20138
U2FsdGVkX1/RISiX/tstYXm8jfOjAYUL3WgwwTuqsaboVFoc3ogclcWtURm6bAB77G7GRRwXmNlLvNj7p38QcQqHzrrlbltMAdGyMpnWKVMgHUKvf0SGoSsPA433oKeD7YzCciMlvIUae8WXbycKEFRuEW6rXcI3eDGpEbG8SPwCPy6HmIq39RdSv+9TsBUg/h0i8hPZr4EdpehE93oMZPcSyMdHqcl5IKfLL6GTFcjiyFrnV8VLuH2Pk1YI6iZf5e9rvu9peAlkd7DHXD7D5+GoK/tRz4EFNi6xxd+l7xGP87n6/YpHUnS5hiJPTVl+A9FVHOHzNI68vBj+8kLYnW7MbXcqf8HRluldrFo7KTbPIV2eNO8JrPspr46/IRFuGrbXg6YOA4LHBYFklCjopdBIBEBmJLDlKgCO5A8EG+vownUjplbNBbo6DF8pPsM8u0H/FQE8BY/uNpQMDpY8OrNmgYj3Wi7ix+NWW7Z++xK6u0HPvKFu/2sCAptmh3ZaeDA/cQKvCmMBddb2P/PIsFcM//tz+AMWQW1O40hg9PIFBagnnGnScrKLT/FBNPomh9hwTRSveZ5mhbswV1UlF2FfxW1KwlFDLbPo6TF82DyqGvLOZf6UbFjCWVYUVWmI2xijHl7ac2HtCj/z0BbspFiCzOTPBg/7/d66UZ8sAPb6tLDei0gsFyma40menDxUh2/+GUl1BPYghR6ZEX+j04AAXh4Bj1MmKQWN78UKc8fbQZ5cYR6dn48I85k2PVJ7ao3UlhzMTJlM63xgzQjRb5sK0XcViIT6f58rk7qd4aAn4eYIDOKFqsqfMDA/3CQorS5XM+fi5DknfwDDWEoE9tDXndhvNRPiLy3gxf+Tq8AIi+YGduDLq2gc5u9mqb1gYIKyyVVwkGbeZxgMPfZTDnrr1+U8GmWbcVun8egE3XXKaG1e2q5do6OFzR/LjdcsUdQ9R+2S2VDH4d/4bOnLJrG07jR8zVQk+Q7Y55SGCtw85kbxM0XY113tliN6vzzw/PGLHEABud7C0qqdEGdOAjuktI2/SZCsMYXLzjqbesc+QwzBp5mfyk+EsNirUDDS0vbQ9iSXFL0fracZM7x6VKCyBJ1e8m33byX/a+YG+ZEIX6Djz/IE7ds3CMoND+DnMAQbM4QVlpLQ8APyd16t0c8dSzieQrBa3TJ7Ayj47fMdETtWq6ALS+a8ZdNGy9p4Gb7IVel/auVwyH9fQBSaRIQoa0fzDf4BxIy+z7P/2hMBZacoE8IAvM6BcbQEBzA3VX2bqJ6jGgMKN3Jo+RPsM9dfb+6mBlVY3J3O4lX8AjAu6h13NCxgUXnyz0uBl/YTWSFde6Nxf/bEyWv2hEFAU23KTpj70lKEQ8mzJ0TlIWnAYoIIhA//s5EpxmY/4twKycrFhu1EnCTNJpeFz6ZRGMdOr6K8whoErsAsjcdI/+bSpEY7EXAIiofoqQMhM6cLoYFyz2smVdeOvLmArR0pkmprJ2uE0XZ95mM7G4a+Kbt0uVrjNagmyIL0YqSg45CfQBdkG1+tX62eTDhnmK3B2F7TbCl0Cl2PHU/K+FBTq/3tasPfI9wBajbEhH7K1thXzjghxTSLhxLV2zyoX0alRJOyPhTMJ4qNwIcLbEOel8OuiI1Wgv0ze90VdWgBWPBOGkkcj3+omf29KnMymKZ3VPf/6sxHKRdyRGxIdtTAPOQ0d70pLC3xnRN8ANZQ9FT67zLZbG5Wj7UsjsXqc2moX3OSEPO0PNugYevuZFbW7KhQuYzchfJsg7nhsIWEt+uID0ulwem732h91ShQR5n5lP2KA0VMXQGGvErVlGr7uP3xlHuNh54z7W4O7UIXbExaJq6kchU9BinMk5Xr6fKSEBhdaNIzVURy+eLRaBUrCUVXRNgI4L+4+wsuZqN7wpw6QBXakmOkSW9CCI1jWZsEgCTxZv1Q35GhF4giTZui7IaJxPn/D7mTz1IObTslpWRflAr7kknDJFrojgahce7rUa8TeanNF3QZB0nPopbX+n8cSG8oMnooIsgePtcLVtBH/Q7w4BaPF9gCCpzMjuUMI5YHN0IsRI7kHJI9/Vqu81BoKso/RL8Fv6tqbbmbIm8LakW5pmZQC8JhFBIeQ8tvh456ru69QZiodANp+NwEtO+scfvZ+oP38688UMmUgVbrUlG7+4RQ6MZYvh/7Y9rqwytw7n3Z0O/zPWtJ6625FMi6MoGdZvMycZCvIU66VgyjBrYJYbpSitT5ymckSEcd1l2o5Y5NHSukk076trlmD6Lg8uu7a8ypboMoAYt5HK/LvSkKkye9aMMaGAWVqrP1OhZ2xmDWJebWE0VITh9Q8HtUvIXfedUVM3ZK2Fk331dgB6fYN/YVoa7Kck+Ww9fGLCabmwgasNZpxyKlGkHwHLjI4FE1ZRHwQ198hVMdF+cPBRAVBTQWDlHmEXhSXueZRPUITCi76mNE11GsUx3jKMdgd+rtk3+AfbsMBh9coujjwIvXWgy6xTjw2vQjBEhNzAcHGR9ZzOxptdNJ1cjATSL8tcaL9oVnOExjfUQ/Z8ZfVGMCFQs0i43Tayan6oIZK8S7eMFbHLP9HHo0i1oGtvOH/+OtMs+5067xGXCzDeh7eOt27IuTHz2YTxtfDLCGVP70Ff8xAAOPfgszST5LDNgYcCGLyPnei5BhX+pnPQMbmVerw0maRrYR7hfz3Rh28BS6G73lQqyBIh6wDivl8u6ceBuvCwF0moEft2sd+KodVvn0yJJNNW0XchyST6/ZFWa9QqwmyBuH8T79UDIZNZb3YXSBhGCee1ja6kIKBpZD2DKfyJad+rOIlBixqf2dhMJLX34SajpN+Lv1nogMuno+iEuieWVfsGJtZOz4VbpRjeQ/eoVpkoGGMZqf21YpWQOjuv7jSZ1z2lK8baBuMUZFLBVfcCpuOkF9akHIKfO2VNTa8jNmW2+KXro1ipmyBpaRpW3y4tZs2z8GTx60PYV8KtdNeJo15iXCqKiAWqqIMqCoT53TenL+Wour8VhWE2Mn8JUA40sA0UfSYPOWexLR2+99rGe4gN75+yZZlbqUwi4sGx/bgGU26w/HHAtriQHmcyi4fqFSLBsLbjCLbLZHxnGQ5kxdL6Z00s1jmQFgjHcpZmDug2uizKzuXDMLmgGTQ0vEi8FfEDbs7vpdC83k6kYdjXmML+zQQ3YWpzw9QE8zRAuIccsSiuzwA6NX9B2DPTEnm71CxJxcQ7nbxKjyPVlPjQnQpnuKAeSbGD1u8G5abd54x62AwPpvmdWupYTRQUbalM9q0ZuAPSb5B9MiFQjJbKbLj+ptb8fk0Cqz4yVDyb+VmR9VpoZM2QkJzoVIZ7ShwxNx96eFtXVeHEjyFTey50L3S5m/SQSRHUINEsZMJA5d84upTzc3HDzGHhZeZTgKB96GGcnGF/kf6TSnwUDMN1I2s/f1wUFG9Ad1UguCE40np5YKxMQs7A1YG5vDL6Z1J32V2dAaJPPPrBXjCxe4ewTbrOfBn67NhDStl22LPc9jJ1PEDhhA2LUECo3gr3xCUf3/VZICBz+IZT8cG6/Hem9eLp3p9znZN4ibkEHtB6Cu/6JD9+iT0AuumkTHWCSzGVMIbkQ0PkLO8fwAy4J8+hZEY7HlD7PXS6YsEgRkSJUHxGNwCjPzoKDxMGyE9rgZe0zvL9cVJAWHeIVD99yQbPy9WEWIaNzFqTjuRW5tUQbRyiG3SSMNjJ6XHy3JXK94/OImr9v5TYdy0uf8odG/yPgBQRMG4DtcDq5K3FOT4IizA0c+5LL1NPhM6/j768vVtdEq4zdjv9un6Oq2nfPs35178LPtgAkdkbJliMsykBgAZQoEG7rybrdt84I845FKJjsABcBcn72O4gy9Uy0/98Jj6iy42kt0wFlIb6SpWpzUTI9PXalnxUpIP7ZPxBt9iGJFIwvj3nVDJOhty6RTqJWkKiYK4xvjkw1oExaS+WZr86XrAZl1MuwtsGPnqEmQPtEsiRfRPpcOPjh29WlJq2482mdQhnTD7uT1z24GK14AuZrFEgkCJFHYfrQetYppjU6tB/Ugta+hUbaUrV8pE0rC+hWiPOMjmGkpx7zX0sjo+4U/42aE+2RNMGtC6anK61fyZqb8NYe6XxxoyqbOz/r5gmZUXQyhbfjACI+Cg77ZYAZ5abbR09FmOg0lRjw3fP9Ddaah8wi9gQliUaVe0ANjLV3aDJsge019mY4wRGPA1AKyJOHLQ/7XG43LTJYMVmbnAkw2yOJN+RpjxWIlIhdSm3Qrm2rZPDTXKYhB1Xz2tf7m+LFK9BoAud/VjRGaLjJOoMG9Y0qoWKMMjBS4wBAIqHsxrVWuGoxFDiuVi76xZzP6YCZgFp2ic6d6/XQL6PjxPPeTaZNOmxOQHttnrjTaBf431WwRbi8JkzRMcw1ajGH+5aXfYrTU3uEpNNmhbXUn/Wls1GhCmbIph1hbrYhuwoeD7AjKkaNtnn77GWn6ea5rBwxvArcHm+mmsnF13isl6pbkHVMPTlEliEudhBt8tvnsSz4O6eXeJkV2py9AfGYJs8a7axae0Wo5syyGDPxPGnlgrlPA5Roh5S4svVEIwm5+aMFnnBVuSsIzF2tJPDDLo4HlMtH8pXZba1kyHnXsgnFO7ypYRS/+IZf1L5W53+quoNyg6KdXIAoxXITN+gOs/ecXSnsRGtiKn8RyapvIX8ODvZsNettbBDtjThd2PIy4aIH065JyEaNMkAFkeqkk+9PRqlJEnTFheO0qrR9ENOceZr0TPuKZhO1mSgO2PMZyBDEqE9kU8z3cW5OI2kh0vfMNZ2+76LPs9zGZzrsdJ6LIoYLJbViskXLglf70id75+Khs6CZUH9hpObTsFZaVcLj24TAvwfVy6JWLq01aH+5rKwBvE7lWkuUyfqa3jn0IbKQtBArQg3toMgnxpj/5VnBXUbP/ytEjtluXB95haOhRASGKbupzBTe6x6GIUBXgp7ac52WzLaNrMeNwiD4ZW2ZCASolsdR/P8EdVS731y6xsybS5AJSkvWMcwIidbjn/v+wcN+Sy0dDKLwCMBsV5cQF2Er7aMcjC9IC6eAeqjHKsKByFAmaMQNQ2OjX19KDIet8NreAcU2mBOOoJHWybgB3S2jlXeIZhQGQRxd5XKryjzXi6T2ASvhTBYfmFMM+1EitPV9oVZrprSWT3yxsa6tDtHTkWueQbUyG3NfxDnSm24ppQhgD3xhvRDTUuO1ZwgpKHTAjH//EJXOEMbj9Jpa9TjuAtSrFReXKZlBe3v06+ougpxhe9vxy+yqXtuJC08hDge/rjqMCp0wy5PJzpijBzGHVD+pYKwDNAbctnxoEcIB0G7v+IHH7QuOsruXG9RTl0Vo+gF7sSPA5UDlsCASBN60k3KPRvui9TlslLR7qdi0lcan39ZkJ56gpeGzLJAIfRn6Nh97nuZB6WHASbNK8END/kNnGxog2vt980iAQOvUpWLd+xQjbry1DezB18mxEYqMpjxYyzg0aG3Ne5VPGppS0NENJSwoGRfp+tDFzh9XaQ3CL+LZrLVuclr+yc1Gyhxk5fKsm+uoAq3DCbY3jDuwqCMvkKaGF3scwloquOAuuBBKTilfiSqen5FVsyQYjhuK7qQsAwIvvUCbbK5DM2y1WakL6gn4CKXj3paljHGvYdnrK36J9v/OFrpsG81ibbVbMUQzbc4pBdTI+O0LOBtBDfmbt9zsxjNqJ6FMaHcduG8Qoof/O2H1qUUQRGHxBysZ8DZ+UsRaav6a0RAhA3TNtci6a+QJyVp4ba6t/Yr7MEcVSV5pWAF/bYhavYAV5+zBzqEo36JioBHefhb16P9j0zSgbLCCtimvQs4lJSQKYnSSBXMtszG2cE1NvmlwGAkEwzICu47EBu8esVjZpXn8AwKlnvdwdNnKM8EnTE4Ck21osW7HbCR7OTZujOGFr4rZU6I1KCK7KOAKY0r8BpR4v9t59I4AC0rZnb+OVwyNmezMZyJRfAd4aMCvWzyLQdISdZMnJT6gOtsGmi2bgMES134AYw6785axpeA4X5kYHfUa4dLWhwe89+VWZuNgLBo7cpKpQMnyqgm9bT41wrrc76JqwIg1tS/YXMWQtLczsCCjqzJgie6rNYfjuQw0M7BFehRZuF68m45+dGbetKFkSXbHvR5Pncxb/OBQgEbDZn9mx2950SLUdbpvOdFVA8E802KU7i3I6BZXybXil4LpWF0WtPgj6xoMFHAP3WKQyY+w8gRonDQZsI7ruGdgj8AWzQ/mGJK/2fah5u9lQ2fCRLTnuqVE933oMFok3pEeU4h7oEkEkx9Gh31xU/oUvOZtmpwgUgLpsTvEUjikBV96eZM7ZamizDhqE7mf//KNF6fjlRGDhwUi6NhojmvVYy5OkDtry9uWZHs5l3lvrOoRGolwatOUqVb11SopvMAvs3UmsDInnrkSeAbet8l26iNyTzyQMnBdljzmayUeWPD8mHlNpx4nmIwD2qOJ353oJD0tQRHh2yhD3CiL4hyOtyvMKWZODIsgkAvEaGYTZ06M7VujVzD0TPPpktVABBxKJNJX9OuvdKIGLZxTvQvjFiMyspvy35UHyJk0Coq4pKSEAv6E9NGIXlFngU1HjpvxAeqLtMbba2ocKjfhARaqugIEHF3dWBBsc6YnARju248vA2Py+e9eI01G3Uc91lQdteDkz4fhblS73dhwe2Npk0g98KZtIFRzIG/XQmhMjYRBuRh6OOW7K6CBQgB3q5wbYmWPRaQ1HRf758sfSJlQzL5Zs3Leqwh51wMvLR0ORetCIUIVyeeEzzrJuzERBvRb6l/lX/FYfXPfOgfxR2kuT+TvoUPkke7OoSQhQa/wRdM/p4be8dP5xn8+TLEAPfk1fTj5voLL5Ns+wNvHXqVw2SkEp1nMlMG7wKn5H9YO1j1Ho+ro5LoFyKnXugRpLHwo2dW9xisqddHy0faR0Yd5d+2g7fADrFgzegfnigqEjrr91wPJZ09/0k71uUcFh/n1r+CPxdOIL5/q0pdK3tFLnMms836zDJlUYbJBQkJTCSkY1XPcJM6Yqtwz0m/lVi3cPfrK+Algy2RrKSuKTVUktKJ3zTbbMLUTadCJGm+XumTFzE/vTF00FocwJ9dn4s/YmYH6LTWCilCTYUwsXID/ak3M70MAQ+fKHhBoSFR8ug1o8myXl28XCmRQuNb8FsJzlhf7ebtp2f2Liu7eL1jOGmP3BbISuG72sToevQt2Mj808GY2SDjf9p5dytjcM9oB1vKJJa4kLL1ZM7Pt5J5smjZdkVLHeBilOB/Lj3Ba9v9+oWdlgzGGZpfb7zo2oGetc8ADFKBRMDg+twdQh7mFa7oDvh2NzDrXZ4/7wT0nawwKxG/Rko9N7ExBTs5+XG3PKeaxXgMFHITsm+DB7nnSRckxOrWo5XZTKMluu3MITXJW1SY9ktjxH486Mu5iB4qPLxe1UfOzlljSyon0VghT3nZZkSSTuB0CB/favNbBhSpaN+XenOy6hfJKK+Dz4+v6ApZtThgvbi3WJthtspY2EL6625nIVkOIPp7Rri9rvfQkl9tGvQOPEBfxYupt2Wbec2FGmb82UrIrN/bqA2DgkvhNZjqbX6oTLNqqXU3/TelKirZnGdrbTUR1pwbR42Ktiquf3rnZrIOTqVH9qyaL6p6gYsdi2XRGi2Gr7JqjnxByJP9/K5+RBK/RhBuC0D5FdWtFwb6h0Z4t+DtFF+m6ATZOe/fSXDIKc08s8UtFBrzSwH8vxJ/4Kj3k7wBqZHVGvPtBmiuepuERGIot2QJiwf9GqXpbscAHFpuhCwZjPdBxErTBANC75EpD837llCLRu41pHB4hffRWvbmHPJKnzjUr+tUZ7C+c8AHZAxp5KNt9lB5nUszL0Hqj1bEC4Fg841jwXjBj7HFcICG86sAZdqYJwNJqSCGqMTKsViKzUjGb1BgdbY0Pya99xGtu9gPvhzLybO9QQ58/P07R/uYWR5zwHsdw/5qRs0pFz2Nly6PMFi8/J4x/bKvYPrCQqyxvTHdoUCqyaIkHMXZy7EVs/JfB8AAFEfnKqQ/gjgvD/COeCNmfApolEF648xzubLeYbHeTAJW3GPIwxsYo++KqCEKLwv5dV9c0uMNiPTAPhYDhyNgsc6Et5BDosqkPsaFQgdJmce0AhOidg2oP6t/CoiOYmqDt8kkcSctGTK+NVKMBc/pEPiYGgTQnA8+1PK18pMz8sppddvh2rb6daOwPy/Vg+LqWu9NGs+cAaXaAnfV61BL2Ww1usvKOhdOcQqiwNYAqmQOPN3P9S39NONVHeEkak7tM1cdAPUcMPhN88WlaGyiyr+w8ycQf89/Bgv20Xa8I3ZJEQj5A6xlHbW7Q7BFrtfnmMIYbsyAgghRpvQ/DFrqqTYTaTqmLBEfzZyenzHX8riOWcMHGsZSqEaNjVr4RANWpabuKaTy9+WFr0ISYnoKI8MqnerPJ4Px56vv+GGYBj9+LFJvZ/Hx2gMdXeFxf3jk1L7URF9o6zcVmMGeqw3ZD+5XzAOqn/oZ9HpJFN7EzZR7RFznHl+k3zkwCFynbCImUPNEmAKRD/5lASje2ukHYPS6MSTOBPz+99HNhDArTJcKR3oU48o1evKZIKXehCX4TaH1aAqKyqiT93Bjr5/NvdaT7gmksvNDLZSs+JPeVY/7hL+g9qurYpRseKi9fwL8iOVgDu68nR4j9yUsYmZyzj9hzKZijambmsgXdx4WHifutK30HZXbw+D5EBycMtatoNwrn5ZULDkF+RgKVUe5SaDWoCLECKVm3UtMc7g0esRzSJ4MXsTPpqVokPmuFL4ztxcM/h03UYjnOqxkIvBRHptmMZRtNBH4Ikh98OBaOMz0KJN57ceiKDsSGme1J2JHBNf6xnYjaH3ACF7R+cMum+zildvtmFdXZ1xxXsO7gsJai55QwM+0+awn5/rlz9ZVtSNnKkqQfQMazpPpiZv2X3fJKJg5rxMUb3cAq2MJ7TL1lT46Dl9LxMzFUA2D3H0fgCZEMBXs5JLbaPVFCUDSdByamXRYnn7OYQfKeO/wA1/WmobTi7/ezf2diwBpATgdXcOYLJ/5SUnhzwAufOBJVTcmN2yZWW+lobkvH38OqvgHTsXIrlLuwRsPyauHQ4LfGCObyUsyAj+ydhKH2lAYSR/zpJb8l5kxrrWho2z6lR6S8BDoEzfSHgwSmISBQzVyI2G31KUeHKuLmtkU0vqvXKAQvUMuz6ygjZSYin1KkfaJU2NrMLaJAeJj+pBzvVRpsDuB+13YHnhzCpUyfSIC3WRIcISVMMIn80B0H+/VbZzoJQF8EsbSHYDlQ3ETQqy7C2rNmpxlwri2h/gjvXrAeuiD0S70hZ0CDeIj8BEVVS0yVmzxdtTwpxVULCQ+AtDkibR9yReUE37atv4Azj5yQ8hrkARKiHPKyLdyhCId5bKw+ZlINcixaG17dQitCAfP8cUzRxyEKnWcL9G/1vkAxSPP+NHxbSTOgy4FdSfN5mIw+fl7qCpRo2iPa4Wc54UaUM/2V8UOlMDi5bFzjAxUB0vAqzlP2tLI9/LvMRFEywabfcylhkfTH2RdBXZzsCNK6bEiGmmaTvaUCecigOWWpf62GMNwzZZUFT8fXaVdA6kYRCAUCzFkHJsTp6vNobbKnT1YS2qNVV5trb+ienPvd+dqNSig9q/fC1kyKOxAghG8NB4qHWLx2XueaIn9gkGHHLWKW07Tq7D3GDR4vKBuk9PlsChe6WgdxLsh49OW973LqcfrzUgUARnAgVJPHn0o5zeSDkvRrp57rvttBbXWhzgfd20QGhU+XMI+DAKdb1cw+NNoRd6BNrVjlpxLOjl69oDmfg4+1G5nhCM5cGBRmjkgIqumQ0etSRrgT06mkSyUPhIM8XKnqoYHCr/W2PWOnNnOoxN3gljAXaDg1Y82B/CTnK+VGB8u9wqZZdjSSw5aA7jiflRHrLuiXVIPWYU5uJc1AGvhGJlOQGIRyxGfmjPqlYGQBsqKeoeNMoKAuEC6BSsFnGPx3DIB/0EJFN9UZBQOlH8WHpy93Sn3HspbZvJtgbQKmUAcdYI/4nSav5aTMEOfrwvINevVxFSpwy2CltN/HuBN68M1t4bYmPOCMFstGfk7xpaIZLRjtCfkkr4RkNbCyl/Z/MrAaWA8K5PraMHyFSOqTQkq22t9kQ3eRgR7wOapW2CNfCNnPRfiXRQ4kQrtklLA4P6La0VvdBq89AcRwOnHH9mMUwzHBeqm5tZPgjCsG6l3fbE2kOcfqYWJcOUXh8HkBwwxllvbHUr72T0ECKYA9nX2IFiW7pMqYpmwenq/UJ439DbWZF5LrB3OzNR+sG99z0g1yxkFB9ZTLvkTn2bdX5oQk1fr4djL+BsRGV4InKbdNGjVLL9N8TxBd5E4D0iM8Gy0BIpmnD9HoUxje2BMoOOKbde+fDNim2NItEpCZIT9odbsr9amDbwMrw6tBmiGTAwBHzj/Bkb2FpljMol6VT1yw/IgKE8eAffF5cb5jVuZOKshq/ACparzosWgQNhT+tiD90l7aJ8xJjic0e5WDnFCKGuRtg9Dp3J2HyVt/hXizsk/6cFOh80+D+VvuTV1/n2bB6xW8sPIhEED/2RY/M984VjTsYCCvncDE8CyUrWxWoXPWtPWYvM0wQwXvdedPhOldbxllq3+OkkkRq9vnEdNyCBlvWC9P3XAZ80HfSVhBbFsRUlLyK0BRkpvko4MISU8ldBt1iaS79kwWprMfCX3QfUE7VkEvi6n9EYIVoie7BT3mmNVgC8PbMQKm4SZWPt9xChn6cT5qpWBpBiqCVOYvWyCunpZz1X/5V49pkAZZS9EKOfHKsZogu3eP5Gh9gba8PFM5jM8KI4jZ7gxIvvbqojP9t2LPHUYRG5eTpUq2ZJvX6nhyGWNSTxUp6XInDe/80Tm6tTdzoZI+HeABRIA3bmvjIYCXQpQ4z1qulCxzWxFwmjVZ2gVRyXPY8RUybYP7P+9QByBE9ANA5ICh16Zm176nF6grpYRhZoFLi8HrSvlu62Hp+e0OrCfUjdZw8IcffP67jtJ46als5Mva7OJX04Zx6tQ+dw7TDmMw8HTl0hBwP3khIS58MiWb3RG/oJHMim2TTK6N4AN002dq2yTVxgjz+01u7DJHApVXnIQjLLfq3Gk4Un74t2JAmgLIhZ1U2kA11+53fsqKx4yF2jyeD68my+TYPFJy87f4vkbSS3m8NB6vLlZ2Rwxncbc4bCA1Yo6DlW4CvKqildcQZG3RVgupu1Ovqqt8axPnMLmQDfyQPRMOERqsdCVmLjJChbzCK8BxknJSZOOcO3WCGN6ZWqUeBrhujK2njbvqnQ1lbbGXqDUkw59y+OKAgwbTUgs1jMatmxLEARwmZzZGVA6F+7FhJi6dIOt+H0ukzk05xGU+e2lO+IStCdRyZOdzpNpJXqfn8r+0Zwqudd/R/c81zhC7wF4HiSQI0iQqaRdSXM/2G/xKXQk3nKW35uVg4CmNqecGhJrt2lMGwx30YlC1EHak6M8difv02nXbiZZSBbMRZdikYZ15EMw2eVZnzpfCZJ3Mla8e8nMU1/8pO24KAj4VtuVcyRc0huNocG2611dX5j6Brg5RQ18/r7m0t5kMtSVfd/nzeo1ZN+VlxfAXJdJXA7YHSXx7wvZxxE04Nb0X5Sp23XVBK4z2LpPz0LVqYqE+05lyHAucJnnKvQmT30SgSBKSza9dRiK5J08ZuphyIa00KpNU/4XrgBiHhqG7WiUSoyAAkDKuyJxTk1aXabiA/F6W9eQ2A2RgObvf5V4PsPLKsImuG1q4gl7bvj+dqu9kiCguTmhmdJO5NMW7p+zS+w9PVfqmdsaiPE9iYnIdniSvHwky3it6pZOiJg+JDp5CpB2Lg9mNuJJSuDiNR+A/kfeJwsicKneI6HiWl3NoY5gtld+ae/4eUZyH7Pie5ZkjrbtqJsQZ/DB/xW7YbrejWjSS/BCElB2ENQ12p2T2T+Q/o4od9GKwy6b7tfGjUCH2NuKEHXt5HnLAQAqckuoQM8LdTwILchedZu1qv4n3aSrH+iOMpJrsrYHkg/K4XuDhosVWtLbYjjnuTxTZetSKl0+MrZ9I2Hi505tjMM2g2CVbC/ohW/lgiHtDZNHVM1fnmH3Qtf8KkKwtGbkLqYMslMnDvdbUcn8lTHD/zdqTfNzlOcLsF4FYwOBrdtfvCJDzjm7f6pVtpTRroH0bSI+hqLGw/OLDilKnJZyao8hO4r1aRJxnIDxQIpkPrIuautsAo9Z9DanUiBV2I310JhYvOiDEcz+J+6GKXTI/W+97HzhJdmaxLOaF2WWu4YTuxDCWuy/PQemm/4naMPbb1ET4L1RGVsvhcP2uIRzzFHPJdt/XfbcoW61lHZRuD0dP0f4GqmfTgej2QzVhbACWmX3+HHaWkFycZeTg/0LDI+QP+IGDJPky63dW8/xblqAEwRnROkFRA2tGpceZnYS5WXa25h6J2p1kdQ8Aeh65v2LA1Nr/ifu1TLg43JbkXLOSn7f8kUJvNLzjDL5NK8NDpTiRQQejacmqWVWYIc/I66VmkHvejf25S4paX1hgSgShJ6UHl6XcG1O8Slu5ExmyiYTUH85Hg+Ij0dFJlqcp9ocbWiBEUzWSh/oGclQp8PQBQsmXV19bwmQ3Y4SZ1Dnw6QCpCtHBOL46/sBcMgZoddy05128au1x2+EQ9RFCT6BUpz8NcBss9uxbkQBt9OipfOz+Fdixy21StxCIYBduaEl5/gDQgUNkAZkdaKxOq0L0iur25hNaQl4go4lei5oo1/jYMPKnBfMGcKmdYe+CAOlfexlGFXllvjAr2+aKfz1/wPqW4GqK0guWaRrVPraHSoOaOywBqGmt9G+A5YhBCiC5iA7LF5K4pYkbCyKY0diY/Oi7Y9Iz1e/VrKBmdxVIOHbKlK1neKKTJzPyX5cJGgHt+ucMIt3lYS4qrUK+jGyxy4c5cGAB8zn03ggU1n0mJbuqg80YuQwDtOgNwdgd/WgIhyceLQwoTiK1SruAZN33kPKHY/8F8gdgwFr9qWd+abLgEodB8cxQn+3Sz4fzWc3dZF3tzwOy6pNgBCmzUU+Fm/umJRWpWUkvnw/mqUfyli4Z42ifHqRUGHIlgBv9yy6PWuLEpmvaKlmUhM9ui1nCdBSgiO2F0UPUj3PN1U4OpyCGHaoI+qQb40O+r5FIfT8rbRuTzX0MfO6pBsgKgmowZbswf+tbCllAjnr+OWPowE1RxMD9HMqq67DLoRINwrHbEiv4luGvu48UQNprFTAvWriEAlSqF/Wrd19539rG04NOHpGlTEzKbsqdYdGHTVgEId/aIKaYIBxbeEhdAEza979UeGk4MB0cgfYQUlx5vqirFawWXWRFHEXG7LWplMyPv1Oq5KFk/UCFqqRfaQFrIuWclLdS35sJm9JK317aNqhjFN00ZWPHtuFh4zH25WcnJo7HTrBZF3CwreR22ajDPIkYsD8M8EBb7p8G+T6EQzGIvn+ECMTeheFUXE9inpX9zmsxiStuiIQzJSSuUpMJwWLltSLgjU/eSyf9+bCxPLBCl+BBFD8/hH9U6Vx4XdeS/z2LoBUflCPb1fLPwsZEcbjl4PPoVhDrdI6og3RWIzBsCN+LwmtUKV/AfRANKMty3qnMc2cxGmXoHPwPjCG4soi+CpCVeOdtI23shJtKI+F0t2bsmEK9E9hpZ6lC2eChCLkoNAr9a0nv9bvmK0pCchXPA/irrsyW0fidaifGV+nHY+1UqaO7p/YQSMaTj8GImXk8DekN/hBGnvltliQRZwefAfiQJ3AMQZZyMLkbafKJgcrE55+tlKgt7BXgR6D4bT3jdhTSA4dzOHrITeer3sEkyVsjt1E2AGj16EZUkAqF1YuHeSOJEpg8tFiCtnnUIyfR1U6gVUMMC6G/SCNpVmvDroxEi4o2xq8bL6yD0WrTo3ygZa2+9hbF1PpWb5rjDFaU5+byOTCOSsNeiyQOaSqmX
Variant 0
DifficultyLevel
671
Question
Worked Solution
|
|
36 × ? |
= 20 |
? |
= 3620 |
? |
= 95 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 36 $\times$ ? | = 20 |
| ? | = $\dfrac{20}{36}$ |
| ? | = $\dfrac{5}{9}$ |
|
correctAnswer | |
Answers
U2FsdGVkX1867yoH68maW9/aQAtWJSz+iojAC+p9d7MsFBpGGV/NePzJgheVjQR2ZPa+YJPpyUIMDh2qbTmrS/pYYxWiA8ufWDsYvxGZcjluKbT021eBA4w2uXqxVlGDgJwYxEOsfjtIJYocKp/7TULWQr0W4m/aPU915f7eTNx/DX+2Ls8C67n+Q1NiQ4W2hvcH1vbbg+vWz28yRNs9Zf+RPlzjUpClNWY1mK4xAkuL5pn8WUme598y1OwBmlffzCjtf3gIVM54uRG2iuz0FUbexrgOYLlAgUiVQpdJh4Kxa4cvy1QX53UJRByPVkyPAsD/D+U/CynKIlRrfICKmWMNNjgQ31v6P+vI9w+Z3/rwIWdr/KYhbMU3M1fJMxyYtjuMnYOVmENWOeMFrpGkJK4Kt5YBJx9njoUlxXSNsvK+gjW5z0zgvyWNAIWo5ekNlbxGqBdEJcokS0rBmAomgZyoEYWJr1ZkYv+0U3e8macrRK4mzgulHMmPlu6+ztJ8kaUbSFpXRevZKLypPoJV9ufduxD0km4ksBr4w61zUeeUV7ovtsX+WWCZBLg9gdWBi3FGtouGBsRh+hD+bsm2Y4Qycz5VZZ8ye+zppCzD8ET1vAuvJgd7gieHXTCIKbQILVnRCs9FrAIMH/oxvZi5L/Ue6tq7707nOQG0E8UYEMlwfC9KLkNaKDQ0TLJ6Qqqf2Ulwau+XLMXSoLp04R8uG38bVIc+gYY/on66ayxVJ9qYPNytx5MoHDOZtIgoAxM/F6fp93WELmDO4kevEtegKfe1/euCGy5hGZ6i6gffAPF8l/1LfPv4qsc+815fqZtLBD22mZm7JtOJfC6yZBawr7VTK5JaC7juDRexTJIQ2E4GN0JxHstimjrteZ4USEIwYnfBsphXgj1vFWyJkRsyp8dr6lj5gOHKyFxGPE62oIbbswmEgBmdSsCSTDm8TFiu8iFHhoGkqyexEHjJ9Ws1k6Pcq6dQ6pOK1flg/B18A2uP9coZUoDWImE9c/j8YjC+JsrKYB+YFBpD7R6/zE/4jRorMaNdkZgDgNHUHur7Ttv/7W5wuF4a4R3W16rpDxeWzQaOeeFuYSkAg00/WQ3asXDOnRGOEiC9wcTPFOhpwCxyerP54aqNuqOJ3JjknxR1Oo37gw1Po/UGt1zYgju9oviMqQBy3dGK6G4F892B5zLqoP+MKkDXMiM0V4mTb/tQVIDaj6zjdCp97FzAUfBMrF5+m2loxHrT+ECO+f5pOmn2tomfqjhfF9eEib8XHQ+zN/q0rdDfeOD1JxmnHIdkr4992vMNuGSQ0qta1nyCo57z0x+QcBT684y3TTQmbAvYzeFOs9zBzMgO2LNStbskZTERoHi1K2alRGmudjslCpreBwLYTTEhn5Mkn901pMfo4GD4BDh+UVXF7aykE2+6c97NMP4ExtSpvALC0vtj7T1r74zXvdPGGCuC65UqFS673Z0SdJcFBhj8/uX+eQTTT/PPSBykBkhERY7g+gZtLVvnVCD1Mp2AYxv5k7ZVWRjm+9tK6u8/nCTN93oQ/BEBuAftFY+76hZh58gFoyR/zu1rLiiBFhslxP13L+u/EHEB16cGrwOPSmLlxt9XfwdeyZCfN0cENpW/R8Q5VpsICaAihgMOTyCiXZzWI7fT/qA6CdzdfrRtLyIdZjkPuyzR9QFI4btzeoMK9vaNKi08MmDB9zrmcxdj3I6UChjwIQn4FhZh07t3YaYXrSIufRvo9o+5n7ub5wmLWHhkoyuC7Vf9sxlsnx/rKKs+kPA5rKciUntE2gYqVyvEDLir3zXwLA3sKUBwodamvDkBB4n68nM+qxuhVcY1PHTjYRHPonZBdMp/A+doDLYMl9rv6F38kgby34EtwYMktMaD9cbE2YE0AQ9UgT2l/A2lr5bOdMVlsmY4xPCv3EfEedtprHUfkIjGzsAswCJXxMxtCd4Jm0zrh1cYFqceurjbylq0UwHVC1Qoo7Zbga3De0ySlqOmiy8K+QKzHPvz843WOvJZa+raEJGKqYJoHWG/9WXECxgOF+sVNFMx1LQAwiWiZJjV0Wqy0aoWNg5a0LyScPE4Mn+qlWRu29tq+vUEBL3mNxh6/5mWckOBijHTrRBaWeNgvU4XdYDxQIii5uhuE5kYgb3PaXigAiCm/0NVCRJhYDvCYnerX6qCkZgAzJxcL77Jq+ggJAB5G5+kQ9wHU03xuHLQ0TjBgidVrcnPmpJ7L0hkdmOKzAI+ThS2J4Lzitfsot1Wrizjo1ATaPqyPxylD7n2o7tJbTbzIKSd0mdKNiHXmOE1geGVcwx8RECKy38E+kSFguIxYGqQdw172H6Bo7JSuys43mZsoP2viJPkiTTWFaX9Ke0h5Wn8YuByqrqOH5G3A5y7/4kAvFvc8sioteuPudYUpRZHTW2CTSzaONQDl6bBDR6WsaVHTKhVEhrWlkqE3xg3Mgu8ctLQrIPhsEq5w0M9ONDIEJ+GRcO7mSIg2znDIMGzaANbC6toR834uRhddtGTZEPOU1vGeozEG6soQTjq0X1sONrLCDd+AzGLsCmp8kRcf03rb85wsnkHzS/gmK0LhOFNkl+VBT/BQC6m0lcxl+ztpkw3ltANG+aLyYFtb/1v1CMc91LHHZ5f/1u72F+3wZ/nq5UjraC3CVoJIjuI0OBsFwWZK8Y7aiPL+qLx8FEXVnGLWWrzW0zVTpl7MKekVAlqcPdj5+AZQQonHZJ3DWOh+xPY31OTpySF/Yfk5iU21ytm4f0tIZlK/B+XyRIkpBC9s9McxYT4H0YVTcJ9hGGE4ZQtXNY6ewtGgjSCaHqGiCot2p4Lpryxx913ONzDYAjsH2YDZyLXX2GiYOYLSj5V5+Dj43Oj6FXw0fZTN3mOFyekmf3RfCgGe5AQ3M/QXrrZ0tIjs2IGRTzLxOgu4F93HeJ6zKnjkdNaa/Fat8k86fS0gz6HtE6Xbu1caF5rl92igE1WawZJ6dWKo3uwpjdMoKdu1cDxXAVc9RzqAsQ79688XVUlMOG+suktOL1Eqay/L3wnH/XRPK9TSMaHHFOdUaixzBSYrrSH8NLb56CtKKehdUbx3id+iOm82Kl92B+6nCY3tCpcFjSDZZwWpWHvKSiNAlb2GzrlKGofICVWRwtwmL86Ze+ujtI1Di0WSzQp+cZUzRwbYAw3MFoPgmc5GsECxqzH/Ib1J3l4oAr1tCeyd+bZ27gAAkJ7EWWnyWLcVSx95vZGO+SaUIG3ElUkW9JSMErHJ23mvQ1N7K90va3OeZTSUF+CvqEypR6qUiY1Kxfe0Y48cVd1QivVRO9azTYSHo+CZk233uCWAz4JXkJb+mSz3zLSlyU/aP09rgeu7T7xrdXdE4sqtcIQfb9t4tjBHvQ697Q1MTEniDzKYnpGVtMn240lh8NrzefA5s1S4f0W1Lczg85QJTrBqlnbI7VfQqaPMHkUk75yLaEerswJrQSTQAW/cTROHFc/mtQa/KYRuYz4rKGX4JiE08x7pg+iCcPAF6jANQcWmyQyV2d4ATqlovcZAxICOy5PZwWUPDgz7BVsqyx4sRAMO9E8lHL4qmXqGYyMI3JclKIG2LQAzJU7B5B+9nTufHS79BC+coqguGFR3EDMnRhvNkjzKjorYJOnw+buBpgSFsK8HFaUZGg+RdaAMuasyzRoMFPKPecgXaEFHeM9/AMx/3CguPfpPfEWELySmnbqOiqw0lYxqlMV5KgyUQXbSHZhl0pDFM/P3kfnHzm/o+vftbTG5VngkIRyQ5NvUO7CdQ3/vdyoY2fWcWaIz+IGyFQPsmqyGeolyQJV9E6Ydx5U48Oa9cEXaA35+4+7lq3XAQggc6jDjp0qc9XTLn11wbkHG54sG+VkQFBFufjKMvtCyYF4GkFbfAk3sapMKlqoyhh9L9LxaA9+pNEULs8ghjdIqxsngHIbAvEXpcwLobicgiIUAPO63Y9X43JxWS2XSqMyRkTQkxrGE13V2daSVoRwnA5vOFbhTKydVvro5kBABynu2hbDS7rpi2V81l81VooZY1C3PXHEt+hZYee4g3rXTr8E/VwgYs0vsBHAk6tIS0LwHX0prmWnEQcGOkFGGhwD/ykuBKXl+pZ3n8fLfKgJxj+duWPCNTagQNGHnCywcLOzj8tt9BwuzH65ygPs0vsJjA/LBoBofBhPyozA+WyKEszIJYMt6+9SqeYqUes3hYHVmAYXATy30DX5kSyccFVNhFZCoZzx7e52iW1S63Ggv0fIwGUw24phojnM9Vc/qlTxgVhBEn27Kx9F9mdt0dXDc8ulfM+u9lEaIakKyv8W6Ym7t1U852W5FKjTvZyL/kXI+ToGMx1hQWqUL0hZ4c2VCuAi8uCIRVAeA6j1ERKjG11U0nFzWPzs06O/6TdyDNuHztkLiJpGWpcaK91dPM18+dcd46uRqpAYjPL4a56MDC8xu7g8LH4nfpW0IwXYERefiyHawXpLkSFxrPU2K1WbvXRlm/9coVl7lVun4y93eF1ExytsIgdV04afKx1P5j18gCnhqztTLol3ne0Zem+8KMUrcrCs+U2ivnXTBYZXUFJdIFSUyeehNDUAF9AovcY4lSlqPj1nyFGjB8Ej6WazUmCAo6sLS0dQpEtBSYRvp/HxPmg+sts9OhOzuYdungQZ6ZpASUDtsC3xSXgKCj8qu7ApIy32vC8O7IyjhYBBuSmOl1RsN7Bob8a4wIVmjvPcZiSWPKkGOZYJUKWic0UgWxUrYgLZ7eeN5oiDu4KwYMObrHM01H2Sq93K/rWuYXEQDz+fn/Ei2RxRvvssE7UUgalFSA1XpFRj6xE3BqQ0whbeEytIEACXm6CZJnCJw/GSqMq7Ehds9vhtCibLUyMrPUhtihaiCkyNEHMB+NZUqaWITI0oG7AcQGDCNJXoAy1jCSha5sNeXRRRf50ED3o4Ie8Kxrw6mHpDgnoW61VR+Ql+pD/v0whVQRQsdlIzO6SnaBjtm6K6OQlkrb+V3WUx1C3yJJUJJi+E1ILTaIPWNPZ2U61fIrOTAGukQlduhZJFma82Xo4XBvwchTsIALOrDZNssKNGq0DEJQ2cwMri5vI3ykPFI4LANuP0AduKaBZHqgZPP0iXa5oBTIwcI8/8xCHCquSyA3QI15MjnmzA+2VHDCAeibMcX+frsy4DErc79qxDIkw4QoDrK6n3mVQvYdx6U5dmdFpqqEUVxXbpp6rCsOiEwDXds2miNVBIVN7B2AUEJrDuT/J7aEdz1yCkpxnDMkssLXm+e7kkaHmeIzX27Wj4BXmd5PLYS+1glIESEBg67sYUy5yRsVUSTE+nQ5gmBz6KHk/GG/YJx38DrCedZTtnygOf53XI682PCerOFrkQatG48paBw/XQW/RFN0PrWyGeOdo9iOTPMl1sNXcDaSZL2CFLOea5SDTMqsBe3E4hgWpU/69OZy616uDwovPzghXd5wL5eTE55ZvLqEIo6RqRxh6TuyDguUurw7v+Egz+EqZEyWN2gPcUaWqFQjZURVHLRfHPVLIZsA1k8koQJi+qb77sHADX0mzWtYl6XIQqX58Sf3kYIjY48rLPv2+IMFmf6rex+o1Cfju7ElunsNPm1YXc/lnRpblxJx1cbJuYnZtdx6Ajgm706kazJfQ95BfxXkqLBWjrUKjWUqmNj7kZV6Dbjsq8GhyKQZRb3zDUfoKDxFVRWPRzZZbym3n4a2eyOPM4mZ+0ONshu67aHwyxkC5qr9xd57hfGuuGc0BnUs/uFG7QJCmOMiQ0ESw3335iJGL2If0zoxbHMxsSetZkmbAmxs1h3rXNCwFU6ovG6gIZ0cKFenzS/a8rdqxUeKECpvq/v+YQowqO1KBwn1O7V4D8scTCK3PPx90vekjycs+5Ir9qb+iUEA1yRQp4q/o99yJy/wHfiSAwJBkrd0FFnd3CuV/9hvJoMo40wIKVwigKkbdN+sA2yYXQR53kWIDBgq9hy40NFOprpTcxndEd90o71IApLylYzuQ+yJN4QTbTks7LhSIl4HZPlLt1ujfdK3nq0QWib+wav3LrWENcilqqrhPtGnsbFblCJfhCXDXVSIBiNxk24JG8EdePGtzRN85SNA26CMH32a4+4sVfelZmHdlW7Up0pztwUv6Jl3TFbWiRne5YkRy9y7FxCCwkGCyVqDOtmeRO991wP0y6LAb7tzGX3h4BMx+t96YBvUZD2Wvp0WmZ0laa86aiiuUcdqUeCfRbsnSkqZUGtUoyrPmDlIRVmazUYn2AK0gnAjXbEIksT/mG81vcKKfRLJDs4wdC3hLcEDlCuKQl+Xj3GR4E6EMf4/daBPeCakI/ccGHxjv7FrQ4WeyaQP02aK0FDUiLRXfHevswFp7dya5ek9o8KHEA3vVPtEauRt0OqWGG7/lP1K3NNmlMuiSFyDDuqF5VkNhNLsrhR8jlLVlsLrb0RKRzjDeQhHkmhi9yFKjF7J8ObZupLt/146hZijO9ja7zjH1snDr9fM+wMW/PK9mH6DnwOrbJnLNQYBcPV4znKZ/yvh1jOB6mIpmtkDyVLB3kYOVOEYRJXzYWf2ulT/umMzIFgxwVdYWL1urRkF0a5op9Dh/EgHmJjZ5vw8XHc0Xvx2Jr1eOK/0Fokapq/43kaxB4e7+NTaW0S8mfH0k8tLySNSVx6bl8uPXsz+/4F6uNrSxML3uF/76GaJxdsWh2kPravNeScqi99OpXXwJ0NlhkDhNg68JakvfdmTxngVUo1rKhitqP1U3bDc95xRG5bele9rxFXu1RVbQM9J1D0Ll1kTAkBOQQILhYVxaRHvzM3IBRopyED8q2gG3UHtVwXOtKVDN7g2ved5BpcshyFtQRzpkgF+tUGDnaVFdQDgzITWOW0BO+/fsydMglkmttIX6miEaJykDcBrmrYBj33ZEoTS6GZFCLOMl8VIhxGhx5UBmf+TSWDwZvBl2nTs9p+GvtJIUQXTp5k2QItMy21dqh6pqNVrdcx2xQQ17f66Jsj7H63XOgP51RkZMjaehV4a75ZoWui0ViqhM4ezQrjIUzxALsjjRFG8ynoazZ+OsMtHAh4cOktVYkBev5L39EQQqn94ISI2mfXFc+3W1Pp0OPWt32h5LpHQAhp1erhzGTYOIkz7kIPeq/APzz9H34Kh11xiMuKkY0HJi1zqxBpOhgZuFxZ5+gLVV7SQCozgHSwr0q7Tm6ciwq7wHUL7jSU+EY8jmm76ugaB3QrYYolKKrE+FqjOkiFFb1OQbnPg2iY5yeShof9ZYSGVt3uWpQtsmGagsOBIf4tFq7kbXshqR8Y7tdCgjbY+20wsHSIEuiFoMV0IXfznTGHYFlG1vQOvnczulm1FbfhDSymnZl6XweGvP5ATdOA5uSHtaIDQjx0pzTspm/fWQYXy54uWTIzOoC8KMRBM+ox1aS87nzGy8QSkWtentZX5btq43LXdQqjwsuCofkRoKCvALYrwrGhOUZeRGKBO4x+A27tEMOwivT5gKP6PPfMaIPEskWXQP8wxqs8zZdDReHwJlFdACjgTNdYaBECbDbMW9xSMSNLwL9kbge7ApHztHkje3XYzOesZ+hJQgU+WjSse2yx/uxPUOiBobJgDkoUe/r7dLt6Nt9tt3TVoJG7ydMmQGcuRPleBwx2ezsVpj0OHDK8YrAu8PyCsYKHOzElaC9sngy+/HZwFWc0EpoR8jxT8jQHOdire3bxorZblRVzST5PdOlJgbqurpIKVOdOg9eyQx6WGMyBbjDJDpxiur6aPXMIA5EyKb8a9VBrrQ+APqW1v/8WHMXfoEzY9oOe0sX4NcJGoAaA3dGymUWt8tCJorR7u0Cgz5h+97D26BKeq4KlxjeKmFcdQ5YbMByNXhn+2bg/bbCYYWn+h7exhTZID0AopxLhF6LISIoEtRXO22CJnR4AgbXJ7psAul+Chig7YdPqN3j2+FHmWGQP+zB+vMXdGfPde2TEgmTckMCW/9sFB+EgX8mesvUtq2bZij4RVVoY4jmjSuRkqxmzxyomV8/lG506m4Hmb5XGZcS5KI5jKJCfcitL33P7KIkuNmMHhWyFOB31E9cQxUEOm3bv+MEhKkgdW+TKwY+AYu1HgZ81MPal7THKMN54QaXOijfqRi19A72xPfi2gSQ72xYLxL0NChTTbZHZhxlVlRnj4yS4TeRmcopUw1sHPNYLFNQ0MJoVItU2aN0TjuM4EqhgNc/wjwDvZchy5BuJIK881rawk5QllnOixjE7yBdUvfoUAOMIIh9OXC0ZZ6OdC8ga/z6Sytj6T3INqP/tAM3ALXth4RNP+lR9B7N4koZrjADgNeobgqj7ZMiaAd1fiyU+uOf8VDHtIuuz1UounWtsf8tUA2lBL/j3zbEVhttkpmZf9Ib4cULP3DbM56s44iQ93imU6sauTkrOIK5MQ2NszrBHq36GK9RzTE6DSZCz8ic02HJAy8QwA9PQ5yIAJRdcApAGjwjLzoexMSY4494bhPfGoyYO3KIc9AR+1hFs6E+q2BZ/z158LvjG7zoWyVn8hXmRVRfJJCWPTQxanFLEYWCmPfcK4CO8YJSIsZmy/Ph1M+j95xssO0AtCuRWvjQ/jJk9w08UJ1ig2/vnictOE9RZx6NNFDlxcdT6VR0QuVFIUz7XfjdhYtgoxYzUYlzh5qtKIAWY+iiq+kISCToNAcmBF5v7oNMzNq0lHrCqJNkyPTVlQ9UDfaN/bXMHSHmZLI8TBEFXO335ofMY2YBiA5GvKpExgaK1NM5R6focCg56uFLAJjHPxv/F31OG3WUwIVF/zqnbbU/UnuAj4uubmT4y1m5jKoubZZX3meOwK69FZTELX4VkZf4Ymhs1YD1R1YywdPFHbp6YI6Ooo58rxs+KgxACXw6zXhdkzay85vKLzCKoLRRCr+f7WGbcd3nlGPvRdtqXJ9L2bpzsbse2S6Mk4qM6/Xai/F9cygkTbnKHlw7yslb9+5yFkNXks0Rnw5urqVqllIbA309FipGGQ/xKvYfNWT7VvHbK9R5UXAxXh0G1osFK4v9CBbXMj3d9TUZFCjdUga74oaA11hd6wEi4dZzLDSWCCgxgoYuRUbcDdiFgpPSxUmXR98eIhveAfqz3U+cBHnpiQ6OAet93k8FXOLEyQiDfbNfrztzkwkMjvzXgkxgAA8xMIGkRrNnzIBmITLLK4Nx0BLa/IKPGMlNPHv2pJKtSIwoXCs37pIjoSuj9ewLM1gFKrtpsx2JgqmdY68KcbRzpFoisrVnosTB7HnKsbQ8xcfBTSnu3GbvwmmflAkgOEZ56C+i5pvTcSjdTBYOum0l5A+OHRiljjvYxMsVu0F7JrBLRTwzk9EjDNNv6Qsukuk4SM2A9QXKnVFlAl5XALnJM9itsD+fxJBKGrnqWk5PVPJN0l8snqKYGqtrfLYQUv6CZ80EOBkzZUH7Si1zYjrWiOIMszRHqFoiRery0lsn7d7QCQT9i7osdlQ3y5ci+tkJOKpHnBkJYBMdjWxbof27SVqCoXlcCeHBUUb03sWaEmWFINZt/sdb/VO2K001t8zVxTguQGqyIsI+WIZ7uMzWXDeST1CrC/lwqQU5H/t+3nL95FOn/5ViA23Q5RPggJ3T2Y3Kt9TQYZv8R+pKrcc+FuKqroRgt2D3hDVAysQXIg1NcKNBn85lBc+xZqIVqwVNbVInA648pDEUqzjVZQnReqQ3Tw/INndYL80ujR8FaEB2q8URuL1wTI6x8CaZdBV54Ro0fmQqrMLJpL+dB8Uf+Wk2og3il81XHiDz1bOAFCv2PVm1VKLjtvOSUaYCx9fVgIiC6sQMsNYm1ex9zSoWS+GNZEKT1tDOAojBOTxltp8ImJ0zefDXuJ/AMTKx//1hQQUxsjJo/Xgv+Fug6O5NKf9L/0FScCTqU3jxcBHK9mjP2Bi7oZi6y+5SckNsvus67EesmQHyAEnPeRP/1cepM2Tc1/2WakI3L4SpfkyX/6kbvwwuJO2mVBFssJRqDj5h4/8/TYM/DxwaZDXiA5rwdU7LDUJ2d9d58YjSCsbeL+fVUrd1VwldsN1X9uPR3TQQzzyX2+qFMzVWQG8yxyy4wqbpjFc+tpVSarxYZ5vMf6SxzNqe9073JPLTwhmzHuFQ5L5t5DIzJH9gqekiL/1yZouOcZhIHRRGxywlC+T9SZHsw7cfKFizjDeuL7U8SfjVdHGvX7JT26eX5AoCKuj6Jhejtg6kTWbD43jRr2+htatU9VpnfVBq/c8QqPa/tfc0hg5nL2cwz6olgC/Rv/xzMlFIG/pdNG3iUEQ7b9NzoGcQi+TANk7DP0uUtgPu9qY1rGWacuMqYISSFKjWruvRJM+E9IvzJxLnmlDp8pHBUA3jYHzTYuVHlXqQmhJcBmrWYx7Xhe5YSx7tvgDJUgB+x10zqSIevtNBWsz7vomw9CrLp2UuPXWGh1az0g2qtsoI+AgI43ukWmzxaeCWSPx1jVgZV+0tXu2s8zcq/ph/UxsC8LZ+ieARldckoEc1dUtiZ2mfWeeY40ezaQRT7P4toCKGwjrCo52ZZSGi9Bkj1JZZ39xe2f3i4q8ihkp5zFvDkIrp72VR93SBCZ2tjc1Awa8cnsHGgno6d6YJP2eM6vuI83abzhNlHQYIPqcD8FWIVZs8J/hhzjDVTbA14ndmOBJ71dPNR3A+HC+4tYL++b2qcSIyLFEtxYWQ4qDUm1+Jc1eQse510TT4V3xk5aMZxxDmAAYK5OhUD+iEwe3beQQU8hYZvTSjjw1UxEJHDbalNnA/slljA+ecADnGxyDFjgAmWi0aTKVRH9UV2VSQZuMz00m89k805ed+HIhbaerHIIlW10qIuTjjgB4xcOYVvw+kqAEcdN+W8XTEHBZkMo8Hx4DGihIHNijLOMZyOY5CLQMhXdzHmR+ns21QSW1PKhXJIDrvTzPbi2o+6RJkLCD622eu111J56bIh8DHrspR+WkhNQ3/UyFPkGdiUBFHrX6oEdnYUFy1l8zgT64sN566Qrxyb9AqT78NK+Jk35b4XRG59T/Mewv258JYfq+XSI7XNnzMShQsQx2TvsDQwdSX4vzXi6XwnF0ZRgMXgMGdIkUzCzLBWLHYzS0q+PSokD/XuGYwrBauW4Sf/CKU/QhLRM26grhhGcyjJa+IgKlQNCZvnA5hs7kByhns/qe69MCSurgL3vKyctPpY8ebnewu85e0VFTZExJ1KPS3BC9zlLcJevU0RO3kAzPYOjBvuvQaC3nC47DHM6hVLj8/TrdwOu5aujRem8oIpnLPMiIuxsoo3k0fjUFNap2guvVQv8fO9naa1DIrD6KFcy7gw/LNjFA6hYkxi63ZiWdc+5FIm3mQ8+i3nfM2b2iQSA7GLDssbbhYAsqejDYxidK5/exNba9kGCj37SxphbP15GadOwPVHbhhBek7UiCTlBuNVZCQut8CXLP9zF9wXLzmJZUaERNjyErpZX59qxV4vOjgFy73nw6wMlSv83YXyTatAozFSyhyIsE6HPYK3VfsLMpqKsiNB2SUYHSIGuk3/XxpwgkVnJhbA/3vDPuDX2HOydh0fQ61+Dk4P9S7kEYAWO29YqXK3F+XNkO3RGnAfqTIVbGd6n2QgmEvT+0nEE8Mnxiy+v8D8rfc2V5HWwQ0gnx/FX7B0uMG6SM4ek/0EKvy1/9x5go+JhzYrdwvzr94I5B5hk+W4twG4fCRYfroQFZFfrytANtneZTqUPbCF2h2AJ1hkHcZwbbOZCdsWV16kH/dSsKjivJkLyOj568WBFqLLxadx16mI6il3I+6/+470dFILi9E90baTWLuY1JYo6sH6igqGs58UJNv7GVrWsB5681TToTX6j99GryEdmVDZawh6IQzDJCcQXqaZE5AsPg2U451EvU4TQbYObTORws3LeT/WYx+tWquDp43fltWuGIp93RPIsv3vAAodz/spOuF/hGOoUPzZWxHAmHodOFr+mIJ0cTL+Xt3UviwwEGku0xaDzQFJySRqHmTLSWvuZgARCP7GNJb0BrnBj6O1DTXKMdLZ+dN4FfqURypNT0dAms943Ut1WfjIM4erEMbxpXfM6qR5vDHAbbvZEGAracf8wUBpCttrv2vUDMHLnGzsLif783eKSfthmPSMa/53En+SHIu11nJyYKNlECSTueE/iB77hDN/dC0gSt/R58GS8ZYVbuzbeScF+nylCCP7t1t0f2mdRRR8cM9cxjkoWZ56Su60BayzEu+poQIgs7vp0m9C/9SmltSlcs7zw+ttuu7cHLHNUOv1+/lKysX+StK1mRlOms1s+uy97wsusUy8Q2b9mPW4sIf05TYUEIOXE4H3a0xpYXnmbGz7ZqaiZvV4xC9zxtMzFvX7qgKIowNcZVGpT1a0OJNi3HcMoi8JabPDavLj3ZptiqSotL98nFT3PDw/IH1MadjrWJr/Y+SKnAeYrll9sQO2h5PCnyD/mjldoEFMI+8OJoT0lKH4H6GucvUBZYxyzgmZPXFkU8iM3CHFggJ7AiD/MdJWYj6JI1S5emjQCx9FJHH3iYRFWABLnqyOVaTssd8tGJe9iv106+VltJvmoKmV/+IZUkHhgPph30MprD327wkxlEJAfqOfAaWyKKRrUZJ1l3QArkEQUkPOtoLtTo7hnf831Sg+boB4u4J8kdU3HWD3hUx93Uxj8tmCNaOeRJR9s9QbhFpz6vj9WJOeL1ICR/0IX1VFKKv2nVyh6YqBRTlcr0i+LtzhxkTG/sooLa3FEJfaNCIo3Hmb+I563Bn4uXJNxU21dlZFexwYJHHp1ojsRCJCJHo54H737SKjWdig9SwEb7f7HcTqqQwhCjtz3Np4GD0W3QTSyeXht6e9mJJ+20IFdReirINAp7EqPKmbN0bQ1Apg742W4JF4dkGwZc1KgrrWi/oIYiyCZKMtEtz9SSA3OlMBBdrW6Dk2n5s+pqXEsnqtyPEhVD6YDecsKplx3zO0HNScTeDjkmEAdcacXubXp9wkDB1HeQivCs/SkQarwTbpugw8Hd2AGJ+8LbjYVEdi2/06FAHQZTqNM3wISxCspBj8KYh5qU7TXhWc2wPCUFWwhLEJ6yJpM/D0m/AVpmZ1J5PR8YKJsvd6XiBPubT8WnnAuTTUifunhG3r+qBWAM3DYjJ+AjdtdfdfXme+s9iaGpDnbKRfVkBP/ZFnOQXI+F3f6kn1p7/wtPQKvCxBuyL+WZKP4f3xryjygwdXoswNPYBXdU8CsmTSAGaV5Z7b62lZq09N4sRwqQuT9QNC3GFe1zRrur3L9xFu5LxdrLLgW6kthoCrkOj1x1GHM4+DNKnVkarK9oJjsxM+8DPovyOQ0CFGQzi3BPAhSIRiatqyZLAD712kqxIrlFeEUVcuZdICoN8obpLnKS8uhzlpfiS3VYUtPjhfdw3cLiNm/6fCfxCIBoZ+CC2nyaIsm3s7bsb9rDCN09OLfn401uG/E3xrgUbbMfV1JdykGqoAHB7Pw99jG/WHT1VudINiHX5GJrs9IfiPowRIerA0ChTpFI0vXD6/k3NE8uJGJ8urrGkm/5LXDMa3IbQOeXVg/3y9RdC92WQ//IhDG3t3aQ8Ejxif7OFr+v6dVAXW+r7vfrQHbtpENmCMiqYBdFvmBp10GYtVxMYP6LQIwZjf9po6vfb1Uym+y9AnWR2AsLAQKYo3R/GL5rSlJeiGV+pgdSAP9n+Ol0MPZUHvA78WDu3MJ54VqSz6Vc0Udf63Lwffn6KR5bsuw+7r/T1n2cWAMZfSOjxqFnCQ0K+yB/pqRykeWy7zo+2kBFT9iyIqLNUuxiGpIfWqXCBTMVYukdg6saIGyOKTAWF6Gh+LdODVw3Yecie3motivrEXUjFwzxBkdxhNNo9/B22m4bgBH7ZXEFcTDOLvvyHYHqzgpxl4H92Yw/B16IDfu9e+dkLww36Bbbfm3qniLZD/Sdftit1eBdQPZ3Di9ZQovJkNQfiOoaj+2g+PiI9rc/vBFQNbPv6oN4JgkAfcZe7bgXKhbeYrky8zBbSED5Zri+bsFnPUxkP/URbpFrd2Mt6aFhJCiIaW29du0T4aWVxrbsiNfW6pVuHWFAHPI70zc0S+qdZO/YHkrcIlNvq5ZvKHSej2KfTj1QHVrCbveKg2OHgZdAvLEyn6pr1gTd45Vv0HBmHQHkhctiH9lZNjT1CscrPIbhfCm26E3sEG1PJGweRg6XGb3A=
Variant 1
DifficultyLevel
669
Question
Worked Solution
|
|
55 × ? |
= 15 |
? |
= 5515 |
? |
= 113 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 55 $\times$ ? | = 15 |
| ? | = $\dfrac{15}{55}$ |
| ? | = $\dfrac{3}{11}$ |
|
correctAnswer | |
Answers
U2FsdGVkX1/ciW3CG7OmOudjeeOJdO5gObKGReFvhPHaD+4sXoErKME41anslIOscYQqLJ13lGWIvxUf3opAA3bYjEYRq3ERVEXvxSjtgNuRNm11n3dXbA9HAG4qptFOrnCw3s3NG1wdImYA5h2ESn8/YyAMsu9hmzIvVtg6i/TgPDqClpTfyZG8tIdoB8t8kAMbGP8qGVzrHMQ8a1YdBCyYFsfa3eDr8Wh1cJjciLPOU3GkIUPDizyYBD0aNyiJ6JvvU1dnzg+NjruSMj2bLLhkxws5aaHp/KsWANWHtr9vmqnUkB70i9k+7Gr2PZgS6drCOxqnJVywpyPZEO2SzNvPYQNWUR2M9Bq7Est7LNKUr0tRs/VJ9jybxRkdbm8QHSPgS8srR95Wlwaq0nZaJU0Jez5zfqBbdPejufoCkriYJqSXed5icnDoyVV5hUiAaTNwFLo9+k71yZ9B2eNUhjX//SQshyIGwKYkyCeE/NA6hLa/0QniuEAc14qMl5hre104WKIpMan5rPZd7Wdi7dY6/FQUoCTBlkTPkT72OXV1Xa/z3wZH/z7B2zMxhtNFWjrpe5PcJoiMSPMmKKswdjgDjtLqOeBj5o2vGxA1tb/qyuBETmXcvNi3WQslN89mmuTva/Z22xqfw9F9+ki+sxhIe+Hwzyo4v7TYl3bZxmpwXT7YuBxyqKeIZzbLa2m2OfQvVsAbGJs8bzgvMqR0uv298y+dXX46d5Ti5GHhvcF7PZG051eR2AWfPawCKF5wvwVrokMuNrLxoddCfs2aJz92HiTpYk9uge6R7UKRN/Jct0NOMPGk7JyhaZj7Fgd1Q0yS6/A62apGDSUjdC8Z2r9A+npfkM114cZZvwUbc5wvpBYbNZKqtr5K4LiZgn8GBuOT29zI9o4InQf1SPASu0WSFv4Vjg/+hefbc2qmktZfymX9FmolLlkhF2IRo0qsidugsEJun1n3jBzyDHB1kkaP1DNlbabXoTzMhnha5KPBejrSegk46kF1v2IDvZaQEMi4fiIuojBAjTynDqU4ZmuaczyUb/K8vWwPPU/ncNALC/e5BamcLzcr1mu4PA4/ZL1Cbu9OdeXxRY5vkX6jiJTbfmr+quPZAUXqAcRKerfsZ+/BX9/Oe0PSr9TR/nNChLOju/Ljo++OxfMNtrLpKKF7cZ6H+8PFyEsWWodg6YHr52Tr6+BJq5a5I3X90/MC/AizAOuHwnEXY9qjMLol34dlXxaIPc1bXSkbDY5Q2yC3UhO3azlivh7SN7zbPdexQBy8uFs5vAjczEVdFJAh5f789gzWogimff8DjEMZ+j6F9pwMtjyAvtivQkyJXukZAH1CblrGlUSlxPyyEEFAn7lDwg+ZK+LDdSjVwRxcECTfJRnA4RAqw0CiYfbANZ1pwwP3bRpf5g+omO6UH8CZlmaDLc5vObZxJwn8cz1esR0HGzEmjQ/fYt2btcDNhxHAPW3x5g9/Dg0h0TaneRUZAQI/o9ZasmRmAfyz0zoa5WH2sXMzqmXGHvIPJwJSWXmuFMCgOeZwM6PX1SpUgp81feEZUAcxmKw+8GE72Hze/efIdbXIQfhqFvrdiDkUWDUNgg6GVEU+LUpvZJFHGHaWdWjdX6lLInIBgTcvqVEtOJA6Pw9XOVzp3ximFDIX7PP1rEba2CKPY1l+l6Fn9kKzXkJLcPoWZv7Qfr3Pwih8/Ufh73yA3Tyg1MyDQ49KE6q1su+qq2J23JVdIwSevQafid9ZEsndNzl14XKHT5QUcs17yZbPNCpVR9ZWeG8mK3bpA14MbdjPGqgpGCQiJVgi15d7ltKdK3O6eR346a9YqkB6j3Wl1JIXFtU1eEUpzc/ztcl/uZ3m0aFL+6bbL6ijgALutN2zQRcWa9ZF0JXmGC+o5aR7NuBondSSEfnPdJOkJ2UoJtZzuxhUTOmKryJYYF+yTA+glezXr5SuDN7/CKc7GrO+UNbRxguJe/iB0FtLFKL2+fWFssL4RsR0qhEBYIxrupZQdhOLoi1y4zqxNlfNQyAYbsZ9Iacyq7WdCscAc8782f/oxzomVQFlbRlw1Kye0zFoBcB3E6g2k/LGRHDHZm3BcUc3UPYkqwNrrOrMxZqFcl5iinb+cWQcu+aRs7Bw11U+z5iHO5UySdWIJMR68G0SEhH9mc2aaI7bKvIFiQegj7P7RzN6BOqtPIV12/dv5wwbYPHwY9Y3WZCJEqskHt5UqON4rfxUyoRGJ0QfnbGJ/MMOLoLcp5RdUu7MNUhZqYzrhayKoaFkopBIbYopIMENoAAuxBN4/Hok/oMdxVyQwWSgZn8DLPCIkYo/LQqWaUa7WZU3rbJZGj89YC0N4RUlv7ed9JzuUO1UzZlPkvG4mAebFsIMecn+dsy5jbrEXgjgo6p86KfiDpb5g0IqsUf+BFw/QyGmoLTB6LSrwPXF53DKfA9/qInudxlDeFa5URGsJi1BqrPd/mf1ueuxn82r665iY4pgtiR+Zot5stvdtC1HlohbYQt2AcSuFCqSdCLc8sQnUiur0NxWL+9WecwIRv/vNm4OeG/MEfqNYnH8jDzZW+Tun4oR8U+Fys09wAJkb5Swjf2EsRtCKpoMq5+vYFMxoWl5nSzzYLH+URuorhAuAjUCwaMCGQaMet552hHgEq660w+ZwKzGtCJvReM4SwMQxlxTpldnGOJpA9w+2bYE9/qA0KHrHnwX2L/yfbJBu3xYmGRtBLNPvi0vnnSgQ1gapqHTFqyO5pVucYkPd+D+D175xWHm10IIerMeqPUtGSx626VKPYDgCmdmTkQ1D8krQ/Tog4iFrjIRJeL2kbEsT6+HXeTJghqMD0NVsypFbMkYLZj3/jd5apQ8SDVBEEB5vTlNTOcJrfk2YfcoFpxc5WOzSa89ucmyjeX8a/zjttabr1lGBfJGegEVlIEbHJOOXpVuYJ18A2o7ubIsR7UI0E9vv4ijDWae6oh8K4u5LG5GJcLyQTwwVQWhKLnU+Q+2zKQcfk00jHGZ/kqzEdNpbY1y/ssyXNHjI6FAuQMgFqZuZDPaZX85wr/eCc81XGClTyQuKa45cOY09evrAOEfMfgWIvFQMfszaLhwpS6JDSt8W/Tc4qVXc+mZmCwC7rr29WUdxyWnhwCOYfn1kwmWqNtTszAUdccDrq1q2JnkloyQYJwFkZtAhHf1S/0OfV0Y4S2CAXvIJNIZAzlffQbK+Ldw8mXOZKRKIBOiyDkCjhZU1AbSSHOIgb8kXV2MkMhY+MYf7baOED9hg9/n2b+qJt2DQovdcJE5XxPewdNB9874a+a8zp8vb1ZR82lb/ynZHYToze9fXXODTlap9kjMCIqQMrgP77oNJGEVIid622OXQ/+JZj23aS6kdrJ4xlsr4NnjlTs5SNDHNJ23jn6AhKPhPLgIN6MUIwGVrLkv3j9BFc+B8vM718Kfp2KrkHXzSBmUzBz+HZdMGlDcCFONMqS/waXMSjNfVpPGlYOspSb90NSsuhT9XGvrOFjuMycKNo6gVgJOVrW7VjnSa3HjD7o1i5A+6WDzqCWmFdJ8tj5tgcBfKSAglXT2mncJs2aRFPS7FMA4frDiEg9BJeU3Aa1Ka0kDsVbWzrvBg5WQ7+Q2siJN43GxsQ+EMzuuoQPo7lIFFMyaOx5f7Ek1O5jd3eF3CF2KDHu0Bya73uaoPszPj2K0lydecS9KpDN9+3wa766yifuoYNWeT4CRLzQCEvtTGCMKyjIVyal9rlKpa6HvN0f0UWYnnnKeOo7GSj9hPQlDcKrKFO1hSSjO5a3cx8yZaYAPI781zgvTGiEW/YidOfzxTB5tHwlyZb6AdJrkf598S5riL8Q9KlOx9tAoOAHnEM9bDnchlrwjQGfUV+tlLJIDgMliYZQvBDqSRYxzojSh0p4qwhyaCkfQfQA8/IS4GNwd7K/TSMplHHDructcDA7ue7HxHNB2yL18+uSpSjjgdfT7dM1w0UXVGhKVRxQ6IbXl6cGlXxHU+T4Vi4yLn02jwYYSXU6gLxmkK8OCGOxpQHuiqI0OD0yivcsCJr2EA5cjlqU42cIF3sQRq5XpyQLyeaR7woZCzgH0Fa1+9mamipg+P5GjIEMdTYw8ArY3vs6UUO3hTYsHJVz5WMQlP0aEjXhtvmatY04YP2a2hoYp6l5AklkOYUvpTNi3a+JbAt57x2opZqNaDLJxCYGfceVruNWW/VQ6cHpef+h7LzGFRdSHmW/fbydYELClSmAr4wnvRwaVeogl4z0McZ+/3oN4msEv9XL9wbVH+ZpHcp4/VjKi+/uXsbptn6CjZAHqNPF+ql6O1BnX8PpM1Tz4W+3l+XcUP8w7zNqU6T6Y5VlEdzLRlCtxRviWkIrqAwsN0PLfdfjzVt5PROWuiMDXpqtWUtl7xzDit7cxl4djM9T7IbR3uEo4c7nLH3R+oUhnwS4m0BRtd150l7BGFI2bJUBpn4BHkLTlcAmZAHB3b3Ct7LdOOfnb0YB/lV+tHMVnyXKgSp9Q5d9wjlUDFo6SNhhUm7h4CvWsjO78N7evebBSKIrOqgzjjefd9C12LTpm/2c0kBMhB3kTNdbfx9lz4o4AI/YX1iw8bMoP0TDgUkKo9hU5HIGgrnlNI+s5vDR/ZkDxX3sicw0M3dBU0upvOFTGA+wtBlL/jbKQNaOhksAhnVOlkKKQPG32qFsd0+zjI576BslTck8Vg4oEwpIeikcnujrHx6zHWgvf2HkWxr86AJN2mKUA9/RVUCagnHNRLkggcJl76XVRrBLslSqJP6hFh4t9skUlQmZktbZyPjlvGeET6ibN76LrlTyyaORBVq1t9ryoHELXDfM/eJfGypRsuAFr0Oyp8bJTCfrdYo/n8DlW2PDDa1xE2NvNihFoFDpCwLF12ZP95qF3XqCAPrmacekoG3e+bARHFXwskluVVPBF6oQBiD6COGD7qaIhuZn4YmUmgxPOXo2t7lss5H0Oz3kfhbBvX9Tz4DXJsMahYoEnICPL/pjvKNqpRahc+k8fAUnFMb5DlEkPLyY2r+lrFYpyM7VanRkPlw7EUjDCpKINlnTw4fQMWJURmTPDC7JL4S7cFpZpJdk7cbL81S58OAJb4n+Fg93RulvRih3q2zSXMMoxSlxfg3M60fx4tc/xN4qHjgZKoRbDxrmeWGI5wfv4V1qspKi65uZWbQZGus1WyG8Me/hSjQj6QILjyVZkVok9jc2kURBh6yjihYe7ZsyixQE+zYJWZ7ushxZQzh+aJm05r0Sc5Mc3kYcNKrLWzqdP70JbLqZhrUwOVBP+e7U6BfmrLWbpNE8HhhkbPPCTEBr0W9pPT8NKcPxPp6wv6poKhrll4a253UO03zBwuBSOPC+mEn4+rWFkCbCnFdsMoYFyF0cPTp/3JqR8vueERj3tF9D+623zk/eCy6ZNOjrscVyabgqSj+xzo3ym+a0o4PAHhFDad5UQGcMHOwQIg6w2xNbaZsIStsX0qpCVj5COzUObigyhiISAjF4Yx8e88gbmQlgIiD13SxSR9wv0Iog5BVqbSi7jnapMXlwnTMWY2XMr/b0GCmA1YSfDKMeWmZF18zhpw6/VrhK3Rit1awXiQzjBKOmMwnmBKf3UBCaVe5o7bl/6iFHSO1Ku3uaJLdl52sk4NqbG0rRzRZIgpPvqhnV3DtXBBAeWrrcrn/agEZbb9JBzenzExCUvqI1OmBWPOz7zl3IXb6jON336EKGa7WxRfMWpI9LShU5RcmhyuYZskhJYo2tVc8j05H92PZkqmkaQ9sNmJHz/QlWcaIgWiUIr3xV2JXTfajauMsopsgJZrSHz54f0alUrroDRjm1O6dMOCFOmse5DRDt8oSn4gIQ/SQigoiR+oN8d6USiPqdtCVVFTWmi7z7V198uRba9Kw4lTUFyg0PRnlIIkRFTIHazZ3wMFR4QMUKl+yVtmU71oCV8+iop9PvKeF9yKM3AFW7aVAZqyjFe32epf8ybBzVGWVXTM35oGgSq3nvitbP3DXCVD5TT0KEtkrZijk+8Yn75vCJ8YKPG1DDPrKsOMP22aNI1EXLM94IwIxly3r3BUe1O7QOjBA7BwkeyXAIzz06mE7gzowV4VA8Yyf8txzn53ib3MMrjxdkkB8C+RijXoTQ39WjBGr4lsjdckzu8lCYA34P9+1FxkC/XOUE0ZTlU4dVT4h6Hf5uhPM0ooPJpB+8xl4Wedml6aVr4/tfW4WLrgQ5tdP7LpstBkh/Mlq3yruWfnD0wpeMX8j4+n7UHwyUTGaLPRn1WJ8cLpkPazt8iSVeQ1GdUfp6mL92/g2D1yZG0przsv0lUlADiiHjNZvnssjAQXwUi3fUsADA0cr6JdaULLo/whbLa0Iv5T66cHES++1tmWhbr6jfyoDHgI11qoIB+eEWXMMIQoxJRMwxu6fnAUyNEmvE/mDOtpQjwpbUvNdWdQeRig6RuhWCL/GdL7eikRjacHG5/AwH1veuo4RgBj9dNiUX97l9yMwmX/WADxIhedBK8u3A6mSZeVI/QtoNTGhYULR4nMyUA2cGeAhsmvNb/7/MBUIqQeMftvfUT9d029M5ZwSx2UsKAuRuyJy6vqaktYpxK3ngqr465MC70NqsD1Ml6JSakpSnoyJAEVytCb02/obLFKDEFBND67jUUwYts62/0VaE4nzmOBViDOPI3syNazgpsPIIQIxSXpfOtOLMRDCMPh/e7NVORW75FwgmpcKBK+BWtn6etdWns3i/EztcFlfB5MSyGBfmLSjmVIWPb7nDH0aFY9xwGEnRPHzflxysVkJa1DLYxyz6c24iq2S+1m5AKjH6Wx7r3m20X2m2Q/pxlwsJi9zT0KFRuzQ9zaG2plOpPhalry/oD549jjRha6RtX6j55dXBS32GBhDPMzltY4P0PrAQK+gz3CYcvMTyOiNPIMmTdMgBYatDIhTtzZn0qccKff3SKrbefNzXuDMBUxodWktXQ8Sz5hqRScY0Mx96tnylZzaqDbF+Gb6kN/mA0LgubGZuGs/tlUaRK5lHJSh+XLWsVOC6TAWbEvDvsWgbEQJzcOf3Yh46m/x+bTbXF6r1qA1jh8r8M1oOpFEohpUY9oTU+xmrzSkbZurbSoayyUbUImQSRXtjvnXmYBAHl9rTWmKxw8mqHqPiqvqqLLh/mNnaRkoI8fVf015gnztpstThtorFk36o/y97ytntJj3hwsjTSY70VIsWSRVdtFPO7MNfnIreQCAUs9QKXPJrdNcs+GI7T5El0vnUgvlAXxZM34Z6dyVVHtbxE/Aw1tidZWJZGPZBsNhHOgLULeA9ZRXMq+iiTOEZjJ3HahoRl0/mivVFCXTTq92vw42UIZp0damHHbmv+1y3QyGnUcvEeNyj6N4ZxJLca84WH8QDgCZ02pAQXT1AET0lY+8NAUDdvDfUCJZ7r3hhZgefzc53uq9RikuaCf9NFHFOgEbSFeln207GE7hzm9nI2SusuGuFTMarywv4XfonueEpVgz+TNltq7xSFRDt9nU7n35gd2ey7St3zmvEMU7GUltvemzVQWua24bV8eWcmyD8uMssiJfp+iweFDgR5/f+VF771fhLKf6BVuzqFLruN59BkEcOphUawvsOYdmeLyU6ubpR10UdZYDwWQN50RX0T2flkwD8zVhaxRTwyELF3eGFldhH2HgSykcoEMAUgJfn/yZs8gZ9ssJBD46G5xX/vVqK0MAc8F84PKDXblYHtQJx+PJPxTUIvVZyP/bDxghQnqwoeUhq7MFDETwatbLN580+mZI48MngIV00EpVuvmpvsdyiOGIPF78da8cqcVlb3qFfMVbqvmDWi4ewIaZLTS85A12y/mwzd5AM5BGO5iGQynHGCzikRQ2N3TAulOdfNbQEWSpQ5Gabh3yKsDaJRad4QeZr+YL+MOu5DgnIvswwboos9fYs18NBPdaTlnFPvBVgwxtnTRiNIUmQWKO8Fr821VMK+xNp/DiX4qqm/EW5CkRn1AoPaKZ380rxIPqkgrG5qCF7ge53u1F9CG51q8jaz+ujwUg3VGjh2ugjjwoDRfFTxzvlMjI1+3pKbLCohk+78YrOF9aoyqf6A2wGFEjafHNeoeE4d8Z9XlpGqJH9PAuOs73uUid2P116OsuoqIWqgt8fMcl5KXzbXvCePFdzdQHLnJYwtWhFz4xbqyfzVhK33DDNRpF+vg0WkI7GlBkxLV7GhhHzNV0vrERfF7Raa1WWIHFC0B/jvu5pRmEm5qhxVazcm1OqAZFtkRe5b3LzqeyOalZYAKKGrwJ/OJUlXCbdqYL4WX+s9eTiigQ7YXBUVzPw5j1w9y/GjF7HIMLnUqhqoC3cQdz1DWyF8JX3mxrqyCK41bwhsBMTGroooGHBDbMOeYtP9YnJaGyWPWN+/UuAdFWQfVs2MTzWrvYLwo4ws8SWVljNLmgrF6kN5cvQHkRbi+C6ibVeHpyOhoJmNWf5FHYYaS2qInTKHjHby2AL/wfVUcfduRGVRY83+Nrm2Ao9n/g6UdLJ1D/CORTnvQYHEau3cENRqu2/+HrZIgu+s8fqlOIJriL61bmF4vfu4DuMke9KmLFR5Up9QBh5dlLLnFm+G9i4JFUsP/1GglegeOiNiKAgo9NtA7FNhxl8yixClE2vNNbQksCoH37Mm74k9sSrvqwHyOQBRaNrBvmi1/XOptxDGyzxB64acz4VrM4ohayCqS+mAWwhirnMGrPcebtIXqr/wDuXV1m7/sJXXodL8l+MyuWLWsgT7kTSQuGtMvsvp6WME6oPRoAA1LZ0uCmDng90UzKLdYpxfso3BBs70/tNOwCS14xcnsx8RXYJzRJtBSrxVel0+vCYjyBW6xmAJscuPjW8yJqRI8kc0xIvkdMhSHNAi9IUPCgBhInmtoKfixHhZMX7LoOzPK3b8KPJ7PY6lpbEOAzvIS2ZdC76UoOzOCJg00+yas/GMYniIXTSjr/+kb57tT+WNdkX95kGRyxZe816QLZ4x3l9QJDhwoBtY/0gyPcuX/QAv9obVaWWJvkujKJIZqtDEixSiqXd5SjjDPwqKd6dhwCkx2yLFArWfdWOiKB3qPmj2sKtzdXiRk2xcTb5p/4CRYLpE9Emey6XtNNDhRT/RsG8b7DiSvy16lMd1O/GPrP71W3YDJbk/81h2l4LkzKnacpeZiln17J1/OJm6der7kI9mS3VXvwOgX1I5K7SP6UQyalVi5XqGQW3yezAm8yEk1oAjQ/Cbu6jRottoGFlRREq/QzWWLAP0DXndBm33m3moENDeD8ICvWSbFUgdI04khMVAG8R/ZjPpFtSJBLHkGj/JGGTG7bXfua5mnQxlg81MwWCNGifFKUPX0hwdlN1eDY6fRS/WlGLjUEWbPE44XYJfYVz+tFhyvnTXGruzMjHmHBE7bQ6Xi6xG3fFqbPLiyppS7GMp2yVpf2x4ZUvYfaQuUQh56+YZs+hRpSjs8hPc8dmH8gsDKpwxyfuaUkY6f330Cqvm+hjVQ0se86HlQLjOxAK429n3S0wBOSJFxMOqwdqwtN7ELfhj/XQugXnIL5OXWg0RYuGwTRXPqaDT99Nn9hUYHMkSXCm2yuqQT8NkUD6t2gSd0jkASeOseI/AZlT0OtcKcEEGyDODpy4jzkOeaK2CbsJmqG3r/CX6Ir/j4C4QJnjaoF8GHt8BDvrrdGcj+L0pVSLoRxa6o2Wml2yrQWSbyqlvOdq4UrmuwJ/su12uaX91e1Xs0osuwwuU3fQNK6kMq0qum5Srlb3I8WV+M6SGr2YoCqs9/X6smwtgv+QhwqECRTZLndpx0IThex/0Jrz5+kMYDlwxBMtWt63R7wORl4bpXXpaCUIs2ZVwTXhg+maU5TCLjVzQV6vI0uw1qS9eMCvOTa2IKbmv9Td2clf381fB2frkI1Yd+lXJuH8BVxNfQZ6Y9hwoj5/NX/af94eRyVsTWEVf0jwwyNpiFqm/udv1iRLDIXZ6z5l18BGLr/2nNtWBlh9aAdPaJbNb+9lCoQw/2t6Hi6l+wjPGLlmDVCYLWXM66CA6Auf72OZIyHGCoyrj4dktq5jxYr5gXLs+40TmhqB5KDf3vAYM3SOkaoes/XxGQxJU7HjBufkr7F6N3oA+WSsiSAxzQjCfIHlZup1fTAUvylMjrpy1g52OSukB9vz8AiIL/t1UygbEN1WCyelpjDhMDt4BvDS9LKTSMazLNLbEI4kdKAovN+UlrUw3RzuaP/3zgjiDZIZIFyDST5/xS2VoesxZvDvFi+Xf4amlvnY+SzAhFCLqaDQ+baelYiWGZWRO2rZ6NktxJCTIvQTFc4eby8s4voxU0aytORCoQPPPiWRKBGGMk9cllN4XgBD1fqaNM70ewQ9/YcsVnqwHmyVjkpCP8fPvqtlJq6VufqCuLfYK2Adld8ClpslgauI1Utp0vuTlAFHHfee8M+6FqgJglPVVCRTEnUunccIK3bTFxrAsZUrFp26VkyC5X2cvvc4R9Skoogv4Hv3S78PNTJ+T7e+YYJSLoz9xrs6RTgyI76FCeqcJs0FZhrONc/5dCMJiAl7y9kMm2+BBCwH00NgKyR5Lsvg5RXfGocm7W6t2omcHl74lCNe/l22Wugm6wBgjbBCK2EFyXNPOiq76wIu/n/LPWe2Vd8falRM3B6aEMIfkJ+AfD8zt7Wj+7y5afjn+FkI97YkBvpAWQQJhzkZjBML8Ium++F/4W3qskI5q6Ehq980ZDIZpV0+Qq+YqH+6ZZDVuH7VSgBaL2jsvOE+0DuxAni7769XQqx545LIrOfy6L/YAiJbenayw6OoL957Xm/wYNQVjgfpoYtJ9ysDRTNonPL6Y8dl042on+N9eReARFrooWWulLgap9BQIgE1jzLqMMqZ5z8eqNtZcvcmmD/Z88OAxC89L0WvQ+x3c55WTjXCsy9s9Dx/fO6HnKYq/KWfd3qOEli+pmnZ5qfm3rRm/5AiTQk8mtx5XzOdLcz31gd+mMrL5sIquPfnSPpgHbT0YfMA5qcL45kzczZwpdDLLppWTJGzZ/PP5Kz4jhLS/FOCeRdxbeKQCywjemO046EuDZ0LU5xWBB9J7r+fObOP4Eu7XNBHN+i0YMhbuwcWqLQRxJbwCpqK7kuNDpxrYRaqwcaXaKSXueg3/OlJs5+2R6X6KUppmRxea1Y7PS7EcNyf+bub459ANU9pexlMC+99pLxuiyBBQt7tTNkRIk/HF+NsiKJS/fC67HLVCf8nbPCno4LxMj2i5wXYPzAnLOb/AOV3YvksWXZZ7Kl/M0elcmDzRfHd4rm1pO4lk2btog7Ldz1mnHfliNnx6Q1f4it1cJf4cCMX9kj9qPTkc8aGI/aQRDueh93wZtz69XMhCPRfYkpr0KvZFHEKaA6i2jmpCyju6Zp2hjJ9MK1bhgYPTPJd+EDFi1tI8zoAzZlElFNq44K2rSxBPOmtd7lbIdIb2ZEaJwY12qXD2FWAJkeYLzeRsmJuTCf+Ad7cadQrqy4Uyn5nw0n/2k2ycuhT772y9SQQNBdw3w9A2NIHGSuNNnmX9oEP2cwQsC4WaGmMq9zwh7ybMfRVj8OAt0XyTkszcA05zUmdUgr+enULRDPGI8ElWx3abIi1Sot26UGl1n+kwKRNQC3Q61HCLY9rKkpZhn9GtgbAVLiXG80K46qUNd/Rb9DOfTIOx/NqOUzgyDdsftKYJRsvA8PPkQ9V0QlLmh/TENMmmYTSz5yzEmvlUJGfdd5dldqiPkp64g1BFsZjr5hkrebpefRyuI943la4/FIBwxnqhvB1lfXIVPdowlaa4SM7GwyDIBrQOk5xXUOqCOwpqNVOjyHmLodYmZ/NjQ8uToTD9PXHgl7AUTa/tQqqqCfdv2tgxmtQL+SJ8EqIuian3QtarJMCaWAH/unsCIAcY6/tLB/khjfcJH6MjPuzEauXDespV/N0zmK4cnuLCZ/uO7e3h5tsB2sWL3Y54e7JjBO15XKOSLa0ZiVg0mc8HXxqgOBvcRB6EqzHeB+beTr8jlBMkXwwhqdkf/C61Z3Wh8QWd9BqC1evMyJDFPt88WCz7MjiU9Zf63ilk9B+vS97RBEuNX+xzbZvasKvcTfq0qMPIyxHKju3Ex6Oju3eis7iFwAsmueNOv3uPyi8U5AC0vgQRRC+HhYY5iMOamSbj+G+uwuPGxRwHO0LguL2UTxNXG8Cbi2bw4cgy44+Ysglu7R+eqrEj16WFt9MQZkHKmLqFY9JhadggeZFUcaKD9jL+N05XGrKiOjBeuBFGtqc/s+LOTQv8+iGDFSnIymLA9mL+5R0gFvAt1HLpNKysSGImyO52QT+WFJztn8/P+9GjPwUAnaAkV+wbaG/feAkJRhRMbWUmoFsmnW51R2iKczj9KczCN2bVyOAgUZMtMX5ajMrEBtPKyb7BAU4lQalq+FVdYHUE2NOFhh/vJaWy9VdqeOPFLd/5din8n+QF6UREleXA+1raSHgAxK+3hrumCySqGSWGbgHy/XRLeH3053XkdgKoj/IjpzAZYFX/XbhDAnsvSXwZbvBUHiRPTl7ylkLeBZro2XK8eY9UzFm6yziYcgAPn22yoTkq7+NKWDeLREamekbeCarpAEe04aGWwbbJTZ5jTmdJlK2cF5iDkzldHWQA8hAtMGCkn5hnqn7GEINddb1uSm6DM1tcKRPkMQGdlln0jJrQNFBWnObWoqIyKmEVzUCvO+OzSXxQFn2wKmnmy2AGSEw2aJOLO3pin0xfyn56R2jmVdDkmTxZSTb/oIMbmcw7VE0m+sf5web0HdBoufpd/8pI2plKWsW6L4XQnJu/cgIVPpKpDMad7h2BQ1oGnN7dzdzFjvNFUeb9qI7SxSk0+0kGr+gCScK3EmG1NevCHO0RLbIRwnKfOkaZlS7oerAvjyCoOIZloXC8gqsp2DDiyPuA6Q9z2nU9cSgBGdrUg3HYPdOXMNwqpLQp0u7NqFzNRzyrgzx2O5ukRfwc8Wwu53GiXN2knLaJ0a65KO43tfVpntqgdiC7PBAv7NqOTiOFpFexgkcBlQJoV/jF0H0bmBTzB6WfR30AY7pCMqQyKQe1KB/vuMAA0Qz8DASjs7+5au1NDTHVBOYvzRpLt7UJJ7S5qJecU/DyccBj55mpchMbk1XSkAWuJg3E1iOANMeJf0ngpczbQk6hVgLcgC4ANK1lNWJfmTzgcZuMa4pBpZBIfDxyuZRbS5zbnARYs1C6gdxs+4DrfUa2QIj2PvPRyD9BZShXtnVpS/66qPoIqLnvu6UUQl1VJmNS0nkvlDhdM4/NIWahDQuEaVBVIRAaUPA13cl25qMQyj9vNIVsPKzwGIWDskSpO/dzpw65NCxvWpsnPJ7RcJ+v2jDvHUTNK7nPlS9E52aCJdLRPKKfgSJxqNeCm7WEI92pYZ1fTQ3E+LgBfDdS4pvoJtsfZlxp8/TTdTKdh9gl/NkYArd8CYDJxkipahWdzfkrAnuO5HOus9ZO5O+Vy+UUmNc4y3xq8sjBk1qlgNvc0/bV5e+meqUKWjpfmKYBors6SGVTfZWyFC99O+p0FmWqfKp5qQmioXuKwbOLNO3GJCpeis2tQCrbLdblxmaYr2w5a1TzZWJldq2YSU//jk7XwL7n0WrvVvQfnqoIio/ApA0TPltLMwlfb3Kvee65oTcdtZAvJxBpwGqtyKk3mNofgev/eIVEH4wQi8tJXuGNuoSQb8BrhUckuyS8eZMga7sX7UFvQQEXOkJNddznQ4z5MNyrRyy37jKhxlY+3zex0/3eRQTZsoXj8SHLa0HTVVuacjrzNruX9oVdGHTy6V8/DAPLnV2lblmdXjxRk+QwhfeTjbqxFl4I7K8BGNx/j42Gi7jmiDBkfhce+aIBKK3mTLcWB23KBl3YduOToR5UJ1RwK8ccaJIYYcHtS+28YftFysWLG17SREpTH1TwcSvnYs0YBHQUig+HhmJeULmgj0Q/s1VSRfFhnYio
Variant 2
DifficultyLevel
666
Question
Worked Solution
|
|
72 × ? |
= 60 |
? |
= 7260 |
? |
= 65 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 72 $\times$ ? | = 60 |
| ? | = $\dfrac{60}{72}$ |
| ? | = $\dfrac{5}{6}$ |
|
correctAnswer | |
Answers
U2FsdGVkX18MXMGYeRhQfINWnOjpR2BOBHTwGdmMSl6D6cnTwpl1wkBkRiJZc7mG/8HORNq/iP9loemzh5LS02v7GwIl8kskyz9dV4Gwjw688DQxKbxyYlSuiQVP0CDMlACvldQe9NWf+K6B6bkQ6aCCIahscFWx4dhayf5lqOfhgBf4uSXIwp0IFxK63vu/naVUs9ko7KxszaxDFVvFNDeLeCMAugBufTTmqKr6Unzl7Iy50aKSDELmDXWoi02GXDAEEhpmqZm89QpsU/pJHG130yic9Di9KE4IFAwVpX1hBnSay9GUFKoLyeQ6SXiKyBXfWFCgZ2Wqg4ypmdKyDQyRPo3U6NvPlrBA1iPADNYyq+uGm2SEGW1k04mchRvx9B4RmtrFPgm4ucLthdB9l8wAofdFgg7txWRFVEiCTGaGClggpSOpqeIHY9r9cbWX6G2HHVccztDnT1pMFRJrqMbDMfcUdzRU1qOQbJHDDubaJNKrtSYQ1lPRyX4rFNW8QEqunx3ptLHhY1VUM5h+koTfSLmOhAT+YlK+PnthBNPyPKNvoMPqXxmp2Zu2K1+XTDHZDIQms2jRMKUOqR3iCOchjYdUw08cBz2kFKUt6H6JZwvSYdvO5vo1IzlE73xoBTMXcEYRQjLagwbLeoHQsFAfuP4VGeBR/74NNW9jJmrjCv4rN3hGI7OZP96Ta0mXxs0KqGvI3YT8bUYocJC1OG167ECMzu4mUZRv57iVFdJsSdEBuBFhfO9AwwuyLdUSNG2tAAIBVXqPznG1QAj3Q9LxRZlWjw9uH5VgWvyvvHzTwqn4loWtj44D68T04wejRztqcK7K3+DRTLp8LadMC7rOE7pAirquKtK9P8l9chqyCocsLVldp8Koa2iKOPaGKPo0QRxEBgt+oWTUdnTEjp23c2kw8X7afqvTQ1fku4fgU5+ZsE0qORjwtBoxcVpDPHybC8/ijfD5r1taoqnBukXyj1E6saICswPyWKf1uYBrbcjK1YYcmht9lw11TPWhFkrw/yzC2EG2yt0fvj6hBwagk34PRVhS7hy0POuEnDWtnFwnFLhpyPDLJiCzYXaJpQCZchwhwCQOECdepd/l8ujjxHM/vFdWo4soK7F+1KoQLr0itAa5g9XThYvZ+gAMHS7t4BPstyz6GT7lSmxH/aJeOlC+4UiVU1DYjZ1w8bi/10pIIUA0Rb9dT1SlYlK3sjCuf8WOSXEno3igADGqA6TKcIGPytcZnKayayMaoOCeuQuQqaAXdyDnI0g/H7z1qSatLBgFwm9tZVsaYYlH39YgbPLrKer8bLsjsHT38JlA/b8KY/VzAvs10ELGhzt+j6xYxtrQw+Q01gdzTln3+6aftbzW7kfpj1wyggnMzeedSYn4QZQXJlJyUUEDLbK45ACgKqt80AlUm2UBqQC3sZBdvFi7DWgR6U8q8OkQplNEycc6SGgVwPrOzuoDgiZTSZ9uHqYXIRG+DFrvsrev1eeCz64s+Sqy2vUcvZNUhYaE1sKCS83BzqnuBWWTryBJyvLZk7t6Hax/jiTbhjLyZ4SCV79n4zwzmt/iWHXKJ5DDIznMv5KyAtFnz00OJkb8R4O50Lq0mexNmoGYnl4X1exNV7PsXljDZIkSHwtz5ZCfPCPig0fgA2FygvP3XbK+Lr6wx+a9tDpT4B6GqD4T4nyD/IENRkrh9AqV/1ecL5chRZjewx22fYM73C85Qqp9cVUPCyqqeuo+iVV2bGzAYRPoIRy2k7/OJRJOf9FUcRS/x6v+q+lecYZCE3w2fd4XI71RmkHQqQkKqvwElXr9E5xo7CXfZadTZnl304GHzKaEU/OiYcecY09bDxLI5ne8C3IPz7Dqmc3Q0dxkiy0nHIk+bE0Y2PheeOxdZCzIraOYJnq7Rb0BkPYK4fFVLRORcpYKEPLK8pHeIusNOxsvLu4tQYQn1Ecx3NCY9+P5NbgqLOoBHlhs1Z+zIV+EFkbZ4/uE9N/AIL3TZWCO361uF6SMRevOn5ZV7jy+pRW8Rua/ASu8hMaZzXfDqATz7C6rdzBexchgnPmqIB12GpVsY2VluR/JyRZ4cpYkqSKt3/+8zwYwOPNbdOwZkNRgARyBkRndmMboUOrC4MROhcXU2KSa4YnIHeG+9+IYekEq/rU6I4csp4/6XdoU513R9tyRZ1z+fh4Yc+fvzxeOqBJiDr/iV41hWgadFgZAKA+5pysa8hESYSD4/NiJI+K61GDD5e5G+hebuBEVrE2q0SZpxilpuqeLrpCVuDo9Gsq5I1tdffEbLaO6BOcus8Fi6zTuEYtUM6vANjujf/Ey19iMy3g7EhtyfZ5agxD5zPPVUfbuO4LOlcqSBfyf54JZPBsW7JSj0kbfio/mKfJ24TpV0L92BgthpF8RP+PCpPFTz+VLxWvHEQ5i/nRn94wUNEgCPnCYamlZ85aV0/jPQQrwHkh1nuiNiRF4hc/NfVI1LEGr2Pnm2bBmKpEpXImbwS5t9UgAbiU5EJ1MRHW5FJORTbhVKhpLa7hbcwdAxdJeLho8usfl/hAj8zF8IlHJGMOAYEc/jVI/0uzwKhaVltB6bRepqSJ4S0/vQfncZyLriHs1MoXT9Dt2c3+REKBPFAJsYNw27MW+c0PnIqB4IVj5lDL1wqmPpoIf+CHMq+p/NiJK6ozCZB1DlseoO2iWgSXbsP3UUCHmhLd+KKM4156F/M+Mcid4QfMjSQbuNZR1cWIEXQNODvbQ8KikhCQINOQY4AwscVT7L49q1Ne7um61Sekq1mAbQewJjhtd4JgjvHVUa+fW1srpX2YR4QqS1jj8J0L72igjZ7rs/+vaMlimGuHcMK2tHzULAeDhLlSVew1SQBDyeu0e8FEFAAqUpEim3Ae6Mtcu6a0MWDo40jsR4tV2U7ms1d+Q2Q3PcE4pfFAYWcZg3nzyEyEcfRCUAJfYYQ1vw/LnR9mb4Be/Ukjhfgo1tno87RbEJQu8GXwxSulbyU4k3MO3x6u6olGvkpVBFBtic7ybCZJQuGwcnITcRrtbLe7pMTMsdQqw8GFIU9G20tECgBzxIslkOhhoplsnCGwLl8VKCvcsaNKTb8K7eum6Y4e9etkx15PtDgvDY8fohJihvrxxaVfnoZKkWP18mp57+ltYbDm9DbZ/NuFQGFya3i7hT8NT9//2JAlmnPnKDV/klpHUjWvHpEDOAYeadKkY3oiYeVVBtoPaP/GJRVALWUkZVPwAa0jvMIXklS6iYuTGCmFMOWcj3bE+jeJT2JhI1ZFZXnlZLZ+WjlqrrQ4Vn3UAdBNvTDxvU/fKOhfQDMKxiI0CmhhgWPEJHwj9dmOVk36/KQBkqvKOVmDaHZYow4sYsxoWTFp3Tckl7Ux5iJoo8hZSxJCR8Pa0hu0mw8H37XsBYCCrQAottQhGSjfsp7xzbNE0UH/APFhxIxmNxY1kquz9lhmILWxGT/1uzjmzATrhxJZXskSoT3J00PaLUO72CbzwxCYdKc4muG4uvvn1x4xdcdvypPoP9/16zLnS/aqsn6lmLfewOow4h9STUcxdqPFrT0KO7xD0og3OBe05av65m/qJaNOlvKOZ+l5kMAiHv0CxggbXylAw5suXvP/aI4/3OdTb99Q1f1AFX+V4xS10xYv191GlZ/Op46TE8KWaFIO8uPwyCBSGQStAz1xPb1nc7q8mcYPgn9FpBpz2m02+rsYwxlTYRIxRv+xDAF+LCoMV0Po3ld6OA9RLqw+zcCT/Y1isXCxKwfwkjs0WXJ7xJbYx/P2m7peWOVz8K3PQ+/Hg1c3U8sKL6Sfv6yP0+VuIuZS81AVuUs5Idlof8+KCAMAD4SDGW2brYMdWGgIxt0iDFtCkR5fcLwwmH2kD0/c83GBBPkPkFpxuMf3Yndu6xkXC4m92WbScW3ZZocZJxi5dQTiCnmEeBdtbCoubhS85xdG9PDQ/Bwi/KGzH6l6V/+xAOeCa4xhw5HLm+W/C9HPDcSZ1qFG5hWy7W3zOqba+bRL8yw4XDiLwPhZHsrcqEODPbVSQSIt72sUvrA2MEedEZK+BuElnlfVWzOSDLD/nFTCGwl1uGu6vGf/149cb0k/yvXdB0K0nv++/1rxZEanTT8wwjhU9/dgbRTxVoLaZ7jcQxHf0BgfWaCAaLlQuk3yqbgdWy1ZJr0FNadALXrE7OBO6BFqUdf+G9w7i6vSCt4QyMM9zf9fO856smJB4MVTNHl2GOkC0X5SLb66zxu0zdnVFOmtBlgkCRzwCqJKCkPam1LI11ZPU7dMYf36po1Pk67GgFSdnqYFdIZBcW5HyO2J0V8YyHB1K3bfLOm849SYnqN269A4pzbXxDl1xwEy9tTnCbAJX2B2sVy41jLi/T5scjN165TbbBEHZ+KsdyOCCRM2QTv2jyETcjlBxqgDukJOTMRleRQvnUjzIprzKMJy280NR/9i70K5GeVZK9U2551Kxoniwp1CKMm8kVzPyv6dootFtgfMCnRkFuYSYM8qhWNezayUd98EPvUncOyP0YEaldRZbV//TpN6jSfXRMNIligdKwbrpLW+XewuQFfuIuOsE6ZZtyDbNFwF8jgHKGphx+BfUjZqCqdQ/cHuMU+4lmwTqQVl/3SowkH1jx7shtrqmXkwGeMvcNmR3SQIrzW31LThybgEI5OORkkPW/xsEmwiumXZNmYJfrea8pmBK28CvlI+taXFNmOxbug5erED/deWNZds6oSr2h8trvZmbu+TZmCD3Fbgf0OpD08e/IQ+y5GQJ1px7vmco9br0YGB9R6Q44ft8+Cmkjk/yp3WmXuK63DPMO++w9ZYtpExRU0Tud+lN4sQ47LABcPY/GlVvDssKNHLBoeJXYSZ0hs2AGnIZNM5RebDIxDGStCVkpP8NPJq0tZmOVzdU+vXiPeM/aSCAYxrNRlxF20tx2Nt8C7eOq9CzOKIQVziTGWeJ/JKRQy9xw7vCuXRQEDb0nBg4jvVXXMwioa2pHRsARhcxp0jokUg2oJYN99n0KXQxgVaHMNtsg0+l7EMFouneHQIA6hzSUKn26G1xLUtHl0ZM7iNukXf1WxHzZBWFwD8RYIjJcpwBbNlivLaOGGFPBhJDDra0bEFEv0plmBniQUlVJC16/pFgb122U8VnRmEHf4LVztgypMgxHzTdW/hcnna0fQjXDIKAYpDzbOowjo3sIRUEvKmueyR1IiemGNLzez/ETxadkyOMVCwh9UNB2VgStDfcEOBRRMaHuzgbGXApt1vIeZ93oz2Ug1kax7YuMnlELqO1x5FK7ZPf6g45NjgTgLS+P09xwMaMPJRLgT2+dBQlU1Iu/rfKpwjL7ycH4fQxohB5W0dHfnKUvdLADMkYm6jFCRBncIYYHo+boJ4KZ7T6DfSSAVoG7qU65dJXZ1DyMLkDO10tb/SGmu8ym5/dS3liVC2LJ84KhbQsEvnJgbk1AQtO4jDbpFM2tGCBaoUPTTaqmL7heMQOSQcJKrLYEBQ5zvrezla7CQLkQDHYEIcP0YWlWKF4AJtQkXSbiFrqmLJz6TdROPkTxfNkaM+pekucTDw2rP+IIU1l6l4DpCYWcyEd74ryM4RGHo/F4p8MXd220aMxny+22sFMUuyt0Y67m2I4edI3c9ONbvX3+EXyf0U7LwWSyDME7FETsMUf3JOmiN7I1H1wiYfPaRX2DVHVnwzf1suqsaAHN+F7t+/4l5WFO278ek4IzfgWzwFIDULq7rq9dyx1rELE7YN6PkZQsQ3ag4kg61W5jHacFDP0/bMm3i3waTWlO4HxcdBIgzEjJC9VrPiAnG9zoqukghkfiPHy0kpzxePsXipF5vVk2zZmXT+lvFeovo4spedvEYA83bUKqH7FYBSNM4zTchsSsWqJLy5zlbcB0jeKD1hlNvuLGaybD1SDhUyczfmQ3MkQie/4O7I3qT9m7Z3ekXvpe+2dxFJhZrCTkMvc7cUaJiQ96zZe14ZXcntWUdudPGE1FDB4G4QbRwZ4vnvgfnyR7IBVb878ssoImXpzdbC/kTdxM4tlev2HeqjC5rOrrjah+HYnzigHtKQis1ibUoAyg8A+nF0xUhsWzRKghR+7FnIr74t4rxV9UbMftaLR/rzQ6y1AzfAX8M9JnBJDlJx1W5MY/ywEPRLDoTlPu8mCCjR/FaieNqdov/p/MHdSuxegVHwE06eKAsCK1cGEqCWtfzkYvnqHoz+efHplll0+Aecmpc1WpS6sr2hfuiyZwTkAiXmEvxeR7sgXkhSxaZQrngYWPX0zGSw1uoLbD4chP6MdMyhhizB9SWfporBkWB7ZAKwbJV17DmqVJqZqo6OdoSlZ3aJGsEO7TXVhneo7cX0KnPXmWWkgnix/i+ITdC2FCInhvxe47BE9Dc5zp0Sd1QDp3VzeSDyggAofylZtKfd0ZrF2IVw3i92S+/QJKlnaciXqfE946cPoOojzoAZdFlV6Giu+5FRGj7GW2HPFpMdAhFruinhpwhUc7377EMFSejRA58+6cfVVRX+JwLQNIZpgA6tYSw3uuaKMpGxe0SuryFI9lfv991dyrtg1SuQTtDZinUrsFpweM3fVTCAXLL/cyCEBR7F+BWfKvxj4VnQPOn+pOsjjcQH8BqbZljb1FGfEQ7J+F/nrAy5NquPy/uG/0ClHoFla0QWOT6a+r5nAlQw78ZK6I/RhS4je/nA6U2pasMM7z3EdlKMIX1B/hLP7d/4N2QptVHFiBElPexfd4w7qDNx9Awzq/W7unlxZGlhPKv8akh9MowPQ9+uYNHkHdI2l3wpImlFnzYlyxHDE/WJR3O2THACYO3aE51GO4GXxes8hIvV1WjlZfdplOrhyAZ8JVCJzpFCrNpDu9pVD+qxjZYqx+cwGRBQBi+WoBkGsKnq9lStkiA1DzWznPComgkQrDWgwqFKgmyQV2pKEt3FCJ6xfzN61DuyzSuRfxJbbLRqRP+ypTIlufVtDhg1s46Uy6pkwCh9B6g8MY60nTI/bzatGu2REu0DII0mq3OQWca8HTLFvXh2GBJHWh+KwPYF5glSPrJvfnP2QUAhssQTFNd2LeC70KlqyQ3uGdAjckkzHQbWWhh42SIszmypmKMwR1htL5yLZIScigUXYinlrnRlqW4TLyUxJ8p0gYlPF1TKlAtO69ge9zYpVvK2/IoYmpmDw+6PEFPqROHx6hhBFF3EoBRpQRXK4XnGkIlB36/duZtbCCTaTKN1t8kjVnBHYO3hExNWhUKEAQ3EwFnirzq7AodftR6BkHv7WNUES4UgcU98A85TRVOHqVZe9F/5QsJ3WS6nSwlm4AX7xeNhvfPpiaAzzmzA+KcHWvCO51352t/sqjfm7/Rdsul3hcNZy14p5Lxr/PnIO3oYf7FsuTZGK0z9/OlPfYxLC/UL4DNg9Wk0WOEQQs9WY+Q/tprgy02hTbaJl2ofOnBzIBUUwriHNtQRrJfsIFfEgYX/AZPen0TmimSYRvwdFacwEd+GTX7Jt90+ApM74S4AOv3zi+fRrOwflOKyHXMMCjzIZmNsNbDsGifDzpGHPixLSWMzF2Szu2A3D3U1CXCYd6LmXhk/C5pvMQ/jqD9GsNzJgDVGqsla4HLu1j0SdY70NLhYZYDBInxJ/pbc5Gn9yvg31ys/TLBLrU8JBGTQ5C6PB7ocX0qWhIyvDF+0Zdrl0al3w/T4rBVF6IGw2BNTgFhOqZb5xVlfQxUvv+g9hcEWkVBpuAhFiUAK3Ja8h1w67LhyA23NoW8LeOfs8h2ghP21myAg4WgW6OSZqH4LUOA0tzvdGCY9Uszkf4szctCFOllULCrVGnqXQAxt/BNXLSZAtHjdVVCtHO+QQE7g29M2bhtFtR4wBqFwtVqrEjUxL+z2hq7LBnHh5p6PKzj2e4kOK/J7dr51aWYcgq24f+LVh9Vb3HleFohj/cvRpfhHssjETAMy8yOMnXGmn5dt0+LTwodAteWUKjc9vJJe3tPFsS6/61ZfjTP2wMAJDFPL2+Aw2Ncg3iPEMm6gOZlcfiJJD1ubSmNcwUy0n/BsK8K9nWmvvf7aiaV/OUdd11d9jeloWUgb7YW1NzPeCM5uKLLWTBEM100w8j7jgx2S9ZaH+O/R2OB2OMJjJMYXV85yBb2sy/+4oVjz0Rs1hCKmYP4mW1Ga8TWv0s31a6PcuhzXdF4D6iJ6hxiWJM69B+UdGeHg9ncyuz8J9aAWzbmYoOj82NHs1+v2n2MnflBb9VtmHn4eUUCZJ51M8Blu5d4M9KSc55treYCBQ5iSI8ElbdzoGtVslIBTBXk5z6LQuc73NW+rekUBp5PbwULGh229NfvAvV0iQFJf34gxrrSoatjS+qI3Z4GJwV1hntlKrFtB4jYKWdvAt8XgKYfn08OiB+byccbckZrcydYGsB0fZ5NljkAdQ0o22py4yp6TJ0P8MhIFPP3rDwsYEywDqJZwY5h+D97TC/I1RN9FRWPHkqMJPY/VLggjQBNh19u30kwpq01QIYDfgBtSgP7HbfEq1b6qhQgt70kMfEzk715sO/RQiY9YshLf+nsFdKe8Xih7qpqfYbsXCSAGce6n/XLhpGTK2mxls5ShoTZrlZWsnL1bYQUGMNqgkBOw5CZ8eTqVOZQ8rQXESryinvrr150Y2PH7Le1mgRmPY9iK6CTr1OphCbKjlHoMQ7NhgP/mQM5zZiBW/IrrFz3Jr04N9rSXqTpdTRk8oyBzV1YZrpwfaTU/YPFVFw0mlomT1ga4bwCefmH5ubSJxe4C3gP9z1K8NmcEVyNok8qjHlv+pty0/SIFIC2t35sDPKllC++NRgpF6MW+OUQLgKQwGCRJwaO4DHGJtU/F/MfpxKgru+NZKahFOMKztpL+zQUJB9tTKwt+pHhM0QRNfsDbMZhyVpM3cSumL+UAyzCPp8JkewZKzCBgrL5qr5a3N7fH74ltheB5tkfsooKXUBzMbLT8qUmRkmbQOBpEsuTgk5C0AUe9zgB+je+uCdWj79SISmjCAU+LlXsXdl1kvQd1fBKMCExYbyaF9xFHPOtEtCvqofzc3il/hrHjyi6+lSna7X1WWr5fX4D9rVXWfSt164M4lk5FxCwW4/r/adub2ymC5QB50Wepqk9r7P8kM+xPGGDPMV7Kl3H6m0iwlDGI/LZOUjQLF4p6dIbL1YSXdqvaVH6n7IATxiP915p+b+IBv4NDCKVhUataNi9Rw0dr3cLwvN3DMG/Xag8niop96nGHZ041O0P0lkmw3KqkSqsl5UIqymv7UfyJwM5jU3Lg4vFIRnaGm7mOtRgDYGWWbJhyolDGRRxm4lmtdwehtkgLzArEZt3QJ8hdcx4GrNRrSF54B4dGdMiqO8VrG4QMZDjYyyhsqhr0BZ3GEUBkNXkFWQO9CSU5IwI30rfyDXFyUTpL2LVm3E9NtUE5nZ6IaheaqzwlEVUbQ8n7yCL7hFz/+6eN0k8BfqGtaD+LtpOCMO+OXjqKBl395VPxTZP6R86EgQwq9aUrVfwoSjrBq8BEj5B7fxQDeAU4flQtlldBpBVW3+x+ubpMZ9qN1kJTxKTXLBtgAJINIvgKGSnx/cv/PV7PZb4PtKfN8hrM/Q2J02Ylxh+RTTCv/84uT/dpj0L7yiKF9GI3eFZsTiCl54mXQXGnVEBE9d98pdVc2QAbnDI+0vR8L6thoF70btkYNQgt6zXEsLQrcbXuTvQAIz6L/h9IPhsWJi6kzHI82EFDPJg1Qexp8xxJx/rOvMI5+7MfNdeIsrCwCruzivYqk7VqEfs18ITJK5f1eEi+XX5HEqKtdrUrj54Jk3lpw+PpKL0tyOxuty2+fYgUJZuDFrdeSi/lxigDaeBcWLA/4VWxqQIt131ZM9lldvlqVUhjkw1CQXCqqA7OKAire8xMHqyvEHjqnchJa544k8KdSpit1QG6TzBwsyMJ2zpz4UPDK71yQqSNKaDk/igYmFiWug+ZhrY6Ou/yyia+iQZa6RUod6uHgM1g0zrqbbuV8ZXAJ4jLoJdVDJn/9137PWKfSWneqoqqNgManvQeFtiEUWi0t3j5E0warQYxeugpOlPKoCr3FFQMTg4IRurNaxkJNcpPRStAet32OKa5NMhCMeCBG3t6sYXOQjnTdBm9JKLxeO6RB6GfJrRh+z2BN5Cctvi35DuQMN2VFSmiC7HZP+9fJyZxfMNJz5KoiYlFgcaR1fWq2vyHrTMUUx8YZCHfdPr2fs6hK+CjApZxS/7V+cemLsQTkfy/kKj7wskjPap9NekzY8TUWRvWOp/+4ZJdBVC2KvVhf1pkXbijPJaxX1OcqsSBqNh6f303bkCWDzJgrjdlGQLCz3yrcBvoIWq/MJ8bZU7ErWxA2LEO6VKjZNC0PeqvEbEkdHqPAQZ1tVDbL3T9Xy3980dFWIlmiXNjhRln80AbAlAIe/fo32jQcj8qQ9A8VCntmCn7z6hlYeUNx9d6LMxwcwbCdxlcn52Uq1wfh7AHWlkEWk6JpfrnLx92XbAPPiL1zKuyhIGeLgEg81o2CznhZDG6USAn8CH93Gy8b1YSQSbPJ9r5XMhXPSmiKsn2MeYZw4txbyY4/OtiUTlT9ifn/cjTd06q0YmJFOWItYGID7Es/1H9zMAQYbx9QgYCxQfCTa0FG9SfvA/DtcBoVgEeUC+Aeswd8S1VQVEwV2vQToPOO8hLeLowU0WX7c1FXxJ1cZnVTZQWZ5roY4+8P60+k1rBnqJa3IdRYswmPykUQSKytXfuk8cQ5SRgA2/bkia5OMBFn96NINEmkTtTfpIzs69BR44FJu9dCRlT11Z2zcEwjrS7OUx9B9yedRaMjvMIdLai9CY5Qwu32x/6GT3KfeP4x5G4kMy8bQQmGBkGF7pbi/2iVRljDxP7J4daIvbX+o1esrxrGq+GQUk5hegCUpGLjnKZprrqvSxsVjvnYW6MhrdUv97wvw81hMvDZWKdGtfOvj4CeG09J40KroEYj0jPwO4cI2e74RGzDbJjBnscze5JQEdVL1ZlFsfVFCja/s8q/iRK/zQ8zTKd2f/ckFuLGCexoZBwKHIMdBZuDt7T3X+eQXz3ZqopBdZcAlMuTcC/S+Z4hCdY569rzpGFTDyRDgdIKk0dFyMy54ylLj+0eKEVs0Xw4ofS6wGlqIJe9sXSi+/IJxqW3y8Sq9s+7AO5vydwDAqDEzctILPSQvYxBar9cqjP6CPApzaTiCC7PRhI6ivX5dC+POlo+9VCT2mpTahmTJygXIXTxt/LrtfK+6F/yYGUvh1Hwo/dNvoRHg6CoWDRCnBgal+OkJ4bVfdMMTZyohLGZayImzH5Mucy8zGwZ4krH7xWblO2lO5MQ/qlYd9gsJD6qeLKH6zzl1r+GNOXq/trSwno3xZ01ssQAhcs5SfStbuXwpijPFwrwnElaYNBIiFbXatuUB8RTT6th0N4PS3WET+uQkDY+FQTbu5qwk9J2+Gs67Dt7vtRWSRKkRsESX+kR2YQaGv9kpKS/phTbYEh1C4FZbSAoCtpOZNvfTMVHPTgmJqKsXASE6+CC4YE7PDxpLOqpy3W6PwHpB7G2mx/4uM2Oh3TzKPqyedrwflDIWyLmPyg31zYopMzArJ9eBDE8TSACd61IjYM8LLfvDSkjDFej7q28h4dWIw8flmMnxtLFIxZrCRlxRuL1IyTIdH2UpX7cCRdpDp7vPc+UlNtrENNB/A9j+gBrii6O5GfdJEzPeYUEmjsmyf4tDCyWz1mwMALp1AzY++6Rpg+fdveR/q9h47avNVgnfNxSwMGUgqhTX7tkiLj21bnYC6WYiJBsDBuKc06fHRiuwVBuEPM16K5un3dhc03Df60yrzHtcwqUbEBNuzjEBeLC6JCYLGy+7K2lrrjP4DTvJskjRFaLCkpg9qnqFH0lbiUT03IhiI31a+0Rwjvax4waqUrlxOgYUh/IeERsPFFB5JIn6gqzedKeTRty15n8dw1D2Xi34FdzbaSEsediHEMvqED2tjmhZMal4uxClIC+EH7jb64exhhY4Vq3g3Iz3la+F2GM2FnFNm50VQ1oywShFVbRO2ULHWNw659ZR4QpUCL5MhQfwKq3me0NPBH/bSfyDqa7J+25/sob75xTZaj9yBHlcDN1BI8RKXv5hdC7uhjIPkHae/L8Y/ug3G3nOtn/r1URifygkzbbS9quNZA/HY2Y1lcBREEUo/wiR/FHXhQD7xsAjOUcERmBvv7hAflV9DoMGIGmyyVyCAE73349pY6B9uKhuwD8FTqVx/39swDWdipzGsYstlx8Zlh27JkQWS3l1x2uycv4UErgIb9usfs8FlvUsGcxoxKhEHIc2afwtX+v/1RXyflrYyGZ4qnbNPe/xiGyjU/YYfEBB6ni+03huiUdNFyZdTTSw0fMQqWSRfM0IpG1pc6Z8YV63a1+UhD6aKuWhINkFs3jP0NsuN9CaiSohVw1XPPViwqNlPsZDduTqDFrZhNE2FCbiPmaj3Yvqef4dsaHZg7B/amNwhgvtXYvTZzH52fN3fBiiph0isaNsT5crradJeye+/8hiWieOhcIIuHjk373HopT2gEhBEAX2picRZowJEMsE9wPW3Rr24BDLsO38ZR1cn17uNhPz+8+w9wxH3ZGXAofKxu8LW7i+T7j88GrDtAuxF9YKOkSgn+fRQtpPPph+P6Atws0tYAWQ29DzAMV6hQsKaMAqtxmz2VMQ5x3F5SaAAxj3XKpljQcAux6fxve8NUwAtQFwipUUoSQwMuJDYlrTTmGbZyefVOZawSS7UVHV1aReygltzjdUKziT/hPC72dDRcnKYfbgNKgFqCBshcgC/PhAMm2v8X4PUUeHYvnvJGIuX1lprVNlnA/tNWeBDSCdFYoBr8uz5WyfYPx/sRHuTxANvpPxyRecl7R2/XOqNyhrdutMtCBIi/qHGghOPCzwlo+0QtUdlKbgvMnL7bbvHNyV5By4oEUJQgMdSR3ypuONObM47opY1hJJah0/CoiDlxmuidJaKZpKP8xZ8diOQGQu5A6aEDIqFqREmiPddXuOpDa4QGHktMR5gIKL1P32Xqjly4df2uBwkFF5lvd1ztu/WxyL5L+Ul6se7oA17u6IFm25Tm36h31XuRc9tvbABkVP+tX0OMM3CNHZioRbJY1LDJSBtC/y97mrz5oDSl3dzvvZ1SQSk8bsT8w8XmagvxZngraW9dC25vP9TFUEz/ZBUY2AQcwqdsX/j6nj8/1M87C5lAJ70nzuEU+ZZq5735vvw3tC70LdSG4L0how6vlsilZv+llfxj4lwpw1aTx3gTQS+JqXn24YJJT55HJifIGl8B+EOVCMCjHDqZkG9X2zqybCGcquXnezxsUyb/lLj6BVI9KQWZVCrt1dnmDJWCCgGrd4D4XOqY4KZZl59jSjFn3oa66x6FIbEfdbFftpNQbXButZDWb7i13A8WSIbEsw1irfmBAYJUiCR6Ggm17GjCMmhw2qEiVQaXowY3RZAbTl1q3DaiKYIo6liQgA5TAEEw0mi59l8KBVh29pM5cOyzfkQk7lsCBKKqdSzYckdqpA97fxhF+8ghD3M9XYxyy4ie3PNs2P1AHMrP+GQLO103jG0jHfUtwt85JphuH3TdhxLgPlcuYY3i2rc1m71t589Zldt8MqPMIty+tVzQBSv/TzDeE19UXzoQiTJiLXCWS3sEO/s5AWgoYl8ZStwwoPEnyNxvjtcr/oQ96bhDddb1a9eTQ3CRRqKI0w0OqDlSQG7zbTFSeLH6XsgDANJdD6PjxCnkeGpf8DcMqVBKkgsAJIN9/MoI0bI9Hq1nwKQTrzwHDXzdEICiDETrtJNf8n0n+D+yI0xu5ELkGRPHRjFTkk2NJOOgeAPsOCHUwxkRhf7hVGMYePSvkn2a1huPcQHZSLBi+EqC0P2ahCvLb7KQ1z09Wy32ti3rIeEJUkgRSXCpTyudChUMEuFJa3iP9Su7FCZBjV0UMeUP/r2bWavZPE5TU
Variant 3
DifficultyLevel
664
Question
Worked Solution
|
|
56 × ? |
= 35 |
? |
= 5635 |
? |
= 85 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 56 $\times$ ? | = 35 |
| ? | = $\dfrac{35}{56}$ |
| ? | = $\dfrac{5}{8}$ |
|
correctAnswer | |
Answers
U2FsdGVkX18zZknA4Ar9kFhzNSAlXg03qTFBtwEqyuhmmHf9+8pT29SEPrSvMp1NmVgAogm/XwEU+BbzsIe3DBpStFDgFmrrxL449cLAfqPEprEtG0gkDahxM7sjgmjOJ1KXwkVv4iXzZRBtIXBShoLPKAiLubGSxACfsdoKq6oEatHR8cSPdEWRYZDVDWSUpoL/zk5Y+zTe+jp0wlCo/LMo/jfiiLbstFzd9OKk/51c2k0qxKjcTfto1OzeqP+w5Q/2kJc0MRfc+6xRFO9vcyjqKrTZY7JRERo0XESIPBDGH/U6gCcUYFC6njjrRITjUq9MW41RFOFIUIBPs9kEX2yC+ngglDq5AMNSPD+j/BL+8JfV9CoeNbSH+P1JvPQtnzri5fVVQGmSveGUO6iXBmWIwvp28NtfEKyMXUm+mrz6TUjHIOrwtMrsoCBblJM4ArPLU/AizOF2fKi2aeZylWd4g9TM8lYBAAqys0ZCiCK3NvMDePeJm1rBzehq+QJmFIxd+ARxuUeTfPHGn0E6RXy0fj6NM4sSBeH94l2Sz3GgsjfU7FV/xmepbk8Wp2isjncfru5teQZCSkogPm2qPprw+RSbvqmho5jwti+H7X5YFw6Z8p3aBkTqxWJPWCQsj02cFhvcS9cRDEwtBPo394uh1Ix6cFo2UOSGRI6cOiwY6VCG/1BQX9Mh63SMRthQTISLeCW+Q3dnif8kZP1iJCm4DReA/GTaXOpW+0e+ME2KyFzS/O6xWo5LLWa2xnlH2QjwI4RAxL/X09lzVE7vFY1bhratiH0UGs6kKidiZo2hUgC9OK9bnSbakG5evtUZ1Drn58EzEifO1YZOVHXa9VJPYpsogJ3NYvNs6mxz6PLqTyTXsyMYQi574ishaxlhhc+Xez3Dzgk3XdvKy/uTDva1fhiUnBnmNFkF4ihqWNWYNeAsMFWD40CMArldW+itTKG3HjzZNaq2/tBP5aW2KZ7Qe+vDd1YXVGje7ar/4+17ZgSSsYRq23hpbSuCf0f0lP899xZ54kbcqWoYeCgMFcxnsUoH2l6Gj0nVmX0G45cTYEaqafUiy6OMvLhjArM3thh259wGjH2QvSyOclaeGJlQa+qn60ADZ/acgOXXXNhIndA54z9a0HqWYEt9Pt5IVk8eT8n3yN+gfiqRo4wRxh8oUX/El86+LuCGiPkK9a8IL/DxmLlA9DZpQ9o1/CwoHhH4kSWmSrpYNF/zlOUY9cwC+DsH1NvD8rCdDmoCR1F70z91SxZhBTjwe5MksC8yD8BZGyx1O7fiaJGIElXto3m8qL2qzThWMBz+BI7fzNEFbss6Dg0eN6CyRyDaDV5H6zQnqiY+mtPFloc/vD17liwGgTDyv3GCzYLK8Zy4Bs7FBNUtGwxLQthGqzfbpoPoE08zR9cuYy11UZgXh1Q5DWYCZm4QWrXcnljISwKt4MyqY9iz7Y9lw1oa2Y5OYZJxilLf1FXpBN+SKSTT6dNGuXfH2tfc1k59Q+nHF2TOFKo3r9LTVcQrTPjbR2AiTkiW8GBULyVJEiCCvcXz1ftClgDUID6Xy7niIoFXQJrr7goaPQ6zXV8Jga9vk061jHXK0YdJtQYdEjnTzrHf9PcyALOXiKLCWLO7H3hOW03klKJa4SXPraru+mEszLeECKdWaI5/R4do7Q/KH5vexkCopQ9/4FijEYSGuiQwN0GUKoPGT8snE0rtkNXZyq3uWPuQ49tYFcdOQPZwNiJtmShcbJo//6YWxprb7FRD5vhnCDr0wUOU9GqNDFgi5yYpYvk1atju+4AXlzQAgAqMSaUWSjFvPlhySRl5jSFl69bLTyychbIG05wpfsClNUJSSNSGeB+5hofK3jDw8mF+iUXMJ8vDtUFK3MuQMnVK9EVBOTNCa7XqtT9VFzgew/X1jQXQafBYpdZ+koLOE9xUzVzw1KNXNGocRqAYZHDmxS0+zUxXmA6TuFohy9hfBcEjzAc6GxhAR46ia7/Qk0+9FpYwB9uOsxQrUNuyH0e2ZZ8r0tTgqeRoIWSEiTQbk/7e8NNDqzoTgr085x9FqLmLb77tJjR+RBELi36d5Yr35jJQrC/vha5rxwigt9e9wkb5sS+MqFEja1seQm6uDGhqqnjsbYzMj65CcqtkFQejSJbOrM2rhgXcHFmyZn/CEi6m32ggmX7q4wttNR25iorPvFS6AxhJ5Xcx8lC1cmqb0EgdvtwUT2kqZI+AlXkf8WfSBjqibpv9WF7sgrAoWqkoQdZGNWTqGOOhaUOohDYFeDhgrwuuPLVmT/l5476p6fYcRep+pSpMoJTFeiSn2RNBMP4qT7uQgbsjuPPhywVAArUjLY/EQdyFm3Tg4m1RHiqzWqM65rZi2H6a3b1OXhcHgyUe11i50VWiIXRMYVu+eyrII7caEUGHCGykPg4j2DE3A/3bQXc28XFjsy7g7jORW+R/QILmF4x3SIDtH6BzC209GKrm3sgiCYzada0EbnT3k64ySkkjvu1qYWjg0CRoFsGkIXNSJav6NMtoH3JI4R9flDhv5TIWBNtKiEeHgc1gCrjKbJ0A0hAoY2SG302kYzVekAVnYt+GuCkc3I9z9wOGQhd/hy2UCbLyPr4gy7VibL9ukIHGZ5PCxCOXnwCjlLckfXGJqbJaB/KM4ieUMEaMvZPzFeR/eoQq9IwhLDkTEm8Y/4CMAqoOT2GYaaOC5Rn6rtQ8/kEl6hLpW1q/yPk7+0PjN1RR7vRUUJWYvARs7rW+S6i4qKh2hteKtRz16727FD897FTQEzYIcJs6epJXnbAf03JVEO4n8t6Go2CGoocXhPmOd5In7SCgG6L1+lWvRQw7qObWYvR1zPBv4aa+fbjK+jhGWpGqrjSS/BaI43bXlT9+HLHMiDGQuj9N+qNjnsJHjFH6BvP9B6Kk2tcU8mpPRd73lSqwzFuuGcJJqG1My5mVPhtiVk0NhgOVoLSVtSZQyR9q1bNMheIxD6dHRd/SgVx3utIOsHKjnYk6gvjBLyLmCzVL2uq4gp4gb+6oNxwitiW4gLVi2fOcz89kzdn7TfNq6y6j6PkRtWfehFfqg/1bIe1Jkg8Kg0IscpmPt1LqSJa4zdyoRMfrRFOhKtQ/yo2of5vj31qJvbbaJQi6DG1QL7ArtkGOFY0cIRLdY1TPClgmikrK067s4e8ILT6mE4cnKoFQvjqdy1oHJfhEl3o0FhAn9+wjCs3O1zFeFjEEzvi3EKB/Ty+q0ZQTo2b+LfvzGoZY7THPUyGjrxM1JVNkXZkmNMKGT2ZWJQJ6cuFMIBljuLFcStatLbon5m+zrSs7ExMELZ/7Zcf8KPuPZNK388/s5l5PRwAhHjRTD9jjsJ7//ddy4BH76e9EKW6768ZhhNWCBNw0avFFgrz6VhSZOzgvgcqrYJJV7J2EmJzneRL3AzSikbp4XyxobZbrBznvVvufr62Qk/dsSvyJnzlByKsuZCuQwSCzA7bSMzQiPbX3ha6N7AoN+kO9CHreaFofByg00uNg/wMY7XzmQdHLahNf4jndHxYoWJ7RGQT7zavXt1x4YQqSu3nvbXOTmG5/3Qb2Sp/R6IUdq2LSwX0ao6jYfF7odEvdU0/dO1YTz7LIsVfo89kn++ILYrVpNpTR2MgeE4jpOwtlKJGbOba25dC8Oo1uNCsbfQ08/QQOeg9y8TSlc32BZCQYztwq3j6ojThMgEIv0IYrp9mIVBC9u146vL8Y6fISXwrJXAm94+jvNNDsCzM0qsfPiWL8wQUN7JnYQHKxUU/GT/HeiRDsHVM6GWDFi49O9R2yRu9aeJmrryPff7MFdIZ0JMbJlsxxy97WA7ZHp57m153e2z7BDoV+QHabbcfdhFNtWykj7ijE9YNVYI7blaswriiwFxNxq7yexs91/PTC3yY0O4aRWwr2h9lllmaswMaxFshcsl/cgGr8euf3IU7sZIWEpxSxi+ay0tFdAEMRcXSvzyvkiVAZmiYfM+qzz9o6dsGVA4E5k0XKs9TP9AgX+E1YNwZf69zpVo7X/R8n9NfWJ1dJI3GbyMQsEatreDTB3/VyHQA5mnC0/fwsG5cRMxSTO+K5SnL6CwI6tF+6987v5OIrsfKnMBwq5SG+h1Fdu7JyCPD9jJ6Kb5uhQGVld/Yc6eR0ZMxe/Jacq5AJxs6hzdRydqxNQ/y1APrt0cWFRxwOn4ElJ5wqIrKTu7R7AiZrAYjIBgz7fKtTQes4uSQTi5zs0Ts0wSRc04XUP2UyJEBERsZGqcUPZfu1/bcDC+beXF4Kww4ZK6pHm8su1leQDWdnh/mAAA6Y1Stl4iQ41rbyzZG3SBwHDFfLlFluXktj9qlTRlW4itr6tSIg0PP6EUPUlXUACbkP/MOEmbnRJjBOID0vT6YEBDbPn+uySwn+IzslRZqIp93WR/9uWmGxkf5fXMz49NxsMasb5K0p6/IpRRYzYb3T61QwMBPLZbuh7OWxrvtx4ifSD2ZWBTzm7zZwuxAZA+vLQ5MdGyiZGV6RvSPjew5iU87klaVD9PhjtE3Ph/1k7dDMcmy1m2hEypCN2NritlEFirc4GxYkXDbJKTRyTzLWwXGiDmtC7rR5tsrsgURcesZMC4Xwkwn+v22RnnjQG9NCposSN3ssmOqFTV8fZYanbwn/ddjwz1STbv2SaAehj9q2yYpGK76s7kEJnCMpkyWzFQQg+r/6KKMO4vabivDGhtEJAXK4S/6KBe66ya9p0VqjNwXbD9beJNuZq3Jox7TduWBXSJ9xl0GqSyj6kSeoj1CmtiqV9UyNzuaabHQQlun2h24UHLDdAUcE0oBWRCyZWfXyQ/Ml9ZnTZkVGSRJLZuAdqxa2F/2JjLFDhq/NeGveGBYiCMrnOfcOQJe+Qdd8cqnuxhKASP7IImLRQEKOHhzAmpXya+fJNKDvKXaKtnd5zireZj8UnneNpJTydMeECdzhWt2a8EBd3jkqhoQ8Nedz6BWExTmLpgSCRB/hsotpGpN9GnSgk497QU09Q2srTE5v5inrHChX/bGXnA2xSlsYZqM47dwmsbFSRkH/CilckuPS07MBAsQWcDwQ9y7vFEpodeRlEYu6i9E5yydxpHYcRoK9KHiKCN683wlphu2kz6EHySwmrqHfJY0ssH2CAw39Tgwub1OUeqweeaaB1MhHC+Dh99ORldhP/Wq4bXbdYJdYa0dhKWIScVwfpOh+CJFpfh6PC950ZDh/I0S0Powbu3UK/J8SPEQYWvvDQ801Sav1W5iNxmAAhbQ2YFGOFM0SlBwkJ6zbH1x772JVzL8ue6Oue0eD+dHMrQy3i42kOwKN+YESNY9FJdg8yzgEkbvS4tBbo2F/iUYqbG96wVda860VOp+yXjtc3Ytg7sUFB6fNDx/0ylPxD8f9BUgGmJLEko2GoNyvoCfvBTYmnKXWMarDuCgv89AMm23o6NmSPqxcdnrZfHgs1/Rtgmpu8aVlm2d81fAzP0d6Y17QOr0B/QmrtdhWiqma0DGW6bXeDjyx+QXB6ujNf0ggMiGi7uG49dyq0CxjiU/PtxiwCX+fFg69/RAp30QTH+/LlnoVJKe7/S9Sn7S7f95RYVr67u5WKtFUPvIzrdloRGsXh86T4qrjIt9CDwW8ift9giHwxrLdMFLhULrKRkDwstgGGLr5XiILndISOccyv51A5Mmy2zOHk/pnRzk0Qmj/OHcNkjzLKIu1VRZzJtPDFRgDy0mSG0iLCC3AQqSMOHa2xSvRlRbgz7uIWfOULQESn0EqKFKADv4sWR2vlwRxFvVm6zIeJkhzeQ+Im61SdwlOdihQdlYSCVcEuKfryYO+POhpf3CLhif7vXDGVliSoER7XGCoTfuTI1WRtKyJXqzIB3FAO/s3Mnm/HuvECB01dgByZk37ng37GDVqM0iw72v0i3LEhigw4yG+/4koYAVl2Ee4bwWHvsz2IUiwNa3/IHlVqCZoFDaOMlvHhQYL7BfWwtz5cg9q3V1+T02X0qAco/TYOr1pIS25FXBonM3Dy+BqBw98przk9FLrYIfydN2xqHgZ9/5HqjEnXiR22ZI6YG9IVtW1Bn2kEjTjRtqEGrDwbwSB1fl3h/2WDcuBR6za0L0+87kE2o7eblLq5nMmCA5MbAT+J4UuYHLC7WDtzGheJKT8XIPHrLQT2B+KPi/C3UEDb98N0E3OQnI/4aOgg8xe39raHdIdDj4xUYb4A2NNuGmWB7NZhjnbeXQdCQm+M1gHt+GhlcT6sN8AilV0UPAmIL6z/XpCAbhD2RZGpDm/uaNDelQD2kwsNevWxG8K4XZu8HbfNYdQTMFxn6BVhasEoCTPdt2IkpO8s1PlpB9WFGsTmusehJ/0BdygNGOOUuUavRYKrdqPKn36meQ7g/WsbRj/NQWoCx8ed361moEtrY52HBv+aObHZMUgLWszeNGPIuxZpaBGWOAn/LybQ4U65bWILEnaOP4r/N5jcEKb0jd5/SjUPonN0cj5ZWhz1EpNmIV6qUWSVhmt4xxXe3T6RhzD7d3fGXj1GzSXg26jdE44OgB2VdEIwEaYPkz1V0IgGE96uS+OtMKMk7/gQlalwALy810PHlsk+AUcd2Y7cqYM2W6G4kMy7Vb6d5RpDzkTP5kE+yVeT6GN+LOI/6H6FhktGTeljPerB+oMXv8FlgpSSmvtaKNAfPKibrIjKLZh4ng41GX+ShNDU/RvnqJHNqDOVXVPWtQv5qPOTuCmsHyEExDgV7vvQcsyijzQA/Nz8r6RNpTeo9bt0zJqf0ok/LdYPse9lnCCzBURbrAT1Q2oNi2UuRsQzgIHzJdvU5DcmmF45aIhOQzIPiGe2DEwo+cb1wiZv5Qt+nKnC14v+wlt376FmIaEHLabLcP+nighUqsbvui3B2jfC4KWPMFpV+bnyhYg7bZppT9YBXla/QzOnTpirGkMfpVNNzH5sUMbgIadteb7+p/4116ZS05bG2aXdMYg3ErgCvzlFONTkqiBwjEe5GLIgUjMu3Hn6GqF+GLdZpCRiEEdn3qIgcEcAepoBZv0O08N6hlCGMTxx6ViaNIJELvAshsNBMPFCv3HS4RcREw8vdai1tsGzLdYu1SBE4Dilj2FPqAJZ/fQYYNxnYKgncr/wzvdaGfAFku+r9vHSwKieYVXNaHvlwJfXL5KrmYoQbHrUuGD9EYRKdntqYXmWnvG/+dm/oDOVRSbBQ9AxQNqs00nRXoFMoZB2D4kVSz0+oXsnxO+WZ8QVzfWpmL66j0+dugdOfDFlbZ2YRXEA+rleSXU334c6SwdqwN1JkZEVW/j0aENjkZMbLyqMpYRp2aP3PhOp0y4cfAV9SkOZ1kvHiX0fQyieGYFJyyEGgehUy4Vl7Q0riu0lgPBUriQqzurytFLeHzCXmz1hDoTt7lWg8WOOI3y/IblMTSBLw8Ithbvac4LiJ/n0E7ESMo+UzncU/0RU8CL8Zkd/6zm082rd9Ifb+IjprLOd2ri4eCFQ07APcdFpRu3Cygd5WKyu7gUUlVBcI2Uel50g9vBlB8D4LeBN0CoWugJJyYklXatjqU3A50DaGThgETDGNz7iVEerRmejUXIAHJVP8ZZ4HKzTTgi35ZXT+oSesC7e5rSfrTl4w47Xpj3+7UdEZfPZ3/Oal9pSj52Z05Z3SnOgD4t07+ZZTm7xd1tZkCFr6Dv3Cnuwm+beoUiJIRT/XzDni0YxYD5rIuGZp7o8pGK8synGomCvFx4hk/Kb+oAOOlS12+VSoYYJ7FoQxl3oWvEPMQYxc4NSgNt/kqWr98di3rMCsRz/u0WF1ueVYUOZMbv4i2bahi/Sh4abShcy7vRjnjuP0g2AuGBw/hleKR0RrVYGhsuizm4oZIH2WYijZy3AfQ0IiHjj4lQweOJ5z/YH3T6vkgLBiIwgncvKczva0r3rD0Wuh7tFr37mpk7HjgNhu6kZ0SI6AcOL5N08aHt55QjNxVZAlMXLHNYQQJP1CRzrtVigp6iZlgbEXAErXQQoBcMXj1QOKcvFfJdHqy29lRNphqsHiouPoyEEODnkJWtxLLM01/hs500A5MDDWtW6z8MJi70jMV+DAYzR3t9UL5EIJUhNb1JGNWL9UgP+NfeC/Nbsni0g4XmHYPHNbDYUhC1M6Lm4RKlklCw71bVxl8bAvQfDKaWdEsKpOevqeNa7/dwIbuoJBx2fAZ/4QJujuhu6WydBz4UlJbgMtP6y9GLJrT0dU9fWNrn7t4YoQn0wyQlrgozp3g6vR3gDAZh4LO8I/yjUSMt2CNJXyK3gdFc3dmFf4uq7eMAseDX4ZnFaeDrjzHCtDXPd8Yu9HaAvWZAXIUk8D0nVBkVUvyHtNajC1G9ns8aV8j827vcJTb+O2T+ywUCup/GAineKeRKQSfXys+tyMt4PMKaq7b0QrbS4iMw0yCvrqW5FmPIit6M8B8bKca4gJAfVuNHnm++fERmDhCwxOf0VP2WOeXue/96DTNBH6577vCfsLgAsV3vil2xnBWd71FrnLYNpAQRT6dVV6w5AyLeFtqKYtDkHv3XvZcMlMEO7JIzDnsbRFKKb/BrbTZPGP1/eoBj4ldXwfiChGps2WSV1MyllRrFnujrLpqSpHZMS9ecS/TH/gOaf+IUNJBoIJ1UxK0IpkFoDhVQ+VqbU/FpJg0fU5+y115+ew+WL84niQiJjrGflxjfISSBVhHFlUSOYrdT3Ih32CdBHkqaL+FcW19GG4q/E/KIW+PLmQ5kcqBf4pEk5lLm9FxRsBwi28HTx0Ugw/+/eEExR5nH7yujRd+8pUakqvzPtui41Z4FyixmwiVx8zGF9zgyMFAFawsylX0sRv1VMXoTVuDRdfffQbJbuIQ433qHRkliWs3wSCzaIdhrGXTLcBfpVvJ3Jxyq9+QH8WE/7ypF/7BuVEVg3Sdttz4dg7xPrwkqkaUvAOnWjhvwnfNnz4ZhJseYuVRFtejPgEZJVGJUcjoAqVMnOP+9JFJA9+m3sj2lLMVmBX7ps60i+dKPEa+P9OsOVqEHYxy4m97dOa5XdoB2A9GGNdO8uE8BnWvLG/eEopHsQbj8V44thJd8osCO9wl+1THZTvGfzU+jwXI64sCwbAfDmxEkLcaq2lmXSpxptKfb3W17/IOO8q7wNGmdhWwyZS3HOthDhT2xu5BiFjKHUX0CAzAjU2OxzVMT7ASEUEd/ShaUQYLeouxlHNr3wxcnzrHla2sOjByZkRyyiXMsktefxpU0qBsxGeLwvH1XJc9LRRoQmY1qOhwsJZpK4Ntx0FNb6ocquRpmyIep1sVQNKaYR6HvmOXNKGzMMJxulCvf2e/j0dqXKbr/lNl6i39n0LBLkXSv3/G3jG2iiu6uaPPmO9ghL8tAjL8vbllKRBixuuxSYbfMywe/06Ol3pMcD96UQHxE57/vcoxkCoEv8elZGO2kLCFVe/EM8Rh3pWRL2v46QqXBl1X6G2VYJQyw6eLKRlHjhy5wh4HQrh5lI8Sjh7FQqvIxauWH/2+5A727Z4Ldut90Sy6F6IreyD202XzBp3YoB1nwlv6tBUqZ9liSzZxEcZ9/vMwUiXKbHFJqzE0WY0AR6+uUtreCZBVYUIkL/8xAFD2V7fTIWJBsVW6P3ClFYF251btmicv8YBaDIvzFxXGglSaY7dUovYDEp1vxjFDUnU+XAECqB7BbSZde0mNwZn3zkfuY4Pso9Oy4tz/ujcV38fsQiO+9S4jbUypp962B//5JZoLZy5ulQ3kuvh6OoPRVg1+t9+g9zzkhsDwyqGIdQiRIKktV2DQG8ALSd3vk4PAq7xYHiOCh9JWd1H3KFnpCuyj8UH7eme+thBzMgr5evfW3nri+r8DdO6kfaA8m/1cRomEKy1uudwzJp22Y5XrDm0TY56+OS182xUMCLN7q5xzvtbwIVms3Iz7nlwfOXyVO7iACJUho1juE1qwcAYy43/L+jd+NoHharKMoo1DtCcOxB1WpYky5SzHlyo3NYSqvfb/pPoL0QipaQ07Jldtf3kazOO51gA9X1uPMGFB2ygVLMzqClVpT7ol6RPa/l1N70poCcenbhuw0Ll6w9Gn2ljFcshPK+V9BcPYiU/apugC0b8Tbd2D12Xp44xjPsko+gPQk158LeM3x0L5RRXkd+rAksk/NbgdSzcMKz/kc3ZZNlEa2SkL8UHFRgoIOJPmGIR+w0r6wBRnClaCu0b/Itua3N1rhAvqvwEan7bJkAIFzp8imrkhcqb3PFRH50vdP310OFcXWIJSb5+eg13xpsCOSe3HwDe5YuNkdS/nUW9JdXaNCvQJ0uj3IELVtRaSf2BrjDdAHlP0WrhH+C1bvE1JLCtGJcvy5Hhnv2j9Fro2IHiBiQ/KQySh1yRt6R58B1GbR2U2o2JIqAUO4cRXslwJbArKujUlw7U7K/TgexLzF1Ykv3uh+gbRgTqk4mvaUB5EbOwbPxyFg7lDeBNqudLw+7p2fcijzPoP03iWFLUumDWKoixs5zVDrNlqD0kFqGI3fG2Af16rZx5ghamzmTBZQicS9KEYJ3wu2ngqzVrQpf23Epw57vsenxpo5oZqw1jy2PcodLZIv70i6AufRsPfcTXNMHGeXoiVzKC54K1DZADKHCui0CTd7jOImZPuKasPckuKx/PCFrVbWgyA3/cW65/4iacj/UsiKbi+sNVrMB+K3Iic4DoR8fCJpMsxHjy1IilFPtOXo9v6T+QF8LB6N4HYlXjXses8zCKND/13SLOh7GRNUFc9NOjK/euRx0CaRt/WPCO0kvGtsYQFgDgZRcHez/Vn1fLHdmBW2Q+T5K9GQCWnbzaqkgZs+7Zs9cGM4lqq2qEhhYN9OsI4CUHt9CY5sAD9dWiMGbpaRv2x2y3Kda3agZb3/otO0u2BXoxrob9YR0f3fPB6kyBX+mqhMOeFwVHyNWNOhEKzjE1fjVDTGOb7cwkkXwuxYsrgRLFR82yjA1R6ItUdSnaWDoTAK02Wac+02hiaBoRP+EcTWGl0SwTUxvav8ijpp4+bXTHAWrsKX4SO5RoQhEki4H6UsbLslokwyag36JWgdXX+ZOHJosAn6rGSmgbc9NgllXGVY2YnHwbfd9jis/U1axTkUmdC3rAqmVWGlOEJ7ugt3M/8V6uxUdTnqF19MVgKjp6oHsRon/Bc+lfcgcqGb4kvD+n3ss/+ODiuwCHeiuVTsBsFCTXezY0CiLTOUeBAxqdx0XWabkm5ujuS/DHDfH4loGgUpOAwl3Rp2hCUjqx8QftjmeGvlUTOXjjDiTJh6MvKbUBkCIDuubROThmfPZlUlBhdliVnRoNbTvr1uyEGjKVzWG0vHeQVDiKJsAgWxCNIaKPny/TaoOPD6/0uJh4lav9Wv7J6UuJJzFc31jyhaY4URVUKo2UsWKmuLp2vr87TdifbtPpDkPa/VOfCjTIr529zYSE/iwOeHdelz4nrCri24YZ2qHTeX6FwWeECfQDuRWFv/uQPmnTShKoT0iO2pNzjfJbO4/gczMrTu5xAK+9XrbaNdc009lHouLoXVo28ETEBM1Ehz1PmN6Zvr+ejHGIQy+pY1glY1aGaU4M27GngIL1WHwFxe4hCHvJjrJE23RuFI3g56oCnK5u3hCvSIzRANjJIQMp3s8WmQoO60kbr4xW/84vKUV9UdcZwsVmv5+MVUBAxl7yLhMCU9M4LzjrcJOOY6ikSw8daAS2FxTQ8EBddl0KGIk3z5D7zWS98fg7gOQMJ0jbnwO8S28AjXqZRJQatCIcIq7FZOoWxkdZy3ZiqJ2FEW/qOn0OTellv7RMQBnvLVCBaoMTfMCvMNExS0/Gb1ePT8Wb9pP+WUJKm9lJQIRr6uZzZ63gQBjOF6AbOJ7bx4aEaGXXen7nm9z9QBI76DiJHImj7sdqnYtc5DSgqV6Pxoa4oW8Up6QG3hhDOoyheEe/X8BAHqePNFQACGi0XglLtEVoc/a1H1bfo7OUC20CfrieSAEM0uPGSKDQsnqYXwpbRyBUXwwTO2oj4f9d6jbBqhxMmKGmhwykRQVeTKDGF7VzjXI8AmlWdYadFzmuubTClybWHEARLa1pqA3u2PES24KpQTO7LswtYSY1UyWEq9a5/ekN72fM1631l1zC1A1s/uAOOuXw20L5idF2e6lcqtL0lckKTkPIU4Qognv/NA7VQtB3/KN7yRkI5BUong2eUcV48oAJz8pPXCj6ohTLELLovlzIGYI/XuXQhWkWoLv3nGkTwa5iG6YFphtBFpJhjMlSht/+DedaxSjaqxUTdrP1ZZilOyouCdy2R6p4I4vAKFoyp+eFOb5iMSEcQ1qSEbq3ABzaqFlv5k1dQXHeYsSSqQ5ztgOYwe2j8BdL3J18Cqn4Ct7/JkYhk8VuSOqrVEFwI6FOSXjpglrULoQ3aL2VI7kFwR7UP58qCORrQ5u3gtFdU7BVlbkJHxL2GQhIYPp+KjC8/6rSK6WmTl59YXGxhQeISGehcLMvd+fb1Zt693uFnq+DsEWlnM5yhQf/950bONo2m/5Z1PG8j1MeGk2k3L3ZfZZTLR+8pY1JCYEJeomIeLDQ21XGKRdqsKOCtwM9HAgIqp4Cg1SJjolAWtquY3uMEzmokxjWTMICgD6s8CZrHVUkt/evN5F0UTXQQBC1BIuA8qp365FlK4LwFx40+8PefO6MSwH/Ot9Msgl1nOiAcafIF7vV1k3V9TLwuyhN91rXkCbhfuurVan7MDlMMGoRQOTq7+9i5eTnNoySwMWr/454C1+WYuunnGAiPvf+uMXbVGCbxJViGK/VSZ8alf9VBeIujTcuRrnPzwH9OnAHGjqybn5QQtJvXFZ+GP0mUo3daaeRXcYK7iG/NVf+9grSi/wU1FiHV1A3M5BX+sQQguWLJD1AwZqoVBOngjK0z6zGb78u+kGa9vNbLErHnOvnOXa/+dfCsZPlHKWbL8PJkD7KPRdi6RFkxC67OP5f43kWPGvMJo5GV63RT/VRm+T/QQ+rNH0RS+2jT2LEVm9dQSgQSoN4xmZB0HbgWZvl0XTb60bqryLf6JO8XE2N8ssz9oPAeYB10VxYn0NjQO00g+dnBThk6wVMb3JbT7MtncTSBxLZ1CD/J3MEb9dRZtwmEDQ/2M04Vzg5L2QX+04Op2mtqF7C3vT2VvhuwvT2127an7EFjCoSiC8be5EV/OQaTf0x5NYnKbU79+vKrzL/wlOytbNsLvy6SaIeHYQs4dSDkgu4WD2stmj/tY31DCPwt6uO82yU+g0Eku0UU6zPUA2WJxDPKMpA2THBSL2zO0ECLY5z//YXTE3kP9sf+8tfzN1vSbyJiY5OCthDcGFGSoPy6sMJQybuqf5hODDByF/HND/hMS4xRLyRbhjzz4WOy51VsNC+wQTm7cdS41DBdILc/5UvV1PUPUu8DYek0WqxsgiiAWaOp2zKcVn/Yue4f98/NajYiTNHNBV4K1T4ovKJRr51DPa6gcHwVrMhulSKSRcwNuNfx34bEnOXujVc0CcZbQVaLl6ir9Vx+DXGJENrlWsxl5FtRRohsnrUWtQQNz+WQNeUpp17GiB2smODtUH62wPFYGZef1MqOmRZiKnNeJ+BZqyl036xdeEd0/CCUtf7Po7J99VWTGW3DHU3tDEagyGIBTvbKXFm295qNPIYxtaT1+qhhRoczE2fKOhlLF2CpJJT8BQJ1U5DP5RPt0+hBp0Vwp0wcGFbattw0g4TWscFjK+jO8+2Cq1D2imummiL4llWPp2LAZNeHJY8hudNPIDebG+VvUqsG30JuU3QSSWY8jvxdn9AVbAv51G2zmLvpSooNoYtekUsseYHroxZ5GjhbE0epSto+WEFukFf2udN5bUeD+XAw6LLlIKj+u8eTaEQbbVaMfasYF6NG12nxE1gVKtwlppisTBk/UP2lD+e3i7nXFVCW9N4MvklTmi9Kfo3aUb8PzFmCF5wjgG0IxXXmPyaIKghv3flIbjOjegMe5f54cGAyaG26K6ck9WRPiYVEfWjESfpy7TWr7E63idZSsCTy7W9VVcxhX4n7VBFE7ATqMBFvy7EATLR3k8qaSt3omh1UX56tjk38Qe7oF8PHKCHbpE3DBqLn2j/xNQKzBYUDkXujVLfAkTYJ/WXTyU4iks4GYoqn5oAwPwGmLAjs09yk4PyyVilM=
Variant 4
DifficultyLevel
664
Question
Worked Solution
|
|
250 × ? |
= 75 |
? |
= 25075 |
? |
= 103 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 250 $\times$ ? | = 75 |
| ? | = $\dfrac{75}{250}$ |
| ? | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18DIEf85KTF1HDSpRSazDhMGe+pjZyEQM5MhwgUmZ67Q/jDIFfNvhG0D1DgxJQPNIfdMbOBF1fgpub1t98QczZs0wEVyxTSRVZdO5o7o8cgW5KAq59dJv8B8HINQfibijaZCanJRAas7K2RTqUCVmCBj40/thXGCwvZ9NJthko0YjlDWbbQ5fOyyaT2Q2B1eD1KZuOcVYce3scliFT/VTENiR/98CjK8cne+zx9ypefw2T9gEJQXTYVbiWimMLR++9vRC0ZoQ+EVzYgJbagDlEB3n0VOaisk5ZLQRFeDyJOWr0L3W4lpV4qJWDThkEFiMqMlQqSz/JU9x9yPzGlAW2Rno2qwjbFznKYSTLBO2OrcAGeQ0FkLcJWefRP070uAMFN9GEreP+YIsmuQewwwmdunQNA0yyw9TvX7qrefWpTWkIreJjz6/I3g4nhN4ZCWRdmFqRouQ9+v8QOXSg9UITpgylCYwCaxCldDHO5HvR9XpTaV82/3XcIZaYu5usCb2hh3LL91YPofQcBASCa//NY53vYd7b8vMokGYaqrr7cqe3FM2teCKwh9G3qpPmdfOiZia2lO2cZFaJSe23G/H6GcR5NeE7TL4fzCYzCcLlJEstygHkrk3+wA8D4nM53hYmWIh8oyZ/v6e5EOqUyjoX0272Tjpu3xZbt1eluxPrNpB9tJtmUvL2jc5DgRxq4ugcHeV7fa6GUpzbE8Zd6jPId/SkdjWdPen6eRsQ0RaCyDbxHnhnhATk0x63xHu2z4/IZmdAOZyOyzcX2Ri65YuNfm+bUzVYGZahy3i2fYVJkoCrdhXkWVE3Z47nJKzWSEeTZSAP4MSzRfruVskAdoP09ulj2VPBdIDD9SQI76RszzwKDmd/CFNXS8CVa5qsCD1LATkjG8yxKbcjzxHBemPLHGiJGc2Rb9tDENyZH1ShJAWxGLJeiWYpBqIFSdsnByBRVCVtLIG8qosIfxk9aivOrUecQd265n/kbrQjoI9zCjLo2CzXqyvbLtzVP1DMlSPrfT9TllT0IJ3A4oQRJSiz/2lk7i7SrPirZufsT+8CCtIp8Et4Q/6ZoQZEnP7qunenLTTOX3Wo0Ez+hZNQHe+rDeGklRzHaTW5rSLfwstIAZkLzA1HhuRuFRQk4TVB7KZaNAvGOTDxwvNzB9rcNLXXbCYO0sKS/nTjjEPr3l1ao8gf3B1R4auRvQwjwvb4xowRl06s1wEvutwiSt+UWHMl1JnjZZ336IX0FtJJ2wmjyx6pZhQGnVOR3SYYU3BU7QmwU6ZNX4Vp4PNC9Hly2194VJS08rlPYMSEwwRRaSpifCoINAwI65nXuKyYwEo3ISxDD2tGwqJvqtJhz1TskQe4EW4amQX4TZur/k+fUiOUeo7EOhs5jbKxu1sGW19wOPW3IRVsDQcWul9L4+KYxhvE9+a5M4m7rVpC1B/sWiDSQT5ELcpYRGw9g8Zzw9z42hdCVACuRs6FCaqDqNn2Wx9HbkieGaeJwT4OexY1t0SKDhK2MvQDKEkNkkM++eAOTNvzK34VFRzA0GgKzceMTZsyz0zQlxUTvwajaZqWyDiD8IuCGPi/vp/oxd2f72CXiiyWm0Y2zWF89XhE0R6MOXgzu61ZleKrySz36I/I5IpLGrqzaeSHATirb7X6+8X+Ctd5G2UO+ix9CW0q4NuaxN/8nLg4wjcV0xYE7pYmSsOu18Htwim4H0i0Hwk3X33V0pWztoJmnSRYB0zg4HDSt7Y9dItijIT1Gr2fBZhWn7AYC6T7TT7Iu5izzD56+ESDLENMzCxxGF7wAC9giNgw5e5VsMAAugfWInorcDCRlSQ8G1bBiex5GPRu5jzxNi1dMlxoMB+myan/Ks04MQyNfXILxQUdItqJX88KJSsjEx6oKm5kWYZwgB/hjTUkcw/oUZEiqEKQgErsqlaxKRFYgJdHChaKKrasFESzFTNAn536AadVAtM0GpkByTT5rSFYn8vvebmLso0mXYhKi6KCJ/pCNakgmJXxNNvPhBsKd666sNxyqU+iT1aDRYqQzDboSpNPORdYsHjTr/C9V6mtb3sy1YlGfx2NdXwp4CLaWirCTUuzzTdIurn46j7hUTNnzjtTlph1gZtNYhwly9lSFbvtIQ8QIdaJLYF7b1JDr69lqDMyatSoSdDlurKmgMAKyDTxtGot2Aq8VKZghvqld+NzAiCvWI584dx5f48TiJL3WpjI4Bs68evpG0qQqpZIge/YzzgMqGOXqD0ONygx1vGKIqcqfPKc3dkf6hE9wheX2yLOgzC9p7x2FIjtihLHaXjvWBWsR6Q5onT0Y2RR+QaOj5VELSTc/YsKD2yWBFbaK+znC0GiRHA84ZNnotA0hiFRh45QtjKhAmekISQ9TbSfcTEVDDY5cFWaKW4ULzHg5UUCRTZObPofEWavrf49dvV4Ze9kI+KWTf/KsI/HMgN38A2Zj2K1g1+pIeRONQLhC8kp/zlxBk+O9K86w0Qm07aEWXowYYolC1oGPKkx595Cw7rFw98itV3g4S3WV5qmPQ6i1fHgH7fmv+psLQ5SoeCuSgnOyCsPXvNjnYeFGZ/e3jxAaHz5j/DsYTJCsVsRYXP6J0ouT6oEHjM+pcn9FZQEs0BRXSIXJd7LguQsG9ii2gBNzAQDRHN/Jw6Z8qgSPH92eHyRrinW9RRQUE28RWrkeZCERgobGlc2fBPlixBl18WhkrwGiBpTvjloSCZCEs0LHfb8OsD0tUobVqQV0tcWkeOEpZ1hlCJcCDAq2zJ9hOmhjSov0r8UsVUsV/1xmSBOoFzycqM3cnHZVUQq67VDK26ZJJ5eiDZohCJ9lgRXCy8Vjvqf8l2Xa3w3bcK2A9/gXgkevXsL/CWNKt9qDMnsHyeUr2fFB/FhqYvEO/WiyJftEqI1kjnhDxeI8yUUO0tNHPb0iDYlyYChkv2m3mk92qqiKLfMOdUwi8dvTAMj7DqcdXLGM+2MyjDbJer/ZSClDZ17kgOIBqffoiPdcSt0xjvBo2ZoYS1LxSesXu0eQXWktnKlx0vfJo0Sc0tuV6eqRnxDznVDNCfe1vupTWCxrRAbD7359RilyWr8dvu0+iVOkTypHgra3z/rghceBZUy9OUBmaWIGI4srCXpgmZIpWknCs2fom8V+6YSuzzlpipksYr8N34GqwkkQ3N3cx1UgRWnvbdL+7x1I1ZX7GEO4cuAvJYbL/FfZkBw48JkRPpKsXSylxTLrPA4+uMdB02EEz7hPYiBiPBHty6cVCIPUjrH9KPpXrZzawO3DrbI141lsUJydxkwuWaV8E32nKYxDzxmePMNXmI1ZfB/Eqio76ql+owkAyDUFAHkTAi/YrhFsukozmuUDMDtYk/46iRHi925mUXh5Pq/tf+pgV3MaQB9RHRRdSeELxsJxMtPrfXM25lPCBI7Y06efh/IpYLfHCmfqIEI0/s4xTMtCshgEsRBCKvUeof1ZN4v4LtKBgn94OUHTLCg1+qk4w1z7IquwbXxsSSxs8PWn4Fv73UsC8+5GkinIton6UiYwG0cuSp7INedcqo+Pa1gpOdZJh8RxsMGdCcVEpUemfuzY92/udY0cC2A7gWDn7Pv6FsldjwKwupjv4VlWVScGTZitdtyDJN3PCRTWDe+aHkHCkNMKojWcPhAgZeyPcVdL8jB835YtMBTWUCJmG4siBIlg9r9DgPtz7ZpjnhwqGonfQlxW0dCMKR8QhR6f+XmCZZ3fda7FutiBNM5o+8s2CWpWiQzjYrLap8n6zuP2suseGNs0rNKluMw75KjS/KQMAEgJ9FblF48j+xhw/Pb+EvQ+D+4OME84jp/nsXLswDuS/lYTgA7UR6CO8L/AdUyPJJ9oJZ+iwT4KptfUg8G5cGtaHJAPP2OdKrUkuIsX7o7FUjOo1wW6dktoE3syxXi4Bc3RFynxYfJK7HQkFPBGlGo007DSmdDvnA/6HW3Vozkpzy0mEEX5bY6Fx8uKAx5YGttj0NKNBGaujZ2sYTVmW+SCQui+neZ7KTSuSPdtnsrZ6KtRgbI7lpGrjerLqT3JmMyiy9GFauEE0YL52MnjGwIuS2TFYMuhyWJ3gvq/Q0YeGKaKWqKpYqyCOGsMSMUo6rDq/Z2UDPcXt7Ll3PqQKGOEhxpK5oaqpZHkXiwyNK0lStNBw4j+85A/pMchojHeYHOt8iTs5W9PmBPv5gcMwU4XoV4Ro7liop32hfIpo6qD1xgtYKM7mE0tQvwO+QgNxa4cDF2gvla7+FynZVt1/YQzhtyHuln+AevZP13/dtsxcdyQlLsD4FpLlP75MVNKRQGj1dfXPWud1FF0MZYqzPXGBQJqZ3+9NXQHV36/xPO+XFRUSIDeXVTpRZjcKulMbASc91r95VhBqRWxbHYQJHzC10qlmCeURuRs0cdeTI+P3KkWz0yCNOEPHTqW31Xn/jptFpkCPhCbPFr15qsCQZ0mIJ7FLXFtC0SY++JVgRm4P/NBEDYedSA8ki3M61sPhCjSTqbskiN8V6hjyVY5VnRcfBEmYIy0jasfLb64B1lOoY5hFwZIcmzUTtXdRl6DtQT+Y8IjB1gPxLiSP7oS0lRrCQpR+TPEw3lmqcVjHAd4h9n9SESpCJIEykKrj4mNhli4TiMwBCJKrL2IhBlzFYje8iHUow4QdPI4Xbii9CrKdQ13jGvYj/B7sFTLz+lCiLluGEdhdHL+lITVEW7NJcjwSOHLYs9sAUJH96uad2RRmllZL6e7SQeLK6Ht1ejtk/7y1OmgeqWCUBD02e0+WCMtM4DeqAp6ON+0LHi9EaitGD4B+FJV+jfS9eXCHrlBJWxpPkvcmuSfc8Ve4HXi6hJVmG2+K6/NrM4PMG5Y/waRWsz7SASksi1luMxM0+Is9vcT5NUDVejtrrQrmUygWYunyPjl0Hs7E5ScNdzVWC/o1FW6McnzEURzLe7QfDu8kpP8oHhUNE9Q0wNXGTq/vwhiC/DvF0NoWeb6R8DBYwtfPB78fo2uPr/XZcgEgLFXILnf77hrwoiRefwqbg4Kmz0fZyQ88of+fPKhpp13zmOcNbftCPEZvcnnoPLQjOHrk2D0CzJ6Nql4I32YSpBX5XVFDIgRBRtcFXFbx2tRVO5qFTZn5j44LAgYygbw4+2nnS1GUDv7dn6VGszqCTCRzsYAFdeiyrPcocoZaU4TqSf997Rt0J9MMArCl1ep18ZxKbM4+wClUul1y4yabSCKtB1CjT4ZXHeBdORRF6+IhLuMe2nJ9n6RvgouTJl5G6jMRc1wdBvl/uNPdaWk+STUDnt3bR1tTmUzeRZFvSqOIp0v+m9y2lL/5fLkYpl+aeagkOC+qFKxs2XFJiu+NBvAF/AIpXY/BMEUd97xYOkngKxDY3L0zz17RigRcbBjJefHkXBovbcgF1MiSfKWhnzAkPEKPGEcJmCO+lwBqDQCLkMKFEmVfFN1Ig/ZZsEsOCI/9/NRh2MZ8q3jnPlITXuPlwj/t3uuyhBsuF5pGC+KNLSdKs5q+PZQmapdDiMjOxQcLbpw9353UjLCsWseLMM3kZ6OXSnXYe839y23f6C/wSt6DU7PNGCQirAE3u6KdDyR4eZWJbH4EKB5NOeOk8dMt7RYiUSS4zLgfjaEukvE5TNrtfhqMymOoGlFPD2A2STBsplxFldTHvRQC32bOSj4CUziLCMlAdYJ2YtiZPKT2muoWrizPfQDEI9VtjlNvsCs9ylOavurbSpzFMtNtAa4UwkRMBEC2sLMSP03lbszXzaZvlsISpkD6rKtEa2Fn7rtb242yt2e3qFrstOgkeCHAnF2KNrxns3KWQQq/2snQ2HjpHA9RC0qa02ZIgWVrLafQi9X54Ggo+33753/OXsNVAu5RLk3QiXdluXblcYOrftctu5spxHFkV4MNjv8qOthnb8jtOXxfD8WI6GtAxCvTbGZVtVh84PSoCpBXnUjE2Y4LrK6AflfILfgBMi9gfoinGvw77WjUEbgtQqhqpqSkSsbVcAHnu+SzFdZY8gSdlGHmBdd+kXJ0GCLr9iyJeADrMXBGsDdhHarj2raO3rCoClXn7KxsATJGfHPlmA4BH49suE3vfAcYahpZw0LkdNJmGB6/qwBnx0jgikt9yrJ06o47Cioye53SsYCZYA8mmh+kWKXjSDm4CJz1vYxwVTc6Dei9flfC7uvohPqxwMiJLHqEVcFJcLarq5A4bX/5mdY+LBhGHB8z/Wte3dsjH2HtKVzesrzGTq/TaHRVeu6oBgYj+/ZzFbB0I61G2x2ej6lbGwx6dp7BWKz2T/Mu1Az/Yl54hnYIDmQ2v8lI5rHmiG6ik3Ldnb+V276kVJjbt396ELFcttESC6SD5KcjXj/X+UbUEP/r6OGlBtbJFZGQ7GZdB+beiap6H3exlhtXKk9zecDa40guFD4A/SxZoz2/D+aiJL69OkiJfGD1CxSXMSjH9livuVCo09HOF0VFoNzsBNq7EFt/XuWjIy3UfnkisPFPxmOHmZ4B9qEgQzr5rbKHKvS63dNqRnCOI8bVZibLEmrpXcunKqw5u5ytNw7OjV/ON2H/TVVFVXR5TQ4pH+XZTPoALv11UVYtwq8q8Fnxq4dhhzmTvbQncNX6nWVJRx3dU9E8G5cXBDNS1JzfMevtr3Pe0qOPXXowz+v4ZLgTKXORudnqr/WZ0HNBbqpUHc/RftgcFjEmQZAMiAjKzzOVbZKdaFkv6bwgNj/eHGBEAjAdvyeGV3pCyVSpqL06GQLYeYCvy3NCt8ZlY0VGz+zlktU06SQsxbP9xGoaZtNlP5VWC3R4snDIvHnIxM6vR6Yb6cHee2JKGzSeIi2wP8H7VTGiB1iqamZ8l1eYAXZAlCWgnwFKgMQCCjycr+nueXF9gilu3I2IS+fdzvUjiuPOjEvk4XbNNFwMcAq3CZcVpux/Fzlzzu1IzoZoQLxCjCpFV9YWWqmkAcGn6c4F8x7ZfEJkADtyirqp/HDT+8e1Iy0QBhu+fO0cd3KBVaNV9vyAK4kKIsaxQHIbArebp0+sbpiau0rbT+iyeEk6ughjGEKYjbF9NpksTzzEUm2LI+hQlfCDoWBJAIeDUaxlRmnIYP0QO4TxR5C3j9IJt72gWbcRq01GPVqUzRsTNzsESpOtCZehQZEkPHbr55iUnEmYQZkvk8BNSkQF9t0IdRdr1X6gI/43zFDW5PRWtM2YmYntUQA5foc1k4RuUce/TeIrOiqN4Zd2+QGzhBt/EqPtCOR55pyqaw/R5Vo8jbjv+Gq6Ukhb3lumXLFLv0EGD921OYmHmpvVwn2czXRjBfEPqF1ffv8g+7A5B7GbhaqrdrmmNl2m/UKrhF64KGsXMoClPKJgiDDj81g9J64x8RSQhaUEIhiepROYhaw1F++NG4YBzRPt1MAXQ2fCdCwihqNb56AdrxcE8zD8qotKRYNZfkA+1uqadM6tg737B7eMDKQLBlxY85Qu0OaFu44NPEqpOYQIfsNHu0bnIIvjPky2dqlTbixtuwnbjTvSbKVjw1XM34MuV9bXnwV9ttLz2w5HF8BJwk5XWesqPoMTfh5Z98Nw7vqFvBBlPDTkJNNzCqz5Vjx5oR1sZtpo4EKguBOsCe19Zq4VFP4BWyYx4Frvo3Du0BzPZ4jLNUBJsx+T5J3ej7n3A53YkmO2WnAP8hBrHl0tdVs1baYLf9MMiadfHRP+gIKrliXSXTqnV7z9WqxVenCjkZDNah37B3nyA9pogKcjNdu2UL07H9jmqSG6kzdeFiQhi9ss56jXdy9KqqzALCjFlAksdAkTfZ/NWsUzMyYVy6pmmCkv62quSEblG53+pSE2xyx37kUDUYJJNtbcQTXWp4NOFo6j9k8yWqQ5Vz/EI0c7u64As0OAB8wVUMO+/16oOOaltrJAQLYVxfkcG8djBayC2TOOFPdkvqLVI3C25UIPeu4NXHnXUsVZpkNQQiPPMffvFIitPu7M2LpTjwvQmPW2pNS9FxN3x9lqTC7ikJWfdcRwoPj1QnaCLphkDywcIdfMEKMFQdpqyMC0EphBIBU4akESvSKhFiTXShhvcTFa7nshgY4eljhONvxHpgiBf+sGQ0O58eeoH7VSeE77HtLBNadFjzR19w6f2abx8p28xu2afrjRfR7hw4zlwqhFoi2C5vhsyB3XqTvmXdAUWWZ1cgW8Tbo+nbrLhw+1hm63W/UfBvACHjtCIiuCK1Zg2/Pkf9kPjeU5szQ1pfRQIjtM6omXVsk7JmY9r9A1WmNiyoaqj69iAKhfDE3cU7qyoQAtpdnA/YF6XRBCAM9abZUdsfEizhivYy2cSaS0/5r5n9EtXSz8Ikuuu6QSHaQG+xaLUScNr67r8bm2xxeqCizO9zjffrSokx2K1yEi7wfeYyiF02Lw7WE2BWjLx0XIxbXu8QEN1moROiK8a3jJo/eHaq61m9CpBL+4FqhfXS64uH0/mpMYhg8Ht6fgjUv2cDUH4AGzfPI/RJGXe6KIL9PagGYqIenVf/bffVacEYkwETrwVcwVLHxsisGZe+1lMLcY/lMALZXeSptiF4ynYg59qtq6cb8N37S4ahqGcSDyyjnwYLdaP8nLrKE1hjt+C+8WM0t4w8zTE99hH4xArASaQBOxl39zFmg+F4brLstXN7EYWt3iB/wu+qxYV7dOMn2WDNenEH9k5wfTlW4TqofUhNTKMtokEN2LrtLSCO0MqytYIWAYmL3xNLVI8/t+Ypo3eB5SxDSS0b5ZHKaFjO/qumvuTobi7PBFukcGfIVEs6xpwazs1PhNyqA7Hr1mIuMeNPRln2YAaAa+Zk4p3ilgHqC1wFhzuKrZtZPpvaGJUzbWbackc3IeagaA2yKxGIGuI10Awe0YocLq6QeH4RUGFM+amsXnRecXqMd4sTXUv2xx64jrTojsPZv0DnlMd4IhJ2DH+TPCxx6wr/uDkOs/rxA52sSBdL1m7Za3Zf7btFrBTsH20YjPtiRKO0CmTTheR67Sz2ptI/CZeK1EuflXl+IiVkszbjO4jHD+zewnqOgW92PxAZsYlQhy6ratxmRo2pfyAxv4G5sIfn2VxXZ+4Fm8DJi/JAqBJFnWWnuJALGmXYhovwpC31mW6GguBLxxP5XDKgPsQKDbBfjAFeHFkXpN893ysp8r6btjCZKYGmPcx5d6XalGWpB4WGZnFNdj1gF7fn2wENKHfUipQeV3huZKeTWeZ7pkn2l298rM2J1WBnYxUVOA8UHfCCuzZ4zZetsYY0pipYiukiBEOHrNzcvajvmQOr+hC+NFSoLknD2JI5BA5vSjPG7JD72CPpKM7glR5AGQCuBcatgv43oWHtjQSJfrVxlj2UwkFUcej/64KzgraqxT/9+IhC/gIwp7u/HuxLMbkNeTVzuIKjY+hL56ebEP1QCh14cBDslRgL+ZuSn37Gf77x64s9JPU1SQw4lAFTTHt35USxJr3punlNemg425SOqCud7mPicyvAEn+bprYmqjrug9Se3oYQIrPQwLdhbg7AMXjOQ+OAPYgqF08aZjL9SXbVgK0GZ/abfMtLJJGKU7ANw2bfp3GNYNSrFfr8yl6LeDY53UIsa+bvdUN4Yi+FV3O+Oaer/dqXr2bn4v90cW2HyjF48jy20L3mpQcQkYesbHsGV5Vcg2sw3uuMiKDSL4pOF1ZM/rnCq52+AsowiD5WCt4y1t2qUGl2zEo3YW9ZjCzdNHgIpO6DqdU3NjkChF2pexs0ooEeymdrOV/CAqOuC5Ah2hQkfg8GBYoMPHMPSrJ0Z6kZIaE3U2jUjhHq2N7NxXfseDwBwrJXv0cm0VoJghDWAWixjlGwnXeM2RxM26IucJKuA3T0dHMATtH/l4I/ZVIUQh9WTe55QDGT00kptNPHae3Zlk5/W7BVlU6XPyC5Suvjw2efFvPfMtyLigj1thMPjer3xIi343G0hNP1h8UfCbUv1mB77MeNFru+OjlUtYqSWZg7kaBXLiuL9SonvpE8ZeSkNt8NinzX5H9L8B6TEx8QZFqDzmgYmlhmzIJMSAXEaw+H33cIg4WiCbyIu0hjuI7enPS1yeU3d1YS0kYbJxnX/oqVoIewESSrb8hs/pTepJLKjtB8a9HCTpUTObt8zL2DdJd+qIBLwx6WiJWeXn+Fe26OdYjqQyBraU5yGMBZH0Krk7k7NWMMJPcHHbrVLVCqmImEcbuEr4kV+fe80ikMMP4swtakBWFJhHlhSYaz+I6+n28NM0rlSw7GmYDJVDndoPN9ny5zUyVkM9HedhTmz3Q/qtT/1k/My3Xv2EQlgbyCTv5Sh5AaXZU+ZsQU1wNqHkuixcESHaxUkvLLuJxLkdu0HK0zI2qMLw2qStglqkbM8V1XWrRtwNStoQrxhJcKaaRsMo8QpXkcIUR5bhn/Tv3SrPUIrIn97H//2nx5+TE2QP/TA51UmKYw/fLi0Kn2a/GoO3wn7r6ouzU2m+IDV7B1JEnomDk1Ar7GbvvYtK8AqzRRM3R27j+zE0YKx3c7TU4051H9GiPr+oPEDzyAvuhogZfD+w/lnRjKgzHeh212rbybWzr/YAnjsRSJxcLpmuVnPbPrrIZhJ1UFt2qQ46bAyV4QvW4RKLDSYQd5tGr4NG4LSPqb40cOph7FpemLk7JJVSC0f9bW273Mfw4DWXQ/lbL33BbuGvxdYtPHPgG4hFRN7kTBdtrfaxn8wdQzGY6Gsg7guHiDH/uc7EgqzlorDVlqA9tWltZWcTiwsUivGG+MwAhjPvRBCaD7ecxfA/4C8ydZG0Qi8FXMTVcP8gl9sqwrN5rsqis8ViMhcNvUeDXGSWHLti7sZ5J0wGyCiQ+sZG4cDpojETcQBBnjVlHQ1TTy0DgP9lFUAkNPB6XWk2QfOGXf4WTH0mV+hNHNcRrUuhkVIZPY2SnForttPeD4FCfp7QXX5cJnec1DldOwnPNTiSnZA9UF9NG9EQqtZK/yj2P15PQgj05DnLUo+GfqZp3tcTA2tNGRh0dygb+uBVnS5AOkC92ts6Te4iOTrq3elz5dOArRD4MmnVN36wpcAcHHGcauVYqmEOYWuarfUqthwgQ/MJIkcgRp2Xnd5mSpvohGefcAYaBRjjXDYb7WCNhD3wGaR1lnpklUo3URwsbwvTtqpOHdwBNqa2S5btFIPSv+OIwXjlrb4ff7ZsFHqiWbTNUE2hBnrlZwOvhfUGJv3qXlE0Sc69DaNm/bJ0nwdjQAG0xkFtbPun1M2lntTg8NBvy2wWc6Dzen30iGG+1uAy1bKixYkIoNXPbXgXcQvsjy1JT+GXV/x/eUx1Klh6vADWCS1GQqxNWctd0SL2BRJyu4/2yxPbB8bNEY9SqrVzZrStslw8cArpPjjVeB2C9btOtBeiT3ukFFFS2sygu4kr9VGfKgdDFmB72s96/FTWp/q9hmARAkAp45fXem/xdPDRu25pb2xIlfEe65sIvqOYwzpcflv3HVw37ItHioHebE52kHHVl2p0uZuIwdZirAjWsxpfYhUpS/h3/UvQb6BD95wjJnT62xs/txjafqwrPhE3waxmmRHFD1+M8qGjUCGN9ZZZ4pFx/1WY9pYJfOvQ1W8y4WGWBsV+MGFZ5iEh8iCFy8Sd4x3qCeyIkd9rLUof1YKGmXBl9uVS6gy0ioaPO07Xw86q6L2/1i5acLuUewzfWgT0YRddAwYBSWuZ83Wr4HZL93gDk8ek80RES/KcyKPrHPT2pzlWW+9hYBdNz1AChw4A7vaVxtu4qYhkkndaxshdCvH30KPnDOZWQX6bFQ/MmP0bhLQ/fon6uqyuWBASsG8lA/9vRsRHTRfLjYn72a5b8S9yGpLpHzUWx0tW3+X1qG4tGOOZnypjmJBYDv76decImUbUSmyNZ3mcIUlTD/KjD+BLx5Crzrbjd+3GXqhwCnuRgb24h7RLAvT/7SJ4u8744LGCbEaRhz/J548voKEG12UvYC0u75GuD/EmEHYDN1kf8GzmCYuhIhtfF1T1Cv810/ONp23/5J2znJLgGbVHrAo+XM5nTok3rKu6sOkVlUNap9YxSW3gokJqskjJ0kZjlIIVVFYeq52AmOU8qfZN52XoCb8MNeS5GGG5HkylDsviyuatAZ6R81tMQIpjqfjQ9Mt3beqJbJoNvU8mUeIKfDz6c2Ajll4zK5NgAAfixHCYg+NLEYCybr4D/PmcGC0eP7V9ombFURFia8A+NjTCrrcTQymIe+uCwz5x42lXM8y0UZCP8Aie0feCP72hs5UEHLRlO2DF1RgmIALGfayn+vo9OBCtXl8t5qc471Il3421YxSkxqmeji1D2Da8bJ6FuNNsEpyaewRDG8mBeSSjLiL6I5GrcQLvv2wHX+xi5j26AhRUXzyx2vGG6RJqEr1DMO+33TSO7onyJ6z17kUKZHTbXPHmOVp+xXYmcPFKYifaunCsz5J84PxMiOu0b2dF6E6AgllfyOyo1jXIqmkJR/vx8zd9Igvd993lVlSc+bWpeCvD3p5PHGEUKXv69qz7O/l9sSJJj+UyY7+jpi8PQNzxfEMXML1OJRnkd3WkMYtvyKl5fTRQR5onitUhQsiZTCp67pigQ+mJG0fGCEWbg3XtS+0Ky3ObMaZyEV1ZGK9ugv83FvkpNEFMHSvpyW1hvnoQrmEO+vMQs+/fbbwImfyEOGLot7oU0XGve9BGD+81vce7AlI1PMAGCx7cRjhtN0K+6oBtTK/1/QSxprbZbTCpfyQGgAt3j2ySxJdgZlhVSKjfZCltkMKOAL+btWeWUQGv5Rr7av3OTQ5T+ngnT+WaZBWptwc654JmCkZ+Gxfrzr443qhTQBTTKD6hhGfmWQHF1zivFT075hAK05W7IIGajsEi9mG9Rt5ChzkRMZJqQJnNIPu3Sb8fphfic0+4Y+070QMq5fOoPXFTbp8c6+1BovDOzz0CQlrB4wf7uGd7bU3C01VMh207o1SPrcnOuxlQqiHPglNabVc7HruzDrEwkasmVJg5dCnzfGhDpoXQOV48CuvQVGN1CaRgjTSVXOGn6WmKvrCARmXjBRpmEHGjQsExwzV6L8eQrUu0zFp5bhu/uo4sXakV6LKo2KtDps8gj/TKr2XZnGvnBc4G5DbVrIOEqufgWdrMkdfqXMEuzx3yWc4PccULmeVs5HYXJM8E1hJawQlW5+zacSeYVcUSXhDvMrL+ATS8ACuH6BBoIFYfcy7FHsv+ExzcS+LaHxROn572YdhU4hryCe3pKGcnrDTYE31+OxpRpAcOmEbnEeRQGebL/FkViNaq2iuIykWFT1u17YGnsxIG/TRDGZLA3B613HYommpfBGS62fKM5CS+xSrG8kJ5r1JmEkb60jXSZauRLN/RJNa/guNdc7cBW0yzTEiYXUZUQ7pUvvTqax3Zrkhw2MJMqz5/zCFxxES0WHhq2zHuap9fAGAwnvnfU6U5Nkv9rjr5m2zU0yUFT1mJdGUR4F1MyAFwVLlG6oLyYFURu+Rm8RCG1VWiqb4N4owz7nspg0O0RXpvV5Yb8a7E6yW6+u5sO5wbwXln/LZG+5n3gveMVMhjKVq/TXN/LLdzFs4eZIt7tjztYntN02OaAmhISC338KQpHKFhUGLud5dx0bXs/Dk1AiiMyV+1s0WkssYKuQ+2FoDuuduzJOt3AcZTXtbwCNRUbWaGsbZIEueePx/VIkL6hiAk/TAhT3mD7umMvc4VyG8vSi3UzY0+RZpRXVSclX3gTDJja6hjvfuZbcremsQ6DXneRcQ3XnY9XGyW4g9sPGgFxVU4p08OJLff3JR/socsFEGV1FungZhiTe6b9yENhuTWur0UM+81zHYDg1YfBu6eQkepyGcATw5LocEfBIzIAR2nPNJyyoprXtzphoCtjL3TdNQ8SFwT+3f3XgyxMOiTROWLre+xcN8NtHtqby9XTS+4FOxLBCaXfuYxZ+BdicztxoXYh1yMZz9W7aCiyr0se/L0Q3WAMfD
Variant 5
DifficultyLevel
659
Question
Worked Solution
|
|
28 × ? |
= 8 |
? |
= 288 |
? |
= 72 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | |
workedSolution |
| | |
| --------------------- :| -------------------------------------------- |
| 28 $\times$ ? | = 8 |
| ? | = $\dfrac{8}{28}$ |
| ? | = {{{correctAnswer}}}|
|
correctAnswer | |
Answers