30152
Question
A group of students were given a list of 5 {{item1}} and asked to choose their favourite.
The results were recorded and graphed below.
{{image}}
What is the angle at the centre of the piechart for the sector representing students whose favourite {{item2}} is {{item3}}?
Worked Solution
There is 360° in a full rotation.
|
|
∴ Angle at centre |
= {{percentage}} × 360 |
|
= {{frac}} × 360 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/HQuNwANEyOjENotpBKYV4eQB+1rNvZe0Kz7PEpe9oOojUGcC1E9AcNzCCfJQ32UrjlEA0cwrUPKUDGcffDgVMGDAMrcHFkxVj0mlEghOB4aw7cMP2KpSupC/qg5yVlzxO1EzPChCLGhYyLgrJw+6VGybPb6OiOZwiU9VVYVCuMyJqtRN3w0aZF16oo0ghJVyEDprYSsVQaTVwBTNv5537iX/6es1I9EPJVhKAqJ3MEvumIdNLX3BYT68JEgPgOEOLAWziQMbNQ//vuEDc1veo2SBX5R45o2TsAJHBZYcKYUeLQ6hseYilIvuGLRSMMIuFOqCR6ORqSxla+WppRkphK42OXYOSHZsk2jGAy0SK5GbJkg8M25EbgVANcs0o8e3L1JyAPdyLUDkFn7IKuaeeSwki6WkhNkrYUBGlLz3TqaJinJ3iTR+0+3Ia6hxX6gHRz4zg+2BMHPZgkqot6wvW8j4w8+sbItkGCYsYRCiTeVZzNBCnXMvB0EnEdhH9Y8PPXtQr1SkxEocq1maVXtnDicrgXJuudRtzjONlEJvg5h6cbU8mFvurDZU6wRn4UACUYrcI+jIcjlP+o1NIs0dg4/kv8okWOL1SzQwBm3dAejqoKdGzlkDRa8Fx4Bbz3xGGnTDcUr/slnR3Qrojw1sZ0p67ZJbmUq8dgiMSc00M3mmHLuw4/OeufwNQAJUSRP49utZqdTi/0+PKAQytGRgXLpWzXLxcEaguvIdZAEatQsy/q5lNYNkSRTPKtE3Rupd5VSvRPLa3tjKnbugfmO9z7l3wwvvMVVBO3dTBr700N1TPbBNZ1c95/qCmJDvTekmPuScB9pUEaa/PTxu2ZY5WaSy2nr6eNWith+HFzIMLbgui5rorF75DA1xxJ4ZCVUelHy6i6C+TTjoMyEE3HBAUA3OBiJlnKBfFmmTldGwaFnQVvsso3RGgqaI4Ue+LHA6Q0T8HtzLMIVhM5xgoEEQ1dB3b/6n4FP/AVyzl+9LPPIy7P5tZ568w/R8ZeNumNoeC3hDEIFB3juXbd5PZ5nrhGaz1PPPCI0MUQATcnLJFwjD4WtIL2H7EX+vQ6iNeH+64vYt7mKw0oEfunwGfD9Sdw5uO4Vf0thxPOzEKd3u/uYuhlngcPqkJxw2fBrPCBZlUhnQz+dS4ynvEmQsm30+wP5iiu1v/N6MMvourZGJUR7xNEsbSYygBXT2ISYCa1bNmvRYEEYvlf3n5FKZMHQdJDgdvKuZdbCVfJOBbgo7uGgUJ+CzeMkkIDNADHZjXQcDdNRbCU9H9F3qIwDmNn+jv9L/1nf091T4cLmHP4A9WdJG9xRl1iXQjlU0r2JFcTdniT2pbGSIzMk2HwFq92IXxxeKzvnZO3UJ3b6qn5Y4SMEFwr5gTyLMiPjO1P12g4D1zty8FejKzAo7rhXlBjHQqqIjLTj6w3Zgy8duEcH/5U0K+k2qvflFrERFL7w+dKBaDMo6/tP+xw/JsdDCH4quwQLRWkiAoXg+1syF+v3XOSuvaKNW4ozqgK8YEYp3jYTCr85PwrJKDMG1XhugHKEn2+Pp/PrBP6ZGRa4rFs8dcbvLbhPBkP0ie3537oArbkddMpENfHLNFuqaeTEspJTkmnIlE3osqP/jvIajKcAUpvhtb9IHYvIcxyr8pvhOo42/sGV/bjfQWEfXnnCxDK2iNJperS5xUceN9T17LU3Ve98OahYPVPc8jhRbVK8OY3mG+dmbI16vuab5apIY0/I8Me1l69F4WIaNhm1oYATaBQx1PlMt0H7KMHUOkNNQyjeghx6oklMm/1QfTJpGt6+YrHxkf5Ot1axH3/gFm1csGrjmtQr7zugCojDfs19qX2ZLl7JuCKcoRt6MRRkcwGo9mDhxQaj4q9QfqLWapQf8kCLIWCILZu64+2PMMISGrvfPfRyffK6CgM+FyynaR8JmC4kex4piaF2HGuGjrA+GtwXOsMp0ersXR+cvjRGYN6DUl98t1Hk0zd6BdNqGRHzrdrVbTeVT032gdx0V2P3TWkkwFhlxTLkWmAJvxK6aSJqSnXStdZJimO5sp8hMwRBdoyM65iKMASLM5AgZfU2BhpS/1yebNb2I2CBOeLCMjUjfGT4pTXEJ6O9BZPLJciBxcJXt+cRc79gjHSVnT2tG4RGTrkRbnLIIfaq2xEEXBdv2bOln3JEdMdhTXXM3M8CXnmx5PMCFv0SQdjbVucgg0uBGHJ25sBn76L4Q9PhR0AvWGrYFaa2PeNCEo/jU/kT9+QehnNNyRl9aKsRbeg8vcmu31BRmHApZs1ygXkPLCMaQ5s1K0WQK2dlnXpLCRuxV5CCd/wSd4zTsYrC4VIZlDjZpbUU0wEt/nxjpJ2A+gu1dPBEO9GXgPjCVc+xrir4+P2lVPFR5uWGBwRGM+YVyULKMOrO7AFropGkv3rO2hKHqi69PqgWd5PTG42D55RysqyPUmUrONwonJSGD3b3oLZCpIPURy6T7H6uC2uAdxJz5hVSWD57WAldl+dc2v6TIqDmTmmc9mb8j/lvEwqRUY5DQHwA/Fw/AdXTrXqD452GAgjwj0yR0sof8e6UEa0yu6xofZpyhfBJB2o/gIEad1+WN6pTbD69HaHFtJsjqB836gZ0yXNiKfXwiBmeeGWH7mixb4GVC4X2vsHU9YBZlEF0yuKyyHo0Re6yZ0iLKIZcajDwM2S2jum2BqE8ae4fjudWTBoJdZufkxIB63IccKNWeTvKSRis08s/ldCfNN/2HPxYlF65qBUTQPSkdSx+siL0rqYAJ86gqB1LB/jnT+GIsYysqE+ZPDvmoU0V0+D4eG4wGQHHrNBHSFlDNd7i2LO9K8LGrDPJw1FWDg9DdivD/7DyJuW3Aw/ji+RuI/iAAmh/o+31EC+kQ6h5nNQNn5b5aERyNWQa41tTGm897p8pMwOE0+wovncp4ah5t83Z4je7/5QiFd+rDHWI+rRb/9aAqGOZdIqjrIHkmIgWmPssh7/xG3JjXg3H48WgbAl63v3lVL/o+2KNEWc4PYTp6KfnSnjcmmuXvrLbhK6HLsyLf+id+4yBwYGT0WdhakUH6ur77RZiMUFp7/x52OrT1XSjtiPawTNO66k1g2B3CR2j79UGAYVC70WgmsiSxIKhH0V8i3xh1G28llC1cOY246bk4rplHf2KQnrvBeUhUjIxSO5lu/fYEBUpd0jOUA/E+zqNa4x67zHTHezWGvtGEtrm73vfQqg1oQJDKapPIrdK830FMN5cehbwg+UTO4+TjYjbnL6ChVeMUfsb7u7nfhXzqGGpaMRulhEWvigOD4VQ/J1YuEEH9C07Vwr5dQWcoOOaj1E7aZ3bhX6U6fySQg2dAG9HF2UZq3Y9lwcBhOKyykOt0RcbCPF6A0Fs6THwSFEw8JWY1jBpt1hMI9BgLCQ31vMsTP90E/SwM6PxJk106Y+NLpXq2OxkbUwuz7YT0f+k3OerhXUSlSBS0QElXJ3wlAPbmf0U53eT4KYiKyKnT3us60EHsdNj5Eu50SkZ3XTfDL+3MbataIoYck4N+df3O3zEUm+LWYXn8gC0H7Qahe2imTr1vz5m9ONXhuJn4tzP4nryePrFPEwR4EvTeZw63N6SD2aNxPiwoh+pYE97nTQsm4vQCtziKjIaaXU9rso934+E6SeKUyRfjw0tzgKzGVOsDtuoHhOPVIdTMrhV7fV8v8cqLNVYLcbJXlhr4BhmgkjzO4HAvyZinqBd2XGNAgOJYRClr6bZpN9GkVIbNo6QSz2swEe59i5CRPhbUTO8b3FYrFMcI7VZv21EtRWZFdMRXXivE6DgXhwSNlZhTYN06+rF6M6VPcL3hzcrkpCIhowMgnYDp6eGMAlGDOsupv19nkv7ZS3V6zi6LuX3/8ZyYP7zyIuKXD19qpKazc1gYRCvcKITDkLOdHSYn9iq1cXHiHrXlwY1mlOOm6W88kD3PVIqEWl4FpOK/MlLPTpCePyxbl22ldghb5laju1ALDBA66lFyAauE4OVKymnqbWsFb4xJMayRt+6LDaI/fv47k6LBsOk7gKStDopaxJI+peozt9ucCGEeDHVFpEGrsfKqrfXOJUJayqZ+vyVHFi5Ce1YptQTZ8NPT3oxmLj+HGR/rRw1H50dYQSovAPy6lWaFoR79LYZ85VnON2B0OCmCHj60UOUJin82GewnZ2wDzjmthbmjOlR0/ytsEeNWtTRHmBNPzP2b2e5eUO8Us+MbyYLwxmkSjDRO0fC4y8n/jStGEU5jcmWwwoYzEE9QpCgqBZMkLtYKIl7+UyVLfy74vOIMB0eeKbF0MRgd4NwVJuGk+V/SsLU1HS5L3gA+wVFnFgcmwv1RCn+zZdg5HEzUipwMT8ZJjZ10T12Cfy6v89XP26iVlR66LiQ4c+1nSeOQ+Hc+R9m2/mbsNGnq5DBwEcOOf0u0+YE5l7YUH5GstbQr9wwbsriyXL4nnRL4TgOca7e3CPrWldNKvqdCuj+7wEc+mNqFp2mLt0cSXmBu5a4TQqXpi+YDWc5byt8nPiHpmLOFPUZZuVG8eef9Z5UASjuNHNoLFdbcdDCcAEKvBDpvhemkgEtfte6pD0E32Sjl3+jmzP9Ap3zEBjG5ggfBnjNwJOpqWZMMKe3xmfMMKSJ2O3hpibu4LJSnDd82QcEDCG25hPLpX9tzjTWo/m+yiz0ra0RUxphz6DUWr+V7ude5/XIowB6Co9fizLFPiKqMHuN9LMvBs2iwXcv4WbSQOm+TYkBULm2z0QdEaZC71PifbVozanmRQV6BITVyc2XEcNF8pAXplhNLhVr9v417EZ2dvC3v23vEXj025Qp7aClNZWqWmKm0ENB168wXx05nvWnLtGZw6ubC4X8jPJkgre/CFx4Z7WV1nXp2DMbQDsSBnYvD4P2hFhdJD0/O9dtTZsJlnungOULVJRwwlMPuQt3gs+qVZ+iugh8BMyv7+xGBJevwWt8ASUtnYuZxJEE79uBqFwhTatSAspXsiTyAlcgxuu+W8+7WTEE3CPr2vR6W5DlNd57VkgifqmWUoiWJU84DtSWPXSKa6EJHJGgoZeOu37b/mccU8qYzS+Vz6jAs5RnGM7DZSYPROKGu3880YVLYlnQ4Ghj3jAIBeKbRSqtdelHU7IeCVOUDvBho1FRToC5i6/D8SZxfJgQbNm82pNUhGa4wplSCg9S+1aPY+ZVPWbV61TpbDbZWzz9eKrQmtOg2/xWtT+vUcxWu+j5HlfpoW8Djwax9vzxofsr5PQbBqJBFuKoH/ISCzn0R78qcroJrs8P9ywMBC1Vy6eESNR4ZXI5vgKDL3QZKpJ902DeYNA6MfYucSkQp20YxAqVE5IdF8g1wS3txJFaf1N2oK3SVHsOCAfw5/TdnTRCTTb1aB+n/nLvk4bq3Bn/Xh+jmaNmED59eUmI8vj3+39kYLUI0Bexr2Te95OhW7EkVKect57OuNbzXOGlf5hic2n0JAyN4zvNE7tLra2Dnz9ftC8EZYNpWorOWnplgDJaxH0GUhMfyQOL2EF5MjoPk66g+PHKNPS2stwwEjunfzK2Q1wRlirMlR+XCYWD/zD967Ihx18rbWDNw+Bh7D8P3ydVIyC44i5HQuYipnZr92hCwbiIDTH8/7EOrPTVk3hZ2sXXPQLdz6uMfXRqjGsNfqct4etCqCBdwugZyDQKBQ2gyojcMqbhuW2qNW5Q77B39NrJrDtF9GnzKgtGr1eIQmsM3Qd8fQK//7ItXeQtyvIHLTTeESCHTg55wTHaXuTPEaHsXqDSrhnnULfpvLKycOf57/xC+dfhse0xNy2MlyInYqrNVlU9NpHIwY3rMT9YfP8tE0JkwrP5KTuq585J2wDSFSOw9QQZW6uIAA/tlLMgvbWiukY8yb8UaT+D0a7SfU5oGkNtLcZ3+fJwit993eBOWG75kyGwlyjuejOFd8FXlKU2WELpSsY4c4OzekhRFUz51ybs6PfUrAJwFqN9RMchxF2grEKZf+z4JeWXKXXAzTYVoyYriarhcgmSd4pew7syIopPtskH0Z1WJpeRBZETbSvpzGHjuiYZhUZO2RhaFLIHOro2SD6ueB5VK7zubxm/ocUWRP/OuiUHtROPD2bY4Dq5uw3B1oT8jbjfzYSJ5gAvD29IDaRG/9r9/zRDpTKc8ZDTLOFh4FvHBin7btLTfH9znNbCB1LFEYF63tyHcOcx+KgW/CraX2aw6tyZQOwC78jPX7Fjh6TW5LXpeiNcAiZGFKc5BGhJ5wYzFcpZB5rH9btXmH64u2fNGCvNeqNOo4QsNspeL2xhOwC02uZoSEpJpm9JBP+1Bg+mD617D5hXUbIsqomvx7V1qUdK08r2svdcpXr/Z7BV42VF2o3KpntiDXvQkCqp3+5fQ+90tbMvwAn1INTJU4X57HhSG3+a2uZ/W2j2WNHWN1QpjN9MbiMBY0EFvNYF9HMVDFSY3/AzHy9koQDj9DjYh2ZFyDYdUpCP79sgok6RUdt+gA9DjuDgkpeIAo+bZ1Hlzu/8KzJYYGuIhsHAzD2CYGrgD8lLbWltufIQwl7deTEzCPEGJNpT4oU02e5pp4EaDPOkP481ygzcLpAsY35qw/qn6ZAOoRBZDimbLA2fm5PRCJwlEA+UzWeZJKl296QaZYlbI10kJXekAOld334tHkCRtLlOOhfMS5j2Anqnt4wTQZmK0upwiHqxQryOQ0X6PIsqZLDpG76WrLT0UXvuhZ9Tad/w4cy0WfovZ77eQOqCbsCJbUdD75f+GTlliVap4E62UkWUpmwf7D10EeOB4hQtO87MeC7gG49dbjnaGJ2eDfHUUMpCZimtc+P1CVTbRIxj9O1F2tLIZPIn7spE2wonChmcSAlJCoGgVSfaAGwBW9ixRXnIWDyC5k+nlXS2PMZeolDU5QSYTFDwL6JUjXVHdHskeSFNymT4edvq0vzsxD4TvJjlm6qj/RbcOC76ix11We/5l1A4iuk2p6uL5PsTEDcNIxAudUK1B7W+AAQQOtL5vhe80cFTxqZ3nX4i2LkUhBOxon/hikh0SKLLTSKszNUXCISsUfXyr6mX3/OA/rnFuimTeTwqxd5wrwttRD2Dp5wNLkm7AbXwc8Uj+2MWErltN+a4txliS+eQYEFzdw3Wb96aq9v9kf84M9G6Gt3qJQ2s5HueGwr0PDuCMp7ZjRs6zgpmKznlNKUBznGLUgG7hreEgBV3ZZiGswspEf3ZBv3XVSKyXC6dWqQUCPA3a2cQgYR6ApBJ4E2y32SkQusabGhfuBr0kL2JJ5xPzrBeE0ISD+0hpd/4mjjhrNNvjehjpnKflE0snYiZSdlWWrO7h59kOVWiwILcc1u1CHxewmbicbuo+HrhsaQmWnruPOUdvc0gNslXCCvLGhbPfyHgEaaK+leSju6LjEUa1Ixd7XcKgmTtjXuI8CpEc6435Gq/xmiNrMBKET4jFOrijna8RKI70e8RrUEdYlxuPDshg5ACVNZCTjFu6LhflfZ74bXM1IN+Eglqvsouqi6AyHZW/thLArjw2R0d0E20Bk0QL6rPqFxjobZdT/CRtuO3epdDW0wYk6Lvg/5LWd8m3sJ/h3JoggcRqWDt8oZMznL+gOOsJa6gKYf0HtZudUOAia3tCDeBQCaf9AeIq2+DjMP2N62v78t4Kc721SnXBNyISYQKgqY1OOxkyS/SIRB2DuH88SiwNVnna+RPXyGIWyYaRRr0jdfwn3dK11QcrKMI0ejjlmyKSXWVnZ0bRTmwc2CYPaixAXZQUJ6GPNXs98WEupelsqZK9o2QCv88TuN9p+k7hK9xG8+xzPrNtKzl8RUoo0gF7EIuR8kFBDCTc/mGnCuLMoYJXUF2hsR0NikSI6cig8MkzVbXIW4vWKz0W6xsr+6lON+nCYLIrPfnJv7FaLJ15FWX+69ayoDF7HBR5sOQ3G2F2QZ+n0Vkw4WHJGTC95Ump+cXeMJBVjwpeYebmI/fiRcuslxp1RRcf97ucGXgPGX2OWbzb2qxkyvgq49lQDj0oXw26Un079dFo2nBsGlu03VwGdim3jHx77rI/C4+ZSZCZh9KNwMUA1RZ8RaPeXrP8q5po28hG/2TPHPcGcYmsec6OfVC2oV7dKS4mJXlfG3iN6aH5BTRjZVB9KCP6ktXchHb7NZSAOwXuSe/nOYqzZcccILZ/mF/yruqDPjJ2xlP9I6xEcECb61BRDmnlGwmezx26LCVvOM9wSIg++5Ki9xxjLYQW0Y3/Df5K0pXBKzO06fXCl084R0cjWXJ4SvjVx+1ffo2V6Y0Rf7jSM5faZNXvMZ35jc5NKB7qTZbgqKyFSlXy8t+BEzgSsTBTKAJsDjSer70zECGUgZbay7AL4BvMaVnqI/qRisQ74tmkkrfkemudZcLEte9a3AJ3Xc/jmluffV3mu+c4KxnQm/vYbqVechVLECm5zseDevGgpaJeuhQfsqgzybO8Hk5zrz1uw/F5sqsuPPLwYwdwAInLcG9YSSud1sFaRFi1BgMgoNK1Sp7xEsXHwiUJwaW0K3/bN4wkt5Dk89qjXXC2Vle8QxZcepXVy/0o8YLxOjydfj0Y3ke4qwlznu1iQa48NWa8dGJNeXSqlbfQZKlpc+tanZBB8n7L/h1uq4h0wYT3unFTwzUNaLwbffu1gviqtkxlXHBMdh9tgcGHndP/ox3k5Fi8cC13jKuHmQahnuKx2DbCBThjFwrgFYiG6IysccvbWUbY9vJETsRTh9lLpfICZxHaP6HQIBE5YOwZMTp7NobtffXJcp6ZO1EZdrMWotjMai5ioHy02WZEq8edqBTQWtOCU2g0bXMrF1Tw7uFAVf8ZvCyocrCKO/fYtkRhz4339J19uVaYVNjPP30XCRSGy3XsMp7/gUHuz5QyZEjQmEgUEUKXWrRqKgyD7wm+cvQY2jFN9JnAe8vKV5v3lRNtNVx6fK9CqqIK3uLe/uFJet5Aj3UvKHbK7nTko1rAbQMOOVOOVilo3iUKzJv02IxmkcQNfQx+I4mz20JUx3Q9gkkocr5APxxTIjUFvCexW7nI6bzvAOIwq/LOWKuFuFXrKtLoUV6SyvFHl6DgjCOcTOXBBJ6/pw8PnFHIE1MXEgFJ35RO3MLpeRLGzzh2K29PAFOQfLnvUyuT7z8msRjLw0u9wP+GaOLOXzXpcQ9nHhqVP56Vpt55uXGsBGYn9KF1yZAJIlMi5zwYdKcvXnZE8w75fE++JIiECHz5Qox+S4F1RoQkHDmxihc96GRruIQRJUc41ygLiY7Cb5XWj+aUJY6KxXF4H8Dxo0EHaCXvg62p+cqURQxTYKTaMhu0uyNhtk6etWBjEd7Esu7JiY/6YuoQvCG2CdsK0Dh5SjwMG6K7V0vPE/0k7162qLqjWUvsiIncGpt2w/UfF1dYnWVlZetbWzG5W8f6zqOqzNv7aieogchoM8mVh6Gf5BB5EpJbzZEIGdf36mrC/eRSyOBUhTPE4/6xz3pcwSn14D58rWanDQqZDYlk7QijWD9V1+t73u2nCLvGFATeNxFHobXLvzUFMpErTzEa22dC0PU5ToACl1Bq/9suS4sleNAyHghWZ1gJBzqlxHgTYGhjn4bwdwTyMBpECqhB+cNmFRWMUgRWeLnFlfypXouk2lWhrtpSTo2dm+DADO3MLjFuh9RVQ12GacqfHoQ2rDyiJvas42J1JKmOgn/iKEXvB+ppyWvkgX3KDAvXn7tx456APlppbibNoG7SXjDRBhPE9umdr7K7+03qlcewgXq2qs3LDvLeW5V8fL5NsQQmMvITR9BMvGR4S/WWodJJ2Birh2wRuhjENtQi/SSdAm1ZMR9vzhscM7OkYH5+thOfpNE3tTol/
Variant 0
DifficultyLevel
586
Question
A group of students were given a list of 5 citrus fruits and asked to choose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the piechart for the sector representing students whose favourite citrus fruit is grapefruit?
Worked Solution
There is 360° in a full rotation.
|
|
∴ Angle at centre |
= 20% × 360 |
|
= 51 × 360 |
|
= 72° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item1 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q43var1.svg 300 indent3 vpad |
item2 | |
item3 | |
percentage | |
frac | |
correctAnswer | |
Answers
U2FsdGVkX1/7C/xzdpMJ0q/7h9HaAjQbgmagcHLwuygXbmD7vWZ81E0Jvxf8mFT7ngTjP3ZnkssBNZqc8guhXPysqylpxjMIBN4wuejMVTiA9lov8eOPwpvYm00rr2vu7X+wGbEU64MX3j+3Xoh6yqbXPDUIRIz1YHfbZs6PSFDzYLnNM589V3kvB6NXnbeJLBUYDXgCEqB5ak//KWm4J1Mg9hAled38Gw3TsKi7X9l5gg2IYrcHL6o6FMBMfRuC3g7Ozx9plXRdfOuoFT9ErjRuAhN/Vyc2vnHE9vcS65KpgaaArRsXsXyTOSGP9P20SMzcmiQ68Pc0r0tAEhiSmg2T/K+bTrLy0H8qdbTZnyCxbKfF9U6hnxbtnRcNy3UxtDHj7YCtfgaAwluI4blIIsVVcHznAj/XQuU2dsboyxGr2HBkIsH5VSjQynl8llmIgUEKdrB372o7eIZHJO07sbjWL3KZxDxN5i0oSdxjhREI5bITRWF/ficZ1M2HkFyqENwL5wciNG7Ea5PR8i/hyuVRQTg/GIHyNwUpUbpUmFhR0b4ulgmN41pmxubAH86/b43wUa20XTM0I96rrB2MERdRj8ML4t96pirLNBf7nMXzW5GPj23T+Mb4mAY14cdYr6sXVM5dRAIu0JYrSA8WAEqOGclmmY2TPmcaxR9FE5GRXd7cj/f0EEv9qk8oTVZSLjKaruQ0EufUw8/eIqj6hvs3qIBx1QuW8VGXCeJeyBdwa5/cAU+dySAGYCrcSzyL5d9LFQ7FqJQ1TfZzpjbAmGuq1kzvlNynjwXjq7Nlzzu8AFMv6Od55yIz6CbH4FmaRiHQ++BlUidlY44aHpM0VzWM07fmvnNsjgqaAcR1zwOqXJyjxNrzUrAQgbF+zFAs8FPt/EI+2Xs1YOeff409fa8vIBIECNUymV9lEBBjHwP8LizVNoNmajMA4dggdOSm0KmUBOjgRWoTcnub3ybRItuELKk4tJN/S0YjZq8LEP2d/mmRxyXPsS01IdVeb+UIKyOC+m9CbQwpotnBbRYuHyOJ2zPUb/2ZYSGcZ4e/KYe/pH+RlCyyFLwemPhmofJZvb7iBrkxPhCjwowwh6Wj1G51TjxUFPZ5w5IT1HQ/16vUPWNl8Y+sSjC4Cf/ZSIacA3qV7zcCGr7UrAjJC1YvP/ppHvAihtWTP+tjd1ieI+cvHiCei70HgqweX3CzQHxy4Cx5UmsPLnLThz+tAjejVgCyAHy3aqmMfp+s6hJlmFaCp4VGbJOabY/I+exc9Zwif8xJuJO1MpEQsfclBU6YUJGV0t3SNxM7g0IkAiZzeMsjPtJujBTVS4N6s+ipIsjBM22UVJQOp8IKqtknJxupM5KwXHDg+wLCyx7uQGFwrqwzJk4P4jj6OyYRxktYTiUfKP5PeFbFSAWvVePMPVxoamq0NOF1wxRw4uoPSSZ9j6L4SopRQSK4nm0POqN/eoRoak1h21b9Ay8SfNxRmVvvFvAEwDvjB2utnDJUBCHL6BclDI6hfQv6McHimT3DZP7wtVkPdCUO1/8nQ71pjLZAW1LzmTn28z3cozQAR2BLLMt0t1lvWtlRwaL91SWjxhMxJFDXrtqRojH8W/PAIogAIWCTTOM6/PHXC7oqi4ADOi912EI3WOSLWM+FvUeruV3fgWxioD0NUPHzkkinlO+Kc7RCgW7JZe0+GtL99et+pAfjvwDB4n5oxpu7g4iLiIlfjBaT589mGd3HMQCRScozVvcl1cZ3O7Bg6w+1oZS4HFCD1geGMbePKYgnYBnGv/U+5lHOZVGyaUEQUN6tRxf9d5IMePm9EAMWWHdE7I2fjimjUF3fCogocl6TSwqeFud37aHw3nijF+vvDIdFWejihlJjJntfDh+4xDIR72dtyNfvilyo4u0aycHjoiZbt0mCCiP7OUiSlKk1Hmzvl4GTvYRltsg4n4YsbVzF1C8DfkjmRglfRWdVDYxQuij4deY1R0c4WRD6mOU75Udyany7xhKFFD+QyGa/xb1Amz5do83XmcxZZqcTF0lZ1RBjrv9S+0+P8GMAxHL1Z0J3tIhbWpVGR82PNLmdFdICQmRECr3t16jb7T3gmLISFOQX/euzkYJnCLjd3mkrm0KyRfZG448vv7fvb8FFHA5wYCdZk1R2Bm3sMdWl5zxbpRUok1kYG6H1Rf/3GllsQOmPNTcC01RdmlDifo3Q3unAvBzLRrVvxJ+bQyZepC/nwEQmSocwDnmNSc/vEt8ij7aB3pCufxKqUfTV1fNJygdTCxyICVlSQBeKZ9avB6emupOQZz8QaU/LHtoh/S2wQW0/FJLSB0pmv6Pcm1oHnraEWHUAp0xORTzUDqe2+jsl+NQuMzIVA3BRsn5XiNw4ju6NzQ02M+F6cVdj07KlBUG7asaxj7qx0KyPmQPgBlIn96o1bK6mS7fKrNcWgKowhnbcbv2HMiK6DAF3SUI71W7wsLj0fQXDjIML3SzyQ7QAGe6URiaP5zL+rENUQAIjHbStEFChkF///eNpE+PjLTWzhPgqVaQKqLRAiVFd/WJ6WD5omjHXeNojeD8DNtC3fOoJNvWcwANhJT3sqLzqS5CTBdHoJfaKmhtQVotnK/I9rcseAZmRZmNdqwKR3Hp8o7xUn3ZMF2sIIIurmd4Dc0zwZiGZ0OH/daVlAR1blmwXiFv1seBD0BAFEHLaRG54js8G2wmV5VtZHsczCpJcx8iTueP7gEXdoHwnNrtT4DgXhFwPfRaV+AkWPM/WKL/xjUW9dElqnZ0VwmO4Je7m0wh+jIUfgdfOQbO+IdhApP44622SK7Su97nXHDUM/FgPHgOkdgs04F7lrZg4ra2wOMA39ta7wdIisTJbetX+eH61e+cWnUaODVs8qaBZLWOH6i+L1xHWwjUwK4h+euH2/ylf2vGI+OsIP1LX+eXhdV1OUanbQ2ZiTP1ccNaUqUet1M8S181tahNscTNbSVbknk9uJUglE58kvyUDiQYC9weAudbGcGiyGlI/I3z9tmg2ZM9U8AX9yqtjRghuW8keu7NqXMM7mmhnkF+xZafpatczLiyzhYWr9w5ShDa3OVigWR4ILehDkHdeWoKrikyUugqKDMinwEr49MozBi6+hyajQKKgKwWx/XPZZOcsc0thQnTZxTJxyBY1Ko85JjKniuAoRj5RiTJ5OCVAv5ZwnPJea5cGubWK/WXAEvPB1bG8C6J+2Pl677APQWIoWZMl6demso5YaNMTC/M2ZnqrgsFav8qIqak/tp0Lld2kQoxbRalruY9rrfg0Sx+vNJyOLPTJwV3BEDKQw3DuIIcfjeT6IH1b8gk/hWzq8vz/o/OJoIx9UOmkwdkzaessKoJvA2CP5t6iSDWuzoX08bcaAOUcV0zOTzGva0gz9HEOaUe+1vbZNetRH3kZ37wquP3y165avt0xd2ABxxPEcLG7m5vbAVdNDB35kOZvME0cuG4qVn0/tNQXzCMQAhiCuuCXO6k4U/hfR9zD3rCxRd7vMrqzkjpoyRKHnj/NyqUcVp8PAS1szRfXNdvK5HK6xzstxFEF1DsRAiDRpWk0wHObg6LZFJ8qxZ791jZNls62MmMlqmp64GwSchiv3cGQ9gBIqsyLu4ZoY1rESulrtl8N00Yo4/IXCdJfUwTytmW7FbbrJYwkYCuDspDLtVOzqvFPCRkBsCfICA5JzWnXkApKXasU2ENN0modxWiWYbwvSXoKg+LtLy3FDoNYY2lhF79YgAQj+DavhhBwgZh0wN0Zt61U/jHS73LTJQWb7SH59IubbIXF9JgwMZ5qChMusPv7jbSGXKIGFD1JD7QUj+1d6qQUmaO8kuCmUtfnceZf01qRY5YmHET+vPJKEwEB+obLDgKsH/LHI2JcgX/Elf6bY1b1oA/xRwIRScnpBSMbiaoT3l09EEOSxv01UOSHqyckbpDaxmRIFReb9bxUAyu6DIiGwUsDUfeVhfL9GQWUOY/i01fd4c7ZuMe0ffeu3aVXD/vR7nuGq7libhFovhwKsJQGHhGCRk3sjNh0ERCcuKy3Y3N457PFp4sZ/JNN5e1CSY3Mr6mdsBrsB5meb+pNhH1Qb0cboEAszM5Z87Z4sZZRA48sv3swUHja28e6YXKC2i34yRUoKpc/Xi+lTssawFW2q3LbY3g0MmIdfqpgNWqvhmtbG1u48qz8SIABKNRdO5HbLvYTozCMWIBiw5C7TvuqK9AiIIT7omIJ9hZETnoaJ9zhIWDCDowjQMn2yPfNTd8UEj2U67Tu9R0CHKb1llcIBh3FigWBWxXBgQrMSqurdTN2dVa+qBjn7dH/zGdLPho/Fsau1nAopKZcjbPH8HnJnnwR5J+ckv2V2S+GMYODRhjAcwQzqxati7RblIkNhQvXPdGWydcpk5vfFOMNWeOZci96DKbagtl60GH5a0Hamjs+FL8N2xA7UEoo/i+wMTGh9J4w2bFtkCtOgtNOcqWGE8jxZeraLUIbIEn17yw6cbMtmA9XkF4axvqFlPEmT9zTSfuOw/c2KDUNeVZNEteeomsHmVsVVxN+U5N/XuDu0kU5XojWgDcmzrWsn59NyAcweopDd5wGeV0p4pHxHn4NZTSBUOb00x6lrah2WVkZYyLRrw+iusxKsDsq1jVyZ04Kz99zFYs4y8DK1v6NLaBDvXHvSh6LIv5FgUYPtWSPQGVuquvUnPiz+jGEAHbUPc0Hj+JDr72PLVRTd5xB5DM7LuvDk8jN9waHg6fLwkugvcRVxYBnC+lyGbreHNuNuoQBMI4sFXDrCSts1P7bLiX0AlH+o83Pd1rPqOU8tieFUjHNQiflUW34jZwVzd2hJbS2mkcFs4bA8em9b4HfMn8oQ2LyaSHMmvnWDiuNNO3LC2xiElACIpnHnmitlWqE0XCLvSrLnbH8283OEumHgMYfXAc2ZAhge0J51UNJcWG9wsZhjM5Sj/puDwx4zYoQjRtIXXUFir6WkN8nkJMY0YCHyv8uPAcXbTEzhdfZ9mopfEksaw/hnEZsXw4bxyJ4U1QB8uYJNuURbaC6RBWPKauAIT5hUku/Dtp3B1ztswQKwn4wSn/DmB1A3FmF2Dwt98XgKW03M85ZhXsY8USuTKOXk7SK0A8QM+0HPAGNLAVPQALlFD2bju4JRJ1v7h28HTBAkwKAOPcanymnKNLf0ik5h5HNzvfN6ft3ZHSuKLuUm9QrTxn8z2ZpYOiJAR493OqDU+AEt708PdqZS/PJCD6oSatqd2yR7qxZoCRbVJcmEX4bjXRt2F0LsbfPicSxRQ9tdHp2AlhYBSs2at8D8uYkhbIWtzQhMbgg7QxEvVLt+lxwO++BAVMC/QDJ82G53l9D4edvGW5XAMj3bYxZnOfTlrCxihi3Mtqz+sk7Ub1e0vWanJQYkCuxZ0MeQcVYB6nTMIzGhn4E7eYiBaqgUeXGMGQnvrC3zy0OMVl9gxjrkRAg85iumzcNvll3Gr3Z/0/BUc4famlBSi6GTcGNn3IY62iXol/4zA1dBerHU5sEvrlvo3RaI1rLdljd5r5qeEOmq3L3SSTBvcCczH720qmOdNd4PzIUgv9gW5r1/KgxEA8eOEh3nF0iVh2Y3jArFJAVDK7ML43A4+r5yRBQi2a73ICKRVHhqYewJGhqfmw8PrOO5bcLW+9zAk2P6gysJoD3sm00kWBhGhAcoW8Ad6I8gf1tJL0pG53k5AMrkJzkvaKtpAgBHucbEE+5qj8o/RAnIi/4zIDKNhbmVBDRSTihJ6bMO1If9MeZbWT2xs1ykFz4n+/ss7Q+8uSkxdAH/sZEUg7e63c3lQ1anDvuWc/neq3ybiWWTUfxWaQ0z+tu2B6tcCRm2wMbGV70aJuNz7XskHrI2VaHlBl+jRfm1A5qUiMFUqPycBfYz301mkXI6FvppIHvx62AoPvM66338qA4+WdHLEoeXLu389osnRg93Y/3HGPUQsdCJe26ij47XV5hqL/0uz1phILz3kmvYH7Qb4bo5Triq7zVkAWyoLTu2oeHmt1dCuDHDYzixi6UP0ND6ZKzzka+7/9sdLcUCsrk6aCMMSHU7H89ePamqoax9Eq6H+Z27TCyufvLoeXKvjNqcMDF+rpLaEtR1fCOsfmR6Wz9T/Hc2A94r16kuSLBBlJuZpAyXSulAFmzNPlh/FfLRVdIB72yYz7/YtMhZpcc0Qsq0wkxmGPVPI2tIG3PQtnWBZlzaQbeSVx2cCiZHyWu+ssS3aaCEYSsPAmsINENiVxyI/19krMHO1dLTlsmPXh6CI0c31l+appcQzctQkD0GgVN79X67MzSACZf085DZ1XWm+i0BJT2SKm0qqFRAp1Rw6+3lgOKjlME1Kh6Gz3MYaBdgkxw8si6kITq9QdqU+YIe/j5By3RNSnFFQJ69K7+Y9NUWzHhlF+KdeAs58Xu1PgmMkVdI/1KGvkSBcM67ZicIxKQT9kLR1rRWp1VCkf4eSxIiH7C9X2azvyO7Ea20FjjVFSrg54jTGCzJCQb/BaFl/UCYILt2SLQlMRKN1Mu5eJHNKgLy+CJnklIHmpVz4jZWQiziVx+wi5I2w5rrgonpAA23ShOP2YV+To3F6Jpbcsh/w7WzrJqL2oEwr1ED34Oq7rqV0tHrb0HQfY5kurXcaXdcnKBrrM+nAkJ7+7sNfxQOHrmRwOLf52nPvqex6vh80tiemYLmoNRgq/K3I3N5Q8ifj4fOok1ix8RbaTIjxDWaWHzhV5cNIGx3DeDWTMG9B1pUJlzv3fHDSxqqvNV5mGPvPgyQ+4WxGfZ8qXlxqxrQj4ODZkorjPUmqRNB1+rX5MrkC6retVuuGgoFuiOsQb8nnFcAgATkhGGo0hZ7ZECfTp8CZsFn4GS0+CVZqhQzOziFqhEjQCUusgolA0Yxxh56KsjpachuiRWmz98Cs4qHVqcW1pEObRnOxXBydTP8JhMmohyQYOsQd7uICafZMIi9aAtQNs9x/r8HiQINWS55xgbQBJIvpf4rFB6Slig9F57PzuYAk1CwqLuMVDGeS+0S+nWX04TZdhg3DP0X3Jwol1HtNi3NcVufl5baGaF/ZsnhQSkA91etRz0x4b6M5dC3DkP1L9LPB8Wi6Nx1p5nRlauNAMMxgGcvqvYqtRtE7lBgSs8Iz4Bt5LnJ0YRBNhuplIfKUMSGQ9CJfTcAIvvisL/B99KKlKDg35RfpqYDWalQ4/Uj90+nDq8AYv/f6coEVD2P7aOLv+nveb5xuOWocG/heeDytC5X/5IXvJ1Fut5hKhAaCxz9yz3re4vsxhsXUE02O1mV8wuC1lyyugpL3wj+0MCj0OjdXU/qFOS1HJh70d1PuPWtAibQYQDZKusoa0QElcaHKVepYQNdXJ76xrgotegyJeNtmMKrS630pGWwBzGZ/g/esF2woFBuVlAkPdLBVL3I2jPeHeF5FF4Dpm0SO5s4LihrntZymlF5kIMkufY7tiwi5cpb2lPGcFy+AimLBJmaR+zRJxXZtYUfZAg2XBeElcFRkULyBZvSdfXv0YMBKPJIJfbUmBsrhRWXmHM5wfAd3CFxiICtGdEnABILuC2fsiC2H/mHfmusrW5PS3/tEJX1fv5wmTslgIdsMCsh+aVotzll1eX7XgmCTb9da0i76CN4OMF0eKDS7TNJ4zDoSHJMYOrV+mHGDGC3ruYIOoho3Mbq/SXo2Oa4s4OW94OrtgA/GoHeROShwPmScZ38zGO+TUDlgk8BD2brCL4yFw7Fd8+DXjca7CsNyHMAOtMKeeagOuSY3d42dfLcjXkSq4JBMZdX8DGzji+qonfhQn8Nyk/ELBW0SBcY152wetl/ByI2WemzjDCMDD7oTEEyzmuPdFlyoSYWRXon5JQ7nqwhH6KEBLpmVkU+hAAabnoOLTNUXTtq8MdMJ8vd8MsSKgCrrkccn2AV2SczGTt2YO+1V2A+wky+hg76ngXmjvrbipjTni25mq9UwGm7DPiRacPv4U6JdJnYKvxd5r/sHU+GE1AP7cCTb5sH3MWPvFdZxBMyDfLgjI82NSKpvMFnQVO/acbCTMf4904o1y/XJzh50toYdJgyERzu0PfSwNX6vZ+5NXEWuicGNp2PR1o8rYkkxZnwudmnQ9MxVcmdIcG5z1xwqhWzikp2QDFYD2uY06+UfgqVFk2DEf1mt4QjlMUs59Urkyyz7f4biEJ7eHAEFuOSILpT2gbjv4LdONDYc7LAXKh23U7Nbn1el4bo0zg2w/RDGz009FhxQFVowg841ZIA2za5lAzSLzsb94IXvEUwU94glAvQSgTbPB7umHMiuuk87hu/HiHy0WN+FmhVCnmeKfZINSpQniHWxi7EkIkkRM8VREc8ZMmSpGnZzSv9Kq8vsuie4HN9aH25igbWNWDtUwgvx6TianRt1VyHjk9LHDTDpgUtJ3LZeFz5AKd/fBZVfQpd/jkyKzJiYxgzaWgKJYoco1bVxzEcAFOhPnTCNlz3D86ElK/u1mdDEwT59d8Py1c5TdjPQBzoJWPMBKjkEohVM8CHuulikP0DhrDGKrXblgNppVVxQ2cEL/KOqG/V0qXxnl9muUUwyJxX/o7HFI82nzPz/Of1noTbBliYvSqVCLBPdSquDga7qfK42lk4sIy3aN4yFmXiyG+xguak4e3Z+NRSouIgJVr/oKJBJXq60jl3kR3BXpEoekQERtrIjGeFjPEzPPJEXos381xnF8K99WG4kJjXO7Hz1rO9/HJiYQOgWTaPQEJV4Kdq5sEpIbO0JBBNFePfFX9HMLx1IcVcd3vaTCMiI/x4KqTfqpwroDNOcgoMCMXENeWrl2VR6XOWXmZnRPiv5S6siFGgyomoN01SMj2AO4hMslt9ykg4RwR513dmHAQqMSqxq5E03806HmZCO7wvpzbv/OIi2+mAMNuehaWQEbAB30/dVp6JpZp7LW8F3c/EPRGWztMyUdkvofQrveXSmvmh8WU2niUPqmVT2fPF8m6YQbc2LtatxvMK2uSBvLv9Meg/RvEVio/A7bJTzpvIK8TQmUMYAGe3ZUpk+FS2LIeeNPGlvvIGUyWMkznTYZYf18gECuAfZap0tTB9Rync//QhfVAcKsEQ9AaGev4eNJ6m6RkyzLVdP/QWdhTpBLPzyDGWXC31rqrSuHcXW71zjKgBOVUyX0nh75GWo3rO/SN3Wjfr9iK+ALixD7SU8PUcyJYEwHQkvqXmnDs7CC+/Ny/vI83uS0eDQQpIWEd1/cx96aRLUX0ZIJop0Ur6/YRRVBPjGvwpXX+VgfBX3spUi2jWizD7ighF0dr9Wx7UEmucVcGYVBdKKFmSy7nBQ1/ArAKrIDMhW6o7oDMZgvR7nmoTQLq5OwPcqH/RO/TtAOWi4hECQNOORwE2YUsnfhmrSXzLD6P/a/reIf7+u8PDe2UNcNHYZjfP8R1+q50gGklKTDeCu890gFMnkx9s6DB08uvsXpXltRCjNoylMWNFb6C4ZCG69jHYnz0ot1eC40h5Lc868mHwfIigx4m1/zH21SH5Dty6P6BUne2xFi6+ze/xjwT7t2bT7LappRClpgknmQXpzvOx6pKLJ3ErC6L/RFbdKLs2prns4QEkb/70G3ojj17Alp7mQn+HP4YMdtiuO3AEwzCLE6YLA0lZLUt2M4/10MIVJrpgGMjuPz9yd3EbVN0tTFKQFl7gPXrHxisl1rZQBYpONBN/QenKM3o2s8kRkVSEVFtHXm4TdhAGo87HS4ohE/tbY7/Tn5/qVsEqbRv/+wBG1/7bEQ+EoB3PbTCkVhS7WCPoJhdyUkPd+T8lep/E5N8oUQ+fUhiOvWGRB9rDH55x54Hs2efSfjVhlbHAis4j9ozHJTir4m00gF9p7pRx0+9J1f/tS31yzPFrTMcXNcRnCfJ6snntm3mNWh97yCIG5LSbQo=
Variant 1
DifficultyLevel
586
Question
A group of students were given a list of 5 animals and asked to choose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the piechart for the sector representing students whose favourite animal is the kangaroo?
Worked Solution
There is 360° in a full rotation.
|
|
∴ Angle at centre |
= 30% × 360 |
|
= 103 × 360 |
|
= 108° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item1 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q43var2.svg 300 indent3 vpad |
item2 | |
item3 | |
percentage | |
frac | |
correctAnswer | |
Answers
U2FsdGVkX18FTaI8bMImcJ/MpDj7neSTL0RljQ0fjMiNPHLpUZTSuE2+t1EB8Yi2G8lqhgy0dZQOCNEDvvAvorvqlr7+HuMr7ifFGrTQNEfD/QHiFW8NPQsyKRxnUIfdIMqRwSrQSy8yP/oMka9zo5hIeNHdCrnwm5InQCdDz2nUHLp425iBzM2lBg1E6+OEfbQL/kie8iOHVfCErVi0vkEgxCUTKGtDnDsDQVmqnsZ4EBFcXa+KW2SLNyQDeVn0KbcQyQiJ0EaS0be0y8yVFUy2wG7RhEQ1XMTp8EokVCRRfFynSfg4MExnkxbA8Xc756FFHhHWYGIqZqER8QwuycccOIc1WD+LbL3Ks/8el/b4p+knYIGWwO1OdRIkjAB1bYCiCmfQdwxfNrtvS3hT1/SG9u+nQq5PMi7HdFYT//dHsjdSa7QOBwoJZ/uIUQQz9H6RV+7Tu2bils2bQHAVaA03auh/JfjgBlNFulMWAeJ3GTfl9Y116bOs5MtcABQygVMhnpE3STKp/d+A/6NEsdxQSK5iM7ZCub6B756zAk1NTyTF6m84Zgv7eH+ZV2TBQ+lSCMsKaxGuj2SwKvkm51SqLMnySqJQZJ16nBg3r73j/+ArxrFwrfVrJRAnEa/iEvYptgDVjaGBFl4X0CJe5UYGiTC9nENQFIYCXjHxbYnYO+PB9kRrSDevKgOWUmaY1g1VZePG7IRYgfUS3rYYoihrksM6B01gZ+Y9t3OyBJni6LBpFCr1bw//Sg6VKLn4cPBEJHkI34n2ZtMt5NZYhcSVCdHpqb8W/8yafhKMwRTqFsf4MmR0UGG3fAcs1S1xowzHSCgZx7ZP6a6yGQFtn0UCeaBsAHSEfL8joEzBA4J8kN+zSDtmQ5VhppJTB/OXU5afzPjwjhFafe6vH//9EhVyveZyPS1f8HpPoYL0nAX1ZhkYwg432gSZq/BDRUyO/1iJ8flcNF4mlp4bqR2FelBI5GLresxe+RXANEdkMkZgJMJt6DXA50hSmnUoKkMu8YVaY0X+Mr9bXHDetKuvupcyI0EQ+WoFGb4mPlcZOfEJHQnbrai0Xv6lwZvqGDzg14tlBw7sVsE20vQ9x5/IimLWAWQ4rteun83gFc+hudzU9jaHwM1kPhmXDcwaF1QaQCfYPY3C3PaBSgYhRddY3c4luqel1E65eHwk261Rs/d3PnH18snveQeq9u7Tzyn20qHvuhtJXoQO7B7uH5tAaCDW9Q80JdGe583BzdpwZegvhTpLUeRDml2JKqPUOlLufgUDAAhHSeJ/G36nXsDtPVZN245Vaf5filkfar0Rnpncl3tYXhSXPMz21MCRM1WCJMlfttbQJLyklxBHcSfemIS9a/aAHkuh7eoHX8Pt/3vxBfqddcZxFnVB7PZHXZNYzZmLC8efN4+S1T1JmQIG4rDqoLMWbYXrt//f1Ye+/eyMgw3JwRL3Vu43OFeWR0fYHMyKvcgg3uaYARd29VDIgx5LecrU861s85LfjOqIEouJMTRv6LEdyInjOeVxZ6g2eYnxUUyRJK8YDpuKBFp8tSj0V6xWv2fVzaxAJQrpDgNRJMxg+a748qppUiA3isAYlhK0EUAzblV03NvKEIImfh7BUxh/Yey6JAttnE1jsjcuWloLQKwiZWvPgmIPHIjXpfqxfkwnNIx19r+RQwSMzOsjl5GxyQhISsuOhAAcZUBVeviKt27oie6nfvVb8/jKxKhySaHjBJOMoSr6MmtVuMWCCtT96RuzFRt2918ehRk+PNaf95/FpIIvOzmTrCSsjZtQ95Kj6J2vks0xTk3ixoyd0bK735SpqLjYQdy0TguMoX8lZQi3wnrcMBWFthb4tR+eqB3XpVAE2cOIMgwnHHOiJcRv6mrk0u4dK2/NihKDnzz+/tWng04F0ELq+ATtvwNI0MVVcUE36erY7S7BsLVA3jqKzD44CwHCZhiCouTdojvXX2jEIyomSMyNOQZdaOB5E2KjN7zkwtfIpZvKnRf3qe+r16V7pA7vxNUBbngo6LfJt5AwiVWcQanI7dmr+qEATNOqmaBNG/JkXoDXzumN8GuU7XDIayuax+mHT9KhrmEr3dVRSbHGoUgK4+ve945u5qz3GQO+AiBzqkxKFOGuWFxfmjcx9gJ0UQ0MxNgsIRDgeIYhYyVK/sIIulIS8ZglUdW35hlGwqSwO0yPPqzc/Yx20Z+i2gz7328tJVeQG5XTUQZqRl3vYEYFzgpCUpV9nkuDwN36MDN6PCL9VAPgyu3DZIUo1+38J87yFwNvtT9BF0+8vhi7UIA3R+vpk+wzDzLZlBmOyZ+3CU1epoiMn6LfIemjBBomei97hHEU4WLrSt1HnR2AK88wB/POfcXMH8GOXFrAvvJH/KQnQjwqh0xuRmUf5KJlUPmB75AsxEnY6+oVNVxdiWh7JCjBDIi8vo3P160NkgOc+jQCBvrgtO9e/ZylW478GYLX+TOSS0pwlbmDjgn6fYf42lJVSAriuFC3jRX5RRniwD8dwWIOgWSEPLdolBxpkMm2XFd9yuvPatu/aTHWo5sTPTlxFo++zRtnluedyKdd9v/P9s98UwiIXR8PbdaPAvJPc6WVcYGYnYsNtozQtEUhECUUZt+IGu9Ym4rwSjJaIs1LBWhGDD77nySokuEioFYGwztnQNpF94TWvAaAnsVMrmP/1JjkeRyLx28Dnkt+NaXruwrPPZ/N9FCVN+VmuF0G7qU2qtqWeVh8njuWqY9QwtkaBzJFHcNHoJs9smhqThFkCMI6p+PGy8xfagyYrvZhue39jm8OA9EVxLicU7IZ6sz3/+ekswcwB+gp6U0aW3O8G1yfOTzemvRGLPtrsqDznZDkJTadSBT/XSoKEDK8T5l2hbMSLTZkcZRAws9xaLZphTmMonFb4Dd7s4d6DxaPfG1kQRcrxuAB2csYXW4L47BG6yeUWUTHniMpSqRr+ykyiZWDiKpbCr2xZUDatrswJk5U/OWw13jy92zY80cJduOQ03iTpZ/vyd5DL8NoaP+oAnqgJwwC41FgbY9zr71o3OC1CHID0DrZ068CNhDpMYnu3Y6eFQ3p/Y1n5xOt0TfC3IHk3UbukUkHG2TceVLmugFn/FDvrSwMa2byr6omQmWPNwEGrw2cJSFIo/w4IZ8M/hnkGQZqgZDYHaY2IRQi53NqJTZX2Ohzq/stgkwvmydjloJkjJnIVejTywlIL+PUGFMXK0PcsrsRRnKUrsZy+QzXOqcVefpq4VOMt/rbrXV/k2/YL7kpvpcgunJqlYVx0BQWJJPUqTgyuWueULzxbbFhC7uddfgLHEoiJCPs34ET1QWsSCFpg4Lfgt3NY2e+JEbxujD+37V9MaziZgb1lT8XDSS9k9Wrs3cu7IHsDiwTYC7Oosd4ZbHelvLew8IxXc9U4i0XppiqRgR6+ITlYn5NO7m4sK17RbHYNYsqp5uN4fFeQNXcPPL67WChs5POkOP9KC5NWQ/J1XX2iTPSCpJ3VTGas/t1z/X0gMVclqjWIgST72i6qnKVjJmrWGppWWVZ9MwcfBCEDfYgXBWlFle/GNDH4nvezUnK7w3P/5EZdaMmFmiSDL40jw0QmDtdQGy4QxkcEj5a3XXMIjfKYP2NeAgvCM6jBhyOYeo4Rh/8bRs8xgp41LpfrVf22uWYS9+D/aI1PD/50Kt31nNpbzqcUGbObcCSa2Sn3fv6/leufb/Ba59We17HeuYhuASpbhK73VZYiB7KDM0Xqdnq+dT+QAo8tt6vuyOsVUVfgnI/s6/IpAbhNAJOxTY4fyjSdAfP/DV5aiDTdWSC1ybJ+vdCwTJadr0NHW8H5wBV0Fa8gcaY9VHjzBSMPn7Yc9GQooegG2ZfcJKOyusB624BE7nbFHrmQrm3Dl/z/tLpKqCLJVHStST94wS9wcxZcvUeKR7LktW4glJBEHvUg7KryVwFUYZBEy5hl/8ltgX6oKpC2CUIlOAIEZ7MnCRpP6cRO0vPAVxUvfym2yKPc4JEssycOpy1VZAXdM7LpxW8z00cvVJGalgQiO6eYHmANBEQM/mP40P9kclETde5/8lR3NQD9sPLsuGONlAFPJnhWSmaOumT67NKtsE2qV0Y9NT19k1gPGn3U0B3jpRxR3DT1on00Ehc+DP+D1N3MOX7x6pe2gjEp0ZB8cC1MGkVj3+gxHiS+4ZaFp02Cxgr95iSgmq3SogJClAm0VJm7zgifiKN+v2SKgzSOybbaRLyvA7L+JWnf9wFjvGHcSpVlhqekqdx9B2qXLMklegWoZjxaO05UwCW3GC2LGcNf+N8JMFMaMm7iMfBMvGUZO4PBnLrAjRI6y40UVjz0Is1WjS3BCkNA8HPGnZaGlg8vhRWaSz7PAxXzcECt3EM6VIGZo6EGmIAwRP6Z+H2zs6zdFO+P/lDdiz/ydZQPiGRPHBY7dDEpMwscYNV16FxewIGhulUbjOXTo1RFkMZfbKd6seWj+r74sL1OtHs4lT2YKS35j36hfey7ymgOAGdLUapPCjwBpFPyxftTGxrrixMVO9klENinFArxiGCUISpZ3dxi8FCwi0sVqH8HJIIZh0A5yDMvry03yqRgSfSB+2n+a/+2wUJIymHdrMYVgjnDV+4oJjaLyFxWNge9osDubJbjrus/wXFZ6kFrRV3FgEzco8SvuZYTAZ57NV7Niam7fmXcLPwQmDeZCXW3v6MEpV0FCzMbFjuA+DpQ6zXc/8xJmfW4yCAJAwpbo7ERvBPWwHfBCpx95qVdOMYYkMK5Cj/i85+AOkJXp5zA0Mn546EPWmyKzIuMKB0+6O5SZRG6UeDJ18ix8notjVZ7kHo8/AzCKsYHp0jVXWYp+m3D//0JhlDfbjNGzhiEGe8GhRAPxWeL5f4x/KUv3fnXPcxbkyUI2yLY79cE0DEE8Z4+poXjT8+HH8Ky3bIyvjQSWMmH2ymoALllaY197HU4qo57FvhTdIrTKSOibjsyBXhVtjd+8OHAVRHeYX67xuHXPbnwVSgxQ/JCMG49VpdBJVdq6oj7MfUE8jOJoyAgQxqDeEimmXkaVx4eo4XYHqn3jmFNFfwTsH5ZOiq8AAKTZb3rfU1YK5m0WCOnH2wxqqzXgRBu5PZ/8zEg8w9aK2eoW/jy8dLrngKTt6vMM+ObJNYcNeTpu00Z88RL0kiYQS4HI/xOMk5gHoyiYXmErvfMDGu/bLbJWaNFdDwmdN58n5V3MZ1JvJ9b1Hun0JtyRp6UlrVyMSN2iHPp2sYMGIi0mfy3ClWDGbxd/MlFps8K3s36JrGhcmuOVsqoQ0FlkTzYzDZzc2ewedSqyL2rLoH21uyPuBIqKuq4YsX2fFXDWf/mvMXjS7b4PAapM2gNgWkJ1r/vzgie5SbP4ikxY6tGlSichpNFqbVxXh7yQlayQ2S98UteHXeE0X5EqQZN8bUGJ70W6nzV9F1Zuh+uYaxI4gGeRZjeanxu5vSI2HvzjGUiQ6SWTyYtGsUA/lLugHyB6sZOsZSLSa9khDx4vldCx2Eewz92py+goxg+BdR2AY4byxiNOa9EGHBhFRF4NQCgpOwnuf5O05yuIQbTzq9cI0Otb6ofYgqyj4oqDLnolntbHJT4h3AibGqrRUPYUnsK9r80Ic38kkNIRhxRbWKE6GvrCfpXnsk4Z2pYovkrdjit/eii5G5ypTjEpmMY3F7tje15JYfy0K+RqPAtoslOx2HFlrjKTBFD34hgBxbp8IrhF7shl1UloQXem9U0TczJJfA34SUfr/wMUpuTzj1MHYASxUJ4QU8wGls/r1US/BD/6/h50ggqkKZH3YhQpFZcDIaUzhvVUX873lt2Fb0fjaDgAbP8Of87eAznKtd/6YMBs+3NihHO13MSnwoEoI5bfY9GqWI1Fm/iARTNLcLmkgnl7T1xe6vfX1mbUJjBCEmBayHAFEA48QQ40VooTuuy2IOsA2J0ogU7mA2xeg5Jb4w8wnxge55jB6CcxAA5EUCqvnzf1f2QVgfmhzBzs0Ac5MO+PhTAqDH7EkHKBEg775ussXf13rDvXKKbIwb1RHl8TU55cvG323vYnsb0PB7+rYD2fSc24WWToSA/+zE+K4xESAfeLheLw78lOLR9w3QMloe3z4ikY+2kS8i8UqkjQYyppphx5uJCYuz1eyTg9o98VnB/jE/YhmQKu1OIzNKDBsPHpJ/Wltr9+dmm51ocoAMoX5qOImhmEz4OgfUzyCiCLjexk9xw6ZSWoYCIV3Qt0EgnGrrRiQBcY172i/IInYKLwzQ+bpf8Th2OBNMxPRZf0HIPzcJMx3wlDI80DjdRyhukBagbMY71AXqHGhNJC3th9yUuBxjj4oX66G4+arABQa4wDfAMFT+cWcvW2Wbg+hkQmaGnTeTv/DMkC5iz8FdH/Veirgh9gWWiqXW8ibLE/K2f1oMTgtJK+6R7lnBDvrsEx1oRzdsbEuZ0t0gI6mflFiStSczhvYzZ8kZ58uaGSNj2vQCGFyp8Z91cq8kupOBbeyGCjH4mX2EBkRZ95XFSR7S4j76xZT+93HJE1nsqCzxIrfiGiJ7R75cv8pcXscRYKiXqx8q9FjL/BRSgq+o5qSiDgzr6qp75Cro4w0EMU66XK/9driX7y7pQS8Q1u1OUmm/HveIWLjK7VQkSIItA43AnVlNr+zutzbtBzfn1KJBpkVpanQENaa8NSo5UMBg3glt+adGFz+ZSHjY0xgmO+TKM/zxQzTfchn58qiAVBcsXO8FmED8wFvR0Y/gcVrCHMRsneSk++XMM2D+EU0AKpZI4+YyoI6PnwoNBu27nVsr/ApY7x6zelt15MejlDV4jpNa0N1o2UPKBnto9Lx9BJoo+VWtXZh50TnvaxMiaXU+3KK5El8OiWMkXOKRmJvedBvuL/a3XX0xk7VpbuR36N1vVG+sc+G2x31PjhPLzaZT0SBv6P2eKKP3UUo6aBSmVv3Npi9T+zp6CPnwELLf3dcJEQauT4kHNAcGt1YGFkBPlNObzH23EfG29ZneFzVYkZyf37Ia/szmj7ou+PLOj1GtvzZXd43dZ5XdGumI3I7sEmQaC10bqw+bRL/9wOiYUEH/vHvqEXDslO7aLRkvsMOyxOQ4EuhJ+xPJva+oAoKwJBuq3AUOxhaGo6qUA1mz2FWicmyPJynJFzU1+rUchGrrHVzZqfJmEYFTF2+SVYfHcmSTMehtYvkp2P2jPpc7CR/NPN2GG/ju4eEM3ew5D5N4JqEaXpHVhGFCsckf3vdWR7vR5QD4Zj3VykNvzApJBx3r+wzn1s7Rvn7/CalTCqbMhzIUxgHcRo7YbfJDFoeanpljrS5AjC0dwszqHGkVxc5I/incvYpR9/0XT1AV/ER/MypqelrgRIrfesDDKkjCEpRDpgyIQUvmiXm8OaRzY3RMZhfqY8tN0IqyebEk9Nv+UhLNO4i0C7BL0RhXnbjE8ww0sJnGm6v87aod59DNlLoDVoZJqB4VJ0cs+Cjanp4yEZPssDzXazJd66J/sHs3CM/fxYioO4T5OhAUrCyT1o4XRknKV5A+aPXkeLh+drcPyTzgiptSjqcfUAyehm2ubj0nwO6Ch3/SkTEy7abQUt5AEYMjzBELXUbrA+fhIAfbZeTouzuQkz+1kTcDKjgsCvTsotUSBY2/WvT6PTuS+DqVeby/k4YZemRS9nD8fCIYC1SkzdGFdh4ZAOx8hiBLCngjRz+vIQlk1KLs0K9RgndzhP114UVZcFK1GD4VJh6PUYRG1CK3J7WCrpcbiy/YHQp9xHrD2G5CcErIJO90cCAX7HSfRkax4l+8RxWz0us7kfshZTPuGqNBHSEapLZQw3wKMfs7YjxaGUJKPb+JLvF709lVX5vDn1gfgZJzP/K4njsHD3AIguT3zaBPg4srLj+31SoLj6Osq1H6QXfTa/K5B/bofkgN8lTFsjxnVeAa83AGALJU+qfO+0Dhd21Ewzv70/I+/qN4tvR5QvPJqO6ovSoc7/FWG82/62rNhni4WoZLDzv9Wz7rTK43ZpI3T3C7dc4oiltyQptOWilNfKtl2qSiljD/TZy7u/am9RX4/kXUV3o/tojQ42QZmFelgpO7OsDrxl8X4GAoxXUJURtWLiZHhmGDacWjY492arlL07I5xuDMtj61Fd42HJr/2kfCwC+S4rMMwUl+CCd80mcoogIPvDGdzcXXTLiCuYNX8KCJpu2CRfrOwZyKh/jnFUNi3RkxagY9zD3QGd4Op8AB1uyGavJT7KiGwlbQO6ewQaiwF1Qh4ijtic/vvVJBtOAsGU2UyXIjnjKmqOtaLJ8Ipcr87Pw5d28KXLVhDnJE7VnqRVzV2ElGxndgl3nUCTksr5KiF8MPCIZAXNyver3WkVxC6gavp4/nnBBngN+HO5SJ2Y1r0DQPcKT5cokPxyRGmVaawCDVQFlft/Hb00Obw70rg500ulx2KPQcWExhzvUBTw0rBqzz0dwHEQwCRSN93QncMzWspiBP52w6XrUBrI/yYP8sdwQmkbid6PLupyCvtsPDqvmpUqFVeBRT1RZgjp30C9MlnyiHeZcbKKDiZmEPMJQljbA7XmxN0T0/gmRS2UXuI/q4ERtnlXqo4StyCs8AOXHX3PaTkmBomelRcHpqQbvd6o39lmpY8skOKd15slA0XAr7i8/dV4hVgaVwtI/Y5VZLRBAIZGO/T//Q0lpGfyXOsZ/VI1FYt7ORuqAB6mLtsDf4BpEmiA3e3XRkuGR3gRP/23xsSoYZYAYXr7qi/n5V0rWZueBD+VpZqqv5X2BipfWMrRB2h3hSuQFBNMtK2ELFCX9jqDGQAAYDkC4jie4Hwp2MFoS7BPeC9xMLZt+aiuH0kAHY1zs9akxNGeuyliMSnWYeMMthJVEEQhwOfdGlrW9e3Xh7fOr89f/1HNaT4m8fpNpE5oAk4ZYU0h+HqU4gQyrlgLsxJeXr/ylx6s3vqe2G6yfL+Yk+UfGxz1kFVF3VCJ/ONDAtKZHSdlyQBteS07FK4OZMJVlPCRkyR2il/efDC4/g3Fd8qQLEko0BRlTRiD4AtndffncJHwqrJLGarvbfnTEfaPhQwm7eeWnPMkqzsamolCZzuwyKI2+zgkwg4nowVfEYGe5XeKtrN8u0MQ4lKiS1RX/mlALP930sMKZfCeHGV72xpMOm08d6O9cqI7Ra2cBBbC+VvkiDa3lAdKO8k7S3CJBPfAG4P9VFmMlDRDZMrrqf9Ix61dXTdsa049f2CM0pWSQRtP2g7w258JRKj89/NYlNe8nIxqKi4Lk6l3HQXG4ed8Lh/vHijGV5s2OPIT18BSj8th4Fi4WanZxIIJWIUAbj8zhw9ab060LJutLLQNykhOuA8nEMSgP3dmqpUNielqsulgArEzKhD98mH10gVmyi9XmSYYp8zTayHQi5bIMQY2dGtEhEYIHGp/CF2HA0t8QoZpSHjGiLMkwBMh/6TKHWGdr0azvdQgAoWVWazeFW+cP9U9S/tZrAPrP+C1aIcVfjYaVffRjhUsJvhQKAp/BzmXtnS1LMa+qA15pymuUQvtp/z1HjfJhpD9bXidbtmEi5DDca/17TclfjIRLgqkEt02PEpXBjHtsMDiMSPDFitu+sZZoMAYQeqlXFb1aTktm9CFE4kLtSHf8EKrmqiNP4EOyO5kAYcF7fXaxzDZTMGCw2TYefgNlhjNILfAKu5nTL6UWBhW7KgI95r0c0cEY+qa8nspAE7Deh7oWTvRPeMEwOlshyFAus/NEgIN/qX4RX91bUdf1gWTtHIpO2t/39wuxlZXiiWP1WlAgglXW6pI+VmOK5szKeYsnwG4MltuHXYZiRmKDKPMSKSQyfWI9rEzcgMY1GDnn783wTZlO7C8gGY4pvUStJhIfvfmENSvU7ig==
Variant 2
DifficultyLevel
584
Question
A group of students were given a list of 5 animals and asked to choose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the piechart for the sector representing students whose favourite animal is the fox?
Worked Solution
There is 360° in a full rotation.
|
|
∴ Angle at centre |
= 10% × 360 |
|
= 101 × 360 |
|
= 36° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item1 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q43var3.svg 300 indent3 vpad |
item2 | |
item3 | |
percentage | |
frac | |
correctAnswer | |
Answers
U2FsdGVkX19Bf7NU/clCzsjANJs3cIpSYpllWor7He+8C/THF1iMhY6PbNmASLeM+yYq9WL+IJmyuL+0WL7FhfYIZlw4a3Qb4H84xWVkjchgl24JzkyJ6h84sFlO11a9L+llTDixyUdpXS+PuRSt7LAyrvVWvOBrT3H8e70EYkWT3HSCLOckOa5EWoDwm9AeMgzqgbFTE2YbwdNwCzIafGKaAk8O1yYQPgU7j+VrNpCNShB19Zo3fhTAXGtuvCdrhZz6SvTxN5bc/PXsL4P6XQ4z5EcZohXpzGWXfMPzqGsCzWWt8i+EJLMqgwVlogkeicbxzAJf1+IXaSgeB3GJZI7yCigaPLnxxWVT+dkbexYFLCHbi0X1wM6nEcWljruXTmuimVzjgamRR4HyGHshrPWAPITSdNvUbHZTrURMGS96sg6eA1+LdnwZ266hmUK8VbaTRyLwHt8hP/DH/BQrLctKO2shekM1rKXRGsjJkHBR2sP0HmrBbWOFKK4um5NHaPnTuZfda24SHESoVb01BNTwWOsa4oGoOFfHYsEc+H1cfqZpWBLfY7vy/RZeahYKB+72c7gxyoJEd8okq7s4EsdAkUVd0+e22ZvcDf/AsOSTkai+CwRKPhiNreDyEfck2/rGVxXUyBhh4qby2qGhPdahB4JZKdCjNQkFtMhdcsmYtDOt7eHZL7+LoOyHAwUWeSyo9w4u2p2A/Rm8TcalX5D6dv9yeYVPTIJq6kRfj88aokEzvXNRelufFy9EYorkvnI678nAeF4CQFCWo6Thd/sI5Qvon4peBpqoPp+FFufEZLD2MllT3OUCtDOLSn6s2WkUqfntA8ZbNrpRMagvLoWEdsPpYb1qAe1z1CQkCqSlRzR6vAhgRjDD/3GJjvS0qOQXSef/ezdsJk0ztODOhKzPQ8PzRPjP3iJj9kukqDkxRt7k5cP58O3o6GXRTlbVdL0Tzb8b+fjcHPlLfujJD8wyFsDQGdmEXerKkiNZbQ66//6WHN6bsHRuI1d4ai5FPu0QJWqzwXYbPbHYFrPg1HnMPjKzI9SEWKgBLbedO1Rmd1Rk8D5htCyQdZKU0BhmGlZ9JNDUz5je6fXt94McHfWE758100vlFF5rkceN9TSjnzIN+msS3xIQpQEBr7i777bfGX+8fYi7CFFMfo5L8xpNLx4e7Uyt/o9kr9/wf+UhoyaW4Vb+IqBVP3iPF8tWtK5+A/2F9/0vnd5z3CaKVAQH/B+U2qaocbot7ubXEUyqC1Hb7qG60C7RXAC6P4XL7WwvqjPSuaHffAfaCsJLYkW+yzmJZQWEdMfz6pAikYNJ4aXR4Qh+VQOTxAEusQ2nK/THXHQgh+YEJTLLMOSEEzF4hwDvXMiOw234k3bLgONfVdBqTKEJlzIsvbsaJpSlkleg//vgpn/dBpoWNz7JTtUp98PyjJJ/WpYx6NABZiN1xsxmNggDcYDlwrWr4qf08q0RiB9BaFCHvAyqYdgxY/23HjjWq1Al2REwK98ZxE6BdI/p0beF33AAItqm6dPq+748aDz2HZ0iFzNvxAqQ9lJlomCU7ziUtGVVqTmtf1Fl3JPzm6yMkuvyKESv6zr9phYvfaHgp8s6OHn6ClgWXwgjdhfnNtTK4ZNbbzwxhvzZu6t1mIfq9d768nH3zT3Tr/61u2Ij/Pmw9FDxpZLd2jApZ81+fCLQxe7a4ZdsZAxtTJHPxenY/YAHZ9ynE5vB61Ackuz/qiKgS5ZtB/JtvbA3Xuo5Tju41A4IbpgLmQ+9meNM3m7ys1PoPTTEVLyjKkb4+KcxivRP4CXvNGIQqyB0uv7TMW2wPNHQg6yYltbumyVQ3eK48Go6hKcmQ9qEL6FpLMNzfsowjAL9qQrjfJaym4RtyRTEpZGa2Zr8vQDbSLal3TAbuKkKtWxFBPEgGXuJFz0/KIebLTwgslAMVR7TnC8DLIPHNWe3cryfICRqvfKc2KF8KKp2af3M+q5RxFaFNwnJfSXXdqju3f9gBKIDIHny1FnW9FVyA85tjCc0y+nzjP5RSX3ypz6h1en3tL+Q5tXqF1sIWi33JQqPDEBkwEYmaKYXb+XaiYubZbRg/930ZP2gZCO4y2CAoxikcVR7IllGuv1vdm8XIFh9xAPXYErhAW3QRJ0dzsbhv7+eghabxMiEFke8/RrHxZBFfEMTyLOitceJzSyWX5aqSZ8QfNEvomFp2DtU8VSvcrv7I3dETRLmJVIobeUd5XxrYFuhIrQPPl7zB4dX0MVhASV1FOr4ht9mcy9n91fLBU2Zm89kPCY+6wFLq1xaXACHvRB0rei8VW3aJn0s7dH1DWVq/1sNKxMqYbhL2Ejo9thTuYBJoJctAnNbUKdXpJGCu7hamO2h28z2SLeHtseGO0325Qrq+bH3Kltp7/0srx52HS+Lr//nnp5RI9RTPFHROaI8KcaHLRet82+gPJc44/uiji6XzD1MDnmU5BeHd7k/JOCjXNqIpQrevtajcfETmDGTFjc+1i1a7rrP4JfJjP2jrjuTEC4R6N/FgJ3gghH2Z03tA9l8y0FObd4lEzC4KpFCkJymLTNDEqQtmgUz4cqVm5JU/+/9x4UYBqkxrJMmpUjnuwLxsOkyuZU3dw3x6XGmmDt4LYcLHSJu98A8/asbkDLVRqEKWT4XNyT3ouz0CiVinSG0/RoAraPfngrcthr16DEG0w4DZNjpNGFvLDQCn4D5OI58ViXxY5OMyH8bec6XJa5t6Sgucqw0JPxeGt2qEZvwr6iPFppIZNmBL7puIKpRpR75lcE5b8HbNRQTelr5JKoLk1bInyPiQvzRhqZ+psCPr5XmhZI9Wi+LlVdo5Q4nOe1rHO3ogmc3GPjM2wbUdQywctpE5NA4DPBWzCvJfvCMWJ3OicGFgBpUPLIsBX1WF6kVJR2MJmPupT5CH1SQYiTGsHGOCRcoX95ae/OFsmC5uErBp3BHJ0XiadjNcoR9VDU4UdGFJo5LG2amTgG6mdMRQRWUmb6uvES5C5UzJX1io8RvdO6S5mVF7kcoSYcgbR2J7wKRGChny1I9rJnJOWN/7VebNfFgwMPw+6t/EW4NPSbSoYcKPLZpi2b7Kf2klMpS2EpoWqxhCqtzTq3cPDCFX9FGQW3TsALe9o1ofY3HM9Vf2crnnCaLI2gGhBWxyw+CI7+AM2SWZQWpeOn2lIOzafL1fNvdIqrTt1EEGz+zXyNWqj4P2BKwuOrdnQFM9lfAQbFrJ9ScVPFK/4VqvDyUHUPif2D6JrPRSAVAlc+KHeo7RlMB78FH13O4Trg6ZWqqDY8CJq/5zmNqexpO8oNfwXClBSt7bEFcdKBHUBW24C0gsw3lFU37zA44jF4G2s1M+SKnukY+USlfBoOyLk4yMQmd9gT6lGh+88kdqv8HB/3ZWVdGKO5MWuZ1cmJrRF3c7BnTM5wjhnLK+4I1kptk11GvF564peDcmLghl2oSjHcYmK2TzyaUKmF6RmA6HAHtpanI22wOzWKYJ64aK3rFBQ1nmTSsfp6NNmkuWa6fESClhZs+P1FNJdJSbvVMzUA9LnSEnG3R+GoBkglZBAKVeguuQGrXIRxYvS24jqGxoyg+5phUbtE747D/tWmUWhqidnCvp5i4NJtZ5bW2RKkTtdXg05Zf29FECPyOn0HwViSNM2NlyjgjdQSn1lgmZ8BaYbBM+sGF1b0v0ATPnEVyWgxne4CHuWZ2c8hsSUW+mCC2dHC1kIu4ky4TSSdGH0In4eYUY6IeqdaVsL+DRAYDs+HIYierxQRek+7EnO+yWz7dKc4WmuMRTDdeXJGBMOFFlMFYDoZ+O9YuvIHGF3x5lAOLQt2PZqh5jbroW9S/mAm/+gq4sOsWW538cOEnkzWeDtOgaR2rvyauWRP+RPqB7dMD9lzt98ZhMNGwbM67+PJcWQZKhRctKexHvorV4FrkYtsEoz21vDRIdk8eBuonGcWMke5oOTqR3r21NjDIms+3RYDxE/Ss4vR2bvfVfJNz74v+SEXCtfwJrFPuoUQPxYiqtHULx8n0EJVB3Ex7ar61h2yFv63u57jimR7ZQqwAAe5N4tFzMIvF13FYEjBJffAnQKrjDshBtZ810LJb2eL0Ygyw8XnG8zgONjLnRwH6kMFJzJobkwio6LSbCTE/uEldHDqiiGwjqRSuZWeHJM+oXxlzqW5JCyu0ADyVDf/XuStzJm5T6812qE61VBwdF1kYKySH/YJkVmK3pEyTuiI/mqjG0tjcSADzTNIPZejmOkeY0Cls0AqW2Tht/0ZHQZa0vUeZZdZmCHW6wTxSVOaQmTGzz+fpuVbFkWUnQtUNQ2p22OvUDRHt+t+ZHyVRTUHtl0YOvJWVCHfvOtMJT4t83ass1MtzJgAwpo/ZjbbC+G97yorSVtJtXnmFOV+1KUQ+VXFct+Vd1n5wo52DfW3Ktdq6EdpeqUlL5hyaaty7IiEpK6z8I2kjF+xQwRsgWAfaKX6Z+dl1g2+IZMivlYx11lFzGViJWWKYEVsTbBnD+NmqDSUMDr+LUVwUIJSL8szXAqGVfL89/O716phd41avdzm49GEMkElZ0QFVN1QLZIVMf81CK95TQGJ18IDkm7JXhB2wKOpo0xzX6hJfL5hoiy17MX3/j8DUpyOr3++dCSX6fbGlDYMaF1FRpACKD/BlCO1bNul0kyc01wwGW8xfuTVyoqTpsA8ByxzOLTl8oI7XSCWtfUQzliriM2qTKJ9BbwCN/jXgZflJhjB5CVpHj4iPCmZj+7TqgaY2g6VV2l8bt9/E6Dp2ggrjj4JXgOJLtR+4aJP0cOmH3DCii0Ee/OEg8bC5isT5rOMd6E8+k7y4H/jraZzqlxiL8sCH2L71zeQTNHRku7aRESGnFySCiTCOD0i48caXPgO2/4BdlSJGbWGmGWb7dURvB9SneNRe35HKwfZPQ/6+XwYVl1vJ0qXaTh0DyJxS6wenXmATQQzLiZi8IYfaMkgxoB6g5C+ceebrY4+vAs3IJ2urXYU2iDuvHMNzOVDgoXj0G9dIG7YbRGeA6OmCoFvr+wcApWXhMhp5vtU5prbPoiD3oM4rAcvrsgDxZKHarAleas2QA00xjHwa64FFvsBdqP+Ctpg6I5xZtEJXCNKguTmbSrnJstUGeN+mBPL95DhiVIwrzRLeztWWXo84orwr/eWl+Ig5So9URm80jgEe9QXW9bpubD+0crdXDeEDhM6A+Gkqxc8210ZU24zi3JghxGbuoCBw1P421PCJqLBGi5FCUFK6sMyEL8z7laxliDjJTqBYjzlw3Qt/ue7TTK/6aysnkl6ssNgr56QJVVPPnZ2ZJo8mewIEhG9kMeLoqqI5YxzSKjqUmgASXwaS3pyahG//irzv0Y5yMQoj2LJl9CSnpSo0poO7n9cFru4K6o31/vTsb1hN5tBoyUqBEwlIYk3nWTpwalaLDycZkVjnRvEDfB3mpwybG+1lKUq1Go4IVhlJCcoED2RBQVN2DGOpO6kdwxrIDyi2iJPEMiifBt9ocL0BcbiAlW0FZZHpjVg+pbaMoVn1AFnXttrKRVq5pbfopBugsOyyNWsh7iBcjffnVwJQF4xKnlTVqkmHcbdKVzwsSb9ZQXdXl3FP7f02GzmvGdNwDTF6/GPj+VFyW+TIfPEiVsaoQeWw8bcZcofQ0YZvhQuogjAcvtYCj4Otf4ZJ9FBAsRPJAXUwx3Dq1d0fIu3s8S3LOcWJaKq89D4jQJHzMNsR/obeYfg/76daI0valk+oNU40bFJ/cvDFdCCJOKh28saUXxTdbPHxg7915YYI6TE3AeqDZ8BEv8nPAAzlMGNWfOXbMjTU9CjV5Tv/uO8GyXstEbyCLlUVWXEZoe0DDE0gHeimqabeaOBLJrcDvi1ezEVi3EAAlSUiQNUL24ewaSzfJfAFtSjmSQH4gK1YiJew1vAKElZHpR0KLP5m05FR6fleZkCdZyu+qmOCrb/ZkxGLxkBWuHWHGODBA5dq9eaYJPLmraFt5SocJWGTTa+EZB+kzj694HdIvp5DavhQDfkw/Y9fLg2kgaKGww0KlqejO+vIY84SNFJcVnoMVf7YGV0ea/8/BW72ag3HELU9fgSGN4Wa/FJx+avFKIxp2EsR0Lkpl5tzKLxvKLI9qE+zBdJjsu6XpoRaNQLg7Z3qXcAI10zFKGwFDMs/XPo8FWxrSlaEB96XKmsubyV4LFP5pSve9I5JHibb+3tUuaediKHKkY6Hvj8IjxUUz5gFJYxzCJo2AqFCRuH5b6vUdl3MSMnf2Hl9wc7hQP41nsevKaYFCusNBJN9ov1p97alhizGdMe6LR4Aa9o8l09zk3zT65f1n4DgevA7tMAfqrZvKT8q0cEmfEYZmoBxWVNKwjDalUp739JdqFva2ypIDZFtyKFFiQ5w17pMrOEXckI3vL4NwNwA6ZkSEriWqPShvszmMXmw6yJr06o61KkiOBsJta5BgTjQmWnxbqQjtUB2884CIl+k407dNoaSBjgxNU4yPcu0mIcG/9z/a1mAw3gUjSmwde/YVVoMrvzmGlWw70alGpdTtFNy9q54/Wea4bJqdOjiv3edk550A3SKZr7VGbUBLDN6NA8Xg4jFeJ/R1PCglbKxfou+QBZ4F887B09n7m2/gCGQlmCeHyGbzfWUTPH8btv8YpHOrisRjsmxaAHfV36yPQiHYjANv0RDNXkEpIg4C1FKD7ZaOcXLZ74TdpJPCLr2JPmlJWVKBOVuU1+qZwTKpxPHq70Ceh7DOJyWtukpYbw9iPtw+K95JtZ1MsedY2pYS2G5+ocveawx6xs1+y0U8jYWTzC1HlF8X6oxayv/pBEZGIJriJOmXUqpxP1yDMJpEFDl2TSKcwaVH4X0UG10a2jVWgHGkesEtqBor0fSo1lHeaJVwV243AgKfgVHaANi3pDNbDUZycSj+rbUqCbsNLqVguQM4SnonaNarnDixs9jCSeVW33CFcUo94W693pQrRxbaWhzqaLUaSJWvNn+OTXRxd5tc/cVB272WMAl5h7k7yrTKtGTixmHhjHcaKNgsBW01YL7eYGuE6HwJuQ7v6PY3esl9UxgxVc363Wnj+6qwLNLzmFnfRPmI7FMMa7Aj6dltfTFVRQYb1gjW81WOTipcnvT35dZAYJ04u/2ddjkTEpnKm7R9VSjbDwvAOpSNBTAkMya5g3L9F+iWTXGZdtb5+izHlGO9H0mw4GRJagVKydY85puVwq6qytcRDK4WFm1rrpqoSQfwvxmtDne1r3pdEqDsgb+eN7hOtafn4EAV5BPSJQtkEN99iesXjB71GZuFHgsIVbhPrFEoKvzpXUqcup/hfr+GHSUNqGSsPtE1aZK+nGBpBPZSS1xufDzrS14+SYy3ei7EKCEgu2vE64hkP5l7TnDSe6yF3ie3bpi1YiQcdJyxx6tCN1owbF+IgPZogUF8Pmgr1tkGikuuU1FMknVt+3i7lt7IkOSwSAwoydw6aMkwOo3kc5rLU7Gg3vNVZRK0YQ0j0YuQDAFSMn7NniPc1/VsqIRMOqp1Jy7NiI7ktbnCJDrDW521w8TWANprVBxtiEoN4lcBHfWY0K1frwUDrb4Dutj4Vx3LvoylVOhi/KYN8rsD2vK+6fPPwMITwso+NMF27dyDwTj4I8H+d8VOH4I7ioNgX6liZJVG9LvHjOLvRJyA3N7xlckD1MfpIKEp0BSLdqSPLuU2Jj9T3MjMpguJxi52O5s8gDHR0/lMKAzQbpMdbK6KyGMS3olaurqvjYcBofZKWcCcAtFy4RuqwmbfM3XuFM0sdnoJ3Ypd9RxOtNWPZooYaQUZO5/1COqYajZF/do1wjDcNuxAT3F3PzTENlDExYNVIVlHmPbKOZCqkCG0/MZx+woxNFn4FWs/Z5ZplHOKGyrQk/6eWf3sBOJjA/UBe0YEbnWgE4buz7bQfalPXCMzyu1quK53LWi+X+Jxz1xlUXEQOMIy/+oU+qGKDE7+jtWrwoSA3kL2qYo8eLtbA3ZwZAbqBPDcdHCA5EDmY+h7gZSa/hDUox9qihtt6KHELW6IAwRySkgkydrx65BnzpSD5fcyb1ie01p47pVWdV8BcmYNpTKc/FheHK8H7QbO3ySnrGkya7c0C6g1zN8TkC1YkXgATXXmlyD1ZwN91e6iLGPtscZt3/R/DeGQVyFuUNic1uCEKDYkyS3Ujh5TsB3y+EOZs28cEtDYaMr//WsevDAVl0IF2+l6bkcoM7M1+bTf8y1OPjkvW6UjIHxX8t2vCoTa5JfOhlHTgsuDQnFM/hrybyY0Xh89Dpy3FZvqVvAuUZVaZau4fzQALjriyvIUQpou5qaynSLi1sXpIt3ENUY3HClPtKHSzXSQoOwyyqwhmUvBKFV4LVmGBfMnANSfqWc7x7BpGz7DKWwby60sZig/9rDuPumZJVgdqtkMn/Z6ieF60dR3N1lv+8i9Kp0weK/jRvrRqjtcRMhBKrIkZiEFp1ULcaZ+o+bxMosI7EkdZLQ5w4pKyp46iJpQE/JvmSM0hgZZ1Xb/bIzSMjltDrSqhlTxCF4Klekbiqiu+ucdcWsjx4Cox1Jv0jTQeH+kWOsBJH1+A6/jQDM9U0kQ1/fzURG0hZfPO6ZXsq49PMdDj3Ma1b8IyFG/gir3CCJTWCAT2ivIa+pQdAhKz6TBFnHtWpQRQGg/XnpJPXYeu5XNkhFDGbDRMGfHbdEgSXJtTwK63Qi/WYoWK1IBKNfg7q+9uXsikOLueuk0Xvb9jXs69i33RyKTJQURB4M9R7oSN7vo4jXf+/AAUAKvIyXchLl1NoK1RLpRg7v4zIh5nxwuxDMx5Amq4eiBHwaBk0QW00V5Ktbm/30EyxBOKdgqJVqso8gtGCCX+TZLqi+CPI1qFh6ibIm2vvI0dvj1JtOxRvtjuqLt9hY5gfWElA0QIlq7N/ApwvVjBSTeY+RzqqzDkFCp7y4ldhTeO+CCKbU9A6FOvX7vtpkTYjmNATOK09RA9tbMKB1tknjlcylzt0kxg4x/2iOUDnE9lw18l7ae/wdc2E0VuEvWyYpzRsyGEfD77+xBe70x0UcasybIyW5ifucxqshhkGCMDvqAdIRRj7a9ELhXhHzVq4tjjI6lKh9cvzb8hrQ7TVmJsmMKUWU1oKN5i2UcYTXPnqfscN/1VsDwKAuAM7W+5VKbGhBWgL3eCPTc8k3FZKfckEr/ypmHonA1a9zQrQTAIc3Qvl0I+QmASSJBCiiCNurUUpbEAXof8Ud3DtuF5+tIh7fJX4iiugAWnMX3OkbzVZbbhZB5G2B5yMiU/p5Rq/8NAeRulOT4fUiVrBucPGLbVvSfBPpqqnVTFELxJ/GfnIGEUZxA125vxm3KKU+Q6OfPe2oSZn4St+/sAxWFsXRObDZpYmQZ0hxbx5+nu5lS7iy7aD92BrSHYp5Vk/2xfp2Xpw6RoAAmFtacnYwuaFq2hC/jNPbOey20qx6qFwoLrpeImzsKyur7L25lQCA4+rNyzNKcYDIFxGvHLLuxNvoJ9xHm+mKXKaZ4ZOPEXV8i52pTtkezffYZ49WEtz7mnzB3xRAI8Y4oiXkcYoelze92YqPWegnGTAi74UOWM5vNh6clM3HMUabZ6p7QoW97z5aIL3hFpNYUEbNUgeIUqdDFssKulRjBWmP28QwLo7Pn1pTFy4rSzOX5i3lS0Q1clW6wEqY1W2VEcGXuLMUYOfY8i0d8jA1HJpfmjcVzypBbEqZgaEHraMs3UFO3PeYCj+Kqjv+B8eoATJI5nw5pd1nBrckGmmZhJW1mUEoj+N55j0GIUlOWFQ1rPYP88pIEc82XsyVOMAXxXlyYg7s2XSNpWKJsIIEMDu5odNcmygNxHhXGWoO06lon03YzGb22gIHoeZPXVUoMw==
Variant 3
DifficultyLevel
588
Question
A group of students were given a list of 5 birds and asked to choose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the piechart for the sector representing students whose favourite bird is the Myna?
Worked Solution
There is 360° in a full rotation.
|
|
∴ Angle at centre |
= 5% × 360 |
|
= 201 × 360 |
|
= 18° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item1 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q43var4.svg 300 indent3 vpad |
item2 | |
item3 | |
percentage | |
frac | |
correctAnswer | |
Answers
U2FsdGVkX196ZpLjCR59ap/rDgtKbLl4gGQRYBvYtSC9aGJO7ZZxh7Y5VQtWAwGq+NI2wJO1TN6zhka6b/URtzMMeyxeJVjWI56Lle8aSwCfiwn0pGiP1mz3d8ZOg5Q0jerdISItUL1numQ++AKye3CX21sQdh6Kadi4bzf4FSEASawx1Hk4qzMGh10GC1WZd1Qxu1cfHTys6Z3xWGzmbPJ9+o6fDW4166VUWYGUvuItC4lOCUTrDTPOtbe4OOJ2UqY1vsHbFfEArbxR1NTS9Rbp4aaGDQm0nSHCuUP/Mw76ZfBrLsfPpknFyDVVP7O2WOW68OOSdHw/1BiY2FCNCsfwRr/WwokUoyuhgZgUxSalIAQmvc7WGNLCvDtRLg+ZzAbYYbxAc9sOgeojSsq1qAP559M7VjaeAqXjWGomJOuPmTyM11wS8OtVzUlS4I87d2KO7M9jYAEiI3kgB0S91lkR8oeZ3GsAE3V2YJ6PLcRKyzW+oo96IwJWrmRoudKRzJxwV6K7wuqmDYuDY0w+11MiJ6lcDjNOXXv66uv1soqnzNh5wBd+4i5Fph/UqLEqC5fVSWx8hb0Eb5qGFFOOLk7QY0XgpAQ370RiUaG9R79EYABDjNVBLI8GqyMzviwM1SGTA27319P0ETKRDNIDcrX6y8O2QUwz+J2z9hcNh91wZpnxxtjPHiwN5RNCCS5iQLISRE7cjAv/luku2ffMGsm29pID5iRq2QBPVPfGnNpdOlUNvh+/tVdASw70WWR0Q1DsRfxgTeW8KQiBg9wiVVP94gmuw80/R+DlPX+cpd372S8CvCjpVhFDMBs91FnAUqFSM5n2REHZ/HKp0gHopNLCbUz45paWBvl+nF+vCr4kI9NKkzjQI9Gh0bopHiCpT83/zhkA1RDx/ySRj3Ndh4yoaPQjwiNrw39mijdo50SYQ4EYphH5fzMaEk6fudiLCHZ7Nzh7Fkd1kFuIGu2geAiZG+4bc3qcMqLjIqP1Bw6CnSvhL0NZK6prvt1abmtMa2otL/rpZQaYy0FW8M2fPxnjpWAoscP5ZUGVhqKYbU0JHDHPOkIBBLNXqhnOqoG+mRDDGMGnvp3q/q84zXWN1spDibPkZCd7azXCuyMus9l4x3QLgUlA1pCUVO1v0spxYLIAUCCsuaVFATC70xaadc8xvT8XmuLp9NGws6laG4ILG6wsApUfZchEsEYjcMGTtSx4HunPZyCMbwGYmqeKI6svDVQNKtaaRmBJERpxW2FCA49xlqNq8/FN7xasMMkz0Vd9B2IcQKZHb1SZSUP/g4Lm3nuAyh+Gc948YmCg5y5eMby2+ZEfq9Q3ZW4fc//VwJgN2kxAxFGvgbAaMvwD9K8lM8+dmiZMc5St9fwzMgSo5WsSFTBqJET+TFmFCynkEVAIv0QINCyD7xh9VUHJEz0gua29tmEtMjmzNNu6n322fQcDT5EGvoP/yRR6JTvFIMgqpfMlV8f4mAEiWrWrvK/OgxmisDvBluD4MgabpVm+aE9a7tfR1R/l5BiOB/mTuAplkDOtnS3z35qb1U79PM5VfktAvxb4gE8Q4xclFNZomYCHJX6n+Tv8stiVg1lpdkyT2/v1W8QSHVPC8+pQYScS/NQU7E/uOOJ5h5MMScQgH2H5NQMjd1PZq+4zjSeOVkTAxCiBfHVYu/tL7OuezikPCyrBHqfxiHSiT5Z+pbhH31gYhl6oBv+yeFHFIuFp4H0ytWMeR9ly3d4fD3efcfUoiGgEVIH9W1v22FUJAA+nXUQjWmLcucG55JtWWhPO4wGAcuk9vbMRVIxemfsrEwRymkUK6JN+sB5WL+uvURl/rMu+v50WafBt/8iR0CyVXeRnepBEfXqd8Fhp/uh9YA9bf4ByKr/eGzdPeGQ+iCTynl6XBasHLqAAr5x08oC3OW7hC6NZQc1L2674ez8K68YU7FL+1uYF9IICZIlKWsFzjrVR3FzKKfQ2F2unar9KAv5Bm2fZTnQGSn0vQqn+5QUqts9txQelOlBXFat4Ncv7kCFljWfUxRrCDmgRqB+7/5TP4Brq2J8AWDig0kuqJBN5QpQmZZq7fD3oqLoCfudDR6YC+NzPShWVAPFWrEndHIhdf8wAPA2J4Pq6s696DDqtmKul3KUSd0HV8F9ZQRSu5JAnXbabSe7kUdXq/YD8Hwhu39VZza8dMRyAyX3STWghsX8P7wm/VUN7JdvwSY7+FkndWjxwYlN0zRlPZMLyenQcgX5bB526tReAIUvkcIThaGkXFrXYVqioCYjK8XNVHTlEHzTNdX8HEGI1RW7gaksouSqFtt2DOVBHGCsDdh5YTDNl5tQDpGGwodCyuvHUBtJlyUfBY3C8sRcUA7Q0Ps4RK4tZzbsUfmqS3jqAvXBEVY8sKMbZmOvQ7VJJ2me1qio3G6RtIhyRNgKJOm6qva0dZu9VcPrwDAvSk6w4rhavLXU3BACH9sZgmVLpmHCesC1UO4rnUsHd/5LbmijXdWk/t9m/fW5PpJkoP07t3ow2EGP89TV0ql3VIc1kviqiPcQ+NV3b6JU1nBsKbP6T54uDPKD43TGlDY87+OTZe2XYTpydss+kLNoO2G0Wvr5YPlI/QA3oQuM1a/MtP4J4Jw0fF7b2WWN2pvoM1Cj09sjOepQ9scdqgwmQdl0nFadVtBFdHP35MCjqRzJAR8XICNMvrT113Ol1/Mqk/PWxD3jRpgChmhhjF6wqllXrb332/LaQNbtubdD/18j0eijrcR8Fbdf0wwptUhTtxLsBr0BtiovfgrvnALF7OFtF2Hj4YjMH0YeT8PfubAA3zclRUQ7i8k9RSulxNkVB9pPaFc4a2Nc7MiylrrIsnLx1d5Nm5DjJnqvSeGbTWjcau8iBgCINWdL72up9zTGTyMEvIprfeh7yVWjlT4zclXI58/xVK3XQIK7PbOi2bUrMVoAgjx8wF/WFl07jElXljPQ6t0MoqOoYwMC/32urqpLHc58layIFfKEVmJSYR+FY7g6KlPcOwWeriBq3A0xvgyNRBJdunK4U6oWPS0L3d4MLQyx+UhIKOP2Hx9DMo75yZW3LoRsRE8NvX4Dtb7AIOT9cp5s0KMZF9jDa5MQgEBMxtz3tL5vdnKP7D8fmzVM0pPr6sCqCy4yObLVikfbqiphbWxlFhwqsB76Mbhmlcu6kc9y6kyT1WmFzlBMSPpa4wcHEx6PXz52mCJVMyKAeD29+xCEZZ2BlbnBcpAVKObXaEDh0MV+qv9CZKTricQ9FaVaCAjQAnUdpkIDSg9IJaLuWPL2hKaM1OL+IFlC9av5me2UXwznWeEQB2WpzW9yLDdaZf943D52ekpZNCVN0QbWJpyaNRS86CMTJcsQhxaN+Y/xJwiIG9zwWGTpxXe3xUJxBm8lKM+NX2P9dOYAnGmYsu8MWIYGwgSFgQs4NSwt/SZCOQhAYUL03FhzkaJ27yqQBgpPgykHPXjFDulvNGwSKsE6uDjsTGERw9hKVIR1aYRfQfZbVy2W2C+20pg/yr41cjAe3BNdltducgYvpxIBTAdmoOf04AXovV5VqaTEi+AYEb6hpeZaQobsJF1Y9auCC6FfVI74oe4EoXwBG+PGS/yZJbOMOC1sWFNoy/LWpTc87PJkDBdVINSMenQUR6Vc9I1yEmGGXi0Zr1HuQN2WhqGTYushChOLEOzwA8MAhjXL3VbH8pnCWkKkDSQFcvQV8PT1XSamzUT+uIkWREX9yTe/e2FTFIMJbhKot2dGym2GY3KSMZ733NPew60pSir6UEUCXMEwg+NGaL6+Dr7m6klrf/Pj0m0fpGMsyCjgHxyjtSm6vYYYSAyaqn3Gm8zUS3TPeaLq2XHVa8yrVYRTEgwYHDz92IXj8IP1Bk44uVPUMfqlQ9012IL4YAmi0ySDx2bCew9aFE8PCAP3VWe/2MZEFomo4DtQjtNJ7Pf0KazusuUdTPKaaUTsRpOBo58h1jdZdfAwvZh/ezwXKBdbZLFl9PMhdOanpbXnXhoa6wD0tDWX0oby4h3o5Vw7boRDcGukCpJst1UgGCdG6xePCAu2xJeucrB78ADNSwWTU0xNmFhJoSh2k606ynLK9dy3MNPEPYSXuf9qYfv/mHvqTJOc7bk4fM2zT7NY/grZvzk6Dg8tFjrim+89CAMzB76dGXKFX6Zgm4YJt8FnuBRLNVtrnUaWkR8TCp9qUrxYSLJArEBQmrLdiTkNjsHScqYT9QsUxyXBkU95hSO31C39Lsl6Yj0A6U1pjhoNTP3Axx11RZ7H5lEBOBAAo3WQY/GFT9lsTEYxdRdqOSYpvnx5IGf0wD3hhlR4BlsenOC7Kw+a23LAFK2pQVhH8nUfoBK0YV4C86gqNA7ehK45tzLrccLGqtzr/w0GbBPcCo8vbtw8uCHGYKzTHjksJV1kHAoMunxACshEzRZ/X0G2NhDD6JcaA9GrIDXFgjPKoteq1JQ7hQ2TcME3XEEuDcb7LOlDdjtFQLqJHUQHsVVdbpNDEr4Ia3JcJfH/KuGF+d6ogqQsRv16id67V5VSo3jK6GkCJ9URUvirRBsB07yZIwhyVkSnG8YqkVbNcWL7YNXgeL6dRWPiHi9Lmc6pqWIX8FGilDq0qxEpP6q8RY0KuvWPBPie1jWi9AFBj+EyDK57FgY2IdISvnuTtNnKzf80Q/ih9M8gK5kUTXmxIC5y3W9B0ZW7I/aMQK7ZKl6jiOhH/AbM/AToOgiCnPhsvwtpAZbj2aOoAvRYiUcaBRZGq4cgGKwpMNal2ndjpaO+hsm+SmxNRFtYS78tU8gi1j5E1oSUOc1Yv2yxp6ob1lfvWTJUTrVNzXXuJMs1Eo+us61uR4z2rxIemJDgqaADK6L2e5k3RF4Di4+qoIAKgIKKsZbp4zYrfjRKY+ekaH8M85HoE7k0aC+vaJkpbucP46zw7v4PBCja9JAnH866wKCw8MJPET7+b2Q4zLAlqHA6bm+FtwMK3kAgKMN6dmb2w6jz7JVYYrk8/s+TKecU+KWPiiinLYKUkqf75zQk3JwHB+FxZ7wiiU8H6iORP/aY65o7EynXp4qCbpWCa4Tln7q4PKMJtjiIvL+Onen5dL24jEfqfSoX50FCPRyanvYm8xkQfso0jEbedKkZXfdioy7Uj8pBRT4qOSJULTRo/r1pG/2hvHUz/TagGOOJqdYqGsQwfXAUilgtXy7bHjCdY4GjW67dmQtDJ/EwRu1J5hsDJVD4UVFR+awWpvIE0pwCOcln3R0DGAt5TvgJ4EZ2MahJvqhOprAt5qAy7ovU4MD/wQ0ZKf9NeH0MtlCKwM174mOTTM/i4K2IoGAoe9D8ORwePYHUBds7Seu3cAj48ki5qlhNmQMrFGLGbEpnjWN3kM9f+Z/J8uAN+pkGKV/izJlcr/KvuAl7QXRxn6pBogsp4jX5ZHMDMJLI6ZuNpaeazakU44Ie0J088nes15MGj9kYihcjVXPt1ywtuu7sNrti8sppszfhU9k2Hye5Fcv1Es18lwMZLBJfSrOMVKQgCvfZIaQoRdy+MBnLfKEEoKO8zbJ35jFeXVF1AZfbxyb5h//B6/4PKFYF3F0Z/ZN0NOkMNT47rfIC62epk4IpPmjz+FPYAEIA0oa1983r7p5+3mupTBKP9o3ER9vyWwdXirvAkD0IQ6yA503rmPBONKkx1HIuyIb3ISEPjcvZnq+15zh0iyNQAZpv8aIiqa6DgIVRSAzNLZ8BamS8+U2lsZwEpGSpkFAR2/2dNsYb3dv2s4ahc9G9Ek/rpUkjk4Uint1igsly/42uZ0k0VMYbCyqFX2pzckqD/qp6dlEw/leu6sfLMaYpdqd70WxT5uhVYl8gfR3Enz7KjhavsT1Z8FankQRBw1cE0X2yY8vR3IyaKHLew6NAF8q6rNLoQfbmWv3XtP0Pa7fjC35Fcm93jcg+MDxwICDlB8pBjgMxGFOIjS9IyYPDV7ui59H0TrabVv/8HvvTfQ9P9Pn/8twUFwADaK3wj+t0QXlUpL3S4qXnpq7IUiSGiG40uDjlCc5FU3x2hwA6LYc8IME4EjTAjdFg4GqUPuXnDcTNYRxey5l6dKGbijIxKTWkKBGyOBOMVG+lgxLbODqdA4foCBlHwZrz3yKXdOycu05kB74+Gt9Pjsa6DfbnMlFCNbMNjttQ+Aq8ZWsrz0YWmzTKs0fuOtriixqzV1km8Agjf9mC6kZlQpCaNQZpZsRAMPeTAgp+x6nsuOw9RFoeRIPygWfKVFKqSaRk+yF8K2MEe+PN0N0Qs7TiVfI3AMf8FTgonetxxxHOav8+En2CjkowMypI7nr89yQGTfrYJCjql2HbcY8phQDJB83g2nJtQd+x3jGPE7IU71AqvJMCOjRfiFZ0CDW8TFuUJ+M9Mtz2H/0MSKKkKYnkOArmRNvbTH8twa9kQ8z8u2ndn2kRi1RTZiR/pA/oyzYjA3Q3vH5xvKuMpzGploLNTHsJKRaaJNWxnbo+nrNV+p4odwTdJmsVxGMDR0WBwHihji3FGE4q2Ai2CjxKQdqJUVMlFWc3ft0wRAJRqacKGYDQeell6qty/c/V0XjmStQKV61Mk5Qlp9T5/vmVPsKp3DdCCggeEI0NIqXQPcLZQ6WdwHP1tGfmaxVE9cr0O7WmQG9UVyZ9hdIVyhFkYwZUoVplVbsqiwvi8lUNlOf7nTLg7zy4iusvK1x6n0ZPmLpugFo8+hM33Ma5a0lkGkYNLMUPlfmB6ng75BXgOCv8Grz3SUGaCRTwIlWO0zOL5OGq4b3ertKsnShBzieLq9MjA5c/1gTN44HP2xffbQT9kHqbxC0n2D2S6erTX3tBwM5EnWArU18uRmIxxzR5ST4tt1t4nl2o727dJodYNALgRZ8Fhw380a8NZEY7d4E8gA6zxVjmIxNnhi0ZBFLnPwPBTNK3kmtd+fTZmstBBTXPjoDIW8bMRwu/Z6tbATrMay64XuZlZCkuYE1gtOT8eRWmH05DIbuwC3+3J0fDv7yzVmjMv5ukiF7PrnmuSL73YNPH46UrqYbqqhrUChhEGWJoebamI85v22xjBgMTo7aSsp0Vg0n3MVS3upeDkiyJ84Q75WfhAMpWgZCypu0vPSoFVQQDHpvR+yL4ZWq/vnLjqe3k+sgzPvTegx4YrYmtHTslc+18Isi5Ov4sPr5M4aO27UmaQYbuDb+iEk4Hfh52QcbUt7cFGYgw81WQGE/jfvj8Fcz6+WV+/2leQIyaQwvq4AFYoGrOIElDuMVHs1BZ2l7oBoYacWhUaf07i00w1Ver1t/6qFGJIpcgPVXkEh0WWHpBqJTF10RIyVfaUfur2Herz21CHDroc92TaWbXB0QDyTug1X3oFdTt+M/x7Symr+7kRIyLuMh3bGrC/jQ9/nz/0TQsobW+9cZSyfdSMS9URALTISkXxgQIKXNMOCLmgxjHVZcr0+UVQwQpNQf4Ok1BolRhYnGpviJiJILAYIaYY5u+Wdsw6+/7aqCUOmh8Jw5iUEe6Zg/2kqOhIShcfmrW0c/ywlR8WhON4tbSY0MmpEuU21uBmp75VrA9p1v3uQohHBVdYl2d+JuGEPlWlJphx4h4E5xRw2pIuAmfozIOPisW4CFW9/BohPrdf+8vDxu53Y5VcKTxobg6eqEqk7OWZB8L0iZW0gACX3IZ00UgyE07euRltAYNjF0e1nH3M3k0QCxuTqHvU878bDDcBcawYjJprAqrpDztUbQ/N8uC/FSOLl/7IQ69pDpBi5BQPXJIQwiroE87Q2+Wf6lyXths0ydIz63hJEaPPlhGPNvvkofZMyysxTlBXTDbEX/tlXNwh6wGPosAHZRdfUhRj8Op3gA4oSTWUe/iMRcNE/WaIKcvlObguLwT/Mfvx9FctQYS9aQLWDKL3+iLOKNdyssMQYBbVdthH95oZhWqAKDCvG5CBxFyOOEDSVLhT3lqsjV6qfY0c76XSLODvURArI+BrzboXUUNRkBZbx6FgAjSPgHSlcDKFPOCkL3QvDozLpSkLWQdXEYWjW9bJ07/LXbkPhyMfptGflGTTcCZHzPTvliNPpv434V69dvqzQhF4c3Czt2ULW26rskm/vavOMGHkSURUAKAL78TEMAW7XUEsNd2wyVPA8N+LwWmx38yzEQFpEnUdGkN0GLs6YgiPBcCUAWd8gaSqBXQul+QAYC7x+so2xBm/gFeqfjsxuks/wR9ZERy8pPwBC4ksMEu4Iz+EcG/RKNZ+gqdtdFoOmoyW7dr9QmlYdU5odZJQK5gPDsNz/PURg+ipOrLB0NZSQxWLIgNwnac/Rjpeyd7nYUmx58RHG7LkrC7LcxmwV56QUImboqF2vM+2sQPDkb9PqO7sRN+xAGlMAfOomyY98nlIuhGb2rrq7wIcgxcRBbsqhoCj9duWJJFoGI2t8/TLFk5m4esxWrrhhrolFAAKmTdb+LM7qAI/WlTvw/mUiJAwf0k5CpXH4vVzRpdb2z47Zw6iu53ZDJ0O8GvP227c6dsk6iIXkO9l8xvnyrdyNGyi3wVa/8P9wQ2cChVLZ95CrhogiUQ/jjVhVrIX4xUq1ldq8FMCiog9eDCAXymt9UDuZ5wgGK7bKDjLB48mR9/DNzGmWezr7bSb3h/wCr7uZQCmWH5s1KHOew80BzOjHHb0kPgZHN0os4YO0WulWolxTZb2pzhlWJm5bBoyTEKoGYoFISvEyK/mkj8Uo3EX5RlyQlu4E3bd7S1DLXT8KuFS2NEe2J5+prd1/0FgzDr6lC0JRR4uTniVCo+FikY6Gl9NYgbeo3F2nKQlQwgBijCLfmDlJazd4E9P9l1+iVz0lqsu0JwbzZdyNSRWEKZa1aQT4NKcbITPx52up9PYGEN1n2kkAvb3OejYINWvsrUZmcswstS0s0zMkhfBGUt9Ga/8jLYZnfO37IOOC8ETMnyXkQ8qrrbe/9/BgwzNX84Lh6Ki0yBJtFWiR/49Z5XZwWWN82AKFbLQgmOLQF7OTQg6IgXzWZkh2cPm/q0YnD1yoSvzu/UBGbknr4FJ2UKdYB+WaAzZcSpKykJgmM6Pc84wfmllz4vWllqr5EimsmxtNcWfu3+zcEcbM5Reabu8TI1b49udTgQ3AQQMzhCTezJ3FpWl0Y86J4Sza9hvyvBC0KiII7fdt6M+c/A1damLHwSWWL09CjV+GQOvFxdVVwoQwfcD9/NGr8QK0DQrw6tmcxyaggGsV6sqzsVJRhdfsR9eNKA51zneMsnDgUbfJ805MaSKwPTae7ODrvkvwsLp6UHUFxtK6+ZwfpSHddQA/ZueO8h0JqGwpv0kz1n9XTOxwTD6N1vKYuTArIZpQmkaezyI5XjtrTTz5cB6eOFdabCDYW9ljTr/xPwRhtv6avZTwCYTAPHYqd5NgyFSZe76kkEkIk/TtImEBNKhdrOYDB3NsvpIg7GKMOhxMSvR0c7zjlxScy0dSeOBo5ierIgjWaaAZUF209dC9lPe5TViQAGhbV8yFgZ9wk1HMS159qBrrcVSeEh90mLd7LzQkFIplJQGjLdAgbScTT8yAU+3Q2C4IExPmtidyFzou8vfrePFQvmsGQZ2VSc6/sPUCJUGYZ29AhMskSI8RUYBnXXW2JQcatE7RDw9eHrD0MdqVP02K47v68Z3t+8VFspBHeWxaD0p2bdt2vUMovQRuj9kA+VPUpcdPEESY+Wa6qRSdNWW12y2Oue1UVC35LV7nViq518zQNrim+Hzuy/LkKku47vD9SZ7KPZTjJkcQbkrfwsGHGlajGqiG5dIguZxJ0L17qIbckilWv00krm41zJ/I/ASSGtWSAPO3aO3O9+m15GAWOb8Ty2GUzp07Jm7VEYtC/e5Hko=
Variant 4
DifficultyLevel
586
Question
A group of students were given a list of 5 birds and asked to choose their favourite.
The results were recorded and graphed below.
What is the angle at the centre of the piechart for the sector representing students whose favourite bird is the seagull?
Worked Solution
There is 360° in a full rotation.
|
|
∴ Angle at centre |
= 20% × 360 |
|
= 51 × 360 |
|
= 72° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item1 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q43var5.svg 300 indent3 vpad |
item2 | |
item3 | |
percentage | |
frac | |
correctAnswer | |
Answers