Number, NAPX-H3-CA22
U2FsdGVkX1/CNVGwj3wbkcG7KGQvxALYmFWToxfXSSdGmHP2DiE07H32PvyVh3e1lDx2TbZy+mj1S2+1v4aRyTgleKzo93RJxAoqbsj/QR4066PRUaYK7s68d+CtbCCD61jRlH3oKOUv64xVfyDK9D2xqPACzTI43xO7uThU/mBJot0pTTs6gLAO8D/GiQsTYQbUdKEo/lF7SbqYettZiqwg7FBMFw5LrFQJJwZliykEe7H4XAsq8bOEOkbkGmzvNWZyvInIzl6yJfir7RQXAgm4kJx2hF31/s+3PG7Q+6yK3NQSthdFah4/Co3KSFAnv2kUCNUWnNeajAltWQr5liq9BlWdUxRTFCclMRtlqG76WJT9+2u56W0+c4FMBD6/fJcvQOHTLhaMWhG/BCv9h87WcnYWt7ummz09GltuQ/fHOR40k+UG8hrAiXS1z5MxzH14/bbcGdsDn7VameLyrluSZUxMJuBtYtD7LmbR1T9VmZZGfuvCUGLwG8UWt+3Z7RWqkVG3MtYT2GsrKBGVSTKDM/ELDXChw/Q6Xqm3IsySI1wCzZJ0k26upmguuafdkGTtRSact7YB5cE9bY10/b7liXOYmL/8OUsulVgVY9qIb7KrBk3qHCU0QBfqdrH7gPq+QoQX27SWpxoSWoSiUskTExYFWoQjV3wwb2sQ9biVn1pUD24XiwvrpJcyKRu7HRVnX58Sj7F9k8Z+7jnA2yMzWtEERA2UGx85xZnc/X1Z56YmYar4ft5i+XWzxIB81A91rjBYaJ8mDiLB09y4wqmj80n65CHhiRj9CXXghNLJre0kQ0uTnBqNffYEHvjTANpkJBmTTbHkovKW/DZU2esD7UHS5umQ9Py4jyqZVa6o1QKYIQgYgMsg4zgL44XpurQ+S1qVdHFZT13k+8n/4uew6u6dWGgeQgFoPgmbnN9Z0VkgjMHyL60qS7YofUscAy17JV5hfBuUSLKaBXb1npBHC+dj2ggBU7w/bYEDA/j7bx3bYjcElK8ZSL7MFXCujCOgZPu3a9ncgLMvYu82nuCB1Z8psc6ciZOvKeWPDmDZkb2tMu8YTGK5GqeMzpoA2LupcfknONqZ6dg/SMwPEyji5Gp3kBBm9FYdwuHtvB66M80GJLAZErNHVFMlcYf5OI/ZqRI+4SaRD4ftqkp9FtAj8L9KqjvxQ4qTzCqa0BmFQRAr6G9Z7F8Us3Bl2e50RPjGTuIzKbDZG2NCW4HaCuhWIpkr7rSK7JW7z21ppzLvSyQcGe9agL563htSNa4MrLAcJNj54F63+FQzw8c/b66J83wQH6t4gwGClb4+h82mkBaXxF2w4Xq+CM/2WqlXSWE2YbqID7U6KxA44icbYuWfDgi7OyVJdqQIl9W9nGG3g4sNXYsso8bmkVDxRryNLjohMGp0gY+406p+SR11NOfcCG72nNCPbbvYfFT30VVw2llz3j/e09qTfjMDgew0TRnspy47mQwKSSRvZaZmHilLCiqCYR4CvEvvnQZcAby9pjf0WXKKrhnhQHkRu8II4YZfer4G29vauyJFCwR0iB9Lj0meEvWxrCz9QMdBvrBpyRkG9hJYZbkXp7uJPtFTqOaBa7MWRmYrbZhvwnxVGxk1NoXkVErXeT9bp0wQwbJQMicKpqMdqVuCOeL4zdfDNlr49VOYvf9bdYzoOAVJ8irbj6iRUapZbBGY8HXbz+Zx/yFVampIcyu1+JkpD7gG4GiuwMerVQ+VnIBfxMW0S1vTmtbpK2RVZE+07o7uVSgpYqeGS8zUaNdT4ScbYi8Alo85k0ps9EWJCHP6NSpvsCYCu40XWV4e29LB0lDLPpqcEd2xX40DoZ5VWFe87MpvWUnlX4k9T375w4OvpDGJb5dq42b+EKXGwp1Sfr8QOnK7ZfG0f4rLi0rXwOx+4qUbZkOYLfbhSJkgYbbhRaBQCEVZTT0wGndn4D3QsJ9xuliszyDCQI0F9/wY7PGFPr+KB3G6e/YIGFryQHUbEGZm5o0d80uqAvhbzB3O92JTGMbLnXQdbO2X9a+vRU8n4qljsT69jmtyXWQYBge+AUhbc2EaLMxBkWwRpOnuHn6NJgN65tx8XzY4wXLKfH8bxk1Dl4MDAO7zYFPfIqYEwIjqNMmpf9WBHO8P8fgyy9Tvi4a4eaduAwm7yQ3x1FgDtiBQGcFZoQiQdIEKxYNHxC6e9JkQ6JQSkpTUpmdjQNc/D12g/D9qHWLbC3sW5Q4mFrP8213TDxx3h/ZC9Pfsey/EZ5FwsiuOHyackiUJk5hEq/S5KV15kcoY3mzj7CGvmTretkTMdzf477My4T1abuwtISIlVt5sZ01uSHB4XsCT1AS/aess++Mhq9Si+IExFSB0sWao+jrJxVfwu1hLKNJ5el6vKHA/iy6e2IRq/ZUxO27LfYFN4eIdtSriq/42pcd1mXEDwoIQsrcZ0SRsbtXdmJu5vMo0/b5Hed56EPxS7YApBfTIgfWc4AJtEp61CPBoFLCLJC1I9vXiP51bozOKiU47eXTCdovvaxT6gIDXEvLLJB/KbaFpLZqKempCKqnu8V6mYHIW1i1DJhAP5lsXmUjDnyF89Bm6Xq7QnASLdY+8JW3ijFf+DctGNLw9o6t3Aq2DUDEn7/PtFj43ENZpqxVZC4eVfdh/hsj9Qw3hHLWU/J9CA+wakhvqTFjM1iG+34hHUlIpsvlpBanvhDaZme9Ex9zWd6aS9u0jBccpA4KwMRHXe4o/zWOoogj3JoHejMsLUzH449GFZ5WpPpgM1JikfsCkfc1k+Vl7tOQYw/N4EG01g/HkY+URArMGaY0fyYkt7vwEEyaxAoIsHhXT/AhuYp9ANIsqocU5rXWU8Wbf92v6bE8k3dICzqr4nAtovm+C8uNkyGljNMwSCZ3JcnPC4ICY6TBMc9DTLzZqexaxwlaUs1J+lMEtqrgw3zimYQ0eub4RDyTH0/X/O/yl8pi9uFH99WbzrgxD7FypK28PDkbSogyZHoT1PvZT1stD7he2svllFmmGySMVbQXw2lWWKzOgndjEkipY+otpEnqIkU9900NlujQLphrFTTPKUC043o7YKGTQxjbk8hYVoGg1+DuecwSgKHeVh8pZzro2INSXOM668e9r9ss/AriSFm++TJnEgot8Ao83mc8DRs4r/IQIc8cTYJ8HsBCQ8FRteMiKknnJQ1hvjtbqbNl1+8uYEAyJWWs4eQ++ZjmQfQcgdsbG62UUhI1Umu+KcycfnS6VZV1QbW3LJZH0xLcJFr/k1jNRxwbf3IYPMrh/q3gtjD6rke6t9Isp7zz/RdJC++dcd2WFGcwE4vvIzIDHHe+/buktA2GQztXF+jji5bkUAIxAvfeqyI2AvBaK0Xssmwds1FB3zX9u1UF21RSyVwbTy6iLOiP1/0qVRw4JM/i2aJX8UpCS1Tx1ItDk9BJKjy6H75z76VY/1vKyEzj3uW//QtRm9eXS13t3aDwy2QVdIM+IlqAr0Fj30zaHYNEehkSmHzZV3ZhO9S0f7VGPnnDIPjDSlrE+dzyBHdFvgOmUf5NTGOzkLkR5Eqov1Zhbp2/dejYiXu3ODVia+bTQeisqwKHNJQrTZKBVV3AEpC69CWhztnCMJDWi3TnBFpNSjWmhBVjp0BnNo8uNq23Hu44/WUH38K8P2yntO7WhisYFdZvCUKiquNT8KaeyBKPU8fQaB9t3ku31ZyNERKXqSO3hXxnO3WfNwlCgsaBRwIwkXLNJTe5uDgAxU3un0m7itNeD7ho3n182JFkhhhoyoAVTVS6/l+dU7OWoVt/akgFxrEd0+ru4NVOmTMzo0xYe9sYlHDV3shxPs/H5JOx5Z/o3NAPDSHa7/zBxkIjZGj5A+HkCBC7br2ZSu9gE6jxasSNIqdwJ+4lteFRD52jq8m/dMu4ln819ya3k74SgJ2vrmOpi11CmM78vJaKHSgoFknseEQKsyIHPeZQiTcm8nbEJPs61nH9PUZbvNaf8dro5A48GZ4q2wLv0Kk3y1/G5yhIpfBwokqdF458wiV437XcF9aLNbyJr8SC0pcAziZ4SpNlM4XKZ7WEoxtzPmzKAsCikN+X47a/dazwmcwvv4dTlcrjZoMldt9ker9OQYLk38RIvsYVfLTIfQVPVlhCzz/mJoEjgYoM+mnp+zLG4jrU7tlecv0bajZNAvfTukmG2SJvZlVSslQInLdcKH2eqieDorjE67SumyArWaGP59nIbb6apHkrSYzDZs4M2n9SAnz594pNFNSaukIsrftzHkfftLK0oGzNnWYUwVRKuY6s0yy6vNAhU0EMEvxYQmD4VtwT8nkPmnmeTvMhpb4du+Lb+2UKrm+FLbGVX21TX9kGSqzDHDy2bfpoBMpFOd7WZfChhOZdB1YLXJSKFr6MTaYInwSAVA3KTkPUcNJ6SmuAlWWblfDFRy58JaQ/9Uw9oIReMlbFRgKTmhivvSPm8RGbvlEotPUVJTxIURNfAjQvpuIuvPTAH2WrQxkk7bzdOeP9DwCCv1UjwYQJ1I5zJ/JfntUuCRbEY5X6ZLIrwJcCZmeFUu3SW1GTsy0l7MivLSXoe5YCmQ4nxFINvCUlV/OD/rJJ6o9tKY9qx9xxZ9G49lP+4q61SHrlv2Bo324/jz+o80xjCPUZdnqn0PLPUhMFHv375akwiBAKFV2MHtbZFhMjUzC/y2FxAfJqLjipinWf2+MFbYbl10cKw4eZHfX8lWkenQmWPGzM5lsSOH4VnMHmCSE6oYypHvSelT/5KtJjRtnldN527xEOSDcZXkOGTvRyT9BluvY4SGB6z6SNmjtcvGHj7I+2bNQA63Qmoo7jsTvxDBqnadTbsmavxbFhUS3AgH0a+ijUtOIUFuYG73639n50QOWFez+TlQPAdGl7tyfDONlz/JVcTlghG4nLvAGC547/XUema11JRS/2BDmKYAnFYt629NQja28wP/bDgwBV84NM1/Z08uVt056YLYMvnZG3+Z/+sL2KF38Jpru23gyBt+FDLT/eFP+U5QYGZd8OHPVCc00u4/2sDRZ6OaZUmWMQLMKtY6yyxv8sltUhP/hXL4BXOmnUkmHFV0jSxqPa1KJ3CjQgA3+BBOa/08DUFW3akNm3NcgL5fIb7h9Jp+j55D2FZizL8eT5IO+3TkJSgbFfywx4AnZ/j2yjzarQS59rf+Hl2eaZG1da3e+chO3Ak+qvPtfjt8HAFzTA/5mMiPaFXvCgyl3MKLQ5JOwp+EHW5NNSNiUg1yCo5YJwD3jdYu5bsY4DW1hNip66ZRBZXk8yvsMGxjvAwSh/+ypTje0KUAdcezrqJqU04u2vKAm+RblbU4i6bTPc0uEKCq81F5LuXUIsaxOcIU0XyO5BuzAU28YJEo+m6+UU7sNKtFt0oxil75pf53C1jJ9kvFibIPwpCtIGMP80XDpiVIqI2FvL4gzshWG5zg44wLMlOBANb1Pqg3GcD8ARy5GcrOetOn6Y/raVUbKT0baClFnUS7Paq0WU+heqqfrrwgdAmyeCKzLyB9BxHpKXaKUgPlHtUzqa7FoRP3fud5rfka5N/+wyFs0X8mLaGoiZaqWMtrNGVn0bRzlXhVt/n4BDHP9FNuHUsqKogjbru0rHCGIduDbKO3X3lQmjtI0q8MyuLGso/lv5XBHXEzOAUj56xzVtoIrRTiV8ryFLQkmDSad5wOFDK4j+fepLjXWfjyA99SXGbGjHsAtFTVc/2GrwjPtOABKnMBkBtx9fjIPP7+vdErpFw/x258VfW/s4FxiNaNvgupotoOnrfnQvTh/KMvIhaGq8sDJ+ZTtmj/i/stnby+7DJe9jTwV2SYBHpR66SXRtqCc49LubRcwQLXo3rhPx+Py1JLDUO/0NesNIYLFsxNem6+xQDDyJyV6cXwtwssHyElCa0h9EnYRJUoH0TfMeQ+zj71XRlqct4ZIz1icf2Kb8zQ+RVx+NoBClTvH0m6QBcdJ75FwfyRtXe8blQu3/StGK2y5LTOKH1p5F2GhepEwjE+yvJX8v5sAmIp3pW2L/GPi58B5wv0SVpJPTS9LgLzRXXUdttl2/pmTSBIcY2Y931vcDiko+17HkJ/N+UdQ+LhUED6943ltGxsnvMIwuUJ/mpaWiVkrq0wqjpnG9m+8AezxZonruYbKRbwY8wBgAyzWnD/WiUGQuuIPkuuk9zhm/Z9wFpCY8nrlUvUfmQ9Qm7tDf1Pqhd7ateY3vGEHd39CFlsrJvhQ/gSpXVH4CuikGLUurVeRtctf6HX3AA7Hu1Uj4tR8yA1WjXSmVMh44RdNpbtr4WVU/XcKJIBzTy0CtLVr0p4ehJx3Il/P7YkeZOXNA+0AH9g7KWMiz2PJKuWnV0aoWp7vQ8SthETfZxN7kj9Yyktepcj25JX/FrOHA/LRY8r7JTLTCrVyRrzqabGqu9i23M7D6rYDn1wn8Ytspyyw5j5RWcPZ1U4u7q3RxzzMlHLcxwMGf9BU6WjQXyfyBiE/60rFk3Wmk5rHQsguaWcBn8Riv/fgEOCzUgmnp77G2lVRhoz09ht0AVEPXUG+XRj5O4ceCQkh01CXKKtxchFNwyEBMiGKsr1BiIuzVhU/AzVfj146boB/DJklFv1uD1tYOxnnHYbWZHt4nKg8EZ9WetjAFPQG4PoQm7VjdyHbd4WT5zG0FpaHKrGzy3GPsw0GEHovB3cJmuVSCozBr5TqlKZzCKN43Z76mC62XJRQRmAJhBsOmSXFNq1CBptIB4UZB/JTQ6CmkqxavxQZKRudMUY4PQc9nIpPEeUHZyszVwMKVFdBwgeR1XCUm9tfbX9Nxim+hOEupRAxD0KSJIXf333JB8rOUpGXBCajD9TiG8W8JYrQgIS+I2zuUowd2IS7L6nODIQw/c5XfSAHW0+eEEDgHlq4EyISvLBRuaDxYq73w2Xu9D7S6vq/38092BDjMk24yJoH69ewBIcMs44s8jUT4pqpszkX2G3vbLv/iBdDTwWnJJcZTGxGxi9LVL2aHNm91obSdVSZkF6SJkCz1b5FR9BamC2yKssZ1JyYJ8DVN1tX0e3CGps/PLYndcCKLYr/o84J8uxjIG4SGPDl/A0Na7UiPTE56v/lEdb7o5jV/CrtEUNJ0rxdA7M9ODEElIh7rPwK0g9Za4ZKEGctZBh4R4WMpCW7Mk/t3ZV4EXpvoFTtbwdaojuwh9brslSn5Ogki3bwJOuVJsx2RZgc5nCPYAYFLalYWgqxK/Z/jAmDINTXtCoKSqFRbrX43Rgu5g1XnGjuaikG9iYcWxyWAGtd9lXzpW6mw1+9Aeo4sNsfQyE4cYIY+E32nJLHzhjqGCklHm2VZT6DqBqFMsFlToSb0tDQU63SpKHZww4HV2NmHTZrM2CtEZdYlxxJHY4tZn4QhtXK2IUEolr+1Mba2m2velD3MiLTB0jBHsZqBUSwURmZ6duSLKO2AAUhLhjbiLge+7BVOsyZ1H2afuOsNuSm1irx6l/doEzAtSCrmZFeP7TS+X9NkhOCGGIHekbwhfi1SFLZOpW82izOsVlBEqoRrC0rFW4FULjiPLqyCiC+avA8IXrhheP/W9Z1owkCgdO5im8sRDkcamy/rRiopspSvyVlmYAYJzPHQLQwCr3CoPW2Qj00kcqblRf7UR0baO1xcoVwzFMsIPdhFHuYon+i90YIV5RNaGghrI756XLw35cTBrjScKUuwtUefXhjA3NXmmY1bsGg9oBmIwXDRFYDQuYWxiXngL34Fyyh73TsFXOH6Ak1+KFwrAK1jnfAWsVtDqp/ZCXok+8YUYrmgodY2vLGIUTp1IC6OZCaoyLXnl/AG7GBqHV9vxgAADy5TUbBEUe09zfV49LKQt8qhXbcBfGt0ZXutku+ob9w2detO4z/KcrrxYdrIscQ2Mhh+pqBNkbc5SLUXHpXJ9QZ0U1naLI8ku5E3ZhnsRdMBG1nXRZJTho6X3PthPiZElSZMfGh+FDnKB1dPF7/zo1K/HKhTrIagGnnhGCRau8llgSO3ni4xOC5e8brC3zduO0E8WK6rmGxGhIS7RgdPHrLQ+E+5Dr+f09d2Abqj9A6hb6p82uV6fPzWFI0kxjgQ+BWp6C5RF4bwQigCGDpxMeccNP2pHJbCc3ANdtbhtLZus3rReFzIIa6ziwjI0j6X7FD2az0a9QxQjatFf/hjpXkT74K7P5en75OUJglv8Q1o7NBPGbiz76rd25R0HmmYPARJHttOullrsUtE7EYs98vnV4lKjrdOfupmtOBOl4Xk6JZD0lv+q4EUBlB7QrySUy3gO+75Av4H/f0KRAFbV+QMp/8xboNkN33zTdDYP/g+dUFVsOmvtSPWIn5CTzF2JmLk/gD+5vHj6ncjga2SMP7Oi6tfj1uTITmwAzFGhmXD0wS4U2dM9Pd4xQ7GFAG0NG8DsVe8EO+xi/yBv6i+kzdHq90XnqWJMcni8KMJWauKfV/D2I+IdrEn345byi5aopcC2xzwZOio+Q+kXWTaEzZ5gkhFjr9NAfrUcp3GAUI/hRFdne6LVqUC7uvK1LNeu/em4Zj8P5O9PrCOxXFAAxSkw+EwFY+ga2kDESQBVH/OhIzXNj7vr6l896r8dEEyb7Dw2TatT3t9ghfG0iXOM3XHjZ+WFJdyASdVBVwz3rTmYhEEWiZc/1BcE97fKJqTE04YRkydawkFaNDxFo4UdrNeVP2xUoq9H+1ORL+72Y/vODmDvpVGZJ6y/opSIIwyRXrzorB5dyptwzRB4LZkGZHZh9NvqtTw56N7wAJbj+eEOhByDPIwLD1wDq2iFPHKvHD2dA0YV6AIeSOPJMfe7HEwjNka6JNxNedcsdNu2Yf5DFJyLdvrXPrQr9zrUCzizIwD5bwvqrfEXDlpsesVH40pficcEUQLdrT+N3V1e3+7W8acZgInXXU3QmORPrX8CY9FrpaAtIrnsTXwvrXiDRwgs77Enhm0WY90SDPafXGBFOJPcrsdzS3yC9Lw7qltK0wJFZhn0VB/NivrWxDdGSvNpG7bzsAwosWXnQi0crAC4Hybri8TBbkouHQuq4mgRq5+fHoiPUs0tnU3nhLHd+m6zLXbLdQSOzL30T1MJ0k/6cor3Lyya8Ipq60cJVThulRJMF2XeXSTlXqpoiRPQd1A647EXBzgEB8pH31nvtlBqlHDBNAw3p5xGQI7QrsKsh1k5Zo5FdyL8tzJXMS28ct9DbO2yHPXov2VgH7Zvm6f97Y/i2SvJDWV/k4LidJG/vWBE4YmCLuo+wA5yedZ/jTX97nO1HmaO57oKTVhKymf6JMon2S6iKNltXCFKKllsLN0cuUPti0rnNRKM+eMA5ViZS4ejOxQ1RQUJ30uTIYsOFXK2O2588FfTQulFDxWuaZsy6ljOVKmpPPgoa7fRbsxgIcSdhOHMXiQtYgxdDcyJBmhhtbpzejdYxbUAMICoPyxjWUNG8qSx3xaZU5f5JOs0hHwCFmXwq7m3fsHWkVOlROckPM93A5EQfrv2PLyjIAodoU2BFtpzLdej8o9+YUvKrSwsNHQmFw5PHbZQHKUMRxkSsBIzBpbamgRMqBve4ugo+6YjLMiA45qmR9acSXFENS2snCXcDkwOCw4r4bpyhCBl+a+ojeWbSx+Q3S+sisDJkclpUZlM9SbL+3vmplzDIK/rP6yJZs7bX1WjDJ886VdyyXE/Hcs5wBjHcisByjJBevbLoU/Upt0QWlae931JjR5PkWSVzgnEHx8RxMed1WkvXoCRWrdbASLAi2NJgYzZLBQ6ZS05cdTm449H9jdSjYhVE3xd3Q19+2H2WxhpSg/ZlEoCKbT8ZMJZv+3nZQBX/NDLWZkmH5kaOJTJ1ZU9vrSfoadp7lRSY4DJF6S9scybmjJ+H2hoj17dr2Rb6Q51ildxT8pM2YltgAeHOzXjJQ2/LlV0SIa5Gxaqc2KYOSSBtDNC8lUQlMDdDuqM+IP6AgxG40nvVJCTrAeXuh1Ps09S6TiWqyAneyMzBpg9vKK/W07+CTbLyXNN1j5rg325wFTl28yLfl2DHksjz0mRPIpBUWBUeEm4Qm9kmFGgbI2lZYRXOOZDQO66ik6RlCxoO9G4VKv4k+wbXCZ87Hv1tYM1vZ5paPYhUFbsQpDJfTyM1HqO7l2SmQCje3rkF1mOWXp94VNF1JnDH+ZuGij8+a97g1CVT7+S+LjobtcjsTETN6d4kyv9ldmdeARbJOefRWOoXpV4/lyijMdcDpiy02YTgBT+H5QL2XcQ/zjBMNLbocHROLACu3V/+Z+rMf/tCLYuSuv+VlfJmWZIEfgNLGhbp4UykUZNOyiW4Ge/M6Lgh1YebSt2JJIvg/j/ilZssrOQCxtJx1i+tvi20VYyDFLqSa4/gRFW+lrvQzHKOeNFX0eBGBIByeOR5ULCyA87fmiX/ay4kxa1R60PaQQaO73oZ9Ho2CtCeLKGs7upGOKoy44bhbAETSj6NKYSzMsbe4z4Wp/v4/qV08mU76bbbSMgbQCkXsaBarxCkPfvFFkct4S7DSPn9DCEpGVxWzbTF/kHECjPIBMHurM9j8zIJVStpio0KAq/BQgpeUkUqQG/AdPMOrFV9lQWJ35w3jjdAKgzxtc3HONeGtKXjIescTdf5SVG8OdjkoHwF9MTSb0BOKs/RIlpsUl7MYukNz2QfpSrjQymk2KdbzilU76yDV40rRRd6NYGlWKFgPkOb/Gtfr3O/5/jfmDDXac3waGCejZcNb7yoQ9X4RxjC6s1fa89tH/PJGydo0E89zYoVhRYiOcy7R+DICllM3cJadtKPzx/XoKzwh+WMfYGGkBnOZjUAsAtGQNGnyNt1xSJhA2iC9JtVvRZpVUGZi2W+NJr+EQ+CIN1IZ7U21cu/ksvh+x7EZZNolmP+AZTAYl+JcxmKP8p80P0FKC3IuQhR4IsPecrwl1lbKyF3sGn38gNmf+PMBQuGPLz4qFS2f+NUtquE4Q/EOZ+S4qNJUXK5qVz4VMSjKkBBSzBzHFHgzam5G3oDnz7DMY+o142L5B0fBRF5H1LNmWFCtmhDSoadbh5C5jpBn5iGS1HkQCGKbBCtgie5PKIG2KDRaJowPF6plhuPt9nlfL5Y5dLg9gO9b1Xv42xomcpeVf9Gj4+izEzB/U5rttdMEHwmk88ZCIWnuisbwdlhVDOXfgrEZQNYiNM8Qwp9IDdgl01F0u46ZWUsdHRmzP8Vf6UO04W7ibz0Xq3HN59zEc0z4IPe8Vbf7sR/Kgczp3S85ubNSofi8473UaPLytjS1vtGvvK92LW9VuAWGdu0kWJM9doUJ3Vv1TzfSso4ZMmNhPA71ncG/VTQvA/BQoTr6XEeJnFoU2kSQQVAMLTdq8qUiXWHpSmqq7t7mUsLkEdBcy5XkUUHVVzSpDq7KX1FlQqFO054MkZA99A3rIETVOMrkJ2Z4ImqezOMwDHgCKph9xVqyTONUoagod12QZ7yh93V9cSVYRuuFws9sCrVhJ1r7Rrxt/wjHuawRBcjYodlluPhXvyM3NlLDp2bcDqihZyy0urmkPM1G85qeKRyGlMqMFYRJgxhp8YublB+equWgoxe1nUlKFuLkIuRJ3xSZ/vOLRo3bGov+uHtGfEmoHXgoCR4oRdF9mjbOJaE6Z+2zyROwgb5mPBwaRNBsfitg8FPswWLlEMS8V+fAu3nV91BFH7X6UD9cXFmvcuhksDVUfYt0PXO1xEUXvnmQkfebBMcewO70csLAvMCVDyuVTqnRHgfEAjCi7XD0poWY+UEegykumdYJcssBf6XFFoUMYCUCaF6QJBQZ04+FMDzllRDAYZLPrGJkeAiyuhn8n2DX4irUd3J6tAel46e5RGRbLqozQBPkoOyyqenJzzYD/tNplXETbUUArUxQzjRcCsR8AlHxX7AS571S4Pz0LHzV0gcMPO/6sg4G4iDCtMnMJE7Kal43D3buh6NyjacJ+Q/h1ZcgbcT8/L8gt6MAjTeQJFRaQH75+4o3L5qKq0uJS8m3qit0zuzJ4toXgxahBpHbQPVWpIYEEZHZ38SO5H3m9touNYorh3BNLGPRvQ0FqKU2D3paVoo5C6/silvbo32ib4hJyVXyw9hAIqjHTHMqEnqUOeYlj6GAOOOI+jj+qO4fVz4Ma8jAAoQ6LXjkRRZiNvG/HMHg3+otOU7ub8vyqQvWXeaq/Zcxoq+dkxD2PNpqq1g7XFTK+fm/bkLmdJmR4IxNdkExNOCvV4UGPQRll9uiffcOqQmCksQQ9y0J2bCK895QJOhRd8uz46VdeMnPqd8ImvYJDV1OxQF0t12M45pC/jy7kYjDEJu/Uli+hbXZHMGc86MDUqLWdgtphAfwBhd2KbH3i7EzE9oFD9hlTExFP7B9v06ASg4BpHzYWppEsyRWlif9QeJRnL0Wt5jTcLVs55AM9V4dp4+Iz6W32Kvy0TRrbZ5/0KPLMJJLuN+hc4NELVYjCdkRvzBxPalVmkl8cTES4gZhFIEKW5QCOSgY87YQbwmGUYJsedgXOgNs9n/PIiPDTPsgOCs73qs/lYnBPLsT9d8miM7P0rKhjcwloTWLHSrSsXknnyRlSao9RKn6lcScMc1AYVN70eLUMjDoSEXFhpsapw+imomrqpCCLHRzJmy4equJba5IsBtdhaTZ+lLMYbKDNEUCQJoPXHGKpRV1ElRPyLO4i56LFDVJe7/G93r0QIY+piVD7QlLRzy/nVltYbMTv1/wyJzNrGN0Zxw4u+7KIsSu8c5UzjmW+cMJV8zN1gXYwQMIzGGnQafCytzmpu3VCezBPNnKMJ+dXNxRNEmo603n+efzQgJXp/2RECdY3rHl/G5/mdWzQ3kur4tziMDDBL7YfO/zShaBRHBv0YZZ17XqxU1Ob2/xxAeJOblos1pcVj3H+tSJNHIitNu+iywCA06bcR6PXb+ydtvVKZbocS74Jr/CHshjV42yATeCubi+DgiMbMIV78Z/ql1UbyD5S0HPOIZ2MY5eVThZorSpNt0q80EgYogJgCmQ76OMNlCMifaMlmP53+//wgooP2lKhqAEY92JpJskjjepqrWQYL06PvHVS9qYKZfcXtHzVz9k2i04uk2N+cH1gu9cKJAiT0BaW7dTviSkaAbVCB7MybRUVkEk+y71jGcGqKRLngtrk+CQGl5VQxdy/vIyBJ/UDnuawE3gV0jrtob9ECGC4BHX0kfQq2jbM5HTxGJboBWvblXa8LXaPH84JdMdG7BFICFBbpdfrwW1zliEAEGt/VsWHvRv7CDlj5zzFj+sM0frVpPdQ+/lqUNur8ZymiOgoRMqQ/ClUuZBldegLyURqjc1QDcv9G13hMVkTCv9tcliKMqgyuEkU0+juQMkVCLZpZPMFPGmykqxnibOyEe8/W5ztQWg3j8hkxBXpNOucDY0Evay9n8DAK5rFsQH9cmQt4TWj3eFwj2ShkejeL8XU0tIX2S1ZdYpZqANXdxW5Tf+XPoe+KaCvZNHU9/Qlj/GGruDNHXXxUk+JhFfH6zrfjIhwmCKQLBHBijAqcWdQhSqlj58tIWdg4zLCT1K9cuOvhCEypdHl/wFHUURo03fcgEtFa9y9KLskBWfVIGtlDGJqDOkLoAF3HI6mDIstQTZUFYWRe+DJyl9SHTd0EB56bxpoxNe8VbMNFrd+41h9dTKP0dcyxMlUs4MT50E/jM84Z/sk3hEKwndjX044yGt32LR5jONMRsFi4dvYxye7rT04uFZI68azXl1eMcIDs683FnrvIpUnU7xu0AJfXTSedtXoV4ST+4vrlQl2X2uwdmeEl5r2eLVF/iX+jVtD2zg2gkW4tegfYvqYjwVyuoxXYWrp49thOhBfhzoIzVHQ4faxu4SsL30ar++q/OtzNobfn6Yk1eUYxN+/QhvOm0sTcM31+D4OsdXnhJ0QYjo0VKpsRUXyAGocHIbmhdGdA+WP8l7CyBkrDhmvlYMiTX3JrHq6EExrHA8wdGGX+53DywxZrHg4u350xOcHBTOzelzXu2K3e1vSfc7T+27/SdUAKbrGoxIQ6bATUqukPC0WjsG6QR5QRhio+IuRP9YITy+ptpMu3B8O74IPfr9lPLnor2oIWRkzZUh2zbpWEC17WV5ASj+yR+7IELVP15SkOHifxui9B4LZYihLlfuqVSufktmb0Ik31s1mhXpJq03EbFNQ22BJtdwJDVtwmhZlq/vPZnAQVFjDtaBuqejMmbI1+FgFADcm9eUraDQi6wGroN1ia7CMYIJhHiIm127xURpsWcUcpeagnV/HYpeQrteG95R0N00mYfDAHamFbCYgwwVxsL+ee260dlSF+5p1cRikRQZqas5oTtKZTXjqyDepqlWNhfD0bAEhxVQclXXqz/3deNTh1Vn8QCZEQyC0vovOTBnc2fzedaoc5Fc+Wv+UmG+XbQuJ6BCQXSszSuGFaV/D/mZoskOLWuBLEID8cl2/XecsAB0EmcKyVs5Z/RNFK7S1SegdBUy+mSXHEdAsa5UmFsvkcy4rFLa7pmZZM8B5VpAdY2xQrQzQRKzAK8QE1NrZbowXwZ+QnFxo0QMibcQpMQgx9R7AAE9MzFSjKzODEvSUpvI1zwxSiAIRoTB/J1bdRegflTrx7uhWJFU/xECFQct9XzuyVwRrw9xPi8P97wtlzcTlHugPcMZvUp8NgHak0A+gthSv0rWbgjxLXk7EB3Wsf/WFh9jX8lc0MSYVTBGKKK3HHrScKEuZskRJ7qyH+HlT/AeLhq0LY+KXNoxunQedF9c6WdV16+Vf9JY47BDb+UlTzU2Y25ohJ76ddEykwo4ukSQtM7SQARZpKgTMx5crMCAvbTcHgahxFBbu0ssTcgXdQv9M9PPCg8UUTcoJPZ9DwpgrSuiYIALaYl8Y8Y/ZLst1BciQczYn/OIFsP2xFgKtsQyMxqrDQ6cZw5d+xPpmJcPCEzPKnVMWxNwD4B92BkHZ0dMNbUQAulbxAxxhFX+d6bkTOhpExt1Xz1cCA66PYnyc8aKqYrGD+48LD420q3F/WGe/Hdto8YQrmVsh4qiUgqCJ5T5BViC17OHuGcwNQe+dCq6o/CvaUuydBDGTGhOTGIOo4HEE5xgGkiMdC12gVGew7Zr/aqGwuWT1xS2DiCOklLFy5U+2m2sc4AG2ZnSd078RWgX+7UFS9nVMaSob4J55T3poG2XuCOjfj4TSLSze08z5Ay/r9aqYUb0ikXGKr/WTc5B9C1Hky0i8CHM9rKEpUqQC/VZGwswREaoQSs4PDI1sbiyMv4RnTVGlsWFrUz4CQNjPDMONapOkj0I2TTV5DEHPvpxpnwjw+/wd/TmFGlY8hLwihGjPqbYGqAGPdYDY8uZUSgdiBqYsXZzdQwRgnaDR6m/4IsS7jx+sJwJ1SFoeTjWZqIJSaDL04kJWrDiGCx78RJlTqClEIsB5TfMnGLlwiB5eEir3gVkmVhO7cRG9Sq2AavGMKy0HR0l0Em4PId4R4vhPSnDN4vuEtpeB95xYhGEUZWgHPlEE8n5upC+iYnOX9dZURimdZyP3b6L9MhQuifAeJ9zyDFw6ugEqVL78w07WoePaZfEMg8wawQ/o7h1Q0V8QL3OSUGK/CaueQYokWwYX73BUjVawkHgndJ/V018bvWniYYnHr0qtakImGOLiNbtz5O5asK5cnVxtVzVbpoDZY+MjVF6UXySM0wuLM382DZmpN5WlMxBQgVJML5Xk2jIvf2QwQgoOzAeRtCKiZhYg09CP/Y2zi5Sm/uq1sILIm+q5UAe2Do5CwdsROHVqPK9AAdW/sBpaDHzKv3J9iVDSOoQXIEbv6n6+az+EyKT9CMruPLNx3ZgkQpxJfAnnIZi7XQc4kAMv0KY4vIaPZUXK0keJxVSMn9YAuFlF35MhSOF3YmACYtYx0+iB3vQOVwfpY4v2rBk/6a7Jz6FdvU8kSkgQrpefnL6dfcbShPNiWrkxwoDcVqhmVf6vpEzisWB2CTM9ArzgEBihGl+D2URKYJVujWb0rBsDBLupx+E8cZLqq/zJz7XCa/2kZ8Fh1xBky+P1HVXypvCLf9W3QUwgrc2v0Wo1wwIDz44/1W9K25OnliHR751H7qkLuzXU8c6VdzOymLoPMA5nJriBBVExZLH40ijhFmxD8a7pgEPL+vPYX/GuY/3SjlhOr6DMYxkv9tLaoKZb6CoYEvaKAoouhI0rTtAq/813oNHlCH29vcqA8kbPE0hszzl447Hl/vlxpD8RF6laaM4A/nWDdKXR5Iwnqc4zgP1qKRX6wnHhjr9cEPKIdikQk9CB0Zy9+O6nXxDPh3Vga4a6kw9YmfIaR6E54YG6Bhu0U9QfSKcbenXZGnuFLTv0SWxhQPxBwYeCom72kTsA+BI/4KpIIkkD9UneN5xZjkKK4JS+T+FZRRKuvbV1KfD90tAmFTN508atGCIy8P+T6YHzUWQuGEY9amaQp8Poc11MYWgbqX/U9vVNSoIRVFV8MJhPju8ZAiPl+xlfnfDs4HzxfGqertiV1uQmHs9D8eIjLLaAaBbrLVUOJOw9NwENPL2CVU/gKVuFIJqpcXW7aLjIS6mpjEGNSdtsjPAtuz8bUU8bA4VtseUZlCg+DImhSuzZk2OsPvB3RHtEivJFCkgmdz9lQG042I4vvHOBT/Xnaii+LGQhUf2wsjEvjKBymGxsAOAbbvl2UCFQ+cXAYCt5WTfjfHqGo2yME3KCUtUh7Wp/voUwRADCqn23ipGruw/PFwvGZVqtfpmqyi24Kfx2JGb6xanvTHeCJI6qgUj7Xr+F47z7NtTiyDZc1nDwa5CRTWo6psHS1H/WD14FTdB47EzsCSUUsmjvsif0og1Dnanrst79rIpKbbcZlgzlpIkPasgqe7BL4O961cNorXERnANAyWVKYKX6N1XwuNEalxNfIare6ck84isFwuva9hdiUmdV0kYMS03PZJexD6tMmu/gavSGE9omX8qUbIGq36d4byihyFecKg9j8I5madYSMPewW3eY3pTLN/v6GHfGeOOcyjo/yB4y/ACjJrPOD/5ExM5y3aJ7rCN+M4ay2OrI996NsvQFjC+8xvEYXaGiCfvZctmF5RzXImaln1DNSwnyupGwlCqP0o3mO7W2jKNON7RI89ojLtPpj7HiMa5d1UBvvFBR8nmh1bLPZibe/cm902J0k967zSDEIZD7y9R+bkxS9ucVSt+5IMWlUhO/xVinikRnSdHkf7kunPFGRvZRU9k7A5P1sLaiGJaHHZavjyPkcjD/gF5MzcZwL6ZRphm2EQKTM0aTGfy+iiAXKZ+NK6OtyUL67rE4Evoud1pV1CFmhHH5d5epgcH+nRet7ECoslbEi6oEN+N9dXv44kXTNhaTnAzLDYqDBVWjOq+hcGPB+14BkFVSwWBSEAxkKIUgRLVJmi+3F0dJfnHe7RtOrSXLT1vS2IJIWVdmk0hNfBXvoZEelep1mjGe2/JdR2FypPxjOXcLif5RhfH0X6YcPDOnHj5PX+6ZNt4FF+ey0dkv4dLi0Xp0PGlW7BEv7HXpHdfBU2hz2mDkayVWJ6vWt4ctp9eZMddq4a1drObjh8ypn99VkwHOST9qke/f8bdW3cXtIkteds7lH70nN/nnN6neUe74iifDjuTszL8FljM5ECvYLZfWmIa1NWgiD6qKJTpukebr1PGE5QeM/azzyAHDOkfsdvJzK2mF2geA4pgZVHwllA9cjZwxsGuhR1UajlN4r7RrxSU2kfKfyHMiSVPjnbNkzqYR1/4yfvt06ouiZ0CwZBdqY5GfaO/3n6wSAm2vDPMBYD9h80M9L5s0H5BL13qGkl6RxqknyeJX46pwk8+f34feJAJE4eBltOsk3YyEUynmCMmDur+T8jnfuRKXgrSiHONAm/H5BSQc+KST+QYvc6sEAX74o3Wpi45FMp9fr8FqWrSE0gwGld8C8oHp1aRaYWl3WqFcDu9vAf3lCD+yF4Pc4G6kRojEb7stYx7E9P+E11Rr55Ey6CKTnGY2LNIgnTAkv3Aldg2TXDg9CimVb+s43McEPSV57dSwXeBTe1z+owg2sf4ciTKe8ps2y/VkhLtX4lxplodiPnRUyqaM2PBRxd93Qvb08JIcS274gGAiBDhl6z1EHuwDhUa++9O06F5rpB0UAsaZnWLg9BbvP5iyBYukn1n0EGcNmGoQqgxp5WYxgJclIDz5FfchOx2VUCULZPkmiMiOu0Em8dT8UbBojiv8uZM0o1g4wU9Q7AVUA5f7NqtVnjs4ovgmf/Urk1rzdlsnCJ/s5WIrcSkKoMRp0KfqB+kMvjoPOahZAQY1fDOU8BpRtCAV7RGmG4I4Npx1trKJxXqn6PeRL2kF/saAT7EtulY4kbkzyz/5xTpuFhY6zooRegd45EfLd7+Ct6GQ8EV22VK0XvNoxldDRgDDtmexWmBGa+qQ/MPZEXLM/uw1auxbHsb0dmhiw/UNVyTR3AmSvuOsReEt/92S3R8gNwZTvRLcVMMnhHHMoxpn/w1NI/Ab0kCKrMPUPeclAo80XwVwvzaGLu6Xz8Fiyn6rrBqJwimeBjYTM24DZqXtlMlvNAzCdoy9jqVC4wIuPfCoVWOBen3kHEYMxRcSkLyS/ygq34SHOUjcDvCvISp+7T+j/65SDcxQgkPwRLoJtesL8lLVOEMSBsTzcV4pNbixdp+aR7jKI6+ZcalYD/q/04sI5YGOVK/Lnp7JVTXw+oxENWiVaBGy6A5lpKXhKKuHk6M67lKuwqr1zcxVqt0HjOnd7Q9BvXvK2zy+KtB6WRBmJuIZUoRQl0UXVw1KeJwr1J3BEKJVgsCLeFORAElLah6wkBvI0M73gp+i97p4MHSrcN9NpcOPImHt07HZsrr72eL6Q8qzIxtECpMktwlLmJ+w5Yk3B9Kh+8UmEPZXEcwnQYAMk+2Ku3D2pXYSPsaX5wSobRQD6GZuKc1S8FMeRoMtljMxH72tdkBbSPNvLLvIKCILnkP5Dtm4fJWRdiQ7D+uiaXIkcey+PpbbboDiWCqqrJyzRSA6GMZhZ87RZ3cladSZfvx5jBbsTDIbh0icadDT5ja/Q5hydgz3sZ+vAnWwLqhrcdkNHRWpBZzHFop6thuC6sHviOHBk0o59cNv3Kx1leMN3wfv3wA==
Variant 0
DifficultyLevel
619
Question
? + 74=2
What makes this number sentence correct?
Worked Solution
|
|
? + 74 |
= 2 |
|
|
|
|
? |
= 714−74 |
|
|
? |
= 710 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | ? + $\dfrac{4}{7} = 2$
What makes this number sentence correct?
|
workedSolution |
| | |
| ---------------------: | -------------- |
| ? + $\dfrac{4}{7}$ | \= 2
| | |
| | |
| ? | \= $\dfrac{14}{7} - \dfrac{4}{7}$ |
| | |
| ? | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19w1MFr6T22y24zMHWQ+cr++PvZReEBkBCsKSpBVLDqgYEW40jMgXSHXEf2WaxaIoLJ+Bh1Gmy7qxgB7/uHFUUbBTk7qvGB2LH4z8bSU+BwkuE4sW1a5Vj2Ek3hF8unuxKB3e/VLeysnP+vZRyVyLoca9t+yIr1Fkd1Fw9CBtGJOmDcsq5UXaSLsSEVtNYcURZktwqHFiEvtrA1PTUsCKbxoba1NXQgi3XGaiDFqZ1hnaJcNL8AVgeL+NGk54WdxwIC5bzc4hV6Qrn3NDAriLseuFEvw9km3vBia6IRKbgpUxMmttRCPgb1+BQD4e8pB0xQN7YaAq6Muc1MDNkFo8Q69GIm0gddoo40jd1UZQW1cGKfCNylBzQUuRq5bUNQ3675RrKmYRyoKXYJQU1VvsWhYdrB6wYN4sgOraG0LEnWkX8qk9U2awPuZn15J+UjGWk3EBEJoFHvDJ+0zdZA0Z4yaNU2Qtk5atuyjemmGEpZTXEmvgkeX/3fSB/BEpN9YS9v/xSpR0aVR/7gWj1bH6Rqkg6zbDhnHnMhDKFuJwoA7LAXyimnrvKmjYlsRaXp791ZwSBoAGlQqIKBFrcBTmHcbYF6zst7dm+blxjBU13QNMG6+bQvRFuQYE6Ysi3iMNdtyYaCgRz6fGzyeL43+RvshdCymAl2kVX90Ka1mtQYBR9t9SskW99H0ynfmUQXv8lGZF/D2J87fgL97LYAp31wiXz6M46dWP9xtWKE/fTQxXRakRrH6NWxpYvIY+My8TLbb2aOJVgnKoCz7dUN3lzVLyGr2qrm57+EC4zYs1M8WIltOqEZVA6Ega2mkGJuGkvADKyRhUFjTIx+1oeTCI7hfbwakulBzY71Km1fk/9iUPNnU3J11XSUWam3JbgcuGmQUVfb6n6L01EgdZlYBXijIOa5jvtwhl8/2fsoFLPRQQ+mSwQUSkI6Ydk17MnplEc4fhn2NYtgSLXheQL58EquKi1AYV9p9V1oTbVCoo+5BMuc444ef5APFxapkc3OVdlx6UpdMaz0m61znwxiair1KT3h+qA572LWEE8iGcNOepqVkylYABDqmLH9RhYudhA60nBN6rnCRJr+T+KomDpDAkumQgmRBmZ00S4FVcERFUGpst/aS1qvOljfOcY4fMJrXlC1Fy9aBNHSXXUFdp4GRGsB/yhFT7+hInJtrq9pu9b5RJx7UhO/JxYxPNeV3pI18mBQMV/CDVL1ignld+Xn+XUZE/PJcKrwqBhZh7dpOxzLt0zwJp/dATicNHPpcTD2luYtaGMv/LManmb6RUFvGibyoD+OkRnEiFXn1eN3+t+bE0kWe1e3TtPBGYwh6cvS9Ip8wS1j9hpFwDAM+FmA0LR/glOMIZa3WAo2WA8QIFqK4jH/KqTKqfXGjBURkLc4fuzXL37oNI+TIHO524JmdlCbftNz41P75YXj+vdVXFJ0w598/TayHt6UACrMI7k4Yc8ujcgJyfGyjek1yWHCkcv3MeDma1XdsOPOFnuzveRBKd8WwPIODN+CxaujhsgRjNur6VqArz7/RAxWDWwdKL/YOyCB5VPs0fyhcLTvLwAFZ7UpbwVKbmIchfAua8mw5WfGNuOgLos27i4tgP8XnEPYGQU0Jr+9LgZm/uOw1QLXMGN6B2fbH/WktGPEgQOsv7FIGprLuOYlLx/apRuWMt8QciOQIY1KgsK3mLuuwdpp5tjiZKOl3qrwjInuqcceVmGdZ8pIKhN3k3bxTBGjA5RMwd2w4vYbJoW92ACYO770s5l6GcrFH/Gyai4Zt/RsXHP0FGN825EfhG4zera5IRSV91ItV3Mw0EX2VcxyNMbFLnQLQpk8PpZA1jJLM35wYvVta6PxsoS/jH5usCmEJw7B58fnEpy3piQmKQeE4n1MzoYSw8lg2zpLAxCOm4R7zqwHZSTI4iV500V5zhGIkYdn5hb4JVP6itMZCDsXplH09GGSJcvqbI5TeAFS3BQMBcow2wNAJomWT9EWzohJNNHzSuVYipRYlJ+FgHU5uY4sUxSTsjjFfH2PANX+ast9TMVJTS7OnUY/v7Wq8RmdjiNcAp+GmA/V4aRnVnGnSpl0JpUCOo+oyCbFPM4wf3SS0Y7kMkVwmweefwxe3Njwr+10yGSsSQPcnq+mRNClWQGS01Y40wXhBYNhEdT49TD0rn2pFr6IXa0mm1EsPd+HuOyRt3X/ktHASdR6CsVk+ANtkI1Ujybnnzpdr1LscjbD5sWaQOEwm0Myqhg7AyBvFMlisYYB34gTRaeC92ocl+yTI3qPdbZxciPE6+JlQ/UipxS/61YnqstKmodR5AIPitjVkTc8rJAEdAoljdtv2RV2U9aEaO3RcmWi28VgLMqxuCnSJD/f99ziHqIyh+cUFxe2piLd49wfWVOzcl5VTNM9N1ykG+m2vxA/WelyckTs574Pwxz1+HjXpQo8/Ap9/RUvun7iuCe7WHIuWCb+GW4TiO0EJB3zjU/ettcSgBKaZu8ud0YlW54Ny05KgQbXAYAvYNzXvhqCaT2vgk/ccQhVJ5LAAVyEA/v0tj0RDPW5PHQSLlHGFLKzbrvUbyIMQ5oYAwKRmwIcvOFbckzfyENd2rSVLVwS9dTlvRJNvJTBa0leABVBQQHb8iJBrXN7f8bunVlXw5jzzFTZZYqSpo4yR4wAD/HiuobH1vmbnjNUUk9FomZTopW6dr68MWM17Fi9olDLLUTteTf7t+ZQOai6TZTuq/5ddEwPlB2u79FbFgdzEI7Yp83VYcmnkFyW8lIYR+4AzphawKZJUyrawJRqxrkwvYSOnrjm6Mg67KjW6tO5L8F9IbaxNUXYEaiWxpsiJggsbNucpWRNsjr/4SohrWOXYO2sHpVXdZF9fzTTPNFriP9gUwxWmSyKPGfbhdrynLgx498fH1cOsS3amaQk8nCPJY08nwNtC57YE0e/6kzlcgHQ4L9qix90WzZ+kRwiju3zIE4GDgje1bBebRvFP9Jm31pHRVVSceHVWCx+st/UTlvpl/ddg+CGSCnlhzKPQSo/Qa7EMJH7rijRlU2fb+yPweotxyztnizYIlRiWH14800sH53zeqUgXZX3Lupgi7MjH5ApMsh9jmAzmqOB/xKma+lim2yDvNbe0OgRaLUvfY/dpyiOVzW+yX34PZX902iAjcpq82Ok6R0d+wkBt8S15dqtr+PoqdvQ+PAGAYJnMO7t1wz0Y79Izpnfs196AhRqxF1W+6VnamSbTWiXCysy+VtuS86ZG8gEGyYlLqm4duKiMcK3LZnDpUVysqwnXoBRZM2QctjQZ2mTbqxnhgwgAV/Bn9lkVjZf8G5QFP6GEm3y0cBLJUKizHlzAaaPhAPUEAN/u7xn/BYaa4JaTkSf2oAOBbUnyyGeaujgbZwqsc/PfIFUDJ1m/5g0Gb8WtdQtzAvtilFHFnCdoEjbXIzqu8n0sMzmRxq5L8zFYy8VarNgiMUFujYKi6GjG80OHTQOhQkozjpRZARObKDRveWkL3Ub/NpZhq/iqUm9UIZKfwgxx4WQARrdHtd8WSI8/dC0hwfgczIYWK7s36Cwo7HFX+s4g0TQdtWeObaXhADaUjIhNyUUtuiHwZE+EZ5DkwMlE6kRGimUi2r2UqHBsg5JR6+oJo+N+3JVTjl4i7OHbu7GGNdxrKEKGKo3w3nlXJOB8J+2EzLlsBMseaXM2GOzHHAaDaHyCtwMdNb+sj8pPNXt5cewcjupkMuPi/AUG6Mln0nqz6qosAElwd5OQuuTkWtYcP/Nw6ngqp+MYp0sGX0ZdOs7RaamrxOMdlNT4cZM2ovSE3oAf2qsC4QukvrDR1snmAdVW61BVGzy/7KVl+hNLaAwH0uMdpIeUZGRnFHMXucBkX5lM9fPo1Joyky1c9Jxo18bhpK3LczvlKbAZ0wuk4uKdzZMrHJvf/X6AwK2Q5gFLli2rJZaZ0hkzA5OhvD6oVmNINEAWYoBsGhNBheHcKX2TZ63OgiNlJcCCa01mxbUBxrR1mWyegmJfFwIR2ipCJ/tySfNYm9x+BLbKkDMiJDDvXDp2N7COPAKpHetA7HZNelpeuD18eJS1cVPlN8pCS4fJxsXjfusa4IElMQRCTmdNoAKAkLzVnYv2xO1X48UIeE1wtyw0NSm+DaaX0hUoNp5P0yFHEt9CCTUMjYfkbjXZBTkryOB0WCUdlvCz6/gWCBLJz5oabnrp/2MneuNhf3iT3nW0IeHJjUU8rcuJSnPBinRZrSO5V2b+jAzxihEuC9WpQoXQqOoU9k7v8n7cBIqP8xO5iXJllsejKW3bI7bIu7dWmfC17VHcuP5Xzpoc/kaF0WrV9aEpz3LM+bR7ptszvJaVkpJ4Pf6tQSYlydIavopycj1rBovHR69YuFZjIdeeW7gnInFl7JMyyAHHlDx0upwRb3Q49tI++EEB8ZwGFI9Wzn4Uwf2RFSrrwx5GyKOrDkcnIyXDJC+p54QfPqyfriMW6vJe/9HGl3BZ1jL6A4R/LHq/dNGQIYIpj6XZ0wnJlaGXDPPkAQDwRW1RCgUovoS85dUm5vSKBDwM5wdD2p5ZPlrcOtdhU8GgwKfetcTjW3dv2S6Wf0Y+Yh5mCBYAaWe2sUk2EhhAFYlbfTq3PFiWkU9L0STLFe24kRwEkSrljBasbCTrVxijlXrr+IfJw8VmmVpgTQVRLHmiF3GihrAeRbk/fIzWlRZBuO5AU6ny/0iaKTlNTXLAY04iPv0Qkl62pj2c0BeULECm0YEoDmfAKuLcQEVxJEUUoHOt/rl5mOkpFFYTdfC5MljYg/rx7bTcQmMtscxhLlTbqYryqLjUlZIRdy4b4ASc5H8rTp69ip3dOsgwzhjegk7jGQ4OlotXDVCxNi0ZfL3vz+SLXpl+OZVT/eShCysMSjwFgArBg3Ks0d6+I8RG6VA30r9wlf0dO+c3EHGMemiy6VNflROF15/6n4YXupP41Cc2spY9cKEhdFMhVxJPGACnAEkwm4JaIdRKUfL8vcHZUhjsF3fm0n/oMjucHtfnxKJCyOyzBDZmaKZsg23Domg/6WVembY2aI8E9SSwi2pnh+0gni8Xo4QD6fTrbD5U94OUmQikYefWeklBJIBAGnJbwwMgC5XMaQu0ymH/Jwkfoj2vwHxOKkBbgCuEjUWAQfcmBdNKixs6AKi12tqZnHoyNFg3EnTZOCcpGIswfY4owc7JXxD1gma0dl5DfiGygxxzpclVcedmsppT7+Xa3c8fGqJgBuD49hKpWtsg75/wTXrCqCBRW5iV3300OtjTqhwUeY9jeC5w9SERfxk9oOxC5TrfAtXYjK80ZaX1ejirVo1R8ynpwOKk/7v4GKwrf9t6JDlrcmPzrD0pdLCNONZXq2oSe4F9W42dmCJKsLb3HQIcr03m/9km7epqd3XgrnV9QtJkDMAf8yoT/BFpM5d9bDQAqgNCq/m4LuCSoGfAQQNVmHMEI6Zzq+yKUw4QT97p49fDY+F/gvurte2o1Nx0C9Gcnz0TMMmVqoMtmeCLufwBVUZMcU/dRWLrS13SWDku/H8K7Ex7nrZeqCXiI3P8QCFbMG5cbMI6oH29QJ7gV2R6P6a9VZR+vMKF7KmE5WCpAkdLI7Rdt5vVvsWqOkEstifo+uqblXAx9el5eaRSLGgSnuxkkpU5/gOQ8z4HiRFgGYy95yA6eaDprgkpt3w66UIDFyj727ioDiYbH7LPY1c2mPKMjUMWpnihte5iwZciBERFUlUUfpHi9taqPSy8zBeTBQJaBKPxujbN5sfdz2KypyP8y4rjHeExNClbhD9rWypRPlauUjgZtCnouCPaQD2/ZPBdZyTHh7yu/i+cGQ7O1jZrYC1lWtOQY5wNbb+EjemHieu26JT+upoRoEsjb5XjOTRRQM9obfAgY7DgexrDgFVDSDVGpZ4tpsBlTUJD4U6CF14stG2Oyux7wyxsnZJ4EwY4s2BZ8GSz6GxHZjJxHvcZUN6K7l3YNJP6/SCSdaThQHrqvN8vN2gmBJp7eMti05kLBXgSsle5sifUe658BbPZBCIB4IzUd3Gi12kWZHD4A6tXYOBJSEK4cNgXXBWVIFm8vJONmVMjY4jyALk7Z/1muKe+QFbeWFxNZbV86zC0DBwJGdLOyTIWdGzVow+bXeGfRgjiNb//ssbxXJfzzRYXOKQyB2uQee395ZpPmEJwhYAWV4ecaELLe38a8j5A4ZlyeCDxg2bmyKRGTxoHVvpRefrded/5TPBw0xCdmNgk/DROQ7/y6QeMXMbnpON/Qgm+0IDWdM2IinFaHu5YOO8bjjdPEZREuSsHnDvi6EwUgZG+12QHm0vxpzksWPr8LAEzVFAxMTdw6bn8ol8T2yuRMxydtDsfXKv6gWL10MksHU5np+aMBXFTMmuiPLVQmLrMVMzBdtDd1/lg55wL8lq0+l7Fc4UpMZTAdosjOGY3I3BQWbxgGEFTh4dphIvUTltbcvD9SERV3QdQ9uam4OJLvPLj3Qefbs2hjkHPY+Ipwb5h8qrvbn53V/Wkf979TmotgvDbFJnmdIZGFJ3t8Vqc8fWmTccd26pMVzVpSntRpZc4rssaNBUlY63aogF4dwsB0pNC3oxK+QRiPJUp9kr6FkLJ0X2K8r23xqwJy587wgK50J9OGy93LIGfc8MaXGYcrDUNsaO5FySshytJhUhJ6drHdS/nEDQZmiQ1qu+OQE3c1G9Zulur/J2e0GXGFyI/EXmMG2lZMOWuRylIveOTPg1swcEYAbqS3Wj4qrGf0SJ6lInOMc1ah+YpitMUQIiI1iqzuqP9ca/uRXrB7lnkR8/5VLCuwPhXMitztDAajdTuAjcHMiY+t/lmDoaoRZby4R/fh0rxw9YymBTk1WD8xo0JuUeI5npBw+iwEQ+kYT4cbl9CSnBbGq0mth3P8q2QvsBfyEKygqcNTzIVV9o+Z3RIOmDGO/JY6hOMxQnbkXzBuk+KXJVUBA5FxPpUQ5ddXSMIy+5msW0sSayDCgYM/u/CPC8KcyjvicoXEmqYcY2qJOgrQdAF+wV6kSaMLbOYhdIDbeCdfmWMBqxZPLty8PilHUTlMgL0UlMx7N3sB/RZhYQgI0qHX4WgGK/VD3lni5RhLKYqnqEm12z4NOtk2FbqQnqE3+UgtV/1Xiuf8mBddPyaoaKN3W035OFmxB9uNUbRhjrQWjpNcdhMr+XaF7X6WdBYh5Myn2AgW6s1/CBJRJpDC7oN7N/do5kPYTHzmxX8tmCjE5uEC4nhZOKNt1W3Y4QKObrrYg5ucV/du4wpg1t2LcNn0ic7xnZ60t1K7oHQx88KpYH0kprf/tJ6eZrWoRVVUCZAc17r1zJ4xBVHtPYb1UBj+U+i9xT22uM7g+guae2rmzOvouV99x06lo6KR4xNuZImjsgmxzLSd0l/ODL4tP0xZTYaPbBy7a3aYn4YgvkRYkr8bzOvpmXaOuPilRbFEW5636j5hoTXKzZG4v1zXx12XKR6IuHssTVwid2EVIpTqZr8ICoKovKqEAcho9mxqSkoIOh1Jl1uCzOZbEoIzVsVdPjMScytXUWWGBJeovPatKOoKshWteq5Yg3xlmNdbQBLwxbYxVvCCps2QeCGHtjHTSUsvBRTV7UrJRoskfT59/ESLOP00lhqn0zFpBDgjulOKUQcfrXnDWfJ90tov5tQHdcqmJTsLLm5l08UCczbm6NFped6xudDro3Tlq9hpKyu2QgEkcVGblgPuRA6wc9pWi5Xnjj6Y1+n8op4GzrrDHeUORxQ2lmMOZvhxXd2zV3plVmqC16ZIxq93NtU/MrgHcVkLnjM8o2tCSGxAkgESMQ5v79P6jDo20wmSoRF36XmGvr3Tebnq5I86gJ8tBl3pfQ+Dm+g/0t/Qv4Ube2hIpVAznayPYCETNRRkvs4piJnLRN/F/Y0Z4mHJJ/URSctktoEcQq4UJfY72nSA9DGkDzaBT7KlUl2fMg9mZb9/S5qC476McrEitTwT7faTvOUeBhDtzDb11nQJVeqdcFfEpvjArHhw6ajkKdRjVj7ZtICMQdnjMpHI0PMINCbol2O51EH2txZ9odciaYf+OihbhdhTmdo18+ku/u/A1GV2VdyTCqrNemvbSONnCbFcjuIvsNVZN5s6BkD9tLseg+U6imI17KnbR/GF+qHlYVUAyNFFYT5/teR4pgfqz3S6/pQoJ1/5ksSmpmeuu/qoAHirXfvDVK3m1BoO0+WJ0Teeuhc3zX20ZdrdGGEwXJTvMyrC7afQpahACAhE7JA/ZKYj1tSgYdFul5YA3NlrNsl68r7UA8Gw9is3IvX9Ceu19RgK6VUSSCcwHgfEOSGT/6qjIsU55f6V2DXOzpZtg1TsojF8JrVDQ3+BRETwD4ERPROPzwg24qZNsmHZ4oyfOXEv0cUJxwaGq4vDQl/fnR0TcxV4Fz0g+yWogEyeG12GY9h9doV2kmRqbvih3q1P1ZBZ+4a6PHAXv2GTb0Tq8zCgP31uwFIK0TnEx/ry3TUiQVZlD6Qyrf3oukNFTcl/nAicuK7b9Zsr/ceIH9yKkBOdc8uXO/MBrgRUjbGCyU344MvTMuq6esgre0Ty7nob9sHra6177rBi4fVbLxKPSJ3izXjL1uLSOb2IKlBXUeKBVCQcI3iygprMpZixMUvRPSQPcrC/no3EKmpzHNQ7+uEVpyNbrCGjq283DiiEKHYBsFBLXFMYxkUYfYsyA3kgoP37JCyXD/iWJP3JIK8j7Sj3SUquVnLsQovK2YeGcyV8q+EnfD1qKqOvCdBaqXqpBUZcUapE20/FAfow2eSO0bAQe5ogqc5zyz2aGu8RVZxVVxkJ+CPUFfJ9tfv9u+4CVnLqi53cvqTegQkRcOYF1pYnTmIjTyWldIeT9f627cFjsOkY0qAtYIkrkCCat6a6vVDUmxDUAnxWwk4/Jfa/3XWHYfPW/5CklUu2CVjFW5huFCT5k9tX2XSJQ7bcjvi5A2bAmluPmCpT9Z654PwdndVGVmGS1rnHQthk/yR6bfdF1S3WUCJTV/N55LjZgxlV9vUy1hWZkVsjb2v2rW1JFwsp7qVgto8jFoYhpughswed4nDYivep9mo3FZd+ar2STui9fKiFxLxpEIva5kXGeZ8nhkP9q9pP5LLTORTSORZo4fEgNPxWoftAcTrFPbYcgJFmra7MSnX5BAh79mvJSyXbvBUUjtMKbzhXmq4Ec2mELad1/QfUHDoPVdQKvD+zR79QT070sIWJETJI4zDzKgLgaMHL5e4WdDkGYNiX2yZpoktVIt4hmMeH4XAwPZpf5MaS7lstqA9FPrgnnVNlc9jl0CtyhA/Y1mg7jroWYhhDRj+wSDQn8Uys6XO/FbeLButvC3zMW+q9JkTWfbtsk9HuSCkQYIVgaHzsxIMQzcYSAhw61iTOK+Ve3sJ5nnCUrMg/qv5wJgauEhqpYwGHRUy945dxZDBiHZQJsZLpYZlWibGztDiDLnRtNA1XpRTHUCKfb7J4ApCxwDxGlmVkFQ98p4iH2mJsS8s28jfyo3mFa9vsGDcK+NsBgWbs9Xxe4Lu744bUgEF7x7m0Y0+FC/kKieVa4zQLJYmd7sHlI0B7ckZViVr5LS6HpG8A2SohU+u52eAQwSzOBEnMq1OjxabqcRSYlevgM850vArcGXVrm9eSA9bC7lL4D3OqZPr9DyXhf79r20TnlHL+SwGnxU/+x7+SW2KPBr6As5HX7oM1r3EVYZZkhw7eG1hz82OYZBA7E7WkrKR3iwvQibVrCLrGDAvkdRA5oHha1Ds8oAEFJieqBAvhttuhEt8miWBCS8rmjA5Fu0BXkVmCD09+2xZtu4Uq8sTSq9OrXUkTZ2+GLzvHA0VMCwyZ+Ip3PyVIsGlQIjz6VA/GKMa8uFz+zj1Ddj8wsD52wMJiwEJ7rayI9DuZIqjY9qOSwLlaH8KoQ/NUPzWdPbBX7g6XZBNGKkwOM3TKZilHPGKeXxfA7YRR7RUm19gIN7DDVtwwFWwQhi9bIhg0C4XDuJ28vXztfaGxutmIx5FHNcRLQg37Q6cNEooYI3VeAYInTK2Oa6wcKfpjiK7WnolbRWd6M6OSfCHw2LK4gYHBmoOsBv/b7hdNdxhWJT8TpOrjLNej/8/hGBdWfTUmG+4H/WVV/pfa00nw/JF0GK2Eu3n0gc/VxCBj/wg5WfvI6/gCisTG+2J4A3/i9wA0iwwZoCQ+Olk9CXHWGPx5kzZSnfAHkZxwd9TnvInYwBfPu+M9wKGau2+IteMy0s3Rx2uxMXRY1ynP6MEKsQBZDB6ByBRXLqM3X3cYRqh52WZTI3H4yh9G30bFX4L6Kp1/HSCfvo7zVajFphCJbFCTddwrS8LbPDeiSe4lG+6Hc0swEG4jr+w0cwJrMGkFAUuirU2qvvvoWoF7gHezEitGWriornlbTIQWZnLrGj4dSCURap8XPzRXHRz5ppTGNggkLzHRVY/e4b8AM0t9G29BiyoftL7gye14L4eKtOufwdbq3bgwM5Ir+bb2BHijRmrQ2rr4jzzTXO/vwp7VKiH8sqxv8bin1EE65IaLEix3MSBockRqXa24ETPNZBtfUlGKK6I3raF+/maQ1eRfPsRT+jm0lgRVwPrI3TPlRcD9UGUT0V9dhZrvzLx7NUDKY/QI0dGmRoH7qQavow4dHBTWr9Qw9GS1ZN294eRd1f7wjFydyIQmmDMliMhFmOiVVnMP07Vze8eZzsQQkCRIwl11ONXtcdmjI1QIF1C2LGYW56aW2J+OxXmuTUEcPvEwLVVdsQ3TPYkYI7zph7gW0qdJ+0HadsaDZtnO6bxvnEt0rRZIvuzqKUSpcaG04JQYpvwl9I1cpsqPoz1nkPOchksmV66B0JNMTJNjie/vJdmVbJj8QiZnIpeMjC5AkhQxjPOUMCc6O41jlhInKdXVvnxtpwVybbAOZ/02oy+6GrtzLkmX/IrjvUszT26/b+/bCrnVKmZ6lwlu1iD6YYs8ih8DG77wpqzi4bldE1aK6NFtfJ9S8Q/v/NNBuOKxzuF/wUpP6diV5BZdI3/TpUzGXIAvZS0ZVNMUPZsT2V1y8CDyfMYCBRAKI3+DLKw4gXSRSJVa1GUPT9av74iqB3ARQ4dvLMdXOoX0wAv5+bKIBDKsBV/WwBWfzixMEcGc26N/mSQkw7TslpyI6cauU79qV1Kzpo46j6zZt6kteaDBGTOkHgg8L/M3hwV4aSAe1Ej3IChmOVlBiNgCfDeRE8+v6kn0ngGs2eHRIWmaTvoYUdG8Hf6CKsCD4GIyjpvCC2TnXmI4FDeC2o45XrcBcXLK4xIhGR59X74Vr5scfETF5c91Hxwp5RUP7zs+el2DFCAmLNIHEulzTTlIwtZZdyC7fFPhuB9JEqaUwW6g6VTs22RrddNrRubpE6pHS/ZiYe6OA4Q5QTTgSV+tDnhJcQFnDRK8y/lR1oY/hGL+WV1GxILhLyP0DlaNZK5gCenSS/69KcihZInYHys6Ot0S6de55Q4JuehXSVODeOMWNUQaCvc/0d2/l8YndmEgDP4SERhjCmS4Nmzq2bv7azvjIacNp99X28GRuMBBSmSt2KrLd0lcPYp/gTUWiRr1NwWvlUakTEv/AAM2JGvWTmO9Q9BZ1l78MVsNEiQdW17E9mJaDtsuBJkrcn7CvbFTkHgAYRBk+j51a08VrvzybFbcS6jE+ZNkSBQhlpHCiuYXPMWg2bYk+gBy0fdPFBJI0nSbU7FrwE9H2J6INVsdz3F0eZSkuQhwJC8ow2IaYEm7lLmNKRYcreZMK9BjuhyQ0DVI3x3ApHBs/3poqvJehKu8VoGZb6PcbvMWmCfXPGCQ61p2rw/v5EWROH7jlw9tCzAtVfu0SDQVw16m/YRuumk+/kRQyHx4Mmbu3qB1XT0lBUcDKe/+pTg/TWJiv5nH2O24jB0MbDvFtJ2SgtAS0T1mD0ITPCm+pG6MriAIB0kJctOw5WrjWqfeqEG7A1D8nPVGr+Te6rZS/U7/OhY4Xv8Mum3UvrYOruCl3pWq3uMyHWqoZVH9PGytiFCyqNCwnszRu6nIK2r/3dyZOWBX5Drl10CZvpSXTFIdrCP/iT5091k+RC0xN1y67c8M7QMfpE1wjrrktzeop5lqPRr/QqLF0orqmU8XIdq0puqXOTOl2oEpooNRGJ+TrBxODm4vflej/3TYdm3qQKBgPky13PnNt8fwhPYK8yMbL6Z5tf/IsAp4z+8iVv+MbL5dGM3Z/5OxnzjyJh+m8oRYBB5nuY0zaWK5rDdyQRErqNYTvUDUwhKTDnXfjHZVxg94sbZFKyJ+nOsTNbklcZ5RxlCEY5M4fOmn7H98O0Bbt0VkWdqvHBIMk4OEMumRz9DjdhIa3WZUw/OhgDnR3uG09cHGeeZzOAe8z3uZfJM0eK8Qegx5hozIb9SA8w4KrQrBbCgVhAxOYWqBoEji1bks9mwrF/c+a0kTepmW1wY7n0IXcIXR+paiucba76UcnzjW0xNiGnJmfVa5WZR4deTQUwzGzL/VI/NeI35uR0f01nUQeNKgoeLNKWi/ziwztw/qdFMIpUxNmHadVN5BVr7LzdPFmyZUfWpDW6u3kxQzvBbOO4bA+D0Qr5p/cPDJGeFBJhlvUwTIcqLbCiE3boKkOFVqSzXoMDU6BLoZA1/oAGZtrbWiOJ7pg2A5yXhdVsD7IgIFnEMSieczQnCHT7cbAVueYNZW/dXqUlqU5GlqzNFkm4Pn++e/44ZXhr2K4ZIQTH8S4ttxrEJMmSR5jqKvwMBzj2PyHkYqgMr5kREP8b70louf2hWuhjnTTEAITs7xjkVYMcx9zAdgHhglbo+oP+PgN96kmhPVK2yLKUZjhsCJqklhfbpGagUe6GN8e5XdsCJY4UuccsetCi7mwrw9LaTeiKE4VHMmgTpphzcN5QzLy1ruUhOHAS9WiZhENsAZAMV6RZRkoZ/k87Yt3kUFY+r0APTbiNtiOZjILfDhVbaB4f8MXUZjwrQZa9NA9MPN9FulfebLjo0PegGH5ujUGZh3T6XMDiIgL2lTrKPSakKJVABWqFonfGKnUUxvgz4795VVSeNwVjNT2u0kiTmx08w32fJTb7O2drexpwB+3nG0UaqM6cWg28NffgzTnmXdKEBPDl6EvUGR8TXUVNJVOFP1WUMvONbKECK1iyiir1TLxPD42YRwaeUbCPV2cPJhC4edNzEFwPc8+178eCi6hVPPi4uKejfXnuTqtK42cFQ8ssQiYa/7IsQWXpTXaWiQtgCeTF6LkHhUc8kTs7wSkTkZpCFWipSrqtQqNQSkE6QOCySuKcORbLdl9krDAa+jEGu+11JLRJ2kNApcDxFQGfhCePiqcsEIRckm1/iLeqxsTJ+FzDqGvi2Oguvq8NvKpEU5DnJeauhvsL4BCw5qZb4v3yjHll+fOkCeNGzj+K7v1UR34MxrifiIOHOZRaNqYXftKdoPgRI5hKPZX6CO27WHOclErbRW1fulARkqD9i2wyEK/PIYEwkIRsDKpjwYfpTm5bpECOGfbRNuYx8jpwPte7CPLJ68ND//j2RqPvciJUIPFs8+YiOC5s35gUmFI0Zm0d+V6g/3Jh59fqF8ad88ubhs4lIuM8mjO9QJdgbD9WC78SPQBAI4ybBsYyywpkBFRKHBN055A1c0cnPsL1XhrY/1yCjMLcBUGdWsuaBr/phlIdsiv+FSRZDpKVjHCyJ511zBxq1tTkxA2Of3CwxAuaQkor7TXZGkfU2a5j/NDk+PkUc3b7yB5y6/0oCIHImmlcSBEpAHzMJmCWiKVyJLJ/COTs1uoRm64JN2zz/f4aEdJ68LJeRzmu0bNyTHat+02LCDOQUjbAtZGAlXVTZUvmTw7Hqk7H52pyN8zB/Gdu9sDqESLFR8sSIzNXr5Tx9E6sBHZqgu6ZwDBpux18JMSeg88mEoMOKSvtMlwBgB/YN2k0PdUbm9l30z31RWKg43nB/PA0WVJSxIuDbFver/8JA+OM0lcx+qUHbvVLoLVUaVQYYGYE8kcMbQqAnfN1gwA3p7OEasldwe+pCGAEzDQCORmw3hYfnt7XM9zJfEbP7raVA11UV+GX/NcBZ73pB/cIpfPSEI8k7UIfAeAF4p29WVYT1z7HHicAVN0vRX8WZNqiM0FM1rOAS+gez/+7T/gB3f28zg6LqEfk4bDhOm/B2Bm5/QSa/PCxDLiVl60sVcncVecXnkLT+CjOyZ0BoDaPXVyOYeYrVgci7C6zNpqT7fEEJuqXTsfPBGhCt67s4VbMko/bb34/hh1osCwQVEgP2BKZoK53jMX4Lor/qka5ZIuPAiTQkqD0BHgVrbMh/8XRLtwBLYfRsveuAZzoDVFYQxn5F1mKE4aZ4gHJJCzoRArjEzW05ujCjbIBkAz0LsTudMNFHHeeFjpFV4otx+IdeHWuijBlsY8pl88VaVQB9yNDoK+L3+uAatNynpgXbes3xV6Jk+wpfBedrJ915wrt7zWcYWScim6V/yc3+Gf84W27g+669i32ncYehXRrK+0MJv3/a/TN1ipBNFghMz68PIUhmHD/oY4CE8Ip6KcgQNDotX6i85KSnT3dQXEGq8L/+22CfT8lAakEHKskXw76vkConhFpXkTBxOX63s6qQ4OFyOAsg5e1YlSlF0k8QVo3CDnDGlxJe9Y2pscCKGMl4BbtQkvPDyVek1SnbMqGg9fN0/OCWGv3iKwT5Nwv2kO4vaN7xs9rN8b/aq0f7jKx4G1Tpe+/6iFwRDJW3UxpMDHYSfaC3uPXp2a6qGvRq/qxMMjZc/7eRwZY7/mHqB1kdsyAwX0vzWqtbs6IsdbmgFhyJzVrU9dBSb/k0bC4a1vrcZr96HbOJDbDtVD7lrg0jK/vVzmX6xSYZLjd9evsU0+Lr//MeIxZl1SMxt9LPkiDEXwOUDR2cNCbwQ6IsN7E4CQkE/aRykGcsLWSVrczo8/XzSHbL/bYZh9MZLLEouOPEYcXTPS3+6f93hV6BClidV6VBtRjDtTS8/QaBe7kXMEn+gZflcfi9eMUewYV6gRDGWembx2Vi8olF3ztPo+UUd48xlOZ/HeaphaVtBiyD/UyybCczGK4ryatF98Qv9r94NGzR3p3lGKCVBF0a7UIFr0S3iSks092WRT5pzA7TMNlsdMQbD0cGu/2eDp3pCAFTjUO1jMQ5wHSRyLfWORZwXAueoNVdOHpukVMLjac1smhn0/NASUM+L0P4mqlNRzhHH06X4zsgGwdK20OsN6Q/qFW27Ge1z6K59+gSALs71xR0FlofhN7d07I0z/f++uBCjAlurgja1jvpY1HJRh5R/4TU9JSizEROnZBnyFF0t4iZJ6WK4XFqcRTR4EEpIjIyzagUiPHxP6Vr77YgkYiCQb9PsFLKNnEmtriVPoGBaXDR28tcqCxtA+CuT6m3ujBDhcqDxDYXXL94XWxNRlQyEhvVxfIr5hi40SChJriDcdPGS4949AYOCISYrNBE+egmCS4sGbC3CVOrmni8UZktFpcUopcXyovPLrwG4cYz5fk1Nlqx1b8uanWGVKSLWn8f0vYbcsBfr8eRi93j8Pq0ICjdrE5u4Ccw9nIMlTJMzmIE6EVeYWtBl+x+HcNXejYLygq+ejpZeNsXnM1eArDscu32QOYgP+q5pT5bz8WNjCE6KNuZ6k0KtpD5uWBn/KgHUSNwwZN4ChfcS9ZNoHaKHImjaLVmeW2JaYgIoqPWPa5AClpacu2GnyQdCChnLFq9SR/pe/tA1/13CKDlbxdZ9gyOjZg5tdfLFT/e707dMXoXAswDpsvU3qdNka4Dx/B36x3zvr1wO2RU2cNRCZUfYsP3kOmDiwSgmSfeKUWFcGgn/8Fi97s0jAdvhi4FLIT5dwqdqxr3CdUOilFFR28VV9/pWBTWO+TsRiAmGpk/n9HQkTpZC5LnXbbDIcscUo+FDg9qeY/WsmRrG4toY4ks4XNHeJrHyaYodnwWWBFxs3A7vdA2E6mSa51agIBT7OQDSLkogDxzKLDzaPV2iwOsuHOjMQepp9ZN9oLxQDTtnceHU9XisuSk1XVcmAQZ9DilpoeEu9jU1MW5ku2O8rIGDVl5bxCU0k8b/Mi8QG6JG9gwfdD1jxeeRjP0qJxr5iDwOGfkuX0v4MkFP/neeZYRfq4R2GLpPeiN7+Pra1qKQavTKT5IGxX4FCNay7IMn5/75mbfhL/JnxRQKwqC2eRI9Gv+AcsqQ7nUOR/6bgDoyo4JKQM6s93WumFrb0srJ6Xu1gowaAyDUCYiF+zfUTLT4IrRX45hWJE8YRDPrOE5OYha6LqVKatvK1tKDfWOHqbLnUxXaibvOmJbKmy524YOKw4W+/8j3yfGaPivXyAs1vBCa9d04F+eKcPoBl2qEJ1+3dsqVSWLjncu1BGKFeR4wCe9y4ybgkgEhFLAymTEZBNPCMB3gwuq9Fg9VsdiOdqwKNoTAfGsQQuSW4gvMPZrBcIxynFyXs+l+STc5/FhedSM3axMgdFhbOmDsbiyDrOsFzfHrDDvKT/4GMiEY5iFDBjiRCdpv8pmwNG4EWDxVaUbR+3NkPhBdph5/rrnINv93YoVJ8xBgj4UvBT3UsUkO3QFp0jobk6ETBAczXOyxCWNNN3hw8HDIdKrw2cSc1rrFkzzzayevieggdeCvNmIISdvdlhLXpCAvUFyzIKAOptAWPIyJAXEcmig9BmpL17/LvDzoDdMP3+z5QQOrc+2F1f7Z6Gwc38Bu8t4FGhtW/MEryNqxMm3s2pThr4y/kX4a+9gbjPnqAUgOCvh3jxGvHhWG2Iv/fb6lFTlvy20OYjwh5DkbYzVeZPeuzsobrMCxlDIMa1dNMt0I/OghNcp9Y6HrJ/VCebwjqd255zFq07jItRQ+TEKGZKmXfJmjnJS6YZNjVt4L41LqVmmTO45Xt6/UngPLhDeOKL0WtfSPCB13hHfMfNGSlkrQcE7tT4mqQQOm5OI5uJtQHyrs5wjKPwhfOGrgvP4i6fIWJTu7VXrd8Tl0/VLHqg9+u7nue/mOQ1SzHGpBSS8wjvbGxNN8h0hFiwl2VBWQjTJxdUVOoAGOSSSkq9VOm9Fcs8Vd4sHwZyE8Xp/LjGVmzT954QEVywFelsC4NPsozvlmj8Z0vicQBnsRnw90E1TgsQ4Jw/RJBvqD20iNqRoY1dQTdx2HzYRlytF1r8ngHJAg4CT2XwPvIbsLvOzJPRA4tsAF1Qjis1NJJCG4hwl5lDGgvTHvRlJm1r9/3Y40Tl9KSH22fE3rl5h94AyPpt/Hz09AGsLivzqHeIamlCCZNkxn11PWiKC+a+w2LRLdnp9hfbi0wu1TID6/HnKf1qjCNlsh1CBzR89EJnqf/o6W4THbom1LQyqPl+2LYzlkV8BiY9dKcFj5PyRSIcejhKpW2SFvua3Y3KBRaE2Cx2IMJG9tbGvMbb1zyGouP1sCYfKwT4XzITRKEhO4VrQMw1q4CbKJoAZjPNVx4j90y454JLgfjOH9qWgDjmIUKUQj/gdGIr7IfnVvzIdIzcxjjLfBkSDtGCD3Ruzf88111jV8mo2Cf3LRpNdJ6ppaXw/s87QvUSR5XsYl43UUFY7hyuauOW2qQLCM87qJ2P3C4Kc8WuEFqFnm49iEJoV6y1ElNaqDa1Ows+Q4h1oWF3ocSFVpCcqBnb6d1lNRh2bKKhk2zqA2zUbqXzFaFXxyyw9mFeRvF2Qm38VJPgqvoHQBeVPtGp3MMK2v1mYI9ny+MUEdv2t+Qd6ke9S9KTYWoJu+rDBLnxcW7+X2569XTThuzLGxSBikfHOzFrdzXP1M4XqOTb8I+kxAy/M+8PyT+l/EwQkDbSD/iVHfXbZoO1S28GhBChwKUqmZo9Shdh5ziVUWGaYLC+vnoJH6xb+YDF0uPGNM4/W1zmZC/p4PBv07R1gBn0r6+hAqG/K7eDcpk1pBLu0ulEtmBekTjTYvQu4Nnj9L6uxAlY+duYppoOFHImbTNOIeggnH+V8c1ffRx6XSHG/L/wRWz6F60Kr+IRFah17X7N0jADbj+WtszpAY0RIeaSQtL8IlWYS1PpiCtQSixTFupiAnyDZTHkJCjxLr6bRhr+oEMWsrEDpy534ZSCZ910xuAqD6Bw3V+0Ur2q/5VIrLaeUU97XYkY0/AlL3jTWWemV87c+XJ3GphZEkE+XJsc7FvU0YbhFVYHWi/FFbuhmPiqpip9NXgHzPX4vV4WDcEvYe//hdp1KDuuR6SOMdUfip93OYTivzZpyCaEj8xqX7YrTGuI+MjCbUyKSgaErDkN7gvMdSRxnkLNmt1DpMGEC8rbj19hdWLat7WxPiM4GfOHYMWPpm55nF8i7xO9wUYPpcu8tQ0XQ4Ppn8FNUrS+TWPZpul3Zp0cHl80EODS7IanbHNKWMs9HyGNkESqeXoyJnHP4jqvA0SOfuHDaIIrbLDKTDmVWOi28WRTAQ6HAx4f6qcpuGgg3DX70zxydaQHhBdakdk0KM7MwQGIIeLOhufnK/CfiZOygAtD9iU1FtCWZHDUIV6fWeFt4VIH//cOWblqEZ/TTzX/mE9LwVt77fjU4dqBvaVCvNorLx+rf+UjRPJIbwMk8SlD3i3a+xhutJG0jZzH2dllCJ+2VVhggLmu406vv0AJyjIlx30FZ4oLQizlhHX7deOxmPb8ettAQoYeoRWuP72UAX5iFLmDTI/oWf68c7t3iodMB0mt/uLDt0hDc2oNcioIs78KZO4Py6MlyHAqVgSuywcpLUuTd8UK7B6sMzIFraU+kweaOAFNaOOKhf1BZg==
Variant 1
DifficultyLevel
615
Question
? + 32=3
What makes this number sentence correct?
Worked Solution
|
|
? + 32 |
= 3 |
|
|
|
|
? |
= 39−32 |
|
|
? |
= 37 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | ? + $\dfrac{2}{3} = 3$
What makes this number sentence correct?
|
workedSolution |
| | |
| ---------------------: | -------------- |
| ? + $\dfrac{2}{3}$ | \= 3
| | |
| | |
| ? | \= $\dfrac{9}{3} - \dfrac{2}{3}$ |
| | |
| ? | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/PXhX4me5SErR3GZKLiDlrTTRfYRsWFFOdwn6xiVbSZfit1FR3L9/pzCM1hqLyPgs648EqNzscb2aF/MxHwvBPrLkZ8P2mmsbyUQOFPKw8JFU9x0hlTRElW/fLOZPu3sD8FJSIpzF0UaIymVa9lHi1FlO3zZlAiYVC9o5d+Be4QMM7MmmMPDtfdFpe1wLJyKVfluqm4ugMAjTj9ubTQjAHQaJ6ewQsRsYYGKOfo8pNz1YVzxFCwuHR9yqN98AlIwKnPehcKHK+QYPHrBQ1I0F4oyMgnqKoZZ/IU09P2fJkIsp+vMyYUv4ftyhVw+pxxu9iuHRp1m70wv65gL7Xfy4xDJ3lrbKeMYKMkXdXLMRJ9R2B9QsaZpUToh9Nh0XGeCdr56dUQVzRuma+ZYh1ZKOjVNBAIpRmQFfUiasojDw1DER/pctj89s7qGegguelUUTbPCag3VRfEzO1mKf27CMYE7dt81dDknwqTL495BLEyfYn/ErdQkBelvCz5XrUe1/Jq8FDz2pkC689Lcc1AM4uPZNpjqFCMLZvfPERSEokPRZ6Q5yOExqLQkGpjPoBoNPBHE3XFXjveRUwq3xD0fP37shTodpjjCuwuQu+nirmIzXSM1K2Dbydcx1mACEZ5gJ7SumAaw04RV+NH8HyG7ND/UHIrAngUPHNLEgliJG7UTu3uVArFiLcYFruhCorUC18Lmqzpbm7bvbIcGhEePf9zqQGRSmA896O78I9wf2yPsdyIooH4hcwdGvNhg/cToHEtl4zu56RjOU5KKloVrHrsKTaxNXIv3UHC4zI/RBQSoDfx3JZVI44qPhamTacAbgMWd4lWbhqbfOB1uA/wySsd7gXf4l68or3riFJQjyCvet37+aEKIQgiKbECzA8jkOYH1Gf5gnDb+M+i4oOuKP+PaPGnW0wi2bAmBpQXjmpmL/3lSSIKl0/5wukQ3prHMeP1Yc3PyEfQl/RbjCBn3aRZmCD2/IEhNzzyIXni8C19eb0+5I90JgiLAUUZvdbQ7NomEnjmmnd2EK6XijeJbkQDBKbgyY0F/4sfNowKVJWkJSaQtU9f9lFL7PwYAdLCHo6awZ/t6z2gjeM+lSodch4bxjy5p7IA8Dtc7TQUO4/WQt5gghS3HUGk0Pjkk8Albo4W7LqNwfCCAd3X5DA4b2bfrtr0Px5ixi00kY7jW6xZ1WJCKzwYg+pqW9ngM+330N5TGICVYFycPRjg6Pofx8JoN73FgW0GywL7HViMaGN2oM3uQJbsqbEZ4nXWTQV28Ml37CuQRhMh2Cz+kKMD8HjyIyPqeem1OpTvIKsaqHIPQLJww02Q2P1tunXvoYeJrrxZJFdbYqnZA8tO9sotMkKPgyeOYcWSscmOgAaD6PMV1QPUPdGOk8nkNOAeht0X1s+1GY2u/ql0iKB0yK9e0Dp9tFNbYUJ+dV5D1Bei2PNKcMzbkKhRdQZgZ6NY00pUqqG8Eln96VXiLrVXY8PvTquFPn7noPEJAb5u1rj84WkbtbQVJqS75h+JS5XJH/b1kij+HEL+h9HnGvPNXOUv3lsWaTHF2X4Ql194lpPdH1iXmyYnXPBGCeAzLt4viAupbK/WAJCN/BV/9RQj9ak8Y+XCdDo2lrcrs6ySX/W1Izv61m5lzqER8T2RmK+Tv2ei0sjwC8FNBZnHpJ3EQRtBdDyCwF7lnWYXQqPRqNSc0qMTwWvqDQL4SPEI3emiCyHM7ZeQKFADIQIpK6BAxBpYXwJdmBrvd/gb84ieU4RzM9HNaTFuIPBruZa/iZlidhyy+V+ZACyPL3lhzziVbstA+d+xJOlR57eMAZk4NvFgH5LtDAoxGpny9Vzf3wA7Iq6paeNG+/Evpymx4m6jVIrBG8pRBCGTH/ewJaGQszMnPPRn7b013eXvByDt8kgY7xAS6oP2tLELdQDhLa2oxuNRV1kGsua0xNSXEwbjx3yAITSQB/Tvxc8tM/9Ibwa5VGKvkDDkrfqAA3a/GKEZh9ric2HEZaUr1dY6EtYWb2KP4hX5uI6EYdX4P2vODtokEwm0B90GjgUaNEcvD9Mz2fZF5QZJmlhT6xj9Kf+vee4D4jY4XyIpHgVcZFJ+qgzt29aUGN/kiysv2VCOBKdZbaKUimSdyZfWuhIiCkoZBfg/MKLMzhuzzfBDG3fRrKuvGr9qr0uIryI48x7ZHdAzrBVmxhxhVpdUf9TQ7WCpfPkd833uBN2guMgE0Agv7orHJCvOW1W1Q+hQcSVOJm//4kL4oSIZnBBo54BGe0TOyBmvraon8iiyZQYOo0OqxiOjMX85FRW/DqrPKjF2C3C+Gvvgivai9zTqnyxQ/HDuNUa8leAy5CWIadj5zb1LxNbs86lMubm1cD3K0mcOqc5QRiwvV9/bv6qriReOBSKp9PkZDuX3YUXNPKA/9vKlUwsWkaUoq6JLBgGDunOKSlPWNrOasaveLTj0jog3VPAkBN8+SCKiZXYnSMVCrfoQ1kjDdbNKATjbzWzDM+kgR6+9FmXQlDKDojm5Jqw3LQfLcyxY5Fla7+BIn/S9jeUdKViwvOeD25exGusMYbdcbtha9RVfJPB/3iz0MyobcKJZBPX1HV3t58gf30Mt4sAJQAQ6RS+63Ph4vfB1f84mFXXunw3ZSGOcT10NzmnPa+Stko5fJ6YQIZ61hAQLqDG5zue2wA1qBoeheGARs5EbCcfvGZOBHWQMoGUWpb3SNgaZQzapKOBokdiUeB7f+15wZE/47wAs47PUst3gGPxAsYFiL6i0rDG2ERMw3QK8L6a0E43T2Lhzi5ynnSI3QScoyGJdz5a1TCuVHZNIKic90EoKg3ZUtbV481ZQgY5ZZU2VXdGyIVDOpvarpUCMBaLQzRxN/HcN0WGHgQv9Xny7ftaOZpJjHB5rxDlAwW6QacA25OGpAU1XPG66pLbafwLUc8GtYa/Z/T72XGCM2ms2WhsEM6VMvDWb+TB/SAVjC0jgUWbySC4RCLxAF8HMkWB+C4X69nSdO/8fOk6qukHcLVFK4wM3b0YKrhVlqm1pcoCrJYjLvnCbhyGXwruLmWfSEDnPXaHluAubzW5bEu94g7ihq7fYfE6lS3bpytSvbb9BeUknTkVhV7lmZWD5HyBC9yJSBxvSqji+DkwA1DsjVkdhwinwkJbJ1W5heaTjwluLE060m0kBepsduFXyW3+vGel0EB+3YoWu0VehuyozS38SD339h1RgffaiS91yVddvDSw3KbF2IBE9n0IqMuvMIXFOVuOd+6QBc1sXPaPVVN3DWsy6m7HD7fAB0v98ev7hGZrXKw9qjCGixJo3PY5zkAqotUyFAqy+GQvL1iS5+PgFa9Syd2TlIb7iwcnDsWPnZ5E3J3UX8VL9+dlBfEuoXrUK/JXRKYG8Lf9NM7uWy6WfCuwu7KTNCk86ExDjCt3gaILKAMoj9mEKfkBD017+YsSoV+Wjn6jVN/Q98T1fIYeZrKgzTVQmKMifAFRI9zNO3IJLYkQCuD8Wlq3vwcFd5nZvShG5qNYBViQbdSSV8mIIYJNGJ/gRoT5HN5H+eDJFAG0LsCQuVkTGhjCbaEAxqxMcYHS3af5Ay2pvSYc2V34hoy3U7xK4c1m5HZ7geoImNX/anWG5qRFcZtpwyM3ewglwI30qHRbZlWDKpr5tFjF5LSlsjpSqniMbJyGsdKLvsstEtH1rYg/hko0tU9VFB9EU/8qA8Dszou7s95L+ohOpsea8t6k29OnkSli+gthswYevZtX4lZYJ22MawOy8NX0bYe6SbElAWhmUZurOt8xQN9a54jDMMLw/oJqdMWgjyPfD1pJ8v9hVWI1mXHzifGmg4c+VzwbYNpaMhSgVAIerZY4p/2vdlCZ2fO1PNIwsfq9lLKybthBEEYDj2NeTmwXhrT2CW562Px2z1mllGdtEqbP4g1CPmgGYlppMO3LB+9gJshMiktV2Dr0mnz2M7fg9JdkAAlqrkFMogCPl05ZEUerZceP0W3CB8tjNZb+W1+nA1/fsl5901WGA5sBrddzbrBKaFzka81ae7IIB9y/qy82/0+0CouTabITNvoNXY/DGXJZIujRL8KX1diE5jJKXMDkJSo8i4reuOEPmGVxSIbQw/fY7nA18rXDKWvpXsZaTQ5wOorkeeLicGJhjKTQk8O+eQTDWhWhX4nxl8+B0mDGySU18QNX3wID5o+egSMFedfMTK+S0XAYdl2vpanUP3BkiPu3Dmcuh8CE3CX42Nr21NmKm/d+9TV1t4bXKPJ/3nTr1grWjY4tZDo1XfmsIY95bw1PGERQm832WBvdIhGogO5blrD1kU2Sp2+ZtaLQC958nF5hZHmIIKyc2NLTsrR4piQSOahvCwevnDzPVVbVSOJnA9Uq+8tmSboHU+40Q69cLSEpN6629YtPyKFfTmbSLXSBjfdonbtortT5SrGipWzg//PDAyNlHMgUMx6MK9Br+EzmainvOMOFvBjBl0wVJ6bpIFxA80CVXSGw2umIdfpbSEtp1JAuVMbkX4WcuqU0/BrYMK3NSY0QzGlTNDFaJWDSFMpXpe6jx5bsNON1GpMatlI8/828ancL5665S6UlOHqZuZQjonAPPDuvXdtQXwwQKf0Wgt/HAPF/vuE8jPEOr/KQmijyscEkVbToqT2R9ZJUkpCLKF8rLYPIJSorNN0nqiP8O9teQiU0U2xOjRF7jcgTZJC08uGl0K7jWgUcHqR1KsVWs4+NkqL//J0hjHro7zEdgpBNuQ2AI2Oknbzok2qFk/g4pCWCPw3wgVfc17FGwu5f6C5Y+dzmlXnXL1uT8UI8rjqtMCBgpgznfq8O+Xgshw6bPYjySG1ULI7qlGHCwXf44IsVH8X0rU5b4hyxR3ywly04a3lx/M07wcU5BuctNTtajnJ5B41cuxkY5LlZLUQofGJ1RPCw46Y7Zm2/dNmcJqKv3agvyMRLwkdU+1iq8lzsK5NFknadmwaYX9UdJHb+F+14rZ9HM2freVX5JvLhf+4Qn8b5gcYQY8pVsAx0ig2g+deKPefgqmr6F3xdLVA37g/hqX+7tQsBajeLU6TKSCX92uvCwKGqoOHZwLieDa6iHT13JIp+hT223R3ZdomMT283V06Mp+kGmzOtta+2kC9bgNAsSE+1X69hEVoOaAjcnf5dOd+azwx3PZnb6upO9crIEfrML/xj0NzpdfaMwCKcHC5ecKGP0KmH12GhtlKZ3nweFHhA4dYGaoR5T6QuVf5VJ1Ck3KcuJRdAakruESmP2cGaRI0tOzk7KbKWThhGYbAp1d0F7/qSb832QJ7JQr/yY52EVE7vYbsQcJNFKthfFI4zGIBggLGoe4JzXPvaixATCt6oX5Zbi5qRVNsXY5MIlxPcWc1AxscU9LRqfrglirrC3ynHZhYPRMO5KElNGwnHOoVurYP0DbbkiftqWd2ZjC8VAYcsQhSgADHx8s5WXWLITBbXAeXccW3yfsjHeS1fo3R9RvO1i7NXPBgVnGnRxnLST2gsObBuPt9SrS/96OWnKhFEhlvFIGi4fbIXUfJZuuwnd1febEs0STrc9X6g8GRKVTN49cbdqtaKzx2hJisqq7t6TpGKI983BALtLpBIRPf/aahCQYbWVquSiRykcoa+anG6/BuSaYKsGm4gXQ4FHjAOQ/SfUMF9EIG+WmVNoGYOiO7S6wlzoBp+yfUUK7UtYNAPwnIgGSrd0Fc0EODcpQPPtKp4ca2y+L7UVXYnpH7+q4fsrBmCq5sJxscU+zfbKb8Rn3hBc4Q5f50LM02NMZZNATul6+r+S5Bgmr8PQi+gI4nCX4h+RIPJNuwhtHY8iAGspTUAqPNYX4JP0VwwiiyZ91iuSFfUDRPiT7cfpl38IB6qmVPlYASo2E/jod8P1tfZM3IdGSQRkipZl3pYx1+fEFi3bficCWOARikaPRGM+UAVvZMvJPzVY40/oVj6JlM8aSxuNaIIFQeFbksrNOfnG6kue3sd3ZjgSf36nBXmXsB54MG9aGW98kr7pUaFDPyL3waNlmOro0vEpg5FmaIeidEHjA1YdPd5gc/DqlEZJbQNpaLeDUZD/vsUdSAKXnz+wchwASQCKOUOpmB8P0Vi/vILbGZmYDOj7MKHhfO7+as6MPiUrFFFSj85jYQmnpeFlNumLBh5vuZpmkc87tUFHin0C0Xo4DzNKaVj667mBtkk5yjUSw0CFw4JQyYo0d63kKSj0qANiq+YMk7QTNVvqkdD1D1ytSaUl8LP3yYt5hJ1B+vwZFj5ISl8/9PMPnETzAp0GRBtZ6Gk1Qva2qN0+qJO46J4tDJ9QGnrk4+mPoRIZhaxVpVXBiYmt7xRH9RtIuffT30kXp8HzbWH9NcjpD3fJ/msAIoIK4jc9iDSs9D+YaCmVRWldiL9/HpVChQIaAOYKe5bKJHt7lIvpWd3XrT6Q+Yav+ZHREv96H9f+wtcY5o653B51BJj+a7GKF/kCtOviIo6Dg58wOpwb9Wa1n9H9t2bflzRL2zjHD55y13Wz9kLkEFbV6FleQI7vPbetpepYQG0qz1AzW9IeaHbVhS9Kl3ScecwKH1wN1fVBVnwJOutj32HUv2bBC25DOzpDeZfxm8MKGBjzTgxrEdT/Wrd30L2Xw3hve6XB7NY4VLb+GlMbtkSsoR9c+/9YHrpCA/v79t84mW5D2XNKaFYNBRQcNz/5lPfmu2QGsu//vthzNuD6cnwRZePQnSeYvHcp0ewmxF930YuJaPsAnRge3QnTK6CWQURhqTUNIDUPBxqJ7W3M+1mNmrEYp4jsN2LTWXGi2aj3Z+9eisSoyvdXGE4eWQPCUeu9EZ/dmldmqtgZSXJLcXawvgirHR1/HJGGKQqAjGYxpoRCct+rliLpn57RThzHIFDxnISy2YlIimo+OzDUGQUeajP/rC7O/X5Q84Y2iVHoqFjJbdDHVpVIkV2LeQuNKIhHyez8RTBTdHI1bgLmWJfmysBAPIAUD5Zo+dTcUN2BQUEcTFNDooV06UOQmzcSmP4Afd+ph2b8o/jL2lTIhlOnw0JMtbJ4fzcfJC2be84zapM8iAX4XbrZ/51huizbxW0U8Nz6TX4eXmjPhpPpb+Nz1YWYRYxpdY93Rjff9PtKJBq6vpfNXden82tuPvQ9J5v8xau+EdKYurys8Cgiosa/y/G2WZV0m8kB0wlTcz9DBZSFzyyqCNPXV2OH/V7gBguwOToNhqyVIB8Bs37ZzOEy9T4ienmRW8xrJZAQh4Svdvu97gMZj2pSsDBgvIFbt7VBu2PZgxCtWfEsLEGv2TPBoLtS1ICyLulJbkvKGl8L9lkRHQGquLtB3MZyOFztR7p9zNKN8KUQOOkBBw4c4BtueqWw0HlDRGwNQbM9/q/UmVK/fXBHRAcXzIl7rvGFUPowI03U2gJq9tVAkNfKknVegMIZb/nEV8+9LaU0tdxpK+5hQ1ThKp8lVLXqb6Bx5cK8YRIO45ETL/IGGcFgOOTIqHhEkS0xrxe3+KsDjPLDx75HRQd4xZkQ6BOnNGZoShR99nlG4alqlkLv/ZeuJ9G1EeBp+C4Pd8fAOzwsRVJNnq3juA7qztaFeYyP4RXHhvp9qbLyxbFdNGy/KufqJrFtA52se+7ar6lftS7/cyl/yTG2UUn+rvH3rMIw5UQVZr4jBV/Uvt5+NJs22pgxAshklUMWNvmoXbXr15zOK33XpXvsLEFdU6LoggzJ0BZRA5KrnVNMR3MqQdxt55izVBYOldLZLNoZV96GMRy8VS8Ace8tmxcAKKl1zZsLHklaiBNqmO++cZeBkZCo+DpqnpMBhC4mZ+Zy/mOEeKPU8vDb5ZHrZzvYYUyJDrwwxhGN5ukMHSfxctU0oyMQBeXjHKLsSMtBAsEY8jJanrBpyPYG5W4cIIATL3NjmrnBGK+kkSuL4tMhaOQTgygPsZDjIOSt/HtqP/Oj+zzjK+e69X+S++1cOY0hK5ySkJiP/EC23KHll0J7PprZ7K87vuowqvINLAJs0uvxsMV7ReT+c0lY39YnBWjLhmVTE8ed1b00wna98AlG1TCTbzjQde5aV71jA1A+G9pUwEN8aMsybcEgDdD1ah5G8+lsaorh2Lr58/iw3EZXHtLuwvGks0umrww64SddgFgu8sPb0MKlFVYEIXsEdCMYyslxoR82XahkVFDNV6Dp/7MgAfSiRNOTOIFLYED49iiIbTbgUEZLVjaTSb0cSie5hKBu2FppaijCaOChCaJen0zPtc7NOrATWCntybpY3JJUBXNcN6cIZ0Pbj2M1SDuJjS88x2rRd3wGe/DHT3lLFBBSSCXcI1Cw67x03OPNG0SDFh1q5mKP67R92Outl3RQLv6JlFKmN3xt6s1GI76dkYCdTtu/dakl3jko5Tk0Jo7RfukfZMGjkEqMlZzZ3gEvpwUor2t13jGhrF6/8HYXf0eVuu18TgOL0TE6BZegnXffbY1o1PArx9PjBEMc/oI+2z63HmumOw2zdW8JMKRlMUlgIEe8niqfqS/rniiYZ+gxlzy7D2dUOK0YbeJmthFdtJVm/DVBxlxzgXkEWj0Ijb8VcDn6hyujdR7cLDRpdQJoCZWIPdu4NBFff/OigjB6nn7lWuiqEIqrcEqWFlun0CLUbBoDMHTzs7/oLEd25vEHR51Y26/S00k3Mh2zLGoEtm6PMT5j4BCFmxGVuSaEEPWeNynyF+slaR/Ao53LU0jeQxQWP4ohLjDNGzNuIPOBHvVMHtOMWOfVQHtyWbtCGu4aEPM8EN/edX4J0hHSwl/mcoWQdAnVX6lrbQ2sdMEN1nL69Rz9SwIoJXdF9EF6b5f3FGvbUh4auRAzc7hcwjapKcjLN+TmZlqU7ed3Vp5kGUVAojApGZoW+ItcstEcUDRjc5gjYylmDuyeiTtoJXPqVCJrx6h1Z+hkZn2kiP2G/KIoPpupfevHXvI2Ul1mPpaq0spLoKHeKQZPZ2fxKH0e4vbVo91KUU4f7LakoOoqc3q6bLVzfSOmDmrfGb6ogC2Y3tRLzmKWEVFENNIAo32mGCQnfVrk/cOgZTCTF59GJ1t7P0Pd7K9mqNIwidPlyWagypN8yo7d0gHlvKU9bKUn1ZVBLhwx8dENAdcto4VUAGkcX+Uu2KxZanb6hVUkQR9Ua2jQsSAdOJpYEoER8J4YEqRnaMyiGvOAc71Sxgpv2Ok/+6pkObzKI0NWlYKl2lwL3ClqqG+Zd8RQdKv7Vpp/xyKlP9e0dormnPwtpO5cOBMYtdXp/Qp5fpaJRRTMZTsVa6alqPqomLvGD6977avfW7KMGfn8l3NO/mzfZPx57n/Sv0vwtmUkdlw7iGP7NYHYzfN5wZ6OU/f61wUuIIz4h4UYYgzYnvZKiPlNw6eC0TIfCWgNsOPUM2vMxk/OxdqaSG1EkjE12Q7eH2prap0C/B7L0Pu216u5ZXI2V/DTkYsILxeS/kSuYXpEfGzIoOfuOSDR7VH8nkx8LlvmIhV+5aDAkgHqOANk58uhNsVzrKOoM29SKE66ZZ/SuJBzXC0P2QcTcvBvDG5qjsiD8NyaLs/Ga4+NDfej1q+PdRI3GJRD76TKh+vbbudF1lugRp4TZ84WSqi22vICMNiTOjWbXom49UERsW0sXRJYsp1hxmxKTjxukkhtOLdQWjU1fx5VwoSDDWs92KDBageC6gP6JxscqBWYANGJuvXG02R+ilYDc0/s+Gyl8XrA0dwKQE9vRjvolpF661kc/ochcx1NLH7Sdundz9krnOsdMUFOqjPef/QTLRdVOqDnnCbkxyfWXUub0Kr5sOynbkQQsOz2TGD9vNDiwRkZYhew2spWztCsZrUD3m+D+UtUxLh3YJghAleXbePv/ImZxP+1A/EUZWO+9G7sfKV3XydnSRAzl8/PemBWjQE0l5wndFQ+P0p1GYEVjoIdXmK+VIZsrQUD9+uCS1vq8C9g13D+452e2PLXo2nqu2IWzBD6n9Jx8por33Zgwz4WXDEuRCcGrxF1JMwmGEvh9pRoJGvzE884o9kYh++gYU/k+UUeoWhVX2hMSANZp8I1ymb/Mazy/VzH6enqRSHnD/vvj6Li4LkcKNnwjQh/uwnNhnCFQwWjYLBsaMpUCQ0yLlcaHlUdLr7YPuOlxrop9GEh4nd+Pdt+slAC6uSoQTXpKI4869+9+WQwx8BmVwERu0Y/pSIdbQU4PNvwN2AkLA6bhJPasV0X7GAdP8tSmEEMmwipoJRIPpSnOIwdzwOYKw+2JHNBF01mcRthfHz2G08Ad3CcfmpYzztSMWH0iahckKShpnGmubLAuBdn7+d7z7O7/4M7iDPyomZR0cP0EkNxP2dKdLik9mAGgsMLMJJdU5JGP/N+vc/IWT52zL4mwb/qmLGPdygtaCkMBZsfBocwRUr2eUwKAtPydMmONoTwNsJM6I/WKiRupqU/t2XEvkCyu0Y7oiVsPwlmdzlm3tafLu/kzWOOXixok9NQfx5tJ/fwMcD2opxDPpGwOuhfcggdHwBAQ9DIsHCXP174QjN+xFqk6i8bvaujIJ/nh2q3VAUyficOX3LQmqaz2pwCgSxK62ZugfVMcuk4Nfkm+h2NwcAm1IhedVeUevbAS/ssQfVYMugu1Mm3mhbUGYg5hMjGCPf6qUYzkFc81wcqEpCwNoP/jawM6UI9hf+s0HXgn49ObFq0AE0pCfbMiwFXCk8WKeUfFr2gbyLx8m0dmdBtEEgLeUycgD9nxTRnpfr2dgjoer1LeR4wfP4/jEqxUKrqoGNbTdZ33ZNa3lOtp+I1iLE0oYsqNZc5kIQMorhmcBDFInxVfwl4mh2p7c+gK0G9y9yZlwYZoUAj24x0VEmPpOuM9SpBNwACcEFTwz9DFYs0NlCc9RodYOY0F1G1GODMVliXuUA/K4/gMuNVbNHbElcLPH1QtTH9vptLnwYTasTPZGQd32wHJ2BlTVO3KSRKvBk8FHcFtYipw/OYJLisk5LmnWWnE7Q1r7jaKiPXDLbVLC7g0FpAd+XUWVn1A3yV3McsGt7BWWSpEubRllekRa//q4ciZm0z66sC/oMH/vb16akNwK2mswXN3TLMUNFoCN0WvyMDGpbOGhqMADM2VG/L8+rh6dX7YCdUidY6H9Kyyvj7duTCJ21HQKO+s+KJRbL4o5L9MrGTgynfipaNOL8JJLNzB5J/Y4VqlE+xnFppQM6PmaxUCUYPqo/BWGcAyPDLX1DJyiY65i84EEv2oDfVU8Qssn/hBsTkXwsj/3zZKICmRqugKGbJXVojyVb9AU6SFBUCSpbK7vRdqHIHGaDBkdotIbw4iBAoKVhlPlyGDdCUnB+BlpCTNQmHWD7Sv6V/Ctbq3bimMPIkmxlhtZIC5FnV8aelvmVxEPKrA3kQQAJVQjd0vZ54zqHgEtjtIaWesEnWD8pnpKvPVLLhBf+kPE68rYCr8fyIjUCEm1SzNG/1g44Aiq7Zg0SziFt8u6BvFScqWsdxQxqO3/OIcWNO3+oO35cq7SQ32rV8v2m+tmPNr17cKOHKR/I7+2FCn3njv9pH9KlUYLfLZEl1z5yhvohX6hXokoheYchydLG2wYmSH4ovqeIv8cfTnqEKUk+I3JcHq+9w+I2h5XmgCrzENFuLRTq9zse9t1xAMN/+/gpfcl/zgG4Z4oJHsaOM1TawFJZ+1tcyUpFTybdUQMXirApBDiBRnEYOvHlJOvVLl0umBka0vy47C5l708NNBRZuqM8beThF33mbaTqxrcRtVi9h9gCLYTwCrCXhfCpyN6sMDtj5+x2G9Z+ZfG74wpXViM5Ozv3wi8WdpPbD+hqbF8/kIyWeHY7QbscM2an6cR+TaYZwcB82tby0L7uZVrL7NnvBIl5xSq8tskoFiJ9vPXbp3ax6KI2ZKi52a4RACqLe3L39LlzuAR6bbp8+XtjpvfLOXeYgVB9iL5l4nQ6vptoGPjw9vXvNuldb//l9n6MGOhUpIqzC+QKoFVTm0VM6YBVYiIYDl+wiS6+ttsK8L/ACfxwfWaDDfU1hgFHFf/cL1RGWTYTKCkbEbIl7t+dZqNgLNUCTi2LzHyfC3evB3ksrXM2r3jkXkz3f4nLymBQpEgVVRiUEBymBgFgJLF42JcK9JfZRUghVbI+LW+4CLPRd1DkL3bF9ia5OG82rtzkZ49fVGHp7bHJBwGfCv3J7+Vvyv8ivfcQT8LlTlzWfsOwZhbTUkv8v7Ws9qQr5sOzUpIdioJ3hvH1pbRdlBI1xkNF1657Z2VkR3s7yBMzxUHsSrSQ8GCaw5bBlBFoBrVnYhjoBybQuSjd1584pPvJgNa8J7Ro3dXXlYNcGR3kb1S99eqdjhOdhFmQndCkPG3N2kMR6OPuSpW0LJVsxXdTiIfSzRh4QxakWkTLHoayFVgkq/uKy3MmQL0LPBAn91g1emPNLeL59N+RZtyf01bHjSUgLB66v1XWuRCizss5cLE94l7NdRtLoMH48I80LzE+ebo62vKj3bLnoQKbw+YiQhO3883re2bl0EwicdciYbDcz3egvPGgXdxsPOjJYrM3Y8eAPlivJ834kFBcsvsu5nw+5F6T8WyYwvnGq5pkVBj/aQBlp+bASAkU32s8ZXc1m/iT9zkp//JsC++wmls3qMmLaSdp8yRea7v7SAilv7FC2ye5Cb60Y2Fn+Y/mkh12I25g/qFZ/ApL+MG85QzKaxtbHZaGAxgL2IdzDcpam5LBs5arG8sdWMoR7UnKyDisWkXBMTrZrTBntJUsNRHGCq17Ww6M584LvP/fVqnqBFHWL7VJiI425gg5nGsQA5jgq9HfYLlpzGxcz9baZHY5S5khqE+zomhEXHAAZRQWFoOR6zJ3i2yKL9pFJSOuG5FcflWE7NEfpwxC8zdqpnynOLm982ywwyKWMg9sTOvJtz5J1YBDt071p/dpzpENyN5WN6lXhwLmJxMmU531r0y2wAXFS6DAYrOJAnlTOB37D9VyTtpDqXHp9ivxGJQDb6A3f+z4L4DPAzVTwlrhlEG96YbgLiU/9PN2kEtW5hx4mGwj6igYl+FbhBRUZzHf8FQdEBFo0n9aUe/WHqkFasiDAO8j378EjSXkpN8iIIGF1V1hDz5bCuKCMp6AM6iAIGJKIElsId1T6YdfyvbHlL3jkUaHvfBjBRZ4bRoFjWw1bFVadOovd/Q0KEptHi6xAehhczRT10nadTALOSycVfVRssZHj6XvL5PldE8wq0HZjxtTcbhy+LmXkD/s7x8ox6VAZeTILPw2WQVuyjMQg0+96ozPGEmuCmFwBeMp+g0q278xDb0c1sG5h5sf5TsNfg3NsfUxhPTu7F07Q4VTjW64wmf3UdES1+dyAFXZjc0Ogc1YPF6hIWoW1MS1TAUIuckRTqYrQgGblxTSvzRp5RYxHtFSwUEGik/rtawd6/SpE6vx+CfBPHlJvW1W7kVZLjyJQVvl4+ytF5nPwxXtTLCogWofgQSCn+8nk3hSkexzb8HOyanKBqq+1b9upI0MJtKdKeAyG4eFL0VTXcVssvhNlFWmrUk4jXYckbxq9vNRUNYk1EsYVLayGyk4R6R5MIazwN39H9XbzJyHRQ7dbu7WKbwMNNB8FYh2mDl1kT/Or1m3eCWFWRjMiSI/RgKQ/Jg/AcLkjPosZVHmTdvWZQ5ql16sAhjA4BGl5hmVMsTAHn6TxMovSUPyERI9IyY3s7XttLSjZi38jmmUt7OkV51eb71frZx9yLMKkKffejGFyQDM9oieF0/3E1R8cke8JcN1/G3DJkK8GGAk31RkX/HRerkjzydmIWI/WQHQrW0RTF7Bk+D8jAlPf0aCxbh5N/Ss+VONEU5GHoB46ESzGVQNQgf8De08itXTQ/bYnEcdAGmcw7nszgCPkvi9bmbTJK4gnGgTCpgKxQgpMi6mUUWN0wze4EbmynY3I9zB4hq3NmkgyJAkNhXavf8PF5hT8l5BqnkeXK3733BCyRKi01auNxQgJdhCwqUPDzA0xKCMhb5zdTfvvj4S045dda06/ZoaIlfHhfDY0WXYCXBKP6tM6vgb3zy2I1zK0TEkdbLS3bwMdBElA2ZNDG07yXwHJKurqooEJIiJpJ+zjrDqCSLSSTSnockMdXALVvk/7HEcmlL4L7sSK4kFffvSbaN+bKu7C+QkHQtZmPCR9g5oZo+4xyev2kvKyGN2vmKOx+3nKTlEnKGuraoWq/uEbw4JMs5R0LlnaECrkgUfQlToqapu585mJtKKUCrCb5vata61iJrNc7nXH+lXgYaIqS21UWdbPeYMs8Q7YT0LOm85lURfMdrKMi8o0EASFyGpIPGRbuaBQzVc+QQ8OCmr91aBoxOecLt7HNfKZA6hizqkB2o1ckH0lCBvx/4ooI5CtD/xbmNOo2cHdiddrsAVW301zEY13hVQ1jDlI7B9nP/qyLgqGpqYgmIrhnPZ/VolPFCeNgtJfMlV+ss7bD3BN3q5lzrJlhG9xHBhxUeeiPVro8Ss4l+fOZXoljNF5cvMIHA3yKHb8pxmuekYJiyUCsskGvjoUzEL3zEr4W8N2NH6S9gpnawCoRogR+yxLyH+mEkwJfb2IkJfr1efCP9jcNTwbZOg5MxiFqOfKlbSn4ijavpf1xe/QrZY/Z352W4p7PijSbNHDjwJTPVPK7pYou52Lw4zonhVqemFduduOs7y2R0ml2T1+N565xNiHIPw2eYiWEFRXrB7ImOxyGRxgaoMMBslzTakmQeHxjcalPFk6tl1UsGMj/OD1FPMqtMQNh80fPP5O66wSyBO3gaGBjLx3RKrOHu/EuvAP7bboQiKlI7vruX658iMIACKdNb4DHYhIbSucpQgD7GO0ejpPIh3Q6sG56T8rO/wNolrDlrae8OniSSTNiALHO6M65EHfNQQt1PNxWkHqXLTWjY9ta/7hWVOxvuc1OcN7Ned2zYuqBdcwpUt9l5S4EcVdaSsyla5ad5mB79x5GoKbcLQuud4GfQAxiUu+654Jh7isrigj9tE1JojasjblB5rBRrHnPgoDOtOkYSKHAYPEF/rYxoSBwFRfvrTxbrP+wThgC/i8gHqngUvWiWnJGfBa/bSKk/W+pZgMLJz7JEWRSzTrNJnRUTzCBaSfVnGp++c8Zx5qVrGN/Aba2j4UYK66890lAEwNSMQ91tHSNMpINoqAC4mTf27Bizzwz6cCTuDnHWf/y44xhVrlgh/D+27shqotAExWFIKr1FjeR+C+A9ZBdwmJ26JbdUWsU1tUBj7kOVXc7jaclHe0MK+IDncqvoIK6JidY8SktexFUjhxO6UWZmxdvJcOD5A8UvvU7aKKVRUwuvSjXGulnDQyabRJL5dW5zcEgFaLdgzzAdPdwD0EpNsK2jymqAH8sYbWGDRAnjBm/E25dGl+hhJ3vD38CTpanjGqJwUWHyZHIfUBBA3XpPnjFZvEZVnQUUXOBBZ99/Eb+Hwadgd8HyhQnrZtHfd0Y3SyHw5PiVCW3k0Qv/Xw04P07cARF5+2JE+S/CSSEOCvGt2EV/6B+kFoIvPcxLuFYXsRD+yD/6PBqx9wTmY/ReG/FXHwlmIXqULTUURnuErkCIiDtvu5bTz9d96ADFJ9K+EZcCyhxXg3SMQffUG1s6+LvxL836W4CufVfcZqh3DC/264R+OA4e9HDNAq2VSxFf53tt68z0QTfFvfBtBz1YqaAgltX9soWpFTw4zXDJAah89mMKKw9Uy7QrOy/5d1YWycLqqhwb2Nw5p4ApqxtCTEKXPlaqNOO9/DQoBhMMEpFZgSNOfkkcI8E3WTKhAigZ/5z6HgOIPSueEupgQmdhqfK+fSnXb/JRPk7M+ZArxze3wpcAqb0UONqKTVyrwXZNarekQwKG6zQfma/9qmsLHdV6v/Vm0Q4DRhqpxjZOt/TWyDtafYKYze23xNI6sY5hAsGNY+ity4KOTUXrlBXTn5BD4qncncUMBbXJZo2wObyG36HqQj168dnMqBNA5dfYe2GH1t9swZxWPjA+W3tCncopNKRssvQqJiTNx1FJTChHJyGJ4J/aGKGa7Qj/VnYcwXSCNaxcBRmk/TRS5vX1rV1kdxup1usK7X1yrIelAR0e108zmC+7QZGLuUVQIhz8+1RLvfp7C03ZEEhEnPuJRH8y01XvO7rfTmihF3STs+3Pc2dclZOgrNZt/YEOod4icBlCddJKckcLlsszimhDA175+qgQrL3jjVdTLthY7RFRo3R3MM6Ldc61+67wq62KXNRwKp+nFjlsb0GGjhD6l00QRHQ1jr8ZwPkpIaMIfMMMK/X1Hl6NFoaCFWirLzNa+38tCDJNMhvb9DGBt/a/9r/O5iuLysrHIxWVuSEg7tuNH0KbELWyy7eoYkiwrn1k8hWZPLZyN1jBGizE+tzuTzeX47YIkDj0oOt4j55qsjK0hHRLAp33BS11kghpWCeVbrcHx+TDGjw9cMuGTtD2FhTHuVkxLe+ImXIRwWEzPKeqggP0/TkPKULTKa8+9iTQotbopisVAcl24xABzmX3E6XPlRJqWsJihkI9zp/xwwK0AQ6jmsLyFMexwiAMcIXIRlHj6AlgHZqlB+G/cKow+jowYoTV1KVepSCrLBSXowB5B+tvQK/krI2RQXK1n/1iU2ExEoj/VS1B729FQ+j5tpj9/KuFgB5CCaEuURKnSfP6YtmZzxxkaMcZEdteSnDZPq9C1sY/sK0ibqfF5ntF3MxfCfeYMhknsNiyhDtyeEI2TBCgmo9th57VWQbww3v1cxQ4mmkuJFJOtRhHCWU86LOrJEMCTJg6tHJUB4eQfJHlCAE2f76hjksnwxAr9a16+7zYD5z5sbSs7O5eAQt4Xeasc/wplMq45FxbRbVdLNuKenVt5vw8+YlIo8SUkFmZw2yQL3DFyLmkCOQSHupgW+HL/ZEPSRHzpay02lk7yxMnf/zjL/Am3HMTGd6pdTTthV15eQJBeZl2P56FxmazP/ffv7dGjTrEMbQ924TWKx3vQ+iNK9g0f+xJDQ2q7C4n6eZNK2I2L5ZcK0oujXMWfabFTpj65E56nmJvZXqZGLu9YAFXGKOt+my4YFhj76Pbg5BSKn1T9pZ1SO7QzUxf3i6zy59n7Ybj2UlbgNaPv51xIllZ8ZQSh30kzAymsB4wvAGtInISRYiPjicvW/3cbSUue03YHweMrzWsAg8AkmgYY0SC9fY20fst9wUsg5Hg9TLKnPWhL3BAq7M2nnZlaBBoSk2FTjZGWrBaTTZo/jGt6LuzQZ+tj/3aTK4KnNrJC2mBMsoICB2AScWKOr50TmH90XtaQE5s+KIOaLsA+hJvsCGpqWCPEX+g6dfXffmTIZiq4zeNF+mugch1B4d8xYDTRWyElgF+iybsCeQiryIY4Li2Fx0c9k2Iiam1vnk8PCWzdSi7waOdgelj3a+5NgIOwiylUjB89RNtc5rvnjnJ4IWIrUS5NGjCpdMpaB1gtB+EdAuX+nSRbT7zVZD7t0VhNknby8g25xoC8t6FX8tSMw1qQ7qFy2z9/1PKY00qENR9AsH0BJxg2WgagCfM+ulsRK6M1T3fcaNQOGFxd1WQEMnN7rUxtzPw/klx6Zj4ISUoy139qP3El7fiv0eV8O0NYhKbJkZdndsqyPYStiG89/3hQ7oKh88fWOTa5FiW1caKob7YQO+XLXkf8/OHt42E5olJMU+DBcmgNnZ4FnjwUdO/tdZ0ws02H/pvj6F1iHs0cuYu3v1smdmrbbLhQZPJ1+5TqMRL8SGHnCMyV+aG2aGr+v54w3yURTQXuO+fcksQiGeULnoKH1aLV0YWxyHYeQgR6pEJyviqw5NY1sGwo2RP5nB93oPh4S/u4AhLcJqZgbvCTnF4L3+GTGCdjy8Z4UKyQInWiMSBIX4N1nVvHOETG9agrHUwJuVl/oqcm+wa+vyaAJT4a52w/8RzqpAqqtnJsDs/ok0TzbyQ1XC1SBLcQ/rm0kSQ98sMnTZdMA17p83moP5SGWNP5LvaBXF3ju8Oc+Q+pAV0GE0BVcg0smdnl5aZh0CLcjRazsRygxYpjN6LUKctgtDCniJB/ndOwdqzaPND9mKOUNLTJzGhbFU3mo7Ls3bAdA3nL3En5F3ByD07917EmEA/Po9V3UKFeZ3Ma1z9ZgczZIsVvaVKWqLVCrqAof+VbrwyO6JH13aRQoFxi3ZQjPLuuK++EKA1U7UKo5AZLK+ZFPyJpbNz2W/x3KqKtyl+AOTOTzzR/IYpLf+60bDcvvC/BNEJfsD+79G/amXhWel1lAdq3/hy7oMDWWdItKHboXf8dpQfWLsETvt+SQ5Jf+P7ExHM9ElXG3uMrhXWfWxpl1ETPcPt+y4nbT3c/eqYnFZLTLVW0faR9q8J6r9kkYy5XZE5H8uM2VLRaiXbQ/S04cZ6O8ZiQNFqkHB5kN/ubgm0+I/N7v2DIo7qoBl/NDrPMCrh4UCiwLmhPFopbcxm6mD2UeacmQDqA4c102/KtZqkMHdJuT/DTmi1JsNd35xnkeI4g8G/nOCouiuD2FbHzCtVKOKT7RA/VubRTBj8lHpJIohiBmpw9dVrcOXBivK3ZRuD5hjslh/pK01yflK5+ZMaVi/Qorv8NRXibe7tT/qMbInaUmMtprX9PR+ua4mnNOJ+NHzKabUAXl/SviMT8C5ZdEcuYtg6Yhs1gCwXcg7ND+ebEM7hQNwjPLMJeNOoQkcAoa462d9GPPkUJpGdpz1psUHRpxfLzJIA/i5fRICfCAkPkiHyKhqZffe0srQmIWdwVqRkgVX2laShxkycjNmAXwhkYmWpEhHxTZ7bfNb84V/4koz41TEjCtODBqSXc6VnYmhgcEAgylbEuAAQN9kZ3EG4hr9uPnNmRyzWmxLTY4sEHR8C0xuarzmOsTb7NZPP2feSKrixRSVYVVXMWlZJFs14RmSw6/BFh+JK55IMAj35TWHJJEvkz0MS+BBh/SRwEWg0PZBy+Ou9QET/1o8S+1YMHjw325hHe0kAWTn9qtvp9FnUpRrXnfUc4PWxUBf1KLfF3hKXVtc26T2YMpp4YeVQ0YfXVfbrdESolC3pdDYZB+g==
Variant 2
DifficultyLevel
613
Question
? + 83=2
What makes this number sentence correct?
Worked Solution
|
|
? + 83 |
= 2 |
|
|
|
|
? |
= 816−83 |
|
|
? |
= 813 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | ? + $\dfrac{3}{8} = 2$
What makes this number sentence correct?
|
workedSolution |
| | |
| ---------------------: | -------------- |
| ? + $\dfrac{3}{8}$ | \= 2
| | |
| | |
| ? | \= $\dfrac{16}{8} - \dfrac{3}{8}$ |
| | |
| ? | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18o51ITWfQQRX7nU3eQcEMxttxuTlaaqOIv8puKvl8GyYerdpYA3l5olFfR/yJGK1AEmZffug7LnQFiju+aP8X/0+qdB4F5BQ5vr/11GFzzE0cu5xtY7hHvAXogfg1jzHCu8mogUSK6GrE/X7+SwpweveCx/B0eMqFETDsLc2yHaCJOID5J4/PKxRHOy9orIBei+kW7yVvpHcb08jBBXEXP/9ljy1bzVI1Ckt20avcPkr61v+ok0Do/LL/OLffti6TG/FczZX+noYiaPeeNoWB7P1lziw8MHbNUlQhJcV8GteBkHB6B92Jme+uy9wCmkLHEhTBPiHKVvxJ/FjsxQ9VzaQPJabovN52PaglSeN3EB2t80bjY1KV7TIwGt46iRtDCNjG/DCkzSFRGfLjkL6o00im07Go01fjhFFWQcpBLSnvap1iTgkpTTEN9vaTPREUmh3Ufl+VcTurUZ3jnL9iOeR98mJCd6YEg+DKcYDbju/HnjleHyU6JWEcf656i9IhSrW/m0ctiunNlO/bfxf/4vJiUMdbb7ANFYiSiQVW+3HucLpilnGXLIwsdRY2uL7SEZd9WWCaxnChbqL/3vrthDOgUAyBq2zLoOvJv9UWH+ITcRclvsYNBtVnYegNa0zfRLh6to8IpKKjUSmUVuwN4wcIydLfdJ1mlmBjwzHCjWIvCZzHsYm6k7M84II6aETvrMaDQCJWDXX7jmsTN4Qe4sWPo7aOG+y9borkDLf4aVe7Qacol4t/tV8uFOWgv2PKHh/n+YyJ3/f7VWt8o++9raKIpfv6QvvKx3Hq9qnSK1p1VO0MpkDsQtEc+06YSaJcYoKLY+dC/TQoz/He5NEuQnLNcSAeD8/9jOOCyxPPu4hjW13DlSXYs2f6b40cRfloCjpLaiwE1KXiQqusAitwm58eBl7lzHmIcznq2XYId4jp1M1njkisVe2RMb9Li281cqjEOUnGzwfyBB23jYQq3Yl/HxSlBB/93aBr6jKw36OL6eHl2RHbf0GGQWgmBDqXnPKS9Ju0nLqkxXQ6+akb+EaX0XZcj0KHckzt7C2/JJAhYMteKw38t1uVvfHSjhqg3uk6rS6NadgJd+YrIKJ0lXRmKxt8/E8M8EcM2y/NJ1Afe+LWu0dohTmzEXFtkQyEIi77epoA1S0WWaJrETx5Y7aQMv6Rvojc8qCOil1ZaAmQTEdFR2hgfqwMfh+yJUHPEjN8ytqUFpLB5aAxDOzmf/rmuxR74BQsH5HN0HYUdIU67lS3b8uTP1j+PFR62/jEKhJiULChrxseTlH87CqRJaCTaQYIUTYqHvU3PeFbnS+bCF2mpMOjdmZdvBAasr9Vi6CZTRml9S/KKwhZ1bWLbxUZ0u9nX7VEM2ZU4lKfVDt/eoQM0uoalIncbTxnlmx++6Xxx3vwyYsBaaqwamrHMzBINigZeseU6R0ydw//m8MSCXPyaqaQ7b799EobLjZ6v8YqIY86y3N8wcc4cDj4AQQdgUDGr6GoCemfenMaZMOPzRMHYxbGtusoGZ8yesGdd/8QwNleWNTmnJ9sy+dz4gnVmlbP317y1Pv/2Kkl12NKFq7P8oDmd36/o5RFUR0DTv8aJ0I2XUN/ZWjo86Y00AfrmAoYQ53gpN192sonnbLTa8zgSGEljejCoUkjG4m7h+FQDWTOB2d1eZKdhM+bHDiz2pMI/R/Yu3SwVgacadgKb6/yB/84mCAI2XMaaQbSwP1hM8n3fPzrEa4figAdoLMEiarwD6zDGkX/55hJKoVJxsXpWPYOssH6cb6bBWQXo7fD9LpXedAmgQkpy0NgT4qXzucUUUx9mkOWPXbGc2m8th5VQMt/B+zpOZ343fJI3+ShmnabkkJUYTt7NnQHcDVsXXoWTvW6rT3JEZUIrjBXAtBFRZx2xlfmxHrzyG707TthUOnNyo4x+mm+YGEdJ7QT9GFshIezKoHxzIEeLYmdsy8XoGQSK6CGEbC/D/FNfXik24L97NzznW2eIk7IxibYP734b2NZ1N8pw3e+NjjzNnf0bouZBwSXL3MWjCnK1p+qIXQvGnk2KMyGrX6p+Zi8gEL5WMpqyVwpjj/9fL8gGjO7CWCKOSGXo159gJEPghwGY9BUWl1Q7/VvrHvSXkBebONJ8Qn5eD3BV2J7HODerghQS9hNM9HHEJB7LzbAi3q5860hP0nHUMdgGEuHJD45xTWuUOM9GLvXjVmmUBfqh3P3ZRqtCHFYhmWaHweCXxouCngO6zfekRWoaMOOkrc8ivPK6E2834GxrIcYUjuXxxA4NrnukZv9UvSDbZng8B2iXPN5JVtGNnOGP4TSQXAZqpbsy2TClvK1VslJDlQ1A4oXDwRJlWRL34XsCcJX9oRaRiueo+Mvglp/Ozo3RX88gca3tY7MP0t8zTCcj/D5gaEGxX6mstEvXC4MugdKa9eJ+S7Yu5GWEkB+TtXaFFhT9eYOtzjdxjLunnF5g/L/K+Sx6xbrjrgltTf69oY3mqL4IuHBcI6Amru/M3iA46v5JYZe2/Akf815N89CUs4/zWKjoDFEf8+GhTZoYc/ZFs28XHXGAIC4vIel25RMV1cby4S6R3oIJnBVPj4A86WT9f+V0yNuZWzmksjR6Rs4Z+f9KlZZTb8XjaBJPlDeN/LzkkicwJP1QRiXs+pijU9Yj3UM1HsMwbhf7h3WBGKTeSt3Xa8FtU4WlIfCYK68ofWUhW/V7JppIzgIUy9tWNfbux0rLwBGI1cGC2dZRPziJVXXa+ht8Mo0fm9ixSHz1Fnf8XYsrA7ZAxmy4w3xfvfiCiwGt618Vz9rKrV3b4Ci3Nk+MP5YzK4B8Hb6faOhHhQwA7G/xzmMEdf+zTdER3DSOk3RY9MQYK5N1/yxUbLkkELf9L3qvB6KWKrFe8pszCQCGkonyCqc6RR17xjLm6z5w67CXvmw6zKIWYX1N8bsoEv/kSJrUUgvPAErFqXkmOBGLu/zLDPTGyGHEnu8GJ3ND9Tl7BwsHZZg0rMeAjF2lYcEqTgaeMzB9OKLi/v1e7cuxCt+2GMTSloaz4EoF7/o2M5FvTc5cED+tQNedrx9I4+BJvUOLAnGL/POVU/ElpF600lpvvCK+r+Bsa1A2nAEXmzF/GN0IaVDNxVPdSjXyc5SWIdvfAk5zLRTSjspB0K/qhvXuRiscUDC7dvbVtfeE4blwddyXeqXg/mCdAECHGH71W3HymwXEPFq+2o0xL4gQzcl2yvqdDAlJaGmZtmSk0qmmQI8lSQXDeKgBYxrP2J4jdN2p/m/IboMKmaVH9tj++nBWpR6xLr6RhjGavYvHVYu8O/EhmKmkYFSDp82yfCasSSwqOa1bNVkSNjdVTFidK6gNmYaqU49GLjEg9U92ad1LbFVZSppr/ZH04locZ+9yAgYohWgWxyoELxoZo4jZaFO+7hklyb+YcN6aE3/vlrSkYkcebMZSbihI6E/Bf2X3zqoGrsRjHLrKvXg8vgQugV7Qiswpoy6YjKSIoPdDisUMbWu6yH6hqQtVB/U5IASe78CzcSR1wKo+8xOcTKsSRH/gGHBZYxUmhBE5qZ1nao1vDuntO9Sgo/n6G15f/ibOO7ywLD+jJ6tozyY6hNjSzo98rAELjW9wPGKPX24CuizRrWeG15125hHYD3GGUZ9onOHZilNdEj3lHexW7OvkWgk89CyLfC2Nq0EhzRhiPSAMI6cNjDhdr+4K30CIykA/jgn2BeokcNgQfu9KVn8HgRqW71CwiFiGkHb8xixxX5QnfUM646Bs/7OQdyOarVKmtsAYilD4JV6x2+5gfqpFKDy8kWXs37d5ZsgfGazGQrJF4JbOmF8Kf9XRSTH5Mq12cxDsuMb8kKIi3bDy49gYnCPvtYGq+1nE9cvyNikHxTIGzUYQxdawxHkrKY6wznKIlgDdMrdTuelNRhmItX2rR82B4E2Rar4opCThUzqSfnlCUD0w7W6RNylI5sj7k9g2RG7NZciyy4lPE+g5LyHrupZdHMh4NdG5RpYdto23vrjOhw0v8u/hNd9Rxvh36d0onT8NfSHr/Xm6vlNUl5ZTLGD8ReTKdCg3PB7erQ+e7Z6AzBqdzChxyqTDyWfTof0/mYaf4hfstITbogU9Q7h2tXsO/sKdWdSvMtoyMko6299F0w8uBucLLcfA8hq+8AZFQQdCt1TsRxg/kg5wDmhHaa+CUBYluolwte+sQmCLyqpDVPeROXB+nt9kyvgsR5Z80E4fWE+kpVZNNZ/9zL3wzyBjDKHWi0/NeMo9zlV6CxAkSiLmLmJVO2bNeueMhQVgE33BjKVyyvUjSPqC9JifOBncAZRhhxo+A8Csgvn4PC8VKGhH+g7Stll1PRx5kSnI0UU8GcBp6TxbMmfFOZiOlDEi5dSJAeJ1T2wkhs/9W5i/J3fuHrGPISNAKu/QWSa6MPCuud+PFuDnpgLhAUx+GNI5HyOnq/OdUHpMuUC6NJE92IwRfHJjHnmgWDrB6u9ery32NMhKRoqpym8zc81+vKQsC4g8gjpIUbLUDYtYbzJqBhDfXYlxq/YQPDw0fHf5OcmrdCFpXqYfhLP/HpyukcTwsOho3PpfJ6P9K6sZw2giy1QwoAZvog2gc9xcWdfn1lOtasn1uN1HR6T6gnDzBbZMmjaHnKEoYe0xnqI3A623sSL0SO7cNrgIM8bd+W4c93ypq88QRzD/42PJ25l5Wb4y60JqmiCQhZQfRB2T9n7zhY/rB+eWK8an83aCUBERUbJVcnXk7VoS1btgwTFtlmmQf8BUTIYzA6m/NT8eqix54njGg12DAYNVtQmRRcZGUn72UIvD7SzDCQN40gyxaoZBZbnxKn1gB0Q68KSelCFCi5YXEBAlmVsI5GEORBGpwXQlvXeXPheIdnLia+/513ADlHbOQmpXKzK6sMN3GMjZQHGiXQyhwEGFq9NP4JgdwiyiNNBwKUCUq/tR54quR4z32yNiOrHqC1KiDbBZeMQWw4K6PVGUymKuRkPdIxiKZQAd7TXYbjad1206FxscIxlCLTK+p6XEKTZ+Zme2QfdIY74cKcBRCab97M5Ut7Tiqpg3uxRdWJKFcUuNxnblrwz6R8+bnI8jYGBtpxIroZDkX0C07ueizmbJhCdxaqH2vncgrcB/h0F2FRMwJI+hHFmQrwZRfNZxCwAEDR1qu0KXKMBOsOkeqkhsewiHGL+DKCSZeI6KCD9SZ2cPyuEeX4h4Wjd8BnYURQiDKl7PG+p5YEfpzzVZGZrcgLqOvn7HcNdc6Q/k6NxQcTQUJxlLZr6g62dYJtynZLOSq/M88i70LEzhL9k30s6t8E1+cMXo7zdPWfIV1793bSQnopciZP67mA4Oj8c5InRgdirLACzagGriUq/e1DhGxLPxCRpTfmoc7VIi0Y8TR0+aYlQ/87qYfW2co5huNMcXCnT9rPRiArK+7oHjBR/ZxQC4es0oLhcW1Sl+OXybI+M+TXvUqzpTODQw+j1l0MJQnIWgtho7G6yLzYRyy233Dkfvvm5/ptf55YWRbAaOQ4AMUqUZpQ3JVb8G1DAFxdtLzLZVxt1Ekm302+M2tdL8TtnFiomshWjFBmJcjtaIKNuvrXxx2A/+FhrG23GHeW+02AAKonS8l9ShaojirRmE56OPF8tZOdtJx3PQMGq/ij2OJhNXhOQcpyMCE3f0WsyRWp3tPsk4WV3mhojNZCFFv4M/iYSw22aICGE9KO1aCZAK53mMPdzU02knj0AlDTp3HkUUWY+3s+LWuRHVU6mz0M2Esz8d6jsZ7zM5fgt9lvZ4aEXJRiDYI5jGZFjgnWRGEjZXe6GiVqniZr6V4Cw0LKuP8T+sqZqE+44cNRCB0BXlU1V6gW9CiOpSL81j5FsdOwdaVfhUzzCGv5CDVmXTSid7WUO+EJ5XBvOc2IIJqiYVtHOO4XBgE0g41zMhsoROWZxM382VCri7diraYc+JWyyHlLfCgg9PHNYlA90ATdVpJcaTAzUEYrXC3SMtBd93EeEzuYmnzoxV/Bc2t3dopee8zS5s8xxZ7i7AwqiuTYaBtFlZf87lDsOwBamNO4Oz+vOIy9fHNwlcp0q+WZzwOpn3PL4t35drRDy6aW/JJa7MDAFeIU+H4L6a66UC7HO7FSquFiEbyoHnnym0VeqMxfgZtsfTM+weFn4jJQ5zvbljPDeRgLgh1uN6QVmBxMsfpOeuZXOF1rLsstqF9ffcuh5L1P5cNa76jQkLsvAiFFHeqIPYfZweWPYlcDTmsKkd7qWgsD6yTIZM/bG2AoeCFOqW3HY6Cs46veUocVoaFqpqxc1kKqXM/oD/+JFTGulTIkFzR7ttV5h6Oq9xzgRo5mwy2eSDBh0pfZIpoIQFRxFQeiskS20PaFhI8sSuknmHeseUJ7hpVjDl6sJhNP/fgFGscB/MagYTSbTE2Ng3n0R94bQeE0ee0xWowO0GY3JLkaYaavChCvwmHty6SZWuvI+3IgZlDzipSxPxcoEHTaWGKgye9sWjvkNe3Qor/s7JXhCrmH/l7X9ZXr9H4R0LOP8RqV5lylMF1Jpq2xgMIvHy6WBK9mXiOoTW1g9DPvXT/KdnJ53poSWyEWSaA2dWigrmrjqznQj4AC2KcO73DX4t4keprafDmQ77jmhtIBmcL/DaMizni00pN8kMwOpH5xKLq8Boccezz48NzARz/fMnVGPgJ111r3Bqp1fVKLN0h1J4hxHbYXhtpPpXohK3LDnu5ztyLWGDD/McsCqEd2L+qTEqtmqyao+86WLY1r8tzwx+8RT2h6h2GmTr2sKQ0ivihLg01f2QU1YXjkaDnxu4UCdrszGusJUd5gvpTnUUt6YhFbyAoRGkIeosazIGUzTZwHhW5fTAWbofFn6vNsoeCi9OGUN0F7PS93fky69WByyI41QJiozZyfGG2Or5CGNPPwRaUZneb5/F00h3Nl4OWLVauM7ftBc/B20av0D5M11Ch9qoHOA8UGdNzvFu9+jZl5i/H/pDC6khlaBtALRsLP6Q+8OuiTvUoibfi5g93P8D274rhI4XDRr1cBZoqhg1jISyHt7T/CLDBEp3ESZ6cEDc2yF67hifB1ct+/YZoajJqX+2LTj/leMPKQWMumshGmluSUA0hsqQ8zHRYjOhK1mR/EbokVG6+v8/uZ8G9OlxJOTMpOuNL0ES6EhWw7XO6LaHESKmGn2aCHxPfqVaLHyaFggm3Gidqy85JfLayGJDbHEAqOWWCx6UVZh88RUBV1QNHTpW47xJXPAB4Vpc7fMkHL/wZ3Im8v0G8WnkghimW9/5aUUP9Ssxm6W95ce7Do8riOhjDll4SrxTl84G8U/u58AlwkKGpAi55ttjZ/PZKjUpLgVhwmTi+W5JjtgDTQkVJJXPZaMziK07p61qEmgg9vUCbeHtKSUTsGuXpIHPMcz+TFZckgVHtv1TbTgyeKmhSgvvrO0dmmwnURfgWqCUuwTMphO5uuDJR84IxbThzLt80ms9aGksRcWI124c+TkISzFT9vz9afEaiarUKxikiBVC+zmOt5kIvnD5XQqZ1l1msVdH3fHM3Xsr4lRg3Qk5tnYc22erfpbLOZs0zKABizoS+bcbCKS71fZzWr/Da1M8H81MgAbRKn6IoxsTqj3kaNyRC2/UxocGPF0RtI6UyMhczUiTaYJPkR1Ij2Jp6UNlhP45MCs8te34rNZYrkfXjhzpkYMQ+BRh5LQ0vGpz934wAim3bDHrSiKpy6KukzhhO+rFB0LKOBDeh1FCeBK8/f8U/C5OnW278lb1Oe7ICRY2aXEF/oniLdmI6lOMEHsX+c28OeRLv+ilxjThtRcrFxkdEtELQ0D5bBPCeJ7v2VbkL0fN2Kk1JkIIHWng9IM3xRGb0lFBeJI6tCC2YBlU3uzO9qr11SClnrTQEQhOANqVH/6GoOlk0a2l1NE+T0wQw5IQ9mgPEvf6nL5FGWFjlB5YW2QezI44/jeEkjWK+j1iBncJmthHIW9r+hsqBV/cpL5fwm0zv+Meht8XYoDlQoZv6kiCjNDMC1IhG6J4/5iCbdmwrLgCmr2xMb/x7XNY5ytZ35GflIbxYAyiCu3/XM7cAlKb0TBXGOijlRimNZ+yeVbvBVVQuWHWsCO1UUWUTF9qjWVX5PbrDYYnOgonEOU6/OoLMUnzynW0TNoXuEpC3U3W+3iVDeqBc35Q36HH76aDniCVJ1zdo0IDV8m7rlAIdf3zj7YKlXSZJCxf0uNdjU2caENIT1awtgRVOc4Pdbf8TI2kY2AkRJHb2hDBlio0YfAKa22NeRcYcjlDalnYCqcsKcTar0SKqK1PlepkDuT4azBDjNyVP6BQw5eNtaQLA9W5hdZXs0s9xH2U20Qq87L2frU0nl39XvcGrvwV+EpC8WwXSFBMzWKX1kHi6VoTzdsxudBHuAQST/cGx3PpgbA7FNmf8MpN1RIRqh5VEm+9KE2JxgB4tcbCjcqUTrN3lbR0Gt6TQqBK/blpGobLrND7BTCoCfyjke+HuYO7xDl8p5QnwAdjxJ0CG0ewxIUkBim4Rq3YDj/kjWb+FiXpGy/0LkcuhFJwU0oedPaylQ3nwz2kZcJpmjJ9gqW4Zi0pWUYcknCFshSVkocZjD+1YsUaswFB38tyM1mK2e7lbmHpBra+gNn+578gesElg67+xcY8CtSl/YyvJbQTb8cCmBCx19ZjbWRpjQKEIRlhDfVPpS7GAvdTRa3c+AUj80QKzt2iAxDGbYBCjTrKsUXz9Jbo1yZ8zD+EGibCRSuqb6KufUlmrGGA6cnK+yCS4gaxS+KBDQk3Ppwko+Ar1TKLhNQIihCuRYfF0+DehEZE09grrysiqS7jU4luGzC/WmZOJQHm84jrL6ZV/p/mWeIk8S7TytSYq5iwpGCLyyOYqDKa+MGSbEG9vtSXDSdAmnI3wgmTgT70gMCancl+nu4PE5Zjg0jzTTyFNxdTQ70RiVoutwM7Btj8Rhd+dZRZ7BmgiIyT+tX/jk5sdzCu2ioMMb3ULIA1hFI5CRPasg8KNQaFou3mkXxDNKKgMeRPxN2dOVDLRUGlWIsGVuBmo8I1gtIBsO8gqPKJWnKGtqLTAGxBxcXGud0V6eFKJhLNwcZhy7DnGh1d1uRHX/NYB++IdIywp3dRhGH4/ofBCdkJbcpDOww9HSe5RSNjqwkG4QsqmJh4yiaCZRdRSyobLULjw48NsDnLun8+5KWym9eBvA2umgyv30qwHkagWujdgxD0ua9bLscI6CiNk5cJlWo747FgBWbi4b/4XMXcb2uQNOwzOj02lnKDUmXhrH8FqOe5+D/y33IVrWB8pHNtHIrqro+Wt+Ta0PVIVG74+DOWVZ8TbB0CEit+Caf8mYtppNUMlXh3gWtJKXVPGxzqnUH+0v7UwSpG/fGlfMPqCfkOLy++kSsonaqFwO61mN+Ob4bcG/O4l/sFuLJdaYyisWWkS8tu9XYV3DDaCoR2nIZ8T2HrpTp8XqhlXFG3wck+gixIhAOZJeKlZjnrqD7boZ5Mua0PkyVsqmxwIodIRLCzbT7WOEQ2U17clb+9T7B+IuC72GWamrT0BX0cLMAt9HeMRpIzLw49caCsSWmU7wZRiVjYIGXQdSSn47q5+Xu1n/ZfZMBW3GRdRqxYrhvHUh4yuwfzlxoKijSly80RUlELAqU3RrxEjOokeeQowzwjMLchGrEsBaHhYFoohJfwiPUoP0YUexxQikDZGLk1eWJxlihJ83+jXKuYCjFCF7DLgcHJ4SZ3iSRK9VD8VvwyXYv33gfoAKIhEwxfxc8rYTPclE+3ccAjlwcZVijyqt/3XFIFQQnDF7kMsrxiPO2KgTb+Xs45XgpcRZRGgYiCE/QJxOvX72EepwjcVghXA+booqv5RKGksUYZTSPlgoi8LJreTGyOcmq10dSMOfyUjPqzsWbcpF8Rmrhb33HStwj8GVzWVdAc6QelJXudpXHFfehX7bRyiCLTOuZ8aK8lHU1H1ubPHCs8TJZsN9pWRLPf3ceoOb3cBZV/my9lDdhV71I2nr/h8orSOhdPoMyPBXQtBNJm2RT49ynC5CUCEV8L0btrHw6BnAOnsLo8NfHNHzh8FeKDXcSaz2pHtWDwy56VCT5cbphoB612Kh7ISu1rge9xbol80ndWUihrnYWQZZcEY8WRVg9jjCn52XNUZBkMEvZL/2ICAygrdH4FIN0PtDZpsTS21/Zy7E7xrSvelWyPc07gJ8/nVh8jgrDvND2lnT4hFf0Vz1cVS0XaDUZy6QD6YnMi7gV7sQmfHb0c5gbIqCbBcT7yFMcTnPMVX3q8TErGfDy0AB042dytI9s4wRBHupeKk1t6d+YBICCyrnQR6thXwrZoUKHEgd/0Q63HGya63R5nY1WO8SFflW9L1R5JkVnDztDRjzgTOCkJFK2rl+UXgKILCV+lwGdhcpOuwfj8rQn1XsxBDGtOCSv10Z4yR8qq+IR3pqGiHkEow0YoN3WFJ20W97PqZ2PGzZNq2fF5Z8DY57UhSxMbk2aQopWzRDhtoiiVkStThnjsBoEEeNZyJN4ld9uUnApEhxUnkhhA3hV8Dfwav+raCyRSHuhiOlRFU/euTG30D+3Xt0F9gWXynGA9xcNBqOQ3/Ohc0Q7RdAMxAGQd7/svsTzjrIkIHrY4LDC17XYCT6rRC2E+4bLS6tBBfABvh8udP1sHxMXe5WHJ9ZbI5egvLhJ7NotP41uxvxreJ78gzhQbZfY4m7DxB8pZWT80IqQTjGfuHRtLxF+aSGfNCybLfW+15ZylTtAbh2xFRszbi/wACHzi+UuDFxtPABGV2R649jk8xH5v7N/ynglOToB54Z+D8sqph3CPVnECUQ5rLTN84jmgAL0qYlr+be0xzJdNJu5au9/XDWaeArf/V2lmNDE9FqNeYkIGwq/CRl8gldvgxtCUn95OCzz6hx3iY4/bMIfDNy9JJvxkMYx6peizPtVmus6PJKHVmSXG9iGSBURkW2s0739HEOvXwwT/Ry1H6X4v8qrX8hQ/UDpS0R/Qgm3zzOJlO5MwMwQ8dtkj8trvle/ZW/vMIC42htUwPpzXNQXYWQcPjyBvQhyWrS5620NyRkXh72VQSgk7wmja39zX233wDfTZ2SCehv/LU7/PyyOudOVg+JfYCdAlfjH6mTd9WBaTTjp3cuV9vR0uw/v8RnLf+rW9nbmFbOFfizOiPZo2f81ntdY+UHiVS6x++1kKRgKZUNIpQvc4kX6FzBr0B7Tu6hnVjOu/GUg5uXffTDQfJca+gHM5IgOeXc+oA29n5uRZSerFWqgvFNECHq6n8XdtDhzX7Klt/xfYaAgqR4spoSyIZuXtBxygz1LOpRjH8IYBrNZ8gHiPv9z1pKN7dVpuQYbhcSntjID/29Kc7Qa+IngI7nnur8EdI515HtcyHvos0rvL00ibnAkH9EoznFvVVpabHP5dOmeiOO6ELG4r9X8qp/+DvY/KHm7UITUiRD00a/1Le308OU+j9ZFyJrWafqbPbhGuYDRmABDIuifpeW/u3zKBanh+S4ScUBdkofmS5kLIq1kst9Mn8u154IxxdVTlISzIzGpTZ+8oQk/cZjrRey6GQvQuAFbkC1vAhOVFjoKRboFb3rOpFwxgeoRVxOWoFhidONLZlPwSYcCmYVILlW839lqO3/I1lFzsRUXPbqDE+00U26HgMaE39i2YO7n4xPL4dd8mja8xT/TA3yuSs4ZuRUVInxLgiPbTp+JPxHpEHnbEyM3jpy/R8T2IH+E7MgHna5SNMfSP4+yBflNT03LFqnUhUOpUvesnBhjQvnO8PHshUfi4SOx4NnrSfUF5kX7rmzrqAICnzmLPX3lS+Nt+UhI2XIoNFij9J7hhMWgHbGnjVZiHp7o3BkR4gbxg9syDRCUkqccTC99qg/lTB6I3B/+orGaE2dCoNHu1MBd93TZreKwaAabrI4wWE8AkIe52uuoqp/RwnuYeGrOtGzbWtE2gGGJC5Xl5h387dwxQ3YUsNfsthfKpZwhLqZQ2ypNeaP2zjVkXq6LT1KAthAcUyKzbUPdA2ZDWUoNYqpYC98Nj06GIYBhiJBFZZ1LXpe+D/knVRtDMJdfIbI9aGpD7T6DQb8snSgMEZDbCfVPjNdgz5z5VriUhmepAEYsFscCoktdJ8+8e30Qz9JhwSJtrff0p8QeJjNMsRxYsGSPTiVrSSmUCFNLM5v+/E7cAYswNUk54E6+HtLe3F8G25OkCzM52vPgtLvhqFxTJWwhyy3BUodR25GC7So3qOxgLp9U0gevaeASNuWITwysr3dnFUyFk/YLgam3sC3m4PXOaQlmMHFDXUEJzMhw8wCfzFjCANqt/uMneEvgVLiuEWpc9tsLlujRlEoFECJtP+hC5pcQbnIl3kNN+1N3pnsD3FeMR6UJ7dFc/Zlm+Dlyiojk55d0e/9Nhpsj/tCdF93G+aG6xOKTwqFEXduUmGlHXvSpOlqSgD3ohG8OJybZop0Zizjg1ce2eBnMIcbu3rk50E0RVO9ovdiaoXqV09P2GzhzRG10d8uqdv3IXIBJ/BmZzaLwTkwkIDNprxkCCY2Zl91Vr/lzRQchrDKwUng87+IgLYre+GKuDOyN/sPSIFRZkiboS28RWa5VInE4MHkmaUuYJEaUul//djTKZV2ziKyDoQ17ZjY24eLJ14KFlJtAUfHLk1MWPTj6CwXujPBiIEXCssSU6zrgAw7aZJ4MrROz0ESwaredqXnqkgeqdFgp6MhvYkETlvuP/XbqThN52kRX48rHMBVb/JXs3cErDtv8Mt1j8wwNLiP8enUoYINPTujk+pD/zeUEynBmEdH3SZgDiYm3F1OS5piGVKMiIZpyPWypfON6Nj+XIrYGjjy4rsiyEC3jQZcaQ4Spte2iv0KCqSr122w1E1v0IouHv1ZSzZiwrnxPpeKX9mZgJuJsFVC3T+D6DnMl+F/OsSCHlPEHR32JtOESohOA8LVsjrKYi1hfAMWfrzLmYZks53xuYa7uhlnbRIs6qlh3zlnEfvDqrW+bQVzbM/7IDBWxvfMOI/tU/jb0Y5TyAh747xniDKfAkQLxlxn/CZYR6ZuGodsjzRVQFaXtApgcdES5Rv1/NtWrEDv89Cn99oIc6feZdf8N5prC74gZ4Z5FoiR/O/Q8zgWaURCwxIROeJlnl0xyGKvrUlVBZakKvLeuNQ8JhBIp/i+I8tGD2LkmmZnQ/OP0+/P7gTfZEODknufqSuiga7FeiJuXWKDN1RNqPY2hCMPxknAnKarCTYM65KcuW1jNbB2f8+bXiio0FIPNiMVIJGQF4gcbfCNBB1DfymATGCqSss22SZeKD5jOhi0O7JPcr0WibmPuQ6XXL1qco3hrRocEgDJPOCSZuk4/nQum+QoNmXsafxiwz/Xtz2rQifZAiSyBbiXCaPpsy0mES+Wlxh923Vy5Jj43HH98/DYY0Uf8BHT3iY2Eeex982UctdhIPdIDnyPheLejutIhegq12a/O8UB4oIUFroCOjj9ESsrbtsNXk00sqfFwRR0Odmz+GdeU0en0QX32U9Ls+Akf7xfYlHm4YGlxcXSsZf8oNH4NA+QJEXNor69Q5JO+PRLvPlfX4BR7BaUija6n9NtuaGbhKHMNUzSNK2q4dodDyfkatEY3mPr72ri1YHrciuLHMDsRsrlBVjQUYsSePsdKTVsyTfLrTeAHrjWqWiuUdQPMA4VW7st5/zoz1pmSMIkNtE8NiemiPeUu1GReo4giwObnGStWTcRMxT83kRZwGRYNI0qwVHrYj1W8stkSSTLfKb8+etP93/jYhE8hwJxKDfurwLAd2fDV1EoIuFplfZL2ZcwkTEApPPdQS2tjAarrU4PKZCkKpoTZkHhggyLUWekV1dJ6VhlbdelNZq+o3mkklyM4MKBdKcmGgV8xyLfOEjqh2GbwCQy6Yaa0e733a/Xv/vBBwgbPz4/DH4PqdrIcjXdz92MHLgqLa4H72zYClvQwMdovOOJmurHwXq3KMEigjTM+O4x+sGHof0F1N6mSxEl/xBmiP6UdRFt7gP8XaYSIhstl6l4WFSPShA7wKYxLJASwHo3Wfi5XxbllCPAV51vEZ8qZsHo1mYbBHezAcgnIv902XEJjXKPIEJz2uF4MH/rLglmuIGNAzsxe65Pka/yazS8EltGQw409gELZlSEAMwwo52ZavwGk58CxglRDU/fRdiQa4y7m5R7U1N3zjbHe96cWTcPhxqWZLdVWTBbozLzwio5PWUUoxHZbG5rlbvw8cB3JupAdgy9+PxEwR46zDOxBpFD/DOYZ73FPtGKld4XgNshdoP8REWkETouNkIL/NNS8sbfeZiiP/xq9cRWDdcfm7L3r0R1Kbo0bpx2IXYLf8zk2vBH8O+sd6GCf6MRCZMJkpE1xNrUZL4xQywdtu/lJyy7Dzkm5lbaPR+fAjS6mDZ7L8nKpQT2D0tR7quMni0W6Di/IJKzHIyxRn3ckGy4WoV7pQ58y+zszhj8+K5ZIZTXA/8kH21hQYBEonXlZg6FAKjjQxAV1q3iFrbTqGeulLY1HZP8tAJWXeFQ1ihvGLbavc0GicKpufj9IqD0LLDZb3/8dIxuZ6FvhoiTSl4IhDJbDhzA93tGDjh4+IZuw+nsSeqUAeNwQGO2wyM0uBCAKtlu/jfCpuNZg5jz2YzwyxnUl2fM9XYLzcKPtFQMXC/HxnlJEsGIhGubPNBb9A5ESrolZUZA0qCkzZU7YIHqDWgQzz1OuMgpp4Bhpah8rhRyfg5f04LMUPIkyKrxMRpO8v4efOHyPkj6CtBq+WBttoCZ+wP8Ed1GT9BcAU7AATQeXO8eEjWHPxMtcMduayqdu3s1LEc+ocKzb0M7O9PwkdlQbFF3k41ANHduqhd2hPvH/iRiKGCBL6FWndWSEBDWDlNp8w683kJFAUiR6HT6Uwoh5uzyVnhkIDFSVjfS/Z48JK4KqPoY6/0F/+AbCpF6/zHJd4epZL2RS+CdEGD/np8iyEcEd8CTcCvaYUdo6b55UpkcJVMUC2MfMjVBaWkZLSuQpea8s57srbdeLHwAZ+d29DIqAzjbDTaTS23NRCITECcJjbiCM3ZNvYtCDmJucIU4JaIZaOrY8k5ZsfhBVRyxPfFR+JZ2oes8xuvm1ZaOxVRwKbHgAmHCYzyg+OQ/4eybuk+wbcUWwLUIAAeje5cNvwfLQEaEcTXKd7y0XBNetKALp4zSxP1ohk1kuAg9dJFg4jVQSSxJKU+S6cx/VCdQnDWkeGwoLviNitptDFiGVRM6cYmzFREc8RFYMvev11pIrSDTD1wopyGqUlPYa9Y6NyNgTwGu+wyT6yIi9c14ElOMwOr6Ud5rwxzXg9fRIGCk+h2Pb8sJwjCkmnv9MmrWvtPx6I2OjOW6W9YBzxLUO5M03MW4wmjatle23VisLhPbK0es1dFiMBNiJQ7bbHXEdT7GglIWBiNVOypAuMSw7xTFWUAMs8kX66M3/fTTwEtlb2vb8GgPtfsM9a2rIWl1ZJbaYmn+bmUiQR3iCQaMwbmx2lPey+ciPzFz/a2ev9isrYRSBME1KCEx8eyUWFkz/hnyeuX08bVq7cbls4ENO0IqMOg3g9hdK0ZQ39Ab4dePl89E5L/AOqUtD6EYKiFo2RklSl7le5Pd2t2Je4q/4zzrfssiHBRTYC5bkmaqxljRssGmuLrW2uHcLVSgHFXCmTTMPx0bQaV2/dhYlKU1/DUjIzLSbgR40p280YOVoWJH1cCYCEZBklSz1f7rtFYqHM+ZWXUklZsJBhGLgZVz4OvrLdblbB8vZ8R66IANfHCwBNsXXuNOPDVlbzTUdj/peVh5vZkU3UTTQTIL4J4hzETq8sc8zaYSuOJJMz4NADk6vOYb9q9e9h5ylDdPVGwYgt5jH6lI+yxU00RabA1SxMnDEeTZ0iMG8AJHsaabwS2CS/5/jaZYASjqgTz06+Kg+5+uY6TpdQVdaCN0n8kPa3Mf0cG4qlaXqdoBUaDx1PtN1V7wo2ouxwiSiiEhO2kIVFkIeTmf1B4WqRGl+t9S0OY1bG57s+GoXs4vslDP4bR2DzTg97N7P/oYe6uotdjjSwmn+O10KN2mHo4P3cftsaEf5D1U/iEHLHmD0+9voLf4XMD4Lwq9PAdcdwNBDfRlLbZnmyAX65kJuMYN4/rK6Xh6U/9TUMBAFsD0NvDJU5mM9jJ772mIkE4w51QW7OjlkXXFETmFYGZgbkrkjDrLNJqhd1Y6ksCM8PQAXUfnwUFA+dspCyqFTcNWOjtQRw4lB+kaSpCCkIeHGX6/HAFX0xX2Fe4LwmKrypotA90fPxWiMlzc7OQuGdcT/aVcVx8E3V4CRq/lyoIt9njANiEqLQtLZ3DsyCtO69QQ2TPuPzYegZOSgNVB/ViCOPVWVmGxLE9dCxLdV467pXJffmK5E/aajqF/SwYTZarVFrhyvMaoKsJYumdObLbJza1h91qjLJEJWinYuTlQTz4bujO0K4BcDM1Rq4PR2/2ysQz5mny2RNv9IMNH1WWS6nAdvmJxQlTImhALRhMP/KzhvXuMoeYdXDiKMEOx44s/gaX69i5TuHHw66aACFv4M2rRylHVu1lDwSSBKoPV1PLJ8vAjktU97Hwvh6pV+brQyMlb4a4X3+riG1DuK0QRY7VypKlbXQJlYurz9KgpEqM6tsbzis16GLnrca34NVRtOL+FEuu7qvqebJSRC32migmmYjSf7PjEQkKhlQG7+A9RP1+50Y5BcWHxJA8maYBiq8fhLh8pFliDL/HCbw3r6A5K7VnGICkXsU2msxjypcvdd8LN0U2FEG48hsVAzSZfyHZqbrmmpyZXI6YPrED68Ym3X4nv5j1fIBZpbrsQewwKW/uKT3Kni0lTa38Qltxubna73ZoA87KD1z4OkZXAslE4titJh/zTNFTXQFSsLYu8kQDy7syJttCGx7WvkzZ2Hc5eNpbqjThEj0QAdFnWoBRLAZyLMZAPDOhWFohvhoXNk5uNLIOP08bHaCL/l0SoA8qpm7iZqJv2q721IdbPlxEgmvDrT5eZH5fb6coV7jIHeTMIZcuA/QaPkCNlCl5En93Z12wC7A5+2YU4sqsCBUeN5D1t3Qw5LPvNOeyq44fInHa9/lBcc8x1BuoPnofloBx8UYwxFJLbHH9uudV14EBwq63+Ni6E5Jgu+N9YGHTsCDFAR8u0MNxhn6fzbRJyHAOQq8Y5+d9o/5I7M3gqlMmgniPCwrTQn1IYNJLEyD3/QvhG5gz2WrD1yL8RQVQ2AEnKiDq+cQn+myRyKYAcVrxKIHYKcYM+K/KSnCyyCJKJSC0WtfNc8Sa9pBUpUHnU+3DEvU0wZVJxX4EUJWY9xYJzfqoJlr5uUn0ygJwXIeiVdsWVli2ySqlja/aH7FRqi6wJYPrU1eXRvqBlrq26Oz2/arSCBS3BKzw/0hANGkplI79YRRPTnJCJRSPxyuTBNsREUua96VUO4smf/4GgsztiVfczgbAKYw0Nt5h3Wsp3sLXzVeOu+6JJ29jDdOvmjNrK3eyl7BBv1SmC6zDQRIAG8Ulbt4NuTI6iSPc+RIuZ1QUznD/hXJg3zFjre09Lw9f8C5aM9lmb3hpsrJ0yoOmNpgXrV2UBrsS8cwA2jJCtcOVKsaa6VufRae1ErUawqSc4veMjZAsEKNbwHat3UrHV7qr1skjTFMUsCocvOpDTp+3wvQIGy5ffu347lgJHmZzxlwcISn/M3GEix/CCt++hwPeSyk2tMIA2a0n+bagH82WkKoNbzInDOgazBlMQHdLCSMTnZacAVJQ+hJhxOtMhOZWxCqko7uyw+iwMmJPsgEj7Exc1boMBNkdvFpdOKnrC3Y4Jqnt/pkEWdZGu6be/0OymNFYB2Ax81hZt+N2o+9fayPa6ULKRRdo4b7p/EB9O1/R+gJHAOVRRLSIx8rFK033CswP5YQaGt3cZK87WJutVi0szrxMukSoY8WkniuFJ8cCQZj63tajYQa1P+UEH0riw67JhAuvbApM+WDDNm3mlwXOjimH7Ezwg/QLJOZjNXzlb+FO+2GE5W+4zz259BvIVVdPJuNzwsyndUgmZ2MMEdnFuTHMO7d7mTI9g/AH+rvaVcww5FT4T/n9yUsQGj6WaFKY81bczI7qHD0XAvzVbj0XlrcwN6Kd3zZdKTg0mGmS+caP8C6L9uZGuCu/GqHY5h3Rd4vEDz0uyx1QBcQnkHstuG+Ytm244s7ZmKcyEHqB5UINh+UMS8p3BRiO87WTExwq1DevCPA4QALsOndvDTErCGwOewkZxHfSzOsndon8sOtegQxtMmX3jUnByzOKNa2d60frFHR8/7tFFsvbbu1XGe2Vvmg62Z0WHeoPKOQWMnumErix2r6yisguTDeKHXVrdPAuezxiwrg6wTb/pgwVp5WDwLmEc5vIo4kQnzdIL9onDsOj9UvLLLVjDaEHyUZxnxVlaSHfC1lUOfbgnf6Bam9F+t4BwncjlLTTieuFb8rUyJD880KkKv0KEvtxZUQhY9nIbfpFhZELBziPRe85SS0pd+3+PkCQSwe2WMLcsyeX3cAsdl1C33FDZfMXC3z86Q6Lz7WLfo+rxh9IhqrDT350Vc4pP39GZftM08XbplCVdEDAgjipsEq6F5GSqru+TKEOwBYtU9joi3KqNrp360U31HWq6iusMwK16qKqnHTIAlAOBSTkfV/1CEz2gqRH0UM2XaLMuain4/mLgp0oP6bqSKilCbwxLTSny8BW0d1fnVugHaesXThVEiHt+04TWS8zwUEEXNIkq7GTX+lLGB3Fhkn6R7aGzj8XmIsyT28pjpmJt9rgwRMZo7udIt31VxUrb8k5R+2vtTk+pKWDd8BbHhUDPd9tCc7AJBbrkuVBdDGLvn6KUlV+SZvzGYuYo9yWhDK0aRLFmEkj+ceMEZYO6CKZAcDd+IxVBLR2UVTggQNbuREJMYE+bjt0i5WpdyrqbHBpwM99fV+YimI83vqJg6swx0pop/t9Qf5MvHaW5ituMr/4pJtmbyfeqos3TJenAhoFcmpP2yXdHBCpEe4npske7NQQW9GMvZIPR2uYHVEPdt/JNSEaMJliRAFtmXMnd1I/Jb7jIDqZwq9ef9cEqGSb1BwusjUmBZ5iVCzxopqbXdu/xqiBsSXaNHC7ByovP3OW8ZsFpO80y9KLLE=
Variant 3
DifficultyLevel
611
Question
? + 114=1
What makes this number sentence correct?
Worked Solution
|
|
? + 114 |
= 1 |
|
|
|
|
? |
= 1111−114 |
|
|
? |
= 117 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | ? + $\dfrac{4}{11} = 1$
What makes this number sentence correct? |
workedSolution |
| | |
| ---------------------: | -------------- |
| ? + $\dfrac{4}{11}$ | \= 1
| | |
| | |
| ? | \= $\dfrac{11}{11} - \dfrac{4}{11}$ |
| | |
| ? | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18Y7jEMsfK0U/Myuq+10F57TTjgcEI1Tqfj6EVUH7PtJTgX2oehlB1V6MLgTR+ixD+FE8oDg4wxb09FO7c3O9pB2rvrkDr3o2TZaHSmME+JkCNM7FdkexarJ8u4et2z9KLIMj5gTCKPA0vFjobdzzviPI0pzFUzhdmmESJbGLp+aVSK+zKh3Zflq7ItopFOotkBw+N/U92SzUXwcj2dM/XcjIHeQsTswUkXe2Sf1WDJdb8isxkK24hidXGPXZAav2BKiG65Z4YO3ANE75jplA6JFJzVZ+lyv5YMWlG5jdMpCEN8eE2XUHr/E+oK7nV3Il2WgzrIfaegr6TmkvpC4tPH3+l0f8PeSa3rs6l3xaxes/lDEzS5XdTPP9WzKSrtON6gQRyLThHzHP9pqggGSKU6g7S2cjiQddFkb7EUUq8XciUJj1F/mXhrnJ571WsZjyYezaxn5NT0qNUXJk4pBaC4LaiRBRzLDMOMytbM42pVi0wBsBJ3g8y2UYbPJyoL2lE2LeHPDicpDSAH4/BdvZu4XRXNN03B2TaXxfXU3F+ZQ4K+dUNkA5Gde8o3zFzEdQD1YXH75l9qgMoeym07ObF3wx8ZccsEErI3s0Ub4ZskscNvC2CYzCgH0YANI/l2wy8AI/+ov421gF6BOuiZ+qkpdDJgD55kprCc/KCj1uk2JGUhTeVhxY+kK/UFW3FJAuj3btnzrXPhifer77+CdA7hh8vUdqVzSy12HdQTZVj2/SUxqzK/t5czIGh92PKZWn0THPxTBHiFPscS4q7h7UndP50+77PMxlSjngBX4WZdDjAj8YzV7YXE66V/efWPgD9nFfgDKF997b8mwzqA6KCaf2ckPZ6g3gMKFl5kIuDFJjB7RwgFavU3O/ibrtElwrfKNm2/MkISpK3vXOkrcOcYFmkCVkXpkYXNYalnWcTzUFJ/tqoMiODx8PIeYVgR1m15yP9jUuLJ+NLknxaRpnXd90mVZYhcVbuqJoXyaRje+PbpL21UdLDjzht91osKHi/Yn563Epfi3J7RDRwq3HtgBAS89PohQ7NG+wt0sIrXl+lBltRqUyWonoWn4nsxEjMyIanOn1cGmxxT4bpTTzS4AyEhX4msm3uA0rEk82XjWldqvrffPnT62VmirXcTLF3gx2hOts6y7a6Z/fEpLv64QIVPUlNXYzITcBR4r20aHZ7EhX+zju2W+WOh+WHZFdiXqdIx7ijfQCJAUbpAQ2neCcdMnrxYhYA3zBUWybXsR+ESFIRc7DgVK2BnWXcAmwh0HPQbD+VrSjlQ8R7WD4UAtDKT8x2HJ46Wd/cs5fwiWWjor3O8Ho7GmvJ766+T9wFMeU9QxVE5Ym3KcX2ab/J24UKkeC/pSIHW3qsP4crM2zgFx8XCDLdGpUruFP+b1AVvjTNRA8Aj08pRQIl/lbAbm9WY02w6KpGCIB19QODRM5LCjPbnZfWYfGwoZvJFVF+6QwlHjDjMDl+EX7CZAzyDzcXGlK30pFdpyhj9hkddvRmb/Ju/4IbSj5H585LhDOc5u8MQdCwvpU8KBY+GLBkPVwhzpISuLWUWM6b/FHrJUXQXNRj2uOOpULM9AxTkr/dAw1gIR51S43yuEgnu2F/0h2/jGnitsGZmL9h1fOkHkXewMB13Lrsofc9jtdeZiBOIOWXdpQnb9hOEjVlTABOqoxZm4vcP3Npev1Y4ndiiUafqcbaRho2MHZlWwiDNvoTHklqLGGjp2Q9hh5s5pSO0cOCqfAKf9o2iwrvl3dD2ABraNqNZkINbXsr9Zfi4uG+F096WO046eSFzTLDmR/dd7OAN9T62YzjDeXMoboXLDmk/bIPXODcnZZFm7hu2vbrVrx/b0juoRdPV69/xtIhsDCcsGIUs7BDFtc1kJOa2HcD8f/SNlI8xn//zTtlWo/G4s3lQD0m0f2Flp384yO3n/p8BJ5/x7bRISRKMbh5vMERX27Stoy3Q4BspvhJ/7PkhICEM46jyWpvPHR78wgt9x3FliXbSFKsCxw1YtEpi5N5zetRvAAoEwxMabStVXxkQNn7A2ZoKEj5DoDUMf3kZew6fUNFbLTcnfYkRWnI8CkvUxN5FKX50J972pF6bHQ4A1kU+yPQxotLvP5fXX9DjcRfkv5G7rhI8AComnZ3N9789JY9KrKgLh1K7nln0xjbpYkaGaEX0aemCellEePMCqIK40AUqKVI5rz36taHPl0FYrNXQ/yMLGheEgfRNs1aJIzM780OtzKrfP/oLzpnIwAc3BjDQnY6e1QZNmF22d/JMpbArabCozcO41Fe8ds7ZjjYlkdLP8vtovPgy5I4RAk70kpeIYaGy5TdmwNxEByOYAC/dXmU8L9RRy8fW63Em6IXnGvF5y7OMfb77Mdym23xk/qIoyeiqQpekOX4Bo8+dAj8kUJeXwvRv/6yviAIsmyBxr2l45E5fp+TcrdobrlNZKrroG4SxTaSb39a/XbC7JCS6055GoL4DGpgOTJh8xBFeBHJAO2EzIFO1GvSdz4zeEKS+751HLQ2Ytagij4r58D8qGOwg7zOdSkWqj/0+B3ntewMcHKW36AHlKB+YI4QleKj6K+JLkstjuT0Ypic0aVYPeyGsIMOyT9mrQfGdiGmTK3GYRZaQ0X9qPTy+GMTiNpCNCWhjbr7yD6Tc4myySEcdYcge/nundJJomEa6VqWrU44TPih3Yi4gyym/XBFf8TZVdVsrP9g6UtKIPquPu6YXYwTP5ct1S3/LizbRwxiqimpX3Fedy8eKox+3Ik4opAdvXFJA5JSkDpWHSLIXBh+GW2mx5EFnevDTXqUFekQG/7jolRLx+pjepH6Tm0qzZzwtPNlNjSCbDnyuDGJxgc2EmM9VEfZgs9os9VKOHHlX1UubgraqKIOibzw6oVht/lPYnA2mC1EY9Hk4ekSpneJhF7m3PwPSMBYRp61TIs9Ztj1eCWbY/g3rXDB6wNDg6KiMF0YqY46E8JuiayNNhjQaMxj3meBcqTFBj1ypFOYNl6cVPLm+5S08LTbnQQZY0gobbqy7IwHOMaQI/YYwsTa8eL6qyll5IxT5+a5sw4D2zESdKsITNA0dq/rL+l1OaKQtHrPGLGerMYUSFHOYcGWBPD9iTFn1J/ES1dODYx9+0oN5P/WmbJvIcjxYWg1nPtEBAZOsI8YIP16mPLbOrCcyEV4XEBDqX5ZrJ3Fk/Ksc1QkvEw8KC9SPfe24ZTIVJGv0MkQN/FkbpMRj166QPLOGV4ABGIoLpjiqSqn0uvSwJWRrSo5ZeedSMv4IMuq6016OtAjFg5B7FYPmhjVN3hRzIAg4AsPN2MUcUmg22GVKOhXHrdKI0GoWQdN8zvr0W/DJs0WgngmLaVIMi2E7jf5f3ro8Y95Pu41rZOdoLVfAtXZw4QSWbTHOCt4siSE4L9j5YfTRZaXzOhM5/JseEGqaULP98iaEGCVdcX+3L99INycb5LEbGmrw20H7ji8K732sCt4CL1neHKcn/JKoExQw9X9OQ8DNPZyAlXAv6oH0V7QF8/CUpFL29gFlDCTsx5GQLVBtboEM+aQql8golU18yHrY2mCNp+QnQUfvmzAiyM0aiHyhuWhCY3VrTHS6PuoCkiM1PiIDodWqiXLXxmYgMggJoTA9APqsxiGgCQt6lNAlriOi8ELqhoaH5HfxZQ0JQdfgSeTzt40lz99aavlw5TT4HeYINSYEhx5d/unD+I460JOMbI1qEgdFR0DttMSKaUJkWkXhQJsinm2ODzD4BQN1EfO0oZiQXZo1DYt3QhU5MBAHWv8h6d154wVrpcKyH4iKEnZXsP2/qsMnSuBA3etEaGR+ORz23yhAVTv5eHjLohrkmfedvfBD5NmqCkCO1SlOtWwfa9UmiXdQuGU6zUAfeSc6pqyjfdxNb+r4u8tfE1TZJ/v2z6K4mu5YlmSXjUvbo2aHXP/1Be54cOAuHmidQdCNJ4DLyAO14Ob14/lB5LwqJnDrdbQnlBOP7/XfDWVCFJ70RCWFDHSXBerK1jRIRjX0ga5N94xKju4oEm8JjLwwRAIbsn05NBYi+6QMvN2nw9ASUOuWR+1JpTVo+hNNEFJEvOWJdD6dYBLQqXGEk1aVZueAh/p9z90FL7/vMCfAwwTEFrAgrFONYPYc7xm4RJKeGRr5HxQQwAqWz8OcdFYa1CKXMMLRobTs7rnAuLg4KGCpAdlxWbuS0H7CjOgqZovCe/wCpKmVQkkMEv2XY97X8Jlg7eI8PEniXy3du3V8kN9SC5clar/Z2CyM87LW8aJYxOju2s750RqwH2hmNT7QuXU76W8No3/EyL6Pu1meoGZiFNclhvQ/6XX1HmXajT90LaYr1imusvBH6oGJGX17lNX/dx4p4XHUTr/eVVPieLPjrZ5BiZqilhIqf5/k16FZQdd1VJcK4d3MRuX/id5Zj6R5gxLTdprzmNAgx07dxDVYSHIKuuk1fTczq+5gZKbgfYcDQRSs8Q3+Akenx3MkkgFyRIN3p4GK5I2esNVBJB9JKn0RlQhI9Rri++Ratoj1KpDcEV8z7vBqcsZWP/wdGBXMWo4zlC7a40Phw7KMuDrlRKAyjNH1Wo7No5z1M4Bfw5ujyUZSnWLador18dKFHLigR2gIsg3Tdlam4B2nTN6VaeNgQw4KNpJfjlu5jg1DlxFJvCiADq2YHVcMjKoGy1BniL2Bwlp7N2SMTMUxhCBfe7q1GaQ8ae9wpHCVW8A4n3i713ORbbG2nr3qGcKq25x92+hlm82DpmZlBELvZ/ERG3Cp4tzpdi0qzlkpfr5Ef/Og4ROAccoXkUqAh8zK/0sOVkuApbcFiD/2iqiZBtmKxYFj1xEtGzX3m7bz/Z2h9H0SLXwLzt/l2yLLosFjkh+X974NDOWhhfTceRFSfSwobcCL+hM/xCNaE9bXg1a/VbWtL3DmqCl/UXwpeXzicEMrJMYtyw79zwL4sbKcGUZkoraITA1bTv5YTelHi7mVJz6fEigy9083MRQ45P4/reHGrBmo+dUAxWoPLV9LH+7/nb+CEuIUvWorN7FGuhoWaHg+LvdHiJJkexcFa7hHboyX8hLra8qvCiAet5tUL4fyCiVc7p9IzB939WeMGaejKvMgP6kXwLbZoCzwFarXJASD8du4g/GYXCvjGViHdeFk1i9CGlJHwMmDz8j7GMharSm/Hg0svXVRytp9IUMC4tIMiPtROPV7Vlr6JwUbCB12jw1OAl005R0djSH3ec905M2TOZRWv0nPxGma69bDTonlNmqJlVnTyVF5mMFNG97EeHLl3JUejuddAnMBwc52rbbBr5sKs42kn6FtP5tiBXVBsvi1ITs3dZ2dQ9RIx7Yc3uHn8I0gJvI5ilenqXzkZNg0XoQTrZPevtW8snAFKbrtwXJhR+XPggmy/6WnjYFsdhw1sKJYSjjlHu9nLtupy/H7zEQZqWJhrVeN0sqgP8uIqvy4JsGCVLBxd+s6vcxM4CbASqZwM8ekHRjzriCoC2+WYlH9nKrFN2/9EN4FYxeMtgd4HpIvq3T0H09XKOuo1CU4mslIPehE65XzHU1ToeRqfXR14FiYiyjrk3ed/NTV15GIyRyLIWtso8+6I1UERsttRuLC2H4YmpDL2j/S113jQ/M0vK/PzWHOInFAUoW4lHhcvefloUTpgXGIuI7jvw+ZVIrxUwKB/aIdIG1PwXGBa77xVYvpNGC2DidDeKwKSVf1p7UMLzqkHQkNfmMRO9TdlgP0LiSl0EjgwD3J5COWLvKx3HUWwwiMLNXvGLF1TnhZ9zYoeDMRxlwHrJNgK6K4pUarazQdoyzqLnqfc8OhVQ2PcbH4mGuNpOyxhT+CcD87cOY+2iWnXe/syJpNxeBFvNJhxeBdzsNaF3is1ej6lvvW5wEHSDRw64szHkNzVlg7weDMqIYtL7Gk9nZSVKUv7binq/gWPemeR51LrWqhSO2thOMyJEVhdopj6fEvQTbb2MiaA7QoqlLlZM95237ZcagdVy+xPyIt+2KIjhtIE4Fow14KGuDiHhpKCnaLZyYXIt6B0fsZv7GfI47QInKbwyewUCJC95R340XHMJ8xuDChm+fb/U57rqELOQfpsyTWf1sB7weHFncQq80nWwryHnVcMyrnAp/qE10/2xLhAHwCRM5YnMaX+UiDsHSGAxOIg0ktoU+6salWyjeWGe7+aV/lWVwvT8/46znP8d436Sp6BIHaUoX3ooz0d5QMg4oD1eIZCi2z8FRk8uA+Spoin5AXihBxKnu6W8aSauAmH68k8ZFxAmhGJZKA+3zK1OBQeld/nePp8wObQjq2fKOyNx0CzxjNneHJQ+dDqhjYS85DZJjjc6xQXc4dvh7kkKtXSfsuOybaieCD/g/YVBZfAsJ+enbUK7weDT5H4a2lI8WLUiGZxORhgF/WUnrvZ1JorJIbk+gx54gzvVD4w+DFcYGq4syLzweDSb51WdgScKUmIxpkg5fBCGwdCV1veNnlaIxQVl3+KRxz9a/cJg+W1sFknCvHqfrehG5at4l2bQSIRLiHThvMaax1nbwHP9ihP1k9Gn8MFdurnduldWrnh3QC9TZYPOu1KmY/5MVso9U860wBIGX4GJi+eJ6DE+3tKiHLXmM3aQDcI/tTeCunj/ArfhrfkUaapl6onMlzqgMuOxMCItzVsdr4lxz8fFf7LzC2iqmlM9shL4mkrBOubd/+iisV5y6HVVEj2HbBCaL9kCc75C3VxrMye8/3cxWu+HUz5MAGiUfUYEYePfRVmQtgmk8lJEKXalWvrXPeRygc16CUBlWOyt+UM1D1A/nigQnTi2spEI56Sn17pN3BFG8WKyjmIkXQ1atSWkFxcD+EitYYt88Mz6f9bN+s91n9AsbO38cVVo1NN6CxBvCSM/flBeFMixIRoAOJy4mkQc/LiAlwt90uvDel6NuKROVOHsWMW5a1Wrsoae31CBoExad+Z0qCxNI0u5ZFTiiEv/lqatgMr3Le8Rx0TlnVkz1IkvZK1HZGR79fZITtNrP2bNR5loCmzyMtBx6dlcjv9AQV7EJv1Vn8rw1DvvXOKQnK9sPx7X+2OtHQ6zwx4FmxO5E+2IaP3YNaIwSUN7955b5HBp9m7fmOq0+IhOe7wrWC4PcqmRPBy9o5DGgaUivkL2QwVbNTgfs/b3ix/f7grolfE2psDsY1TFN/Un99bl+pYFQh4rydRvd1yWxQmQAN6/u++5si+acax8Zzh2p5LGqwAafYj+a3xYOc6xVbXV2H2AQbA6OfCZKARHme/2qYKHhSLv/fnGnFjQ/Mq57ffG2NwDEB8CZITczDI6Q6n6Mddjw+EoF5AFmhSf+50Y6U1qB/ReTGB+LnuDuS44mGH+oN3/2oJrMnH7fCVUxwWfUKr6MtREujPsUQ1hR9wM3KvgE/fUY4pAXGem9MDFwpFM88K/rMIyV8gb1W5n1VOZGZERv7Iz9As2tJ7FwyuV8Lymuan9NAkw3up4htbxhJru2UW94FE14hoqhDFochhELlK5uKnL6+MiKWmeQpxCOgutdGHTijf2BkCtVXDEgFan4iIsFI/HkaMPbMaET0+ADG798wXccpQLF5jWwmw6zwP7VkV5NEbFOhyojXx+AlA3gNbDj4oWqp7hCPdN00tiCJwT/2pBzhSNexJVuDwMv36/N9Yva0hRtXaLIm/HvNATLN7OojxwbzmrV6GrkcMrHqGA5xpyLj5nfe9Iew/yxjgNfIKKNtZ2P0LI9e4JQiZBRPzCANKofR04HUTuWkzyc7Y1ctgVle2tACm0CSxFQBRtGyagehMIWstiw+47Vrqqge45imev+bVliZq8RQ0poUmhpjPy+wUYTdrs3ue67fM+k9/uALQrvj/tdWKehgonXp7aW3335i4k3Pi86fHJ54P/OZs4v5SjerwhI4Y6CekflTPhsbwi90+8zw8TrgDjyONQSx+KyT9674ntBHv2f/VqtposLIBmHKNP2RoySpTOmpz9QpDnZwD2DC9ySjRiAeyOM3Wj3iy/rbjOrZvIkGKCFuzeF/SfvYgcryNCOpHr4nwFlkR6KdhR9RRIY/WoVfLbebkRrPgbFLCMP/CbRJqZT/EpfoDzcAHLlQmnzBNLyKM5mHwLP7vaZR5w7AZnsG6nqOUZ/3TkSMN+AZS60Qui6sau4bX8ggsukR/tkBqWul9gUnMOM9AYx4zouMYJds2mKcB1FL79Eg8q2G/fknP80Gb11JzY2L2GMMXhB1eQLhE7tFnApKp+DZ0lpy3JCu/Xb2thbAoUMtAA9X4BQkZWUnsxrOR8HnVWUIlicyfav6h8ifIUz5GqJebpF3DLbLNOvmWf+6pin6ljDB03Kf1w3n1jJODWLWftopGhPr4hy+1RQKvq3gvs/NH3LaRUIEoFKjFcTmFsSRucTH/N1QY3eqXrDqREqwRpRgPFq7foJ8ky2n385cnkffXKngMLsgDvm7chB7pyLo2txhQQO7ctN3WcAiQLTCdcQcOfz7DxVnMVpAj+4wFkGD5rq+IQlVRcyS0ppgFGS/FQh1Rn5HipX2EmAUGyLlujnmqssCIj/cPgMFlyO20ApTVZiygnFHSubJnSpnzapDRrWXFk4MzsLD0P6kCVLjqfk0Qdq7gMeHaqeosf2e8KC7q2X9uwVZMUCDV1URe+OlTIz68CV5OkS04h9rr5bWvYWdjfkU+eB4zjiM5MpjuCDaJRQZ0fyvXnctkeUZNjv7doaJY1pjTwLacI3vxvBiCCZdrSRBh2XuDXHIM+c43TYY7bHRQcLzr/h2xKgdQN3hNDkdmTaCt4lWjGv89WUPJlpGjFMwCbzWz75VSEYT/jCzOyMA1oKeuNpO++wAvKCigwz7h0/rPIaxI3L4xMfuMpakdebwH/Zle83UNW0Y1gVv+EyKJZxZKwn47QpCPHJ65edEoRrLQ50g50mD6G1BJ88ZmnQdKjZxHLnhaa0athGIQ2hYCZZpeiqeodI1+qPxbAh3+oqGzeSD0kfQh8GYzeqYB8omIChCWY9uqmNge6wOkP9FH8V5RETd2sHEOQmG1jVwD+ibICoS2EDQUrcq8vKWnqU72Z/GVnRtZrDP5HE2tmO5MP85/PDJdYIEbvRZqB2JnRX+p2HB6WKgG/OrkQNB61EYfZwf53YwOmFNjufqsc8gnC9F9PasIwtvLWSZYFszbYmphPB0+SCeLApK9naRpAz5K3ascKG/Ek3g3WOtV+F0kB7ZkVvEEt6256gyi2YH0mJ1WNeiNORmN6K2z0rjVaJd7uI9Qs+7KAIrs/OcPQVfWyFxQyhqTkPRtTfJGcGH0Wfg9LEahOAYnsGMVNmy4SrPlnVbahmQtrHdySQKC7vEenrBpLupNRPlRPD65awBix/xv815OJeYy9b4q4cHwXT7oYjoHNb6bnMLcpSWwRgsyZ0i6qT61yEIf9W92zjeUZMG98wfllbhzpQ/XQCzXugiKqdXOQMqFOR9UhcV3W+ivwSSRYs6yyKsam1G0b4X8ILEcS285V+zZJT6TYbx31obSz2Vt/S6lb16RBKoG8Pt5yWgoDrSF7yGzwbteS6XgSEpPxF+ZVKGomTtDr8baZWEKS/sSLKKlSVsnSvf75A/eTP1rAOPQcPcoaQ0VEFOlUgWPWhjGta/8L237IeHrG163qyK9gESOaRK2CUH1GMWBxieNL2PZu8RtAWFipnOhfaJDXfh48nFr2JnfHpi7zu/p2E4Wr3OJWHQykoBMEVPXd6Poc0Pe4ISOpW6oA7z8+rhYkjmC8iv3r2gH3L3A5rBFg2zCb4BrrMjUFiRfoD/g3u7MT7dv7ZwMeAEi2Kfpe/n8nOB9q0D91F0WynTX9EHmwy20M6b6/IINEhmKqTg8AkhcrC6TO43YT+IVMtq4Mi5fCmVp8z00gvkCgNXU2G8cvok7hDfnX8yqWxQzMZCsdhcFJJ6yvV2R2z/9CWpAQOGCEUpaUazc4kx2rEoWWM0L7o15SM7TdHDEFrMkAGZvXYYWUSOorZdMdUygfBm2dMW+JutLteYr/m6u+t3Cd06tYjzePtPuOsrn7aaUmJ34FUng+MgH3TaFIosEdlWRkogkE5awcNmuGhalssgUDMgE3sgCZ94HZsEleYdmXX9Y0UdDR5EJ7hXGCSEgplmK9pGTojV17nWGEd06vyyYGA8WRCg/MiN68fW/rbA9bnxHUKSvScTnxYc2cscPb+T1YDYthIXfGyoy92SyxcaLeZB/MQW/hXoS0QpY16sTMx1KtWmgMiqayuVmS1ALr4IbkXSxAbv9KmsomVIA7vW78sTjNf+dlUmZeWlvwMwciTi8SkRsdMoizHY16Lpsu47wpLBSFKNh+btFAqO4v0YLPNJy5q0sxkLs5sprlFSQ7kBhsVI14A7Cy3MeswZPr9OjyQ4eWMR6ds6YFR1OIRpye2zFhOL+LddLfNcZ6iJfosErMzrgyRNn2CBeP7+Kx+JkLPf6cjIKXs5Otp31Es01HkTH416FRUBCQgY5mzVz8H1lsDAY5rNmz8gV7DgEssx8o2kxITOciQfcdWEBYkdf3Egnhmp7IPnFxxZWmjz0QiIRMzzJtBcI2RmqV+UhZ89vgv/VBQLhvB9mVnQSwXAF/n7u1AhCs0MOm1KssADhGQszmGX8T8JQl2ZzCUvsUDY+7SfsbO4LkrED6jzmOpwYdcD69M1dWZNEzpIc5RSnpyJ1Tuigj9UZhXD+pM+yXlQRP0OcGIYeFj805Ce9GyTAUMNMxq1HJQrK7KYmrxtFw5pdgZJTn2uhxF1il0k1f4moZrfibU31eTC/UROWpLlrePfxBqc4xKDmHfOU4oC0y6tkaGICg0NbVmGEIAg7A4TWBOoGsw1eKCiyVDDnCMdrK4aR8iZmVB7luLODAHkdg3loH5HXTEJps6bIKl5CBwxECi1uHjGmi8m0vtD1Qs8JBAjMmheKisf1iFlrrxzIMOZ/qEWyMbQ5FvSqy0Jkm6jNCN7Xc/yWAn0wixQQCL6jriO8W9ba4gCgCL6iW/YBBKAEPRlVh82CeAR54rI8hf+5OmImZD5+xrmFsE+500MgGkASDrusm8mtwEksGWv+uNhun34uNz988AZKSm7aSjRd54hfCJujNleB1G+V0usyGTeD76KwBQw97sN+7gLfL/9T1oOtU/yDsbtZ4oPEmd9B0dYrpdXgJv28ziYeEnV+Xq1br1u+5LAVEQ3FzS60KmpjB8oteuIPbgaPIDtGCgrLmGver5X0ylXK9DPqzt8T4P1ZO17rdlcG5f8WbIpRPngVkGzP5/lRJRuI59+tfXDv273aFtsH7N8fo9sF73HuhiY2q1tpuBXRCC9Re41rmGIB1QAe0K+BIMYShV2XgeALs4Q5Iuvzc7RSjueq9fMF/A9YR+nSnSGqKptnZ8q4mVO2L79jA5V2cu6Ulzj2OLix7c/kAICUATKZHk27lChIbfsS4cQV/0MY9ZZLDuODnoTwrrfaqUz5ARuO+7lrlTxDMkWl9bTiVXHkGdBltOpAr3WvNTFmBwwVajCcuQ24SVUb724aP6T2kYde2hT1OoHHQzHfsXSifzqymEj2uZpp9Jefgbobbi9ng2taSkCKmbyANBhVXrTMJEKe9PAg1uRFwSO1HOXdQxlfqT5dlJMS5u5/Bf6GMm2CFH56McKWpNs4M32DYI1Z6+2HZhV8iEDiKynVVzB9CLHbG/6UVYC6in5v6+vgtmufTYnRSfA7thsGFpun0leUiBnLZR3nRkeZUrEwjH8++8E0X3JG1dqesE3X6jbtGQnyFMo0egAZOq6Y6ktXjC7a9dXBA+PQpeYpSMiq1DMXTzkkb+z3rYLDGCADoCriIv1SRlgRma3+FIWpevQD/LkmPAtoWKqbv/oUIqD9hZNMJGvm5rhWS71os0lEx/u+tr78sqQNktxuQoosHCUUVw35N0hGCyZ/6ehTJ95H3l3ZL7q+PDyEfPB2/istEHyjM52gsFobPMO9HRRGjYjLgKA4ix/tx0EuGqR3v+i4wzk5DTxTD/5mo8sIJykLJnwYKLQr4IivNs6NS6H/45t8CZs0x1yDvTE0b1guDUV1mwLk75iGisqNHforx5jPxtSGrL1LIumhd+/UyUJWj5jKUF8edz7x4DxvsoxF7wvuTd+OJwq9S/V3uQCbFuX/PPj8RkrJL9ao4jwlefwcJaEj5IthFtFTAba2iWDZQVswQjPbCEdJBDLkQouD9in3Jju78P9eZXErJeyzvofcy8R1u4j+FrM0+QxKvXaXhY5E1tVvnCkxwB71G4jpLrA1IxFsmS176My7suUJ/nCEHcTpdzRfhMxAOHtHResvRA1aOzo22EUVUuJdtUyUXdx6Rlq4raJySjUz7qtaGYpDgDOLWHbvI9e44jLxv94qt06hgKhpbsHCWZCq8MX1yn6KVyaqP/GgMEoWIAcDgiDpDJk7wn6Evo6NDkSU2zj+fZZKjuJLgaixzK6w0OoDu6+z5JvYvsjarsSPPgIwcSlNmMUex+DvAjIUHJl8w8tmf1Hd1BqJ1DhYT78rETg+guxUH1Eop+7XBNT3n460zvrnJ3YDL51gqkA8ugfz/m+3slDX+wkjhUZnDCocWzsDIubuiK5IFUKbavr8Y6Am/bYgFbalgZnHZn7cBlG2cDq9MxN4NIHB5lc9NdoP8rYubCZty5q3tuQMDVUnlrNk77UsHG6Gr25dzi5PjyQtZOH7XQ2/BzWQ/9v9dcEEgbXN/Se90zsO9tk2Z92kxP3UCS/D4ahnS2kxIXKBVrlc5zuOLrXyZz0jTWJjfCY1XwUbMPxT/vfWqJ45eUAehWP5M4+7CGI/QpjtkXqXkG7MeytfCVoLbLjmzjMYHz/b8lyqbs3slHdJtzRnF/BF9tzMT7hYqzAf4okPP9k21Y7bZgYc1RGlVsg8EBDT7WfqX409FxOE2AKOak32CXuMFWbUcSs4RpRXhZZBFeg3IEYJTkKf3p1n7RvFdGs/2qIX+H3zvwXyJx6/4C1ifRtEXvpvmJoCSkNZZzGYJzw2CZM9I0/ksOA2OA1nAc4sl2QjPHS9DAeu+OVkObJohA3FI3AZhNzRN4SynVJwdnk4KoVasAPCiVYqdgxlOy/DCyg5Y4QfyonBC+azXEVFRycj2KA+qszu+n86jkDY71U/J05CUBkNeiNv43ZXqCtMClSyNUdLXbDVv8EU7kMjCGEyxTmA4nlwUX6x5aKnlfEL098EAspGDAoVo4c5KzparbOq5KrmuRN/rNsnJ0nmx9dRKi6ObqYKha4V6O68d0PDVDeYFiTBvQMNOJiF+GSoMME1fxBeSsjuHAkaVE8wVj8sOwcXumb8ko0CSAhm8nzsASSgd2d6eciizbejqaMeq2IXctg9CLXDH0cW4PSNXogr0Im2Khf27ctWh0si5qOJBblohzSP1JUTuBw1MjUyZQtaiTQa/r4UznGP+Co6+OuHkIQ43e6AvN+aTn9tL2EwPTNY6i2h9bqSgOyAdnjkzu8znVjuY7sDv+UyEKG9YydFj0lfErcVExOGqwLxOC3F5YPUMsdb/dfEhjXR1aO0TTwz1n7bp15uxmn+V+nGR0eU8dZ0gCLDM5KP/BWlhfD+Z7Pt2h6datFTGZaP5LfxNWtu/iJm9yGWybbponXlph1tECA7hbbO2n3stmlZMWhvnm2jH2D2hC/6X6Nt61i7b6m7wlVk4wAr9LSW7jrgs7a41R1jwbjAWbuEMFeciW54RajbfMsNJykYPQsz3PlhN9brkrRy8VwvneIJ6JHHrio+16hRT/prLW+hydDcG/SaK9mVW31l9gsZ6WjMRoI32TBcuoaiIDxx9KO5duEEHZjNeciAiFbhb+t5gpG3kxDxOuBJ6vGkR/5qq7XZG/V8dOHqAmOEkSK4UABpgWEzejkr6xeU2BmxQRrSg+GnQqSAbtBR1kqG5b+5C6w+qoml2OEE/meCztAgbh56EmDega4Q/ajMxeejJk8Yonz35P8RFGE6Sp5+jQ6/MORyz99a1xFLqqZdBew4n/cp+AOZtIEiPP/GLu4zbB4ObxM2Wdj9s27dmJigtsOeTYh2OkhTL4fUlYpOYx1Rd/TwRHba8zjV3H5pYmRygzbmqKHmJ1fqVc0lvXLDbkSlaJB3EMfXg/TKHahscQZyqUilXX5FGhQtt6IvHGLkmhKvdB7Ku3EvBOTR4iDHSNbWfIydfPlpJVW060yapgw8gyS9V6rU96pv0eUSfyo9oetDEk7Q3iLAIciRvR1Ct1H7/zaKzC0aB55jr3ngJyIAoyWN9xMslVxVp56DAFjSGSLHaWDUtfVZwrLQfVFjuqaVunM8BwnkTWAt0JwpEPW4NmZ7GDbTF+unWvwhqIgh4WLfK3/yDzLX3I555YY6X2nEfk5oPRKAR45X2ZUelxwmSPPxgIxCdo0S5eIbWKzUKh59SQAMlxerXXQYK43xRIIGVj+JwlnrkPqGIRTcliKoR2H67RseyjXpUvXThqPOBBIXi3f1mfatWUO+UQSiQqV8TZZEacokpNsS+Bgbb2uGiw7d9Ndq212HwF44Sw4KfcXeFdrPg8NFJKQP2miBH72+R0sAMx/oyX4VQAmPSnjbtqEE0/OE7KrPmS84C8VlJa7jkel7vS7Rc00J0eHxXrmwIuhmPjiQi0vPOt1cjSphR6gGuFQWZ/EW0rUhruISmGuOdwfzDzGIkLZRms3KEynglxSJ+MsqnUfqEIMQpdKAji4/6niB73MHcW8P3uxvFepyK1jEg8RbMqYJdjXlx+IBrQgGKvsFNHiZtkq2GOI/Dm5+dPtKyd/gXu8s2eWDinulsyYoUirRqMV44hCYene18mf6gzhhsHqN+eCneWMqAIwWEOXZ+KDbHJ/wTMPddn7Skt9ctLBLIREY4TxL4bT9+a4Z+WW0r7XXwSDn8VjQkebdR7eO0r2wlTnfyS/Um06deL9O67CowRrYCpR3x4ax+2gpgOXaDlykK1GIYg4Y68XPATFdkyG6agX7VvRuUBoC4c1OasJxbqeC0rgKA4crSUa/0++4EHv72qblkd5GDv16Q030DxCPJLEQ0UNH6RAEM10C+n4DSTCBBDlWXhfAtnbRh6PGTb0ywWVqiz2upcde4oMxF91ZDl/ogPNbq3Kpae0M8bbrgmI7iH/NCna/mMxJq/s13aEy6CZgngOEUKpnzhMrRM1O5h1NZdOqYxRiSPkDdogrOGaZ/7Zyp8KtZQ9n8C7BRRbbv57rmfF977J1ldz3HbSb8HF6N1w//SLyk1SmCz3JsdMRFt20Udc7hINnc2DMYv91pA4VtiEG8ibpMIBOKZwsLUR/ZYd+V6YWMSEMGgFhSTHNCKhAVQW3jeF/MqUtbPAOiqfPcsli7mltdU7r7x03ThQRbYCn4RpntvSUBB87V/6e/Hz2qhnC9Vb0um77+BvXzvKH16mWUO5qqmzVvhfOvb6XH84xsFjUBb0icfQc0cGRX5eMq0OS57LvcJk1XD99dyUVGEHCzlmFnz6GSVZ2t/owG2QwPmTEhB389MqsH6F8C8TCYST835gg496nfLXiqMiVhdn3pcItWCfefpyOvT+PA8H0tHrouYSdb+FPG12Jo45kQXll9EfcNIlZSH08BSQuehIgxn80wX1JUtUN0Q99ukiDZqrfh3UWc/xaobr2PiATFm/vz5G5Xn5gnW+O17Cfd1h93su1Tq9iZYnw6HS40HaPkoQLld+VRnaRQTgGA4Ji6f00cDkGHat5BOKANRmsyEG0gcQw/+wETca5gmfVlW6HqZjMd4fB1dwsLF8A5NnRRX0a6/uuyrqELlRq3vrSWrpDp1bxD2ywP1pH2Old+CZwQPisk4FKe7yuNe0iYsOSIhrhGTGZfjGaxWkovce8XYg7aFeddQGnLp4tmOMUkN/GHksSwwBP56akHoRpm+WD6m98+DoDVnTy6LxOT81XUCALJXIkr7X20XldVPjgIi5LyiaVXe4uS+gY9DrukRxhxAlxQOPmg3Kq4XTHCepdHjdclwbg9OZ5gN0tXib7xsDK75KPdE4E1LY1uqQ7ojy1CE0pSDxoZljsV0qJ1DEoCHEjKRJjPcPjUaTPAG1ne1ZrAlRCTMKF6T6agqicDk1/t/Sy7gXYybbvhiLbKJ0HWJyVDvSo1RZAyWSVF7mHP36VQZCqf6EUf9dMk1tokHRdMy5MoRkpqqzCHBDVn6cj8RbQ2WBBpGYSL5elnTp4nVZhYhV/5UHUOo0eR7aOC4Lk2phJ6aqAxIxBWEZ/nTMctm7SoPYML7lLd+t8vVNA6nh0tZ5sptbyDsMCGi9dO2SP1xi0BHfb3eHJ9kBEe0ihQZOTPCGWA0sIURzGvyWXdhuHvguW48C6WtFbzv+JkDBE6zLPUcuVNTfj4xx/d61hu3vQFRDW092ki0uqJ7T1UkWLQMygRHjZ8ImQCeFMxvDXrmBnpG7kyzNyAYJeHD8/eaYQ6X1KDEq6lWrkSBbhB/uCwEgifSp6IINV1ptsKkPCT3ZbVwb5zvCrsrv8MmaYurQKFMKcZYM8G141j2yJ6SKgb8pGz18UGrUl8GbJTGt2Zrt2tcON65ewcRtr1Tlp84od/w8ap2M2jVPSgnJgOgNHDI4UGbQ9QooqVwK5tgZxQkLD6uatr1czAA7IemjbrWdbRswyhhuJngG0wcfg8y0L8VYOTAVm0mTLaflZp/kXiX+ULPyJCfP2pPohPQKPlOhqjyY29NlgLuBj9W+aGeqX8SDQEGPdUZbXTayaD1Tfoa6khIzOWOp5uxgU7axeVXj5fzfZQlsTtBIK2O6XLfXDUvb+IV4bhRURbUSVbI+ckORTbyjbX8dzIb7HPnCvfdRxT97mywFp0cOqhf/r8g8aQHtFYbEAmUs/OZTu1kLHcpt6SiDO3FNXPrxGOJrZY8YIUIo+GhZfG32PB8Skqq2XdVgPb1FZNiT9Lh+K0wpriIEU7m7HOnkmpJTp7nR2XGo0KjGKu1RKePMU/VI+3uCb9Ps/PuLPaRYfy4TBtJCTdmUnu09WTDbTYTsZ1KIYtJpMcD5y89Tr5Yb4orQAzxK3fo/ymkkHSUH7VkItiUNBZqr47iAcgCACo1PohrB8gRhZS+VhgAbLwx6ZJWFvLxVghI7y0Ab1GxO9TbZbtEyaryI+249X/orcKUozP/td/BVqtnPrdAxiqPhaWnibAiGmCrTIxVOCK0MXxTmqaicAzmEq45Xr7Pe+Hg5QqEkcK2AxPhTeiRIAJlomkj23IRsDkF8zT3j7yrWFeFoNTn4jHajTDVijJzErbpF+0kG3trWf0h/e46iCTGn7Ca9dTrWd2yQUvIM3rVscCVeU87vIcKVxutBYjtmpoKV189xD/fAK4C7VWY5nKXlwLjdF9zRwzQiQgsvY0tQ7EjXQiLeZqy6YDkRvVW/PlTqSIlwQ3KQURtwWiByNCeJ2TWHcckKiEUDWpH31gUdUn4bfV3J9d8WWsN22vvpQ3Y0T+Ca5Kc4sfjt/OJk+DX74zvKBubIwgU9fmeyamM8Per8EDk/DaNit0Xocl4jdbbwnXk6XwTiL7h2SkeBrmcDUkfVR7uiwiR+31EFUR9XFhY0QHiz6y8rS95z4g0KEBD10yEsOZvuxw7viNmeZRtD+enMNF4d4s8VQTc41NDR0qvhyKkOlXVM5+oYdAy9S6nlBQij3XVkgqGpey+D9X9QM9gdn1C8AEUJEeqRfHxEgq2p04jjT12pXiq+VRk0PRW8EF5xRcsTjIWQfy57EpsFoiDuebpcQhv9bvHCmoftUkUmPPqH08IsNhxEAWbsmgVytq2lntgOZ9Z43QBIM8XjQGNtE4iI7kvCjxKFvAsCBqx7Ya47I9/uQs2bTj4fnOmWvN3GS+cAT9yKyfxvfkdEOGHWUWajrp7Gx11gjKHXO9mcMxG+V93f4t28qlqduaX5O5FpdJFFm4MC44M4t/IzntmFi1OITDbNercRSsvlfC8YoPfa1WIIJV6E3PyJxmTZqiwIqqD/2xgA6Wwh5FEVzlDWdnOG2bXzmAAvqmF0Z0Vi8VK0gFDzkx5cIzOKC/1eFAJjGNwhdw0vkTXr7819cMnj53mKGkxHI4ck3aOF0QIxhb5PmN2METRX1JL84d2yWryLihN41nFHoB2fxfPmfnqBuWg6E0hjbhzhjapvt61G1hI9wxqgfO0ZIOs3Jh6k/imHwcYDLEw9fpazZbZ9V/wX/x3aKNsY8/4Gqahr3BqHJfghcQ40kVVpNzKdS2eHtH0f2r/puiKqDP5jxbDnD7qV+aZfALH24mfLrubVF3K/JYqcrZT1Ug7O49QeqPkrRkiH3qWykRNrh3fIMmf84VtIYfbr9cM3kWQWWLX1sbRTJjSTieVgXD1WpITZTv3A8G0ul7Q9A385F7cezvWvc6KNhw8gF8EL1Gz26g4KQ/hVC5dcsAHusmtMLP90GbwdarbtfDltxYNmDmnq2FHy+yAcFuKxnVIwXtXNqzO4OuS+Zh9nlWtzl5ClW9YE7tCBcNe3jCUxWF3ILyHTqE9WIknJRiDCE/xizbMeBGWgfmyf0ruWI6yQK6O0mbY/h4Pk/5DIT1AFUhalJ9ydBWN0xf1teR4jGw2SA3i+ErnjZxAWiCV6wHrJUYq3bXXJAe8pcQacBTeF4w6KA9SyW8CF/QYeQ8FsLxWK701zpYVdUDdtJ2Hs6MuUWP+htFAh4lWO+rfRWAi8k7SfI2cJOZMVp/l7a5fwCWi6ZNaWktv+CRzXbL604/suYfuxv2NlK685/D7j8oF2iXEmF1Qy/krlxeQwftVjrdEGlJTMg/x0qmqGxEz0Kd+jQxx05rwK/6fUxZNtsxqxXrFXfXqaDiQATOrHfkRqscmREgBif6XQPv/rjH8/iPkYhnWcPJZKEpNrpOyOKWTc71nra3LR8728ValITPVTn19sid5MNrvGjhJBth0+n/pZ+51Tyi4yIAGVVhavn4Mqw/Ue4/f/52YfiLlaZkXLSgfTUzmGeipvWCJQ75AqWxEEm7MUvl9tbAHFgLhoZOY8fwlieb5T3CFNSpNCZ8Bfli0HbdNibMd77J4vQUNed5aG8CWZke23j0q6sIOPQF8hFmsml+OMj4GER5DHcItdmX2JOHupCTBAGd7Tp3JG/51r+3TAkhLzwe4rHBfGieXm/O13YeIFw6nFaU4WmEaWiXFGf3SQr5IO092qrxbrC2Orf65qAqJ1lBBgW1X+DsbiPJ+7DAtNE6D/tMkri0C37AZ90QjO1/9VYXT3+JktBPejty4kNpu7ypUBvUE/+xzINKPHcAxop3YQsMhxFaLKe6tcx7I5o0nZljkFaxhtLTMMZCm2E0MuMymtRf2s+kmXMW+RQzWf50/qrxIwd+tL+eTJK7MVCdGeud5C8mZ/iQSyINYlbid5X2GEJSfxWdz0i5VTjQckyNmEQ4TCtVuEAOEklhLOf+cSqEDnqTpdQW4K36ep3B62tu74QJZL9lAtrqBS/K1ppJTNw6CNyxowNlJj9YEAwZkPm+xrVVkTjUm+4HlEg6YRiQEMXqHfApELinOXHyAsGfUo0yzioIbRGyuBguj6aDK10WkeHbh8VtXkMDCTelmaR5tHmdzLFwu8I7qrbXFfAqt+HKGOez+9s74NrKf/sOZOdOf+FW0dYwJ/5u997gwwFF5HCZ4p6IcDaNPnw7xTY4S9X6bQ+yxmQtRE6+qrcJbVMvGIOewUd4M5dV5aAnFyMfRrvOxx4/B7Rq+3SYqwVsa7Ta/c8KLd99+Dqp210X5GJwfSxnJf8SwYy/hHEdm/TVmCbJo3LrPcx9RLo6Z3eyYk813gPmqrsEdOtuIL/bgiYqDVzJXpv2aMnxl79CwIyH47zBziV2SuCchQgRxpomFvPm48V8tUqmmO9ThL70vmQV7aMTw/g4d3yQ4Uxru8BkDod8HW6lWllUCQXy5Z072jiWK5SKZGUDHnkNnNRY39jUMiy9GqW4fLxEa211Ndp8KwBHfiVw+QhBE69H/AXoQi+bKn6u3tG9PlA/8igPaam0uISA5/e7N+WiidtKwco/yePHJDMDFe3LbJY6jNsExNFZ9YVqWy6jZ49fVK5k/QS4G4/DB3anKsCDC7Lmc2LkJGfmJUJweqE3o6ed257WY1Q8bQ1ktPR58zBDHE/v0Y8JHSCVUxIBF7/y9v1tX+6zgIs6atWZlSv2lhGvn/H13uGPJE42y5Y5zdehCcuqZ7jCKTO+E36mNyVbkcmVWodoV38cDfmDMF/4wRLvI3IMk02OnaeGSu6ecxU823b68CxSAn1gaqtDAFi2jzu5nEj1KGg71WlJ6fQ7563KyxE3p7fS5m/BA20yd0To6gyTsynDvRfOBD6r/U2QDZM5e+7lyy3Ygj0tZIv1Hz5F5wbI6PG5EE6RqiPtYa56VElNfjpP3u3ZOs7SffuX6HPN9Sn9jZ8R3voxzbQ3dLJ7P+4lG+/rdaMGxj20iHG0H2MRMgXwB6mafoINTC8CpD5tUD6LTCgU+sU0ClMGKTgbDPBN39lE03pQ0kP9Po5vGb5WoE7jLJxVW19xNHBlU1BvtDbVsdbmfCYLKmZv+8LRLNcrpUVdbmGXBEh1h0MPW2XnE+FwIoCUZui0vEKLuZIOUL33UQEeA+pK88aHgYXhtLBP0gzfoxT9k0HbVdAevme3rgCW2+STmTtMDuw6xEaEzBfTp2NauMs5/6+umdw92iQYKm4NLp7SGWrZDCMDkaBWAtvlwOEBo42w/521jypLkIHpzZnjJa+3qPRagKEp7HlIZ5wyw3sM3BapIEJXZBFQZCcU6jZkcUH8muUUF3g1bcg44iG9cM7+rl6AI5b+wUSRAj58W4jA2jW290mLufArMuVWY2XeiPqKvDcKfSBHrwrxb+MBbOsXC5bjIDE/jKeIdPsr7cgm3uNF1lHCB4IKLaJXNfdqlDhSYOxj3if+6zHSs8mu9n0scN0bo4L+upimDx1/uchilU7N2JZmQmn7GqIjPFp9g8f/HSdZlNFyIXWDxD2LS17qauG6QvkjO3s9XqS2a/qfiovPf4skAlmUs8AtOZ19/Ux9AQ6KDxjdnGDp1KhLA+B/oicfrzXUUHsa8rIe3jqYWItXI2DwFgJgvbXlfx3fnxpQqTejrOsJ7wbNvHPPCn8dURecWAzCXSbwAlcK6k1MIqXis+wFjtpm91yuganEN2myTqLgSjPS9LUZBey0p4lo3TPQ+baWgI3ZSrY9m9GUKjfttsvtNk8XwAbb25eqSAP0d4j2UIlb4uYwgplQajE6hRVU5/jKhyzB+hyodAbJKj6UXYkLyIB4lXojcSk4n0yTk7Q/HJ6rP1vVTMl4kAM7p/WS7eMHiZLjna0rs2g2Armh0UxwCaIrVfZ/8flaAvvt6y5vSR8WF5k3NKJyyOnJW8hbVG74mropYeDZpJvsrrQEK7rh4NKbg9KeTShCdabon1T8QFoSTK0C3cHYKTDV71KNriOTLMyxk5dqxtaxSceAHMtgVSxpaBebcSMlxGxvq+4gzUP8iRJAI=
Variant 4
DifficultyLevel
609
Question
? + 107=4
What makes this number sentence correct?
Worked Solution
|
|
? + 107 |
= 4 |
|
|
|
|
? |
= 1040−107 |
|
|
? |
= 1033 |
? |
= 3103 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | ? + $\dfrac{7}{10} = 4$
What makes this number sentence correct? |
workedSolution |
| | |
| ---------------------: | -------------- |
| ? + $\dfrac{7}{10}$ | \= 4
| | |
| | |
| ? | \= $\dfrac{40}{10} - \dfrac{7}{10}$ |
| | |
| ? | \= $\dfrac{33}{10}$ |
| ? | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | |
x | |
x | 12013 |
x | |
U2FsdGVkX18IXpUO3WJ/809VNPL48BN8ZW0asSRyTryYj5SWDFi4CLobqUx1jfQ7rjHsPl+NSTdrqZa/DVHUujDhdsxeM5itpR6GvPEo1aqcPi3rj/9ApcNT52OvlcAH22K4d1NhdI/SYodtRgpTixh2iyeXG4vefK6aNea64BqbMnq6ZjIcIYgIFmt6ffSe2Uh4hDrrC3+0VE2LS4Ln7fdH/QosA0giD3XvuSN9/83538HL//WDxzSFw/hnbC6maJKj6BHP+5bBa304CHfuJhQZNgF61SA+who158lSZQ+AEt8ULNEKuPUeHmPFyLbhm1mfPmN2bKK8pLXouKkqZI6rW9aV8QdysB3eKHyOhF8KsbZkCv3ZiFzLb3cXLQgqF07UAvikwfwDw13Js6gOzzz5tODDwJUZiW2vImZPBCnqqOrJaxxBsiAQ/0yhjH8b2BExT+K9HdlBP835kn+6dQTUPQpyAFQNti0J+i2QmfA9YdbIGXYd69Eqw48ziQKNcuqQyS+SKKGKtsu+7Y/usgqXqEkdAXDcPum5vK/me/3tGIeeiEVLnplVGfUCCDXAnbI8uQYV1o6e3qskfWXwjjtUam4QFdLQiVbCAhW9uCmNjDP7CIGto09z40UOsWdar04UtwyUW/U7iNw6aWNmVRIdRayeUsGTtX0amMIdnyCqzmRsYdQgBjxVICzNYdAgs+8OAkNwFXsp4wYnulHkSEicgdVT/df9KUR9fYHaxEh8ClR35S54ne0KtNl6dWikrJexXrkNP/KODU2Rs4A60OxM9KxNHp2nLnmAmNbX9Ka81zdZftLg6xhbvB1TbNvby5S7Ywo1M4sqC3d/QQMyd9P79PS1xj8NO6MhooyYY35IUz/4jL6zNd7+dRhsIEP9u6WyHhOLX6BtL3cycYFVGFMDSHmZ83pjuyZz0rLuzoRGfi933xvTUwZKUFr2oqH1xEUoT0UKLCV2IVowwnascUTP4Lo5D1z03CH+6Itof1S1NFjEgM3f15St8ZX3RrgKuMAb3R2t2VjkZ7IJzzxykow1EqoVrVNSE1PBT1qbKA7DHBE5ZETOCzbfFdQw5U9BVWg+LbSso+yg9Gm0HxdcSDxF7el2chDz0z28QekwmM+e82U56KO6nhpY/hGVGTBiMH3AC1gV8oEFnzzz4vqUEDMg96nSWh2gaQ3TSeayLY+gGBlLPZYsY01ro9uynUvmjTzhg7CLvMA2hiQB21eC7W1+tOLkFDPAPWKSQkJIjueJXkUfQvXWDZNjDlVqmEds6uWqPabOPFJ7Ox7m/C821p/KeQ4we6+b1WoFa3hJ09fKs7IAfoUiPOBAPLHPFTiaISPshunSlaUc5mActUxAj24iqAg34YyRT7ekFvULr0vy0ZL7PZyXbj6azhL0p5ifVhvqE3LhEhtCyOZxNpYdyN+KeKUzfqTmvESUladWS+1HANu88+IBet58ZEEqgLa0txn82zD2A2CRBoo9n1s6wrLJviTipYsOpTHDpsd8GNR0fSiDGTjBRHrwXzy0gPRCG/8aokVDUQVN+6bLfVitk6EDY2t/tpHhciQKZhsMnsnQ59UWgV/AfB9aoFeUbqsybrlYf06bWKOhN3Ks4vC2VjW7Qd7ZvsQ0Mido4J/NR2CM5inRHDpeHR4OAU4adxp06Chrb9mCNURlDpDreb9YlLNNtYxpc9KrQWKzpDCqqzkXMuIxaNRGCC09FvBJ5t9blWyEGK0jf7pOporkqFhrJmK1QIvRz5Tq/TYO1H1NemroPG6dzeIcBAJS3I5tdlmfGVLbHBPcXPZWIghum82RFFHh8d6Dt5qhIMT3Mt0iyPvdD/FRi4XLklJba3k2cik7vDW1jxkGi+bBMAotgQ9IgDRe7TXlV+pPlepQlq/cBpCODWeSLtx32fK7Ha8LZGxLGsAhcfAKbfLHw/oE/gGQ0Jrzfgbdawgw1oucm8+H1IvAiwwMzIs3u9vXlXolU5XAHb41Lzdv/nF0Gwr3cZdQYiUKgowoMEL7LfPquS0kDoL70LgO0KZf7SEYu3eRGZof19FS1VtX+Jp32DWNwkDGlDyLQqWCyybcZsXAjws/uHEFquqziauHES8fiMFwDNa0l0/Iw3dz3ZJr7Yp2zh5xkxDgeT/YZEBpt8xP/onhhIpHLG4FYTcQbU819av0qj9T0JUVA6mwcl9zIldrb3YVjtMo6yPJaFJikcAmN6Oa8TlOAYdpL8z2In6G14VfGAmY7kpAqG9u/Vtuhf5eIMYQb5NdVUm43SDuRMO335vqBCWK4bba5ME86QB/3MfkgZN/0HiO9CliNMnfN7GBxcJz3SgbUgc+ruwhxcwWCU9GrNsX5Dg3vFknyydABoprWgV7fRMXVX/cGNCn9wv1TwsOBjcvEacKg7rigczXr91krIzhElbNBjza6pHai9jETrE7vCbncCYOfcVbkfjMPb27HauObQd/FAHB6Dj3F++yL095nUm/DGwfIUCwZ/m8RJpn9BRdI/UjpIJGXgQ8MxUZ0L2N6Z6HKzvyoNmCQ9vrzgkwNSAIXVPBpvmTVkfeKHGWEauHT/ilr/nZJl2z61MT3D56JBm2oHSUtZRgbHPQAKtgK/VJehi+kttWdvVWCQsvTzBpndScPY12EE2521G4FDGOm1bpW8KPuZkTm1O/BBBbIcnLLqv7652SzC1ylgGEwklxZTTpe/M4FuorcLkbEMlBDWkCKCHoGx7JMd7tcxSevQqvSjKdSIRkLLZTk4AE1Hzeug1bvpIm8CZxDypiyvpGZxrn5dW99R23ZK67TSbpAKkWvmKax3Vv6ozJBka94ajB3vAloLy0dWsS6/QXGYEl0/tV5kz76rao0g68qNkAyUaiQz0KwNU1AxVtFybOEeUpyR60XL+9YmlKA1O1Dh6FVHN/NJ3ZhKlVElbOPPLFmyTOT0AC8tmVReGxGfzWQa4Kr6dWnbpZezcFn/jKRseOrMnOe0BXcbnZExjIyQHvmZ2NUhbBwRZWxDhtY3kxeTpMJMsIjMBln3OpSaifnLB9FNkEu2ZlMY35cpFuHX47QtviFTmFs4E+GTRPlTASQ821aVExCgU39X5z4JfyNIyF+S/6aNh2zHVAK/CyLw7xMV3UcJGznS3jt/qRv1Gc2ueSuCQORjk3goaygMYGKRvaiKKNIN4MJAxL7wf3a/UFFtXSYrAMs+924EEQnz5ltBU2LtEqFoUcxc+LFV++47/NRHtmRibT6bxq3iT8f19uRoHv1ElEDHNFosju11VV+Ok6ZhLWaNPbZEyKbCdwRfyrgPXlInxoLYnEqX6ePWalpjd3R7I9x3N8I1Hznts25DQ6PedUoh8p15nhvNvfGQYcCu7qJU78OTVbDimDJRjxRXLfY/zKPUDY5Rvi5OHiZQeDoR8z5I9VhlDqAZusP4sazMKin2LGIHr5EtQ7Kc1xgOvd2Opu0buVPkwZG/WVUjYsQiSFqniLf2wXCkJ+feLQwxuX0JvYpoBG9J70899ZkdlLUun6lbhaQ00ZnWRFBB9p0iETLKJtYPHbNVvRRlN8asT1Uc+b0/PjlOLwRqxliVc9e8mtCAFktWOMDZm7HLYWL/weAlJcre7BR4FXamL7LA4TKbQ2A1oNhYmMOE0po84i73Q0QeSrgQAI/2dKiINDwRRxiD1NHfo7CB3xr9+70DVrwZjvAtifOKSOITQp86ATojYC/jhvTmvUZqebpRghRhHTFBkP3vz8ji7lqN3g/+vQGLMOLG2QsgFFIDcubyq3pJKt9oH9I7Nu9LvxyYazoMymXwYLV4k8Ab5TkVnixVlOr/ou5UopzNWzOA2DENWuejnP+A4BPDpGq0pTeGezWdXP0nlj8GwYWAJgjj4xNv+kHqyou0fLn3LE9tqeCbWFqkZRCH8CY0WQ95hx7j7O9oPKcpF61FkvffKN1MzFwjD/RaUOAaodWjkle0PGLrLaXFeNsOUKE/HmQ5ZGTXT0uIQcQNediI58dULLPcGcLjIkL/7qGk3EIPh13mJOcLRMetRGnsd8toLR/EvHoP3NtvsK+jEu7q48t5Ho1xq/nMTlfv+ljXsu+CWlwUrW0ZU8Mnp2tN9V0XOuIfwiMK9fvXrLV43w18i/Jnkq6MarqcTRUzxLGfHZbArzWmrhRBxsN1lrp+BsGx79i+B2UMvu8GSQIoy+8/9MKv0JLrY/vVQr29oCOEs4dQQgT5DbConHO/Pr2CoGOKAERPolzdcDGh1wUHEVfJX92+9h7BETzBluFMBfGI7Bv9otHjf899CNlMds8VjPGC8g8KsX5QW17kCvQjiq7+9kqHsHHglF4co+nDvEjE8NNUkmTqkOVZ8mvUm7LDABzfkuWmmjDG22PgwWHms6h5rZ8q/pWE6pRVVVlqL6MF3HTfLaz4ObJj768UZjtccssX0ca8jn+WHX8NlRJhukTMak7yi1WQochueaBAKAirIrbI9kT92mIm3hrC6YitB9ALgpj7y65dL3Ixn85YtmF9dYeRcNG8/HSGMUuoKKLlm8IIIeFTkgzjKFOh4hYQawG2s6e/BO8v69Tp5wwN6NZaZItXvxiTIfxMtGVGqdrqPttERKda+9fjSJWxeIFfnqiVsct65zEj8g5R/PodYiXcUHIpRjmt8B35Pejw7N6PPypZMWL/rc9gMGlmVCzQSehuDfQCGgSHYDDjrew1nTV80sIVYXkbaqRiO5/3jrWNlV4ZvGshGZ5s3T9O8TbdAWR9Fbk5fxtMNuTehk88zk5ymIi3fmu1oLc3VCDnKawOsD5ASxjYEvlX3LliHrGmCKEbeq+JAYDMc2Zo4aPqckWsrbmU+vWbQlMPYE3UL0UvVSoP5fF/pJ+S9E+EV+rpwZjAX29GzsybVW2NMOwEONrx7HhJvuBkzFER/0D/GmjHoRUijJF0s2QUk86KbszKAvipLNYtZ1eb/TZA8SQbgm4g7oJ285A/oi6tSgHQqS4PI6l97XssvdEJ5SLuDHDieS5C5xq4UKlbagJmiHxCu8dx0TNoYPYGNQ7qxBFnhYIElbjz6XZXqoEUYyDyxvz10vVPJSqUri5Cl8/pOgkAd8htBQhOQY3KDdGcTNClZf+MBefuG+ib4X9llIKHQIkWgNMkfcscSeJLpvD7mYdOEsoE+Zh/YPJg3m6D7MjQ21Bg80Ctk5h6jX2UdGw0q3S6e5QKxnC8mOuQVqwOFkx7S2/LGkxgQhVttnUjEN3rEmQtCLW3OhqPEb8eqLZeVmf+mDKEQr3jBJblVNDWTLpvDyjc+PNoyCN/3W2ol96pbVBZAzELh0rq4240FKPobnoHZaFjMn7HrGvO4xKfhUsH3iT5YOvzRNlUXQcvdiocGfgSTO8+bcBQJPDrfLvs1v5+zfj/u59D2z/oUN8tJJW1qv3o5mfuhQoPatXRH/kyLHoS+yWYU5jxKe+U7D31IPAKyDyL+Jp3TxijjSE13fZSv7tCUAwcCmWytskss29vfBB5rQPcwDPvy0U2QB8YX7XrwbVOD3PgFmBC22wnuIZD3al68f/3HuanoWi8o0+YH817gH/HUjVCppw80XbS8xZfWy0iRB+/vj9ZbZoKb4ZrCGkLm7jC9Yr10u85bcgpdV+ibJV47mMOLaS4AiIOUmx1yeyV7FaWPK4hnr1h0PJeKFXpKdKwEevPRyhrZvgKpCWtCdy9ni1xayXzJhV6gLjsvR9sow5YUIxRXXHadoS9IX/slA966vMjA05Bx3/82fErCEAX5GsrVtF5gPynw5oCSBR793+YhRYzvKsU0B0xfsmivQBuVwmL1YQas6+nR2khHz3Qqe5J6qWsXaQKMO2knZqc/78NcOL+l4SzIoptipys58GCzzDE1VmEZIDXWf429ivdmQxOutAuSfKhHEJY1Retuw3X8+MFICL6InM+iyW45SU/23TWBsSgUto64mNN1rtR8JqulcFndXFlo3MZXq436EYeJxJA1iw1syGkmmn6HRsGK/8Rht1GK9KD8TBOcFVFy/XfzRK+XoCLUz1C4VErSbWZ8otQL5WrLa7gEzQYRJ30vu0q36ZF5VdeIdlQIjVB8nihnnLIAEvMOBpgEzmbKyLYoXSO9Ze+g/7OrnUfUKvOdmyb4z+8Qq3h7Loxr9zcelU1fqvCup/MvC856BJ4+ibWxj6HY4e912CCNpw1LL6mjN8IPkw2iZ7/ow6hSmYpARTWgC15g/2Q341aJxJh4/XHIE5AtWekDPnAWpm0uOjjEloA1PUKsbH/St1YO7frktAWBvJc4ffuPHTxySbBPxPMNpXS++etFa4jbWggi7C4wtSbl9POYQJUYoNGTbDBc0eXsxbPTNx5clNcpx4DJAMx7OA2zAiiMG60INcMTfP112xyfqbHxjfPC+8Xb5s4ZsF5bEf27q9VVJGiwKryLberGij4znT2vKCeH+HVN1/Ftd6ervcDNLp9eQcsA7tv3xmyM4a42RqPdSPflYxphzYle38lbSCpM/6BGxqEcpPB4eYf/26o3+R/ZhVZrNGx5eohvTnwsXPI/u52BNZXdyfn4VtEKorgv7Im7LJnnkkicLdGfBiBfbfHiyA8d+EVB5SXFJII+zNggBYIiSnoHKzDZukMjtHlwfAXTTPNZg2TZh6eE8hRLKfMUDFuM3S4osJDOwQaYcnwkdVwkS/lp7nhI1yrz8ewloz/H3U53scSImZT0hRMGLOFKae2gnERL6FtcLl2Bv7skaNbnlBcumdIgE4o5aSlOL1kdpbO3ljkGYo541e0Ekit1vqaIUnnnh4wQlvTWHEUqNdoHt21M2RR0uFWbQLg4fx1yqzDjnObsKLUUayay0YfuICDzqRf3CNAtJCtfB6ISFgG+oy0sY//LOeSUkD0luC7A4mujll4oUSTNNAZTI+RTKPKO6cBcmigVjjd8HKda/JBmYK8oSOhrrs2JflK9Mn0fZqVspCSDREmaO7J6pc6Y2itiiY13mfROuB5YNKrDyJ7fhzHWDo6doRNTiLn3taGVyNSVoyOFYicvt9a83pGFYedmRFKqV1XJaMj/o2APYf3At2XdrOBWfxEGc3b1KI5O+0qeTh2wEeh8jbidxe9tq+TTLSABx5ZUNcMFL8iOa1I5eOoyDhYMVM/j2wrQx2KSirwE6InBFCiYoz/THZCX7MxmvmDUtT0amZ45WElOUdTYASG6+HqJObMG+pdcS6wtzu27zqGAdYU0lA7YVpeW0w+ExmkHE39jQYRHtzWbf0TZjTZHMG/A2+BF7N5XpW9ueNsTmhE2eHqNhR9hbYrU2diLUTjVvs9n4Td6znMpH5qbSD+zcdzdWINDvicYJXKeEPYZdJAwoOY323BHZWbDYqva8ytuUOq+ATTHSppc4wKGVPqCVrD72kxcYBMlRFQv+C3FHTKqDBwq4sTy+I0+HdxZPEmg+h+EaKNTGQMzxj/ohf/DewCo3v2+Wbo8XI1ayiB9Kn0P1o1qoqoDRrdGjPU56KCzb11t55S13g50FFwE3GEbtB8dsNhbmj1xzAQIviL7Fnd+8Wbe794CdrWaKEaWKdIre75qI82Jjlk2kZkWPq54UXAwRzhvWbPeeKop+4SwjbYXKvRyp5JzHBkM5zBSbRBr1YUhNznmCHyXSzjjfLJmVqzfmjU1nLYj/ZEvR1UZ0RunhNd6/etwoR8y0qA7++Pax8lX3tqj83xT+kIjUXOUyaVzspTNKC1ff1/6ZqMVLrBg3miiA+cI8oVpHsAmIq+ADD+xaKwRg0o0xRIMOBz4pZnUvT7MBm9Rf4ZpKLwb0QC/4C8Fs3L7wsUbSotBqpYduAy3TA0s/x1meAovu1/BDbPVoAQEhVFqg1ZPwj7H+1MnxJU/LJ/V+YJ8F2ZiZvFT1/+u3iPepn850yGMtkyGiQ0MbUOAc++ti1qFCxLcb2B2Xt/5yX9c3uoo4duEsk/vBItSERz/xhOe3SFAx2EBlbiXzVKB+1E6n2xo04Hrx6rmRmZBv6x0WBxOT2lYOT811Et+I/rYYsmtNDI6xVHnwi69R+MTE6xp8Pafxo0PTPi6oM8zo1+7mMUOuEpS/znim58jqp2GLQmu29sdwZ+OeaQpMneWFIOKFJm43AMb7cBxPDqa2Fkzo52YCgUEzR5hKuSbDcrNfipzGM8JHMt0hTQF/tbosJ7ZVL7bLYJsyxEZLY8+3bFlo/+mYcFjA+K0ECit6NTkwYGEiw4AzDpCGT8YkwTWaB4pOOOQQ+sL0Fz6zfedtufD5ruHkzj/kEzt0DdMMVGUb2xA65n8QtlRUP6vC1o5DDw2WNiIRouwepDyIRVkyT1rPgBxiHMk22EuhsTXwYdM3ZYs0jjPL5y+GLQwQwAc7rJj4B1XZBj+gBZ5npBDQ8/cN18NJSwcn4pR+r2FzmIY1M2ws2a3QSHO60HD7MWtGzGtAv1xZHclw5SkwPJSR9uzOW0mKcJ00vhh0WXnGvL5R88e5nIeKWPyhnN1KfJcNU+6bz8plPCOeEGHC62aRe4xtlKEVs9pPziLDZoaep0IB8TM0G3ojuYlDoPz53WBvIxMApr8/cxwcOQTIoBD2EhLIy6Tz8/jaa1fW6S1yfJLNy+2LnaiIXMWbWspEQZYh4VoxPBwhXS72v5P12DbsAAoPfncfPSvLRm1b0YjkM5C5FXPmYiXe3NNunqMwuoc6jrwKoWt1ec6jpYl8HNIjMkQcPcKrMBvLG/w1URPDCg67PY1Kdu4Xo+IRubU2aSpJ6JnzJ1ZtidUTXPALe+Ah7n0icgU8SWITPgJrQ3YD4F+aMMJgg+eRK2V9e8g96ESsHXPDtyj/UXld1LYubPoYI563FgdsTXPauSbsZWG/P73J02LDE7ePOGY+VDq0OPmvp3dWCowjWSy7jLrqCaDQrxu4iIk+MW2Ivcyn4EVh8B5c/9igJQFoUyTErZd68yFaLUnVvQniiH32EboekZMhJorGCP6XbkX5fS8cAxY4npklqjHOWrmlrUyCxyEwoa5ujbv0HalnJS6jx7eMH3SK/sYNn5mzI0VdoFQ6Xcxnkp36oFQDqiiDA6AXWX8AVwd1Jn2QrNmnTOzAmu+eMo1mflCMXehKhiusz/Ex4pSnQfcu/P0fm1Uz/bMQA/XD7tVrjY8fPej+Mo2KvdyXWGgYRyF2/Tj/3G8KniwsOcp49ZiaaujoakKWhgHh+v2INhElKvdXab0JikIg5qPzpxbFCV0IxNUzUu3Dj4qZR8LWI/+818JzxQTDMsCPBe2+qOhXsLRg9xJUNDpVodYbWtMERdW4UaNMn0C7a3HbblyWTTqNp85G8asCxpNy429za7jvbTbN1NwTf9XkeKomdSBLxxoB77fG0P1S3FrucTu0jMUQ6PD/VgsxmDQRpuQ209X7exkSQvfaXP2nMOoF0nLjBioxYYuixQEXOcvDmu4g/WVRq44J+zLl3qwnb8p2DiscxmdBplHhDvLKWjK2HpLrCAickRIACfi7P0537w1juzje+d7ieI5p/cbt1Bep8YfR5a6sVnroz7Om+g2mRxOPHT2bG6zbclJJEYhjQKrIMtMMMRPSRGYNiaS1bk7uGR5kbutLXTrBxT2Q5Uu0O6/IEg86ssZNMvKr9yaP+E9+QsFcCOXhkUPi0Aa9IYp807VqVXXCwpl9MJJYSHbbNwz1CxflMNzIPWK0dtgLwxKPa2FTf3G47aZuScYBQb0Wg4ZnBuk/0fpkg1Z1LCfRRFTKEw9+d1De4A0M+1Nk4j82mejbhzGMySzOm0ho3h7/4Ha5bDs2JDGC/sWITy51YUlI6DrurE1skR09oIJkIeY9rtDCAMkZN7hX3Ksf2G8YbKG0ZrqhFqIL6DW/iOp/YU4s0d2hsNB/Agtosms+g+9fZlr16U+b7b4+LFTqs/j/HZvZ/B1jfW2hWVZGMZD4LYrXnMYowmQlCQcEB1pUptl9Qi/ppqgQTq1Y3vmIdoNH89nAXGfyktJuU2ziJdTP/HZE7WZ1mguj7QH6C9cd+ORjhN3sxDBHorCAARz74juubIgIsFlhyy8qqXRgAkLnjqakAxAEXSiCOFBjIuvQwVlrQ8BGklnjILImJS0AAEJ5nPg3FugPDy5n7xYHqdNsZPBPcxJt0co5IB/epCFjs8egvD2nBS2dtEfZolnmfUh9XjKaWYqCjrolgsRFxnf+oZl3My9NS0KH+MCBXfo9kTHrAy8P1O52AkoN9ezUlOIwzBpgAHH70fAmVgScFWHLNdimechp1G9pPQGr7LEVbfuv0D/16gR1M8Tl05DDk1IwY1cyYpBv3kHApngjwBRS/W4RjIrM6VLWcbEPNBqdzSd9OqUpeEsIxmiMCqKWkcX2IMCL8fVojxaWwcYh5LtE6nWYUqBeVbfIU4OwwHZaIW5MdHNvsK2qxU1qnL947xwnT5oGzNf8g32lYDaaAEB53EPIOFfvEDtoT0aHvrd2yeYeEnwUaKSaP4zyoXcom/lr6Dg8FNPtnWCl3QIIksTzOYMKNcYWbYGOQYYpy7oLev7Pfwgxax9Taf0eu5pZzbxW8LubYiv6QgwpdMSc7tAMd6eZxbtGj4kYKA/q2tumvlKUP9EKlK2fSWuJS/rF1vNrybiYff5wDZp2Ys7DeJMLW/kRDs/Nvyv92+FMgRzEfSsSt9SDgqZtkLOmqgPK4hH6aRZ3RNIgG0Qpe0gFI0t8Ok3dEeJOBZI0ldB9XGIL+PCkvBuBZZjgRGBqbpbRPce8z1EvKiAY6FLsbUGqgPFyAdFQjwj23T1FXrjI0HOwob8JUsWlaFMePX23+lz6B7zJlpPdLgIjorFbcWi9cnXOcANPe7N6CDSr8ZuYis06+AnZMbF/9ZThfDtuTUQQJ/IEWa0xZw2cjKFJpMw37F60/jArjTYgS8UhNG1IuO4JxQbm2C4xrL/RFK7kNA+D6iEzQ17V3gthIheAxJ1r6h+v7wvjfL3x4f/I3JGfxL9Z+ufxgIScaRWOeMRR/kpwryD5MDGN9RUeAZWKXlkivFjdoXFxA1EUU9Grzf4aWx2cSchna4jVRrMPDmZAPDtDNwGVVhQMwchtxwiSWVdKgaJmUtcX779BFwJVPC7VWw5thPA75JvKWBcMgWxfvpXSg9HRJ2hxdUu1wQnCVpqXkQRqqwXAO2MezS9ZXz7Bgr6upj70k+D/2WQymwzcu/8JB2AQfIywq6IaCzhaIS1b7Fl7j9jDvxjneg7Qyd6HoFQgLFcbvkoEzPBOQotlHa0w7qOxJUZNC2OYbjyibsnfEwPQ/Iar6LrWPN8vQwEYwg2MmaIvYoFqtUhYcPOATfCZOJU5zugklxkL4KaWHy6bQqcmHpkxalBOS0JqviXhxHNsbwQONJ2irYXUVV4LKuRqZeLKeO+cM042UzaHLgHVoCNqGxzmAVB5HrqdG2UP6TZe6cRJ67c75SaCOsF0u71XGQFfQrHs+zIgcvKPEInCd1mLhWF8J7MrQcTtknfMJGxUVpYjqpHd0f7+SZmr46WtIXqEzs6fb728tq9tdfrTX+uzC3fjKFLwYlRuQby9d3dLMEjgd1n3iTL2DqMQoS+RdVxnsG7zxKETLS0XUt/T5YaiEEmeYzmR875sfuWbCnHAoP55PiKS2rujlbC6rcqWN1j9mAPMSVCTtAXAfopRsoQPTTxKrDvlHG7Lo8eM4gDrCEJ1d4KEs1sxZKLEAwsl3YjbO4gwbmGDICzJA476VSuJT6YhAz69uh2I35+xa3Jd1t4oJ0Fz7ZcoT3UzemqRUMtAwzVCZxI3IEiq/8osej8M0UZwf4BN6gIWeZTqHpgzu5J6QKIE55N8Ik+CLujIz/mbcWPq3fUzHA/T/0eVge9CQVn+jyoT8X+UP0F9i8UaNYWps+Uo8hlOHk9aDuav4MbMHZ6TYaQ6iEYkBF3bYStlwuJ7VcsZbx02GyCJD+SoPFc2YEkGazTrG/C7Qt/gc1bP1EDyjHjLF+YE3FsnLkXoZ8K159mxrFc4EPYbEFRyxJXJrZJB0squk1emrUoNet0mr03ymgviKYKN1Qwj/PRXInBcQpflmwki5oWmKk73YSSr4SEAUEIABPFQ+7jAYZRWSObecjf6x/z/KCoNvRW3MNQiw2JH/zSBRdUC86Ry+NuDUgVIUKASsrKZFJ2eEC6eFIzL72OxzAhDLFaXCevYyP4//SNGGvAaCuAZrf34ykqLPgdLzbkAtSGGCsm7yKg+rgEd/mJLBhYZVyhydaXh8O+bBRqdFa5EDkB08ZRVWJFzp59s2Vi4B6KMABpo/F//+Y3D9QgSHJMHi87c/1R+xs9MxF42cECmbthsy4NQDgz9R/22mT4A21/qcmyy2DhoOjG1Kcpo/3PJ5nRfOdGJMpMd+tJs3T5cYiYGdCdpCtVWGmlZrXW3Sbh/L1EGwQa0lGpSP+Kv9Mj4jEBde7YnB9d92af6iErZrWMFPNxweP+hJj+N5YiDUq2TUU4AtlTIxd16QhO458vGhXH8SREeSB9F5uYntDjR+Lp3ok8VUKzJcyNLRevF1rKnpP1hftraaJ9pBZLV3dnH6QzNAMifpOJy6RU982obSeAhj9iIGBTk66oRTPb9WG1EYTpvcVFWzTXQxZ0nXyZpjsYM7r5JOGRPSsct7+l3dvUQuH/7O2z0anhoY6s/Qn7WZ3GdBiZ3Ju8ZLo62OFG8Z6qH6wuPwC7Nsn+1RI6KA+UR6II37orqka2CDBn2FOJH+xWZWqRbUOLYj5dDm556ysWYbuOpHAHiEa8cRLYBTb09aCEfQvkPERtFM7N8d0+TAE00s4zx2zIuUar3DkWbolK9JZMPZoFISevdoVydRGuXCEaNHBfV6NFk9rS0/gIOW0KdyXBoCfX7VdCxAWY3AQr7Wo8m+g2cTGUW/wWiRPSPtPmDXkl13AAru875B8+XkYy4CfLoSurELHMKDQf0g/4VeGREVtNPiXfyMLkHT0g4iZ3KP4+0xNbrF14xnuH/ABYbCHC5uBF26mvePG8BOIOb7fh6HXFhY4SluGhHG0pGoi2yTSQ1O7+H+nZ4//AxnEhWknmhXHz13gevUrZ62bWDbWUedvnHE5mQk+VBeZX2lEDsx+yDeovuZGkc18MPqOjcekKEr83zIf9mULGy0rPPILE6fdU0ZnQ90inWPusbbc1DgW/QFwMg9OXsY1jPHwx1L2B3I9rR0Z+/BfIqH0/oSns3lqJjgIbLCKaTul5Eax9TsFiDkdfN8Wn/t5QzP6FyqWPyQREmf6DSaDOvwtMxVMzms0WLCRBkauAkReyb8VpuEAVJ4tRWL9HTgaRwb2V8iSm0+6DbtrJT3e50Pu0rhK7ZVqqxVYxYS7Q/qIoDRMCIJh/+JUEmLAur4yk71L/nYGYUKcF/DXsz0DVHcvk+Mft4UInSIM11iToMN7G/eF46IklrtR3ujEPc4Xp1jJKh42/hlRJ5U3YgS8qL1/Vba1COIsyqvqsC0U+Xben7wCT1oZDBjNFjFru5kg2mWX7MsHjXCSlRhUQpT0HYeiNojTUnMT2SK9s5ViuUz7devrkNuLpRTGJUi8YPjweannhQNjlR27llj83ltQqI1t4dToVp/NxWAo8msQTqRCXaTLY9/0a0Zma1EkYuni94/ph9T3l9+VDIkjP8JnK00vAonGJ8DDKVl0uxBbuyMMBXZ7KYgc1r0LO+j3wAFalFALEDpqQi4PFxRlbE9fzZkdQN/olcHwqzouUrYLoXqweyIEjGwx3IqZtM2IO3uql8SXFDyfpzV0Ukx8C8x3uXucA+1iBFHeBeOr5JoRZwG7+/6SvzXBURTndgGkGXy9r4erQTmbZIqQEdWhrk1JWvJI5lIa6uocSSgnnElaRel+KL4inhRYWITjdAkJuT5Um12Cc9EpDFjAWP+uyxXNQGmWW+nmJhcIJMYfE6dd0Dru8m1hGYef0IaFzCT4kqMRurc9YQma1m1whURTFAaW3S4gNXjOpdFzhvKgFgqXqprFq7p3j9G1BHNGqLqHkYgk2ktZ0Gl7FaShAL69j4b6P7qb4rcTqNl9Xt9Stzo1Rde8/rCMwSY3sfANMsCAi/jqfBb2uRJInGCncG32Rpb5Z0Yzcansbx1LKW/YBS3q01GXLOjTOUvVdaDg7vAH1YBEffB521WQFjg6u65sICqW4bcc6jGhDH5Ezeg0whBLR9woAtWZha8bqSjfJKrPE9246BJCjZKdRZncT6brnFtejJfZknySvp2usXMIPhiZhFddDeHOEMmkBsRdLxTJi/13tMhpfIMPPkaGY576/+I9yqefej3IYRXfXAsqrFCSZpifeGem9yXLW4h161Yfv0spx5AZhV3iyG4FRPe3wnFbJyTnuTNGeeAqbblS14YdsKbHZ9MigPDV8F75sq6G97N3PtCooqP9uMZuD+r/evDz/sDDqUz7cTAmFL/1GY5NtjH04wfGTt9S98yxsNvryQaUAdecmvXjZcCVh61aZBuD0cSqIBC4Wh1cJEHFBELrCTbHgOJ46tlrZpkYYbtnBYk4jjCEWnDpb8djUEwrdPyRwCxXjAfDaIo9AMstGlutauF4WJ/uMe2WYyutXnCtjT2Sa90GA5IyhRxT2e4modRNCosR9g571Xe3me1ZfrZ3opPm6hGYbGbDVzGsXoePXmYCue1lnRNfv3XZoKe8XeTyBTsKw8XdQRtdTcStS/v1K0k/1/Fg/8mCHJD5fuc4opUR0RFXvuk+e1WGEOgYoUjkNydxMzCoz4DGjzp92xZBmjebVC436bfpfZrDa0TZOX/amOh1K8pVGCbh60Rm3rRw190JfpxZ/TzuuYH0LuTqUALNFSYqLpnFMyrauuCpXbE/0Pr64EGR2ZANECtQ46svnjCF96h9krMg+xspR4xARJpRH30Vqd3B7l9Y3KlOBUh1r56O9pWpPwrByFT+zUvSBhrheuY2xu+NwYp7Lz9NLYdxCnpLlFA/NgV517OcyB6yvLerSOGM6HmaxhCeZjHiTVUxRMUkXSRNUp+FsJrN579SEreP4/1mOO/Guk3bq81EQIMCy2hNtLOKtGYcoESvfKKrqa8oCv2WI6QiJ4lr20xI+4dkSEDx+3tuuEJ6SIYA5oPd/nnBGcNipj4bKpDRYhq142nuTayMQmCauSqDROrRZJHlWla6h2tJ9p6K+0uxHSi6M8/aUfKjSsUnKCFbN0LMt7zFxfTmoQpscS13pTNwOkHml+OPakISrcp52HY1nsLH91MkqAeHU6tLeDuQbHIzB7Env+W5juVevFbzbdYL8aIhsUXLAGgZKjuelI2ULRBdhQ47wtaHmP7V8Xk0ILyjlI6wwKLNd5NReZsPTUrDUfR211Ozup0wohMWx0BXwIMmC6SQYdKuPCEyYot+1wEI3Z6ZbIfjzfHpddXAD+F0jzSTxsYM8y5W1c0z8qf7AXWjxNBhoWt2hh/dmDDMsGZmhMeh+Yc060g6MusGdyfs8BIJF2Y2QCvUxYsk/hKO4joCUPtX8uUZMIXo/60s75QSEOY5AJBH43aP7GCHTgMxihWCg2RZ+VhPMuwoSB/NwldS/YMSqeo7OKZuMXn5TTZaew9s4gvKVgflmaLmcX8ltkkyYjgOuphyUtlH4OnOrqpXMbEu3WV8Erkg/BjBFknD3wro2Ghglu1nCYpxYTCyKucGIE14+O4eHxYCwAc8S+fhK80ypnzvB9H+YNkZKRBJJdvV2Z00feKwJkou1OhX+IBKXWgMb9OMfGfRghIgX0hZ3LtckWoWNDbl3zss5/XT4PITmjlxsR6z7an26B5lSU5NWOZlOw2edfHVL3sJsimCB5r1Oo2ZUbbS/SbtWLz2h/BOckKel4CrfZ18vMQycoW5aMiE5sT68jwGRtTfXNY8R8OlevM9GkOoRzojbIEOtDKXqrdWgQQ1AcdkDYeWP5tp18cX+1IcyJjepWuu6NlNvpxS196b3XmMeM+GXXMrEpVR9XoeaIybquSRE69nj61KXpdIi9QW3PYjEee/U1XuIK5bBqIVcnYcTx7PRIdIDW9uczfe0+j2j9iNzTjIw4mqnsiRuKE3qCbv72NrygzUJDYqhIRQ5N78TE9YVpqJIlYUpuduP4IcbUUevn1UGDehnEEQyEOxwWMJufZJo+qlYB6yMU7+ANBrTcDvTjT/Ty1tpfIKHaT1KsPgkha6nleSqJGlJR9Z2aM9RxwpJpYs7M7KoCxrKHMldzpXZ/XMP3uThBMU1JhAfgXeWSZxz3fLLmHusPULBQpf/KBCv6zY+ytZr5UNks+ssV71y7+XS0PwI75wR8L+lqBcjsm45HYqd1+a+mpNDfWR+Q2GWxLgDS8Gs1SczIZIW+y5mKBH4Bj1OXiKnqCX05Y+x+a7AI8Xl+hHjzCK1vNOzREBxNHs0Sy8/sBBPj3usd7tpJqFnZINmrz0tWPg8+IxePmcVNRk2K/L1j2FiN+FPfKiiSPHjNBOZLP9rUjci3z+ni08luAJhOszNcBZKXMyf7H7NkfhupxaFiYhTOFJuCMziEMbNKS2YQzwZBdjCopIDdMFvyF7z+FAqyUlakEhG8jXDFvVGEtL9wEgBHzL0lVlgGC28KxcC5oXms+st/O4Qu0LHEtKZ8nLkFdxxGK/nzih6RP9AJ6VC0JtS5Km1z2liihDThjSru4IgQKhGINLVTjW4TOGqK+N3ymEY1rGs2J0kUhjIYMvs89HfI4nvVmb4p3jEGL0keiKSrRRFu58X+zrKnSSf54k5e/SbPa+dfSudlAQmdhEx0C2UkT7nsqdPdqvFQb7TwwchiMmpDG/ykBZ8EZLC0EeDR4AewyXpionN0jlJi3h+ex1Mknu9g7M4L/1AQvaNgjZGeZKA0sM3opU4bc1LQmrZIuNb1jKB78hGh/egFAsxPHnkBfbOSg+FMXXKRn0q3PSXVWPUPWLHVvDhoRe1BaZ90tCs7Q7MYJVI5ebvwF5PyoG1O2dtlUHtFmaN4MGL/Q1WUWw4KitEtm+zWsYKVU4ROlYmWCRPl9BCtmnnc/HeSou23309reMe5G/9dCxSK8JAgWJYZOlbyCiZNp4Lb2VQUM5hUz59s9t4N3RQqExi/uLz3AAhnTj+33vfB8uld1MkGiTJwyvUWRfVr3DHQqRsIDv47sWI2/71JrOh9B77R813gkmQNMVdVqcg+rHxvcSUqvavFthz7vpe9nIKdV0zx8mDxD4jDkzAqn0byJYa7DwPaHghwayey0rUTInh/vuFvoz/p2V/JnCsR7oCW+9IvoL7wWBRsZt7Tq8TCZrZlF2mrg4R4jp63OyvwWBnh20i2TIR0LofnqCuwD/Hdg9D6Wu2IGJ9k6bLenpdDrGa9oa0STmB6UiJx+JGfCReVbYyDp8YywT5XSlNJztvsYD3lKt6JyWtrQ4Pu61J7s5amOmW/KozBUrzz7zblGJ57Wd4Cyy0WWgcaeZ9pBT+7kS+3xqgc4D5+TsFctHhF8kpmyZY+8sYhZZjoKxX46AHRsInl4ptHJn2bDHS9ky6yMdATlhh8CxTV4H1Z1hE+aXR3GOgD+DULi0WnxELRq6FW3UNRgdPi+2iMvRCCVMmoQSIicBPPRKni9byfDoosu9q5bksATSgf6B7Vexda84Xcgt9M4+xlV0/aFLeoNLzR6Qq8yZgQ08H5pvtOBEUzEydnl5GPNWXVxbRJLp/7bbRcbeMcM6Ltgf36+kGJzPB3T5kUv1R4YtTi7n8vMszRTXodz5UelIaJEMxoTywf10QZKc22AZ5akRkcA/voO/j9gGazcPui3iIILgOJj+2va2bcUwKADWHGlDieBgtuzdifHPt13E6NgHV9t+54+Ty8j1S9S0rsSNmmO4EIA+Nok19a+uK1BQW/PFozCgUYLx/sAY1gkhjusW8hPaVjRMfMoNhCKTaS9ql7dPwbVdVtN5b4vJYzGMWfNRscGoNmsGEUFSeFsoQRhu04Q/mexwMr6KXHNfw0990AlmXa6mitt2gX8zCDFgKkEFsMq1sXuiDAo+1EivmjWo30Aewpy5MXbxmxt9+MtUWJWfNw+ITPXTwoc2odNtRrHQRoUwyKsAiIwVbqRhoO0lGlg7qaDXhJlgTgAEzdOXSJzMnyhCuOadDJMUxxW3MNRxfHTtCcZ2k5BQcc+JNnKx3l5ZODFZcOcenoGv9oas68EbD7Kt6ILUWXkQKfs2RXIBEwIcTZ8La7vuLP16+YVuVMakfdVwPFdVBhY6rrnBl9GZMicTsktWblkFafa5GLD0hDiWuphi5p7oWH7i9cX7cr6myJkMSYDgr06NMlBIs8XOENhbhmcUwql6+94Pn4WflQfsUVRUXtiJWzAKTB2uJ07XkocM8/J7w+Xx+gx82WG1dLg6MhLILNiiniZCgT7YR4oPCeautQgyESE5G44KUHW2fyvbrBWkmUqrkkRny/0ZmF9TvpFnrnE2wBs08xAUJIsdcDtft7KDY++oSCxEvVDuhUG4QChAbI4XD1XCirCj4dr/vOEwchpbVGFGdf50S48ibrc+kE+J6eJVQJzvyfByKLyX1gyBIuFCH3nABLf3Il18iJJNZF+JAC8xgn64XLhc8DyIZO3Y2FFRz+crZkfwD72u09+SVzmECq+cQjZUkZ521vH5O3xyJJAe5BlU70Y4HgvfmdKIzgCtdfDXMdXyCEEro8c2S/eALsn0vvtgGIC4axNQMlwLXiDdNGGyVrtxBj//JjeErLSggijIWrZmTlo/Ke/Vj8ew6Tcp29/rrlaCmqClVfZ2IlhxpP7AmSEN+5MDWwuuH9ToIKY636GHLZsd5zfQxLJGFaaMa4uq+6TT6p0P2RrAA0cDoSBiugJkP8LwK5mtNqS6/1P+5ll/Qt+CUUSfkG47uyCNvVuY4nY12mfEOI8QZRECWKJ5eGGXbmrivwqe4P8ITvFFuSz1DNi8V0iqs1Uyp7V2v6YR8GDiqizgbq25EneMWB0vum5Unan2uZtuNgmFqpvpKWfohfWnsoS9vQ+asyXeqxoWwHrClUp+wglrDgFvTzvQq7LH+Xstbv39RT+dbZVABZuVaPkuQnnbqNNaT/wxS1I1C1Z957RadPIvzMi4+A4V+YBP5r5oJSQdGWscLs6sqLBGQu1ic02q+4IZ4oS24JQwBpQxiyKzdnEbgWbpXl0B6BeL3z+jRKM5wt/SxG0esbmVlQt6uIPYCfFzhbSmm19Wga+pZzaET8Q2dXZ4OPdlEFiVF18xpmamKy350g8LTVoPHgfr3CW+MgxYiLZisjg0RvPm6OLwiU+bJZtzdEjNrNKNvk50j4n5mH7i9kj8nQQtf96Be3+EunSgSsfwBqd1oBu3SnHYhwChnfdoDRGS3afggpKFgnUdaeCvDsGbzYJ71prTnnIKd3BmbKLDkgR6yibY4NzOLg7TNU1cwe4o6QH3Q2o380KxRn6OtA0IrYcNLS478rqz1EDoz8V3uQ9iX/vPWwKmiyGTZvfoUCUuzQPNTepcSreQzynDYUNRDuEjyapba/NWpE52MXn1D4x4uGfs0319qYG9fOAZDKJ9u13j90PmShzj+3uoSC3Fzs1h3BQjhVxUYMrNdChqWvyVtJMl3/W+h8lxvdMX5YEyTWcje+eFPKt7wH2dUDaUI1FCEFYX1W3Mtcb7VAVYmwS9BwdTmAmzD9JqctdNBw9NUi6WrdTD8NgWJDZPzLsM4FpaDuKy9qQE71MZ2tUnWFD6uGWhStPgBksjAK4hqV36hTA5TOAplFApR94ScGUlLntC/hqgGTdMNqSrQvEsucGbaClXbhvxJnv7MTaDsUvmc1kNXX6CLQWWN15r73YkvnyuE3I+JGqHkIc3ZU3RmNzly7517I2BmeZMF0QvgCMTmsK80g7cJctY0wcEg8e6vS/zOYiIJvKUI3H3FgNiURvwfTRJEzSg4ysmtGL03xUMjjLjgjoc/00c0OzFHJtMqmcaKdc/NKod/jgzM+eUUO/te5VJAUKd8hBAE46vYscvApx2HL4DTN76SuaSfMFzNv7xNwDfZ+eKsdfaGYCgLcOmkNzigvlG0XCPqDUi00cNz7U3s3r8zf2jFMgvSnhXSmfWFfUK9vRrkUqDy3Xx8vF3gYsunqYFZinjSPZHVW5j4cLfqikx17oroLaWmPXPUzHPZPEeEi3KIBHgnZsGTTOJ7Nsj4kamU4b+nYKSc8x/grkW0B15uoS6LPGCMx+d+3PqRJP5JYlFBwtpoLg78I7A8UQDNPgl8W1kGbZbp8cNVnPsyICBOk5zE2xVEJAWQxWTNcCjPFfB6xR3fDKpvV2bjBtZDSVzPEDTqVZD+oD8nkdRblBvLlkB3dlOup2cDu6aEXES3GUS2sLCViy8er3GUAzbGdbYbAfLRQIztLdcFSymldwMiGm/X5LoPTDlwOh5H8TzxSzSwwsuoWvUvupimBKb9xW2atabN3YGn4EB7q+e+3be/b9bRXu2qDghBqwHv3kR+tSUDlxwbwuE0m8RKkZzYETI6B7WjgkrCNcBwlnanhAGmZo01+jX/xgOKOolR5sBwkHuFm9ikCRcENtdOoiny0bztMcur1EaV0lAs6P2Tr2oSbeGw34FfYYtEVEZCzuHCfZU9Z6J5V2RrOCv2qvUzF2ogHhD73Wjb3tADn7XEnKbOGaaBkPwqNAs/zsPq29lZ5i/uQarhFmbcSoTbdr6ZW/pxwlCxcA7TimEDatpzRTVYZAjfbDgTlkW0tY9AKcuJUrdCZyv86LYN/kzmH9p7D3+zERmYQvMGCnPjRrgMRDEGKRwhGfoVw35Tha65hGQQ5133tqOBF0JxMVb4XViahzBBKLnB5T+TFYe5JOh8JYHA0nU6VrIoaHT531hQNPCgNBV50csO+8L8MWozgJRh9nJTJSls0bHBRvL1ozmXvqzl01nOx0+hWr6NBchvx+0v+zxOHwVlPVTGh5bSRDD7lP7FtnuNVs7VCyTTwC9syoSAQlZHK4FeBLjho5ehLt793IaW16vnzdgLwuYK0gGDJQW8vZSd8RVDChZ76xs/fdt/g1byLCj7tt8jtIQwvmENiq3j4VM4QjQKoBdNN0Jzv9XsEpr4UMZ+N/i+5raW3vnDqaWX5reXsmQo4LiDG46suaXDJNyySwmrn8zh0K0q2ts1PIOB9hZ9l6A7CGGwaAUGGL7WTgI3v+ApV8z0cU7smZzf8IOb51GI9jSiYK6pPaUAVf5CeyuSzThVI0s2oFdkAzQQRFBlo2hTDroayTrHMdqBxmfahVWY9Xp8TuBpWGPlXqLBBUyj4SXj7iIryzQusB9SHWx96HWzzw3wHRD1MX64jsDOGx/pW+xkKY4yU6JxkAed8aC/+d5GRDvakLQ1D8UO2/Ab97+iTgARNQXGu/rzp4/FwUy/epEHc5nWvr7OEFMySwSDyjisN0QI37IxK3zJXhk/EEiasCa95JXZOqkUOF5foPfB6++gN75oLmuEiHIxpqAPktFqMfpOch0ZEc2b+Tbgoqw8PJ+TanPRfJWDatZSQLl/p0F9zx02m3W5S0nvgvrjtQGO0wljiw45GIumfmqD547jkeI2mmMeSVROByLr7lrYecFqCpYFHeo7zcAEwSLmGZvr4xML3+BfAOTQaH+mmhhzpQFj9lqrOx58KUuVLqgeZmDiJbYn6q4WCNttmg13b/BLmt/mf/AD/HyQ8ANnzsxe1wHM8fAzeHQ==
Variant 5
DifficultyLevel
617
Question
? + 1211=3
What makes this number sentence correct?
Worked Solution
|
|
? + 1211 |
= 3 |
|
|
|
|
? |
= 1236−1211 |
|
|
? |
= 1225 |
? |
= 2121 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | ? + $\dfrac{11}{12} = 3$
What makes this number sentence correct? |
workedSolution |
| | |
| ---------------------: | -------------- |
| ? + $\dfrac{11}{12}$ | \= 3
| | |
| | |
| ? | \= $\dfrac{36}{12} - \dfrac{11}{12}$ |
| | |
| ? | \= $\dfrac{25}{12}$ |
| ? | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
x | 31211 |
✓ | |