Probability, NAPX-p110739v02 SA
U2FsdGVkX1+5nQ9S7ysQnlTnNv9HabJfRCOe2IlVQDrOALl22wU0fM173jax0USjMlSruoBVB2MQg5k+uGUNlhuMctMaODPtLEErah/x+BtKBxuzG/Mla2UtTapHk8PnuH4yeQm88E4+JPxf8KRtgESA7bUcD9cg/IHdjICQzz9BC09apwH/r5E2r0iKwShwskBBcZ95IQ+uBkNbLSwY/oUGIPA7y6BfO9KhAlMkJgm2lYtYYefe51xFSd4esCglaPw1vRGwyTfNy6lJBvgu+CAuiBrr2qQfwPqMZ7BuvpC4X31WYuJAbkTdJOY0zqtZizaxo71odfyM8aNQtU0xVfSjK4XDpactoCde2saFlsohHeW2f2tATpHh+ZLe5aPNtDLjeZs56Vce2QziCcArb3wtOw2GP3bG/c7s5p+grHJGOjF8XOH2z4KwmKqCR2wbfCabJgPV/dqRNO7ekkDIyf0jYlxvJuHKHkBwkm3yi8NSiL67v+GT23kLR3kuABXwykX73+193YUpctwUTox45EUHDF04FdiJijsBCc2vzMfB423ujY8//M8J5GWl+KQM5txVWmODkpO0nbd+2iKIebKgq65EugHgx/suARh3RjvQ/RVmNUorOFwkxgVOh5FKwbUehDjEr+Bx/xF3LpRo2oCaIYh9rDWSYYn37IJpq+VmKBA/XKbkDY6V4Rt+8X9/lgxURAXx9wQyAXbNGn//Q7EDGVN6im1c0WAbg/aaKfnSaU/Qsf1qrIMM3H0LDtBuD1mwMrImbqC5GvudDIuFC8/3pHpCmIusfP6WpKGbahiib/wTwb4I5CkDW5um3mxtBcdybYKAZhHcoL6WvoRDm7mjal7f1P9VAbYgoT/HpEz689/nLFlRzHjXARZmOnbSMbsYcPuQ6Wwx2D+8mOt0LiLmK8aYtOVOFI9dnz6xlIsoQFk7FhQzfgDpixTxP/gs6neRMp2Zc9CayGnLwCU5pMBmJEaZA+ococASE1NPmK1kZi01hiEmFR9zoomTdWGxEsnTgK8+wQVOPL0c9g7DEYDe10LggRg1QMC/fbdqvlg79DIkn9RxvTki6yWPioas0KUzVrSgouvP40UYYGAeJbzhXJaNQ2bBAhM0L8bBL9zT4erUnUOlEFhws3PfVq9E8rrL14aMC3Ir2OHGMMe2sF2fs6vKLcqNALQcQEzd0Syni/qoD7HjbnaDR3nHA5HBdtVN8ugKcjUzEFMuZn6HpGPC5tM4ilg5D6E6CRrlu0pnf1B7AtyUv8UPWhhomAx8hNNBhOcfRL7cXNmgHVISUfIqdueniJZYN2QFtdlK/4MUbeTuAqQVijPdMCiTH7lh66hBg3lkze+bW6FOeyzt33jGmbC34pKEpEwDzMM6sT52uoToMxIiIG88/5BcEbfjf9nlld6rBd3CMdZRVV2dUD7P3A20jGXQIT8zaEOsS9k+V21TFMPvKVebw0iL628tmJxtIGnf187O1h+sNJkYBGlX7Jo2Fw3++Gets8uKYVWkUCIv8v/UcbeOWGLNidPFXBbYLXSUIBe35I7do//4mjvKQO+WWhM7exBjpGOsHoh/XifwuK+qcqGhqVf6lBEYnh2K/+gv8UTH/biBvyvaR84bgijbMwzdVN/mnPjhMjinl3zuiBI/zUUzSiBAVztvmF9gsP1Iu1okQLIIAcfHnAWUCKgkgtijIcNpx1TvYVdVRFfoP0Cf/zyZ8cNOFIjZeQT2EUXIQCO/WWQN+fiVqWN2Rk+zPKiiqViWcMyvXI6xyCJxVd1tyiHFucB08OijmiZU8K644rKWW7cTlZ+EjbyggCr1NLtITaMaBaoOKw6a6woBMoCwztr78jKRMOr/oSI8YLby8S9pg+7p4XiAnhWOPfnxpMG2STleamQwaVPTX7KxR/QQLUElQXFXKNNn3pDMvKCVP8iTKfy66mgJXOgWu8lGesjOcjA0AHgysvIbu3YbVRkjSYhluLAa2luQkltfq3CkJ0yrBeC/gqvsJz9wxw8GhB5w+pkaIlarCX8t/kcCA5bNVvQfUNZe1qmXNwThFmf7wkWbL0NfGHagGFDveqVfj68RdP4f/om/Z5fQx3kb3pro0whuYlp6Ia2DRZ4qaygzokbkWcTa9cZjA7waR/DuUr5OueGfXpNroKQDM3Ftv1QOlhfbC5UilbvYJiE+sm2KLe1rNeQ0bOU8tdlYb+JYsdC+twiwDRE68TK40tqzsiPZlB4Q/DHveQXM5aIS4GIH47Bew/GsS0HmfOEBfRbods6c/QkzE40uD+JOyp7mR6/ZwJC+yFj94BCEP1Jp9IUy9llEmkg5SSpKBC0GyGBa1NeS2ADMEvPD6mRzbHBdqWkIa44fd4I1XAYRwDu35bvNLltV0bUIFyxSh9sRY0dSlL9plLocw8Y6ng9QKhcZ0jH1tAFKugeo8CkR/Rot0kxrNQ6cqEcrOnEjxdiFE6ww4dqzL20Aw50W1UugNxAiGihNbb4hIuieNzoKcKE5h9kU5tU7Y4BqV9e3CleCXUIOBHJOwI0jN5JFrXjR8qP2beqvLvHkp0+qOhsKyqWBxAP98ciBNEdHDuRbBG9LHdrVU2xlgGIIqxyJpkXzXwjLvdv9WrbmcM/Z2eqy9tnIcom+cVZkkvCi6NQSz6a7qX9ZzuFmP3N8m4YJ2ceo6IIroKzpAWSaQioNsn3dsdgTY5CSIwk/5rY8Zajhd/FvkKD+3MZE5c1BYgsE6PLWpf0w2atHOW0IJiskrO+pVtRnJp8P83276utTzxo/K2BREtOjnyH4aKy5E5VwNjiRB9iUPOOYQRpQW7zpvoBhjySRb5dmQZHE/Bi0dqDcsNpUwlxEpIY4SDAWqZyDHqYiXnsIjLlzTBEUb0gTuy4s8ETaXE5Iig7Knte4/+oPsFTCOSg9zKyuWnYS2NtthgjWbSdzi2JXh0LsKNKQmxOvI5yJmOMgTw2vOQcuJ7bx70V5WHRxWix2FmKHbHXpCjupdkc8FGxHx1ULXJF/Cl9Slk4pmQdgFWfTxIoxtyfoQU6j0i0VjX/qa+zbXHfhZVKOuYcZymdIdf4eap0nuOxybK2Xw4ShTPcmJAXNAbmkDdLCawSe0V0MOvWaMUtu6gnSiNIFrkabW6sUfFvQwM7tS6Zu3upsTNA8b4DTREIXvvXEVEPuAyDLbRSIFi/o1C11O+uxoa3Ow9D6rVRthBN/ul+Pr1iSnb29ZSd0ZYwPtpWcMmiMjeKMHJNM10zg78VlwtmKAUZGq64h67Fp1Oau4MzD3dolcsjm7YzEDUsX/DFs8o+IvpfpBAt74lYDma7R6O9ZLbH0R7Uk/h5cuAieAx3tZ87QhElsRl5LS/I2nXeV/JnYVluL3Eehf6gRcvH106VWNSEgo3qL4MxyNUNldy5H+9GgyqCxaJfS6fidFV32piY6pmHWH1CX8S/Bi0Y6+SIkAJx24S4XHMgkqcBitQ9vyF9tJhkNJRrXuNwjld335QbD5M6Y9D8udf4e5NNeAiYVwzxbuz8PZ2ZEhQ8vYFYU+8tNARFVLS/8z8m5/31hbV9eL63B1bZp44Ny4yQf2HAL1vIx1kyUt+bq9/Dei4xk89KpHHdp01kBwULP1Th/QihpFLd45jrCIVmzVOEQAiqBhnO1TmosXFVwf4xzzE//QyDEWQ+Bda6YTPt+pMNaSLCHQs8qVhmtk0X1LL0SylbPU7BVeYW0+iuIUegHDMXifxH1az/DyYvC8hjcsIFvrlffzRuUbYsszGLDBaD+Ors1jKZ5316LAlrLPpIXFcRjEVbG1pIpMkErgsmTnJ+ljvtLR8hE5A8TbkTiOn3b4hRGylUhlHpTlOoPjg2Fn3CAY+l28QP+zWhz+AFqIVcIrEWVzaQnm20iKlIVwmZ+kGvlL4XMABUrGp16kuM5zDw67KDjCuBW4sZ8fhq8mYwz4hNRlxkYY+n9sgYk5BYXe/srvXFRlvse3jCMQooacy7JB63IPnOBM37Wav9bIXKzwofc+SyjHrX9zsSZ6D1s9ririWDIFX9Kb86kcICJ1ZvOFZjIAoCaW/m81gPyvNLYBa/tu8ltJiVxX2T1sx/zYoBOyTsk7yYMpRRvMlzYug8PvZAQXkurV+wqOjLS8iE0C5sPAI1nyxtY8NLpDKRDdbobfPv0enUwDgk+qLxE2Hz9mHzGilHZK/BkPoLN9Oq3GGv0OlnBKe06V/iXg57a4v+dF44HOo1drAHyWPdlgcKjcogbL15SNlMKk6T0S9fohkiP+5MEDN2yDwRKh9b1+0o83XrAK9WD/ZgvGA28uaGDDTvgnJDcqu2ZRG3QEA8CePvrnUOdshWyo33K8qXTs3hEXRTQZbGf+J4eEostU2EIWN9HHXtqnzSTFv+3e/88qzWL6PLLtkmyBPy+jbeRhM3n3h3kQK9I2uuO2j1yXZj0ssb6U0gkssuk1Ecf8d08ouQoX+SviZh8ucUA6cBgr7wVrxqBweQrNoTcIKAySOZCy8g5UaK3JLX4DFll74a+kNq3OS/s8lKBwl88H6hpPvEK0zA0CHNlt5z+YGhSg8Dao9Zj3t0SmfV+FnCGjgb8muxTu891djZNWmXFJFnBOQWcr/lqMIxDtqHaEKHrf8qIhx1RaxDrptD9K4WKQA3qD/9ny6zzoCnPaUHY1a0CHWqCQ21uQ/dj7d+7MBSv5FI4e/j3ZVA0z2NL+vLqZKi+WxEoLQwWePuiCZrJ6g1Ks7k/VNHn/5mXXaPqpEYVN1wsEi1fGJ0UTnuXf6lOG3aovwHTb9NnX2pQcnr9M1YrAE0GaE2yScwLc/qPF8CSRjfGphqs9d770k+2FpL2eQ8LKP5hJC0PnkgFjcO4HDJ7EmkB33/27Bn4kP1mYa0k5eiWrxnYpNYa9dXUAmUftVPQXN2E7P/4SRIVKCTbO5y1okU0G3ofBu90jK2XE4F9Z9Z4ju23WLEmVK5biaCAB8uFCwxCM/L5TGuvpOVb6lxwa3UeeSnuYdvoD0wq9yYyIarsdp7Qcvakv3m3vt/st1+qlTz5+O1LcK38yzqe34lUh+9JJsamRS9oOf5HHHTIslx8G/gV66IEiSzoO1AC66bw2tGKRrxqdIiH3ieol7qIzvieMrtxIoHybJR5xazRaFNMNeoii7FxtUJjnv79mk+jNf5+RFU0iHZB5xvFzy3F2wXTUlL8kdTBZUyixGbNbO0TZgK+uJOqF4wt8YdJgTUkevdz4TkwTmxx0YbG4dPd7IyTBeIi51b8YLm9++F1p/6THM8b/9JmJqimzLq4AQv60PnCMFBuXhQ3tnYkBbSccGSBlYP/NgiQzAjIgJs+oRG2uLm4tXsz9oBre1JBRf3LXtDPZbVjR2I4PWP1LJBSa+H8fRBDcDmYHa9886hhNJZMyGfX+z75LoYj6LcUKR8KBXykhE2OAnwfouhe0RpJSmixqTsBX5igloyWyvT/L0SlDTE6jnfNKo6eG6GVy5yRq/0XVAeG8O8Aypoet+pH8gXe0aZyz2Zjg4WLGUzCGVWTyLuYrBTbL7C+v/ZMf1j0f00w9Nc5sPjYyLD1+KHqLYTbekbKiHdys4m/KsWmFFkXMMXI8mrEFwKutVC1bzTp9fu4QuQ6lG0t1qkduxYwuR3dazcY+mKJE1DoQrpLIRbwFWqTLmE956s4Httln+bl5hqDnjoJq48i3V2iGPr8ln4eceq360sLwM7PaJTcif7LcDEWokmRVMQLwM8E1knyWRzAYeTfTtX8+YcVK8kIaRCwa1mx16FZFrI1110TsS7q+YoLFAMfXx4hqnlTz8cJUfISgapvh8rFB1+kSL0CbSrTANpm2T0AenVBPRZwagfGoCXJYvrx1USoyaGfQMdnoeH+lQc2F+63eb29owspqf3lauFVVKJ0s4Bc/rY6cP+5Naaeu2C75FxJ2wAxf6TfhgcBKxRzJ0xYxTIP05E2ib3QLiB65EUstd0AYWg3hKIYjNWXlgHbcpLXSZaldsu8vRv+abz4mSe/5gZ6k+Z/EE3KnGpH4EkKkH3dzib+8CCsdl2zNEJyAaPoX5YNvzXDJUDiAPmCSZwcG6pm2l5tnj8pqTH3czbmo4+jjyeAwyUkGh6Qy3G67Xf7MHt8YGYHfZY7t+cB0K9GwC0pNE2fzSobqZmgNNPj82xpJK0a35C8R0hWkg2/jdmhKVMopU/zyHuuEquNUvIjkqUAITawJsvjSV06OYKb8iFBC4t1ygSg6DL27oWJrt3I2+8d2ueI4mBbN86jj/klc4zsbA1ufRcAJ1uPwBi+2KJu+uB/Gq00SaHihnA4YoBRzgNwHJ19RCr2KJMa8LQUpzKoRDWvKYWyaNguaJ+O5X7KXHQhy0QfdV/eTyAAOlZPNxzVLaeLEouxI2783dDH6YGUm0W0UiWCJ1Ar+7MfYDFYqdWaJw7MVW6vd9Vob9YbYd97Gzp+p++gsqGxmSjPzw3VVtv5QUrMxSs+US71V8B0FTRpr6JVlLdd3m3VLi9uwboR68jeDEItwZR4rCiGwo+h6+rMSMI2NiOxg3Vl7uFxekFyjnfSnwQDYAS2TqO5eMAS3IJv/THU0YDsqMDJznn5MnFjmpiv4m7RSacngW0tXmbdAQ6iEEFYoazagSwnfAPr40y5t2t9pQlZhUHWup/UOQLZkxtmleB3k3PL2e8qc0V7fjYNH4fvxAuFSLY0/jC6gxIjmsChuf450Z7r9mHhshzraadaQUfl52TP8HZtY4C9t124WWtlpbfKmlaQRKagWRnzGVLBfaMO+ZwvFlxiRiObGTiQ7wVJdy62CVTnsDqSoDLtJdOd30aNEdgasn5yrk2T5DOzwa3U/Zht+G/5zeeTKbQ/z1JMeOS9hVI6yhwFtDkbNlCowHXmgfA2mi8AjLMF63Ed4CmkL8Alti9lck+/+fW5sP1LBxjK+aQ4Z5nGvvErNa/pMD4p9vhGaz7qJkHMnKLpAHtjNEJ5Rraxf1Q6OW+yRGf0w8W5KcNd9Q1BU4rI92/peqVnii5xFM+M70H6JQ8oiwu9wYpIoSkbypvIAFOVcB0if3RwXEjf78YxWobgewQ+gpi0tVBd9snzDV0OF2phOiYmOcX/+3qyRhGI71117/JBLXWexABWZSy4E+okGnth5KCqtBXOfRV6F4aJr5IBV+XA4CRTO6fx2VsFOQI6ct8LeSL0RYwNHdlcFd7ddthf+hpmoBUXOMU3Fht1wIE81v60P8+GAATYEMnV5eX2Cb0aJRn+NdqtdL+YEtAq5h6Evck5w6MdZ3mvaQ5/lg6jbFAhILf4EU9tUsAcqlOMbmAnKXobLafY4joafwdAq4so/h92NKraHVbL+uq+ab207zTJn1F08TJRBZDiOJZHM+W9i2R623bOQzNw/GN8hV9GFfKcuqfGq/MeO8xIQCTntIMcSy/ixJb0XFyTKua2XXANqOtBdcbn7AK8+E2QUe9g5YEUd/vHfYzU3pptuTLUVuOMAQLQ0hzLedd4u5SnIZPdDtqYXs+npbUTKXKj7MdN5naNbL7qYlVrZ6ijyNCVAPlYdiw/UyaYdujuRuZNGm8rfz8N9teIU2WfXHYOxk9AlJfYAQs/5jVzilQLKNzk9ScKV8Pv/yIjfvwlF1lO5kqYlGPHG3ihoypirNWpm2CCZJ2SwJ6ftfNKPBaO9D8e3THkr1ZStjHztWzV83HuGvY6PWqVp6WWuhK7SwaObe4OR+Xsq+roAkSWG7zaLBlXia4TBiEzHAhR8xY4qkuAiVLK5KAgSQ/NFZiy7zFydUyedeIW1Eud12n7VxlEbTnbKuAMUnivPK2ewRKKg0CC2ep0Bfv6PcntZqf0fnBWAnOMHyGTqynjzK1JQ0ZXS3/lK80IgT2MM7ckCNTgel0zsevhc3WtaSrYQBihxD+Z/Vh4JT0Yx5brTimEh9P+HY712WVxRxSO1w8xMLjjRDO0KMWs3C6rM78kDVb5w0sFOvKnNmA95zeGyRl9RV+/qm+66Yow7PIJ48MWlrCP5IdnLzADo1m6hZcB95k2EVtCimcxAJqx84d28KfZe6Ncs8wJo20xt3E4qNGKzmVEodMcSC4XzjU2gYIt7UGLTK6oaZgGcuNsMjnFRWopPMJpgNNHgq8aaryn5S3Z+Yd9ikj54k/X1+7ZcYmpbQbtskxgPTLE3OaPKe68QFINWRRFVXR7uP8Gp3nA7BvqTWMWezb82PsDIDIlyK4JGsMo4GnCYOhrpeMF10tt8UiVEKZ5ctztf2Gr+tsILbELfBVxANRB65vz6Mq3ayKbCDa7HSG49QQIqW+7GFpyjIwy80myerA+YgwCSjIudWV5nKbiuFBhpBKfC94d2E6ZXnjsDN1nFaW/1s9a1wKAa6qajA==
Variant 0
DifficultyLevel
627
Question
Shawn has a bag that holds one blue ball, one red ball and one green ball.
Shawn picks one ball without looking, records its colour and puts it back in the bag.
He repeated this process 60 times and summarises the results in the table below.
Colour |
Number of Times |
Red |
23 |
Blue |
19 |
Green |
18 |
What is the difference between the expected and actual number of red balls picked?
Worked Solution
Probability of grabbing a red ball = 31
|
|
Expected number of red balls |
= 31 ×60 |
|
= 20 |
|
|
∴ Difference |
= 23 − 20 |
|
= 3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Shawn has a bag that holds one blue ball, one red ball and one green ball.
Shawn picks one ball without looking, records its colour and puts it back in the bag.
He repeated this process 60 times and summarises the results in the table below.
>>> |Colour |Number of Times|
|:-:|:-:|
|Red|23|
|Blue|19|
|Green|18|
What is the difference between the expected and actual number of red balls picked?
|
workedSolution | Probability of grabbing a red ball = $\dfrac{1}{3}$
| | |
| ------------- | ---------- |
| Expected number of red balls | \= $\dfrac{1}{3} \ \times 60$ |
| | \= 20 |
| | |
| ------------- | ---------- |
| $\therefore$ Difference | \= $23 \ − \ 20$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3 | |
U2FsdGVkX1/VrhtnG+ohb1G58frAjVSkaCsr5LIYQA52ULv6JiavEA01EXQ04j5kwBpzQwC63WtSrcfaWfXIhA1bsIqrnyk+O7qHNiUJuZkeYWvQHUlJq4W94On5JtXCmmV9zNXDn4X+AWzxXDZwHD8zA/y65WhJagQLRT4apB4JksMWrxocgb/TGLkUhwqvUBwexVIuNu4A2KopusleQD+BQiPiKVYiyI4cdzQO0HUAvxj9YeG0mJooCAAyLMtokM/7FPzr9uEDta+nTqbNRHx6XtIT9PuVy55/TAaR8PgXC+atsCL91UD1QQdn707+zhUom9+igaXzBWmDsm9HOxwRRfqTcc0AV5AVN4EDXSOp2eFnQg4RC10q7suJxuBYn4nl4Y9OM3xiYqiHZSmrsVMNNMEmucajj3T4B8A6dXi2fosRCbDnXVzF0RiHuVXRC65OHRnNo02M11TchJyuLaw2viNnjMv/FbErCtuDyY4P1U5/OTbOfnZjifYv2UyA0lZQQ7A77fLDFKMbec9C4XbimmPtrZdV33qoOGXDTSWmOywaZ0+7JKduJ5p2R/wz2pGFSQPC8YQxegLUiVn/XAN9wCj8Q7AGuzsIsL9vBJ4ghw7Fbnlzw8WRM04MIrDk4ocwEoalrspeYGWDjqJlBd6iMHTRNr7BkXKJLSU0Oy9O7+Ht6JqRDepkgZEhMjgwVaOoQl3civCyceRUV7cyKuAvhIdcQh6COsM7Npjf9TGjtSnM1q593neCXIEom/mvcEOI3l4ocFKDmLPqEoG2Tyq6ChFboLeZ+T6biobfVXGfuxXuPPEHdNV2l0+niWQsTIDNP+j74EEjV3ki4+QkEzKzL4F5yZL4ltBK5LQnXzYOJUzh+vk5SAcCCb0Lcrn55eQLwoe2iJFZcKmXN2rWcKHLFJH39sBtMuHnr8m5zIZDaoeCweMNPK+s5B9r5R07wp1VgrCXcnllyK+Y0rYOoD/EsMLn9mZVKo2SbfNWTDhCu+4bZ7vH4SDdc5Swjhni47YRN4gZOECCcP19ZwDbu2cAWCmcMizEB4fO2ZGqC4tGgupP9TA73nceZug7imYY7wLBO2g8lLflhS9Zdinywljo2dJUzbwmPhMDhUTojZ8yzLSPc9ZjNDmdFFLCLW6615T0ogn7pCv5/Bb+pHXUMTfNVBdWlmQ/k08UHsoHchajetmwGQbbz1VUU882CpvNyvQ167nYo0ybeW4aXBpo0aKpdTcaI+Tix/VJgXg8tOKLkuOMEQT6206gro7OZAvBbVElVwXGF/6knRL8BtTQa6fZFuiDKU9u8/nT7wfMftc6CKjla60+oo2DO/Dp2RaLnjRsVQht7YUrSNpMuIZpHAPC+2aKMjB8QFrQxNvnvmfBpyiJXnJKYURdMamTsarKsR5iz5OW++4CfIm1DGD4xjzTrH1tg9KL8rmf7OHbFBPGWRYu7crXWWIOOHrYB6N3tswU1LdvW7YEXV1RN/gD0+pY8KHFsGTRgmvySJ47xZ9LrLfu54Y8rLdLRj5qSSr8GbZn58LskhtGKCPtyIy1spnIiDU8g3/ZZpnyWCx7FolBxXoOnzxCNld2JeH/tB92fJM0coKQfcSU20ky/jzh6MXxz+d+gSFkVqLnA20u01Rm6LlbLTimvO+N61gBgS79+YkDRCldzqa8SgJJNe/3Fxuug125ge8ylzVgASx68BceE4O4c/apKLYW/RWznwe7hGDb6WUTxgXbNwQGftR2M6c9tFaxNbkn/kJN0BmYPbUafODcHefL9R5fpTRX7YH9JETxSI87I3J5hL402JwjnVgdPzexu00bKlC+5RirtQRxcL3Pgbvi6fOC/Z8uB+/7mbmc++gAnr6AGZyzdIzHNF/tzTax65wfBOYObzGSAYW68G21uUI1Xd/7SeVVa6M4h+RxaBef5+HtxLXJFiEUXiOQ5FhrKZr3a279+Vvh3eZ1NjXrQpb0k8Xyp7LdsiMszmEnm2RfY7pczPWvN9tQ7rlvVpelIHXNTRFCdT0+96xuBlSll3KKQCIG9V7y1e+HitN8O8GjmZ5dqYvNzDj7LG2UepbmoBYBawbsa7glF8PseODUpR5+5BfpKf8ra1lJGQ+LfWc2QUVPIgh8dotRd6L1XfiM1ti3VZ1tesNq/sxusiOl/pPgCAGmR513u+wukApMj7kuCEXzlrpGykWqwlDLnq9sow+BtyB+BZK8yDPIH08fYIK24JyLEqKL0VTMyK5KeeVEH5QUDcqP0z50MM/BeiBZ12g2UAGlRtX6mgURSkj7iVNiEKIOguXbwqgX0V54XfkG9FivtUSiZlvMx4KKHxlSPCKr/JPi7BWPQ5+jJQN0qmLp4Wy+CJNENFQXWF+HlzYtm7dMUibIoH/hWPs8tCYSU6IBu3QWFA1wNXqyBXAaHWi5u6/296oEHIvHs7wKbCENVNieheIhLL6e+IcvPNy3vpxx7VXDS+j7VEDnwl1CGJ9FMT2PjPNU1D/Hag1UJAPGii8LzFSVPHRGoIQUUZGy82QihKkfd0vg4fz5A1VKdHaOxvDWDp/RFUA9rVP1iRsNCl+6vEwE9pR9H7vcHNNmsV4CgVsyq98gT2cGdA6WFS+cRgJ+TUW4ggi3SzBhdn0LDUAqjW3QMC5Yu7CY8c2HpChJGGJiftC/jG3byo9PRLHj4YJCWDLyrzDVrfMvJd7Ir8eZfisYgH0et33kYo4m7upPiDv4N4lODIvR4kpbmRA0ik/Tor2fGgAb/d6H1jTs3oG0+aYmfrSawUXMRTVZLEh0A++T6huo0C24PbWfsLyRN3UVCD84j3kgG1Ig4R2N6sjHyrmTZahONVv41vbnuqt7SOU8D4PgEok5LX04Vp3lj8dNIsJjIDSh4OH/qbZgCseWnuUPQXdQUW1mtX7tReer+HiU9bxIsMWOX0E5ipbTUBfVblpn0vA6iTbLHxvthA2Lqygz3cAQDYrdOMLX79Xx6d3hgLmBSfcXILE+SU9mSJw7epvf1UZG3XAX3Mc+mNB4UebTnyQwUelyJdrE+kD7fwBtOedTjAuvGZtMOyW4z79C6b/LPcnKfGr8R09ez41sHJ2jxrubXfxR899Skzx47yhgkWybq9hvouwHSpYDKgMU0OqI2y61VuMJ8nOL9X1gsPiSXLojcqPdccxOPqLigaD6rKW6WY138tkzOfGRK1eqnPlxcF6KBhQadhTUZRRtnLoCvyZt3H5RbMxZD4A+ZhDEYROTBv7bB7woOb6pnP4bdnmjny8eBDXFX6Wb87lTuKLSsvWNN3S6/XBmsJU4FG5Nwwyh4VNHLC3L5anIteRVnXm1lMT0/odh6i1e7zhAEER4XF74SWe2hn1CxLDvg5Z50AG7jEmL0a8WVgTH1AtvYuL9HMXxHWnL5fkwCPiQltlcVp30qbWI4SIHiY5ooZ1mkywiN8FOSFccKGzVIMbZ1ppBT0gxix2IeGJzfSekE2xSFYnerQKXmTdb4y/lG+y9/kaejzcRgL6SipakCEWvJ9SpEdf/g0mmUfv51qNA9ExiTIDll1rpvcNoH3W8ws4v1tkpvHz0Qr34ELTvS0D78pdMy5te9AFd2pUGaU5ZqPKwDSmvpWlBzosN4LndPr3ItaFagErw3hitdfUwa/LG2jR8o+cxQBppg95TJhuwdssjIx4aTZJ5LdMVQBiRBxqKLDMRfzPg+v4VokWqFf+dN00ZC+rK34hBlQJJ2zBfCv5qHN4kqQ+m/SjynRtpJE3OAWgAJYoS+2917XbrCO4ukVUTNW6E8mlMmehogPvTg1Z7WdcORhkAQQ8o34wcGALXKYECn9yHFe1rsJh7vjBpjAchrWBTYbpaQYTBhWBEA54fG/YL+b9zJXGlo9s42DiTunKPSHastvkDWEufWBVxJGGnF2GBLbDz6NM5Izt+2HF5W2T5NCirKgEeb9ciL10MoMpI/9/KtbUOQFzH8jwKpDbLZY1od//uoCddQBW42qYtjx+CFfXvulxaOJbzAJI+0Ll3OoBCJyonD0yhEKKsu+WSaZMZVBYdo/7v7b/x0QgkPeOcRBr3EuhfhI6uLRZLTPZK/hIkMoCh7u/Svh0sCnr/nzUuYZ6k5SHJJgOJoV+xeUUw5W7CcXm8v0juBuhhuVj+m0hoBZhbRAVRto1XdUZA13YbzYfyo10u27ORoG+VKR90G53jooheBQZqCQWS+8K0/TVH/8dlQ4+jA45zaGNAk7v98hNNXb0efSTWY1EPZ/j5X71vQhabjLbRDFVy4Z4HqMCo9grDGelZPhw1k7T1Vm+26wKNwW434+JWO9nq+wDnDJbjrQHTZlLpTzF8WKhSA8uhZ6oTTHJuTduFcmDljaPp1BvH832cATA63m5EeM+JuNKHwY+W1V4LH0NkgjandG8eSr+cUiIzJ21rI4nfoy8jehXkzao73x++mUsvnlSdRpUVvvsVyNEVJMNjCy3oogSarqLP9csdzHoPPYH6yAd+iGRWCd2IN1UWrzU8n4gkBnMjN9oGbrqnIhZMv9RUEsdAV7DnVH6rOCde9fgLBNiOHLm3qxhTcVTV7TGx/x79gTUO1YYIUlag6hWldeO6K/iXzA+4zQR7EJRLVy/365a1XOCaicobIWUAI974KAD3aTfeogfZlMafo410gMT5pTwCzQHtynX03ibL0lDXbMvfCEacAYiByjH1Nn0W03xW0dWvrNrn95J0EQ3bhbNtlBMrrAwFiLE0Dht9pyvinHi6ukZ3/+acFLgGIkFG73sRfgy+REqQMyvLf6T/EQOFzQn3NUgebOM72k557b7duDI4O8XUWl+CxogSUyXEvSOIFHUFb+jWxODwcB6GRLVAm3HXTB+SstUcSfPebEmrhv9G1SY2lwJ0JVEdcQzCC8XJOw/LrD/J8Zxz0pdacyH1dLDRH+YBTBEAuVxMjDBvs2qes0dA3Q+xl4RCw+txti0Jsly7ps44VFHVzrioYVOD75eYyv13ElxPGE3q3KvSXoH3ThFXRYCf+tdB34ohJwZtsfOnBAxTlSay0uvMpnLihJqNsNhalOyHmMquN9N5nOMXj+fWQGTgg1cmnmf9qpb1fflUIuShNmymANo/a/nHpEDugjprW35YyzhyfYlf9oZW6Vuq5+mVWsMFTCB1WRAmGAf9WXQGPxt6kK/x6IxiiAKuQzMSmiaBRw2NSUojM9Ux8u1rwju/bPteCtcRWBALZg1j+Pq7EHFkuVJ1GAGkOVIvA2Zh1N78h4JiAvZR64FSrtGOizEUgBCRW4gmrUYxtFQgTQoiwtmX//OGN75kcfa5TSHFuoKq/US8HAaIR7aqLfNLrkpkv/RYD+uycOly062rWegpwXY6e/6th9mR2u4zV0Klcm55zyzZ5AkwZ47gI58CLYOVTe8I2hP3yDdXAdI6Z7WdKnOdFzm9nQZoKt2ovVyNvsg784Ve7MCxP1ivhtziqkj1v7V7IAhXgX4BPD4cjw8lMWAEBjFXw419i4DIQzOkGM5eFGfKl+uk6dE3rKI/jy5XKTA8AC40EazCycQra21Lfz7TpUi6ueGjBQdjCSOrUo+eoXIlyG/XFA7+LNJiQuwB6dsr9GbKlwcuGV3cTMexo65/xdVhHplFlY03RoffISEUnYDdRWmPa2IFuRZLk8cXrwJlo8MhbkdTr6/j1O0LIiEAaVKi6Ur/bG0RgvG0dReD22JknLQD5obvu8iQ+OakZu1ttlVAFA8GptaKfPe/PUoRSuQBbuJCDX7N9eWSl/SPsradJSWaKFbGvAC56KWMqSrnDDB2tM/K8a0X+DUKTsxfroFleUr181/6lAEssOcs4xU31PZ2FLqaxokJOOz6Grdv+85tLJt7OV1j8UAzpJ4xd3yNnjfJxy8WVp6oWGqlIjz7kX/ryW3eqBgPTrlVz7d1KdtboqAmxUxjOg5MReAsXvlhwJZcUqCKMhlj+pta5+FJUn0KLuMoD5hvIudhXIOpKTeHE2E9wKhRb8+YPx+52XZZyWYBeZLZtGV7WEr18qdVCFNrTKDcK8YzIlQ4Xs+KT/9+ermn7t0RzWn0DePfxFTZbpJmrbgykkVE7+68VnG8j7px8RUocn077Dsg9sVi4UEyKFI+6MFuh4Lc2aWf6OV0Ryc7C+w5iHF7BJ2QyLot9ETee5G04myNrEqF1EjXtHNCzB9eYDoGC+IDJNZUlszlW0W0zVqlylvA8/tW5mnRksJmYd4o67DnP6Qh282oTETxMNdxXiy7TQMjDWDmBliRkOSULQrLzOA3b0B5PEEaG9WESJAEO9QL62msRoHRFD69vU52RlveO4bNpbJuNUxYugTwasgz5lz1hOh9WOGOfQOiS+6JRxlmaeJ96c8SWRmhHge+Bw==
Variant 1
DifficultyLevel
625
Question
Elaine rolled a regular die 100 times.
She recorded if an even or odd number appeared each time.
The table below represents the recorded data.
Result |
Number of Times |
Even |
58 |
Odd |
42 |
What is the difference between the expected number of odd rolls to the actual odd rolls recorded?
Worked Solution
Probability of odd number = 63 = 50%
|
|
Expected number of odd rolls |
= 50% × 100 |
|
= 50 |
|
|
∴ Difference |
= 50 − 42 |
|
= 8 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Elaine rolled a regular die 100 times.
She recorded if an even or odd number appeared each time.
The table below represents the recorded data.
>>> |Result |Number of Times|
|:-:|:-:|
|Even|58|
|Odd|42|
What is the difference between the expected number of odd rolls to the actual odd rolls recorded?
|
workedSolution | Probability of odd number = $\dfrac{3}{6}$ = 50%
| | |
| ------------- | ---------- |
| Expected number of odd rolls | \= 50% $\times$ 100 |
| | \= 50 |
| | |
| ------------- | ---------- |
| $\therefore$ Difference | \= $50 \ − \ 42$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 8 | |
U2FsdGVkX19J8yqedGqKOHlSVl8AYFaaEi3ScqrIUYfH9cHynR+5uJsANUU6tzfPDlD5YeqnR4Crpb4MvdCNCn0cykTQtmrGfN0ZZEZF6dza2UVIicfVRjnT1vxb0YW6X3rD5Toh5V0NA+ZrmyJ+QHIGWcO5FS+BRRmEKDRfUq/J19Io0A2CHnBciIwbG5ChyIpGuQ/WQAhsvUEmL1sOE7s3xyUcbmLB4BYA01LVqXLMlA5BtGzBOeVnAbin5GBdwcMjo/JUJRr6oAvrqUVXkZVF23hza5S0J5gidcv+uium/2IZuXYLF71AfgKqa94aMkxcmy5072Nfn9eGR1Av5GRiHWNrjgnc/BGoQlEJMgJlOTEir7tzwE3wIC968R08vQ0zdGkc+1B8ArDH74Nlfa3YrlVs7VoFbJqPt8DWMnQsKbOZtymZt/2Gta8AiA05Zg7BVuzZH8m3ziAUJAQ5M74yd5Y3KKCPZ74nrTo+pDS07qoPTgasneOMv5CMQ413wqdIE3rW2GVnQSseStKo3nCxo0IapiJZJZ+F5mVft+Pwm834B0bIRPRVByVIuNxGgtRr0BdcWgNyBWCW4Y/HRc0ah3nMmXG++T4rEVRlLIW56QE3rC8gCz0r+eg3kH8Ob/w3rysGC93eMwgXfklWfw+ueMqATMQqAg+4ogg3rR9XiONf9lfL/PwR4insa2Uu+t1ZS/Gkx4tXLxp+aGqA73oBLnYSpbXCIM+U17+VjzsJjDK7pjaJujwYtaJmAp7RXvf4Z4AXpQZZClV9U5VLRcZAKRYB7/rKOpec02exbcRMo326sulOAT4TAU9V0o8VWwd8fRja3yQo47OOtHRGNu+3MXwcLNhQLfT5samLCHcO/7SN9m4G0uF8fqFj3rJRIKaC0JzX4tpz3yYRKv/fudJGb1oF/uTKqiPYYq11PEXpWzMRQ97ilIHFp7hMOqPfgSTMDZhYFZOU27hRcly3jjZlty1xYzcp4tA4uipbW+WCybE6/J1m8zjdXEwrIlXoTTmQv2FrgRvxSxWqQLIwsPcPJAfA6RWbCOJManc5FpbFq8HVxEM6KNDtHlipF0Fyr6gJZ0uEflZ6MF60POjnwXoEzkMdLC/ka0tjbQXC1lJMrZXBBDODRWcUILODNWoauUF0Wkic3J4z8Im8M/7FkrYTZaKl20G7xLU50F2lvZ4D6ilOO+TFzhe2OKi4Lf4Cktic5oqWE5Lppuc2PduwmD9oeEefyMeFzQMHGqYeJEwvPhqkZF/iGtGoHNxfUsWZCDOSpAXmE+yO7zSZ6Fvj0BiGueGZmVkeDB2hU3I6aRCT3En15xmP5fHGGJVYi9fPTeQzUQrGX0M0JQ1lfRHZ924owaOnN77LMMjxkRHwkFX0DNJ0O7NTM5KnvOEFX0eil4WXNe6sLmwsvTqEPPSdsfPtpP4DheO9FUYyoogXTzSfk/9WSXiYrDjqqs83gSpcGLKIYL+z9npmjU9Iu77bpeOEKb44c9KVcDAK2H8qqzgTKXrnJnaGyfQ6QIVqDnEHIDWYcSOmuUpezuhZa4mtQfxKxfP94GnGLm44z+tE5fDoTjg/XOcb2EJm60+WnQ4/n+pQaY8bh1g760lSsq9JGV8E+jk/4rL1WBL7dsDtjs/ujqH9EjsAY7jHAGa3NZS+beVfiNAH8kwv3GN0Dl1L1y5+2zH9vpm42Tv15N19yxsPU0ug+hbxj7j6CqqvZNJjOKrvlPFZLMrDFZZwft5utpS12QkqNe+Ya7Okxb/C47m4hFGDsv6BzIDrnqHIv9o/ERwfljC3N+eMhvAWAR5gFth6iAzyq0cLavD37j1QlZlF/KpIrK0Ugtw8Oj7aa34V55rpECrocmVtaMC/guBey5Rp7lXu1krPzdvOo+jUXDVFl8Rr5jr/3FPUrPuSI/1hdaqdkucaYQ2il2J1+7GROH5CVY+1wfq56NRglBmRSO7dIwpJgRXMZ+FqBuwQLd3k13/gmlwzQMklmtFQJL+5TB/rC5c9267o1dbHeuqo+n7VNC2xMGjNt5AwePDqtX/gPULZLsWcmrbtt2Gq3a2K9wbinh6S4ZPckwwTL9zC7OX9+wk9VdCS5LLOuz6Mw3Sl/NoFHPGb9XEWbFC31UA4wkC2aE3V+99b/ExSWZwh24ezJc79NC5KRh+8RgHzlmPac4Yo3Tya1dM0/bAulTvSxgRUZpjblgJBG84/1gGaXgW3DBOUQwgJWswR4hSsmgAtxCRnE5YBHqhfQ+DAw4mngx8/APglzb6cPi5eFuSweHEkKeNY9U/iSTSbdVvkGTicE1nEDjHnuk+XGCf6EU8Sspud+s9sGRl7J/1ZUiKwSinX8QGPiuVYwKsKqxsPcaEPQ8oFZua9klNxmp4ntLB+IJ4WoyCeE9XTnlsZcl+Rsk0ce/WJjRwRDqeH2D3PIwlF1t0UQOtGAtxGfzZ932lWy7vk8Z8DSCYh8Swq4qc3tU5XvFErDwnCwBEaarN4ZBzVGP7DGjmKvIvZnb9K6mkB0xo/Dly/M14LgBGT+A2nuZ/YJxTO4VrqGNz5jM4QonZiBKZiEexPn5tQr+YLSVYy1g3JQC+J84EmSxIOXnkxyV6v1VLjET9+Kt5qNo3VBhgv6O7khvOEtcSben1cwvtuYborr6F995Z9iFEnyN0oOZS6lmSK7/1kZs1muHRzdOCcacyyhS8/rKYygOEBtkUighVjyES7ZN7oSuL7N1YGvkaVCTb8CKoYhCxultMgVfnCLBTkn3/dAL4+A1cVcURf3QXHKrlDaEwu5wzg0k6pYttVdIAsexT42XaG7vzxt/omU9MWA134wiJBlvjrieUBjr5jM9laWDsY80bHV+aXm6+FQSEdXosL9eQJTMwnlbchO72Wa7THKMPLR3izSjqbTWCUcctS8Smo6RgWqavx10Qj7dOMV8SD9l7TX5MAoGlnuR8QpnJzVnMfY6Dq8YXOvXQhyzKipJKvPnOoxceEetVTwUKGJMABZCfaiF0aG58hw1YgkfnsirMQjbq9NB+jtgeLr0zFsRQgRdwTFd+dEKC6/LPKtLb76TjsEHfFcAXitdCS8+UU64N1BMEQy6t1iioz9JuV6g50WFjYlN8Ww0baS1Y7hp8M4GkFxJzLPu0blPX/8C6sagTTNVPviy0u2l3GQO6V2GIKOkEPgmkf4O6DUePeRf3xbIAS4FRV8AIJrLrhZBqZcBYg/Yq+Zg7yseREyM3/1qRLZyIAVBbYbpymDQVJgFnXmyxNqKhHA+Z4yV9dtj8vOIkF0XXSV9WiByUVqDmf8TiDTHBeiXuEl8rD1Azl8Xs9omlv2UZCJncRjhOW2IBl/SKeb6Db3DiWqr9WJV+er2M5yib2WChDox81aOBMDF8BVdLcdYM49ypxL/g8nxGK1xtFg6j1G3cel2eLLGdR4d22g+nV4tO8WOCM/3uZLelL+tm+ybKSEKafcyeKhurAd2qPnZ8I0qYuoys/svm9cIkjn63lbKZXbsgZuoLNr/XX0gFGXuBuRwEDFXED170Qn3pUEjCz3m26ddLoCcTIK2IYkrXkDS7zptdPVQua6Ia7c0zyuMNxQuuoZLopuOmH+PW9nVS0Pg7SVyIpiGT5vaCLzGnKDql0ZRjmiOSG7t1lAJrdwHEQMr2iedOtofPYTMzCUneDbLcXJFUHOhr4usbSqfyX2/lbGIQc50I/Fp80Jww6D6Nsf+Cv8TjNAG9tqnHZxtzEcYhN+MFxLVMF4l9A5m8S30t3jNSoeL9LBMC1Avb3YDth0zazJY3WEwBvnrQuhO0Y0R9mNUuA5oecTXKmm2wSPdofAfkwGFoNpQgJkCoH7DwdDJrjE15Z1s9njuFIh/m9Cyv1b3y7NXzUkv8qcRQj5tTpsXqIuGdO5LrMn02B4M/z2b5thYvAkQdyPGny/rgf+ICv734lIoi02poD+bIkK9wcko5owWdq46O3bbC9gSbRQg+gjpTpJvwOHuKq7Gqi0smhjdFe/Tsq0w3dgjmZEJ/1ALM2JPWlWAUoJvm4PmtxNHRcisiwf0EWVMZ0hiQWtb75XSAg1NocxYMylT/wYbsqFpb+9AiBz+NCw3r7wix4IR4Wl0gWoaXbuEBD1HIc8P73Sn/iRZ+qD+zUKuVxgVmrerBO3R0Oq99NVxShgG18UyKuvEyGFb+BpMLV7D8rWDaHlAQBcxSLIQVDFSwXcjwJdec1MtWCUvi3bByZ+1Bw2sCEUwqwnnILw/xXEq6ziFldBkGBpOkmXCvROhj/yjExgz89bShEp1Ga6U5iyfyCRkvllo0WzNJ5CUiMMaM2U58mWUia9vE6FgvQ2QVhSlQK5GyxlAsR2O1nQaqHBoWUgXF5HzrpuK27UB3iqk8APFZUysHGQQgptiFuqq2qiW8PmUOAexdt3CWI7nYIuJiCusL0dUEQAd6EMlKbHXN8/CUMdC4Sm+yswNIlsA8S97dxHd48E4a2AzdT9kbJr9JhDWYybA/LxLTCnvDEd4NfbKZVAHHyf8WyDUJhjIJqwH9kT9YzlLfEKHYIs+yxH/lJn4AByZ9wkAY9fnREigZprMOaulpDQGB7BcPb6a9FgTe8KCEpYqI4aSUbh4ZFX7SIAlsuj4EBBqLGZwhT1v7FbdyIGuqlUJyOATW7/WL6zZ4Wtg2PsB5cpjtESDXEKznVg0v9pnO8s2ytW0AgJ4IRXfz5a9nf+XrhDvdr72YCnDji4wFSbYmx2HP3Vqn7cUf8bIOr2T2nl+4lmkUTA9cH9OzmXlGKbTW+S8tybnruc9XxQ1teYFWiTvflUDTADjPc2Vx68H8y+BttcOa8K7uEsew29skC65fovavz5PsmeWi/nVGXAM4y+7m/CACy7lU3F4BjujWKXYXCUqiECxPcbiSHpCqsCrPXJBNw3r+1li7usrpu/ZKKhoNqi1oC3COxgZJ56YyvvxGK6tJmHWQ/U+11fSwVP74gj8hDXKCsr3bIhFkFqqWg7BaersEvaEAFwcoLZtziSIR1IeHXOt90/e3hZ3bsGqKqrjOnaJYUNIdTPQ+mV7DGSbb4csjnBzOZbIU7EWURSb5HLaulOtgqCis17mTiosI5ftWW5zQTsn0X29IdnDQUu3T5pXC4mMSs7XTZF5v/IcG5l2xdCMgTEGVmnLfJX7Y6HmVlnLeC0foBjx+SN1FefgMuimNwQAO+om29YLgP+KyIOZ5XqyRcBXdHOBXIFmYvbwQEI+vbY7k6SlkwqzgFVyAx+fvhHoW5r/b33HkqyNF5vzx3c32HNnKMReD+hYBu0WsYzbX7NwPha2RdJD9L80mraALiq8G+T8fTiAt07Vu8tXHfNydVnDjMbsZL1TcyzrRdKyDAa5pj44pL8JyKWEFPFyMEMzWIDweMWb7T6he6RpedfL04awqYPBp1x1Au4XospQtcd3o57Oyx+7fIz/mapOGGv+8k/hQyOduRaSCkUSG48pp8Eg5nKpH1ZMMUeA7gqVdkFoatEUOAKp3g8iUyo28Fo0YBSuiHF5WLXp2hIlkSQZwq2EXkdQSE/uVp4S39RFI7l8KBWNst/Vnjn9NexXVoYsuDeo+lhbQxjH2zXrkR7LXCpUb3nYb4QA0xWSvasvt6KJCOmy9qVqy+W6DVJjkRR+9uE5napW1brlh/IZBXv1ZtZFsRMVQMzKH3u4aG0VMxI/dDjztF1BlXTk8C1fecLjZ7IWeVGfO58H0B6xMQogX77AsEZdTJyMj8u24OrbwkHfWaJ3rILS1tGm6vlc2D1mj57fD938dpvB2UMPCfYft1SjZ+abB+MModZrfWv568HnxuRAKHQGD8BX5cJfmM9EB+FzafLoMPHxjmBdp2NVDujlBMHVoKmm+JGoKq4ZSE9zgM57LqAmaIa3CLqf0WKpQhq4eKOaDTna7BzWdGDl7/Fip0ZdylT2fv+0QPngJF56g457SgLyAzPGrYQvrpbfo1ggD+GoVVZu3oa2AQhoK3bLgQmQN3j3M6TWEOcvguMTWH7III/iCc+kun/F7+uaBK8QHnbry7F34E1GuCUAqW7+kPL46NqEwy5p2exVcf+5BnkAkH/74io7Ztu3+ZEZKu8GRQNpe1tBnbhsVGr8OO2r4gdEq6pZk2uyxMg1aEK0rveyweZuB9ySMNn4g/5XSC7A7/2o+3KVzm7yRqRk/LIl222dr2/xZN/Rk2C7hu+sUHihU2+N5nbdbFbIsjJ9FqkTNE2smcEpCNvxnI5ZSmDu4zBEoBbmrRzBJoFBUn6XWzE3Jru8enVfGI7OuGT/7FGmNb5IjSCn3qhTTKYn0lBCrXRNMvQ4v6WAkHgdTRNHLwfDFrSXOSdhldNsdlkBKFoGQuh+1DBMF0Sd6MRdTL0XyRatLkHgk1z/B6NzTUjRln+uFVAWtnghKRMs3aBxnMrfK9cZ8TlHLNKXrvQUDqIGB7oXWELY9ZSSXWjMqSWLEUim0GddQjZIuVVPWS9sn2cGYMeRKc8z3WBbKYEY+Kpy9LUDgGoNSqpMtLWZZKqEaxiJp5esxlQSg7k1N3zed+rQqQHOd/eAvg+1zmBpH74cZclyxzcfk7RNsWGu3puBd8OjNj8sCDObM7ngw4IDBdFMP5OJOzbygpxDglGZuU/5eUEbP2C6Xhd4+2oL5J2CwuRwf4nryTw+d5HQ119LSV+6qa4UMe3O7ny1UbtXbAeSjhGRoG/ZdEZ717zAjj262dwGE5FkyP+K2bEpYL3Mwx7wIVQ1hBM4yO60PQb0N0k1YmMh7UT1jgAm1OkGpIZ+oDsE7D0GJqa311mnZl/KKivYY1kc6LW68gjZG2XNhLL8N3yxUEgM1MnlJW18oDDbyuU2nvBTXlJ83aiLwMvgReFPKuCbi0xJKFCWzfx2tkx6O5ZPQbtmchbEShTaQKFgGgXHWwbF2hLbZ+AYuNxvFvtepa+mPntqG9kZU8fWm4MT3sGB2HNltO1zAgHEF4pU+ZxdJ1maRbUGUPSkxsvBBYcW3T5jaap1iAVChyeezsSXjmDwAcgWUushI898KbVVCO2LQM7SB7FeKPyLOEAi3/CyD5ZRpzMo7rXuOJVn63H2N0/tdmgGbPlsS2G+06TO4aEXGJwLyPwc0tXrRnRdGfbh1/bUqgEVAYWb14ZawEXMBP7t6jSByJdsmAgtpGzwC0UXT2KzIemsU+i+m/hDHGq/oqtTZNBWGCh53EJ7q8n8OADdm/LfmQeukAlQSWuA69hTrzjS8ySiamU3pcxozG7yJHY35S6C9yZ2O5PHHva+l6FhgkDwPKEpphdXVK6V67gN4HskSfMci5qMM4XKTmiewqSpNlEM1znNbmoeW5q1d2dvXN7PN57P1begYLDnWTH/n4LxAW873DxzlufmjdsoT01LIm6Ph8LN8rr3UDmg3toeTkL9ysFB+ufVXpKBYvYjM8+aLNWk6QZbkV++ihsp7LGUjljMtUDkqRpAPJD0Bmju+s1nSDz6clSolwSOjU3jHzPBOCJBeD/7Z28DyycWSwMINf4kOPl3XxcpC+yWkKAhr7+LEt7kHxnKAMgmThwQrFYs347BcEpfO4PE1I0UMquMxZWCc9d0Kxqu2AWJIDn8Q4kv0SUCOQHv0/NQ9BFA6G2DZ4/puDjKzx7KuZcVcR1PBQ7fJOe8BAxbkhjNKA7HXtSWi73mOJqxLVzWXY2Eek0eTlNx9P7EjWzasy8Itkn4Bc1pKgV1EyFmGVbQJLZwTtbxDBswO8tCOxETGgbxxv9/uwS6m6jXkdPPJMW3+cDIHIRZJcIg/1nWpdE4mq6dJlpxMRdXEL7UIfV3HWoMgz2NUIAqxFgwCGJvLy2+8MJZnLPbJRkbNGRhfC20O+uEsoQdeZthpvUP8eYcT7a4tI+E/VJs0o2Lxd6tk781bDakdZmlh6x32p8+lV8OnHnUl6hB1BbyhZWN5b8CAzNPxd8ZnAIMYBpkq/wclSkCfsrUcJbj+rDMXQQV/HTdQRnRdq2ZCU58A0HaIt/AUa6+HPoubyYEFVKWtgY8PzMXDOC25J5QneQeXcD8fJ4iP0jAtAtuT9uvXdrgOfbPOKUy2L8px8YOrDlXZtrPL0hUEJcgFYwtVf/qRtZk7kRLySvCse/qspZwIJ0+wPr7OYrFsyRdDErznzpMSpDXOi26+svJn49/0HPo0jwBS7bbxawKVJTHpw5SyGhoFoq7VCPd0JvUqfQSuSFMUJevPccLyeiTRNFayquEOPta65iAcB8mVCn/VGubIMX6+Vk8JkEssoI44cJNW+VqJ+Z/yhtXynSFPqZDttJWescnBdAXvO94i2/hlwf763EPO3HZCSYZvwctB/jpIRobTxZcn+/Wrz8edt/FQhy9NXhwHWDXgLkevgEci33n64NwHHGN+NCcdwuXdDnab6Z32wZNL5tEk8QF6M9Y8BdoXBQimFIr45fn0zzvbAD2RtYlcxrcC2krdJST0/Ulq6i7pafWgmwm84sSk7mdNvuvk38/syNFNV8pyC6mGTT9INVLjVCeYqa7A=
Variant 2
DifficultyLevel
629
Question
Geoff has a bag that holds one orange ball, one red ball, one white ball and one green ball.
Geoff picks one ball without looking, records its colour and puts it back in the bag.
He repeated this process 60 times and summarises the results in the table below.
Colour |
Number of Times |
Orange |
19 |
Red |
12 |
White |
15 |
Green |
14 |
What is the difference between the expected and actual number of orange balls picked?
Worked Solution
Probability of grabbing an orange ball = 41
|
|
Expected number of orange balls |
= 41 ×60 |
|
= 15 |
|
|
∴ Difference |
= 19 − 15 |
|
= 4 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Geoff has a bag that holds one orange ball, one red ball, one white ball and one green ball.
Geoff picks one ball without looking, records its colour and puts it back in the bag.
He repeated this process 60 times and summarises the results in the table below.
>>> |Colour |Number of Times|
|:-:|:-:|
|Orange|19|
|Red|12|
|White|15|
|Green|14|
What is the difference between the expected and actual number of orange balls picked? |
workedSolution | Probability of grabbing an orange ball = $\dfrac{1}{4}$
| | |
| ------------- | ---------- |
| Expected number of orange balls | \= $\dfrac{1}{4} \ \times 60$ |
| | \= 15 |
| | |
| ------------- | ---------- |
| $\therefore$ Difference | \= $19 \ − \ 15$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |
U2FsdGVkX18epI2yts92kqQb+DQImUR3bdS5+x5gwp4/xAMBGmQ96YaSgQ7XMtXKNu4Nk2LKf9Jt80JA/4KCjF8/clmH0ZnoDJjdseRxi6QG6if8b7hZUV5z1CvKqhLT6AIp2j3mQgYOVpN7uCbyHaidJzzb77/ytZ3wGaFhZvIlkXx0/WD3/aRBmgrBaOAQJ7L9KGOAynkLNRKWRwa0sBaYobLhLp+Oi30Z6q2PwtUIq6T3SCHDTsC59dZHcSQ2jWpb4noYK0H59pL/JVB4s5XHt7BG46/9J0IfOwYmi87js8kQgcsLu3PpHYLXgrmiHVUkHiV+zHeUevgfTMmATRHO5a0sgW1bXGLQOI0dC7JJxj7KHJVHcokg7ENF4YbdMFUnqMr8kJmV0vYtAvWghUKhI4WbR1CwWIuzJAp0c0hXGUgh4rldUJEW6+LWxiwt1p3UgKsrifRrREaUUq17AhZRV9DUUEyrA7KfJxTIMPzR/1xll+lx+tWCxpHLVup1qCBFSBv/dj8m0hVOW/RylyHt16/a+puB6kZRpSDvThiK8idq3+tf9Nm0KfcMzRlwCjNqVtEVLIltFs/4gQVB9N0FQdXDrIfUxM6jkfU3Ps+bUaBAeaHHrkRT7U+DGs/J77I9X9UBpGaP6GwaJSMcJ4oumPwsW6aEGQa1++qlGIAAO3GpE4Xmcp08+6wYxzOI4uSG76O13Ho5cf6pGy83Rkjy6OyPWdzCYHJuw+9jzlPTbCJ/7CnvoqQPzC4HGFLuGHYDoVh4iAUrBi7g45rwxKyLH13fVxUQlbwW1BeRurIXsOSs0OmWIsYrR5q9oPO9wWA/j4HGqD5kSTV+n+OPGfsM6DrFq37kzVPOeRkk5Cq6igHo48zBv3zCN/5DKYmtF4x4gYU+sRzkyCYq3aTK3+2nxG5mGGOJ4VJ2MyP9jzLNAZpm5N/0/c41XqOrDPILvZz6NwT2q+dbrXmskDXQe6nnbtrboy/F6GWGBVhPmNtOHObOw7u7F3FD89/EXt3if4ezdxn3Ck89wvwXwEHU3tLAbV3/h+domzzDy6rJMr3G+n7iC22unEeV1wbx/ROT2GuHyHQzXPuJw3arQD1reMECtlhQpXZokrFLC1MhunOv1O1Vz2Fa2P8rqzeOitWL7h2rswG2tyu0s8kfTF2RJiIKe2PXC3axhtj8IJkT0ta7dz93JrREJx7gTiKOYbQtxSVTlIWdOnzNBhXUe/KbAjAmRT/eAQ9raMYuORhzpX/M4tO7mIrWqfST/DcRRFdDS6UX7vZr+tqK6IHrUplvDqVLfgzGZ9KlIF0Xgmos7pJJc1HHWyunp2CkLvoX3QgLQlz5Br7O2/8P05SUDPwUYRyG6rWWJckIXQ30u449i5qZ2Ga6mz0UFL8rGlP2DnynrXZMPW0W72ASwbe+V5JtMlWrvNjFwJj42FqZoewRn5kigcAxUAxxUk+hnbPnUyx52U3rnQ83IKHG7LOJ90K2Cnm0mlxDb7IXzf7DGzJlmwV07ElJnYjJZfJKN4Qeh6tAUVutmumWtmwgZ1TH1r7TUPaIOJZsKbrheYqJODDAJo+6/95/Vd/6qsrHPDJfFVrf2n30FcstzKaU2cf+lEiA15Xm9hdO0sxyvm1/pPJXVHNZ8K8V+Uo2iSSuOY50jou/ruvsiQ51pevDHJ9eqn6XORCLNCFer/sVfZdljFJvJZqBn+qFL0YSvLw0wr9lnnBBspNMBIMg3CyoWzOOhh1gNPl6tjci3pFlZ+AsQkthNWInNUIeIufU2dUNEMUCuFanACuaItKWozT55N6PMMIdaPaPjKXv/1pr/EBvUorAdcXgzG+E9jx8JJuNBWr1xlyTxnVnCvFGy+F2jZ0XWQh54wA+nRTu/7dNFyopceKEL0Gj9iz6HYjCh5j5DEU/Ju54OGWFfh9AmYE8P8bmVv15EQwmu1Xw98TIU5cceaB/nRa/X3E+v/o0pTn3el0JGRcX9D4J1f92v5phn4XPT0mrDIz8lNzig+mVaUcdcO+sBA7ZV/aFrhkduTdKvT6s4CoBdB8IMGIfjFQn6Nbg66X6Zga3UYty37vzbEr6Bg0o28JWFQPvu98bgmGEIzEj3rZ9bEip68q6MdK8aI3pwuCG4P68zWXNLaxL58R6NbLYZtgMWbvp75NqM0ZHfhGC5EmSNiZL0P3caWOj68/+5Cf4BvYGnhN3tCgZREw1LZp0wAt376ri05NB6bPwtcm5jm3smsyK91/RxNcWEKSNlCBN6dAqmLiRWGCwFjX0JfMp6d76TPZlPZ3v+pS9wkg17qAs6R7aheSJSjVC6bSZUCtKJsJQA3boIsGDBmGUWprrPizWCfq0vcjaOa0ZrvsMLoTbD1vEBsVyuyf0s3ZeIEpBQvrHVccJfdbnCPLq67rl3732ENG/EFXD+y+vRe7cTIK1/tm0diE7DKK2OZHBnvR9e8k4jpuqnrXseZ4CgzzfxGfUq5f+ZS+nNcJ3mghve0WdUZoJlvRS87N+4nFdHgo0WhHDPrrTWDInIVwwO8BWrOSv57ocb1uLY72iXr8TXIAVyJ0N3RH0hUlwRkdrnPr7PUrQnWl5X5hDeHVmlfR5eu7ATfAHQB9givQIttyqlGnNsUdz4JgEMm4WQ1s27Pi/PxMaxOupokrT3e4ltVDHdVihdMUpYt0O1nWZ+8iwUWZt3Ip01p2R8PUoL5pxLnqOUf/oVnVTDWQfhXSIzO7wthDGEwxY4AHWHq0WxpcO+21O8ZPPql8X4Rb3oIFXQbc+KtpKKcoRvp3/hWgN6RUkarn/8JMpPUe3QD8bJhKWnenrKolYABZuceYDS3ZPCvalC1fpyNeEmRs0MCPTFusRXT8/M1qlf/U15dlSUSR6bKaS5+PWDf9mAoqUBmN8DelihdXjrCmkpuVPKpX/JMoQOA0BkVBVrRO+lxe+6oJMJNyiAOzKsHvTyH7WYNZHmsUjJYsEbTIDgwGJCiV2U+KTAOfAfcO9STnz6ntteWuahHLLnX5p72m7ojniawxxRSBTAFlAMzDKj2IrTGpZZA/IiVSmrVpAzGKbdtJXGv2A3abQ57dLtSl5DhXIXFv9oab3vecCi5M35txjnsm93YbJ0+z8xx3Y+nAmv64d9WsWCQ8l4D5xCPTu8ywPzz1+A5K6vwnd6Qzb0ej+PM9UcbtNH1OWdfQgy/W47aN5sioUtM5RkbgxD8g/nxkJqJ7KewOQR10lC8K3/ct8lUpjYyyaAXkiomQt6k32QCQELAFjtJYZE6WFPFcaPYh/0A/px+44U5AhaDp6g1h3vw8398lmK3qVa91+4yoHMeuIDJuG86NZ8SGsgBCDqz9kLSdhhJ1AVHNUOJlPdDg/XqzT0UYgb8g+cS6/MINmEah5zneuliL6TifoecIxySbbQ+4mcfhnIWA4Crbp9STeVm1DOd+UcD85IQ7bHZbFQtKbH9K7NDpSzAl3xuri5Cu+D/+2UFmhTFw7tH5Yw9C6c1d5ciF9QLttIYWwrF7RPiQbMsHM+HYMoY5jeG1Q3XXA+dJRcOFv0ZMGcp8h5JOSF/1WEyh/55YR0ydijZek/oNG1iHQllFuo2Ipee79YXGWNmEjz4kRcsUfbq2N4B7ZWuj4hCMgMhlu1mkb0cmdHg6ULd8S9JsXZrnHHlAIp3sfRaYEDfG65NpFPaQUsOO3cQmq6tGGLe9efgakOC0Zblec1/KT0RHARJIoQg+I8gK8YMpTW27aSaeJ8mDuLMscGuUffEItbNossHHN+Flke2jSphyvzCKIAuM7sseiRpuprrQfMFIQKgkzClmQ0Qy/PjYVkl9IUZEerXElTd/2e+y+WXO7jB65M8mHPetFHfDLsi63wK6f9yY6utx/NnwPLH3TIoHXL87YlaSoqGTHOVfC4ChRk8+dKmdu3BSCjdXP8MztQum8tfQnLEAzECEPR2fkUvSI0wAt90a8xafmMHbKMP2MoK5kob4ImXhNRPXwB9drV87SFQjF6eKSGazbPbbGAI8JWwVF+3KKGTKy/s03Ni0QlAFNKjf+mzsDIGVmYBTai60xyW4kNNWWt91BuhXiFUVvUK3C/xrurvUF2hEusT1CddBrBBqJ6uBbJ0hQGKSDHYY5/+C0tgxAduMq94j9Jx9EcMPjVJBcv62diQnbWzxfGdtbZDOqEiIHJKczyvQFezc1g5lkYuBwctLg8ya5LGVYIvr069JNleQb8/F5pVUfFytOwijKF4fnEkvU4SbxinDBPTe1Bs8b2e8kcgNmfOZ/Vnue5Hh/m8JhzyN+izTThbwmfjdiXHK0sqiVXrSw7ewJ+0qyeSpBsR/WhT9Nrknal3wxSh+tPcznOn9IU8nldfVh5+0nxW2YWCn+kgsf0WRFJ/jLAKzMAR6p1nLDZdhwpOD9z8LoFDE04yaop9VAIhL4jIuaXDIUoePLACcXVbtf+uJEhhDLcM/kZKXOj0v+Q29FZZ1Q9rSm35q9i0AtzgfCDuBmqDL9kiOTSo9yOwezIB6tyW5fffd9cq33gxD+t7g7HLFYzzrp5TtA48eIJ2xvnKcnHf8HfZsicSp95pLFURgTYZBPGsW/i3enOjmg2LNaUjWDa0ON37SjN3bgowUuSIjffVWBBQypudpYsvTOn1j9N8sxycdZcmZb1OnQY/b37t3FfF+mH957lnoEKyLBybV1rDSK1TWHJUE1i8478NNXhGiY09Zl5tvTg7v5jnhatGkUhiFvrcUw1oiEi3Ekrm6BWRzqoy1HBj7uqMsBsFNnND6xVF6eL47FmCmXmlhZvnkEuh3PT86sS/HTgnBd6VUPBJbJzOJQUdbj/AAE7gQvuB6WyeN7Qv/Xom6eFf7jGmtuAZ9RejtFGDf0r0F6kWcWme94+JaB+elO8OAUdMyEMLEqix0uHy5JcqqjhNhbwaFw5Qm7j9UNC5WsVKNwHyy+NGqo4x7bV7Dy7eoLwc7T7c64q35++BwVTPwKbFvS4/FVbK4t6Uj+AQ9I4DEEb4YxjEukwscZApvhY8uMCLyWotCnBE1yCarsOnW3FJ2lDKmvJXLH/457RiT81xU1eZ1pm1VAwNv6nO7GumvsScXcApzEf+h6JNJle0HhwuwZpfkLvgHG1ReKMmQAf4dBMMvCh2ijsbXlmTR8NlYGhFrRTcowmZNvcTEd3bAgjGa9otRCp5NhbubmMQUo3Q+WFU2i6aiv8m8bWo51ynkURHbm8XuNYXNBPls92GlJQ8yu66bMR0OkaKFyN22D7cWZaHRGablJClBQWo5Xljdkfiqalmf1IpHco0Mq0eOlm5Ldmli1AzUWXT5dhvD+pFeN4bGadp6TM6zdDtY7CtlerY2ezcRqjbtgfxar5863pVtG2yjwAMq6rV3C7jZaldx5Kra6mRgz9tcRtNiRS8p6pnOmJPSbvmgfRR0XiihrHGUr+dX4PuUYDucJxr7I0WuXp8LrJINGjw5QxMcZeQ4ICiiu40wUwirawibqci2QFIaIrgEcq6VD2oW9e3h8GZeXHK28ueEs0tq9DAb0HQ9EZKe5fh3bqpcaEIN/vrZUMA6zaMXYrXaRlcW95EpQm6vsJz7Chua5S8toL+qbiwUYVQr5pHrlE1LTPG45tLemSEgmwW8yEZ7ZN9tqvtyg7zh7jvHhhvaaey6KduYYkmpAjTRrikXeF6VuyX/Ac64RzbbK/WBvWfXkzksimjnmGYvfz7vfBcNA8J/35ph88mfXDVL8ECB4U5hrn1xHk/rjYBeklPSVABJ+p43KccS7hXR6Hy0pljGvXapyy+RFEybzKiT+HAMDAeKnAbFAh4EOV3S35yslqSXvPL+fRvYGjdktj9czNkv7ddmZdsxrffVIfJs+InDP7PeD5nFXaG2ZZzXfj3yP62r4PDx94MetvwMxkRXwjve/O7KRbhahL3wnrsFqw+tHYpzugHOAm5a2ZXKQC08BR0w9+YGFZ8fUsdfrMFB4TXGbmkPN5TX3eHsBFAkjwFDeetG3wxxkM6YeeSVG7iU/nAjVbgyDGWbsbuolz4LGLfj67Gaz0Yb3ZG2WwydvOpHd/ay7/41Xha2AdUEwC9c8qcrIy6r/LRpBbB2skGuC+l8hCdS/Nu0Uy3WlG83V62zW6QIjHhPChq0oR2RuZngwy5iqYBNN6sKJhECaEk3mok9hCjNDIgIlcGmArxCk6Egf2M+Jz0TqvjGjSNJ8aULn+slZo3BQdiI/y45a1ClXvKAFkt+pyWPAS2dPDhc54GPvgL3wnZNko+uhZb6L2qNqqtgnlBPcWlR3ipBcDaxnvE7GYug20P5W+BcVi5y+ltMhJJF+VkBj2Dt21PM9ep2lb70yoYkagX6HQDygmDvuHnBV1V2Wk341TMm40+j3y9D1E2opUXx0Zxg1OWIdlM78A7W7L3dFvFzSiUUiTz7cFqytLsxgzyELPgETgRi9d711QwHom6B9xFPk7dR1k9xBdeYoZyvisUTMg3hPWKKs0LDsqYw3aqoWJlD6gif6+nKqIWlI9fUBl5yTD7drpoVQhPrLBxJSPq1jjfJv3tsgOlBYgP8X0fSPIw4kjkCrgEPApEVc0cLCj/lk6unBbTEc3C5KtRdo2kUjeid+ob1g2GF9HlGRCbyvJ3ugKU5EWtvKpbTdZTKk1LoZTpl70F6xbAVkJdIXmHgGOsf9NMB5UtW9nAR0xgHCPxmrZ5AzxQPAIUtUPothZiVTkP19mXbGJBXtk44aljrQZyUe6jiff8wzsmXjaH6NGupImFPrEoZ9C3yj6MdDHR//2bYMPfoBl3KaH4EM9PHb/v+uEDWasl+vnazClK3MgIC8QqA3cA/Pw5LAz9UaKXq7TwmkM0u/bORMydZx39PxUTYiTfFlNNGhd02bZU+rpv7VwL1ByrPswU4+79oi3nqsHNqvkPlFFYJWotoPHwSuz7J0TLTnp+UuL/yQv+XWKSWRF/7GxLgovPX7AifzM8DX80NrlJeOH/oEaNpiG1ezTWRoO7eTFIPN2QGNY+V5f7ROFvj+Jz3z+q6NxKO9m/NNN0Cvv9zclP4F2xjvwCsm727iLAW34fhO/EMJ3mKdifDNSyh+0tm4huE5HCHQ4GIACkhMzTjcy6l1rN8+uK1qIbKHsoBc2nwvJrZepy9GMMe9sRezSAkjgo0yWaiWQbqbhqVUUFkYlFPkW9alq0i3i63Kq7rHI0rrGpwARk5z0cROK76jst0jNSXlRcimUUAjDDJvC2FLBXLuiCRmqQvb/oSBGVNnz1PnhIc9M2TmKjeVV7CkC8C3Z+WwcCnyhqs2nNFtkkAh6RWYtC1/7hDvQk+lNO0j6DkwH6FlZLhshoSEaxlf2/kg2kzQxbNPDrLJ026vWTQadWW0iV8AW5uLsu0COkqQubx7cAM6w6h8JfVkAjkNKXfszJu1SDS7yOe4v29+pfF5Qvr7EaEnSQW8aP8Bjlq/BAD69eMr3eqV7jw3NswqlX/slQudOUBYhdYJuO3BqWPEhyn0r0XnhFqnfw8F/PGTdVNfh1oN4ue0qjJJ/nvu1TPSepRArVbtsDbjaT+r7GvSd9HFEdiSTWV5UVXdQyhLSRy7P9GAe7ez34DeJdA58dVHZekNzGgaglAynTvTv9ijS7z10vKY7NSzHd15NPu/yh5u8rANiw5gJ/v0pGuucypgylth71dwzRn/bf6K/h6RNSgow+EVoX1zrqRUGCQLJ5D6hZruF/skJrG6c9W4J8+y5ILluH74FIANgkGBCf3PFazC7s7b4Gm8bPBm6MKC3oOqlV/8xYffUCWt45iVDE3W3sze8osnnbHgiKYoq+22QfLh22K6opVKKHJKd21fh0+M/efNdptZ68UDgf5/rptA5KmSkerrlAxJWdjF4LG1WCge5Yz0l1SEo9YQDdx5CT+2RKeWypN8ytCEfvsm3peTXb5YMvRh4HaEyjNvW9ckRlPytr03hYM+xCiAOQbBC3ROaFMjLSBKxjfWnjvsaz5mJWI43dLpdKKrXr+WfU0Od8O7towOTByTKD4nNPHZeSU8NnhH1U04kOXElm/ohpoN93WQAzrEEabtgjJyHQIJpYRUnjlQKb3OgEdFvlsMXJlAPk11btTG7AMLyc8kR6GKUkApcvjyo4pIC5/GAUY8foUwBT1wTVdFeIBftC2K6yj7eEoHbYIkd+Idg67KGN32e//02E0VJgu+B0hZmLKeNuFt/V3QNOvRZ7UVciyuQ+q2e/hUBwGIYr8CuyvcN2QFHNtKYpUTI/6gOppjkPT4NhpGDYfNktjOio+3YYQzjS01fcpuDp59BXkpVtWVlsTi926QPPdQvmKKmYOeOY+Z0PNsUTsHGUv8jNPQyk0BNAdTXAr8A2R8jVpi1XF3cZwwRyBRzvNBRYQl75TFxPNdjirbJq9AVO9SYjsX
Variant 3
DifficultyLevel
631
Question
Tammy rolls a fair dice with six faces numbered 1 to 6.
She repeated this process 30 times and the results are summarised in the table below.
Number |
Number of Times |
1 |
5 |
2 |
3 |
3 |
8 |
4 |
6 |
5 |
3 |
6 |
5 |
What is the difference between the expected and actual number of times that number 3 was rolled?
Worked Solution
Probability of rolling a 3 = 61
|
|
Expected number of 3's |
= 61 ×30 |
|
= 5 |
|
|
∴ Difference |
= 8 − 5 |
|
= 3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Tammy rolls a fair dice with six faces numbered 1 to 6.
She repeated this process 30 times and the results are summarised in the table below.
>>> |Number|Number of Times|
|:-:|:-:|
|1|5|
|2|3|
|3|8|
|4|6|
|5|3|
|6|5|
What is the difference between the expected and actual number of times that number 3 was rolled? |
workedSolution | Probability of rolling a 3 = $\dfrac{1}{6}$
| | |
| ------------- | ---------- |
| Expected number of 3's | \= $\dfrac{1}{6} \ \times 30$ |
| | \= 5 |
| | |
| ------------- | ---------- |
| $\therefore$ Difference | \= $8 \ − \ 5$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3 | |
U2FsdGVkX1+4PKYe1gtB9pGuwqz44z5xg5dh0QPSG97VDhL46AekoOXB5WhviltTpx64JHViTmC1a7AoB0/N+0JShsBR+Cvw2Yn9RiAfLEvr1Xfa0v49kOhj5hA9azfNlhVEsxFXFHoIrrpJr5vBqzEd9VscZBbuSdCP+z7zb5d/oCH0N7HVeVaZ1prKOUvMWC7JRXJkzSF7naWuaj7ml86S3Yod41XVL6zB7+gPbhsObyah6GA170imXaoNkpbyQG4CQg4NEcSCzfGTBOuzXiRau9e0bkbedJVQDWG9c7hsfAvb1y8gvgWBsBQVLniFdiuKK3iWR8exaxcNi30wbVWojJiItYJHbVHx0bNxZGWQ+iGpQAJswIfu4GrNv3KOo9OJZP3tphyAACNlfjR994RfmW6JFZdYL2FEaaZg8A9fd7m4aJni0/y+aWOVMK068no3+2yH+5/saVlLLOM/OvdqXuL817vuC0+WTUgJ9tfxUvrEUONsd3Ofyi2C8NctXSkkZbNchBp8qsi73XV0x2YjZGKabcqyweqVQjXBdgfv7rs5ijHIl79Hd/fRdNtzw9kT5XQOBPZCT0T0Dk+R73LYD2zmSfyqVhfv3seWie0Jgzz8Xq5qdpxQCtplQEWoWK8RoqVSYnmKf/imrXlHurvzx4/UdThiYlN9Wj91C31BmfmgaiOtMOjTAtNuiKDoIHWzHaTvv6slGg6YkTWq6V4S92hyjeeVmObBVDfravy2ovOrDxgBcyF0f/ZMag1s3saIh1/eI0pnfaUGLmDoAi8enl3dhqGG/UNXrLwDdsL/+N7HGCZwrbvVbxOTPHgbo/UGojZXqtjimXHUyOpKg3ppmPhnFQxDYn40FFskNtRhE+xu7X70IRP3eV9zJZVMlvIB/lp2LDfqKV8WuN/Bfm3Nh16tFsP2A7j5pEPYvtkPwxsVCxRCskMqx+NSdHu9FBVHWeRs/b+TvSOhXS7XNI05s+9PJl+LKFeSxmGvf9Arn2/NnMW60qPPy9S9vPS4W/FXLgZi7/ZcGDnLZ+UfBd8p6RS3fJhhCk7N0BKzmx5wFUvtkVgDB75J3WmP2qKuEy4FBMWEAuwjNDcabQQB22xPgdaypnxRHKw03L6JS+yvIqHImPdRQuS9pxLsLB3+kC60j0eTyc8T133MDQ5PZ7z8b1ViPg0ffM+GdCS7XPN4qi2N+gsJi3LsxCjAJrrlgUKfA7xApoLtmg8sxaq5Kf5xBKYri+opldkB3FPAy/zJDRPvz8BckY9onhX4tDZ0fii06hByuI1yYrTIGE0U13wGfxnl821MUC1pV147Lj4/S3LuCh3B7gfK/ZgH5iBhv0HpMZ37DaszJbgFmugPC4q3G5pLsvIFAamicFUkTt9Iu8qa4bHdlOwm6obZykIynI9PLYPoXXHuj2oO3sr63gnnUkXKbzTpEklK6OTfmIEujUuWdiGo1hkqOw/NHWzpn3S0vMz+14Q2GHz9Ek3BxaqDgM71QGmt/RIRx0JqC9Smdnz0qjbJmeHzKocAnPhlyBCawukox6irmDh3p29egr+YqLlGpCyOvauIJIB46ytAQ27THc3JAvWV8hXdCgC+8ZwIoJptQWeXely5i1BMz3rwZhQgH0OU/yr5CF1fAX23u5Vcjs4RsKTKJDg4kWacBXO4Xo0JBYO5snY7N3ygs4xDdstK88x9+kTQrz03BCO36GsZ4ZX/3EWPJLVsnwb2GZLnI6Wk7A4Y5OUHPYMGHxMt5anUPT54yqvSldkBTDII8YkXAMgrG83qWkNe4XTqtQPG0xwnx0arlSJBt5VtTK01g/5sBnZ7znJeNhSdkNPMJoST2EWn2v59BqRQdjKqSJFK5IQMpY9ssZzxkP5LnMtczeS4PSvpM96Id7nl/6IyWKFbLEn2Rf5T6nQw+RUB8sK6BIlTKzYfE85AGnG0XCiwNtVwy+E0WXKbSIq4PzVvvrd260bH20Oq1ogXszWn0RyPuW2rTvMCWfj7ioWl3MQONSkvaRsGvNAyOVZItA7h1+VD7Sm/yHVbBKB3ld45Mrpctbpne7N7f/csA9nJX75xSsp6cqkZp56PSdVmwkTHPq4b+nJjcw5/pkbV2Qh0KIT4GVtBOqmYPnWSTa8CjekxTIWV/GtXp6/mdlK5tghVxv4k7PxiGqnRTe/Nb7QZiFuBpQh7RZEicfj8FhUhM+ao5olNHpYo+GpzQC3S05WEWb+b/Nx4xDi/lKjPaplTxhRnPUt9sM7qbsjHaLM2F0nCBk+aT9TqzcF0NnKEh/5e2GGqCFDPdosByeBRZi9eJjKcseKN5AcrBQgEdAtNecyzSeAznDj8Ha7KOmuilnwdGAbjfb4zmldqwenQ9luCyw/NXlRZ6O59Kgz5XTujcLBJibuQ3Pw7/pbQB8JVudHNDDIIAgQk6SbLH7pskWhQwyH8vxkP5xobMFZlriQLX5lWeRrKK57AvHLyh76isqOEh26L2Y5yTcasrRiEnIjgom3+SMPbIsvVuwK8YJ7GC4QRFR6YcbAZuSb7A+wNjZBl9H+vqV9dSa1X978pMMqMCewzWFu37NelqKkDDtbC8cYYemwJ/yIcSl3TcMaCox+oESAPe4OqQhSq194zrTh4K4UkijiO/tW1yb7cikpLY1GG2nTkUWCOp/F6nBIgdeOeevs8ISoSiKKBbgxuKJXLKgov1dr7DZwt90Fi2Xx6e3pp6xIhdqb/OfpdKsgfQ75rRSCA93r2OpWhWxfvpuxa8sLubdzgveObwDdGzokwvIld64SItAmUg7AzXcg8QfgbTW4pPsle+ItJbCj1P8dRMoS3jeLWhhxLx7hqibj8aqqnmTW0UG1FON8qHQdSA4RPu9mNCkmIUqPZqkLTMQ3skobRk8CX8/2Zoj2KigzhqkCVWpe+XeYfhktrvSy6dGgC16YyvjcY97BnV/uxEd1b+uCiRIS4KViVz/hVFsdan7OB4ou7RPibOA1RzQUkjGdZ/GNLJCOP7eNSHUZ6KF400OWSKtq9EqD3QAMLkFuGRrNQxpiZB7unOhSEF5Cnis19rYZcM62uVZlieq5aQS2OaTb+kbFERCe5pOWgQRS6Qkn1FPd3EDcYZrd658l5LnS46LiWCYKqbwXVyj0vkB+4pCo4db3pVfTD9WhDP19XHw79P42M8gG7Uk6aIUK+Kz7QxmTpLwpDSdFIWhP8vgY05AHCBjSn8dexN2TjHmKZ7WgBbvmdT0P/iRTwrp0cw+Ejcih6KfRBmfQ2rV5npxhsCqiUKUoq9qe4XENY17g6oMwLk3lJypWZ43HuP9EF5j7+ZbAFB8igns6U4wqxWc5akxjnJonMACa8+0rLvO+vDnSK7I3rChPcWQMoEU93IaXevCqAqL6+ryrXItf7fYxmONhxK3o/mRH+h62BLxOfP7Bd9Yj9J5xtZxdzMs70J/XIYg0EGt+qnvmgsz5TOGaimSmFUH0RO5/W6eEI0+Qpvua/aAfJgn3nNfUmN2k/urj2teEK4q2Khjf5uUiv3aJEME2RXKxMhsAqaNUi9l07H+nj2D22KFVryVpnThNGeRZonopC6hE9vt6KUbWZM1y1ESt6mQMlaU3QJ1GrayYplnElX5WU6AzA7wISJAkrEWukYwCgOd9F45joxxEPW1MoqPzlBy0GlxVHpN8Mo+Y+KPvMdk9gAhxjd0hYqVkNsp600sZfGi7dno36VRc6kJBXRW029SffdNRYJBcRf7+xjhmvCKOHptqOwZM/Hb1fWJ5G/9ji2+pc+cSYEREWvKTJqlacODBuQLu0+7UkhJ8zPZEj34mB5KoVGL6cJADddgupmiSb6npfCrs3xOwAOJ4iWWNSPx7oPqNYgKnOJA4KqDZv1Reaeqbf8SPL34kFUut+uhVioAEfcglXtd53X8DxbITbRI5d9x9/B16d9dFJkPEJAgeq7gt1xz6GzxAkX5vGEmL7ZUJ59bsZ37njtEXInL94ht9garMAjccBUygZUIcU2mssKB0Dy3MpsfhMCrft0oLwvszrN/MvOa2xnG2ryYTAYl6CcJqo/ZmjFwQ8r6h4bi7OvK3ElwesM72NIMpwWYBtw0CYVb53Pwezw1sJnCNKWAlfBlEXjS9g3kWn/A23UpWXFfuIkg76rVa70T16mK3sjRxo3dz1JcdRq7mA6V1Tu/kGtgxcpxONaaSoZeq9lBZKKXC3FH5CxWMs5FlN78eFJkDCBqj813NObC2LAhG4Sy875ss7ppVHTVuPVSTForaqyvl5qu3+oRVKCg777fLqD2pRxlg8wpKwuMA7VNLDU/B9QT5Cuby1ogzqCJd+m9BwX4i9J6DhuhlJo3eLz/g8WKimY48u/7+ynZ4z7LoMmOJnGqb+656emjl3i8M/jGqcdMNUPnHYMMKHA70E3bL/6V7AncN+GhCF/rhJal/Dq2GGUJbh65D86QEP9CEZ5yL7pfA6VsYpLr16JChU0GNuEECmUs4HYno2bz59Rgnhcg0Qt+Un8pKO1wNEPWE5kad0G9+FRNtS4k2WkULqVDnSVIX7yUuDInS/hUqkOxYTcsi/9ECWhCY7ZRQaT5GiTZW5ExLf7sh87Tt2sV3ur0QzKIYE9E9Rna9SHCxdlDRVEmmQLTAe2MNJBwRZmsr4IU1RIW0gbEEWaluaWtelSOli6DuJ1WAMxX9tFME23FwpGdCWOvvdrIJHWmRinzZUTDBmB485YJZMUjuuNSZa0N1Q6pFK8+X8RMNTJ8njPfCzvEDwWnjdh2d1OHU5HKyrRTiM5hHxoJhHKWFUK5uA3FlWyN93UqeHmjutie0yjMe0MPyj1lRzkxKdBOqWcUbGql57hJ9ZXyf+0CdZ+PscG54/TIBlGxx5jJoGGfd1m6Hra98yHhx3f5XtupTgLvwskMZAkxJsTJ/QgiHEMPq0Iq8p3XprApC5u2FJrKSPDYIFqpaY0iwK6GyafNXKfMHpMdMywsqAgoNbWhb9FVez3gn5Z+vRwb85AjeZCKxbjeLzz/uLJDJgl75qgBveFHiucoQE/oWok5pMPpxMZIJ3/i78R3UlU33jyb6zuh5v/F8WGPC8IJS9Jkk1lkIaMxl/V7YXnTETsb5egOtcfHDix2erDwRlugtYX9wrYgSPpPYGkcrMSSzluzS2Iz9rywKIv2zcPfZvpk+OBTtu44/xV9m/xoQIOyyYo9JYNvYREozMA3fJG++KOM4yEEowKAnoopHgPrtZVisDj8hLt9FPhU5ITVOaEYtRn2AU3b0aOxeffYulcbugxOUTqduOmaU+Yv/PIiCEMGdUT860FbuKs7hsK/HojxjyY3/VcVPM4ZcMpS0ZR4/WKy+q8nIg6vnjHzFA79Hg1DGtjgpmzzFL12bYwZWdqSdYq7htT/X16t5ibYCHKV3t8HdbgSXzGBDZRP0oJObgp7qbNq4XTM+9neBIwOVqWlO5hdOYHROT5p+exJm0XzVTWey5gPJT++RUBLWaCdZb4prQvWABTTHbxYX5/NUHqpJOLekbCS/o7r1sz8X3OuWttycu+4XhxPoUALuA6bE2cOuXYtl+JasKhVNZitXWnA6yeLW2LXPlVxi3PojVWW1z+k56SOfLXrrLq3iJBX9RZ5j7pDydNth0dOssf/s5HoUPgQkhOV918wKBjR+ZDKSVayRBGHccI2aJ6Rf4RitH5zOSPckQBA2Ox4MmBGl62Q4CIiuS3mkQVYLIJM67XVWkod4+B1tsPNza8zDAgS0e8/rmu/JtNvw4YgQGWRapZ6VtEVptIAfvMZ14D/46fIYwh7UR+82ojjBd4HKDpRvEXpZnM7LYhyH3wXSihMsLvPje+YDAbz4/i4S9y6tq4Pi90dPqm4Pdz6o/FYn6HfJDUjYzV8RrzfX1kdkWzrEiwmGnxBHRt9xCJC2OZxuNXwTCqNkTC+LFJFz824x3l/C+Ug7owphZjLF0NKLUnUI1mOujrRayMoHa2HoGF0zJX47jYhy6A8RKUlgevkVQsyC5qLc833G9xcs10XQXtYykoUpII94odifOgtSD8+VpRZuagbi8bTqRDTsiZ/Xey3JimATluaiqMjb1QZA6J9Owj7N/wL7iHnnA5NwQgFgtWQ9SHrcam1PqU/0Nz8vS0WlNhgjniLniNJf4HtZ6oVeU5p9LUTaON1wLC+9NMVWLQZ4mKxW7lg+XEGOof3ChnadxgmEVD1QRjN+wQQ3CbeC9KvHY9yU3tYFgSigc6o/ZQJnVWn1zMCMfUub8itr9t2tJ1GJsgDdIYx7X7LzeGtnkH8kBTOBRUuW4pQ/pMJEJYUMfJumpZ90uzo774g0c2GmgtjO/CDODi+9QFEFMzZr54mYRY1MRLSRAfh8W5Z+PKn2xjrSKP4GU15azXvWO/piRB53e63dQ57jEsADiXTl0W3hZl58BXJYL/2jmw52JSOFzqiOrFXmkYlwUUgdOVYVq1i5P29l/2Pr2Zc3nLZhXB3OqcyuHPZzpDoV2IdhZe6ipclH3UNSdPrgwOLxzCNXIYD9AuCJzwSVzlBBYHuT0L7MhBD4EznBCMQPzCwGqR5JU9qQrpDl0300WhJXSY1ixK/7m9SOsAPMq5Tc462Pq1vdHlG5pr85Pd8oZT0riAFUYa7vsokG6UaTkZTNO37kkzyBDF1HDB4m/W0cPjLyz2d3swSZmspA9awTvC6wET/YgHSewdwpvBPsrkZzGLqiWn0lEhIN1k5ft/Hzz4vx8AMqWw0lOZVkf/tkbHJWOyPJE+GBAZyJrmyGxaVcD0g2jlXyH5ub1IB16/F0g6x8t/UhC+ejrieyJe0GCMOzeOIgegxfDBvnh7Ba9ROcv48bqY9ZM7jwz282JdYw/GH0JdtzN7JyOUlWj8BmgXvIRd9SY8flNEft8nbbFUEhCLmrdLkTGby8tYwrKadLHaSYSJhHMX9My2VtFQcKczGmnXNcXnB7jOOqMCk0EZ343JJhGAcZjBR+erJ3pBnoZ2hN+WgxhPQo80mAysEXjvooZU0/UvxUV62zZIXmQq3RzoIS2LKy8viyHPSAyyVe3gNlS1wGs+Wp3+gOvaJL4PE8eiA2ndh/flZkVxdvFIOAWk5fC3GpBKAKCzjplV8MMicTiQh+hKrTC2tntM5w3OcWMsr6U5+pUXICI8qdh7KUlixsQe1ThZ0t/yz0f4uOxki1k1bOBUdS1C8cd0aYOak59XgSMGGvNZwAtkq2mwM3mbo6K8/YtJo495y3WRqMHWKWxtnlaXET+pUKgWTudobgHT2l9f1BTlMIHCLT335Y8L3mkqH4JnuLpIJ3NT9yswO3S65DGgQpLpTu3mzefV6Y+vkdZ2HU8H3vMuVTlOVrbuX2oW3Rf7ipy4q1b0RPSVUNAwF9KcZcEOGGq2uXrJeIU9W5/RtiKq1xe5FJvyTio+hcv5GhWM3PeJVhzfSAwMdhxnOYUOhXFvOzlbgVVvuFZS1dkvxoIr+44B74TvcN46oi8hcAuEWQoFNe4v6TqciIt5nixSQgQMEo9Q3XlTkt6ju75kjGH48rDHC1T9Sx2f5wqV3XUrsR3T4dBN2s1DlSZPYpmas12Gi1QrXEfoyRqf0dCPJ0/pQepgnp1b9Mhm7HcZrMvhc5L86U+imWxbhKSDO61+TFEXifkNwlaMOYEPCH/Voc0fQ9ENM/k3XlyqcoiMGpdWXvDDmE6N8TYUn0xsBCVmnaFxMtSgMzGTHvW7r6Wx15rVlrgri6fJ4kGQe1Xx7oMt4F269oyUZSr2uxz4J2oRGFmrStVicD5OeAekY4Y2ui4xu4yhw8NbBk3MpKWSt0Wy3J75djmI5UXWMEXMZgHFys1P9pRiBtJxu9ci4yphEmxmlVRKu8dJcl5DVDjP+w3YOM/rO1gzQHT6IzRK8rlI73SH20BdRic39/BmuLSxr+YcBTxitd2D+7dAk3hcW7HQ6ppJJ5X+UfTtBYPd37dxU44Ia6BJ4WcmWSy+/jZLE6yRnVkFxyh6uXpCGKhtS5AUnzSgARzyNZ+IL9X6FV4iVpansdcO7ZEtivQuaRm9I7anX8IYz/6DBGEzzMD0jDrE7LmFzPLgHHsX4TwQcpdNxOmXW6D63Nxu3XHUlfaLsb9bFMyMH808HWou5udZKT9UfIgnN/Xfvqlk/0RWtlTSvH4A5Aj6WUlmnEl9BsE/gsY54zsq0kpdjqN6ELeFYjqclNECWcZiEwjybAOYjBPvkAHhek+xiGlX9g54ykX14hIutvr+oVjq2tXpP+jKBPIazaVGTUFAkz+qpglGsnUkgvit4+S66OY5F7N9ZXEFO/0NBJwSEQbnBiOdA7YbKgXF/RGy0KY3erSz/pisCIrQestPY2pNmLnTe/YBuIF6P/q4o7UjpD3eqYDhVyKjQ9Vbk72uKX8Jnd17+YUAJtAG/o1fxRaE+3z9M1dGhOhZBIPQ/2P6QPCFYzD9aijONk5Xyr+p+o=
Variant 4
DifficultyLevel
634
Question
Keiron rolls a fair dice with six faces numbered 1 to 6.
He repeated this process 42 times and the results are summarised in the table below.
Number |
Number of Times |
1 |
7 |
2 |
5 |
3 |
11 |
4 |
7 |
5 |
6 |
6 |
6 |
What is the difference between the expected and actual number of times that number 3 was rolled?
Worked Solution
Probability of rolling a 3 = 61
|
|
Expected number of 3's |
= 61 ×42 |
|
= 7 |
|
|
∴ Difference |
= 11 − 7 |
|
= 4 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Keiron rolls a fair dice with six faces numbered 1 to 6.
He repeated this process 42 times and the results are summarised in the table below.
>>> |Number|Number of Times|
|:-:|:-:|
|1|7|
|2|5|
|3|11|
|4|7|
|5|6|
|6|6|
What is the difference between the expected and actual number of times that number 3 was rolled? |
workedSolution | Probability of rolling a 3 = $\dfrac{1}{6}$
| | |
| ------------- | ---------- |
| Expected number of 3's | \= $\dfrac{1}{6} \ \times 42$ |
| | \= 7 |
| | |
| ------------- | ---------- |
| $\therefore$ Difference | \= $11 \ − \ 7$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |
U2FsdGVkX1+hJgEFr06bEbMOC/vw7STTajojwpi1XCnjjuCt8CT3WqiA76P0dLNmpj61xbdYCbkcIZkRR9yjBa+W2+T/PMiDps4aR+6PEbuCdK+uS/fye8NPh6UkWFrvwFVYJMjdAsb43vsM+YqjVs313vbLv+Uj70H4oYWlFnaJalxJRGYEAfiH/kNxBdNEsU2se6Zq+fPNmmD+1CmfQM2FmGlv1H0i+V6rVVS/wzcqt+G+B599jOVyHOBNQTppVVQG7XnxgCo/Q/uflwOMOonGYB3LBuIUHsbzaEnglnpcDrfo3PzkKRxlIJQJNjrijmj8jtcF5cFBn+tCMV46uKlvGlEGIvjq3g4gx6nFgMPy4cKmedu3Dsiwk9G32clbO/VgeS3z3Gfc0u0BllVv6U6xt5+nqn8HXjbr26eEeTtPRVp0raVu2niNZL7Q6g+v+fVS37HKFLZOmqr79tZUFBYYF4v/hCegdRn+hqjzXIcTvwvx5BiYFPXR5YUh1X5OG9OJQQ3SdFcbNcU6h5DSlJ30RfA6cci1egSYhEI23JEqJQxfgcSKoPvPqXiON18Vyivo6V3PSfMLOUYpmog529yKEScgdVYXyDrxdwFOlrHScIP5iI1k8zGPAwLUsn3vNfuEy+vC3EYD21gYkJGeaSVl2Y8t2gRx79CSD4G+Af6Nol6ZMN0+otQrchAdj1UeZAC8mjSlUNSSwGehnFPsFy//IrjXStwopiPi3f+REEFhHBiqf5o7rDUd/aPSp7Gjjg/B+B3tE2R62N7/Mj8DhCuCWIykWr6JoIL4jbo/OQBdCcmQjFiR9BqQ1lyqlkrgYW6q1j8bR83en2v59Bb2qRO+WEh9pG14RQWo/sb+2tU1twwQXt9b6CYDa9lCFXNFBfhN/T/UWR2mQ3lG/V+mjwQ+jbjs/TmFanWYJm6VGIXd1uMpQVK4CR29skMN0Few+rmHWjFawXvY8CoLJWwBAsSszu4Y4UDh6uy2N0MHR+Y3jfBH7CqO4Fat0RXdcdRPt4XKfPJOXq47J3/zTQf7t0nc0ciPzXvkcR2mNVg30CDYiRhVg8Iu5YXV1jvYxpGVSgGURiJ5XEvwwkrrtHknDzAtRB2nxdRpG5BOCNa8q4XVC8BgCfZrHdOLP9ZG+SNLd787RgJz8quWeYSAuihNL/knWT2j/nt/bTioNntVZubJ6IpjfIio/9Xb9tY6+j+aiy9mHQGc5TZqmopWFcVFpYmw1Q2EvcH2xE51egx0d4N3UoSEEZwBz4GW6WDCbIpPr/97WsCGKQwwWSle/HFH9HVqMFgN5dBB7hSCJW0lEVU+NITV5/BRSH23tS0kpoWXTBNOV5qTlmazWEQ2ICj+8o6SwEaXifKsPDfeVdi8hvH5R2pIeDjRWwErbzqVhwoTrNZ7u4yJy74M+TT0fXcjyg6hkEW5wiHkXW+SOPPRfJqApIlAP4Zvj9eCUVCjFRa2SdnWrEtsMv6SZ89uWOL/bKLvpYGYK1UbA1QMGyRV4Qnv+WyMVxUvCLp+dArhCisWe1+eGlAbMertYFyqEyv7OIEgi8bL3qy+Ka9lhTu/YhwhenWG5YnR7E602GSTu+62tyb1isG8SXvA56OI6fAuS7BNoDTc8ke44x18TY5ValQFnOyM6RPwiuKu4DcRW96CmPUYAq5oOqtIfLCsNy7wy5cPTglQ3u9bm3QWh4H/+wfklCxEIhErfdCo1I+ft98j4hLA34mMW7VObhcVZsoyjhiG8Izp9L/WNNus3z1FSOh5UYdoWinYROxr1QiWaZCFK04gg29DVPZ5F4dRggxXX4YRljCVTb9lBWHdpjFkadIIUvUrIDmcqTWZoXSrHMM+iLELw+9JBenJhwYYObUYafor65O/VeKkkDcHHHGazr59sMaHO77EDu5h5xbqYFlsimT/6fkS1fVZwEWRVMCvweC7K4I2M6wSc6JY99YL/Gf5fNYJ4qxbufyzEM7usnXxv1IhVxzwuwYE1pRTa0+8EJvzCuJftd+MDe2FKUz5L5OqsXPOZAZWHoebN38MY1Hxd0fEhJwSj09oO058AQ4PQxF+EM2tiKbkwF5/O/4k1ilG/CCwze1hFub4O2gZfC56DW2S6+TPZ5kG9zk4h0RbaWifvEb9brS7VWprI3y5/Rqnofz9pFfA9zKgc5wcos+C6XjG3Yzdl1P7oGzaaC8QN4w8pTr7XGNRsiGXdu5kU9h6/I0YWb0Er4+ikNyTXe6NaA064N1d2/52yVhCow5rhE7H2XKHCyuGux7YGoxcbLXg40r+fHnF41oUWdvZZd63e0B8k7i7nex5xFa/+Kbln/nphqe8xonTk4rDEJ3c34kfSwfbYCjE+tniUqSYMx1exlhiEFEEcQZ9J8kHZ4YjKqySne1wd3MkXeu2PnmL/EXAq+hN+y6SUqPoYEWFpRuYJjc7dT2KJSe1UIzyww5cZ1QV02q3jXDJfxkWX6tU1FoBLyKUfbLStiLdKsWBKYEpI2TjjhM872WTpcg9YNbLGNm9vEjKFYbMqXwTb/G6spicAYjO3y60xzakHcc8x0EhD5hLexwrQ3D1GBPM+tStOTKuJqwZv42GqtVwNyhjA8lhf+mH8B5vNsTQoyhlpHgyEB7x7T+gc+uWZqI3X7sKYTnKZF8qT2TBKkx4COwnQzOnokm9zW9ML8C8MUqLNTczAauVuwiZO+KqMKAnTva2gHubpZ4eB6/cSJSpzRlzSggn1bki4b3WyWgOXn6zbnHUHkTD1uDzCMmWdIC3C18vltt8+7vSUXM+kPEZrToj7RvRBbl97h+WwkeMX3rjd/nu5ag0Pfj1DmWD/kt6SJe6B8+7IPXKG4UIYpEWGH5vgzg+v2MNcYDbEKl40Svniy7j8uUq752BBh4vBzaIUUGn9rqZZacVpa2WC2Tq00Fcsd66u6R9z9HQB5ymmxIN9jXoHnk3BvLzXgp2rP9/1xC6sW6H/Vu2w1TxEioj/MOrirbu2xidW2SLyv08QkZaoyEP8igdSmmUaI9wDWAU7D5to9xj98N3pR5i7ecbdwWZmD/RZs33DMGv8R/Ge2jyRxovJCTQxdziSm8SbkHvC4jUR8QXkdDfmeO11TFdDNwLc18MTbicfroj4SUvmsTJyQpKR0p6WGGcsLOODL4mKUhMmsfaS4xyJ/zuwyfGml6Q6KTFDT0EPWVRPFgCe8FxOiBl51VYmszeLJ2oO2O6YUeOSqXvO7rPwkEx7vJnvdWfarQB/dOuH9rtxjHQFisrz33PXJsvmSWmzMKakugOVeGcb2b9agL/qYMecwtjJYuQFK/R7oJQUmpUYW6MuDfPO8b29bRGyDaSAv13h0zVR7m4JmbgMLCN/RS6gN+sTAuCyjmi9a28YQGo/sFJkGWOFnCI1wAbXhyoXfFsfRzrkD41xUlh640QA97EIeZBkDzw8hAZ36mAraDlfxZDWsIdEP6Ph0i+JhkCiKsr7V1gba+IknMW3YXCzFj9f0kpr11OXthrHV4TsaHdEAmnuy71SmCf3TpXUltylCNA0OVLtpQvdVkKAhD475QPMsAT6ML8eZE7HFVMElDcpMgf3829WvARPrg5Z0QJYrd7E0PxNd5OxRUEDNdzK5uDvddTr9DBpplMWsE/NtZUvnCYofe01ekZTwE1yOJh5EjOfxu+5va4sdlusKHn5x39gecpo9zDgY3KBgwcHW0VlLG6TKuoMhuYZquvhwrVnLmSJdQQvAHlWz8lOr8CV3hM13V6dLKLkhdKFltatXwCxJcqOv9t+WT+4MuAQEziuJgXD22hDH3XyQEWP/x4cHWw1k550zw7yVuqLbE4DZtBHj7MPgIgqkp6eQHTKuXdOnMwfwAajjcJcgcG6nkHSkTtOB+ELWFMIPz8r1zqSTZoD8AoYDpEQnx8dn4A9yV6fS2JQv4ziHdFnHVGwxh4juUPpJ4VfOn/H3V9JYRVZpXAzbT9eUZk7Bo9jFE0IaNSratgfL4F2PGCawm2kyEBf2f/9EDM2WmLVsqjqG4ElTXYI27pshifE4mfVDXQ8horxyAPRQvlUno2eJQA2dO86rQdU9MxYefIOUjZFUb/OZHsn8sBeiw3KGhAVstcdrGOZs5JtbQDtwOrdwnTxbAHqlQG0SYQ0myfgx1hNsPqZ2w0nf+SKgHBILC6VgwhZJNPv/ajl/7rEowxEVCnxTKnacrJ7oiNJSdUPExgHu/Ttre6w2DgVO+f2arwzDFiRG/hOD5OEOD9SDzYDwFs8rsm+ncK7i6X2xtNzCM1FKEoz89mHlmg/Ezstn3e3jt8a/Lr5lb+vI/ZXRiJEP+LBVf61gfxv5vo4iS3PViFAb64dvuA8iZbBCV0PYERapNIYscsvKlgq3FPIs8KNFSarpkHpI09Ox+zgqhL0NgWJ/fnS6r0J4aPYCqzRkwsKaWGvpq2macPy6WxzggyGnACmGp8pSPT3YaGO+nhSghxKzGG8Mx9hSJoYymCOpHoWIJNHi6JTSk0m3WuA7xB5zr3om+wtviyz99W4nVPOL4QArw1G5sPgBaCKqd0EeD2LgMf93uZpUtG1yZ2DWiM4VBCi00tbkJkMCf7z5iHT/Y7qH00tg+uXvpEudhSuO3HoQmIeZ+V7XTYpzTVk+xvp2tvL0oM+50OVDJ95cNiIGqz1o6U5124jkCVo+NI+pSy1O2ySjr8rp8b5Abvvq9nvscnMLDH5VJLCWGpgSWKSyvjBxJ3jzb7fKvJMsVM+qOeOwXPMXNmLH0XOMbdBfZEbszk88fRpn8zau/+ST7Z5s9gkxKwtgqblXKyhiJfGPUogW9LnC8pWp/bpzMQChjljyx/Gf5lwLW4C0GkYbWCZqQuUVRKc9gR4lU33p32hW5E1ipu9XildrGRSNUibKfxxIiBmcv8lsRS6Z5Hzs+PuCz2gtiYp7vURD9dB21GRkz0ftDUsUVtykg70kRDeRmmeky3G+uhK2ZInF3sX+PUZB+KBO6hYhyp3ANPQtp50iNHvkrbs75IC/1jqrq+gDs30FDofpSdYwsYsVf3pycwdyiFs6fRB0uQNIfx4cIkYtw142SrraMRdmt4mA/y9GZoCiOsEXinD+rxFbCGWjQ0GoNDvgpdydt5bc8nIiDZxg19BJS/Gj7howw8eL7bsUzEwawIBUZhonnyELclfZ1vkXoIU4/gziDt8u7W9zdDSLk3HKUAKuMh0Lf29jgDphIF1PBf4ELST+xsY+N6HWc8AmWmqzEFN0h8nkj49vwppvF2C34OOcAgYi/GHUEDQSHG+MlmJxInLB88LP4hFljeQ2v5dXb+e8ZJf0X3GwOAaKpWvN7Z1rmPNqQHK9hZM5p92MCDp7AjxM+Sznl/hZ4K/7IhyxTpyyDYfH+JhFp2IaVwPLa9r3bgtbjtc5TY2yt4qJheKzLQxrZU2MV1oXgbFE8y9npGqRBy5CCScLSWPplrE7GS1rCY4gzi2FWSACUxYnOV8mEONhzg9UdKdOI+kyjpn6oKjZHwyzbGpEkxFSGYvbyHI5AF0JlSAkkLxNZogu5bB3iOhNDNWny4vDl0RIMgQ3YYS9V4OfdOj5OKhLuOD0vl8tGjAQ1XBds6lK/T26dYwUMMESiYdxbV1dHePhCmAq+ZhFYufPhdaKgPfUGThI4zvmjODq/rAmnfCNBA/upXww4lxU3werJdrxDfijcU/8Of+pScwRc/IhTIQevkijijqUBfyjgMhg3XDznSvCEmvEgCBYZR07EIL5ZApXa8FECPBVwkzZvuXCcTls1ENtiuNNfMru3kPBqpbk0EBklci5GX9aNzaScDBFQUSWrlgykLuEvI+GrDWUp2Wkl7fnSaW6EW/BXOPKWD7eZBvVY5yYbQZDG5ygb/jAPHeW/2Nujq2puskDM3CrxCL9xmYwdKrZMWcwo/92/ApGjAUFB+6VLoPGMEycrVcsoxElRPUetz9zpC1vLB8OKkZ6fTXQE8SBKyRs+zpLoGKp7TOac6G3L78vpgTPTyBbBnpoWG2otjwRFd7dgKZA8r3dWplhSlWT7G7Ku4vXyX/3VxamwQxLfStF8UzcobA1AorRnxq1oDxcAZjTESBxIEXymW62gD41zmqpPuPI+ufmm0Abpezjr2Q6kYzfNJRaYjUDAHLl9rgKo7tYrn6NBy5/sWcZ9KMpB0COnUFQ6tLw7ZLLsIRij1Iixy7VE63eYaiBRVpRkLFyMMjPD4LYw5p3FMy8iDFMOtgJOd7NSRdb7ZIvq4Qg1f+rA5GvygBfh1L4Kwp93Aty8Y1JOWRXlzB3rIKRZEbkTKAaOFZy/zGSzgBC1k7YD8BiyJhSS+W+3gDHKRmjj6gNnm5pG8eEwtVz3awB9YT/V2w4Kd4v+3h1mqcgEN+PJPva73kz0QL/5AACysl8K4w9PG7o4qArms3CkIDRMa46oBT2Kd8/d75FeBnIkMQ2v320ZmmY4XhWK96ptqMnDwHoNf7iI7K4F0v9rRZrOjpYxokrmTnD04AJaaEs5b8SQRYKPmWyrDVq7HbTLtG9INrLmDmw1NhV/SdSCUwUCrd7wZKM0/3L+XqiOj3LCDUaRad/+W/G4J0BrnjoFPfjkl/O6jgprTBUoAZhv+bT7NJj49rYPe6sXfdBt3mV6G6RNRXKEdC97zuwR1w1FUnO9G9ePlKOhQT/kuQ3hbdYtAwmHaIkOgED8vZwsPw7SScOc0dGFz66FT9qS4GCsunOvOr/aFR2RNq9Mqzd/GX/7HT/vXQxyO2iFl2/CtIzu7YJHYCpdIzHa+cjPwhaEKO5C6gSpEv63QtEdXMpYongslq4rT8NxAfda0Yk2+Sx2OBiJvGpo2Nw8GmLXthlwzRMQnfl312Sr9UewV6Ri1eSy8MDnd+18Mfa/fwkdu2jCY0WgIW82/KyUu7FpDgwuUeYUUeofrD/lmdTIYDhYmS7RPvkl7NuYT4/Fzn3iKbpG8ao1OeKYh/+zqMJVJj7Uzdt3wrDLiNEs85rZOlSizCD8/+uBpaR5bTw+TOhSRWhONXNQ8zraKn/FgWlHMsoPzl4/5kOds3tdaRnqTDsDtgvQfqWeYd5/lHDuW8kmu1FBSDmTC0e4YVBq4+g6jvyJZ5lDtxxw+v4K2edF0afD94/0vmgF1O6+HbeLVUess4WIkqK+sUwIzBHEUOFSIbZPOi00TFWSNAM5YlMBHAs9E78Qo6lI7F7AHwwZriYWsySZ5tPhIF71rADCO+qt3z843sfStgSF4t8a8/pOVxQUkqZjR8iZc49HSocct1/ukvAP4MO/w/Y8+iMK4LSUbRQKxWGcsHjEOWbAyPDG5OINkCrKfwX7xP/AzUZaAKhHw4/lXDmZ7Cs0Fu1wGHSY4GgTZBWSCAeUx9UuI/35jC1T3M6Mz86SpMlyjGDa74HgNP0WvQ/KXe9aF2PZwS//T3QiCXBPYTYMWCDp35fVYsFP7D8nOi64PG1AJjRAmy90HDZFsRhmJ4d4jEdUIcFpJg5ijNCbU/JTwkhsBA29g9gbs7Vgz6PbqX8/aFf9rgI4V1J2WBrDhpoyAhyhAJjeP+pVaE0IFVwzx/g2kWn0Vs3LA8gcRpaRP/tqYCjLzGpTVByMEwJOYrvuspdLLQogBHcKkwO2UA57QSR3AepBYoy4EQ50LA6vFPPOl53TF4+Vgbra791PL9EAyugkIc+vp4ionA0KGjLhfLSW44odpf4Pj5Jgx3MJ+OTiQl3ZSaMW2WcH4d/LQt97o0G2FTUtTrjWsuiVaM6DYi4YFSBmbjTT0AGEA2bOJOtdd7HDJfH0xQr4JZVPbiWrebqqtzpZibpDTOSlXq5L9fKw2qtBnCIRUDB3ZaGOGbJMsiQOvOuMypVa07xS4APVcE8Qv6Z1yFdWGjOaN8fjUJdLlJvwHS0FcY8yLL1S7xOQc1U5oanEnP01UrtbcnlBjvCk2cnXBtekRldxT+Y0B9swwOkA2LTHBWrn2FsA3QUcmRB3XzRP1eS0hTFT4uFsy0eDHagXU9Yz/Vrn3eiPcoXNzFvtnfqNmdLwoaQuS7GDOFIy36/47aSvYkd7ICIO+q+ZXD0G52CBgYvKsnfHWYQup2XXJ0AMNrxVv8toXOrdqa5gggRzkYBg21KQS8Ny//ZcPwrHYa3GeaaAIP/tLqZ2PoMkj8AtiaCOu2y07jJDhV8DYIOEtPb5ePELhG8AAzUymgFVQmbSGGwqIA+h2bkOjBW0MlQ4Hnj3yLfC0vWOdTGHVMLfW7jdKjQAZOxV/0e0tWeq5/sDMAlnp4IASs9YdWWzUAAGkz5XR15hgWDlyX7gvNxjfqGdBR2cenTCPKUFu59shwjXhlRWHddGIEsr/vOpsgiTTmOWzbOgSrOZ7t8paV3Eb3X9AzDCZ4YK27kpDB8gTmMMlge7oJnKuu3ZJYuM+39lcCA1dsjZxwyCQwxfwO+x8L9kCCg9sqyhBQMxESsAVaTs=
Variant 5
DifficultyLevel
642
Question
Dolly rolls a fair dice with six faces numbered 1 to 6.
She repeated this process 48 times and the results are summarised in the table below.
Number |
Number of Times |
1 |
8 |
2 |
5 |
3 |
12 |
4 |
10 |
5 |
5 |
6 |
8 |
What is the difference between the expected and actual number of times that number 4 was rolled?
Worked Solution
Probability of rolling a 4 = 61
|
|
Expected number of 4's |
= 61 ×48 |
|
= 8 |
|
|
∴ Difference |
= 10 − 8 |
|
= 2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Dolly rolls a fair dice with six faces numbered 1 to 6.
She repeated this process 48 times and the results are summarised in the table below.
>>> |Number|Number of Times|
|:-:|:-:|
|1|8|
|2|5|
|3|12|
|4|10|
|5|5|
|6|8|
What is the difference between the expected and actual number of times that number 4 was rolled? |
workedSolution | Probability of rolling a 4 = $\dfrac{1}{6}$
| | |
| ------------- | ---------- |
| Expected number of 4's | \= $\dfrac{1}{6} \ \times 48$ |
| | \= 8 |
| | |
| ------------- | ---------- |
| $\therefore$ Difference | \= $10 \ − \ 8$ |
| | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2 | |