhW9luCQA/MsPhAc7xzXPq9NOP01PXMmcXCrvWdPewVjSSJoUny5FfF8/qqIUWRFsMRdLkbit9PbfC5PCa+xuM3eXrh2wBdSkMwoYj6AcNqCHFo4hgqR0EZ6C6HIGTvX8HRVXbTKHqWYgdPM2oxdCC1uR7KZFyEueZ2g2ceB4/IUC8x2rDMdjJyUAbYpH3ToEcZmBJvFpjHiYccWL4MZGohSv+xLs0T61hadX7R7vKtLTakO1I/Kl/q3N9TI5dNJ0fHuoUPbJkNhvwEptKUEPxBxc6z28j6tU49CMkNxVwCBPK7rdmUIYyQa0h0RTbnDC/hz4GjJFnVacJ3djC3zGyPUjb9TX7Gmx7egEPku9kBiDmmTLu3P41KzyDDBhEG/jN0YItBeH5ut9F2z/23NzJj7hrpV8kGt4kPY9gyTaTxFD2L9cHEkviQWRi5PfhnuDkhTpB2MWFW/MTvSSdqnO/SeHgCzGXE2ht3gtfqo6T7gCfCzHm/OL3mPpm6PBjm6S/WZepBkFOIM5P2pMpq15vf9s2qRcVu+nJ+ocvbINjeNm/bFgh9zPK2ZngStTcDdIG/VfXbbh//D8ox3vIojZBVtKhdV+CLNH08QqkyrJuPW2AoKpYwSL53IGcjkZy3gxRY4cokFbExJFiOuvSROMThVO+3sUWm44U5USXOTposAytxv1hpRNZ5PRp/eiBHMGteGbmedK5OCD+w4IETur2glKjAwqyUROz6FM3NfLfgMi0YKae0R4qjp3IhhTRX/eJdvLQ3u+y8CzKfxTVQTjNhqIqcs/q/MUl+KJp3mVOAgzfrAeCpCk4RojFQr2wNTT6dHtzINJ3mby8PKYEHH8RpNU/+M2wft7UepFb2NOm9utM+symp/MnuEj9xlurLCzzEp9/LbNxsjVgPPrTetbdxFOts77quRpSRyk4RAJhAPF80dyUuWxd90n3VPuxxFB7esO0VCSfR+oIw6zxwxpXtuNJzOqR5DA89ZwKojFP8HOVgNxUEEQql7x6KZnTH+yI8j7ZeqbyR8TZGNus6Wc7ht1BLyULW9vTJDXVdQi+6nColkDNR/+a98b5bsL/pRgTWCn3yIROmtiMOYEdl3G6jCuPoLwatGpt9aTTdTp6wfxF4YnJRFwVWx5FvNSapp1HvzWXOmW/LS+Y3mAgtV8BYdn3wmiLMmfyV0pWzBcY0BvORt4hPYZCR9MODK77OSaOBNs378F7CdY/pY0WLi1jZHALr02AUH5i6VRyQnPRUQBg+PHJMhRjXSI1o7pb24ugrJw++aD03rvohf5mYsYhDmCT2gIDABgMiEL4rXp4kKHlqCHiQqgx1h5AQi9hPef9BBfEx6Tz6A5GZeUsSXPn6QflCcDIz0EvLMXHhrn/ycnhX8zirhIc7XWnaUgGzPcVlbL/LcdkeQVzFvYp5/sXvJucsqsyO1PRt3I/o4pG2WwYbk/v6AEw6TBxeUz8Bs3bgGrxcp0qgXNkCqrA4Esx9fIT5zp/3R7wWqQUMFU+YxQ8cgiZ1o/rW8Y6Sz1yJ/+1QWi/vTahwlbnKXQrQPJHWpg//4tOjakKUZL+XcCtswxPe0syx0C0CGuWk33lO2PsvDlPKd1U2FeYK1FoOr25zWLtWjeKeGWhS08J5pMf4MF4yPr4EBBG9vn8L8IaiuOa8VPolmbwUKJ1FhsZ5NdRpDrIBdQG6Z6jEdMhU9IZjxSDubx0FzkgND3zeTjyHCkcRF0DOkIxMj6udduJext/+vKAPghIK+LZn1vFn1XdhPKQhrvzPOPv0Z/xNXm9jjf1udCmpCr6vJIJeMFeYTOKsVwvLNYjOGXZHOEWnVCRoI60QI4zpTVyrz4wsR/zq4a7JeXv9VLP/sxN3oZ7RDpa1bYtoh0JPuzsfJdK5R5ToqR5f/zb7QQYnLYu5M4AfArdWCyoIddQN79v3YBgaC8JXPOLBpJGVtnlLr+2WZFVmdXippmHvRs0hraqaGFTVmDfTriLcIP2f/ckAHlnOKN7UW9xF3tYAquM/UNwXo2mZfpRixyWpFwZbxoaxH/1XJPa6UjDqiice8LYJ7qbyQDnGHz3RXyIBc42YyQaYQt6NZNyvlZdeh3n+JN8K+aV2mBsV8aWl+ZdCOCSgJI2tfnJjc+8ASQZMmC+6/SE+aQhF0o7v+/xNkr1QiMDPPklW3C3J4tnSS+XXH+lvFbpV8lj8DT2XUfeSvj1rNDNpgyGRWf8LnJTleFYesbQxob/tbQ52K0cNg0OZzxoeg9PD9jbbF28MXk989TKZEJyP0gWrRabnfKP1XKWswHdfQ5VqetUYYklc7niYodcHvzETfdAZugEZitXm1fuNgR07vtxQAhvXfVcpsJcT0z76nUHiONGPpljJyqlvq1d265HhXB6OM0ZgmIT2jtPK3mnbc4Ivs61+oNP9EUHOlCXSNMu8PKfwgc5mwZWSCs9MDunHsLJlVAHrI6qJkCwcjE4baFN/SiqRBvj+hQtHocrj2+F38h1HII8g3rJgwcsgrS9an/bvzGvJJmQUKeyylEoGrLi/KpnMgsNaWlQWIjXsIXXaV0qRAAvYC4gSldmjr8WGFryARSyfCI0BNdH4D47kcaPJwU8ukDEey6nbBHvoP8GSV38KbU8KYFoFK7g0H5bE4TFHxvsLFc1vv+/0MFnLdYclzWw1MBGoZoKTtwr3x8dICFtW8Qb0YN6GbvmjlsaVi2Xj77RLJrwKJwYN/rNB2syPMKqjNOzHXKf4fTLlXdQJgL4id/By7QlhfSwGi51HdbNRmGwzaqp1nFR0oS8SeJdMYAdEfIZ+WdrL3meNiRJpRVeULPzaVBEthv3bHqbG7w+nYavbP0vFYGf0H0iZbVHstMbCiUCkDEEdQkMRJOgQPraxhP6AcUit2B5QbrVdSWMzDnKTAj8XzGQs2+o78QMQnqYzNx4U88p8DeLlr0+GPcdVcjWDqdezj/zgEkKqqGORGKyxXYEFJ/D3l7hOm3Trkf/3hnimJIhGx+M+BnKR3YPa44+HmvBzraZ2+vf5zmZohRFQCdGfG34Vt9kL+QaNeL5bM0+CHN/FPh67FFGfSmb+HdqewOt78ns4TY43kauWFBuBt1WSsA4Jh8MZ6F4I17AVJLauTQeX3OhzIJA8s6OI8O0GIodmSn2xf3bxjdpixSc9NGieEQKGiGshIOib8ewJloQzXSuLWEAKa1WB0uU05IkvHKuHKlinIf/mrtyniMeukri6eOllrLqvxV1Kh+4N/Aia1TrvHW0aaBTv16RAIKVbHtjKBffSDiS6ck/F46m53P9TNmNDBX4a4rqxyG9hAXYm/A5RxXd3bkoTBCLUiEB5krQ4GAzteMb4f3czLCWxfRS0WhcK8kChKRHpqm+WqXPnYyeMXhqw67H4dvuMSMfQitHnAME9E/xsPoFWV0o/837vtkTxVtN2KkaBbIdUUU4XuKMtqtbBRa0MIBl3KOfzm1gIqYJUy0kwS95VM5iaUda6Mat1GGawlGlTb8vjcE9B1gTZNL7N3SSKxbFV24JK1sHtNZgNEiF35OgwyERx6aRzc8SomyG9tR3GlwyT0gfrljSx5/rehdav0pzsIaTKCoGtWXI21xUSGYn+TEXfDdlm1YJhdPD3V4Nd7Wdu2DwZf4sREwWHrFLLFbzbx2ow+zTYTDzFV7/8cM2o2vQWz7rGpHLMiT+txpAff25wXRnnd7K+qk3t5GlKWOn/lPD12L8WjPUCBDg4iI0i2lkHy6YRIFozj9og32g8Kdtkswzd3EzDfcIV66IUVkcmZtoK9Q+2zWVMLfsUcmDdD3DWXa+kRwAQ/4CWi0DVmBB9S+QqhS9auisVvVDzpfBzGRMJnLZL1uiLAJkNiy67pPeW8ZQob6fWUQKKpmwd1Cm8o084dUdHFzEu8iGqqcS2c6Qi7zMaTgVdiy5Rt9o9x69CbLkjdx2L+5B+xM1tw50sSbYKtqJBlmzBW+j1GP+Jq6tw66cH4NkIsVXZKkMX1vtnnDefuTR3aTu9tI67Y8PAps+KhEKVcQyyaQqoCup77i+SrF2yKAIIbS8znTutnj/RaNm8nwprCVZmTGcI6prfu4vRPbur4iioOU+zfxzzHYqtryiu0mp693OBhe65fbdktHlevBbvXaIqsLwewiWweDirFoXF4YXUDWmgbvO5BFnIn3vtayjOKsTHtBH77EAUm9kPzQsLrjhnF3rnULPowU3AqAkqKOM9GqgpbfCHHcyFUnaIxFVrN/7wg2RG6NGcOp+Ccw3wxgDS1F0cwbMov24H3US33TVt46ZtCbLqb7K6E2dPWXVAszKcAXFa2os49tZ4DI48U9Ftm/sUVd2N3MeOt5SqIte92HAfkIRfKbfq/ICbooYnsTgzGL+2Ja01vN5oeSFV6RgiE8oRUeJ5Arq46SO/21XpYJqM6wDwMkhP337G1fHYU9osC27S+iVtjFqP2pzVuzl3tX1PGyrmPsE6d4N3RZeD3g2RnXI4OwaCyb1JZV6ab06qLRPTfN7kxxfk6ktIbIc5RMfbaBgF5zuiwRgAKI7+4r+n5hB/RlRGt+U0XSiNv+YZIB1hwVY+0Dzo/ks4avMdTMIrnL3+/OnRbRUNyBqe2b5Xo0OjoklxztsezPAYF+GNY4byzc3K8v/1uoTf+UEBMrf4QWlhugSmohDLH1nG8LB8HrDZ2BmeIYqG0SG9UIr6CoHS0n4UhcZ8JZnlt8fPCiRYy09Tgj2f3zM29RgtfYAt9chRCwgdQRs8U6L+iu9TfOMroDBna6Ag6MnYZiB/pqkpGNGEiHk7Cw0E5LsWvqWNgNzR+TlC+kFbNpgLS/I5jNVqZvOl/H13RGIMOhIOO8NCsRlK73oOBmu127IhNikniXl9sePNvqHn4vuH9mF8B8g/gjQRuK/Uy7a7QRull3XtdXbzPWqYiaYqY+m+ywI9CTDumqMTW8+AEj9JJZa6TazAkkP18fCRNRcyLvOZPSDrGTdAAnYxmbAX3w1O0hmPoGIkQA0wW0ICRVarCpbUzrKYwEggmrKxXMfyVUCIgJbvl2PVi2CHWvgTMAmcHhT0RfsDWT5cWyW5HpswwD/7vIoV6HEJTLkZo4LeBGdi5NMz0BbfFe2PZlfQP8ABVV2oRk21/zqKJye2JNVH0hYhmXPfPsL6blHjzmvSGMx/GzF5vGsHQgh31LopLsU5clKAQc36FvTJ1ru8qA5+D/p08Q8cNVmfUH2UOCY5HiEUzbIuRsUwkP509scNyfdxSxS4vtuKP2rO543h5LZ2VVAxlFTO2kVSGUIrMQhwTIR3bnBiwd/LN4fXdnH0rlQSUgi6S8CtXiAtfYU/GGoMJr6+0TTvCsPB5WI36Zj5fteDOrEahd89CSRdCPb1CHCAUWd1XVkjyJJqoMrOeeyt1dgYOwJFtl+YjMFD9AJTyAETog5ffebNF6Nxt9DLxzvVtpsO1vwgqViYbMj/lKh6r+ABLGc3rNrYmpaE4Vu7doD7Q0UCPysIM4w91qmt8xt8eTBv6OWXUWkHDTr+J/9gQXyzLpSjShvaFaQqptaZnhzo8yLf3+zhKcf+TdRcB7haZwrt5+fGqsMuPf7zOVn3nes3xRqkKqNxGDeCATItNCGJl84ZYT0hVEFkcskUbPpIXHPUVYj6QzMBT0fqxANBAT3HI6ds2V7ldqms03YUs4bKW0Jm71ij+h+B9TNGcqae2jlUwLQQfvfdVYLgtK7t9ZbTOjjDOydfGz9XK15/VuSYkc6TfwjrP7LbbebSYuOPX/BHXkrxU+2w4qFnfOARCfKNDapzoGsp6OcC89mYoeQOPf0sHGvT5cN4cFFksvgjDHKBZjNx9z3rqhbl2DOFyEkfxEm6JFuIASPbNidaJSOtz0tE3RKgCfEUUvpAu9fm47c0Hf/+ftNt9z23uoiIHoy7ezGznQj2pVN4/m6FTHfcMA18pfiBCLJ3Doesk395XPLjYdqZAZOpPmWaPvbn42J/ospU13vEixWw9WzJqAPnAoDKqFt4RyHnw9vWmaGfv4THcppQrg+rDuJ3WjSB6BSi+DaT0WqJuBGoIvhZDLijyfqniGXLd7CSEsKwU0z2czZCj4j7KsXZRt7u+7YJ5Ib8sEWTbe+VT0l8G9N9kXrV2og2LoRBsCNlMLoLHT4GnIzHIpbraoq7WrFxK+F0PzJsbb8FtHXkkSQ0D63dgpjUJkW/EoshSFnT5eP0NC0PYM8Q7itiaLTOqFGP8aobMpEPbu4docZVnCNeixYoT/ZNNwnjd7H0zx1NvrkbyWSHnk5OAg+UetTzj2u4kjWSZYnk9Mu7e6VfL7ihO1b6fFV1DbhY+N+EE16/s8qDMVrHIyrZHYeTLNTqVuchiPPCueuN6xPn6CtgUMG8m7OofIbQaVWf1VOJ45G3TV7BWF0wzYWy+/xE4uCapwSYzRnFh5l9HhFNFhNWMs61UliuIfVCjxj/jCs0BA+cB4+KXMbPhW8TaWOL/mpapX7T2NHuViIQuyM4sIXQ6fs/bQmK7nBBXMv/yqULQnMxaq5/RUY1Y8yMBFnoieeYjQxYUH4947ObJyM8CET0ezsmkYKowvZPlRYNuqUxlRblVnj8q/p+ZEgOwpXH7Ei60YM0PF0V98V2yLaj+iEJKyrdk/pD6bdxOZAROmseskAsqmq1Cdf4xe6Yy8ewcuw62PDqe/hsdFvqaILwAsx/DZiDn8CXpHkO6y1YYOryr/5B6dM93rpUZKDMZqI2Avkla66IFmc0Po1b5grbxmbDWiPXP27HJVBqEXi1dSB3QAU2Yn6pb5mzIlBl050UFZgimNuz8Zr8lS37IQP8aFhQnIIFK2f+vzciCnLODa1sHbO63j+vgAhwBRzo3JN87lhGsRl051/4ny3x9Mlx0xqlPyzhv1mryAXSDa/+ApdM42YqE7DWPsBBh/uNr3NRMDlXr4/Ly50O/vqh/tzim817lfyC9SipWE6nAiBzwuA/BoioCy/Jv28wdOlDGnz+WU0C+N8MPbgMQk8Ke0lsGKjti3hSJWNpNIwtIVmeUrSl3Dk04DwWXfzL0UUOLBsAJJQc7zWZ4yfLPnZVWCzIHopd++939mLzWMmxjzp7GwQe3CYQJSyrKv27SrLGr4Hg/KkeVvFgA/wDNmlqwKGzJL0IWrisd7H7F7UCyOlvIUjM+TMI/0ORa6ROQPwIURWsSh/XuoqSchCyfeM+faQsh/QfbWMwxdMNBqwmb0XB8Ts/zvWYO0Zf7mpaXHM60M6+HjYpN85YdtyRBjSEqu0+AzXDaEmsOpKVZFQoj7xZuAt3SIL3AW592d8ogJR5vdbmvQz3nSK8LTn6qrHDPIqMaXzHQHzGIRnhVNOQIb7Or6JjaxqcqfA25SUAYrz2/bhb4wujibQSpzbq9Kw/7Ms70JPwAHe7LNa+g7egivJFczu7DZwS7wu8R/Jf4oI04g98KtESL1iYO25Prb/E5qpXMhJ8aAblrHjM9ggc+T+Z2eWpwgWNqXTspSNiO9ycaHUy4MLxlVG2PS++v0iTHLdpZyDrQIVKdCxh8qQgE/cYlDKSlxR06G6sDFEKZKA8bQSEzhaav58KrnexffOovGk6R5FC87HzweV60+vNmtFRaOusEnLBh6UwWazNmW/QQJ+MaKfqhKbxjsc/3y9qWWSGu/+2t4m+KK0rp01WUPmQV7k2xGAZ2NpJLPHbVZStaYy7hJwD8akgPYVk3lqy93tNoyjiSm9sdZM8XOfyPkObyYQLb8t5NRBqaBra9MARLzT0xf+2Qjk8kI+lCQKp89dg/BQJtl05YzUshLJUP2KEWsTgeca8cpEu7xs7ZZBkJ526DccH/bG0A3NIcOR5p1cdZTbpJb/+W79q2k693l0OooH0GoqDhzavmocuaHv0WfKnS1WfYA/K6uaeRlSqYe8HK+ZBru19xZ9uiXWtKbn4SMoKQ+Yol+xCJj1Ht3l0ljOAgewCWYRhRn0FEL/btsuDOHq32aOfpqSHCBdlx/+EmZk7jCYCJ5xJZa5EMOFyHR+rDU3h4DP0WU6gnz8hunJHQa1JAZqKaqHjAUzNOQ504c41HBceIjYCluCw4snjQjTmNAsRu1UrF1opaLL1wumNzLKaGTbWdERBb6rKycFevxaT4PPq1cvC0BuB14SQ6zut27ZniTPuOXDGgSxlNChtPZsLDK1B2mTwQyFEODilyxe1EmllJY9DJQ7QwwrgBb4B35f/LsveHcb9RS5A6Zica3gz9n9Tlm5bnB16XHfkXHFfXiUyVD6653hbP3BRxXDEnUvcahoSzzV4wLePJCgcohjpYf1nJn0nak/cgj+zmlHqDoxav63Je/DjS6KwVr0nB/UlK5ptwFcnozpa+xPaxD4vkz+OS6usmuctzzQtNIBov2CPp+3P7VwpV1WMu8Lk+BEl5Vlfy/WEdOdZBa/ycfGs8ezpBAgHUf6YNmeKCIGSh4r75IcwmBOs7lciz/WfD5Kin2lZOgDtBKWXp2RanuE29bfet3EjHbtBpdUB7GSNhrNWVkCd5banbPdmqSkRjmSz9Z9v2Kq2R4B6qm2f1/jc/fb0mRdg47tHakvFp5F3G6yeFG5e1DExCLIaWgLrZBM9zxB+A9HhdSWcXGXxTQ/faqbU0eNaG3WHmRkowTt1KGKlzUX7NbUuf+Gp34j2aMgrQITJafSliXnBFssgR8T26RtfOq6Q8b1K85CCog9PJaDkR3xQkMNtX5vClD8YmN1eMIiThncuWCzo2sAY1DZW3KbDP//Jo08WBwl5V7xZPfrRCQSz4DurW+5v5NWHOkyYBjTS3bbGatUUAgPXcVdVWsVW0K5UmQXXgRYuAactxmU4hkjiCBNcT3p6P2RhXNwYfDvnV+6H6B1nmklyulbQb2/5IgmeojWsca196wNg+cdbywTHYRKvu8xndaeH6GQYncWME3ogjoow==
Variant 3
DifficultyLevel
569
Question
Rick's payslip is missing some information.
PAYSLIP - Rick Ash Hourly rate: $40
Week beginning Monday, 13-Jul-20
|
|
Hours |
Amount |
Standard Rate |
X
| |
Time and a Half | 4 | |
TOTAL | | $1560 |
How many hours, X, did Rick work at his standard rate?
Worked Solution
Amount earned at 121 times
|
|
|
= 4 × (1.5 × 40) |
|
= $240 |
Amount earned at standard rate
∴ Hours at standard rate
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
fullname | |
rate | |
hours | |
total1 | |
total2 | |
stdpay | |
correctAnswer | |
Answers
U2FsdGVkX1/1Ke/OltfEe1L6qj6llfnyqT460aH7XfMPrHSPGWapyncAh+wopSEuuIsiRmJ+gNshbnskT8DVsRmJEwvXmBrsvgHxwEeOxGdL4nErskWkdvjvCg1IQcZP/gIdyRbxir702diBxI/CUrWbZQo79rc3xboHpw4EiT0YpNb1TNV0eb1KyLUjvakUFQNrNON/h9VhYdWYEn81o27z3+h1d3oUT6Yk+JURXcYDU1Gz3ZiBRszB/+YCLiHUxJqcFRxximD/6KDYAZUiA+ckVdRHQyY4AQbL2fp74lmwdgrUnv4fjQLBYbH7DaxPv6Sp15WbHbV/7OaZv1NfJXzVtwt7d9vdha6LEQZ4wkvMIZXMStawGJnnqDEtrmiQIhQy1sumYAhOQFWGRbr/xZub8ysbA6N7rNwgRR8NM6R7y5UCbGy9SOZmaX4Rq7rWzB+HhQ4B83UtMgeRHzymInWPD46EwTq2quvW+8q34Ng5rGh0iJ65Uw2cSXJ4er16XKKHOO+Qyc1lkgcF69QVA/I308z8TTQRweidqDmF8WjG7yzBhYgg/aS6O9xHhHIg60e1O5rM/Z86KpmUp1eXgNgChnuK0SQ4ZYr5OIa56QQM83lNxgecZOGiqCa+8QZknsdb2TH1mIGJpe1W3YqvAqE1NZitqn9krfqZuQQckTx/28mOFh8ige7cqosXHyOWyekdIjP9iUcrplPBjjz1TKtW5KhsiiBFMfuzGgQT2KXA3hGFhro4yrwCR6Xgb46xoON8U9LbDdMxd9rMlqjtNpyWF8bbg8FuFAN5YxsZV4MnwvJiQ6w1fEVrEd2Eb003aG++S4TWYhM51Ck0vpU3MDBOyOHdMg/U/Lq8R4JlwGApaf4ZKZBl1fJjJDlwr49zJe88JGM1vgIomkdtHFbzkOA/FOY70nx7iUxFl4sbZbJgsJY7Lm9sx0Q6q5jsujdHmZ3svNI0nprd4e1VmKYXKXd4mWHv2zBNi9mvXdxoeyBLyXASLp7dk6hLtLvyQQD8PcKd6SVHCf7V73TLdr6j07F2vOwLxoSr2Xcn85h9JiNhJMPy6BcdUsPH+w8dz3qCzLbH29KruCFsTsJcUa2yMJWSryN5piFOPWVnaSLxZ+eyHjSpA+5CpGvvjsblG0U4RtXBodPkC7cntI7HajJm1v5q2mwvxnVxHTwESonQqhDGb2ZGaYCylEkEFHlq4WWuQiQgfl7Nzs7d82liOPWjtxzIGfGSYtYJDXCIAqLIUVdGQAsviIT7pVe6T7Uo7422y9EkPwU06Cw6XX8aSgDbPkPpgI60mazr+AtpF6zYo9YTM+xhzmsNcip3fxcj+Mgnil4siflYuBLbTvJdmoh/kQ7f4sl4CLT48bbS3rpqdIr/74R2y6VY7yShy0aXLZ4OMeGZr0Ye1lxy2qKlxRI/ElZ7o47u3MkSd3qk/Im9TU1rLlT2BwCXhGnXxSoJtql4p1f2Wx3ACluL4druVvOWDM35bKvsYO0hlRGdqmh/SD2zfOhsD8m8TTfGHcy6DpCX34tCQibdrq/s7Y3I1byxJ3pYhv1xcGj0pmneX8FuxHTSTUMy+MarIpWIfY2uF2d6mp9jKqs1aqnAKuJM6LIvo3pLIyemF3/QtOtv/a0h2qdJCZtJVOkog3sCZlPqtfJGFOoLCKvYob9tiHozISwF8qL7y2udLg1G2zB0R98QYnHO+uAqXIrAOhzy4e2mXujK4tyvXtjRG2QSWiRe6lK1PRqXOEcPdjvZPjVajL47o6TOcW0tDxaCGHY6x4VMnzXxPrGU3TKOTYnYO40qI7zOx08FSP8ICRjQ+wzHjpVG3C9KP46k/Txj9d9KqDAvryVuB4pvBPuLZNTJXJJvY5lid04HdHd6P9OKYTsW0cKCavbIF7OuhGNyrnNsaLR7JmVSM+B4Uasjgu4lErnSnn6WvBX5l7It2+qnOCRobJb/jTs4zIAV/8adybm9K2LCQErHnK9EyR8BoOMSQDAc2C77WwRwTMmMWY/xmyU1x5wx/YO6/8wk7XIU6cS3l1qY23xUL9vmYgfhiL2uHH6K1VG/5UZEnNqN/UiYeSz7kks7EVE21JKegPYpr2gPPn9rdUJCfe23h5LWJTJloNCN0o7TMr/crpeTGljSdzl6PtBFCuFd/BwrMEfB2kKPzGTXoRUz53vLI5DomHqTxriSRoDC+FcQjbpdp4e+Rk4ly1cddXe+c0B3CQw8qL4xmGEtglfAEG8nywCuKXb9bqCBg4JnczpJNRyNXQkxejqPEGfwNMNtrT+o3kuhANbyYne0eJeJgiCPqUvY8EXKoTguL37nQ8w2yYFFF6urBlqY8TjYhpOMTboKczwl5q4/SSVlYNcLtW1sjYiEheuxPjaGCa4Rm1ElFCQwWXPSBhTryzKQ5QnoldG01fH/YSoxdTbvNpOrp9kcssXruPp8ws90RwBOj6AOcdXRL/THt0GkoT1ALupNXVtOXrdoEummg/ASwJ3p15wyInYrW+i1AORPN2ATPl+PXTw9uIFf+A6zhlwzuCX4lZkFJGaJ7x1BtDLP+MLiahEQ/HxP65AlWUK/zAZrR2gG7+mwtSJh/nQfHLAUqY3IVKGiqtZphmbX92ydL+sFJhdC9VH1WhUJh7T8OdPrTNKB5lNIORQvdccVOVTyaQWMV4AjNKlLShzXs+7aqOuMWG8/C4i/D0xtI46TR/8FV0u9Y0mP5679B7+HmjxwhU8gOJXNcpQ6qKLfWrfQgBByi6wcC7W8YyBRUZPZ6/+oHmcBdHvD47i9p1SeE7Y9DNBVauHcafgBQb8XlwJtLMAYJkCWnFS8osoiBtK3/sCTzNLWCUKLE0W5ovQW/6omAMlUIh0I1VkmH3VZrqegIQzr7j+mU/DG3yPkakiLR7ufAWZgukU4QIvHI+QvWhBNwuptW1Mit89742FTYjCETmjRF5IA1r3Lqm0Mek9YMe8ztl7KSELi+JCFjJvpjLj1bPtZo+AlVl7DrlEiKhnJOltlE/v+nJO2vPYiXNnVtdwtKPU+VSfe1tD8khMVoVlhRkL6smkv0g82RKmfSZy9Pl+vzfZLUEPE6kbPlFuQ+/1QT0h5vBVp56vmMZdt/IPM2bKtB9Of/D1Mz/AXC3RjNV9nFqLJ27mGhpvd2kZO/lDl0tyDJFDCvvCsnUppHcMy21Owbt/8UskZMmWTP+4Q3dleyt9tLHyC1G4AoNYu6j7vGwgrCY/sCLn910X9bK36opuHEEbZQmsP03+QXwb8nxpBhJr+5sM3FRlmOd28uNRMPuukP92SwcmltJC3np04pex0uuV6hrWbE3D8tc09RjgklEmBgF7sAb/jVTMzFzguna/hkWYynvnIIYoa50KxPlVa7pHErLtKulaclMf2xKldjlJnTqgFTnKjKaeNWjgl8Ri2JS0T27CAcxJQHCFzPWUa/1AB1ixNDVGvhGRCUQZZhwUaSX/PybbZKOCWcSGdpACe96EOhENkjzNj39Y9bJT2mJJ1SKQbyjT85le7P08j1IJ/tpKJgl3L/kmBPnwgARcumhb02KuTY2LGI9FVYETtV2MymhkQCBqjLnNZO4wg+HDAx7Yap0r+4QEuvS93VQUM769Bg48NrEN9Ki9r01vcoifp7eWiy8ygVSvKmsNy9BT5A4okXGIRdTstimWNSTj2w9dKW8YksPNxhqIIwZCewRBdFlPfGQmyhRvwzUjfnafgJcuUl95fXjh+L88yONFqRPVdXDP5FY6xByUpblx2RGy9uolHBQBfads6b1tPViu9FrBi2Q9/Wyy98VuhYHkVG+alMlzGTWmQhpCPbobl2CYNUZfjbhy7qzjIe+F2/W8Yt9kA0FPd7mZdLK+oyxMpMtaSpi57Qr0IT2ZUXV+skIA1780vHujx4N7Ka5WzLsZtJMm9+coE6YyphoZuncQba/9Hlrq8AH3zUxj+3u83Q76oIO2tqxouTdyhYih2LftsmBmjwRhA8vx7fgWp3w42zFJhSy3ov3g7PTwjVGTlHxNtQHkKNT+tDofM96q9Y+unmqGQsNf6UETUDXAmUSmsfhbppB8h1vk9Lg5TPR2NchljnKPVP4UoGKPSFucA9erMhITXMG8uCOHdjrWpp13u3gjZiVzsc3fM9239POzpBPovYfN28L6s+T8iZ7i0w9NQLxAMO+7yWg35PmYDnWLVdXULoc9Ovg8yxjc+Tvj5nLOe96ZWKICRv1PJcsRPylol0kfN5uZLMY2XGhFfRTtKLFj8HSqaEaDuZbbSE/JGzW8x78IDOmRVdRaKHhGL4j7fhOuk4cXYLT0APBNAe2MG/8qX2Yu1G02DEYmRxvXpqTdzHrKPCbHJRIZlVvX1rgonrSeTgDx5/pCnQWaa/9BSqjCX8zjRY29bTXXaGxvpEaH3Bk2jVcAo5bqA3sJUoTnyESVD256yQnXJHuiaciyzDu8e4dmCQJTjraxfuted0IoVdBaAszDyrPoqDagMt8Xte/At1H5C1mit+yCiu62AXls4L+n1sVmTgeiMkXIp2Vdh3WrWxJgp8hwCvcHuKHk84GiBzXaiTVuwTEo1HlfpH8I6W52hfHcaeepE7i6yF14Ob1jONG56JRp75vDRZRo/eowAfN2/ZrxIEcYTa9YHthQcCtdJKzAn2TBMbQXOQ3E02Qv0uBekBgpoMixvmyrBO1RxE0QGEj74Bp/HksjVxz6OMmLyxt6ikG1upJwkjR83aMUlzxwzLBqzdJ8GaX/+7V7cHrkgeO+KcgY4uNPK7hSrQ2PvzG3aR3gje3/U/3Ek3iHEjEKGb6iZATI73HQQZ50rW94lbTjhcw9A11b4ojcmwic1V0HhTII5zxGT+aGusdTXCyZQb62bevG8OpDc7DkDEeqIDurj78lAJhTMgrCVmlqY0L6WmgdArkuh2RugEwMZOqNgT2ohlhvoz2019MjGEZxc+tkxpUDLzV+zxMYNVFBQ75Utjv8ifnhPa1rx3yLAGXQ7WLgWW6P+lMb9eLUgbeOJ4tVMRTSkQ2fn3bYEjofa2cqWNTJqS7L9QGMsAJ2uRC5mgXN8eTnr6ZC0hUTWCZDguXnTDpuBTWjyIQJOugNmDSph2gxGKZlLa0st/gEf8HIaO/1mRzR4+7jjmbSfjqO2fxtXNm4gjglCmOS5SpHAB+xapCTROwyZ/ARQOkrogjM2lzAPP00SBFxs7h311zDZT9mmGDpdbPex5c1LsfAbI0MRJILu1jCHDxAv9/RJ3IyM7My0giinq0a4gLzvWPXMnYkvlBQDgsSoP7ucXA/dROTc91NsY5kJPjxZ5tzGss1GdBvGrYstDCnQMJnjn8+6eZ0cU6Lkb1m4Kug5/ORGo6666CXv/XRtroOf43TTTs8CjmGEAdow65BFj4eztkh/8w6eF77Ko6/4NFQVi4KqVtQj5q5rWUiDmuU33JM9kb0VRPCHthayqZtSxXkB6UsQmQwb+jMAumR/yzE+ZTmrm/ClVp+G4ETTZk5J37gOBYJ06GJBO5VF9UOj7sJOquhH8Pdav+sNnGHNuxUKdnjgFEJyZlY1CFdMRkxBNowV+bLCr23qCssTaUEQulbK11aK32235IUj3LTgIcpYl8qyoLF7YHyM/t8HH11YfQZXSwzL4FxqstyEql1MOr4ImQu5TS26d3DigNXsSswCctfdfnLJAE1bnzXzm6FQXG6AmM4VWKdb1xgAA7mhWBCrdILzFK1Sr3Jfp8t0jpTkbpnGlqTAX5Zci/VKA03qt19olDTHDRMqX+IIDzlyntMCcUZ9xNxq382NRadspYAtQPFocmdQ/GILZ78ELxcNX7CWXDcH1yXoLLMP9Na/0CMdmZ8D9ZfFDzIjwdsLr59WHUTFgdhCcSdkN5el1JyovlPAHyiL7HNF+fjsFDcwZxzw320nwJ1GqYRSGyKBTaGU91bgERfw5Rs+kBGpiyxa/jvJzWRmHPTR1jpWvP3/VamNlnoCvxr70JK6LhM592/5VUnU1ym7+spJUQjKJlQV7evujTkgSJkdgQMUjBQoGumDDYlweVAaYJNZuwZCfrB/g8MPZoOZ9UWkXuF94AnCwrJ5EvnnYsdOVK8y76vPo9hpEcOgFcaj4daOOLqkHXR8y7D7Xtzd9q6CJDQKWWE6M6EJSPzFL+4Oai6zJgCQcuPio6pEz85Z1BiiEWtx8NMnjsQNpU9AlQDpB7FS22y2LKkWR8MkGx4rQn37c/UuALmtVACU/A/53Pa287jgVMcXvnY8zMXxptM2jbNlBePqv6++CHme2Asc3dL9ZH0D2NwBUukqTZbbTao+nhJ3E+qIEiWQIKaYpAKFSBIgFACQe17KFpP669HqkKHf+mGih5OKjqa0lZ4XKNzEiDOgRcU3pck7h3hheEjKmNWd17z+1f4nqUZS18WoHdSvlzExDW/l6eJvAur6TlPLqKzOIXiJgS2V1vE4rAN0aqLCgtqo+rLsYsHig60hqY+pMwf05ezar0V/PfDwoTXxedpuDYTTrNkpKBtX7xe+laB2i9BX6X0VEPNyx5cWwKJrevQDdDAA2IqtZyFeq8eUtS3JrR8UDiOOKalxZ49sqkE9uugEFLzj1pAmlfjTcCA4CZMW6M9VhpQbzliV9MpsTtAnvs/yyR/tVi9Dwd0t8rxr4omVksy2OLtuHrdD1pwf6rdNUlqzFrUgi1YGtdrpKulgJWgQYqaKDI+0uMW5ucrWyakJAls7cInE5a2OMc8FbGEhWaRO5UooJlsNHbW5rnQpM26Wimc0WjxPbCh1kCSOILggraC3Ez678w0U4dd3PcK1z5vrmBD+TGJ98wNHH72i52NerGGfVmvUqPhIKAg9BZn9R5QDGEPAK5cNzpullq3Y8/4lSkDXJyJcmrESh45K9lInd65hx6vCZLOB0LI+ymykKW9fCJDZKKHhMI1xcLfyConXmDl1QHBGTkFUC9JMS3G4nLf+mpaLpQjcJ8q7stwbTNWRNQmGLtKJhJy4f0ZX9K85FwFOBxcnVcMzEJ2/xpwQlvIrxG99T/wxQdUcQqS1ldJ0V1AdRac4UB10Kd0r7vzyKuJbtM+S2NXRn5shjo6H3UQYuv/1yD5SxX+l2ulI0Jh2I96o5bLksYh4Qm18V2hwWUQjBZCMZU3qMdFyfujT4Jx2UlF8J5OBwxTCck01SMC1pE1ReadBq3IRvLnDJbSTZ+pqlGHpB+9YNZtFdE+9ZJTvZxsDIzEniWMmfyVfZJnSWjgiEB88C5V4nxApRr8hQcKsAM8ENkQfYd828bOuo92qx6e5ZG0LJXoX0oxXox/tyD7v9q1Ua7v183PG9w/2YYcjSFGso+Wop1Nz6KbQYERLfft+pWY8Uu53JniTi0APBtHsgKSujZjzhXBrJceYU2JR61ke+620aqoLHPy0+3QYmeQfofKD6GLSneUlGl2AkSkulEmQi31Xsm8JXzZiLoXhWhnFb77RS4Yvo7z3VcvHvyREgtNNYBd3M40Tqp9uDsP9Ku+cHfdEJgG2AJLrl1aH8p7J+OEGOSVgXEGBXrDBnkZ3ej1fSccZtv+m3WRBuM4v21cnF7pDzobraKFjm05cwLFeNn79yGIABZDhRqi40TNodzGtNEfm2b/mda6HEhfaowbR2+TDEo2so0OJsTmiu49PCi5uZVm2aW8lTW4SQp+wAkPlCnNG9Hn0aVyYQH7FH526paeduaxUaldon6uC5KCej5CbQ8O1KwCUrnYceiKeTP8H4S94yio7+W7t1m4eBXgSn8RBebhzXSGWGVGwkPQRHUo5AUCYkuPuWEi86XLTWmK6PULNkX6hWvkq2USTQyjfuxYsWJVvGm+N3Whmcv9FTc75yFHh5/9lriqebCeWmWVbtMcmMX5TZYvUdCE03LniLr2XddhTVeSCR6FuHjCg8jhHGwAQCWlromsKmk9DeJXA3zPjBVkBp5m1NKNascZ6rojhz+J6dBQkTaGAWfdYOzY7JdBr4NIZWfj2nr9XrGkjbhPugEtQD8/hnYnbMuBsSrUcjHTHxZTfjOed5AZcUhxkbcvmggb2aEdGPwtwwxsTAxj2aCQAa9u4v4j5DT4KixFEovXLFZA428D3MFpk0ROLCbGK83qg5l4+vxJizlwe6uX1OvoLM7ttkQLYMj4VUc+T5pOjR4MLmDOjJcz6ya4EVVHhzWtX3O0h0IGXsnaYYW+qWN39CT1KMeYApmJZWcGHsrGPhd00efao+n+nR+qPK0Mx7QnK5oZZ+6tBkL+9N+Jm8XEogVo1SqedBN5gexAVDZJyDnIsgnlQJ0/cKvn42L6MedYYMYMAUFu0adXVP+BnO+9QnL0ZbbTMZAPgUqcAj/NYC2d4L3oi8Irej70BlDRzIqSH02Nlph/hf/WFXYQAfcRqmaLKQA/BAOOnicRmmnvPfgRNVTwZsFgq7iZynO+dC6ZDJRiwMsVMz+ZvsY0xBF/GdvNZwsnq/tRLVB+EgyJqWB1APYnWncsKJvPfglcAvjxQjkJ5ZoN8JMnKQWOphdDNvHZqDWaeLqr4SSF09pkoajWDplYo9o7Ldj/2vJDlgc9hBl9Skb+upjuX3ebSQxUDS4TQ7YnN6bwhFXksqLJlPxz0mUkJ1GrQ4b8El+sxaZneiFIDkHaqZ8Ftw3JBT+IuayEpDvSPLNSxR3jgEp7iMhzcEYTsryFVTvE2+mQsUi1M7ZC6LhriS/o3HRZ7MVS+3IQesN1Qk0p9xyUctpcqvfSni351a1O0Crh0vlvUjVXVk+xKvPYwGHcwQTRO58BkAJMty6epyw5kqYBxlfqXw/ggMC0cx54rTIX4dop7n4ClVRu0XHPowD+V7Vs7nX/BOYMqSWyc2d1gN9Bjhwm/bNYL4ks8vW0HXQJmIoOn0/KLHiAu48Sjs+q3DqjJxIwJZ8E1ifo7zzN0CtOEeS9Eq+/mmNii+jzxQpF3DahW0YRuoULROCnJTZdlbjK3Z7+MmsOi0lp7uPqQgkVEaw1U0Hc/0ckM95xqbBfKmGVeyJ3cF/LQG8vsbzw6NU3lJUCxwuJmTQtPY1FZ8EzC9igLFXq+tWe4qEYdmr0QiD7NyonXZtJVfWoypNRXl41CGgx9mBxxIrE2ajohBsQJ38Pl5smyrhYaA0wxPCy701CGf4duZp69v951p4mC5noGq4mspQwBQeise4JOwRdBw2YZcSwpKCqYAz4R0s6TXu2Yo2pW8YC1ctJPWK4d1LTdlvpdPdAE92FGyOsajj+ROjQn3vj4ujAMJzSXzsOkdu5myljDNSe58kUN4TnX/YPQOrG6vSqnSVV3aLGxEgNggTfO0RG+G1awD5FX2W0X4Xj+/Nl8zGIjmAXYIOh8qwWQqU8DqA+DhSzkS3W7BVZixc4JM5fFGvsjHHlj9Ao7z/D/7MdhHBW9pcqcSpb+PCQrs2BPukjFIcAjrxX6+ubxOHwQn8s70G62QkUwrwLWHUtT1wd3oDy3PxRqjQBD7CTZarcvQQcQH1/i647a3bE5CnK2aaNxQO/dHvCaAbRijnisLOfwZkzWddBuMSjsTFYSZ0/bE/+e1nEjq9FwNeI4TJDJgquzZ+Q/6rq3hsRgV9WojGPNakT8yAPAzEpQYBCQy57WxUORQNRW7tKoj6jt3OGykjnl0DDhS170KxPT7poj/7qKhy7FdOSQTIcg5lrzOoQpkCsK0k82le34cN0f0TRhT1sJg1SQkoM7vWmO7Q==
Variant 4
DifficultyLevel
569
Question
Perry's payslip is missing some information.
PAYSLIP - Perry Mason Hourly rate: $60
Week beginning Monday, 13-Jul-20
|
|
Hours |
Amount |
Standard Rate |
X
| |
Time and a Half | 6 | |
TOTAL | | $1800 |
How many hours, X, did Perry work at his standard rate?
Worked Solution
Amount earned at 121 times
|
|
|
= 6 × (1.5 × 60) |
|
= $540 |
Amount earned at standard rate
∴ Hours at standard rate
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
fullname | |
rate | |
hours | |
total1 | |
total2 | |
stdpay | |
correctAnswer | |
Answers