Algebra, NAPX-G4-CA30
U2FsdGVkX180MzJ9ZBFAnfJx0Ro0okABPXY//ZA4EBZGNI0/QAs0G8ZLr3ZawFg4+Xi4YiKxIdI4y/OmhJlzJTwffprciKVdwYoY2Kz/pEV/ByDXCX7brdxonS8C+LKVOkJetoGh6qrC8k8WcJGY793/iVt+Q+QtOP/qZq5Le9i2GFbYZBLic8Tm4MQcGNhS4WMYgkS0QCfQBa0KYqi4cl9TTjDjEWdiSbeGDZFT8M4nPtrhm7ohEVJ0Rh6w/Dui1bNxfAeR57M9Da/K/vIDPD8Dn6AQt7m3sd4l+xzdnt+wYxYsv/ON4jO1zbAR1k9GQW5oKgiSycRJA5VS1aAsI3vRlBVODiy4ubJ8yP7Z3EYj/pkaoPz6M074gLwK+jOAFq9IgQsLDJj1VFXsoBRcltgIivezWzECC6z1UoKMlE7V9L21WpVFFRXk+MfGMGDXEAYO8ogyTgYiEG4Kbs/Moiml/b/Y+N1jQHtulmQ2OqCpQQks2oXPJAC/ZxwgNep+ikXVd0BUefrF7cpxtqMD0gzvkRatYKMNZKLFfsWRYJePI2NmQAsjAki8u9fH/vx0bCQiFDo8XG001EUZel3BaZRjby6N2MJVPYamUhY3iZVkPR2Q6ddfD1ANeHfoHo5eZopZRJZ5j9udsfKdnoZSYYIGf4Mo/AD4CqfyUVGNh/m2hK860wlmco781R+HQH6vhtM3X2PlSeA4LgMdGJ6VKV867qknyDxCRHkQXSnJsbbv7R9JQ9alDvwy/oZCJ8nSKhWFfmOfLQwiw2B6MU0PHNPoA1Bi0x3dtlE/2pyfPT4jMJxwzB2s2MHOgBcqjXTqHAXK1w+h3rZO/Ljx97EkljE5gttwYxJWItO3Wj77+S9V/YxDUa0+nabdwR2881k4kOUPkTVr5VgJtpo9kmTtRHOr2G/X1wOhHrwjo+jAWnuQd9o4FSzRRPybGpJ1E5qFDrc8wji3mxGxSv58/xlCXOar4KiJ9Kt1i8s7WxXYxffyCCa07BZ/ZwcfCsywAOYS4y2PWe1DJyRYQ6E86Ac/36d8Zkb4/M9SoX8lEk7gWw5hzt09XYN9n6zmhVu+MCF6EXski4hzKRLA8Pl9JFO9zlNtppHzo1dHP49apZveIe9E98dE+hmlSZUHxG4MBSnIPX0UGg1QnKVrKc29YQx8FVqhfXhGOIV5KoL6MC+34bcmSTLVlJL6ifDWDU7AvpetwM0vVDtCIBUhro8+FJucfyfeDIbGfNlEhzhbAn7uOP09AxhBVCA0vbkxr70iT8lymdNO/n608ZDBjv+Hco2e/0/a2vgnkgQBwn6oR3vF4SMhjctU/6x1kumST2Fe24Ic4yy0fnpG3IwsWwwTHhYH1v2915k9373A8w7xvoB/J1IooH3+fvFtwdNiCtnis90WfzI3yi2JtDbrM5PZV7mzKPjlQFB7WzR2nLHAWyZF7CT2ffRlRE+5vGTjHHBl4FKZPAtC7piryfqcaT2DX0CGGaoj4hXbOr2M5wY+HLIPzPSnqL8wI2M9CmlWmnB86WNGB/Pz5n8L+3PhOTxw+6pIQO4qC7kIsdCbYmygtww6Wjjmck8oTJ7U1RjomCHJKhaBlVNkBcC3sXrtplDdiI2wHnSA8rAMVF1a82M9Rr2rC7CUAVyJti8vZ7pQaoswTv2hFRnJKcNrrHOZS15XjBYIRufvWpusUECWTqDCwspgl3uZ1+oDkKT+BSElZSmq78j2u+NA/F8+pJVlPEj2t3a/Yc4JGex3NKHjuHB0I1ykyZlwLKhrD3oNiB0BN/Hm1sCAe6hHGH+lHe5WgK9nheh5KXtEKdl2UgmzIF8H7uJ0YEFhfYcg4to0Dd2Ksj9O6BVQwtoeQCpqkULaVJlJ4td4s29OH+TZN9821l+EK6jyTuMAEBoq/Tctx+NS9RSy+Z+QkHy+vyxsJ7ohC8XC6LLUyIJv9xmyMy1GNaSVYxLMSQV9h/3GaiBX+63VpLVJnc+9bnrCjNI1YVHxiy1aDILx98ejIMhhnioDu6Apn5MlWxkquhyZGJWEfzModWKEKp+tH0j6QkLP15J6mdQFDDMVik0rB3IIIwKrbKu86W3X8iTmLOjXwK8AIlHmVOn73D+08FMgKwfB0iVdafeHYt76TyapMjhgQFTv/dHurjemDXhx2vpi9r16Ad3w7lEpMy7oO+GzPHkLFXIY0XlF6P3UfKzM6CAP1WK3ht+50ZCKjEitX/1zdOWI5U4lgDUus7f05esuL18XJfIVRm1etc0f7dqtaVCDL5WhvQnFfMw7bOfa2YME2rWuHmxEdCZ/rx3X5GCtL0UfudTSGdgJnwmac/tI4ttVDVip7qF7pT8DeHkLJZA1mdsh7Tiy1EhQybaaELzItVwRJ60O9YkTBaeMKwN/HHCFOV3gnxixzTiN2fTzwvhO9Juh9EaAQqUQVFLwf4Ww26Ql+sRqzS2uN45soEx/zWnoArylx52FQIASjssh1xtZRY1MDxfjQqeLbX/CKYY66VtfPQ5HISQfXYc+GsJ4QKjif1AB0RLaSVCYhzRkJidqSUT0bsLzuy+KdPOxWZe+JwrTc94OWgxjH4029KeVKxLQsfURgMetTuecPrnGrkLXJt08gKqmhgkhdHKxEMxD5iQWJef8qoBE48ebhhbUFPYXfwJ7lHHXSqR12S16bz0TkD8OZRUKAJLxWgPJnLb6cM9iTrQjvJM7pym9bjvgLq3bCeeLBWq2yGGch/o6S2dCW3O4ULlZDW8BzGFhRo1YLFjMPAfU5rrueZkoHl1Rc/eQ5JodCnXL611FNEXK2wpIVsx1bGulq/XLI/gCQmRQgq2+sKld+PxGYw1k4dhSnXw/yHbMBWtVtPAFHQVPYCfbmKqmEXoMbQNvJEuEF/SRmpx+wiX3Lk7TB+mpVOZQPQPkZVk7oqvS+Xumj6Dfli58d0UFKuaYbO8li23ufJV93xrlPvc+ZRTu/03KH6iOS6Jb/pRqaKufbax4OrNq6U0UKUb1tlcxnTD2puJJxzKFBcTMQeU1pw5wTsFotEhB64SaZ35tKl4MwfBq9RT7TWYe7pg0+laD6YPAjGOAH5jtlwJ0ApUhryTL5f4722cpG719xJ4ejvW2t/2OcuVfXK6ETwVJ0iUv4/4546W2GLCMfNvrvlFXP27Ppes/N/XeYoIXqRciv7hUOYxURK+z/uWKtgsT/Tw+TvpwZNye60CiTCchHqRnPIj6YW5gy3RL6Cdc+gA635zIKMMAP93Vd+glkYqh+oL5T/j7/r14ZnqM6bgdVPmtZmDzcMuJ4SOuTbjzJi93hkagAHHvzsludyabw9k0HUquB6cBIJRUm7NUV2lZ2snv1QLVbofgwJovowtdLZDFQbFSwNtbceCdq/vkoU1rkxacwqB2SzwDiv2zcIVWbB15dwOlRrV/UrbnmlrrVh6N8lOo0SRI+HWVz9ohdlq/k2rr3gZodJduNebPafTdeBR2Z4oCUAzZ4JdgZLRZ5L0/4IhuL+EblXURYT65vVh/ky4l23YWjIM2+wuKCgRiJp7g+51loCCXcwC3khZlhcomUPRaYBUwBnRt8diI5e4qZ/XeKxU1hPipW7QftlOT6pUhWZdMJ+D3S/rkFTvCG6JsvkbRDQxSRkCtvyFW1KtHThqdHj5A7NYnAMBk6nRAyIsEEoLs9vsXLIRFVaUa15xBZy9l3leTFqLqzvAyxuWwjdIfGxBTrt1+tDOG8f8OJUJRA9zOHlIvsIns/lbqrQ8l4fEOjg5gE/4rMKfvBXKMb+7ARgr8Ck/D3Kv3+ZWgzYCtvy8B5GI4DviOEBIQrmLS/+NG9aZhHls+IV8OxlaTGwP/gljBGhR7OdYFkU+8cg12rNFcUHEYLPUR96mrj7v4iOHRvAmaFF7t4HKCibVuJqBVm4nu6OHFu/KI53//OxjC/9Pzv9imeLGd1VOaJgnHM4kySh+gGtd/lxaFVvJqb15pUFbVW51DCBKPDepFFvSBIM9j0Zu1lGGn2UH2MEOSFv7KG+i/8kDYUMsFiAJBweDbcDFNgLruhILO2hmxvbiJ8tTkLRISIPLwtoGHnXs8yEByW973zv4kbuYPFrDOpPNo+cUpKLNArFdur2/LbnpThGoz+7jcsm5QhtEn3oyji44MdqcSHgbkZzJKPyhP3XQ2QIUeGcDlRxyDTux3EX1bvmdqzefRdxGC30QSg25VJAuYRzaWPbl9vnuCqc2MGLObfJFYMeDflVMwoFU0fYJ4+nyJUvn+pZaX1rX3uu7w/uBIkXqrLHrQwGFIuy8SKIZe3D+yDCIWGkovxIAx/sPdecfUG3SA2UtWxe+lrpxSFAZAhVSd0ZJq5793L7sw2C0bQxO1+eA7ZcB+3veUXagArs+87zmV/sllTmSOM3MOUnzEfN4Uqw0lz7LrS6hL0ADhOX3Qyj8/26SsBEhThqEfRejBFZzlQcsFkYcP9nlhe12Kih0WzIp5rW4UKy1OlOYM4bRVpKm9LSlc2PmpZ/F5MzoE+xsNMl5WNZKMGhifiWlpxWWlSJGedz2mVCvAwZaooN4DdD7/5x2+Vy9k9ElwJZjSqhH2inLm6wtD5rjEt/nMcrK1hwILseZ5AVhKNSHJDrv1N4LUUeGunSJaDEDxO9r3/iZEdWULVNLlOlFMM9x+yj/AbUQQKoaefCnXXBElqPQH9/ncaeic66wm9B75qKHXDUeesMTOuXm6050fK8eF9w3CRjta3zJaqDunLsp53uN58wIxlf0n93MvuI1vfsP9t0gdYNXWzWL4gsJngHiApqjsiVKI7yetxnRhRv7UbLTjsFOjiyQlIi+/vHogUJeJpdk+kO9ja/702L5v92OvV9ueEoSqR0B2tX99ZL0T3ty5AnxzET1neToXySyHAcK84Rd7ObtrsPTNZS69uU2kzJG0TJkD99yZtRJukzjiDlZgpzo/UwzgI+Wp4ByO8K+sKGhih78iqy8BKQYXoV3SE0YJig7f0cp1SnQ/yPA1h+810hVFZqtDTSZUzXRSdNwu4Ylu3f77BbJ9ib5gQ/lDNC6YRlZD7d2gIPSAum8YMwZ0UTuaL2xvZk92w4R+W3/F6+JGYs61TyfWF+Bfa06lLABXN1lmK3FVAFt0Dxbk078bE11KRH0jE1JdNe9WGusvKddhf7djzpdShJpA4qo1lGVcVSxN42dNBX05LOfwT+fhNnwkJK9dvP21pZ6XalW681FRAiMAuMVnds7pJKddbeTc8B8s/B/G5ZWNTVX5IV1dXJYWU6+aZQqEkoi/OCkAkYwCLaLWMUYSpax/+KfgKDhnjOx9/TYY/FWKQMuRS5QMMuSHAbDaqlRT9zmkF09XCyuRIonZNPBzK4/J/OMAkBb8dj0qJ0neHikeb33Fn59O1JBNT+STQmNMe+3pJ7oCNd78en/jghMIUa/y7D6ADYCuKaNqM5UdKw7J6ZDHG3Q6oy5aGUPP2M9wbT2kmsYMJYF4sZwWDYJUruiLJrhI72yLv1GQ9YOIeI3xf8HRlbwvANJHTVLuMDOIIWG8XwkXJT4g7v7xOcR/EXDZW9GMNh0czkMGrsdz/ewg+3IfzMhOXCkwqo/bmq5GEfAzdnhoiWMZ0+2wvJ9zNOjMmX8PfzHNCeco+0y/7PqlK9HScv9BoSRs6w6jQ69aROSKvNNfNacR7U95dg6vnBIyIhnaCM6LPt+TGxFRUN69IHA5N46S2qDZ8RRseKlLK2kNRRDeEpGlO4yIUVF6FdL03J0Vmmsz/mG8rUkzDjulbKIHaGMaE6FIVEN/X+slZwvXUCv3Ep70NlBV+1b4lg0v+L1MnJdv4mr9+sn9a3zdJDmTsEYJdwvYqUGIRw0EZ4N1qAOgSbxpeoZAEr9wZXlwBHe1I6Ez2dy67gV400bj8p/eT3mj1dkFHw/NO9WmjQUOhNGcfQzG0U9wMIM4dFYbkCNa9qXC4OIuw8jaSM7v2dQfeDDULi4b7A6nE92TfPlJraHSBfrLMp4xBUeBU38Gkz5PdjJXAo2tuIRPn8+mjyA6jCyTm6sIzQKVie5p3u1mBh1LE7x8AGFALZ392gFz361UdXWUxVkagHaK7pCVjBpRQZKGFQlAXCHALbbJFYupi3u9CoLIdX8a7VeLgACdpHmspFrmih/1nSNf2QijhprBcL5AAjUWkfha3I4F2MZq6LNncYCbwYBQI8EnnpSpcBmxJOMva96FR6Eg2O5Ht/tsQ8pDY1UsOhVsSgIU10DYxTWFf1NTgIKfqX5tMAQ51/Lqb+B5r5wBY5AKGxcGgWqWuol6kuzD8QkC3DcP4rpCQhB9KXrA1sqEHoNH5xCXNZfTalq7LK6C3rCPe8LvHotoPqQrXutYuFtlVp5t/jyrxNTE5w/b+eNSGCYKu0LvW2mQ179cwcoY+NbKagXafc141Mz73MdNFo5FTGDmXdaV/4hSKOo2XOgkmCzVgYyYoZmz22IkrOH1DQ/LmeY9TshqRC6FyXPoXLhRgak6P0mH0ZQm6G7GD6uh6jB+dvMc9GMPIYkzR+7QlEizmuVjgGr9M5a95Jlg+4uu+W+5+RHZtvUeJ502k8WM2ZuTnVv996RZrXWrxk7XyDhkT4zvubMoNTFszg5E++2qOXBMNLv2lXCLfO6QPe51xRjXWGsT1tF2eejaaSd7v2lpueckV5ptU3vi8DGX3sd+EQBlQRMtcAWVlrKQLxqQ/daviTSteDxvsVHZG3ptv1i0V0oV3e4eJAAbSu4NBnA4nxZyjegfAt9Ot6xo4cvvPCfTv6/4LHd2r1ZIy/8v+/9kSRasChRBcn8dpBPHPjb9elWgHNo0AdoAu4tilRiFl25QPr/EYCZxhq/srmTNoAgD94X549+8ppbj96xCugpN8+68XqLSYjjdZmMdKHWurIB5uShjHtoUZAe+CYtp1HAEKkExY5Yjh8R+mqcsdAK1jORTsLnusKdGGN2KIqGaFUowysWFhOnXsvTB34c2EPuqu9KlUymTHTY8nv8mAgxSFzLJYfXsraqeYzflQfTpCRkiVWHmIrG2eW83KSCsTgzfuXzsdgtFMtASRafz0blHtbvjTS+kWylWnF9zVdltq8Q0XupejrB755HXJrhsA46rC3Jamqo4gnL+LsmU18UwfxDWOJkSaDe8T0d4LnSsAksK1qg2XXi7odXPkBBQtJI+ZtRyH70JnVzkh79pvT5Au87NuDB18dVrR+bArD6HWenOh0OR5XXWaeovyN5llzLZY3vL1MtLOCtpcQuva+o2EiZl+5NecJN8aIa06qtNTe7WzIUSdJPmMEkyU80iVLXGRjaEKrepd6ff2bCBySPoTRegrpk7idlnzLq3OnWlURMgSdRluWwT/3rwP37Kr64QmxoS8fTrKk1aoYaJdttndqeD53sm1qCRM/4+i298KAVhdjJ67jenPQ2U27FaOzzF42ja2a0KgNREMTNsGbcLkimI5o0GL1AAFaZw1w6YN0QwXH0fjMpQkmrYPpldkd2nTFUljvO7QG+hk4AhIRwOIJ/wAfhg+2pocfgnfLEEk7e96OKW7tYUmwSMfJkFYLm++na9JihZD+zsJ/bcgbOPlyUAri/ycjlg4FdLInLaHS6xA4xJfzCU1MD7jbWnK6dM75DE9gzYXrxegbnj8n2xSYR/bdy3qhqHiEgOpA/a2o3Lv9eehM3TITzSZo4l/IwqekYTmez26XzvOo7WVDgqQzSbHmgnSBWfKtbMt3LLAL7MBBZtp0jDJUU6Ihutt2/AH8MrH3oc6kDbYQti2Pm7SWV5Bo/FDsCnERRC9krbkBl+hKsPvXTbad8NaGb4YWdHZhOV4QNo4ilNNPh14oth4gxHRY+1x8Ha7gMIhSGurEe4L9ckJ/mpkg7+jFpjalwn2oobshUjO7ycHUYDQF4fIru/fnwPsYZTT5nFu9EOGOGJFUNc6hvTssOMezod4HpN4a1DE41jtVq3DKhO+Mv+nc2AnzbglkJpNb45cirmuGNfaEipyHHzGidyXulKxqVlZrxPBTgWnZZV9Kvi1ocYVNBNikohWwkPnd4P4PUiH0lzbopsxx75JaO5treAFsso9KW7WoN39Bd1dE6zoKnoMgIPQL/An8KQWD1CiI+uKnry4c4CJiRzDZbWUkIIZekuJZvAwOQhLroGoP5CAfr0CodGlDu+9DLCcisfLX0tVh0UtVJladbHb8B3PGD7YfCCE1F2Fpd1XJeAu5/d/jW0StPngi7wW/5dWtRJiIThOwX4cUaWT+hrAwQKF+NOmrZjpElO/cjRMCF7exztyN+/3pGviJ9U0pfIB2z0O/LKm4rBXe56qNshymVHTQspYFXWGWLOXyWUaNlAG2oA/xZXDZnIcj9m3g1uHDlrzAyIDv5VzQfDqBixeAz0pAfhn0B8rRBRj2OKa0zrYw4netYOOAxbSNqd1U71jUYNgFZtoNTEX3QDn+Vrk4fANSSSkE5M1lS8/u1Mexc/Jceybuf8Klhl9bQqTbz2qe+8nsbkv+6stPQ/8aot0n/SL4btG51AhmhYj4dJNIz0zUXlUSD8DPqMU3GLKvsoDNP7AtWfBu9YkhCrfdixGTBdTIl7uwDEfB4I631fJuPeZ5dnk/H0NBI6lT0hCXIcXqf4PclhjcupRXFcCibfRjQXluu3UqVsvIooqmBODGr6iXKGs/qRY/SD6jQog9JHGoL3eKmY+efwsg6qaF/Faxuu3DbmWxzTCQGSA+N5hcnU1J0R9EkOf4nWtrTUEma3+lydARwkGAlquedM0VoGqeAL8Mscee5blXqEbCOd/PZHiNPX/PXjSwPzQvNsDACjvDF/8FLsUsrDxINX1kzGCt3yLbC0+sLRM7N1uhvHkoLlkMKRnbbBsS1dNKDGfxecNqbTGD+nu/6lmFerCStbNJdxgD/1vQ5S0wJD4m48cTDbEduW3aDMqZpK5Y7kLYPr2tXb9b1/kPT0TK2768g8O7vLxgOkMCDt6baoCDVS/qiNGhGk114Vecb+IEgTfyiSMzeeuZwTIatgIJAdXBwaOBar1qVpfUdX3jS8+KbTmY+qZ8n0vDKx/IL8wIplUmMzc1PfrnHdSUaxubD6m6qHJc+RqsOeuJqFp0ZaortMHnqAp6fy8lDo7nMZmFSXdtSA3UcU/fW96OfUOJ6JW1rA8fUiE0oJmzYKdwlfhxhNPgyHC8Lnh1u/tICCfR9AdULFg2nfs7j6PncNib4uS6eusktROy2P5dhvqqQYaJ9d+A/eef8x29fKiYOQP5jG7m/Qok+/K6UI+Dgy0tm4vUOA5F9trsoqn3r4KGTRsAqV08Q1/yRezZiGzG78oC80Az+NToiXFO27sOVi4uAcAQuJBcPM3th2FY3GDN4mWXCPNky1uJaOFDH0Oe4DZ6nU4+TWQ1wl5qfQ28WeKqC3r2WU5X/sUEme51L2RRz+kCN9iTy0ECFbeLERqaVsT20XHAr9C2hucluoaBHcU3NzG+zeorEkCG5ayhbL98CYBZ8gunQoVcaipr71z4t+dY+WcdXj+jcdvC68SFbRCBir9OGDe4YkC0Z57QUfjC/MLOR19fm5ftDGiK6mCu7NH5k6e26ce62XwXYc76jY3NfpBKWWqo1ueYeNAxrSHjkjeaANpyQPa+wH4gMoXf7vbi7CHqw5Z+l/AP4jwyfULipJmazWaGJgDgqTL9RO9knQgg1kFZnoL1la2EvzH9M+6PkzAzSj21WTsvcsgEigedaRwpEhAFQDpJQowE/mrCzfgWZp8z2vZDINqwY4JnF0D+ZMKUY7wcD8Oh0hC+zvMAb8l9DH9MJpDbkDmIRMAgI6f+fzPTyiHYBIDkTWSzWI3/wcPXLjv6h+k4DKBZJzBOELer+zSdiL9SKrNzW/N3d7WIFCzTQF55qpsXksDeMk9JcXpBwro9UclNsMAsjnOv1+ad6F9t3WkJ/YcSOeZSUejyV0WxXyVM1aJBdgk158zohxxl0pDcIUsoA3s2p3Yp2AHypbr8aRkSw2XaDqP7h1u/ajQZGYf5AjagOygCKrmNAcxO/ybOo0dwJbS+2fzXAjSvcFEKpW3xxTjbTKfYlpUm3oJrFnd8bSmYruYf0Wpbe/TI/zbu5tPA2m4P8s7nTYFyMrJVB2o4dTL1ibWbqLSptGjOQY6eCI6R5y3AEIjAi5ZmgZQN9cdGAI3I8rzNyUN0vP++gqsLt+ngI0ErEMLV4ViqIq1PU1jGx2tBUAQL88JygBSDF+ItuTtMAXMZQKbl41qvvNoK3TidX9vmJmA6MjP13RHSUQPrQnGhtgrPMISQSIJ5AZMhNofIVstbxYEZLj9R3bL6xNAdpN4/tlbTqxicQUJ3jBf+hsxDcam4Z1pAMlTbuwY8vbsUIcvFttX8iQbhAxWSvgiN4gR6XgwWdb02KaAYBFjZNQc6m98B5HG5rEg8HYunk49hBil/AmULgwjLmwLoYxzA+DjaFCjNR8NKQMq1SCZAMboEq2oDUFfQnFdr+6K4+0lWsoU3rjnHIQ9MhnloZFogtgXJy5jKNKW+q/Rrs1Wyy380jGB3NuwyChaxolWlo1016FMUlw1pl3oD8RY6kTDOVYl6/vAWAaEkNDhD2kHJa6u+QJ1tDMnWVDJ4J/95Af+Cj0JIMDcDcDDcKefQIbWC+a+OTllTQC0sR2kjrCDVwtzhDQjlwGa6EQs7hHqIfGletYz06hX1fZbNYIX9CL8oF6GOB7O7hDJcEs9BujSoNSvhKeywXIHCG+X1PWXHW1TRSI0haR4mfY6uPKu881+DbZwyUiwwO+96JI83tobBThD9lZSwE9JtjbJ8bXEEnjIXazty5QckoSGjKSBN2AVHcmjlqOZnONKzFq+1NgooZGqdEcgEb2I7KjtSiT1rB1BaDaBA+ykiuZS4uSBEpkEc+28bccLvKRX+ib97CuApVXOAN4V1jtCVerwvKa2n82+dC8P6LmCBrtF5Hv/ePRXxrH5rHqAVZmscN8E9NANJaHGnHjbaqsR8VqyzdscZd74RmsO254t+wOP8TeEZtjAEEniNyHuMTotEZwPpfTETrcDpHg/MzJpXQrkXTuly1bVWnohVOwfY8ILR3WX1V9u1M3SeH/KhAFyesTTNyqdfu6qgN0HGv8y6P9NPuyMdErmVBNnpaWEKbT4XFpCVsIFMB8nXahuYmfk4faVubuuDa3mokYju8qEASazeOLrZSj1pqA5IWOfXjszdhPDWviYFMWB1mOpevusDlpGMnymnL4GcSImjGshm5VP71KP/4+FQGgmOIfeo0y7ZMbgFlBTAXQXUe95kHggIUqxWD/oeQvFtgoBkeae1SpdOzEZcy3bc0h+zZwnzlb7NBdVMeqlzUZBEmhAgLihxLUGaqd5cSFbCCrh1Ahco4HB343siXdtDYNspuE5Qr5BnPq8HcE/plV6gw1p7/Hkt51FXYm5qzwbYl4kPldkWbYeHSN83fr5p23LZ93mI8wrrX4jhpoQmiY+ZE9bF5XRnT2ztDK9X6wyLBbtxzi4nRwVP37CXxbD5YvgVfWFqfDSNLlEsPvvFNTk0gNIT8xUEqzydMCoTTxe3EB+f5JExQh7qCMhUBjjUWfuIY4UJr93kt5w4ENBFb38qPeOgNR8PW4rIdbZ3jvwjDS2wlZYCTcwZXfeoiYi7Savqh0paBZlNl2wlODV6mHZD9Jv1W5OO//rIg6ocp2GFEVsUUhWTvyUgKWshqz7QsKzoYpX34ntU/+EWyvMaSsIDTky9y7/XbpE8ocmtGjtXrhBbM+aZQe/zqU27xoDqhS0aAY6m4ZsqObLb7aEJjy24cAev/xzEE7YDmIk0umFf003/bPpJyKMEuDKe8FlG/GoOtKV5evqblUGDs2E8N6mO1/exFG0wr6zjqxao+0vigH3HqscXfp9Hl4hOdJzd46eNF8z2KYDGOyr+tJ0S4qCgU3MM6NdCcmK2t73LPPXYi5CVDP7+hv2Scuw+1tJIfIrmqTd8A+a9qbBF+gHi+Ouss6GdGcvXevC/KuWRLhv+Wu2Q/lJ1CPx1Q389QZPjpcXU/kcyTrHXvvk0WoRrCSTIcy7FhNYoOrqQay7/rTvIVpnAiyNJy//iOagScbEEdW7+EYr1gLSfTtoOnE7Z2D5FbsLaZe9WaAc9ucZAIqddL/yK11MsgsLDsOvxkYX6c82LyUtDYyv0s13ylTPZOteD8tOjYp29IUaCYl+JR/HLAlk2dnltOJeUjR0aXwKTHPYZ2lbEgC6yS4sYvJtfAEnZ+fjoSfrhxMNcaYTmE/s5jHSSjSu0y2yGTJ3YymCfrL5DkXm/f7GAxxcgDb+REC/2MP0Cq5dfHeSSzToSlWUq4oVQtsRJZNn3lCK3Osznd+ygxpxBNeLKYsu7N1d61xB2ic5GI8/U+S1mGtiph3sn4a9YapDBhjJwIg4hWMXGgcMbz4+oUx6wlibFhYLz6newcM+qqd+pqzHIunE5xDTvJL7DfiS1gcZPkuOQ0LhRPYw11dH++U5uRRHhNlzRMUuO0MdzDeYwbPwRJzh0JMjRmPGhlrWSf7l1NOLBwpubZkRP9dYX19VeH8sTvuTkK/pS6Oc9bEIw+IS3jNcNYaknARq60lAYyCA5mXntGGqiR3Da/JsSHJwBfZpod8/ljdbeIfLKlDBtIjmBeGLWCbbqt4qbCj6C6dyUnANLMgSg1PG7WkFUlH+RFYDtlZ5Zh+As+Fn43/rMn+opI6O+IS/Az7W9Nx16bLJ2fUNadB+Z76vPT/RCSbUoGZl2ID1ZRlTOA3yE/obMKPDygx7f7/tg4yGtI4fRaC29YlGS2ArmhZkiquRUy/f3C8qvy9nDi9jXjAI1nCdko8Okv/gX11EiOb54I28R4oXmGpxAD6ALpAg0L5jloLGpWt3zTmp2XE1zvl4v+GQY9kx1Y6odRcpkFF7eHNivmtNv/WSW619UJjGFOQoQenZ2P+nsaRDkHd0baJ8D7e/57razGzlgsG8J1Z7MKpt7gExcjRztbbDzPaKdwYDaDpch2WNun8xr5Rmci6X5Z6fnxbM5YcWq0lvJ0fFWnp1ou7kb/E/Dr8g+JPdGwfZDIxwzIZ2RT3jWrt5u9yB/+Se5DDhaFeHrnn9MWp3heYem+/qkWRKoPkMZ5XcI/4A5WR6b4zo9F8WHNyNt6dcY65grAOTy7tvHb93qQ3WAQc2WPMp7URoduQvFGatslzRCQLeoLOPB1Kmypec/PsWX7fUsKYB7o27/ZP4uUkaV5DPxX21RLbr6BOesEyjabhkwbZjFwaSSL8itX2HYvb/F/P8wA9Gs7jcG9HNks5svkLti3IAboUaosCB4CL1TyWRYyDKUlXLSCQvEmD9CH5TP+jIjPhbgjhNiCGInHouaE4yHsLr1NKGHq2rYv7MEZZ7TkhEDoKLvuTm5gv7j1nXzlgJdOsm9vqojjeCNruAiRpfcFXRORxcp34TJLOVJLqtvPtdctyeYovycGTQxCa6dHYu4p2un4eMsogO2o0IVK15z6T8Yh/yQ9xHeml5U2KxmjLnjbPQWtULSNFuXMFwhNKLPm3mEGlcFia1gSORnDkN3daxNuMHKurq+nOOo1nZwwDe3KJ+row2umWuKCs3VBwfNeiFkoXLx3LedwFKCE/LnlZJdJOsC1UrmrJLpias3BIiEU+vh8eqUsS8w39gWdK2tR0zifmN1eNMCz2sRfJIqpvwnV/NORqZnxlOtd1DnUsmpYUnvDIvDtkxIvUEjICj/x49YqKSPFy8YWYnVRMJOxundm+wIc726e1RIkl6AbCn1k92l9U3Q1MY2Afp6e/XWKGlRlCGqFBmHgTLQr9Koj4F/nzdU7f76UoRglA98A/0yUBl7gnm8uBUgegUFygaURSlFzWedxxp4mO3L2ftWOcLnL54H3/wOy9GeZLAUDLECiAhrHbMKfZowSsmao7xYGCGQ8eqQ2Y1nJPCb90hEItK+wKzIawT0RAacS0ka42d0TwIFE9vXYPTMYlCBvx8kep9rpJulMLxLt1gfMJmfYBPOU2q7vTdz6O3y4ZeYYXgk/loDavs8/uUFbTS3FLZp/p3cVvG/FBypJsShEHQyolM5jn58ss4VTunaXtxTL8H3wK3JWva37ZR2yInqL/lvQAByBUGTZI6L6upgzG/CkugEA49cz+EgvImnkVkcsGKNPEBzUsI3N8WIPO6ixcrv8eg2hNxymFbcym31s640hBGjZT/SDUbmYdHvo51OlqOKfPYhM6FZhjgOlsErYG4lgg/zthljoR6yOa7IMi5kKk+EeA0/xeqm9QvBcYDOmgW5p5Z6pSvVNvTuAycO9vrTQO5aC9eKipkMAWt9MGTjzqQ5xq2NkelTw2W38YgWj0JJXnoBHD+ehhBa12s0AwVpq8OUm6Krm/M8BxO4qkrokJ15mPPAZc9gEDxFdDJd4/NtgaqfAc/syqQOxuBT6UymjJTfx6kunM58FRESfyoAeHjgRUDbVcEqDMGXTR5YGVeeFJrvcCtde241Y9lsDzld6sbL8kxjnFpE+DTc+2I9dsiTxV5uIWHy+VJaYCb/ZT1S1UUzbRbg7jfPfJhNpdk1papjtQn4PfPd/6kaA3evmb1oHDrIE1BtnzAKf9215EpqJm7fajlgI9RhF9EGf/qTqjbwVVEK8ANqc1/V6SJONltaoG39DgZzgq3zvaBFsOE2uKYRxGZGGqEDjocwkkVtgjIKcxmIVc95ZF4qj4RySkAkwMfRi3TtV+CNeqRHOlTfdhp8MVKvYdjla6gUJD5PoYU4ZHNyhTpiEZCQAI/lfaU2xspD6VA+GSYjXyKBPLU9WEga1YEv0JPUg80iQ3AJOhvn9gHjY4ljjnXIBbSlFtZh1xOzzmXdOFhjbpckN8X1v90ZWaAolZm6zbRAu1WiV6M9x3pTmeMs9nR+qy605t1kbJYgTlCgXQbqit5ku1PCoiOMU/gjnoAvacWbF1MDhdQMi9OG+QX/6khhZZJFWW9qlX5bGFHmUCdB1gZYAVVgr5LZhPD0HjUzY+cXRQOzu6y69UgNv70xzYGEyfADQsnJBrq7Ls3EHNGLha4FQNqFqAmqszCN4wmSaXhPI5dqEWRRt46Us+sDBGtxjK8yCx/3sfL6un1U5Q7xwnUufPFk1IeOG6/V++v6D1npHcQ6GZfItkn8yVB5Yykp2Mh76CCfq/MQFXb8Vi+E1dAXBQVYC1PUeHLrB0SFRqSeZT1adkPSAewH+8Q+Bbx+V88Ahch0VQRK5dwRrpDV+Yvr2GBQ2ougBCaBqbVS3MrJZIrK0T5XMRIsw4+Q5saJWC0jmOoSfALtti1eg+o+P0FTpUqkt5IVhkJOlYbcM/J+LFvxVqOoemvGo4b6BSwBDvs62Q66a3AaijGVQ62B6OCHvyRZzfRMzPHdc8SsULChHcVuMGuqe2p9yNZH0W35oFpAchQ4cliCIXYfmCPbHoj3YOuVvPoz9FcZLqyfgo8hykhtZdBecd59qSmySju7UFH61h5/qRgh+ufWmzGDeNbjU2Ta9C+yON7/PsdRKvqtuWzHQwy2fJtCaCoXnETf5MQ6Ke6Zi3BRHNeJf0HmAY5c+FbqcqgVrqFnTtuGpx8E0BxU+xivao1JMofFZY0H7FolwimmF1ba+dtfMXmOugEcA1bSpOiLAPj+6JB9KR+1vJ6SGaBn6giHEQWJstnbEG9jUVSarepbUNMr6uf60OdvIxD/DPzLuNdpLzlR6QU0DCBu4BTXHjlQ+VcjeYQxPIDdwTaaD3blvb743NrctZxiAKeHedqNd7HZPLcg0lMFRV/CVaAhKRWJLhAZRLf4UOUuL9EkANtWicZpDBkZ+dMS90caM8F0N4ZBtQBGkhlXTaHclW5ro0F9mQWOYwiNKRzFw1ogxQBfnJhxqNQoZuO1GiDjS4GfuRY+AQZ8xo37KypoKgxR9fj9+O9wpDf+oEsFkW+HQlhIIOGVJBoVoUO2BKCuyFNgtQ3H91nilvowuaSthwYCFF44oMhdBbXY7mW0EN3aUWLxkF3F/clW+dLaZe1r9GEJfgQNa7cSuow09Y/R9vS9i3AtrozRempZPm6mhEx0Inlny9TR/j95wHIm6b6OGQhFksUMfA2oHxzD6WKbUPYvEAuuHpNQq49O8LPm9SbM2teFmD8BwGTxoQUHHGIvFTZCDEOLTPob0vFG6XSGnwl0jsXRL0SEWOv3BPPkL6ei4v3jsQlniG4DuEfj/iOEwDCsHSMzMxf62SuStmJeF6dZXYshRCkb5hqXyBbQK483gc0p4+wN1/ls/ch7KBOJf0w/WgnGi0MFyeau+HCmSkXbosYRGzaVONrH47xbo2BigxFA20z77qa2nMJZBToGsKa9P9hnKAVO0GwweSBSVkjQy6wkbVHC83Vw/OqpMIt/aigftL+ouiGwHa7Ort3rwTl+/xUC+1tgehzgK8CZMb0PiqEbJtFRfjRiqLore7+3DmVMfexYRPEd4FNr79EBl6IVt+zrqu385BUmUbNoemXSr0p7zzCKNANCu0yLUbXe9kagZIl3Uzo+IOX6bYuRVqZP0Ch56LgDg4ZLuSWN50IFnfjf9qkHPNnK0iE9BB9eKNAZcTuZi7oLDDvmjdwa37TR73nSvzrr0j37LwGfxI3Ze/lxZGK5HN4RupNfaofU+lO4OevqLtsYSNR99vuRI3ZBSeNc/E8CWxR3YSTtTn2nEB21ylw3Krnwc4KdkdvBh+kTiwi/jxdIDfGSTrnqXwGHn2GnoYT6CGiRA/nqL1uxHS1lFazh4FzGjVQzo6VehdFdYXhvFxWdGQ1nOSg9iU2bu8WdHBe2FUg3f2HbfZu2JlGMc6pUzF40ZeOW7QOJMN6CXfgPLVZi9lFsJhxU3M+fgeEP6MVRftP2nSkDTc1QRmYg+bJQW1bUi2Q0i3a8JFLGFqEwsTi8DsAYzaUG7bKaIbcp5pcG2rFCp6FWiC6AEqAbqw3vZzajcr1UpnuUmDo1sR5ptAOoRk5D1jUto0Ug6LbnlwEs+uC8OSxR+RCCgYfsBs3IkJvJpbCwf6mTK/7FX022nWAY4HKYwyp2RezQFy8JGRFUlNSsJConE7KVjuERlsq1RfIBzB7UbXH2R+ZBO5fB+9ZL8n2+Oj1RVl2c16vnfCtAT0safFrksDV+SbVXgT3A/sUCp7BFghbiBoUBv3ql/V0ZOXf+JwsRMsnDWGaxgVPi4mJNjKwstxEeQkKb0vLNDZ+bYgstguQOb3b+5yQtc93jW7hfbZKfHuzDxgiSpv5sRD5KCrdBob7MP4LbVSQMDlSyvkGtqhkpYmsjv+IpfWpXgCH8tRHPPUFuk1+6vcwGZiBrsKzFVPYJXUTsdfWXyMLUCMJmM6C1fq40q4dZnPuFE1+I/HJ0auTsR616PSqTajxnLki9Sld1vSXdjU93vWOkcj1fS0ea39EWv0BEeg+Of3J5217Zy/B6Dy5BOIoSXsqEzRdHGt8p2TKC2F18e7xLsg+EMnpQO+WymIfQBNix/k2W1boeebKACEOpHAApIBWFemyIaKQBW2d4Rj4Wc/gt6Db6FzD1zvvWwS7FEOkfyO5XMQPipttsNn0Kt9sujOXmXTbXeGvryP1cmb/I33TsJLlAOvnQtfvdlUzJhk8t0jomf/8ISGWcWvqC3FtWdhv98XS0Ccs2MwIAMTVqx+9myE8mRwqatZ1RXcBVQf0J4uvUWKq0+pFgdR0rRbTnTB8wk0DnezhInxOFS01oWUHnCau4O4M7guZICT/lln4JLieFMP9sdlCiJNaYhgh7+t1bazVM9uY3Ixk4fxXV7eZJl0Pu1GWq6i7/vGDYKj2WoXHvl2TAVLBsOFSjLrBo9RQDV1i8vf8zFecYcmf5ag5B+nXnLbXhuZ0+s7ftxtGNJShMDWWWKTwW9d7j1uo6sfL3EwjojDY0CFP40IsZyxvcjLF1bp8BxEpFLDtRseiF2ELfyTuKBjdBv7TA5kFMGnNxvakCay4TH02A3UhD+GgNhz36NmNkgme3bXrBz/6XrrDRjM7CS53MA4WAz9QMOYjsw92SXcj6GRWefd4vlzfKt78+AVDx0IAtG6/tTN7T4xq8x5LIL1OMDIxaCZHc/zX31HNLdq3eisjNbeO4XL+NVFYP9XzIoaeIWSvZIzKX/+DKekNJgqFa0aAL+OQnXqFyLim4C08QvylOdeXF+EXi+y5NS0Cp2wiXXprS5ejIHIeHNpGGayXQW08iypyTymlYPsPcktd+Z+jzU3dW9uxlaZNowQLCDX9t7JgouTjuaxXrvX8C939IlKXcmo0f8I8z80VAbBMDEiAP8y6ffkWlDjZi73ohfOX7984NfsKC2jZfpNMbZ6Gypu6fTEnn+fRqCYZUPBWAEc1xl45v32BaDPPk9RmQ9sqmYpNpoPmyfHRQodSFnu8n+K3pVuzOez0MzYSNReqnouC0amzYFX3KeirK7Saubpq9sAdCRcFftV5L+wbD+I3WQ0J8wVE2SEvC1VpFEQtdUddoGNwVA7LPbSN4GhTEMrE64XwAPaz7tbdxiFPSSDrQNnCGe7SCAy0g11nWJ46GiRI2MMG/sgLFkcaBQtOcoKEWq2wodLKxCpC8SGzlqd4lXRRV3tJCoYVBg3ecrznUVfv9+exqCnGi1w5d8niCEmPXrm9Y9DB8BTAbt1Kc42ExIHElfGxlz00WZSt9UMX/vNdEpZN0726d2f33LIk3L4AubUADLwK4Vmf/5gdbTEioVc5xoMr12gsRU0QXR7pku2ui51a/HHIqmDbM750DdMBnppjF2zP7/GnAS7bjbNKzQ8Vfn6YmzBv2bDnZaGC+/lr1KVcSUqIlx/XU5crYXFdNhSlqKgfwX9nmAKyhFiKIPSMTkiqqAfWmFFxCM8Zx6ciN/TAHtRvLJcQHS0u0mgywR2B7hlxbVuAkkZnXemE3S+5WtzbfQrPDNZfbjFN+JY//QjHara0DKkX2z6IQMCeVQyST8h3N1tOaz9l8EZopUfpoucFRyTXie8Ubc29yjNz9G1KlokWv+vlc+LlUbIiuCptzCX5tVOs8zZAhW0kGojjHM9CpMovULuhsk1/Vw7Q/OJQPIK4niwmSWz3PPywWTWuLpxmvUSIIJgAf4LA+wddj1CApDCuuPAmLUTClLFtOC+dgoh7diX6T/ABn/V9k9A+7DUco0QopFyDvk2IkObDZ7ACJSAqP+g5HZo8n39tXZY0S2Ym6M6SZrNzYggj2xZYELU33u/W1ejFYDgUT6JvfmC2Xdj+OXaQf7VR7jOJzNpg+gpYwtK1HcMJLnFtNl8xuCAsycz4epJfXu20/2IwlQr24xDr4vcc7tt1ZFmGV/NdrP6/P2tAUPT3IFMGbZLGJI9hulAhoS5A4hFiykoGSyK85jvZ7SVJFmHdJUcxr6XY0D1U5AN/NLkfi4d+lVwiGFZt/kKLTthmx4kINtbWNG0pkr1vI5W2VmH+ig48xdjYDsH/9iHDPoJh+LoXkfD1wux3QNutc7AMEq2oExB3KMXmchRamDfRLqwk6WHTs070r2DunfAqPVE9whAo0qN2bZjyU0gq79JgAl3IMilGNThzxf6JHiIF9uKAsBSMHhIMfVVrBfIXnF5/THJqxsqvRIMKvCKDK5zpCPDuiUpM89aol6zG+OO2Y8mCL/905mmLs7OrZNttkiiygISPJl/Un35n+3oLMbwU+JLCCbc3ox8U1LA6uKgc4+7fnslNJMosPhvOu9gujDjEdvN8FRSqvzmj04ieO01zLlFTwPYbRdlq+ybllHBrVZEQzHzsTmm6umpKRvIf1i2ABGSCRjE/VPH2a9G5ORl2VnBzczgIF2w17myjdGDbcRBpZsilvwAaqGzZEO4GGUTYr/cbYS4wr/6Bys1nR8ozhpVx1ZSh7qoiWJDDwtywvFp+1u32oZX7vdsyVD6NeeXZ91kZ9kOtKKJNF2bDCNVECbkZrmrfESomP/yU+aRYiJZCJZWwCJ8cdfTG1qcweWXsEH84i9HDmL8CkUcM8XCh+t4p2i+7cCnUM8BhxGF4to27FsnR7ZhC4PKQVaFYL7weGA2w8DhGZ9ph2lPZCFEjqnbA9I6WyEC72PxFL1Sza1nvmgBSF0sdQ2gt5QIkU8Zkk8t7HFDsBaUUuCkWjWUHNVIhP+hzUzDfYSEn8seyTI1XILEyTohr+S7+JcVsc0vpsRQhigmmrxl3tw3s+KkSTmHK+ZfiYuVPzhsJonuUqH646c2O8Sq2Med+qwsMfSNYhOnefmh9ea9XiGFonuusYSk7OytFLrwrv0/YmLIECdEB5BaByrqkwudmv1abhtmLXecTBld6gLUr8LAoHOudTjcZwh0X10XD4nYhyZukTJfTXoPmAupBxgQlRq/n65oihMKPEGEbC9fUFwSSe6RjnR42rviXFzORwea/JKupaN8fnORZEqEJcO7wkU9mkxK+dgxCY06sbwT4LcZ2uOy53oQeyoEsDPlNluNbEa/x7IKg0Q8HbPLKqP3OogiwsNqsjrvL1tbNUz9MBvjnnPkltE536cmMQO/l/Ywws98vWkLzzBNSLELchXsnOd/16Gw4O3jYZX3qxJFhBUOkaR5aNXvCIW4F/GW2jcx4bWqRlylNNVe0+eW77dOpYOVZ2JR47PCmNMidlLyE2KwA+pAnXg1L0Zk2qw8j/jUj/sz9DT3vioVUF83B+Jp6wE3o5ElQvnob9Gi+VqDY7MukeAe/v9jKJoJ4iuIGXBzhkjmOjhanlehEcvyLXHJoz9qKiKq9E5J5sFy28C98c2myecatvTsJ28+foxz7TzWbi4MmjLni7Ow/rp8mYxBD2iriWX46hUKOfBNcbADgLsyoDaT8McWoIqH2qlIa2yIdG51t36IfSXlXRf9JrXBt2c6ri2W4Owz7PsOXY+0/Kw/tTD8lMIKvnMGANyVKkFVNjKplNKIhmVu8C/PhdXZEAMvTTdEV7YWY771W2bR36w0ATO94Bo2pSUzETHaCgzbGec9jFKwGIMMwRBR7gqh+LuwyYSAAfpUxuxwkYsUfdE+bChQuugjEolMtXZo/Uy0XXpUJWgixBonhRqB0uflX39C/3zdEzSsbB8MPgAVQTJzploI7vC+ArIEWANQUNwyCTP+b1zwASxmHFsc+XNPRV5BlxeVTr/+WV3JySRxve8EnILBQOHmBH9KcOoKZoIq1iaaF0kNl4ht8W8eSGc93xYgAEvWZIS3dyTriXD380u/ysS66O5sILeExxnr37SjaVVrjbU7lumfXijArIqPRDH/R3UmjKQND60mMl7ffFOrgnLDlMMmQMMXWn+WgtfDqumd6Vum5bzZHY4p/5jBbegdlIdohxDfk80CozNqhU+GaySQG3aeMOjb6qrC4zztZjwbA6DAdWBWZcyRmqBLdhYAD1UAWCuAkU6rIZ+btjc3UNffOiSdl1jjTHPG93ZVGgiUZm8lSg+JNre5o5ZBXdACF18G5IfezbSDDf5ygLcyU1KO4I5BF/VH4+jTWkV9lhCilu0/k66JqxTkBuej4ksFRi43Fpa8zLJRwAXpliDK6Cqc/4pfJtIn0SvpfVoBg+iPWliq15/esnEGJNDnZgNYpQTA+9mKUnTZzhGK4kJAT+a8Jpral8ogwJZKUiX6TDkBGUKzrh9dsoEocM3shYb/s/q2gG2rBtMsqMFIB9PRY4XEfCCUThJFM8SFdqrUYk+aq9ThOQiyJvCHj8X9VYe+0/OOqiUmKSHi8bd/hCS6I0fRjMIyD0zhl4PZUxpDC302REG2KE9dwm+Q5w+bPzaRGEH83EkMmDisT8babvMArpdZdWCKgMYe5SI04lSP6XGlhfFN43YIjKI46+HwI+KsDDwb+SyMiNt2dZlRdlBU/yUvKiagwYcRJQk2DCqnnSiOyYbOnraQ4RJqs2dM82Y+zttp+nWdFGEUZKNWfGVDegrKaW9aG50wMQpas/m+NT+bufR22yXBEUQC3APGGgHkSa7yo/4TWsGnsI+Zx6TEKqY6InczCz5NtlaUTKXSE5M6dFzb1GoGDDGUunlWiwxb/hdCfvzirJAHJvqGEh3mqIjE7O144qxTzGIev4ceTZ06tJTsddhGzobNxdejAqPtJA1W/kETCFWxEWbGSH+SvafHm1hOcy63DqwIG/aDf+hW2/bnSgfTBXvAJgSELeB7C8o+aXMhlRS8o7VCFETlSo7F/gG5nwWmfmbxQHCt0QJ3QoCcuUwyVK1ThsqiaK6+I2ub85GdyaMO88+AvitXRRYC0trOXBfuIIng1zVoPH/uGk9149kH5X+z2S7ZyqOLTwHPCsCqaOwMa8v3QwdnFQA07HCeOvGjtmwhrSWkNXv3OWw2+WLv7crWro8Jc4pGs209ePSPrGtf091G2awyNotAtUlQ2HVQZyUb+sSBDBK/BKkiq2eHefVQT9VS5dTqb5HJD42k/QEbHwAiP/mfBn23eRJpeUdx/On4KaH8DwynZ322yefFxijIo/BtwIRt3O0Y67hMtw7qw1cm2cr9xaQORLGJaWp9uBmyH7XNvqFWeiMKLt5k5ZHAQht91XN1XMeUsOaxCnPU4kYOfQ0ZC1W9mhc6MEWvc5tUtkim5gsQkxaEiox/OfeAuChq+CX9xfpeqtkRDKHb+zUNRyoDCDssmY7qPuS5KyIJWmjCOL+wNB7y63C4k2zk1W3GwxifJOeuYBe/qTXWIW145wCzcIhfEOb4SNzMdygwo/UqkK4M33noIoMJCAHmB3ge6nRdPZfjSSQ7z7GiGX5JEtKwhzdwTcwzhkLlTV/4YoMMXoQA4Nk/tIw0L/eJrp4uuOroNTuYoP7El7quVhzlPIL/muPaOMAb4nMSxi0Um5Fw2gcdxfjan1e+bJAHYY14wpoqn94NCSjUCuZo6zkK6eKdGSnQ4fI5biYVRACj/TRYhKbE4PKv/aQ/7AE37J89g64gF/iN5c79FQHumPerXeaFJOjwhfdyWUsoPg5SzELOS/ct893Qoy7TbMIr7ow9XUQlAi3OQaPkjRzPkPJ3RWelB+4v7I9q7GKldLTg4JbqMq5goIkJMb4Pgkdh+8cEawb07GKNzT3HSY9FlTcUvzbT5bJt08XkzP4EKzlGyQn1C7Hx7elUD/VEPaAENAM2RORT0rH9aLXV4bKGSMKYyC8oXV1Z1m2RKxp62T0l3OOyqLDGRSOSUm5qNim/5qpaNtibxONa23wVPdJ6vHUGpHWFKs0BrbQbKlntLVP1Q6uEwxRawW6idetthaagLgYCKM0UI4CCDR7UeuOuHkHM0Lpd4fw4Yk/cgNlQnmH6kN8yaA/y49/gyyHRY/Z2L5DZ3Ccerueivu2BQx/JVHMEokNynOFrOkOr1QahiSV9PDcgug4VC7XRjsEGBw87U/ilpLykU6tuqtpi2ZX/oPjuJ2SGGLeKMmv0i/Eq3MvVWNt9bXs6fRM2l1I3/ao9r/MCOKhiXRAFmgsx5R9ApENWGUid16orWhWt6vltU3pNi719azGznyhx/MqZIOXuF09lFMan8agKyvMkFRi64DSCrfrf7VWgOyZkFLBMImUoLwPeEJQ+bfe4a8UVVoCu9g8K3xHmaWcs9C+5N7rsBUpYfAKuY2dY1eyGnxkMx0ctKwkuMqkuXDGf2k8NGGFdCTOIFug6Kn4FzgUGjvr7yUTFrQgApzpoAwLtaRV4q3nmXFfN4lPonaQQGGjuCHr9fj+FdAmms/Pv3VtZw/3nn38bJ4rBzcqMFCTtAY2BfsC29IPe3YdUHavvzPNMQPCEF9sSJRQlIMrpHpJo2dyqzBRkDaYJip0ma3LgnL+7hF4JN0CdexVSTtpSvkGP28B97K2qLMRep1aSDLELOvmDLIpTmmPYWbQaotlc9LC9aTxdkpk/5z9UJy+iXlAwmwT6DeS+t6VgkwpEW6TrSGexSPfXkgZ/J0ZZRZ8YKXJw/N+TnUnRv5peSwLUWXGCLAuT1jyq3nLQOE+S6GNgI5vd6piyvm/IY56Kl3xE+4x/8jSWfKWzhy8tAF1cK3u4IMIZHJb6MB/cxfEK/Fdrw9LXZn1iJkDGaIPeboZRhpmQYJLAw+r8Pf+dILqiEL8PkSFGxKWnBWCEVyRqRrISDV6nu16CVHMfjDizlcFu4dSlGCNiLUN6xYED/ZNT2rbaJ5wnLZjFbqyxfRfGQ1fRRTovk6ut5+GxJYfp9bAaxYMH1JxLv/I4zM9IMX4Af0spcN3DpzHJBcWUJ+4Cjgs/r2MHNcMFeGQ1Z+J132YClxvxJxHNSSaH2UdkvvIQBVnvu3jEkn4GM1o5L+PQKyZyi2TC6blyH6vKX7DpAfHJV6Km6SgTtaanXMKe6gaSm5bTgV2u1nn7M9h5FyrdyqNTKhLWBlQQcsB5AQGuiGDH9BzvbDDYz/FLOmoLQuJWMIpUjWCP9t627aP7fmhymCjk0k2KSYvK+au/a9YDm5h55NO6VA3NUQTupMIOfkcbc3ka5UJlpkAlVQTIPilsqJAY5/xJxxCBekyxCyfaxkk2kyYmz/TneAGVFAhCOVWQp4l6uufwSIYocjMOgXl2EEbjGEoeafUsRlZCdO2G0pxCKCXjj57I96G0BkO/vv/+0bx9pkpyV7HQE4m0JUPtNpdRgb5BzM5S1XN+KaIX4jYazOONLE7i7BDLF3dcRalnQ5i3mLA0Bpv9F3+XiiQSXcxZBLr3uvQx5ryKuwre2QzlsZYszI7Gd3IS+ucLAU5If+ubf3Mic3Enr3AgLnrJLJCBR679jLm3R9Z1hkOuoiK5WXzZT16DOVvpXgnqbhC61wgjhppLY3vosh9zyeTNqDx+0R9vVL/7Xb9rPmhvffs4Cy8T6ryP/z7ZwHDdAT2Lda9PQlez3/1RKLDs5S9eJngtrY205y7XmDIG09u34Zmtw5rRDS+y9w3QKL7dywrSYg8XQykC6Rc5xM/4EzxyTRn34Q056bxkfteXFgupDsnmDr/MPgBAbCk3JCYgK2yT/uPWMBFvL/WjhiAWyJBW77L3NfF0WHHwTZL+qrRHnCA8BsZMoVvdbTjXXQ68Zs41UlyS4xAqMAoqpaBIXr02+s1PklGC1XnuvtRYb1CqvnUwc2VxNHvrcSnig9H3233LIwqFpyDm2s5pdg+pMJ1TBDbUQSsgpn+2R0eKcRng7uffzto6YiEMGcPWodvBOLs/kMM3xYGTXPjflYiEsn9fYjOgL3Xr5aiu/4LI5a0TKjeg8JrPPOOfspcim8vaXNkIznNKEQ8MHDD8dzBZx42MU9QT/XqS5jelosFnFMPWXKuE5qinRqjXdBzqn9klHfkHV2lWLiu5S3Bw5qJVq8OOADgExuKHmiTreRH7GaSEIso3ytm1dLnmON6iR9ptEOc9A9Go1gGMExpm3tkFqIjoCJVyzeoHyXj2cwpbJbf78SEpogjN1fh4Dxfslj6Lurb5HudLdEGmROgkLpvJBVPRymcmP9S6gFLfwOeCKzQd7PJFNNdM5+4YZh8x2vlBlPvn4bDMRnJ9DlIycCQK3QkknPTjwMwEZA4xAXeUhWEiZjRB83B0nupSE/OiEYzYLdoo/jpNg2Vi5MAZfm7Jk3Pi/KXBE/XTJmChxrdYMrmow/VkPclGNurLfYw6iH2v72e1sgAKNcIC22iymzJxMDgku2n9MQ4q326/gDXiJZJg6ee2PEIE3iuZ5PCcV9+FiFJLZevJBO1VVMmBmS1+RZhyi1vEBEeILTbR8Ctn/hS2IdN4z56uuk813oLyqJQBO96rjn5ORUDT3/zzFR7yPSPWHty7ipXjtuOsXmQgqhpcjqcBS/SDTQAj/4CkogrFwFmVEhPpICLJU5CUVGUn6K+NkksFQwFk637xad1ebCdB6qo7cohOqLopuqjtWaKTOK3EEYkK34x2/P1LacWZs5E0Ud9sxknCwpkES22N3l/9A1U7G7cB+n05JdN9JVtXBG4oSkdUmdTeygC8GVRVg4Ss8MP9qbNwYkrzA3rLu54AAdxJ6ChTgG+MFjMp2KQ/wHSfNDvY1mmiGwIGyHFS+Gm5ZPtRLxhPY70pFdIVexzANe2dcwdg3QYflBbiCbitvzc9FHR6
Variant 0
DifficultyLevel
731
Question
Bellarose collects insects.
41 of her collection are beetles and 61 of her collection are bees.
Bellarose has 6 more beetles than bees in her collection.
How many insects are in Bellarose's collection in total?
Worked Solution
Solution 1
Let x = total number of insects
|
|
41x − 61x |
= 6 |
123x − 122x |
= 6 |
121x |
= 6 |
x |
= 72 |
Solution 2
By trial and error:
41×72=18 beetles
61×72=12 bees
beetles
− bees = 18 − 12 = 6
∴ 72 insects in total.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Bellarose collects insects.
$\dfrac{1}{4}$ of her collection are beetles and $\dfrac{1}{6}$ of her collection are bees.
Bellarose has 6 more beetles than bees in her collection.
How many insects are in Bellarose's collection in total?
|
workedSolution | Solution 1
sm_nogap Let $\ \large x$ = total number of insects
| | |
| ------------: | ---------- |
| $\dfrac{1}{4}\large x$ $-$ $\dfrac{1}{6}\large x$ | \= 6 |
| $\dfrac{3}{12}\large x$ $-$ $\dfrac{2}{12}\large x$ | \= 6 |
| $\dfrac{1}{12}\large x$ | \= 6 |
| $\large x$| \= {{{correctAnswer}}} |
Solution 2
By trial and error:
$\dfrac{1}{4} \times 72=18$ beetles
$\dfrac{1}{6} \times 72=12$ bees
beetles
$-$ bees = 18 $-$ 12 = 6
$\therefore$ {{{correctAnswer}}} insects in total. |
correctAnswer | |
Answers
U2FsdGVkX1/+K13dViQf6OMhSj3qSSAPp8qAh+XU/W1hRYB7YrYbGzd0Raz7D3V5Gx9gvglqWFF3JYxt4XNKs10hFHSJt+rwjhPQdK9LZRX8kSQiDBHu8yIlRUcSN8nbyrERFOmL5uoNeIFpaErJ4aTEmKF8iPk2iMITXXhXr09Nf/MAj58LDBks/7oizRHYvdvwE2jhFrpBLVWTURIIDgW1O8hXKqEIoD6PbYQZ51ktfMDWvknPDrqpwCOqRH/v1QxL9YoDOWeyq6FElLrAzi2ZQmWNbB5U06uV4Fy0Lq20q56CcR9DQHlEFb5Ou0M7R765BXuYpLXhfDCgHj0strMhuuQcPmFiNTeHRs47DykCwXqqPe3wY+9sws1A3pfF6ItlubuwgsXE29eFOdpMhaat4zF4FYLB3EJbQTmEwbHtc35dem8seOo0y0BjBjQOJ2g0GFxYDgmGp0f+Ep0s9XpvqaKnos9HNx7nvtz64gtr89zN5Q+fmfjQFld20G9SWFeoE7ravBfgiUi1ZglnS3Boe6H8ke7nEOkM+gKOBgUshuH/tEV4lN3bqJos8fZ0ixOZk1wH9OOpoUUfDPl1eKjiYDli3/wBb0TJDTj4yYDmgrHbUhMGmvqajtOx7i4i4Z1ZigBb0cGUT2JrcmkFAunoUtwE4gAXzR2UkEfGBeOwcXf0BnXhPz8P6T563JYQvWXnRUg5dpjPZg1JHXRsjSOtyom4RcK5PQDUHOgyT7+z9SA4/s2j4pppjB5pcHOL8SVxIwKTOch4vhy47WUqxpT7AMQlw4w3kvt1B9ZHZS9ARhy/YOqtrJS3MRdW/slyI93XUyiSEPEgcbxbR2zvkErWU8OOWlVLCiVNx6k9HZ1frkNGhlqKZSOLPvoN+al5D5d0gZ9BVcBvTpFyQ6r3kHNe6ZWrdC6pilxkAaM2lHv4vHeScDjNkDC+TLMT0qEPsxjZDw6YbRKmXlF+sjPAcoRID+oS/Sgy9Uq80Lxuy/JMJZifFx/6IGrFmA5wCOu9EdF8JkLQRnmdxhTRhDFNFKXCZBogWZ5U0wh7ZL6rJEQdP9aTNPOkxAAqQEYqK1FzpfX8JutjivYpILyG1XJwJrClQDrkLIFZMWSazMtdY5pNKFUad0M9hZXDamTQ+/HVmsE1TuzSpn4UE6+hZBK1GK+P+Lah/a/rlhJ987O/Kxtjf1IDCP62VTJCmkWXLUu+P/U58Xlo/7pt9uDC9OOSvn3t29ca8SJ/opgNZjyNrpBFKvT1WD9iQKxIfJS5l4pTYCWuAcZIlmeZX6ZCpgwINjAHfS4SM2OOCsz0k/EHoQhrr6wzFxaEIaxb6BRc1jG/uCAJ0Vd7oAU+hILq3g46rtAspi8arviqSyelRpiGAdiZEDa0HP/mL/BVpHjtQ4wk+T9heCCD6hkCEF2/jPWltNgVYIqD0fvva0YQkNJUAOHvW5/vc4KjMt/CkegQiLAk2NndTaEN5Jt8GqHDzN1kXWoEISSzRFBoqlEINIB78wc5KvC6wUOH41BwkZNdZVyllps05gw7RLVuMXmWrkxxeoFLbsom+bS3RZ8N/g36/HF/d2T9aFpmbaPSaRbMzTEAdzc7fb25DrqUpwIGHzPAkimk4DJ+Jk9LSPT9Fax3cw5uecE00OP50kJWu7zYE908htg2etS0jixLH0Q8N4cFHNWFLn0kFOq//71S4/nA98vEPd6iWZSj1vF1cbYl3DOxxXhu2lU4++wtUqqbJgTk/ueQPGUsnSROU07gwRfZtp2bKDwNDeFU4fV4Vi0rR+0WPbkgQ2rxRHafpUUBBBGf/K34JL9USKNi2RFH9PKgK9LoC20srHZ7kXlD9VBxcZOtrSL60K/cjnYel0epl2joNOeyjbRy4V7+Ly1asoWVPlkh/lVEsA1+l4CJJfI/ah/MPlciBTuAsXKVOOHQ+dzg2rqB7qq6CGNsA+Ru0kVNVHfxdV4tBeD105ZsZwcZP2VL7RH7qG3UY6QQ4FN00GpWVgh+YF80zE9RzJt/NVtrpHhWhKnMAtbThhqxgwWGSJB/2Qgk5mL00CdtkWtMjpMwuSpox4+PG2ElbUyyB6Z6IgndQxzdOJ6wcTbV6n+Ag4h3y64VoSwOMMrlcrfliWVcoJGtoi8UeRblWGabxWVJg687kQyQwvetpFGEbtOYBFk592/mYBL7DEUBRzY/nbo+sRmr6huH3K0ZLbE3MLN1hqwcxxqSIGlpWKJoWGaoM+pqLrpHMA+r4+Two6zM4ShX+5rRQK4Veg4Ra0dP2Orx4BEMqflw+xVvu513gX+sMAiGij9uzvkfSiEgpn+6HEbKB0hNPBZq6VEBTblCxD6YcJYRWh0Xm01OBFDkFk/e1Ye+kfnTtLbx4R5Yw+37LUvRZLEvSTuVHyj/WmqoSn3CvTQlif0djHUL0daxOhvMN5JNrIgd6l6FYlLCb3HjGJhSJMohYIWr6FsuPrCTWpiGecNhZhgrErev2Lch3uoMG/uPpOHzVycdeErytYn9SRBQdOKxp/TZBhiqEFew3/wB4o379knViK+jDLiabsCIAm85z7yRR/KQXTP2F2yQ3qUEVBhT1WbLrWf5oStZvQQ6gQsbavu22cnYpqvdmxQGQ1IMsXOXtsaRsAlmjaZcVSTBGvOVe38fZvbKhXN3pREoHCKim4jEAFAiZU0BB+2QjuP6MuZwipQG21H4ykJn97aRfK2UH9/zkQ3WapS4suliHsQTbhCx5Qpi5Yy9/CIrk/Tcys9r3M23x5QM1Ix/aMiXPWMVeuB+tvppV0AYFPCNEdx2xyKRizxAGhKl7sbWNANeftmfcLVreDGuHILbfKchefsbKpubt0GYpt1UtGTYc+OAdk/u8UYMK6VUO+YumNqUfIU9LKaOXyiNz8SKE+/m/XewCGRAhYgJ1SGZaEoQ6HkCJEhk5gURJ+kq7SeDosFVwUo5q9+ZE1LN4CoQDsYknrQXFyMtSV/oTJYjz6hbepIixVNGIBqg+Dsak9NaOCYO0SJJp+7pptlBQPEqyBv+Nmg/PPZQHYv1Gg+1TcHy/Dn5Bf094Y0UMHoMR5ZzYdhme9+x1TAqSOfHAAdzzeR3CxUiKjwMTwdQkYdRalFxFty2LbMUnPigwAm3S0BYvyTdruHuD3A7mAKTgTkb82WKoj4Uo6SagBukmZOrZABSGLCLz6aYWpB0Isqz25jvYVBVe7Ysfy6CHpyMdKnwVffB1xYssLD4dgBfWkiWNcAamaY19pgRknFIoOQDXxPp5EgxXQaVoBAbhx5DR5cdF1BuvuPVIwNXCZz1J+HOr28Q41KLjQu4p7JtXwYXMhHx5hEFOCPfSf6hVA6OtPDd623FkhA+Ftnv6+CmHaAlQANIwbc5mwDB5Qz4RqETSW5g+TXuHGg+u6GJplLfkdzgl3NKOXN8D7Up3FAsjcaVySiMm4yzOIt+D/sIcjJNqmD00naDs17P+w/XemO6k11/uv/WUaxjRGcPmiv4XQz2lHow4gdA1ooWHE7I89899MZ2KtPVdFAPpMbLPmHUE2QvD9dPelVV1amPch0pioEckdHapJS5hSQbPXRkHYpb++ZyPl6qeggavlaaErIT2GU1jHo96yRcBlysRl+6qHYuZdLI3C7L4zhjDwuMpUukrXpMZ9ot/HBDnDw245MoNkTcgyVQtDvKOnEAVhb9rPiM/gKvnqFul32B3mnC2xGfdmbX41cXTnqCe9307EQl4uA5Tq3e8NSF/Nfu1olpUrgK44v/rH8d1cvhxLOr53k238nLXdNec1ddFekkokOZhka37JUPndqud1J7oMG6Ve0kLEArX0IolJSuzPZcaRwED81dK6FDSCYCZR0GnqqrdqBYHaF79T7CzMpzOaWQqxbwXw+DDoT7XgMRCnI1w5aKzCGRY2aEbl3Pj1mSL23LX14co3iWckzlglgaAbegZZxhhHQGxSBpqnQ/+8JIbL53JE9CVU9FMMxuXJ01W70xXgoHaoR04DJG5kj/BYfo/qb40NEOEBkhXFxvckuGdONtlwyOBernAa0AG6vNs1hQUSZqVkIMBDZ+JUDMk3ayTcU9iSEWKmxRatoiQAhhS2qZSBNtwKELRkfoh7hAi9WUAB0M4KQttIrMZjwuJng/+mCVj9FFvhTgs8uH8NRK7iB6w/Ebyj/EIJoKYIEmc7AaF7MIbF6PNNnjjYegOQDnmEepROtvg+sMlARUg6aHVewknYg31/xCbaKytKAgelCiJbByh9mTxawbsJDHr+UYhlotWyUfo5JduiQ8XGstGk+b8FAN9D5FaAF/cheHqf7Y/18wejgxI0rHKZ1P2btq7xTAKSLkmOem1M2L8jCOlV1r6jSrWKtqlPpjRxv3BsWQeiEUOkv+AoGv9yWy0H2nbIZR+dn9f2zgbe2YrmVGhkL1v1e+BQqa5fLFtGeDAzfmWnDziOAdcW4D3KpxoZPDEBeKzv5mzQIZE6IpVPiLOf8uD0v7kh3crbOO+8Ge8bK7JlU8j4mDcwld9by5nNXeEkPGllXr5ZxOtNUpplhVDcJtMP3unMtXFAfJdtYPN1HB1e+ompo4cJ6uHpm7PNHLj7VB7FgWheOzQhyaDEPtteXgTc3SKMIDJuSQOBTuJarDlS2yDF6yFWN6Udldw2obTsOnjf9RGRsualK1nJG3mdUkcwF1SckMgjAXdurXXzKbBCeqFpUJCErbeJ3dHKfFzaHwYMe5RTKbRlc1g5y2dHXvIwwkeF89CcKrAUi+Fm/7GMXIWcZIEBlGrLOq8c0vKmkccOLcZYpsouIKKyepPY5itGI9ijXUGvBpTA5VJdWrJubwiR5lZLddo7IJF0LsH7WK0hRD7BlceBYi/1ZuWw8dV1QjJ1LjUx3etLf2Uz48D9QwzZlgqTxAZYvR0sDLfIYBrit18Si/OQmdTWkmLEqSMeDcBv43SdxkLi2mgT1750TmUATR6SWLYXbVzc2BbyHKRz/Hn49m4N0/zLqUJ0WDRSIAssL857k0JT9P5DutLbXe2rED3hiKjPWgiFO83n2SRP3N2+ru1+5McFK9Njr0zKro74v38tY/g7DJ+uom3mPniK/0McmTrdT67NfmZGkx+fmgcnrnOfecoWxIABg3bKKuR35V8JQI5FlhCXST21uopKUk8SWohuZen825dHRh2o42Ma7zNyDtCmB+8xlINEzDhIlk6ZOExbvXlCEa1SBya7LxEWL0OvGmuOGnm1AoEXPf3OkM5RdFEVP+NNKUfuHC0jsxj5TCZaw2Xx/Zpxml1fcuNdeBauK9nSD/1Z8U58I9z7GyTIyrDw4UEAeQR3VQxcHPRF+5pS28Pq9PP2f9k25TUStIM+R9oHY0LAV+2R78aSp3fytCe1tSQFFxeRXlyyWc0spD201GdwgfzOL33W+YRvDUpTF3Ha05agclTAISEdoX0KFT7fESVjIg879ggrr+FIJb0IajtwGU37ozhQl2H3TB1G6N3yESpGCgBDD3FJmlBOJRgF6SR4bMCmFhbzi2MWNdKLEymWW7BDcbmznUiY7VO2x8JvUrFYHtaPqzPQsIyWSnmvHaQax8unpCxm6ZGwMdf1RsxI8cR7KacWGag9wPf0ECEwJPjkXoXVsPGtSZhxyzc0lQcsqLa6URHeqBq1X+PpjTEm7akzA8Xg7EBQcmmy08rVh2FEATTOX6DK49w1qwJohYC+6EWwktcbQ/MmICSi3dBkOwbHB7MgV67bDiPfDn0+DGxMK31dku9+8CM5p5UiZoDkChoy47S6gK5IFpjE6tSghomvhzfZL8Y0DdopgNlQ+vS0rdhH+oeJFLxLCXF/v8fppxp1TH0BZAkOmMGdskZLq8FJ625cZbVGdSBWu1OqqE45rc9gKfUllYc1ZexWOffhmLaQRYMzPOFQFwLiVxiCk/SpjLAghGQOo1KqP3NlPQr/SXArerWcfCaAMVoIBmY1Qmk7k3ZSKfD9BxB+BoeN8KMWz7xqeOJiZ/p88+x94ZybgLBA5b6JBO/Cwbwe+3Jtj4wXYf3sffHotqTelK2sj/E+gcukhHaQeKV+/H8XRgJvS6ulduJ/XUcFbXRjyLDOAw8PUIv8QPdEhmT+XQt3YHSGkSAMMjM4clhjqTqS2zH+9Vn3JUT0cySugrcJ5I8ehYWDQArn/Mp0Ew2DpnaUbo9xvILgLgTaJmDrBJYIOx3DaLfvkNvXL9+KQ0la1lETnCFsGrgIA1YtPO2rHWGssLNZ9GgiLRjv/0UmXt5QEQ4QO8dbjNRvCtfEFAoQAriSCAepi9Y6iqSogtBLQb3V4KToppJ+3TvpCKtdOcPTjX2J6bnZDlCe9aUs8ryxHEybX4bSywYMI7d97R6zS6mMPbA+VVbzN1S27vGTRd0NS14ige8y1L/ZeZByPlQKzPahwEYvAXH5nIci+2ftqclSNol63JmcgMranLvT1C0JuWy5T8ByDKuMS7KPUUSQWbGou9FHgLyBtr1pEp4FwzDjj2KFBoCAB9ewflEZoV05xOecRi6gnJTnRWCq0yF1eZy8T9PgXFVyNKIQIMWVGBRbYcx4Qq9XxAalK2OiysUMUp0aV4b9PsS1/eUBLfg0saztyTqrUC0vHmTGFUYtMosYWZKSky9hgdjlxPwPz+L7tmmR9YmU6Iau4qAvFikd3noIChGRGeHteC11QmX95Orqpmtt4SIcWwLjk/397ePWD92Q766yYkyAxmu5Au8twlfuuqh0gGubh55sRTy9xyw1ESgmgGRhKN5fCStDz67fD4F1dB/DQfcsdeK9L9NSsO2edOIY4WM2k4vy6CILFs/Wi0W/92WPwdEZ0e7Bqyq7Ty/y2fCY1Lx0kRj5VG1OcDes/783UqcOqnzngBwAasyFy2w5yndpXPrlUNK1EWgkx4CNkFVRZesMmi9ykpSjenvnVHh3aBnKQOynQPXhbSnL56cBfniFxvB7NgjXGyBc4pmWQVsLe8t1QjYmiDTTbFu3aqSvunUlF5x336Nqi6I7BcmLQGEpT4mgp3kn++vuUJEcLfWhIfjc55nZDQPbACJjV1WyqrG2gGoQvPuPTYL/OTCWszPmpHzpuQloAKS5/SfTbm+hcB27o67hgwf0MT6Ne8oaCsrLq8pHhl4hpRnS1AEdwTeTa0PcJ31kKlF6QVK5+F4aVUfH4+25A3OIg7X8PqJ6UzirWCCd/OhBWETDG8C07iIrDahSp/EsCxE/5F0hXKRUmLTPXZwYQvpFyVrWrVWgGDEPIdQu+LDPHcC2CPw2LKUcIOMbrlM9EPBmG6X/OylQYGSPNcEHQjeZNwoKNyR2vECROM2IscgC/KGtc3PsxjVNHEC13bceH42/U1GMZCN/nQRdgQ+PLq6dvKmL9idoo58l11FEC1KIOMqoAXgBtz+utBcLSR/Awh3D8Wyy5JSBqAgHDF/ncFxMOo590eUnIdXFUhWHR+VNMLhwFzVKyKvOxEklaWz2aDlkkLTjJmwF3ROpr1cEp7fAEcq3V3ARjluU8vk99Mmr/gKYNEVxGC+gzReeEYyrJv3bcz3XTyo8/r5YHTUFC6HemEEZAbiEL1+SdXtHmEfAh/X10gx4FxJ7gXHWWu5tkLDR0zwS3T5Eued5VGTpZ1qnw4JofoL1JTwxhdx3r0GMfwlLB2F83aUiOtp2G95fWeKiOZhzbbe9Wq954Y3MaENJN/kMPSzLPrOalcaLO6z6VovvXhIOzWY1BrqrhFdt1uPXej3mzEMdJgW14H6X7MTtuexBMdp6y9uG8VZPKsIcL6Q0alpjyPZtwEjypBOwUES0wHndeYbHcZRlBfQ4q6P1QX/wdhMhydQt98oTnlAMvqg6B3bC67WhSvy8AskRGu9vwHZy8WozwIjXlkK48HASy8+9CYV6Qsoj2dfLXmSw7ia2AWsA4MJw+swHn8IHEPYDk6eJMzweixcZF6VprFyVV02MkR38cPIbagTEKBkXTPKtVRVMaoaSQM8ll5GxJkf8d3kdxJ9UXPF6JBQgsKMaj6SoynyWWrUnKmV0SCMWx1TGBqifpRV6toN25OWGZ+8NhsKUs88XGmCKo6MJKeF+6aGMBIhykpLlNJMIhgwmgNsu+fchJp9DZcRwob4RaIbpLnblPVcjSLaYsUK7TFuXrqVzZe9o7P8B7xxP+ysp1ulu4JIGz0b4GQub3z5efGmy27E9q5SNhtGTqWl78MKkhgZ3UKZq0slrcHx9OFxhA6LLGQjo1LWha4VNIBv6Qu23pZATWb9CKsyXargiLHppEU4uZU+wRSwpoD8m3hc8Abf5Uu390R2g+3KsMZFQ5r+ajPAhhXKPSBPELxlUH1z0OtERlPGLhmawdXvNMzCR9HEfv7NIUSKFiDZAnXFHeC28fUZxbclHMEDsxbXw3FI1JSXUkHsR7W5rD2G6YMrOhZU0ZnlsurRhDYexUN30Lv3aKmVFlwTVukWFLRMAzUzhLsFhiMdwGQDgKiE837z8ZrIdVDBDzQzABVtt835D6bF5GYal4WbZDCVjiLQHYD3C1wUutFUkSX1WX1hQAcpEzmS5pD4FCKgQqVXAdu2jzR0tds7Ymxl3iuz8s+DT4ZHrG3tRJOPt+c5V0P0KX1SmeTgFCtQc9xH1jBvYK7zb3DlFueG37T+HmulW2PauVZKooNR5ug66q/Flw8UDHRd95TAG+VNupY8KmDuDLJJnISnCZBLO5nCi7AzytYYfoH7EAn4RMitHpiVPPIaSCfz4TPRoFa6zbQdh5dVk2Ydnhxi9xTsD8u2/R3RRCRIKGOikMEnhgc6o1BSqQ+O1sV6jkhdGvkomw7oaE1ewgEAZSaUI1NsM4JHnoe9VpUX3YHK4HDf50KL2/zyG2y490FqqgbM8JAefBrwqkidGHjJuaAUhwei6JbScRCeXClTk5dKe7mc28sZlGigbV9jnHcZRQmEjxqODQevb/ldcjWLpAoAbrdFihew8MFADz8eqc1cLPOG/+sev7npYOYyD3xPG6VGZWDEuqLIz0jYN6n8RN13/91Y4eegkNHGar8RQTFLRVC+Tco6LmBLZ/59JQs6CdGRGppxJNt96s2SPhW065j3c8fxqa1f5Ro8rfNmYy93jq7byfnVvP68JGKmPWhgTyZbfdm47uay8DOoRzjKIUBw7JmUVF7Eg4Yxx8VJoVFkdgIRepOKr/T40UzfUHRjdy07yxaAwtdC1ESbU1ja6TA67UZLZlTuz50qPt7Y9ZZHS0af5Nfp/a0WQiOOPSQo5KntyB+a8VxLbzaw1ApLmCf4ylmdV+UXcBHMzYE8AFnCvJed1PRXjZFryDuye3ltn3wySfsWEZxGyaw8+Sqq9jxhUiV+216YniHiIx4imHjDo8rCeTSi8wTsPlNkxX1jxWmLpvbKZXk3GEXzfMu6WiX5NmZtHnOEeF5jGYzXLda7WdE4ZV25YMNdpnFcpvjOjHHKSHHEgwMzFxGtApqT93jCzl24KjoeJaxZkntMuWwYTluwKztmr6mKIj/lqzwIkZDQ5ozHdO8PZL9G/UhBcewhZnZYvxoEIyDIdIKk/yxyTHUr7GhR6s1LcsfVDfiac/rUmAdnXz+zB94CXHsktr5IWb46YstdSQKRMWdMZhrMhuvQAxQKifipF+etdg0rBzCOLQhRdBKuCbA73q/CH58QuuvtcGBrlrRfioP4AQMCq5WZ/TtyATQ70gSd17Yn/URAGCWIWxDoKKAvCsNXwiJUd5TfeRj3Ej34guyTZkRt217k87EZpxYBlkEsnTFOKfX5OufcLKwLOqCfo36f4jpMYWmQ3nrsMagFHandHqv8arRl4to7yYdikZQbAzg59iZ4YcjSgc/wWAHBDJGoaC5VhOs/t7ReS7B3Ofycci6Bai70ihDDgdJt5kvOYDpK0NU7uXhvn7jJYOSHhcKdPz0v3r19lUGLV8Bi4et3JTygMTnanf29R6dKc1It+QcJ728CwiH7SyrKg2ZhK94XMS2+E9s6bRpItLCcUOmosNnI05EmHhRIgcGLkZrRlfCxLBPrdTXOwu2B5byhnBd1IUUexkLA8JyXEoQgA5gsixrJ4KANcUqjKIueo39K0WiZwwdbduaO3V+IDKM1TF9Ie2pZa9MXxiPJVRYecP1RUwyF+2V2Flt/XUO5cFPe+IXTPQj8Y5oQkeFig1qRFkXylsVGqgsML6303YxNcmbjB3h7H6xcH0RKSp3Bn9TPi91AHKk6sdP8j8L93oCIcoR0MosxXb0rAPLJDVxe6JO3saHs7tJoHAN4GM40FuKZ7dJ8eKrUsD9DR7MCCD9881XPtZlFYITBqoG4tgH4EuX23UqL/2KOSamBJMUrvAVItl73X1APUO40EFppsmEIGC498o1dNjzs+uGoApN3pkmThhaMig5vvbCDX8CUl6rLxFgEtMMn7HbHQa9doQEwgujaQn5+x2D1/FELCG61LRt+tc5pWnn5Ve6gc5P1rc5iYvq2U2gl3gw11VSXkV2lKH30jBxL3rf8luuaOI6/QdkuicroNSR6U0fcxAigkCvM3XZytqY1u8/EDymeP3NlicedQHda+A8y9uxtruC7B0TwCcPDtTVPfXOwsV7N20AmJnyvvtBm/7odf/HZ6ady84fZQ/0wNbxo6m1pRDAwNxjftS2HGOu03PKE9fh5GtPKj/YjpX69VUSKNzr1pBLRH0SOewU3dVSZ06XQNdNAK+PRRk2swACgPwfS5OnKjvJwQaz0Xsc6RLUDgkx00VR1CA5lDzdXa572QRudwMpP/BglcaVe01StHV2afna49IeBKs7Gu5BYnvo8MCn78zb/+GKqIs8slOWO+wUp4e0HX4zXvZDvfi8MWOux1Vt6yKDjGhNNxGg//eQ6nwpov0pP1qAGHtexzcqurYPRX9Gibxdri6nkMjpz5/1CsiRLmERHOXuO1kxMPY0ZRdjD12GAPrXFuSdn50bp7ZhZEEVQlinYoi+E//brdsfMwACmuv6j59Eayq2gchmW1cEZfyBnxBZH+WXCU3n+rV/kkd//zL/HdS6WjPp9Z+QC/wsy1YZm/VM95ug3tXi0kHbPpfZWqVchWAHbnDN/wWqyjdckzQVWQTrKRkKTtCkek2jkM6mOz6wZf+GKybQJYUh+rCrK1MzDbdfG/pwBMXJk7TJUAaSOh9Q6CJ9G6qmw4haacO0cesnmcU/PCcRk7Y24CEB6GFqC7yLNqQacCCNAV46TfIOy/ksZWqBanyDxNaWHlu13d2znpyxctXv3ZMEaz6mplR47OgODMe0uD1L1T+FQMN/Cm57TJ8EhkivXSZejAuv7NH5OpEgWnhaPp2cYlUIMAisC2tDWyZyHlct4JrX/vvFXPjqKszOrcxSw1iClfoGMQdLqTCbIXEPFy+MCBlUGeGnDpWP+dZFKLV3Ut9oGFd/OVF5DE63a+zTMiBg1b+SpPIBmnd3YHiXTRslrU+gVMsOgcMLU6E2IfQHRRw6avXFR3hiyrz8/fNxIwILzj1bk0xO+UaZ2lFhA1xgDdUWCpFMa/dyfqzWbH+hjhu8exSIQTjphe4+mDXCaYXJoIqhCpGFBBLgEHikXc4tmhKstRkuIeljbCxOvH65NuRaKVEimnzmp23XYn/2497FcSDUNu42LFyVEEbX872VPdDAJ1ftUt0KzDLEj8tBRmxZktByFpQzZriQceUeFkBmWBWrnzfHl7cCp7W+W9volbjrJcjgmfLYtzfgEM30dHaSgu350g0OQxp9jpo5kBW2fkdioxECZRUQQkj+hToSjQtR9YrDPSLu6Ee5t5dISfeGne90Tl/SJAZE3dTcTf6nxuVYFcN6IobBCoxSpNuEM6qjBIRh80qKMGNLxUOIqlVH+9WXNeu7p7Ot/T/7B7Q+ul3Ur61sCRfj++XxpN58k5s+FeBUpqnjqFLL2HSGGbnjGwClPRPcHQl0Qjd8FBAGVoIDHAkvwrvTPSVX4AnANItsSFOTsmUTxhCo2OxWq0MwDpTuff53zBxxx9oOyGSYB2esFOEIOIMKBQFo44lp6vv/7XzxRHRV1gdr1RNmCG1vuc0dHT0YsTuBDMrmdBVrMgE3IRYPQ8mrAL2zek2d/fILYxTtomNT+6rVMH2MX1IQGuQ0xEeHOmxBiTBIxPXay+m+p0ocTjTxJJ+jXNjDpNn1Fv2kjTNYnfRjuDALQH1Zn9VLyClGy1QpW27tYThieMj3ex8KS+NcRIErw2ru9Pghx2gGrEQyqsiAFTICbueLngS/9BBtwEFdpSMEEwJTZ4FSTQb1iza8snLj7CFs1V2ZOVuAkUKtm9MTbSErFYJ2fYOUASdVtdayTFy8AxNe0YMu3PAA1HAeiUxnDh2tfy+YEG1WacQ5Ye/PWjhUdn2TowDw7Bi4jQ1/8BK5QnbyJFfRwZ4WffNrlCgOofsZEuBmSZiysAlVbWnX4P3ED0I1B0VeF7URM+O3DB/mR76OXHZYcPpHoafqpxzk+dSFAvUdERP1ZuuaEOU7eNmTGAuDTHuCrUYdpxlk3216rm1hVl79u4ARFmJmkpgKebTAhFdBoxK99SFB4qYaqJ495fz9YMAnfB3xZW5++RIuU7J5/dt+CA41D2nCJx56V7FAaq19mBnXNL3gouC4T0Bo3yCfD/mCvLrcqQh1xjSagpj2wIOukqQAM5cG02RCAH4xRuHmNtfsGrRMhlc+BkWWZ4/VRrn+WSjFjm72wRwwfEpOQLQaO9hRZxdfYPZeBuz8r/0nZwrg0pJ4tjt071RRBt124H3DX0vQ7sVSDgtep37fAmvahig2NFQtocxP+6BMXcmDVgbwYbHdF4Mxu3hvZ8AcMIXUJfKxmwadwrXJkhfuUO/Gef2lC5y4bOncMQET2/WUInJcpUeV/53lme5CYzezT+atK6Hscqwzr1De3s0dyqRDYSUlm89jlJEshHOxXw0L0MsiohNXM5g/XICIws3VPGaImS1PW+PekYoPZy12/dYtOesjbvkiJ3buAl6e3o9H4Gss7Yc4qBffPYgkuo797DLg5HQfA/5XCwiBbXcBIeJfxvpDCq7BMx8pCaOMJFumt+3EjsFf6I1XwrtPkPtx7ltp3oKIVMg+Y1gj/wEE1aoWgbbLXkqLy83neGEBlJmnGJDe7MpghD/oM0Eg/F/7RsjdejSj29IC6NkN5JhadWsTlMPrdSCdjUZU/sBoxlH3o2L+zB/C18YxEeLnSq3ikbXIHOktK551ZYenAExNB2C3s+r2FgWDDPm6zOAt4JVnDIw1aF7a/eFY5ZR1i9EDOMU1QjFuhfoK/WgrJLNQv5tRicy1rTgugwcjnMVIgUi3tIzLtoLF9c+yS5ciF28ssMTc9pWsSrDjgSCeGRY5N2KmvwlNAoU2v+vasm3SLyHvShqrPZFTE7FfPTfYXLriQ4g6GFR8nidprfxbVf9Ref8Kts0T2B3l4v9J54iprmMcPZy9/wdamIrWZx2lZr3cVCreGapNKQAb+N5mGHVbhvn4SbKmN10ARAJ8rT4izH7tI+QVvfjtnrC8rlxkihLLkB0srBfUAch0ySrPyXAGb/9oiAWgvCfoo1KQMXXu887Q8nKgiZ0uNfehSm+E8D/LH/mwhBK3InLEQZSdpx/dv6BwthCZMKpnJroS+6oU78g9ypG+VwLePYEoRuXYZwE9Ramgte01jy/2v6RF/5qbZE5hIZ6p11v1jyo0B04v3gTHrr+CLa2/1pHqRGBZ8uILxow56yXza2OVXnxocfwQ6t/iueuAqA8631Xz6kEniAUXAAS8f5U9CohZWmn3deBwGImJKQ/7D3Z+3GY7BZKN7Y9zkQ3rKae8LhytXKK2yA+JVpwmasDfSEs4iei6we53mNdYdB0zuwnfFTqPSvpnZR68S157/XaLFKBSxZczu3YrYYQ/5yPjfqVPY2I7rtWSdZZKH/TD3F1D0s8qQzFGiCDVKu378A8CbEBzswZViZph6XiYNacuBb4GlIJ6vxO+jIjPtBzY6Xm8+FQ2hSN2vG4ZNVAgLFlGg20zHfTHyzSiVl4bqgPicEEH2n9LS+JXidvMugtoGOixt8ZsjiWr5oDjQ3kDJ5BMfZMeevcoDXi36A8Ul0jYFGNnyLizZ0vG7mV8Op8kTmbYxNj2B4Vpm5YMvBEg97mO9U2pXzF6cgaFQqy8V63yqyOEwSbFWYZXkABlB3QWSw+xMaVrLozbdpzZ7NPq9e8p11djKdtZAh3860p35iTY6yNUbOApsfMnxqSkgfPSipLUw/FtcT7OT8S7Qf2RPkwJUx5CJLkW/z18fHR3ryR3YIl+zTu8aL3x74iMpTtj9HuggR0pOVVNFi3MrbT2AeXRbhsKrXkxnWo8cUoQ35YwNcA4JWWHhnLaA2IVD0+dRbPBUyoicfvZJjgK683CgeQbLiCFuu6+nqHFT9azVo6Krss2WNJ//Ftj0mBFsMXNBRkvo3i4wbIxXyjsnp1PZ7i1Iop5uh877N/5CUkZFFXFyNpAgyz6Uoikmvyacniz8pfm4whHS8w2yaJ4aJ9Lpfg3ZflFVyGUDz9ZUk2qiF6TRknLKVkMZyCIPYMH5imUGjHwdtFzTLPy6CzH6bEj/1P/49Cg4TgIrLAtD2MIhcr5AoePJhNxEzDbqZ9wvRtoWX3ubQ4PaX9IwanNMmDeSxAQ7smHwR5heb0dUDT0icn0rcrTaHY+vF7zXqwQzpuCsloZ5h3REFyV3vc+BlW414wmGGyITCUtzIFpoP54dylrAQg6qIyZ+1agi8i9e+2v3CJA+O+BYi5WVAP3Oe8jNU/nrJc99961bW2ery45xnjY4oQrW/dzD80sisUQQd8pSxisOsV3d9ZH/pQwVlmRRl/+RCKjoI0PCNxDtgDqvH5wgyG9k4oSDM7Rtahpzqo5rG/tKZjdeJR8/hBVTd1a5vboRRmwG6IQnV63ljIABxr7sJlfxM31Kk7sOqkODNOV8Yd7Wfne2mRhFsAibJBi4ZGh1KYFw8MtLLUyI8YbxbNmSSg2xLdeLBd/09QNtRy2VpxzRIyKJxQ+aCtJeJGo+OE9mtLmFdQEWjjR1GEKtbrUfxTL8HTau8SUDFoTVKbzITUUIirkiNoXE8xE1lc5zRoOAJ3CViFYqolMCvFxciuhxTnWETios0YozLD20ltHGN1e4YqcCNlnyxUU6YilI17PNS3BXfSTerarqI0zGamVT0xkoZXCXGHl37ILy3dPitZ+9pv+t2yWFw+FsEB0dp/OeMPFEr3Ak+LhCeM+tvQr0DiIm3QeuZbTUkBd6cU9QAyMcNqO41TbLUb+ZJJipey+Jq54xgn2HfzM3KTmfPeiymo7rsBxZfnYTh9THuJ/jR6Q3Q7n0/l5/8NEUf7p9TCaY5e1/I6EaJzPo7/GvLKcOb4jVBcso2ywzuLhuoV5FZRasF5uZMhX09IC+jDxG48oeyDhKbcQNGmMlstQic0kpD4sp4vA/3Xd+3KySBMyTZG5yPsjqYsi1nhwjXI2xIXDZkdXTmPJkzgPaY/zCGDWYzqAx/uInWbE/Ezby1iJSuZ+FMyyhj7C2fdCgyj2lBZyKlkbpWy4+NCLdKx7aRNH3ycGp+8e4+P1wFmoAx4P39v6MEpzJqzmnaMMmwGLpeFSmyZH/EQy/5TebOM+fP9WRLrSlLbwrOZdWQKbRy2Rp0OyTM5Tv0oR8lkg2y0sZkb0Dz4iN3tFhNdBRJisz6zyUNo6s0V8+doHPPuQe3J4G6XTaqUmBoqI7wz5tgv6tJcoRSN6GmkCd/bMsPPhLS+tQOokjTyaLv5Zr1wIjV4NIbv0F0RZDUTrPtvmfSB7CfZ+BDNqqoIVEZ49X2Lw4YQ9NaIbLTfCZwSek0BgyDZXNbl4BDHd8PLn3iHGjEH9qxWIFxGPi7SYM5W1r1hAGFuDaKq0QrxvjVyjgZswxE4zd6K5iFtArNTbvZr3vKzReu3k1kIOUwTb5UxWBtMb2Pb9b3xY03AcNThqIu5BEtdNgAAaUbyxP+tJuOHbKdU0bhnK8e/ARTVpYzwm2XUrKPkt99y32EY6m6jfPi5kvknFjTpjtH9ldPtCDt9RXtCn3rehdc+mlZDNk0+6WLmCRbmIAhmjWTiQgehXn+/0VEdvCHhQIb4e2sXywsr1FDprn/YOt5cDBdsK11KH+6l4/WEWEz3ymYy/a3ULM1IN74wn9+LAJL2YpdcAjly2ZCscr4xksUfJrivG1OqATKaP7eagUpCyCe/pMTLhhK6jCLFlwTt9syamEsOBZKy+sddNYrqRQO6YlDFbOA631F+R+aVFqFJA01nnPfBflNWzHAyM6XKP88+ywORdXAicMM7VDw7W87bHUq9qaYdiBVAVfkwGvLThhoCKU5PSI7od6AgR9ktZCnptJk2Fu+/gV5CzqDgR8W6DhyA/krTKWTLcntxq8/v6puOBmkR6a11TncJ8WFOO1Kh9IVDXmtN+kpnN0VWby3r5TCs0WVP6pXKzw4VA09bJMMLynKU+XZ4YPij0fukekIFBloJSVKvf3NukNSAVJrMpR03Uwh/eiwHXSInDIFAWegSgyZYXqdeyzGeNTqBurM7L+phfs4NK7cPDraDWvAgNPfErWxrbuAtQ7gp+OJJ3CVVTsRMOv2jMG/FgAq/Pm03nf326o8tZJSvBGiC7jHrlTVQUFgzBLONBsYeowvZstar1e7Dg5ycFhcjV8k4NGp7z05EkQ7a+ELvFv7SCBYCJsvFlU4pVXH3HSW288rrBqmoDx/W9A5ddw9oN4vx4X0sqPPEXakpGYIyC8pTnKaI9NB85QhEWBoCN6KqVKhHf3sqUiXqeltzwJ9u1eRLChbiiEAo8SDtrkkpL/UKxN/PftflPhyFwLMt+9mIjg+6lWYscW7M5UJ+RGBQ1ZpxCChAMm7uQ4g8RKjudWmp3eOpBNQWYRpsP25Xax/TZGlxTVgRkjb05/7iB6r09SanLjKklrBc6jclNOW3ZN9wHEuS4g8LnkRQ4axgykydEoZV/C1qUuIb9pYQoGThkwQfu7FGUgFIRKlh3fQTEAyZ2TdrkXGWKc58Vw7K+UIFt0rHCqhzycftXzs4EoSEkPgittnCjun7iUjG/QCOJ8mVzPLUAQE4F+Id65RpS88LPnYXUGntMQ9+XKYyu1ViBe8DqcOx+RvQMYG+pevNqNi7GD7S2FjKPQXsxwnQiP6Zlib64b0Xvyj5ZCsZjrRmXIGjsYFG0N6pMOOIXRbC0YCwyAEe3jl4wb1TP2s1hOjg2bwn1btoXQwCNaDqoPKZ/0ui3c29lzOaAA3XPqva6LVdH2qvSEFP50DUh1AUTTvMcTF5Hvo3NcdpmDCIneXhRTUKck7M3qbp9LD+C+SfLD93Lpb75jAyFu61TwqoYW1VvFnHA5VN5pg0AIhMp1y+C96GacxKNC5RIzMUpJsb7E99WNz8kmqF8MUDTHCg/ned0/EDI1BG65HIhrG72waGHLVE0vTmfGLBmbsHTaw2j8DF7JrKbVolc2pq353+TfRFaAaYLQyw7GhvUmh4xrse28P8lGf/MC0/iWCSXPF/i6SKaHTFIHIK0mmY788iMweGS3lqEbC1rft1/3i3IgQnmsZF1Z9f+zvBTD0hsKox6xzaUfeCQkgMV0zp6reosIFjJKsjjzGZqoJmngZVufAOIG+x7YVylVbzDhdVHb0Qo/Bnca5Hycg5OGV08F/GFwgLjnNlAvM68bCy+zWeOYSm2qhDydfo4t0xe6rmxs01q6dfNsvV25BNlHDWztRdcM0BsZ7btVMYD5DIcglooBSbejYFvPOWVymnqoZHjxj64StZYq/pzU2n69Ypiprj8Bsd+aGDCgqGsYGRtP+hmiO3QClIFGljhc4vVyV0Tg3Y8AFvSY0Wom961e4Yl0ECuqO3/IyaOQODTRynRGJt71lthtFkoHUGffGmTP04gPrZjRAIYGWG6SloCiAHi/FXOFib7ic0HtHjORr1CAnThZ2rFDDiEa43rTDZJxSBbyW+iTjSGGwsg5JpNZpSRgsyRZfS5+vWb7O3kW5HACYgiwPxYRDvnVNdv7saGIgc1XN98OGMYxA0pTKgB+XBy0q9T9aUOmId7tP5QgGlEmJx/QwBySy2RaHELq+Xj0vsYvT6+np7fRSmOk+6i6mvAhsOCjLM2qQNzJetzeaPswKvuXedVw4sf4xEN/ys+5TK/qkyYBgdDK5Y4w+wWC46aoGfQywbDD8O49J6gtiVRFpYNM/uj+ZgGWqWPBMOXjPZrnRQBhx6BNex3eMGSlQ2fH5x4zHqfT3095kuFn7QF6915WULHLUC4/9Qy/lgJCUS8RdgHU/WW2yEzEid0fPJKDMCCRwyeTLG766Do3fOanWABEwDegtV0i203iTp9jKO12oX6BV8p2O4xBMOujSxk/e4Yo/yFj7PTv7TAf73Q5Ji4sd+UB/kM0GvzftHnl5NXD9/VWin5/+EX0X4irKBOkoknDAoRQEnHnDkBDCoiI6pGSvLji/IBpcLQXI/Xnk7gNxJsDPpWFldC4cIKkmSa4DDbvcce+4Dt0X7PoMCyUnok6raVE9SsbkKdFPwUn70jM0VyVxnii/w6vSJNkeoIxphGkextqG/KPTFwpoE8QPJJH3lYcmLqxERZtx0tzV7LcjcYqFdEpeyIzLR2TU2cm7GcYXrF7Lq4lZcArEi01d9NGWPNUAeR58U8aIhoKZ2rBytGE3PBvV2Vhn+rW0E1+5lDbx1skpeMzQ7aybciFLYxXTAUOsNdPCNJsaxoV5biSkJ74cEwq9ktLumXsQMqVkXdTMEiWSz8zzswY4dsbJEslPCF/GijJySHWlcmzqVmN5zVGeBGPqrVNHtjT6tV3O0uHNKRHW/+NpIzpawSW0wDCPgidH1H/x17EvJ/oy74JoRUrNCAzeK/kB6zKTXMx05Nfm5nolRO1A9+z/N9gPFr78pBLe16AeJDQml1KwlKUUTMp1MOM1F+Fyny2/AihpNk58v3o6DvlGpclRZpwc0piM9rs+OU6Kty5zg6rxJG1EFoNhcycojiIBTHsg3JEe7DfPyJNHhVGiKC98QvmlrxesEDQgGEa6OO6ThZgkR3nSEPUFFd/Y+tJkhVAFuF+8+OwioDDxygdl0U/1/9mQwqUlEH6a5qspFD5m58vD59enim//tpmXRnxeUVVr6sQOUc1HQf8NUF2GkT/UT9b8v9798sUFkH8TY43RnMXrwITNnmaCb8AzQwbasfuLvzyTdoG8C9gv8FaAlwROa2Mk5qmTnn1a6puMIf7KmzhP3fhE3rPYylv39NhXuKkHBOrwwG9/6xtjS6c36m/ej/hflJtOVQjdj1i6UOIqxjZCQRnbb3C3rl4xFacyiRJuwlXMi6AEjY2QKTUKeWYBAv6Fm1+HpPL1HGbljAn3WDKHS0mo9yTT1Sxjewl/OcKhnJ65zjnpWd8SjqngafCwKZOaRVLk7LT9aG2rK7jZzt5FbcduVGQtJtBt1kHqlrd8OVB+BHw+RwIstAeQSJT9ZfBkekoKlKmGse/3pxSBlEkabeGGz6SjbVcyplKzJleKfEyJBUViRldU1Jqz+0ltkH3qL3GhD7kR8fCDJLulhZvLDOgHc+TaasIGTY/UfEwHQeY1tQ1vJIQj1oEWEfWwXG7APqQu4HblhOcHrPBBUiC3hP0EIf48MK3sY6SYHtKv/0q4/E2bb80Dq66p+amTKQxddP6zamqQA++ioqNq1W/RGVnEoCbxHfDtkrKUw8qvCXZ6l65lGQ2WX4H8GMwcheTaq1e9YolpHvm0u5upvTeI0Xp7vpe7AuehE1u8qe74K9dJJjN7UMR3by4IiBI1683rTHhvYfQlxD73A6CtPriNqTVgnmuPcErBgeuIzmo+8YZt6O2lD4IIu3a4bjvT0VkGp79pz0N1KaaFIxZSw5MzvqQQs7qqI6nqPgtt3dkAjkEGpno3LEVVikFdJC5lurzF4QHadq+fInpCqWHu+A/u1MVfB4+yH6QdHDWbR5S144GEZUnRiORwoQpJXzPrRo0TBs6JUjL0IF2dwxZU2LSlE4TNprOWSelGjt5uE2XOc2H5xSvOshKqxbq4cXTjVTvw9pZhKcQf2fco6EAcYWn0OWLJEAoRcPGmktDfdiyzN81ZNDJ4K5A87g1lczEVmCUX5X4v0y3qHqXrGPM+QNCzuow1vbB8PRqsGzQWhglXUqRxgHPs5GkoJJQ1eCfe6lRWub0UYy8tyJMwdydX4DfStvPfcXPZEbKqPx7YFQmcwsfzHxN5ZEwucR2o7OjVEwbSPJfGNmJ06yCFm9M7+SL3n+Hfp9OJqm7abKzfinzWhB9UImN8Hh8mRmdHg6jue7FtAubBhwfu+uirSRbk3RmJ9hv+JAqBWS4tWcYpL7tQnukHWEy5CK1tk1p/Yw3tPxKPhPCw5KSGH4TKkr8tDdQf+5h0ahr8sNlxB0/b+qAmqh5uJgwxWqpMn2IKCq/KA7OxxZ8msWP6EjpaGIyzwlZLHNB52FEZ8BWwDZ/jYr00aqYghEqQhW78kQNR7zDE5+jhBLbX6mrEFoqfASWS2WTbKsBwwDoHkXtvdVdllvjxK2+DgcJg9tWUChWXXdXXJjCFq/E6vkZ/bD1xAzyv4zmuYyvMGk2eGIzbo1Rg30IwoCNdi1Rtn4SQSTq5irbPDdDB+dR5pRDvAb7VDgFV1sGtcQ69Gi6ZiA2qHuqHmN11+tL/cDzUK2E1Jn/F5iBCxt2nQOfa0DarRdKljLCx2E05HtKs9xAUSKIUYccxzD+xOOcY0rT+IhJVoE4H7eh5kjlDEyZkJa3OumwIIf2O4pXIbvkXvXCu3Cdpfjvl3p8hWnOcFysAZo4Ul4fMg6Cy81aCKjuAGSWenMhRea01Cj4/Gc00zn8Om9MqblPZy/yFjjz6xbEHLFPKtDn4vD/0TyBc7LrYYyP0maBC+tC96N0aLNAnzph2T8/mmwVOPuMn57B8bOyyM+0iI2tIzv1g6VXgA7aQHviJLfQWP24lVgGfw+hMy1OEyvnKecVkC95AVnbcz9ravX+52kTlgIaldMJismLbevEKqcFaqzBkSv/D3l4r4Xx6NJj8+0/5m90946EL5K4PYypkVNnhxrO33aqBZIbpoGLY4JkMlGdsQQl2dWpd/fvlthdFTYXsMJ3prl7QXecslxmG9/LfSMnsI8R8tOvedGEvm7qvHScXEKaNZGQanDEabj/ayqxeFqX0vdEdMIR/u/ZZFP2uJVScN7InY1Qi2kBqsqKxPSVAMvImRa7p3ZUN7N5HkuifB4y5HPuhLrUtkJI7Hga9jLmrMC5JOQZ9TVBVlEQfHcUXQ2wuNc/QdLqUdEq9VXK0cZw+1Rd2lWruraH9WopwytKSstyWDwk5MDHJSV5VDp/kPr57vef+NcqHPPwNKpmqJNDgHipU93Kw7W3P7ksKdUwOjm4nQ4DWD3zFCoUj0sl1K/Rbp0N7IAYp6I2eZt39p+tHqtZDXPaKHV1R4Pm9sxwQMyL2mSESL6c1jx9/FR/9UwVFls4CpmPlTkfVymU0sQ9Y908FBl89Qc/lz98vBYsVdKQKgpYmLOkWaCQyB2Lu7cg2YhhMV9c1hiHUaGdln6OnbVVxgoq4JDQgio9H5yjWo6IygHe8EvlcDWwJagWZ6TA5jlDNagTs32f0MvZvN5Q5IVjrTPp2WOqORLGbq3vscO5WuVqKrHsrn7BSqig6WVkN09gT3ueN76iMYMb04JnnOTqZ2GFXMOPdYHswAQ9tJFdwlYAo+GZt3l6eIc5R4f4T23TlbmiCvknLfIIzcHPa7riBPraZqKwgCnbt8XIcdibS9Af9m6YvFNSX1p3Fi/R3GdGDeIBH4nNHh2rH5rAUuR+8UmOdVSkjJWn4rGLswBk9exqIKQJ9VG6duXOWYMw3MovJrn/9W5J5y9fpxK/9pwEGUb9LjnxWsFUjnE7yD6pBGVbq4q+eIP2naS7aLucrg/SLGNfdo/qwzGDYY3KtEUVLtaN9ezysguSk8DNZpnf3gQkXgAiYZALOmamxXRtsHGN+E9w40pHdXoVaBkGyLlNDAVISH+KySGZWBJwNsjEGhU+KV+qx6HoPKOKKCR9lTZNWSmZQh4CCZLmvWeMFbHDm0KkLSNUAdp+3ZwJycvrg6aYfQcUYa+7CGczSfSzi3xcY87HGcz/eBidBgPtdtxwbsc8IcBh/MRFMkmnJyuPJnZvZbfwGXP97sSLKZ7MHqj/rjWt1GtvIz+IjBh9vlE1uNBcOPYod/U9Vm0QlFlt6qAiVrm99h1ZWsQ0q+nuxtJFAcv2Vs58TaKCxYfwW8jm8MT/SMgqzKGXMdxVOJvsdvj+GJBQymMRhUIc7DZ6B5BMGaFj4tkZHF1drGY7JsjW0gbgCKjh4VGK/mf6GeaYxIM7XcHcwUzMNR7xUGiVOtktxoU66lSUvfodAMa269ecE9LK60ysg+x3jcUVwlBF7ljis/oL/8SkrKeV6GL+FLKRj+aPtUVX4w1iJlhf21rEDF/Z1EqCjCt+VwbnBPkuH/4ek6v385XuvAauEg68gJVXOu788QKAaBaHgPy6/y3nxzAMVOOMg5/jshHARFQp+FHCJmkE2sYHDKkZu0MyfVVFke5XH++0rv2LNISF5M28T+/C8UAtVn2xlhTvygrziZc4D22Vui0bNjv555FEzFPjzPjrNhYFvl6Ln7YAbQGR29RD3l6q+5F25LdtnUSX7DeTCvmezU/i203vn+OYTPPQmzK1+kGoqlHF2KuRtE/u7pEn9Bi1GzJO5k2gG/0z4G0CfJ/39gaQ3sJD2GfOgoZyunchDq3Dd22otgoHDTGfoyUqOt1k+jT9hjrUB5tpKRhFVj0/meQZhmtcTw56WoW1KLcFr4DS+M+ZKWJeOPhDQdLqTQo1WpW6fJfZwMUPI3Xu2evcofRn6W7uvUEJZFt46d/+6GrDICgjpvXK3up2EVRnMdZ6dgsVVtsOfbFp5EJ4EiunxBjeUAqMPEsMy7itFp7SK59oGU8CQT1An5An7WCinxVC3i2lw8a1xdwPeWK0EG5/Z+FDEsWDvel0C/2htuApkDvrjfk/cGQpM0aITabYxrMf1zllzKl3WgMT8Mxl1qsO8yIn7ErBtGx4arJ/q0ESAHZ8lh37WIan1XXx8L6td8NrCJ4knFs/VMoRP3QUc2kA67VAtHj7CyGzV6l3ODLZTfWpwQCjG72EG8DJxffCS2eRFu6YUfJOZgXU8qTI+EHA/chp2AihG2Ln9OITRvIzAg7Dm6mlIeElVO9vH0DHbsSBMZblGG3CZZ2eIeVDVyE16bqZJZsy74Mkfy1p6fOVAM9iwP76+gXsvGJpxP2hzAqg1SAXWTxv7RwmvvSC862YkoxBsq+ZlZICTs6I05xB1jdgaVyE2TCblMzIa4wEcINnQ8dGsCIMqKfizi/cuH06cx/iZYLJqrY/8w9VMVlU2lL3uHQUNH8n7km60/NGI00JUndkJKrvvveT33tfloT48G/B/EN7no4E0BCwvjFRsKBj8VSFaPblz+0odFI8wKN/8Wlv5nxaCsZntfMA8WdkMkHigpIxbOZjoMt6n1Wg7TmpnB5j4RGuvbqhT/dAKPdON1rorSBLii0aw58HKVexaUFeSRRj/FXnpNGLpbSuV5J01oHBInLrMjVhyFThV+IvdMQpL9LqtP+ivZvtd0n+Gxx92f+k3EJxGN4cvfl9zEW8lqqDnUcL2aKXFvf5j/u0xNaUgbhxQRm+RqRK33Fv32pn+Hyng8gT3l0SlQskVvOZtj6y9efpb/kTW4M0Ti9CLifAcCCziIm98kqElj3sPBQh8MZ4LfGlz5iwkm2nOf80R+dzxvAIG1BiyMo2ulBasr5tfJYGvYotHXv/UM+HXS+piUaDB6U9xZNg3EXXT8BKTqjQSEPA+GyrdFzCaL+FzYcL0MJAggrTAGavqngufcnSBfXjKe0NGgIcSC2mr3ZQmDH+YM9kGamhmDTJ432FrgIYpI6xrqixX7e0WoTxC9AJeDCqGgibyolah5+KY37vVlfyN29t5nV84czR4s6ti1qhfZuynBZDiEn5mVVO2y/KCamMAxPlb55LMlqeDS0qlEd/11TiE0JmZWh6FDtr7a/ghrJXuUsVcgmQv8ONvugmxL4SdTeaTG8VVLmtTRkLvPNHGOrqKZHXMvl5vybEYRTkvqnolzGlPIxhNC29NNeMCjJ2v+i3fpBnIPVPTAaKbB6Z6FTkmmd1JpQgGxSDEBeFxZx2m6ub5uUoxbSO+zF3MpPhKH4hyX7Xza5ioLEZO4DfdRFzOFDfURnTlVs3JRVHWYDvDYow3h1wtfzmBasBcoKHeoA+eUc+wTAZaFTt5/WUlAlZm1m2xwhjGZGYSc47TprJJDHkeBpT6pINeVpXbGUoIIFO8Bb5i+5Akp9anunctKjq8wBPu6IXCelupV57nE2tyFZNKD4txsaHvkw5aEcaPuPgXd2ByH5qeiF0f6zHWH7Cry8bHyXUByNKC5mHDT1IriGcTxOXWCMSLkUzzuJPUc4+CC6hitl524tihAbwN+jGvrqv3PEzlUGfVnQ0g3tKhPyBi3SPu9jozBgRU6WQYOhETDi45gTJy+m3R70MxRlHQ9ZGADYn9CDu0xjd11S9UZqczrKjoI4uoWGWTpB44xJFwKya5WY5qlwax7ZwBheArNszqYiKvIS3/VDXRELjYkICal96/H6RV1klckWsMvnmIg4tA0FXkzss8WPdS+DkDy00HWkukQvi9vUQdo/UWA66HINHnMTH2b+t71MHOlXCbUJPUdMM131EoWyaz7Fum+lqC6/Kf2fVVQjnDT6vkmlObG2QZWJ2GYov979RApQaknqcswVnBGGm4+JvsZ79MnSdxvWk0ASZl8wUQzyPcAaih+zxK6BPw9MrHABNPbyr0ZaZG+sr43Y330gPJvWoIONKOkhoMjLjthTb9A/RR59NvUq9e1FyOJbIp2/7S7DGzkBG3pYTPSlR7VXdO6/UD0BVdbXzCU9yzDhuZR7HcfUmJ/8ElhsByjmkGbtnu4R1p1y2nwnNrrmm0DEZsuXT4LtMCxWi+voaXb0Ro5Q8/wdogtTzak2m6JZVtu7yswqKcwKVN46xtO924w+2+AKMrLBLw8LMJApvYjkX94D39B29BalOlmofC6iNY0vRRQBQY99wKktPEiDahrAbS6V4GYxEa07DVZww58iBXpevmmDAa298MoZPYeNAt5pTAVhTKjTjsvdsM2BerNUOs4lednKflfFRE8z3IPdqnyGp8MBXMmPmvPizVevliN+NBlm9M1Eyz277RjwLhIUlrIDae7YQCPVZVhkRVFkufSZUGrIrjJLfkcp8HYwsog+Tt68ohVZwVSRSWkq8K3cJ2cN2DB5EbAamGPJtVzOLj/hNk3DGa4o1dwgI8CRqJ/+Rp5T9AuO6khhsu9CQsEhKwqM3hhnNE7MosHIUQcSWR/zd4NJ4zKog/7178CyrsOU3a2qeqL2+TqowE1tesNpI0maPa9Qwj9noZuLyFMf+JXBQqxXNp4YBDBTvwCMbadm0Et7HeJw/yEEIyNpaq8a1rHnisCqjoaT07wZXfrSQskF5v12HLDEDVo+xx+l3Dd8SapPJVMofAFsFgi2ggRcTMk0817SkZ21ZbUd6bO28aSwZkoxbfC0/Pz3HmZpWqV0um2R0cT+45YXt6HKwWZoFomEHf3hQXD7JpKZKFUnKVmINnnezncguGAm+Jwi61h2Dyc6xf86aiw9xSmIEDYzMu7qusR8EiFTbjaD1xc96UbFD1FGXo6jeBQ1lx8hoLWnouf9IXyhRey6DDEVW45UaUF2AHCPDj4lTAfBc3QK1wIsmn2r2QzLNZ0EXrlkQtcHDf2U9pGUBURZolyObVVsElGdQtUV1nlQEfyZjGT8drDL4M95fIBGw7osyD+lkL9GLuq7YKcRwootDW+ZceGyDrEdYtkugRn00eJXe6bWW9W/NvC+yN+zB0tLJomsZDcvca7k3jKM/XQbm6IAE9G6JLdeIkZfVv8r7kj8UA88wzrxdqPI6auhr3FmTbLcFBnmC4vayhp9b/0NKZT+GBGhKY8/UyIX7pIAo4yE1nlR5KJvEMLsg3cYzSP+w/G4mImD6Cga0YELttDmbk0CyO3oAs63hA+QHgoUuIWjulUxUJkUQGreymGmy95ojiQ4GObDw7AMUjk3MG1/dBfRD9gEMT+nZ4HKGD8b37KqK/2Yvp2fi0VGb0TrDRD5p0OevPapp6xsaZRpIUONdyoVhS3FSwPQbAZNp9OomjCT1Em/AC8J0VoKdFN9NTSRBX6plGRnDSgpJiqBvDJm8By8LWiHraJFnr4sEg==
Variant 1
DifficultyLevel
738
Question
Edgell grows vegetables in a market garden.
51 of his crop are carrots and 41 of his crop are potatoes.
Edgell has 95 more potato plants than carrots in his market garden.
How many plants are in Edgell's market garden in total?
Worked Solution
Solution 1
Let x = total number of plants
|
|
41x − 51x |
= 95 |
205x − 204x |
= 95 |
201x |
= 95 |
x |
= 1900 |
Solution 2
By trial and error:
41×1900=475 potatoes
51×1900=380 carrots
potatoes − carrots = 475 − 380 = 95
∴ 1900 plants in total.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Edgell grows vegetables in a market garden.
$\dfrac{1}{5}$ of his crop are carrots and $\dfrac{1}{4}$ of his crop are potatoes.
Edgell has 95 more potato plants than carrots in his market garden.
How many plants are in Edgell's market garden in total?
|
workedSolution | Solution 1
sm_nogap Let $\ \large x$ = total number of plants
| | |
| ------------: | ---------- |
| $\dfrac{1}{4}\large x$ $-$ $\dfrac{1}{5}\large x$ | \= 95 |
| $\dfrac{5}{20}\large x$ $-$ $\dfrac{4}{20}\large x$ | \= 95 |
| $\dfrac{1}{20}\large x$ | \= 95 |
| $\large x$| \= {{{correctAnswer}}} |
Solution 2
By trial and error:
$\dfrac{1}{4} \times 1900=475$ potatoes
$\dfrac{1}{5} \times 1900=380$ carrots
potatoes $-$ carrots = 475 $-$ 380 = 95
$\therefore$ {{{correctAnswer}}} plants in total. |
correctAnswer | |
Answers
U2FsdGVkX1/WqUbaUnATOLbOB51znb5aummWGYRM/S/2SE3hJxOVOIUmFzllhAnbK3gkw6G4rQXT+Ssx+6eZjxDVqqTRws97g3Me0OYkvhFVppDvfeVUbUPzi8q3iVMyOa6VcD7s0jojul3C6zi7HxkK3r9S021fqXqPEcHG6dhK0P26h0LxNnIwKSIsdvriB9D+dI3vVYwPAePFd3xnDhVHXxD+tm4bjI3GKp6sGgaBrD9j60rYIrof41jYringmrJKTU3RpmKzcAFB0kLme50Zkp8orDRLE1Wm2DW3bDBT7PY5VkAIOu9dq2WrjQIb7fncQI8Ij6SSVLzz5pmxbZIuve8bGlFV3X68REOfYzBY4vcxL2fuhonHRfjcQjMt7UeZqYvwOo84JjOYT3E/fj+RdtzjtbrkRInKUyfGY66jD215CTkxm4svtR9vBNsI3B/MZZVpYKscUwY9bJ8oGF8GekjmBJAix7TsqeWVedlfyv/tnnKxVIeBDZYjoXrl1K5TKw5hbrXBf+YknPq1n8UbAJkSGl35OQZGl4z9v2s73DboZ9YeIald5R3ZfCMc0wG9kvJrzg2TevoSKMPKRIjwUhCElC+7AkOvW3k5LYjgl1gY2GAJPse27XmfOdGqLC5hJZNFNr2jhfy2XHCj6d9A8rAZKrlXluZyNQ5yH/fb8zjcaQbmnN1choqPVJ+qQLWoo8WAn1/ATpvT/gZ5qj71rzlI2tmxD15kyRB2zGzT9KZ2Box4HdzzkBk9HNzKgcn3wgz0k1WrGEZebKJh+223sM5qpIQgj6N2VBdU5h13CXbsFJwKUnc4aS5cOuolofa+QnKMiYIsH8xP0MhTu68boXXOX2/c4rayPe44ZC4l464zPPsnukkKNmn+SjB26LxGP9f82MdDsTX5J/Vfc8xE/Su94O6cn4aijfC2bTsafoLf8lezizcNQNEJ2BUVXR91uegknMIsxjef+xtijhOJ9h+ZVf++y7QmPfkIi+f6yNKb7fVTtSoBEDffUPtJzra1JpccXds1XEP09n+vi27KGnwAJ/9nU0mqp6OGei/22HS2Cy52yOZIU9JQE5DUxQFiAUmOTQjhKf10TZIAl91R0kXUkV/fHzcBdXM1RGyuU62tzKNRf3pTB2TJcB4aTMA9np6tW1zeG2pZcWUwoeYRrU8AdZ3+GHgtTDcXKClxU9bz2xSK7kdpySaIXd09gAEPbV/mCV5Eoe/hs2sRP53ysJbMwL+fSTBKvT2zEqS9GRkFkDUzxIsvP+H2sbOrLSz24UHFwP1xYrrYgE34l/qMNq4QCJQPU3MLqtC93FSAzzsTMolz2yVSokdzabrmmOnetlNYNl60vVhfezSx21B4UoZbyFVtByigmkvBMYnhCdd6DlRzND6Qmog+SuaqWV+6x8bu1xA6IEkYq7skMUMlsC0kvbkTIYfAAxdc2mHdbQjH+o1s8q68LVVn3c6nh+1oNWzuRcuyZmzxrt+TZg3jY47c+PPVWfvbRmG4ZPs0PCWhVB5L7zKpHKE3yH/1KDi7ZD6sPQLinPrB53QZubf5uCMkwYRPzqJcLjBPmqyR8pjN4Hf69arJ+ZARrXuGnaRleRF88JK27Mm9oWyDITJSLvydsde9DpytNjrBXrYaefBSF5kpjsvobfY/B7CMMucA9i6R6zM2JHre4Xh40tjIkfikpIdEH+GpU3ROtzf4wnOpwhWTanDkgRh2LcQTysCZ2ZkJ1njB4CRHEUPKTKJbFp+ARfE+92cYWZIBjDs5njicnrUBv4hP5Sy6KYOmVlVOxcmaPfdgr0baILp61TpbTSJOPXGTVvne6sjPeSFcWROW1Pw8yQkaN4r6SNB+gaCNB7gSCbA5hRZhzenzVhWDZ9cbF17vYKcBfJw3emx2LQAltpKGFbBLJGYZcxYy1FBd0zp8vNeJvw06XxPzingqrrwJSg+fFpt1Y4v0EKWEtr5NoJXBU7JK+rC+ERWEcVlVMSM8ACNqWV6JjJiHqlxg6C7g5QkOQGWS6S+1gjHD5XTEV3iTWB00Mtv0trxJQAM5N+TnmFh+WNN7gS0qIk1NThIDplfSWRR6pSnZPHn7Yq4foeg0HpQcBcyvZ0eMkXhKENOk+FmqNXlgLUtsjhBKkn1O6CNXNlTOq6l2w3De/f9xGSBDAPnMZQno7S36Iy00ppgWNWA6LdmpD02V2FM9JqqKj82rtjUR5sU5P8p224R4kYb527v9cDr3ohTuGijMOJDKpS2cwR4PAGb0sSIIXXWAgE3GrST8zZv+a4i+ed3fDJW2v1PD6poxccgFPXBon0z8zu2bQWn+gvjxBwgi35I/aawZrhHS5glMLdTkTe5q0++pyvlmGgW2b1DSJYcq0C/GZV3Z5ywMt484WkG+4uHkhqGlfOREu+OU/ghBpY52UdDZF+/b2f3Zi1soiWyBJQF1SkUvUS/8+/fvcuCg6G/iy6xlvSVksXBTH0tS9KUHprIWQxnpwHZlLd9NluY61bh41FfDtx5ob1a6B+d+dI5ejjeCUE9emEdWBLiaeqKb34y5Js0LWZffjsdm8+w3LJOTIXxiKvg1joUO9TjAnR2KNAk2ArM+ttPDm4nqq5BORSIxnKMJ3GPuf8oLMJoYo/ry2gBRKupkRPLhMdWAiUC2qOEih/gwebWwm2p97+lNjjcoUmF9b/uv9c5uWDQfAQP06XwtTI54oSBlQnVQUdujA+MP9Mr5EREL0Wni8YFQeNWru0zFre1EbS5lHpdk496nm4644ayrJjJ95f0WJP0pAG8WaWCCsdsxo/iJ3qgVo4d9AVJGaDuwdqUXCRqZTprzg36BqP3UDgWEwGNV8XWmuEBfRwtP0kBwEhFYgOx3SoNRpq91b/5Xraw49vNjl9+1gUD2xNI/7MQFMD52107fz/N1AUvr802lcUY7tSv6Vwxfmja49tTlssEQX6/7ATW6oSOn2p6ml+L5yOE7UEA8O2k1973d4/67jSf0sSm/Vgh9/0j90YftSMpQng+iB4Pt7hIJbBxuAIHUUxroEFcIfMJNecDo7Z6VW8dLZc159oYZ+jDBxsRk5DrvFFiaAF0p8KhYmTdgAgqqq52NWAs2a/PrX6/rEuUQcUKsOnHcF7Qs4DLXD04wRXnENbGfIeRr7LzfAZz0uSvIRki8ZEm4GJGJQkGI3LulTy+1MSLajPGkhMqNoxiZcMy9aF9AD3QEaE67aBapuGc2A3gsEUPjW2OQ4EBgf9vBuQHR/tzyRi2pjIQWm3GHeYGID25Jsvb7JDEM721LjH4ggZ2coEahkYQcV3+IFhQEOJof6k7rDPN5eVQn0DL9r6ECfXeVXcn05wIBCuOTbfhQHJ9vRpAu4UYcUx6qJbj9xwpQVX1r3zxVY12iTM3aGQk57EFALjiVDIY78T4dN8SpFiCLuYk6Evq1keMoY/R7jgyEJj3zDUadGQJWLrquA53RT3PQaHHCDPiYofyIzgddhA0N/YMh299iZXMlqHTSu8oEHIk5BET3Uu2vlx0tZoe2ziYr9JWbaBT66i/fvG7JMV66a0A0sXBxj3QBbO7qJeFwmXb4bOMQzBfQ3lpc3TA8W6qnN4r9gmZ4SM+hW0I5heSkWk87toG4ibG52WG5JBF9NisDcGoFFD98BKNZZpAJORjIHTjzoSuXXmV0RARVnBJz7F9+lsP8KR9JtGEtDDGETd7k6eTEy42PVaiRKKnj+lYNQZ/yfdOIBy1HZFtgCcWDfKupiOqdVbzt0WlAwWBrxBPO3/Vj474cVtU1Tx46Tu5Pci0rQt2Y692YOhCPG1DD+KlaDsRBXHpxkaqOXLd59enQ28jQb9ekFnP65yHVg1wHuxPi3YRfQ8tCX762HMtFF/fjuCS3r0V4nfwi01wQU9FyQZ+bX+dnKYYMQd2KU088gXa3XH4rpyqxMoleibYCMf1uF6ZayjOtMeXBpQBVQ5hCYM/QUXNWJyJa+2degIw6T6mutFH2tZpZ29J0mulj8x7cW2aGw9fqBTw8zhUmko7A6A/uXPH0GzJH79DZS8RkyvqWTyKAxPYPYdmkWzIuKNVx3Bt7gsEp//RZZe8dV7sZTBeDxCUbBWSJS/ARk6OK6wl83P9qKbffFXx7OxPooT2tfvOT7XOLM4dv4KBNnOLKNk0bV3dR2fWz4yklVez2mqkhr16qsyYf/XhteEh5RfpWct080zaBHQtuKp5QrWgZfPyb6xp8vCTZtWa0Sp0FrOGnO1HcM60+s28N3YmPSWGIKfeDl1SzN2a6wwgiXkxzCf15h6eLbhNn6dYamSKqL6Rpul+5CPUMv2o7ngxGFno+/O3lFI48Ac+ppRsh+aVwuRk1x9RLPLeUgi1flqH4rDelkRg3BPzZhHNqwRRczxmLsHKup2Be7bbvUS2fXSuFy2ocYQOhKdnHAAvAt2JoCWCKg+twAJ27h3EP8pCq2e/j7Z8GVIfSJtVdDcHJJIH4TDWaZ2FvLfFlxovU0qrQeevhrLnIbQpQA6cSO0qmghISXYnGC8phmlR9BfU1bGZdcLhh3PWfPGlNIpBPTPTvLluL84xvvAenIWljAwA4o5WCB8wVzteo/KJaOsbpiemNwnH8MT66LHtlh/QIRu4yUnEvmBWZTvMDVTYdzRU9i0IOYIjD7f/LG8XtMVAasB4DnCTFjNSalUgxWAQ1C5euh6qL29I8augK0BjnZv2lQvlAIIRMoOyZqRHXnTqkg2844jY1O72frrRe8tfkI3vwnxI+bCYIgKQkKWOqN0dm+u3k9STEv367MVMxzAFxpJNNmD5w8IPqzWu5b9y53Lq+MfcnS8FgeXuWWvegBOP12ge11ngtO4rICEb5BRoWlWTTRvAtemIuWUBIAZwow+Mo12HZnrabOG/jzha0eSqFbz82LDCFPqNy9MAr0pfG0+I8cfv+DHxPh07ICElwrkcG2m7KHrcZA2kLyzrfntSDEjVRlk6J9j76yRydbkfJY2y1NZ66np+Job3dC6l5v1FTnXzX9B2Iy45kk1rlC3//XRRS3ToeC+5tQPZZBwzf/Q2b0MNxAJ7u5hoNWmh91FA9ZpXFN4nccGtQ95EyNxpv03+7jXdVTffOlXvqarOZZu0leGTSkN9zNGOkRizcpZs0Mk3YMON/43S5wNH8RCx1iWYQT3Gs2OsNhTAqFL3HHADeccJKTCSAefXvkGby11+/W/T8nzg5EPCXP6OhMOWX3Bu5P1CAabKREcJyoej/dEP7Ys/iutQNFP8Ge+rpnq0W7hlnvTHQ8aPP7Ypt91aXFEOeYI/8dxSpHmq8Z4ZxtJY911LuShub4PgjzPCtZcabjtePoQlP/5vvaiGojum+tVydwU8+3wQ3XYxa8Zt52abiikEUwLCg1ypksKF6PD93x9tGkbSvGb3sIQFmjIjlHMbcidG/DHZ78RBaRrZkxrPec9U0KIXmheZCjh7r5mn1vEp0eQjVJXVmZgz6cDwDia7NkmcLi5GQtnxnQA0bxDsjoQ3IHmtWxXYTJWDOoC/H6C3QF3Q3iL3COe3x+COaM2TL5+Di6o8gRDCbe6gwK2WM0CS2DN26gUruT0UJGmJvE7DcrZKoKE7aV3pyjwZ5qEFkZCB0GOZLZTAMCQxbbcJLogofY6uXbjqFl1TR7eY/tZ9oDyLhBYhNClyYKq+F9Fr5PLV5WCmBdeFKohebRCpCyPlsXUvpVfLuRlzzXJIr6EOnb7jme0F56w0/TThuVppo4R3DwFj4vS/1Tv8vcoDjMUqHSoEe0h1evpUnD5yE+ZMD/UHZsWw9oU5iCHC2jwY06qP0BvjO0wrQGwfFHg3ZJRH5iO/YyxVNsMy/ejyS3Wlo0eFvmYmZiXimi5EekfYvngR3D2mcK0DlJ1t6GDLwual3MJEhc44IsfLKrsSdFldmZ8egEIIpKgcY79lDxT0EvLjwjPJD8+6yMlKJKXeRw0bAdmGM+4Jnw6K/Az9/H7lC/El7UYoKyNBZhrBwE8N54gRoQ07WFAmEZWZWv4oWrwe7eWfLYW7WsvwWHQ64v35l4LRK8zMZggCIcQ3C1s93u2W6KzXW6x4AIvEsncV3nguKr/gyU/fNI8xZnyvhfvQTadvPvA43kymvSkH/jRrKKbiW3MMNy+4LE/4ICdilszH1eC4XKjzeLD/HcdIcxCgd3Mhq2YOQpCOd+eLiZ3VPgRDwHaCRmhyFVuUhi3s/JGVKE3MIIUz7hqyj766obB7AzRWKYm1NTJVW08mr+vZXta/BEzSpulWvH60IJcobVeXabGau66QV/asaEtuo4Gu/znWweGSHVEWW9tcTrWORRbXfRJna20HD70Pn2htAlvgSunqI8fS+qzSK3PfsXSSbnPWTud6XnAFJBKLd1PnAjRwdeLk53lRcdszlKkCtSa2OmQjsqbT0TDJLjXBP2gyMWmLXK2j939ulih3qhZh1hP7eM6Jr1VVt6Hc1OdJ3VRG7aMy7yQp8Q89lbg7P33lOW37YKDoqR0D/zfRQzXPpyaSEXkB0dHObZDLEGGQZJzAs1/zUcfwFlEop0XAAHpch5W5cXpf6dXq40qBUfoQngC45Sz2IuC7nrKZBWQUEx5mAVvgUPhEcFwzBsvq4wJEuL652EyKbVMKu78kdBkY0UyEeEmbxQGwe7Chc05FWljZLpYrbU7ecNMdDQlHZ4SjwWpXn/YdlBbwjmayTSqZkPetu6qJa+UZY4wKva60VPexpZVe1UioMIF+w0ng0oUMXeIZt6ZxsE805zmkopMSLDFDANlaL59PXtiRBLdz82McZU0PVQHDTFSCeTYtr/pPW70aXh9WkED+6/9KFlBj611oZO3Brw/wC1AvlVO5L6MoC6kVjngc0WWwuEy5mOaBJqJ5QK0RDQs38jLYuCHRG/pakrnPSNh/dvFmPk04gzjdrrioaIlogHXHNuy3+DQVa5drvLh8Bb+c0L6TyqIU+0fg3o3LipvnkDTdqS3bBnKd2lZQ8lpm9vSguXWAaOo7JirCTJA8AFQZy9qX4lexD2c3rnRVShkJp86+T7kzzmGLTJ+vW4subIqpCDqRongwkp4E0npeBN6j24cU8F4LPg6Lw+H1rDoz8IZYjka12Gu5DV4vn3JI+q4z8jnceMpZVUa6UGicTFxdoSw5FCRtYw0LqjYZIzwCICmHBznp9lFPyZIAghAgiVtu2x+hRZOR86qQc3QhLY2oNTROnwSPJck9VodQK+0E6hgPIrAEjsZMnGJDdngb9Vi9Kkwu3j7Xt1fNkpOt7gEP2VAi7/DH5IHUgSmaGwwwkvUekUznAjmt1TRNXT7rpmiUSJXJNqEM4EJSS9zOyq/DMLBSPs4RWaW/DVjId89DB/9CAKxXbdOQwj5iIkRvri1sXoeVBrsPLtlRjbYZkZSZuowEaRk0n8kM1lNUj+TSvUtfNWyfpne8rCvqdj20/EqGCYB3UEME8ID9mdpvS7zVejxePXoR/MN/T3uLyxsyzXTlx5Wz5yXV9oC/hPo8wUMnGLUwl/e8XlGq4FRiJYAA/ZFlIMicIYLFk9Sh8DQZlnNPaJdzM2G05LEELHNoJxYm0lJOWKom98Or9bxC6ExkqRo8KDxioblA//Av1csS7T+zdkgJu8jSU+5vp3C4Je1GdfeJkjXxxJs2SKva+Y0azFDAarDz90HnAFleZJU61e6hFKx6zzugbQ2byB10zYMVhO9DbUcOMMppKBaHYFII/cGVEbckNi353uq0/cOmPslAIsTdP64KyFY8TkQbi+oDge1QfTjWeLbE7NptBjIQU+1ff3ApJC4AhbqDR3BXP/+QSNCpqltnXleBq2nbWdpn/sfI7GX6YPk4dMz1Hw/lQRKugC8rUCW9lKXi6pb2WoumEfTuoZjvlBxi2z/maItfGfGHUUVTjcPLRLhQVjw1b4jpZww6FJHI3wc0Srz1Ed4bpgKnlmiGQSrn0/h1rh3REPuDzsMbSOoPqdue3DAgdBkGHhL/fAjxZ2DaBzJi0pBdky+hMWQiYvwFpxKX4Yf2r0GOlfE/mxdplBf5bfEjxaEcvpB0cCg6sQPWzZ59DlAlMScRePOG0xXtoSVgDf9lwzsIZEydh69uKbq3FMk43y20ysnVU8chSUaqGAlLErUboxhLxH2TqWYfOvTNui0OlbdESiFvr11kGrmHRTts/WyCdNGPxmuSIB1ROxNXbU062THBgwgpLnfwNXrUzzA3Gmvq5EdFN4BSATwJk59kptX2+8DRFjPj/0GvxNjUHDff0sFP9dpX8/sCzOT//fPbpw9RvrmcJlIjEym1vwqqGKhdLdP2gy+UvUIS5KkVxeH9syFBBtb7gywNuTrlKDsTi9a9jO5Bz3JY8WNi+4mYvdvZ7SGJJs6gT2IRVnXnpoNKFdZL66OojKIWEcqUZ3/BsxBXxLPZSRf/fBDLFxijoz+NEPtzNchZiIwP3n8J0digY789E8Y67DjAN28xqeVrpBEpa9AzaD+vm0RkpwOiyFEXMsZBAu+srQcYumptebzEUxJ/0jlFsERs9wi9kDZ9fPUTkDw7R+R9KmRSAdGwGDv0y+CNB2QjfSVK1t7hFULvvwIfb3wksq1k4isDAkDoTf3vB4zrDGJ1lECwR+wwuFys+P24axXeplD6SP4CJXKQhQsQtihnIuSG7vx6nlvM3bu48Qv9RjNuilBUl15Z2ND9PFY/x2PsUpB5Gtpcit8lmDrQahwKnL6svkpCy57ggoC2EIeu3Glvj/knboJ/foAUk7ShjezZNuaCIkhAcK/ogIkyauQMtS2962KYOnJOzkpgGRbKbVFQPpAKD6pHYN0Vd2/WvpfEAoiWIF86TRfF+hDgWygNAMSA+U6eb9F5wU8RYjBCFilcCXjRKfehV7/2ufejgu8wmcHGHvakZtBqXtCE6LXhhoZ+nYb3njaYuU9JWTA/pc72qCCtDl3GjpmQbWu8lkNMlzixcot70Ix1uNUzJTT2fP/fw2tTOii7V2tC/t5JvZUCJ6wJnMUmjpz4YeuTCrpUQfg5uZVOxdIkbuZroKm7TvJjSFzt65xbM35L4LTDlfHmMMupg4VHElfECpVCVqppk5iFFSuDe1nfwcZJgCMpHlk92+iEoDOlHrTJv1Zr3DByOoURXL65oAKXyjrAH7E4N4+D9L2xNiakln/KzO1+PIehccLrNXeTRBYZzOt6yw8UlGnDHLMUKQ3Sixtl1ulmAoCgAUjV6ARKd5KGwULMC9Eab5lztieJkJjhBAY+Zpq3fdiITW3Yt1d3QGXbhFsmU/2qM/HhQSfK6oIV/B9JCc5YwsxdIoPRqp1MAPMV6/5vgFMYgWfuPHFsDVeie+tFwstRBiJMEkowO++vRkH69YEWV9mABtF+wc107DyA/3QcHl9yMe7xthsHiI1bAbUHeWXAPeEYETI35/EcDi+aJb0YYOrqUct2OUFgoKCavgDkCeRGenG+jgiKMhDbNDoPqL5y71/Ev4cxRMGc/422/j0dxiX5qLM9G8gCZwtS8s5Hs8TQpxbkaFmQzYpqlYccM0lOu55UMYNt61JNRSY42auccLnR7x133qQQnz1Igflwvn/LAk/f0e879NcIvTFCJJi6zF9ZfAuperwY9GCWeoqZbhWKqA5PGmAyO0IXSlzmG53w4/TTPOzH6K0+pTiFWcU0mEZ7fTWDdt7AsO5qtDv3o8Pwf4MNtKCnWQmBdoWt9ahFOMelYtWYXs4zjMMYPVJexfKF5t3CtVE6pRyGZkgOkXL2Yk4/B5+zdsGC++kulAL/yfEgP2POVdLdGgI3WG9bBNV84nB2Aw1WenF51lKy2/xSckZlk5/rGSGbb7geresITLmwIDV00Bf658VVwuvDsFY5uBIeIhrRMVZfidpSFPGVCFbNUUIH/rl5Glz/roymmlK+K5+FOECOPVuq040ukOkjbdT+dZdUUCTq/c+XvNR7mJhVbQLSI/BmRDOagpXR1MPCAlguocTAYgzR9cKaKwmYoLMK6rl4IOkImo9y3/g2iNKiQM1JR72ZRQjSOjwfcmfIKjITK69dMpWqzWjYxYQ4K16WDQPVrcuZB92Oc3QPdbub5mPts41jczjRxMPhakRgLfl95/IYbyXD+55fD0yaTAoUf2/LByB7blyAr9+PLUJkxJJKWlXMUkIlzVyKA2/qZhpbGxagdQ2WBTrOs5ezdVGHhjkTS+xZJ2EWOlC/Xh4vw8pKWpLNFrRF/4eoHKmNrOUzqsKzBuPsFSQM8OZvIq3JNYbTVjEuiWeCkvlhC/DuIQg6OWvgwbUbAetSpNkqt1zOXaJ9qXEzCzp8K0qKu9uB0jjq6Zn6AlJ0nAtkpJVpSkRKvmtPQrM2U1Nl1+upywJ4izFs0ksrk1jesi8tVuU51aLzjKA7NH0O8/tvnfbC9rqdfR8aVrxWGpCdVXiQMSpUrizDj4hxExVcUVfznbHIy+lFRRFjhdPGIrWKlq+oUTmSjzTBJx9vm/WPbC6s+HVnLtek07vruin9KFUnE9nwhmZRf6pqydfFhQX32EqmOI9szv+15TCArh3E/bTlu0RUoDKS0Hs/IKB/Q2JRvV1tP/lr08Jd75v4WbrV7jHxEGcb68twu0CTcaZMzKfbBkl5TtIYJcEdMqr6qtTyDYFKOHt7+5E423/4XZcWNN3ipQaesb0c/gwr3yeSsgBS/Zvtqy9r/R2Ib80m5s7Ri7fLA4l8TFWyAftuEywbwH59Q5P8tLr/8EYmFXqXcJtVANW5ZjNIRMmL2ewwOUTPEtPTFt36/N/UluqOhQkQA7U31I0uM0wfvC842tIzj5Bp7ChdV7Oa795uNQCSVIUzH5yU59/YDYiKvLg+t/MUDw+KpZGhJtnldl7ruCmmXnsconU7ziWKA+w62QhIU7sMzJQSsVO6P14tuIY2icpI0H6XIZrX00gDj7YrXplOOfcnqn+gLpeK51H80B2Wep67hEo4p12K/kJPG0wZUqaJaG37j10rHxmy8/cXIJyEU+jzyn9cqmo3QuL0Vy+uMbgaUpShwetUhUyJXITKkeIPWeGXFxuYjUb31jmhoQNkXhKAWvgwpwa65hzT42YOthQxrUgv3uo9pyUY6DpfwhFGDJR6rx5+TplJ4qqE5W8+jzd+KNltskQy6tyPdmJ4EmruUMi9akksL3R2xFHwFGD224GXn/oaj0iEZ+WS6kIh0CNUpn3G1Y7QpxGA3WXuTlxZxkFlM4WPMz5bc3Vya8PsZgEjFh1Yivs5ykUT+XjKbMidNZPPUpJgvdKNQrU/iHuOAhg5XNeHcojgCovevjlBGgiRBjrtD4pvimz2XF/OOiL9g00LffBqzmn8im4g2P5ckLPvuyHXy8pEiPxCDa/yIxNzxM0Bo8cqPx0V7+JHbTwI7w55bNhV8GJ2eyDfO5HfqyuK75PAbonbZOfduk/en/doTVXdzBRbzuJFLOIBMuelkXC2Grmiv3J/IEVYZkVL9XFG0MQa8rnfYuvPKJlCqgbzHwb3MSC7iSWfOTppG5rzoIaUMvZYgUUC1q+HkCRU+RPuIGX5bUqYOYhePs/UOxGKVMxYofFN3Kp/uzGOCRROr4q8f5JKc9x7EfexsohiTquu4qbcD2JOIFLRoD98HiAg+abo53a9W1cBl4vHTtKzDq5WXOolbQEci4k6Ss5PoMuulL16JRkTi/hJ7jb5WLSH+Vn0b9wPkSGTUrc1tQzXa1N1aGqZJDLXS3FIF2CxkRqU3ORWxDazV0/jM/px+6bIiNhq4YYANxTP6ZlKqIT36o0S3pWIUS6Jh1nJxK+sLe0pJPRX+qQhm5TD3sEgRtlQ3QZWx/704C6mOP70otLWZHxJzwoerQImWP1JZ2bXqqhnO9wKmrUytbagCKVo4peAGlZNJapKF47aTool3QNi8rO+FZdpqZ+HIfTKZZZ6AIUFienJXwCffBKI5f2G6T4ooUB4UnEGObclMsryrb0D2Ko2AGDakE40tYiaZy5mJE7+In6nq2tmVKBAVX++7/6/uV4ByHW2a1ZN4dizeH1AKfjIuwQtLOoosbZN1KWobGGMld5m1j0ncrPVf9Bz9Zj6fz96DcOAi/1JOgTBrw4P86c2/3eRWxpJ4FI6sYa6qiuVfnECPHhtqcnYkLlo1xUH7qgjf2LGHhQSpMtAO15IzRt8nD3iedbFVmFoMYdW10YsyvXQGukOFc489yz5LoR7dSTct5KV/MGL87UowciqBGzYOGWT2IawaDrorbIGfUPlczmdMVfJCu97gr2/FWl4bkuDA3chnE1WgWarxKKeqhY2y7JjGipaxpVmUVRU+NplUU3m30HKbv0vg4en7J8OdtmmwudSCU35nePkvwlt9lUijNOho366tZEapUPIkTolf1xi6Y/uw0dgdaoM/HR35uCV70ZRn7gfp2HZ/O1TG+dESfF1KB7YAm9GX5kLHRWGAk107ODJTnpbk5Orgn5NM49xXJ01E/edrI1n54DXDxji6Tlgy4fgI+UoaH6rG/HUByeALdA9Wqx/Tc6tzohGBwE0/UVYsSEHUA6zxgt7tHZJW/IfcjyAhaUoFVXZgg/GZLY3q9lbZz6znVsv+X1he8JDvq4qnu9GvGWjKB/e4ZhRnPeXv36A7n5WYnpmjQQN2K405BhWtQAbbTPEyQ8sHFNAm/bT5wwOKGKmaRao56EJG7Pt4h4PbqqGgxe3s8hO1EjRD4iVTXLQWGVHZ1rXxn5a1pwuT431NWZU+4WL7a9YcW3eRj52CRmPBzsDGb84c1Gnj0TWUaSifCSiJUYABJPsmh2qHtcYz4J3mhCbaZzRGDIFlkGvPqDD+oj2sz5rQ2Is+sIb4YPMVPf9c7BVBM/zZITKWJ1h51ifPqDQniEngFbkrbcoVu8CvLn5gZsxjUmPYsPbltpQLo9z5fySNHlFCkNMqTNLZQMpyTFA59K3RGqaTvdGFjy718ObqS9kV8BH9qPjfrV0KsRiaI+EPZTSkeoWOeG/ia1JEJcdbsDtmaYyE6ugrfhoiRLI/K42vrcUO/WviDjLz1j3dh44fw+/0XQTXGFCU3/ciPb6E5XaaoMf3h+hy/b4XVq0bEg+Jh+svZ4cas/Q55vjhD5gCGlxvbXtKhrRMXVWjA1DrIWhahavQA6d5Mz7EWD5OfCpcy6dbJXnhi0j0xHwxe3E1Aoljz9z3ABEEpm//sXQsh5NhQLZA3SArJrIx7GiH/ZTouXbq6AYfBX5Q+0tpP2JHDZqTTxxBjiTfMIuKX9Vv3HuWtSqX45uAS+DzWAsnMIfdE42pQb73U6YKh/fTKGM5Yw9sqajjYtnPIePNWliNn0mxKjW57vcB+7dUZXrkEAv3vH5cD+ryKceXns/sdzbJttZHNKQ+ipCwkyyBECQatSoVIpcMZV91bAxsEhPtYHJWlBQTjpjbGb6Z9tjlkgo57VDAzeU2kxiBbKsocFUbgb0QyefbbvpSlDNCWuHiKrh3ghJaNLOAsaaYmIEM9ge5E6g6nfbUQqkJXTKSg6iF8ismKpSwSKFPf+j6Db8ID/gM+T5G3GwTEwym0fZW/u/Z5bJLLnsoQ9JllbsFEcCSUwTJeqqT43hr27LBt5b2IDgFmeJmXTloVsUTxlJf7gG0F3zjkQC/Mo97h2WQb9dcBQwtmE2tGjU6EERHgjmwYmqXM04o+W9VU9Mrxwrk7xzax+3RcBk206BxPI83J8dGOudADZTCaiUBQEwrCnbDEk0AnjVwZQ9WHCAgtJXQd0H8YjsjlQtOjCHA5nAcufx5L+60TH4T76amK3HJZFWvDWmfr5IHysqkgMMrw6PmaePejRWCOZo66vMBK/0jN9tVc/nyuRWeY5lFPBJi8SmTKdz+R0f6tAMvg59SQMqsTOJ3X+AKzoBD/KdnJt6sPJsFUQT8QWqXQqPex/PulQl/hvTLZSeNAHz2e7YqUs3Qok2/MMYyFdSfRP9WGF7gOz6i8zoZsP+mXYj63fQFjlqBS7NNZ1IwGte4r0otdASf1G+WAH9DfUzyzqDd4E3t+/d8PRlhHJ56MpBrKMRI4tmlwHPiwuDEdrtl8ZewRayJevlDqhiTWs/jCLk4Y3M+vn7h7Os7mIyXgOnh1K5sYhwtjFbUDx79ie7MW3iNAoLwDh9OqL9VGoNhQynU9q6ldu96JIMi9HUhWH6ywkxwKzZ+uD6wxmXiZi5v24LE+2SOoCt2vF51llqsBa6mZJyRk2z/tIu8cjXpuSrH3hLM2/ho/CWbuWFxKmYCfIuRxX6TkOb/a9MousMxWtwUqrnCoI57auwB22HDSforb4DBA23xhUhPkZyc0YvGmz65tu2vG3MZJeVAstiiA8iuxtDJZOrRgFdL7a8iivSZnbujutLt38SasPHNbtkns8dPdxWPuTElNt7xwGZmDNuuZO0yHsAWMIi+gool158gPIS7ftvNSyPRA6d20OsGw1qeIjM4I3i331xjxt9icvcqWCJYWgBkJvX8v8S9J+C0Q6Ibt+M+G8OGWldErpXPmDZMenKQ7BvU/PoB+eTdVteLm5bGHo0dn8Zcbz5QxIA9brXLJHg15DKJAT7xHgrF6IwOBUyCkzXSfrR3TVt/qroQlTY718Hh0yGEO69YQQbeWG01mLDcEQ6xIffdQDrjVNiuRjEJOb26rJZ8Y83QXlWLyoZj9kPBd0vq99Hgos5Av/L58UtZBwJAxAQvOjjbtNusSDALC43Xj/BtDHEoAGzRA/PzXf/n4jBHFqIg4faj1m63+f8o/ps4LuRGrpLme853LFdc6n43RSvuI6ZKAtAa0n+FAVIUa2YhbyrMZVf/hOSYtU0gDoUIa1yGKdo1K/h5arl+Yk5qQ+AXdebjtpGvvPmRZKpr4t5nDw+qfbhyFoJCUdct8twfFpQSMDjK5gXn9nt1dPNd8XaqAkOsKhfOALjzIPaBEq8m7juawaKCBD80J0Jt3TGL8A4W8ecpDMKj3OmBgy63Yca/3dZDglmlGLH/s3u4wcmlReG1rbU4qHBKrX8KQGHmPZZqoYArvd0ochm34h6OrhL/2Abo45dWHWTbeJfeEVsPW5hYMP7cooJIXENQJt7wk90oJ167p8JYYe5VaIbIAbhNRN59kFRWyxcGmyMwnjf+AVGf5NaRuQuvEsduQElNfvNa1M4lmbe8b6CQWwObMbUxbalIi3dzGoyOsKiZI3OiPuJCEzsdJdlEIINPSvGkK9USjnvUMtZ4U1nAXyyyNSemjKVk6CYc2OCE1zWpgiTLDYn2irCbhMZWV9r6xDq8LxKt9wWhOUVw/J8eqkrcYssA0dqztgvPlMWfgzZgcuq2/zzV2gJR7WssYG2YCHtoy96Pp77P7Qum/FuQUBPLpFq+dsbXMR2C67fuYMe28UaK+XsAdkb8JS1O2UcfAPZidGXbWBqP2jnoYsHmHtHHsOJNnkicBBxNAxQ44r+CkmSphU5hvN6AQ3Gy2a1idiy9jePsZCq8ZxurXZQnBLz655+G1SxHpKUSOWG3cGZGkbqM1wvn/SamJXB5dONC+YCHeIF58eVJFSS89QCFTl8IpycESDqClF0HBDVT/0daSQ3gjwHGKmX2fYfK8mK5ijIS8wCguxkpXK1qdHpMkn7dJcpM8H97SL3CeyfhjpBWKBrTkp3edD5b6bK3hOCjnlMM33aVDIUUH7kgas1RA4AwdqnGL5g08RP1+Evf1fNnDfl1IX9dSNZ47GRY8JwbevaI0zBmHugGgVf5BL0eMgh6dpgO2bKdWGGbv7z4sP6jXCpecsO06CEQbg+jJraDIrjLigq8kKUCkJ6L9+CBAhsr5ACMgbMY+hQE+h+j/Tgfa4Od1gow7c+B5Eow2Rcx2IVM+fy/eSzOD6FVSSSckHeP9VFm8Y7nOy9mLLv92EvlHwh9UzI6egarPxAiumIK9TzGZnlDb5ONh1b1zlVS2nCMIVw8T/G8bnJWwh8izXLzYA/V8rWF68MxdwnNxSxvf/snR89tCB1bgY1xScUAqwL8gfpebmFwu9yQFXhozKAPjxpMwklEPUx7Pi7RQwam/az3H4Hmsm04T/DnHaB0Ii3MZsnSuepDgPnQfwjDImbpdMfAsdW68tGeDtcB18DPtEEvflCz5SS4LIqkbAgou9w6DBBmgqAb+hpjKjnD9VG/zpDaWlXehoDyQimJLc+MN0rvUAWg/+GHdCE4UqApFsYLbuaw5MNnoFRQKPU0JefPn0jk8MujTiyOFJOd+M7K+cU1m7xuPglmHuwaVzi+pyaiPx5Jh/nKx3HEPjvqEeWsjCNb42QBFSe3Yy/vJaP7HEClUrTWwez6E2koJ4AmzTIO9/l9aK5pdIIDAcWR3NW/N75XWDoJwLsPrHCqNtS5jJTydxJviTA+5loP31ArSpwKNfjNWglX6EZe2tKjNs8RQmcnZ3jKv89Ot+VqFx8hxcH42cx82lpk4nZdE0x3LcPBRSN8/xef/nCQwqDYLOiW0V+QRDTkkZeDTdk4fuEX32C8sOTwNUZzmG7eruAjGmM6vpJgIzkGpI0zC+bBQPW0vwQbqt1ZNJL4vO+JWCCutx6CpHeXAVLDFpLdouxJlHcxq3U/euWgT6CROZaEC8UdjNlyd3Txikz85k0GNSVCiQCCeOU7yhApXnndmkngnHkU1LGWZEaoquYuauVOhumCWIAdIdG8teQxu7mHrnDIZKI0SqRtOww726fjCy9FC/wqTfvFHskM1nV+ubRBjCebrQJhhzi5oSA/VKSKHgqnWzl0Trlz3jIoB3Xr9RckTPvwGzB4goq9tDIPBWmMoQ0UFNbYn1Pmd127l+54AJQpi6pCRn8/RmhKmekSR9kVXNnKtRoolFDzIw6/gqt1yqiAOj+rRJbapwUmlrdOS+333Sa3C3gxkf7DkWsPdbgamrHqaILRoOqAou1Fng99Fa61eiJx+SuH01oTQWSJZ/KXzSb2i7jEL3h8ZZ7CNMZqbXd8fEr9AhYJpdI07TGYONTJN73fHRzghgXz9fLAvIzBuFIkWvWeVL63tu/RdIz1VoX5eV8r1Z23dWyPLioP4JCMg16VayKFAXZHKoHeUVNBF0a7WIB8nbCAHx8NF7fYsDsvNOYh+ekDT4y4N0A+D/niAlXvu/UI6bt2pjoeHivB6uQMMyjJyr7al53fLb6YmmkbUpHP3x5JyRgoFztCxkLTJQqihTP5/CEWORhmJPLVrXc7g0ZL6Dgkc6mCFUrEru8X8sJ9hmUn1GxypVCyOVI/+fbtTFzDTd2a9FwSp6gyO1/WODLrZ4SZxMj3euU42iID/IIArN+70vxGCviWczSnH65lWMGQh/h0BwKinCAHdrONopjKgWKzu7+4OzlS5JWXxVEOENnnoW/4Q2yUr8Z0xk/oiHIvWXU2JxTMej7QWXIMyW76q0d2GGlgczFIyu9IQCTTcT/p/fTGi4FGm+oPOI71L4coeV/RcZdo1F6sQiViApN2fiDk5ysI5yiOwv1lfebGOwMy93iveFdios09iDjsVC4MXGXCW2I2d3G8aly/ayzbXlMLGcYYssvGseoGWFDsVVNm3IuOW3Yu5q/BovPaVoF7K9v2ANjDFnYEE+QRPe2aFSTHNNvJO/ZOpysrFSbA1kfEAu2cAVnLvyz5QyaCyxUAcCPJcJ0OP2p47c6ywFlbsMBCaMwwBT900FTa0YVm28zxzHjnvABsnx+Fhl06Bi8juHPNyOX9lAmMoNXDtkWSBI5k5JTzWUYi9nbqWs1CBmncsp/LVTQT157XBko1MDjKBj0OauGUI8yX2fEw2fo/NNhJ3O6yxL5Jn6RnlDMK2WwOxeBYeM5d6ozFqXnpYWAmIDjqnftUjyiMsJPnBh6vnnOYO1uJgTjaweewCraGhaPZBB6KzrdEh1hnyviqrlETzX0ycJa0sJhOzspUHIstX0IytiRM8U56eF2CfdHOAtEswoGRN37ZxmXxqCepR6Pine9hPms84K6UHpBvGjIKH1Z3GULO83POEaG/RhgAnyP8xbncb5SOu4WYl4cnpT9whPloGpvYhVzzepmCw/N4oVsqztu7lhOEPbuwWqyCmfn49qiXGTm9WTZfZDtAenJpUuOuVsnE0rGAaDOIP8tFauOgvUX6ZKfWnsjSSrad3usKhUj1+RDk4Sd6J+/iv6T5Q4kSkJQijml3TDxN5g1CDfK080eXdvpz76tgwsPPGOg0BZetek69jWLOWLKfC30InRkC4JxUVBNuVJTSceWqw+/F/cufaUUymWNKrAeph3Cnzb0hJHJ6ctCQBXuita5oSuFEBQK88tRNn3zBpHMvxsr+i8oqb14ul5nG1HQZe0vkquZfAQfp04TPtWcSBMsTQg7nU3jslZNkA4sTpJyye0A4BpUyFmMEk/u7xOf4FyTER3sftIU85P+YIOiOR47B3Ou0VlX96PXYQ6QnzNstOHnS5Z3Er1y8kcFxRJoCrobJYN6Py5dWxzbr6yp87yvqtKnN4G7xoHYwdTbk90HkzKQf8S+bzem3CoxeNwNAcPlXuJpl64fP6NAYs1XgNXeO40qFDahQKPW0qLOcRtQ6zU3Ad9qrGrFEn5f1GjkD0Bf2bJ/ol/G3YgJwMyYTARj07WkoloNI3ObHxFnkabHMVrgH7eq/1+r/XU14LTHse4Z8wfxPVOtciP7JFmv/LqM1xyW6fzOA+79hnBDL6tqjnOhCIraF+vWz2/ctY2nPTltgA+wGajMqt0lV2YOVPi89FrELMQ/vF+io7DYWgWuAxZ57LQkLEFUHrIctY6cfuUE2bnPMo9fZM9d2fOzG/ilBxVrbrN/s8ydnPfxdU5jlTPpMbmJ4x18c/fR6k9rgyTc+7qWgjf/N8g2kkQFfLdJN9U+b4EKTirh/Bso7hB3n3fNehfxx9rK2InoX3S+ljCinl8CkDXHiN7BMcfZ/blrIjxq2jGNIWusF38jI0Sw6aX5HoV2V+E+XKiCITv6GRFCAmVUEzrtIYrFTiklW5RUYbswQsLdDtgBsw1iFB2xkBYhhj37Br+SwkQ8fWe6IerhUwM47WucMZowx6jIGGBH1FCmMgwC3U6t7msZwCcoj6zlGxFAeT9Bekl0ZOon3Fy3CXcDeqNxgfwOlY12TOZ00lIb03iu7Gh5xkESJALrgk+iBioc3xJojSjbD6mJQP+ZJ5xJ9+PSlDt5BkJXlMpEWLricNWldWJ8jKhxW2cEssieOCzT1p17Sqyz9qKHkvOCrwsCzwlM3JomVbSpsXPhuQLnZ16YGf00N/JWsoqIU9kFEHJLgbrYwnS4Rt1J2YhlTuTvvqVBeT1pyUCgqaS5ypGpdQe2zBFfl8p6yjjRiozPJNx53croiooALxApjY7x6KDURPOBNOCLrdTvuBgA6BrfRf4pKD9BYymBs+XUgpBmBH+qpSEXzybwW3K1WWv0XupcyN9+u3JuLawU++R8oezKlKIaF8wzDChvaNJwKti0av+On2iWVM+1ETDG3qnz4fs6AOwssjKGKW/7qubp+gFao4Mjmc775eNCuKY4j5raWdOi+JfkIW422sU1FDhhkccKE54qku/AG5OlemuLgo0w4VuCugPT8maDDocxgFXBnnFMpHhScOpeiF2sxgmeyXzOGiy9dZmzbkVUN59fFYsQ5EGPuVBNuGAq+jAjHeGIBImbSM1o544Q2As1DpgRWcf9W/sR5XOYxbevOOu3CVOvOulCuBFc0+TbqO7nv1N2Bujv0GfkRy44vQdAx4inkFoZsfYzkhGaCTzXOoPuGZTf1xy9UDYSrW5yXwkeZ2u+pwFo/qGfxQ0lc7KHs/N2YFaz8uWpJEHyuqpD7rL/XPS81Fx6UqOZwx59Z3YAK/A6i21TdFlHy+fH655FRt2AYjML17hSREZVMBjejOkavE0n1KWg+KtSeN6SEsXw6lgqZJtDMQzCXj4T2UHJ2NRMb6ZxPR37CI/sf4Z1Vb88bT5lTx7Zt8jt9dR+5MRXavp3ElhfIgZQZZiDxZNNhjrQq58E7B41BHrS3rLI7C3QXdxQ5VNqil9JS7WkeY5qID4Mt7AMJyA6ctKkaaKSqjpvp8FTQeHMMYp97xXDOLl/eDcd3Vcpf58gdnj88o6wCVHXSVh/aZztxylYD1ZgO68oGgIBYiIfzC7ZNdzMH3aGqtpsrU9hKXoD+qxId/wCGF4ZUlFNAURhw8kqFWK8e2C4SuzIC/IjwaZFEWv/nxl9uexyji1rkJExAIsiKqNe2xNUNLvav7OK/oeKyl/bcoiifHwrSOLQXSVsde/ZRKf8uoGNamCQfJiZIIdgpHAnVZh2qjHr+LNm9twcpAFSjZIBtm513g2kHBrFmVUajetjNCNA/gGycxZkJG+HsF/RBB4hRo1EVOZx038wdijol+VGQDWQ3kaCt/czRTiDpT50NfM775ZWwJwzEPPzXiwS91uRk8CsldTYoI4R2uwuCHFTIFtemknZ3eGm0UxXb+li+hMAZYq9qxoCDx/f15qu+BUf2P/cEFqtvOdvk+j2B/aK2V4fnPhsAK6jss+gMsxoFwcqzh/gm7DVsLMgg6t453AYJBk74n9MD3zkxgl2ClFxQMhtQ0sLMm5J7YggKn5gHh929SdU/+bW+aoFjkTkdPPPF2yjAQd86+tGjS57rcrLcbJtxa8AE8UrakuZz4wAEjnpr238VAvJNV9kbSRFSBg9qVjAYy+Wt+eRyumCqmQZNGpKG22frUKdPwa8AtNTEuFegmRvlZNC1JH4unRo/znTXLfrsAZ78ixZKNAkFGri8I9u9+RSzfa9xmA+M7DdMbBM3cjCML749oyShZXhvYJyh9IEZ2ooHThW5Ihg5A4DgUOILmP7MAxoW8cobORI1phrIzPwHyis6ZkL1Pz0kF265yb8UtKCg7AlYPPhY4klrYL/J20kmWAEjd+itqruPrpfl2aC0GtdDss/MjNgiFlJUKvJvlWVeFzMkoAMAeUAGL7oxLm4PT53Y+VUSB9cTFe4dLYdKvNnEEXB08j3L2iqJXdB1LUheblu2P6sX/k2ilLV+WT+6Al+igS9RGJOuJ//18rqzFUfFCKqRTmqcRBErm1KhqqScu/sswvePZka8hAByssBl6WW+wzI8Bh2v4sN9+DlZJbNR6LXDWXBSA61axPgPE1N+F68B0I/RI+YzAW4Fsj9bm7csQgzMJvNahvECHaZLVNDi3lvWQ2QXGdwQbq6GcrLbOLF7YS+4j5XbIfU6eFesdOtQxHUS7f//7SoVJKEgIAP8o4BCvTND4/kP8GAWlcXjNirKRemlK9212vywuOuzp3WKy4nm0s2pOtcnovkb9y0QfCYIAXBhvmeKC2u+vbg+HuOPR8HULWAySSdIJmNon+KWfLVRJ43WfJ196S10xkhEv+//b0nzaRHpl6M/25U9lg3uKHqjZUhDusX5Nbgk9+LL0MghJuxwjIgiioPAPtJkmbRFRNgxT/7r5HzwpR/fWZJUKMSlqGBJq7aVRtquQIyMBFwbGmd9GXNNHZC69+jEQgD+XlW68z75tZ4vKKZ7XYBlSe3PBgTlKgmHWSdMbCldjRoULc1ZqOgQjHJKLFMCnh0LB5GpSKtwgJiTCkr7/ycNSluTNhgeH0TDIuICgLXiBPhAoQmBiZQ92cg+VcqrC8F9+x9km/fzkswWmZt8kr+t4T7ov5iIA460Y0G8nAK0Lz+wtIXbhKZFnu8Zf2XtvxiPFAanZ0nU7E0J6m53GkVR1rC7peSZ59zNTbWrSW87JAsjzFeeH5qRJdKq/KihEgCZlKgWhkJdKweNx/YAfZPcOCdTzul3s88zY4lTf7Q64EoymtoI+QJYA6BoMVt9AgbXpMQlG8z1PdijBAQel3gARiR/G9W9nY+lJx/MDEoRjjgWWDkQJrZIpEcF1HjqbKsYfDOwfo9BT0KT9E2cw1Q0jUKoBjduBIpp4PgjWVMmI6/1gvTj3i4pYE0NTKStsiAMyZapCOmswbQWchHw5/ez4nZfsnq114+QMsE1Vb0zFafAyry6w4luPOjSSzeu3PTXuTDkBy4+UB+hSzeMDtAYhaQeuTwRuZ8C3cCKh0Uw5XNURPGWNqwxog8Zmi4OcSOWXk96a8vdpKiWTQSamgWlzObvDISIXHWXCc1MxvBJF3jNHzuxsLUyVoRE5h6O+QWeVHAttWVvoYTngPg8bE6WN5BiiK8K7TxLCNKC2YnXEYG7kxh7wnD4rdJ06KCzqdXw0GH8Y6AJxNl6trteipTDYBFeBcBmZkGayRKXlOot8aXEmmuSklzkNFHTZ72qIGF5Wfi+1hmWg6O1MZS/YBgsx1WsnoIfoAVMxeZowTxxzXV+MuohhaqOoscy7ybnwB5vWtCnfc48f+INv4oYxyTqlLk6qdrEwIHxz/4j0xkxBV0LvcikV2zeMklZADzHOfJOPX9YQPklDB1mvHdDNFV/0k7mny8OYkOZd0QUBDbKEj7YNQHWa3MDH74xJa6t73l5wpf0+Efxm7myerxFthE1AWf7Nd/S7OwBr1Xo4aKyI2tOFrMOy3qLFuqDhenB2f2537R6gqrEMBPpqH9D6S/glbYjhsE+wj/nKk48MsiqXW39Qk8shHey4H0gEmF2uSfCS1I5AKaGf55nKIoLrIYTEe+noy89iEhzEn6Vc72ADpjptDcC1poK2pCKzrH9h8i8PdXR2zaHtud/Rb8lmADuo7q6K8PYvQ8/Pt4JXhXNslt1a9JhDguw8qXJWfgERlam/ywWoM53t5hFuLcflqcsfoXei8edkWEeuRv2rkDHPwAq7dvLkCSnl1o16H9zMaezmKIK/Vs+AJ7+lDw2VeSV8nP6hppqHvlexjaYyNbJWg/5GCP8g05p1AZUFkIr+taTQNXgqwE/yaXV1OfcVfN4NeQ/TevkU0z2UoR+BkpI7X5Z2JqSo5sQKk0pJ2PVrfqzYh04LfaCUwZsCL/WJRLhFHmlSIPeg9e6apHlJIqNEL/mm4VCo/jPiq6k+rfRZAUCwlBs84C3xv1VQzjgXgog8yWb+7SgJhwaaG8RdEhNbj3HW+JVPOYUq+GM/83hFdZslwsgL1a86H3m6Ctcxlss+uI0DmUEWWB77b4HGc+ytLEqMZRQQUtgiO4ffga5FJuvw9SzJsTOBJ+j5aZ0dR92C2A7gnN5/jTz//Cv9DEzZ4urlLjvQHMHgvQvLa04aejzyZHFPnIGzBb4mel+D1mB/CMT48Ff6SNIaTTSqKl20+iIxw/69+I5d0NMAlsi/DvsCZQBw73bNXNL9ca2sx6MEuPKIu1DM2itniuNOSo8y8fUytE5F8/RYihpwBE5i7mwtTsWoQ+HZ82PJpZ2qadH13XQkykP4EZnOPvSG9zFT4DpB7wQJiqwtrwZaGastB/ELxkKosaxbTDImFGg/vUY6uGLTDlO9pJZz6Y5xLCOvMDuoBBbq4h+9ZNxnrAgvay8NjRwzm2GcW+5wl7Zn6KaxQDOPmtBEOqcpAsnLe3hxu3y+j79Sz03/RC8K1ZnkkHxMcGgylrz41eHf6iyDQDLbptz/eAPFB6sqJ15UR64FyviHP3SFwzuEXyh6ZsV2xPs6YT7svPJeXBC5VLKT+t1iC9Iou7W5BlG9I4dZ//9ampGRsiOMYk/qGH0pFbbd8T6cvYyrcHVc59mOYW9Lpeqv0OgZZhisulAZURpTOT/kbCZHk+pm8+APHOSQEnPZILKI5itUNbJUzCsJqbMyGR8eZgErcZyzCBjf3bo/ObP4GAwAUakNn1UX3fOsW9IhAwe1H/RM58XWhPn7F4xnirqagoP3PjLtNls+Mv/YLH/DqfA+/tssxQVM96OuPe/fb6hIM/LxwfYm3PKcTl1GlNVCHclTk1nGtEYEPvqckoj0t/m/RIHpI9FHgeNFqW93ItcaBrvhnvNT6gcU/Buh+sCUHJXPkMZpuCHHGD45UBOZSQJtprNhDwmv8/XkPyYg+bgwbLjhVDTEJiWwIdDN6vPIK4QaNzZTJ/6gWd/yHjoBGFwRjWWuD4+WBwHsNOvn4820LYuQXCWdnao5BgRbVG/PFiKvAvjM1w6BQ0YhmcZnZAJ5Tqee0EUOYP8l/MUULS68RtcBowbbnFXAR1VpoKQ62i/q7CGdixPokbKEFuLfkQEmbhNYWDAqUFTUhOEQWsu27XICBBwkgmh4XUUNeoLmKj03bS+X6GTCKTQ+x4hGNYPUJZmm9PqNzo7J/tSmvQ3g6/f5RPBeDQS3QcOQHwBTyW1gVlz5QtQXFTbh5+WgqrpfWuoP2BqKS6cIesvZ1aGAEPxnrYHmBHOo12hGignZHYM9tWV2LliVAalGO9T0sHHuRD6CiCmQBgAHvoY+iCqp4CLfLyulU7VKVY/E1ACS0TZq6QzufCgTbIk+39oz+mYtJMPoN+EiNU4vasp7LdHjaAoRSRwdxIJBEQbsB9UCuCiwbM5xMqInwFoWOXEdqOobT5nkibCRpFBh48R9AR0X1qMucxSj46pVPlPQiw1pe4jKHiv2fljtWnMtj4ojLx/Hr2YQc0s28B+Uq4r9e7Y0qKabURAi+k53hM47dIBBSb9uMorWscRhBFSQrTRs+Le8M4jOKzEyev48mAJmCvkgJOX+S0y8Oef7bNmOeb/HUU9WuPS5qVeDdvA8KKsdBEi1mZE8dcv9QQrfnNWXbB0SC34aEMyHcORLMtKV2QGhhP+25pREkAngm1W4SvgenwHD94jCjkPwz7rGceTit7J3912ayjk9UgmJFuI4JC1CZy2xC7pC1izH+rJXWpwT0ThJIeP8efmS4bSjb8BasivjmAUpd+iT6nJzARIO0uDs2ATm+A2E4azBYq5GibRRLEJSrfWKd8w4FCC+F8BD0W2c2IFMLrxX/ekgy03ns748j+ylutAmI399k/OEnkbeOCrYTT+B/dFmhTaNn4htb7W4A1r9aodbFCUi3nbvVU+f33StDMurJ531dgAPc7tI/4I/eV/YhXb4Z2rj1SClapY238bot0yYanMAds9Az5VkpiVqZjdZ3Ig8sNNUcBexu8vb298oQMWPPj6MYmZIIkV99ub2K2DXIfohCf1GcO42umkGwQ9jrTadQDdjt31LEEblqmSs9EagYNtueTSclTHs/9wqpCWxTkMRe8U+B7qY5ufIa9ZCCKLKS9KPdVvB97MN17d7AWgm578gvbCuk0oEb7FMjG0wy82waWjMDqR2fFYyxt6Chm29uaoeaKXFGYq75baHyelajNSgZnSxCkj1HnYyFoqZe79bwuRPeyfLa/6a7fYbhwZr9ubYB5N0h4cnltXZB4ABwZl51GGpwb5OrHcsBq6NtsJ0JjFAY2zVqWIv/gQ/xXIB6bhyOoHkDdoibzyIfVQRHteBiYniSkBsY/ZjIzIAu1ZCFoqlpuaZuAhCumWJ0O5A5JHche+/WH6vUmL4qxvkLn/UqmCabV7Y78DjIsoCxq0VqWb61KOiJiPA8kBfKAlVpLnEfuKL3hT+wKafEl174oxhWtN95O27rX5kdJBbX6K5XLYmh9Yj4BVULbQ3HlHIYLLCLOir0nZY5vqr1UsceFp5VUhIOqe7Y/EySsHubUZtbs4LLZzK9BnU5PnD2XCGXl627rlhY4CAS2kUA/RE0PQZXLIRHUSdkEefp5NWTVo9MUHJNhgYMDmiuIAnAFsA7Y/i1cn3qYuzaLja0paZfr+C/Qod1jnXTaJGvhiBLIiPiTimF8udhX4lmE2goEH7a5KIhh8PEvfMWVt/HOLIPvF2Woqlcc/05XugdHhgJlD3MCpm58/QZX4zkr8dbwiuWLKnEKK0uXvonlJutsp0lB8XgeAuZExywhlvEWZNi88hEFsOb6d18ZiD8IVcwy0nSnt/TzZvw4FxIogdZwgwsNncs5PC7LkUfxPXImHcHgq0DyrJ9TLepcGjqwVMF+JohXfu5VJLJKEaQvXHdrlPKQ5Tc8qAHWAAC6n6GxsuCkqBE+eqN034+G9jbw4nqPjnaVAr4bi63/L1O7TUp3M4O2wKye5zmEGQoqfmgpKMtfIzXIlwMibUf5SS5QREnlvZ7IwcbIbJxmY8Al4ggg5SueoB6CWMsU=
Variant 2
DifficultyLevel
735
Question
Sage collects sea shells on the beach.
21 of her collection are scallop shells and 31 of her collection are cowrie shells.
Sage has 16 more scallop shells than cowrie shells in her collection.
How many sea shells are in Sage's collection in total?
Worked Solution
Solution 1
Let x = total number of sea shells
|
|
21x − 31x |
= 16 |
63x − 62x |
= 16 |
61x |
= 16 |
x |
= 96 |
Solution 2
By trial and error:
21×96=48 scallop shells
31×96=32 cowrie shells
scallop shells − cowrie shells = 48 − 32 = 16
∴ 96 sea shells in total.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sage collects sea shells on the beach.
$\dfrac{1}{2}$ of her collection are scallop shells and $\dfrac{1}{3}$ of her collection are cowrie shells.
Sage has 16 more scallop shells than cowrie shells in her collection.
How many sea shells are in Sage's collection in total?
|
workedSolution | Solution 1
sm_nogap Let $\ \large x$ = total number of sea shells
| | |
| ------------: | ---------- |
| $\dfrac{1}{2}\large x$ $-$ $\dfrac{1}{3}\large x$ | \= 16 |
| $\dfrac{3}{6}\large x$ $-$ $\dfrac{2}{6}\large x$ | \= 16 |
| $\dfrac{1}{6}\large x$ | \= 16 |
| $\large x$| \= {{{correctAnswer}}} |
Solution 2
By trial and error:
$\dfrac{1}{2} \times 96=48$ scallop shells
$\dfrac{1}{3} \times 96=32$ cowrie shells
scallop shells $-$ cowrie shells = 48 $-$ 32 = 16
$\therefore$ {{{correctAnswer}}} sea shells in total. |
correctAnswer | |
Answers
U2FsdGVkX18+Gw+7Am+io+t/0VP29BRHIJv0NQJYn/PGYF/7fhDbu9GpcxAgsGbSFK1VXiPJZZ72bxEfknzCIWWH3+fb3V0ufL7RNRNrVHNt1QFPekelYIwbUMqLvYFSLfhmdhgzrMtxgx2EUJmwdkskMEscYfr+2VocXjT3a4qhy+haTDK0NlJh3mZRJcmKULjtTmluXPn0bJ/y+B9lPz6tNsM9fN1dB37jgucL6oazphEl2kp7dXXp3O4W8jnz3diETQN3CvIhw5YHLHog+2voFe9rBvyso1kWcrHMunkqxozZOVreqgr9vdwienO5sQtTvIfxG4sIA2Btcf9EEyblArVpHugsUj4nX41OsJKNH3CPun4IHrOdUQpYB+Ct7jGumrkaQukyej3z4MqKMmGG0wCEmKNjBAd439bipjDxffh9t/rl2GxXvw+D1AnRovntYD5FRldyjrHeKPiXpHv6I9O1zJdH7eys0mFoWah84bkMN36CiWi1WIUh8vTan1m62iC5VBlJxB/9upG6grRzD+DtWXMq8i+TsFHEewL13be/EqMc31+msf+HFpGJwFC31kZYjvd0KHeC1ZMC8YndNBgitGgGRLoD1TMJZWwfHee5/YuTv2ahVji6PMCvmhHIHUiJbvJ3tjHzmliUid8sF75atglOxeRNBnCl7qRDxkJraMLanWPiUUIeOPT6H79+z7uCACotgcYkDv2VQtSkmXUUNXOLM5f8ImoJYx7c0DdpCSek4D2rU6y2dMhsFA6ehJEF0jmdoxBZro0DYYh2yPSorOWDTMSQAt4QYeOzQCgpijh1COPPufWgsuWpLG8C4ZV3dD8zwcP8k6qFRDowaOebEHeo4RipIol/DVIWJgaKUK1t6+8WgMxQP7GF/y8lWYAE8k6/PrPT5D1ycaggwss7suaY0ZJu48ylc+V+yH526NlyKJY+OTxtTWzA/yNrmQC1ruu9oBxtYK2a3vGrRnS6EfVh5pi52XL3LBbSeXI5q/4A5aaFWxfx4tMOF4PL2zj7esY2N8TZxhXhM0daB8bgz3x+9S1j4vzb/62dZW3JTfK+4aRm6jFueHCpKMf9OB7D5Fbyu0tZwRfWrLxJsk/RkYMR46fhIZU7q9OcGT8WduOaIc2kH7k4yQU7Pq7aJdqA/yc3SefnMF+fAyEjpFt2V2LGbINU2yCgBscoIRxbgaJLxIpQrHUejVrQDyxyyR4Qsf9kEqsD9jymR7jyu0+Kp40iZ9a+vt0/K6O+xgvLAZnYaAveAM8MYgtzhwFAv2au2dKp5tvWtVWTmOg2yIunZfEd0Kyjq85o8IqsGc8Jh63rX6U07cBLBQo/CKQvA4RA/Zw6FWul5Un6csI8dfwhUBoZXJ93Wd9QtkZV8EBPULPHf/0P5A7IniG8FEc0Gw4dGg/DmuovKz8K3gsd3dHaPgIexG1W5HbHLOcyCYzghXHyLfKsyAdcwSGqfhFHjdbIIzY8qP3DNBBa9FOaocqcfm2jjUwFwj0AciYfG55bRv9vtito627oZ+skNwySSL6bGuMGKEHCp5Qmb4tX0uT21IbU7X67lk9qVMOMI8Wys/GzuFtFwU14koCRL6DaKfvTCGKbMqmnYNu+zTJIHhX9McU00zhwpFuJN4qISEyLTXK7nk85MU2G8TghWptZKwhTx3fvnM9xRJKmniHIMQC/sIDhUqSYoCiAfrF47TOYYquACSHUUND2NYCepgClzz4v/Yu/PHawjw/+9gi8z0ZcO3PQqWKGj1kq/biGvBqIRKeymUdSBgx1iyCSw2y7z89GXJLNVRkRxZY7VOsQVpuZbsJjvt5d8BekjTWVhEaQrcQFf0lAtX2i7eWRDxMSzvdM09NtvVclzMcylcnI5ezQh+Zu9tZIIUnELiUp1o+WMVw0+QIjSTnwoNxzO632ZJGV2uTJD/gvXOkON+NZERG2cQSAQ/ZG9c9YeYV9rNAhtaedlwW+pFKLqrpMo148JRl95nzsPqmQLrs2oaXoT0wg36XQQLbBaBIaK6HmbNPMi660dvAO8H7oj21T+53r56H7ff+rkI9JaKL/fZnorg0by7zF48Y6dZOPo6Tpv03mfG3y9n8gFJu60KXoYLHdvlyRYNJops90p1+ohR12WtgYqlW/6aY4Y5a/wjIWv+2LFZvk0nzQ7GSe12gLQcwjlgxFks2Ck60k92EZhpqP20qWGVVdfEzqmgBv1WOw4gzC6XfNqt3mJ1zI46TcaSyO6c3EXhluJxnKeSIiltPYvl2EbylPTzrv+6g1Mz27YIfxMF9xyMIw7s0dEVJKJEomQGC+N4dKKyXYPiVzO5OG+V3lV3sZ1sWnDeGj6f8Iv4AZFADzrVjAqcm41n3ZqujPnFKqTSEmRvxcC+Ns9jfO2LGRCqmfo4ABD0GN7ybrCYNElHzjP/CPTXrzWp9B3AZ7bnNpOV9m7XcMGpHbBssQiIE7ERUXIXsKeArViXun6qlZ2EDRT5ABWntB2Kp5xRlnUzFAo1/EFtqL8GPyo9D2Rxzl3ItwYaNUoBJ7AN40nZueKMubykWwUjVylgRix+8xma/3Nv0Gz7UFiELglekgjmc2nDFmguTYWiwLyiI7c7runlCZogxmGK46E7C1mmRJfdd+iHbTvERt5ElTK8iRNBr12j8yrAZ72vaX7/B5E2p5xfG53MZb3GEQ8nmuJI4SnNT3wZVAPQt7WMcmD31oPhUoFzMQG5WYAurWOVe834ktaRwL32Demdp0Fa8tRPZsBvslKR+VSibLlxiD5pNRt0xYuWawZGb9KCnTMe3XvRQxJ09Yi5h6Jb+2K7GARCHDtAecnNrT2dskb6X3azII11ZkMIQlv58o7I/F97NjfPenKEQfrUQzd4DBm3UizD+C04DpuZ2WQx1MhGr8uwCjD+b3TwmZ0c47/tv/TXt8WtrdUkcyfOr0w/5mMa1rdyvMGpwSPp//5UUlRp2blIWW3KuhwVYapmNB0eKrNncx17ACLWHWe3Fcf2f7r/RYHxLhj+/OKjuOTydkI+zSBdFtyE0kt/Kil/6m23HIwmEV+wIZKTZcPAvRyevnbjdFooaJpPthkEjFlGqEMwYlaspE+v+s0UTwidF2WXe7m9HZALIDcnyNu3gB/vP1TxoOZzlFZODun0Vwy8m543sfujPb6fNFjFNJRoUz0sJ9kK3BwG6e0UoIl82QlRH3juCbkE/WICWIkcAoOVuofLoGWQhB/ZZiOVLMPl2CyIDiH7K8DotYNucHeIGzKlIupvCE998dBDx556ESEgEIrYnZlBQT5OzwBXwZRVtyd9eYUUvq1q37gI9Nx9Sp+vlkmn0brWnYvfs5pFmkEDS7Uq6RX6i7Lv62NwTeycjbgfAsYzrTzBtOwer9tbyv9BPtjl3NeFsIzqwgAuBtKzL7RTWrlG9O/BCm35i2XtmEP6Qbdr2w5aIkGTkOEgyJInTf23Mol7npCAavBXILQkWbRSHFhIvy3o8zidZcSaFytGV8SBFCyGJJ0HoGjDlDEolzSWB15pg3N2i8XwxdOUkyI1WFVVwVg17hg797zSD283iVYblWusEL6Q/b1hc43kEghjIvKn0B6c8zYnX6A9gIXEkidqW1GTxvoRfpwtQ3/ebsauNnpaGvjz3iv/2E/iGF7HZ6NTNFiallo7wwjXJgHJ4OqqCZ+FiaH8OGLhbTDHUpRDj2SBkKLB+tGJeaZYF8bPrkO7udljutG1TAQLiR9xtHMid5f5gTFbsTjT8aYR7iRG1fKtntPnuaLI9GPwujG1WbE59Qdi3enYJH0Yy84VkeOR6TLT7hvPSPP2CCuQWS7kRDBQaPZ2G3kAV5/bB4ISl/x/2ynweITu6/LNAGD/28Rfru5l6yAlDNUBdLNI8TrivqPOf2MRJxwF2M0+mSflYchWjWmQA/RtD2neUv5mfwuFk62WSJrONX+L9a6PA2pdUnFoIVfwIfny7a2idkwgPgVKwrjdMn49aaaG3bciRNi/8zlO+kFDbMa5o3bPqiwtX4C716WsNEgqbGfIRhwZqsreLH59kpoXl02RwMCv/J6pwlhnn4pIWT4WtrYAXXTD+O6ON8oIiyCPSnh2P0z1wJ5+bXVfzTClnhLHAtKe3e3vqqiXswaUiusTb9qAQwdnGtnJ5NIdAG71zJ2bsDGN0G4ecxS9DUb/PbqAVBMycKyoY6NuVG2d33N9EaVgRQxQdZ5oC+FFr233ZVrP2yDk6RYYAOjWA9qoHRcqlGWEVPkMQ2Y/48gJxWBWHAAw7mPaDkNyWRx7GDqEHltybZf5LXznnBA42U8H64PHp4zHEiBcrm9FXE1dKS1kuvqjToWmbWnDr80r0QaHxx05weEiUTz6gI9ii5gpjlS23hLzh007Oh6sLj7rc4/fMT/sUUF/2O4GR8yyxS2gvU7Y3CJu/BvjNWIcoP56uMHeBovKPcZW5JVcSaRRUQ+02JDcT+qQeyRzR2/awSSsgNtbZyOEGfQpTrCYzRtbVjkoX8pcBywe8l598b6VHQRQdxKkr7uiBmqCGzItvYr0F8iWwGpqL+Y1VQfzOF8y9FL9tFysKUBMTBXkGL9PQIn+DmYiV+RyO/VTwBmsdIWFUnc8aXl2HS+vFENmNlArl1oGYgKTRZQM8Xu9Gpsb96m2SCat3zqjAT0fK8NXiNjeAX0P35yHGbgO0xgsIcaZg6SCsh4rvpXsPUxSPwrFVUxJLVw8hejYUcJzfV2xfgNi6vcRR8uKjzOZZSFtw1UVYy2M4mDMt+mcyH4wAcB4XJAG1NgOtHMXhp1jJiG36ihBLbvJfb0CoU+5RcEv0h1hACNUKsl8julLdh25HLcnn4w3V8CUunW+xX/mAoZxIs97iJyuxCQipB0zDDT2XLML+QNMQqdd/oXJQ+9VgceUmuZwLohePLL91EqqOrwY0IBqhWLuHT0oHWv8nEXU+kzwURo8lutuRexD+Vz9BoC2r6P2bmqcFyLb/V502LRePvVO8gs/cnQ3hMwY4hlmdz/BoNKpsyG5p6kZNkd3UP03SSUHh8s5Q95kIFbmtPn+RVsQE2UMTaSTbhriEGweRMVzk1Wws+/a2qCZCPu33ujqeIixo2Xow0AUc+N+YIJ1KJBwzCzOH4Kc8WqZoCPUaNmHfMaRuxrfD55KVI4iPnmbLHlxeic7u+0tSFpJQ3F/fq+eapJF0JbFeYYe8cSx95yT7ukiFvIVGYWKFxmJQ2O3BdPr2WT8Auhr85ISrRNSwhDghx8qvD6DryHuRjgKCXNazyC+GsT6QZr1dcP4F+fsRIE5zWXpc8CfX9jR/uwJsYDiUzzV0WkqSMt8ALjt2vZxAMd7OUa1QZJLlEl05XcAhAtbNXkWI3aId7EwP/QNWqfVIqZdqg63bPSIXJojr4WQWI6TFBHKy7ORkXiYgtBES1lCdpHRdWEGogfHlj1KA+yYSTBBnuTb0VL9Ghpa1tHt9HfpaaJ1UFe2/WKM4W2pYLZSXfeyrdpyeCYGvHYy15ScWL8AotILGwe2H+qUeXMC32kwF2Hum7v1XmlAvLZYi5sN2LyPI5m+8GIlMTe58qPjHGBAxz92UByqqX+Inn2c2A9vyWlKGDc8jHmjcCTYp1fsgsgRrqy2pHHpxTizXSJV+NbkZjQph3Fh4ROSUXnc35/eMI5ShbO75ZCd/e4ooS9CO2mFkA5iVDBPRKfRlCcBo8duvFhPNW1FUGT1oNkxrDY1gl+VYVqHnFarXIYcYt97ctbWIwBbZj1TipAKUO+mVz0NgKAyXq+F4bB81N7nl62VoWFaV3q7plXDEIq0MMR1cwIEZIQg/YVsumDAl0oVfUXfmgxDSfjFpTRNHIDN7FbfKkP+GNyWHrrwk0fMzPoODzaIckiJfbrY0/rWEk4xIeHpFHrVHFEf/5C0JeUYe6BkzI/pMOJqals7VPyHZYsvBG1FHcvlPw1pbArv90SSXa8SnvT+F3hRIGrqP1u0ttyQEoc71YFkTaIj22gcLJ2uzpjbtw0NqXnOQDSahEX99HuVo6qN+daTTfcGkP/crObIYxgwfyGMoyLomF6GH5sZQdBRgP6hl939tFQZYcWf1BFblpbpUB9p1fkT3ua/VWpdclGd2q46FeOb9ffCQq0x7gEklWXGsz7su8Mt+6M2iXwUI+Rw8oNYntd7LuwF8mpdnM3Q4scEwpUuMlut5TWq9Dwe9oFBR/srIoyTRz7KU0Jmf3/27lEl93fXgkR6MkNF97j+zYpeCFudvbExzynLy0/xNi0qVWmN3UZfdbSsoV/XY6MXEkQsCQktw5zddZ9DGmDmx2RnfvubMafB612VrDZAoik1M9dmJfXyWsf2Jpeq2Nu7TLfTk/KCmFdK8nxuhIlZNOLDT/lz3LUMHTaa7yb2+rP+wWJLbnctbXyD2n5o5rq9dZMeKltuoj4+RaFXc0DgDZvq78m3ROIT5z5OoXDMc/R6xTslDXoOBTLCxd178PXkWi7wWYeugC6V/meFcyUWj6JV7ZoCE7OxgCXAylCs5H7euQ2jKriRe5AWS8a8P88+vCYBca4GLfTm673xx006hAfmjQl1STYSBczoQk8P/jRALneTNn6WQ+IzYLj+P82HqkW+SrYJ8vjZGscpbxV3nAK8RWTqLJn/5njB23JpHQaqa4cy2VCkgVJbeRjgf0abxVrTWjqKJYERjv/f402PrGRddFdEUnf2PteoqlU05EwmWqkAQClQAmRC0TzT1/opoTLd0o8j+8hjF3jVdH6P7iOUK4fzngr353TKgULJKDxNAIVZUIC9+MUB003pAa96LWJehb01743Jqqj5Fe4IMh+bVyv1Onl9sNrjScVmyGejR5l6nGF/ka9ZPqPiTVm/bH1tQyWa8ns+lSjLJOD6aDs/4q7gFFT4jLWIJ2qX8XwJzXvYplZFWJufKtdKEUHidIkswI629Nx7tr/e0yUlasIxsokFBAOsDoh8hs8P3rrkNZq7ke6AB5DSfykAzdmUFh4ub5tXSRk4N/nNOgjs6KvugWd3UsofqUOkcK7Hmk7BILoWZ0YDbVDl/Ev8p/bJJiqu521rNLsA451J/EtkO8cvfQXqieB/kZmBWB0rGm1RY7Xzsxh81GZWbt9rnU6Gw++sn9hD90Nk1r31EQByY4Z2D7ujKksTkiycR+ZWeh214+7LAzS9r9xtjJjnqKQZM/PnQMeO2B77Q2QBAPddq95RFEbUvMJuThBfjQATGKkPxb+2pso5mUGyTcwRGroX91B16VUoff7CygUY+RZnAJiB9OzVn5rLTkTk8orIMGm2B+1bac5LPG6WkFf8JtRqkh/45a+vgcthr16Ivr+/TFzcPrmmXkk8mqdKVqTVWE3NM+Ziz+gjXn2MBDqqN0pOtePkwN6PlJuJ89Z4B4Ff1jb5PslIqASYPIiiiZW0MJlv7ws5ASZz3uJbig5iHkAp9R9n0irccA8j5lpd7FJKkpCPv5sCLefiGqJ6iBPF464gIq9V3GGBfYdIxIG0JLySHy7t3eFXqUsdX7BQIfkAOmhctDjAQheb8RIfVpkrdL7gCgg7bAmi3bzxkO7YLkhf7Rd0rfnmovYfyoZS4HWb/IFYMCjhIM2X0SOQr1AjW1juZ7YRz8c6oaS04nM8ix1hRK3jeppdfgNodpHYUj9N+ercLq0QV/2Za6S7VcW7CGFJRVJsqThNxfTZ4nl+t9XaJZxTsqJ0w+X+weOxNLuRFIsFjDHeWeE9yT4r4dfjpMPCf/2rmVpYP+Lcyf2WJrqJuvUhsHpUNOeE7MKHm1oTDYHB5uYFC6PPsIFM0hI2QoF/bw8WXXlZsAhMgxsUVBNcsOWOcwX1wE2HEkqWc4YWIYvNNAul0h78GSq7Tqj+WmlCV2G0kWuCj5WrN0oOuzjirX6zu8nGofFZt8kxjLOtfIh+ByGJrCAHVLz6T8HETA+UBmKfeWtRxkY2ITh3hu2s4zrfLb1SlBzN9sVqmPTBCNf27gXGGWy3Rh8eS+JV3cXPaEyPcTc5ZeD6yhdruP3ag9lQcf2ibgKJ5OQWFO+P+gkrIi+B5BxWce5AdvsRRKxwJiXmDvHsFBibXoE3ozkAl67k1M8eQ5fSvTk6XrhURK5n6RAU6f9a81LEkeaHzzHy+hL0GRgoTnAyJFdoOuV8CYrm/HdnnDe4+s3sLYiCftJAbHb55rMXMnOi4rhIDGZ3Ab0c8zhgxGiWrpdTlrzbVnGOJ6do3ES1C5l6Ai7PlNKM0HJuMn1HyBMEDeL78aCepFA0ju6wAhLmpihW0IDKHEjeMfWuZA58ju7Pqv1WI+2/LGtDT0NjKXqTRd2JzxIRIeh4RtYkmLSevk37HJE8K+fvTIVyeRjiwdaO7Np11f2g1nGuSTwA0fG4YeNAE4l44YYFLRCsPNvfGaTq2tiqkN7LKyJuI8LL+miusFBeaDJprqzEb9abSbpZu1tW6wCM2kihO0m3N0XWjse4HamChAQaGEa63SAJbWKLjQFPDcurVrMkO2c9WHPWjW5GjVx9j8Ahtoi3znBCoGz+OQSi3iHoZcLTa/jLjmprVUk6duVbfofMPYOdhyM9rdXX6bwZyMFsx+rtN4VfDCzdjFKhxJ738hC84DWMAAk6KOxRMDiV8RDyUKwk0zhb8XpwlIb5BC33sM6TBSmhP0jg6z2+sRqOMenOdPNC7zIl9sm1oOJdOvvIiAK+eJsNHUSGphaaP59eB1SEpgaQbWIzbBgB+uUMoQDJaGOoYE0ze836pHpjHx6QnYPF+G5WCMfxWgJEV03ETnA8jozuV7Tu8OTEOFREorkmL4shQcETlgcUhDYRWoWsnJ3KyEvTWeTCHq8DXQM3yhrxKxGvrnSqPNkKO0RpN5RbpoptEB1vMd049Vvd5UHMpVuvh9R39oy4YxE5H7qiu45BBD/vmUtwHhJ0ThOMqytmkRs1UJ883BvPO3bo+wio31oPKFmD1jddQ/S8vQQBYee4owae0BAm4frJUIV7G8OFcVF/05MjeCX262IBztYNFNan/qHn5t+dkCH23Jj6i/NmzBWMAiuKullCt7/pvTVyoQEHX0iOIrwBfliZdxYGTCOvwwIlm7sahmzmUo/nR+8mW5hGIvcfjXKEa7SNrmWmLmbjPGkk8Dq80N2wh4iJ0R8bUIOMuQxB7acWkCIpWNtHvg6sX+yW1rAjTxZ2meWpkMkHQgyRqpTqyOn6fhSf6n28Y7CNMKI5BPbZiyCg3DaITe1+RliRPlOdjx9O+0djceYvAfh+/yX8O2sHW6TMippXe+WxRPIxEcTv0AlJcv0salIplg69BCyE6ecBlPu6+gmzP78acU08gzcJcvSl8o4GaILWJweTZ7g5TVonBUGAXo5MJuBAS6EihEMDB+IWWDVRv6XE46OAzUCADVtPKB/+7mnUfsFCCfQoob0MqKcfVzVstgnIrS4Qvhb4FNnm8sv5eng3JYM+KEwbWDwGlpMbO565Lp+6gdV4W1MI4eho2I4Sm+rYQSkZSg5lBK769uXOe1zc+tCApNDBiwfzePWy3Cwjc6SpkMySVPOe75eJScUhIF0esy6Gu/em4lSP1UJ3WbNbpapNClh4ljfLHo8qtdBJL4UJ6u2Gf1sRY1cBZiFTyLwPuYdL6oMRS4ZtnVccocr3iHEpPczPacCqYLX9uoVoFrBAIYf8Z82nizcrAjPwjh4OBnCpRmZBC8brdGxCxHKgtn4kDat2FwYlEX1jJT+iGG4xt1U6114Kkee0lsHazFtrtXzLkB49xSm05op3IZLqcDQfVQYrnQObrbjnTFNY/zxjIzfFxzimIS98tnq8B725TJYRRD9nlbEnSx2IGOCvqDa6mkofM9lUTMPIiHJNhPvwaB5KH9nU7br7J6+LdrYxtu8hmLIQiyUnlGijOD1FHIC9wC3HbcR6hdg7WjRyvdTuo2DPGnGNMRgLPNmsYakaEpdiHvsEQXwdY6VO6glhcCMa7rRBuiOiqy1D/0JHGEzxyV8iCFsfkCiwspTchO14T99+OUdiYgHaYcJmu0zD3o24c+q0NaK8cXLRacKG4uudUWL/t1J+rasKeSNmff+xw0TRn0wYbCsgi+85pdvQxjJPedmRUlqgdHqPajD2Pr7vpc8moZT9GPUgLhmNvYZsdmRoo3nJcm/NUZhOb3kcuovN9NtzF4FeD4INDqXbJwU//+lKdL8/7plQ1Vwx4ae80WoINpr4Qqe/4S0QjZyT9+QEvLD+8qxVpcNYh4h/kuSevem8ShIXzXOcbN5/pNnbhFrz1oMgPDUMDPoHbA/wNdnVv0AZzD8VWDWl6o3R7aQojtWxeqfckk6ZOxC9OwxQJqbIapYhqbpvZMeCV4CVVSF3XWKSXKGszY4EqbGq7IMqrwtVOTTriEcUTv07GzGKDEo+jJZdZH1kyoLCxYSKryeAZfCcCryxp19u5EIh93DPADAqqFrd9xjSIPZ6k7devK2RSzxGOXm08MNwvVtbbyVUzfiLqLHsKzqREfWHwwCJUV0N0H1M5Waf8X9lmqP0URj+kZIE84eGanA0MmilQVVNHNPTnWmoq2yqtwtg+KpWJ/OdyRa3myrU+pIdZ4wvhE2kATSE4+AfY0QXOcLd8QU44yopvF6Apg7CvHBtt6kcHmuRMr/ZZjnZluIx7P+sS4aJeki0ie7NBicsuzP2ThHx/pDfyFIWAvkbxh2ukUhuWXZulsol2uKVaUPZNFvaNkPpFcF/Pnqu6w78+9nXIaKmhZfOw+X8vap5Ww44l59Kb6dVYURNmgveWxeaMbI9y2v5BOvG/xkDxlLOA8bKoIxK+NQsfSjaJitRe73Fohyi0lykFVxIRcJeEeV5irRYaiCAG4i5uH/vq85pzffyeW3ib/3dW1cS4SaaBUZOFBB9QPx2xsbSdDCkD7+vKpLPKsNcsKILJJq1CffJ4VqKKVzp5u3ITF7i4fW7qEkgxfHbUE4vf5lLWdjwcp7denzKcQqg+Y7yEFSsAYzRurYI+C9UV8ILHx/+aCUlQT5GbHpMiyj8uGVcGqBb4SvkEw5a/QreKVr7t9o/gdxkLEoo8V3NWsfBmBv39Bqx6rQYm1wFmRWPJ0kwpc2DHUzxS8BRvKndpqdkPd2Y8yTV+iFG+D0+7ZxQFUnNG40b5Izb/upBkJfwXTbq25Uv8ey+Pto42BmfeA6QMmQB5MZO2vr+MczTLfh1hnp6c6no048fIgqcUMzBS9LXsCHDwcdHFbEmM5THy3lQuLjNwQNDw5CGBuXrIC/ZGnwjv5woJywV/GjON10PO7vrHDC9J5aamGGNg/onHKPuxpiKKRYzcCh1LYZMvOlKOxx5VC8neoFyNt53EkzsG6u92rqCg10yEA4GCogWEWELrKSujw1eXyMaBsOrsTf2C89zgdG5YYKmN475MrQmLsCtJzpwE5GlHOVTrKaVU+DX3JR5UkByNsXYGbRHg06BMv8JZFXyhknC3vWV0Mm0Di+Y2K5uwNHA5nRpsnFGz2qlqk8tbYKR98ONzCLaXNDYKH3UaIQwxGvWn1HZ4gSLrf+0thcOYOZqX+PyJyAxmgS1U7Qzns0YepJfvsnc91FAIMudTSvYDEPVQq8T1f4yETMfjSN/sEcQOB5dmytJ5jjDwyN610wat4dFerg/0N1TG8xJS/PYIWAC9/jNrAES5lhTBskwaNZB2a2C1tSnUlXQ3Ecp0NsHOP8jwvpy4fUk0OFkksxFmVsAm3Xmuk8F/X6pTmL9rMzxDPyEh69sbcX5YllAHjUKwmtSSwbzswjdDPyR83pQF4iqZ/HdqKAfveJk27Sz4tKM8VAxas06oleXn5ZDCwtHXQNvxGBIZzg47h9Y4UVZFP4AuFhZRkxgeSzJ9tYEVwZOZ9gi2EpGC3cK1GMh9LErp3P1Zv7YqGWaADHs1YIUp/Qkq63k9fCoL4p7m+n5lhiHajk1ga6gDl8/z5GDpn8H9jVnchAw/Cuq9/pIaD/eM8ZpDOP6LXl0X31YcZBUS1YbrA86mWNkog32Lso2y7B1wvaC+SyPie5/NSU7Y77ep8lNomFJFGyfbAMIuKoPzNWf1e1771snrk/TENkmB9g7OmZOih/z4P75HUqZsNMvGCuyzEHQF6My/Fl70LM1QArITrIJ86cEOgpwdncGbnRfW9c6pISzsQLZ6OGvgF3Ank5/NkeH9pGr4TxLAgQBTbCxbTkaLNFV7g2vs5pIRvnjMopbDF/u3hsQe0yMBsSxQIljWByWWeLxMD+AZYTWoFblxTA5vUUlVdLyRkZ+/SErYoYwmb324n7YM5eRDb8qNoYFfgHKvH19dIcMlRrzebxkavF4v1DMaEHqe8SxhqC9MrTBBCVK85E1YTd50AGtYogy4H08VtdFH12ob/+lfVocrTTsqPUrbl6++on0D8OVLyB2Lhx1/1ZWAq9eQnT2aurhuXI9Q7a/Nn+z25e8DkjOT3rVfERt4gNsTEl6l4xVii1wfGctVLqpobVsI3utoE4iDMtvBetpfZPpnaCvmmuFYHHwA28BJ7iAB53a3syRhk//+gHElPu9OnlEwjTWf2Z5T3/SdoQmOw7VmbE8Pa6uw+VJsUAjRaylsuN7E78qcJ08NGC+38B/mTnGIyETz9v52UKvBclWM58/cK/vqOJLFQX98KzHSqZASPgZTy+b5ehOTF/3hZNbjaxSq5sWcJUS9ilKcuIsaI/46Ditvy7I7zGekF1hkaUAEy1BhiWe+6T9PxnSxos2teqoSvyj51sQ/+CI0kcMa91R+OUuFHQia2ZWs9jjA+PtembswXP1MqMiNfZ+X7Rg4AWQ6qoEbHfrc7pahenKCqL+thHqq0v/NhR3BdsZQwXF6dx1hJekmrea6L9l7ZqEiAF31vC7/MOdbG/YXVNdA6u3sE72D6A4c/JIObboN3AiW+HmXhDqflDEcm0gM8CYazWhzPSdqxyxxvimxLsA3dx7HzNej1atoLJpxBODUe3LeDYU8dOwitzHfCAGSGMLwsnQrosoKV1iXV+7SWK/3X/f0wp2bM3ZoRw3NN/dK8r03dNOJidjSOuL48RSsSw/KkFl8pmBEzNBLQwaDyk5A8+yNE3hXje31wv7UnbNPTCvN7URXbIBBZwTMH94PyNg9ossU7dKAMpTTzUYHsqofaWS8ao2yF2c0bZjco8tbnne1iizlzxcSvKrLuH1imqohrrS9oPsKfio4Ee0cFXJ6oB2cSm3MX2HXNo/nvVBlLqPdyZ4fuYeWe39ez68l7RDjSy5tNxnOvCqJ60tnZMd6DCE3tk+eIhhIrRi1UMPlwzGnmIsy4U5n0bJGK0erqdW76JhdnjI9osd5dR+ptoe/mwhdpMeXP8mBa7syf/ckpQ2xw6fTO+zNAci69hZqiw6y8W/Uk8s9dxq3+Na8j3knUepj/BOlGFujfyVKxqFx0CF4cneRVWGHxFGQdQpwChWMvB9gfuUic50R4kY4zx7exWdtIQuECbEw4+ftZVF7xkPnxKL7E9/6ZXci2RLWjBS/0OdwEkfhygUjURVBiSbcj4X1Y11y19R977oAqXvXZ2YcsCeeneNJ+o3X/BPRe2E2sMDYymSOpw2ANCIulammlgAphXljrzeep8uNYB37R1LdtFL9HIAjhuni5pcVWcScrYJFq3M0BkZoaiGRNfudAJmtp4Bu/lumT4p/m9uLkDFbfJBXc9Jv90TctFB+H0M2K8I0V+9uhHCD4G9NHgHPMawvkxi0SMD3gEZW4/vFMjok+xNcl1O3l0BtCbXehJOXNOdtfca0Ii6+qXBEYYUSD19PJqu9Q37h5SQOt3kjwB8zEF/wItCf+wTKXh2bJN6Tu59ejtP8tq4I7wpZGFu0ROdorn1kvwqA5yWNt67l10ytvanKz9bA6iqAKj3OrwHSopTUHE7HIjMm88s2qiCSLdPFEpnzO7DYLOiZ/rXwp2ow8E1ThU19KRFPenI5uvteG1LHqMmQlAL6MlkGKuqmNg12d13XoJtp2gi9dQT2jNiVh9tetNpIDyL8jMM76O35YMwj1aJLcI1DmKo/wTQXliyaVkdmaV5juNDLTKmRLjDshIxab6H31gCDc+PQUZAkyzi1w9Ur5WNzYMxXviEd2ZxHpcNUpNKZeEtscrSVAtWpM+3fd0/PqWp8TeNvIK3klkGtmTrQv8bZfqYtG6llHC0kTvtB1JhFh8DONTgLB7Q1co5AlFu09awQhIsbMLuty3+W/OidI8FfUAKtL0UuTJP6fwM1d6WVwyZbcDIJyhZWjSJdRJHjWAUXt/zyBN/1e8437K97zW1tjFi35RQs7GjqoNBLw7UpVnYTZ1zz1zA2WWy3d4zSAF4hbMBNL/i5mBdW05UNmXOGvIX045ogF7ICAvnB6lu8vtx7BEwML78n4bYQsYxmlvaLNqQWj209OVEzpnJQl4A9ecy3Mo83eBN/Tw0KId2HDrn2g2vyd2e62YZrcQpLgLXG4BFaBVePLtYhCEeyyQKM6urAY4tJ8c+btBhdINnGHx6PFZg/ESkmWcDf84s1Er+hrG9FAP24XEkEbL5gJ95WQw1HpTkEv7mj+HKxbBwMUD2i7PrrPXe1xbNWlo7tjGITwJM2P4+kzjFXILwFC2LgRsU2fL31Oc4Pse5FXKArUeeC1RxiUh5Q4dQkLMbSVjgI7Ry1ZT0ZfULUzlgMRY38bKsUVUi6BTLEYzvZ8nSOlpRWHnWNF9s/bXkEppUdEk0oQB4gLFlU7DOv+9uCf5I3KcIY9M1waQIIfIUDqVud8E45u46GUl02ruMzlZqvLm7LtcrCuy7sBijoMtH6BchsY2wG6NU6ruc7zf2EqPyTODiOAGCLqp5VYv6/RJ2Bsio/PoYJTP/8LWLnulkTu8KvyCDrdlV9kqWRiHOw862i5XJAcJ5R4EOUfslNd1Ew9l88UGZmnNWuzsy35ZG9uMU9EU2EdyYBOv9oiGDCtIKfidm9W9BV3xv95Tvk9mo7IWkTY10kEGy8uCDr0pQf2OAe2qdFLi8cpw1MJ1pRIoOi64SG4vNdF9MCJkiPjC2jNuVsD98gV8NaArk6K6PCNm6K2qEI477IH7aakTQsULyKq1qbv4Qg8261F/OVhY4SwC3MZ2zLY8n3JkJ9sbgexjhJK4wMdkRdaddipZn7qMLPGJjRXEQH08DMr1R+55H6b7nu7nq93TZm+c1SIgCbMWUjhbqJ+IgNbrjD98xzwU4S1AkScp6ZzMf7XIxk7LA5Cv7D3d/Q0mlsy/2OvmOavV5TYwgBFlXLuLTzMPOJmr6qo3ZX31s+SlVD0x4yfM+H0NY7AtB7zTzhjhPiqEzDuYcDU3JiOgr0GlSMZWhx4Hi5ALkotj4e2LqTKQ4VxIL2HhT718RuYyZqOxNBRiFU57ISzQrvHw7C50QCpqcAwjymCSskQm1o2TLhTxJS6+o2k9qaW9LFPa5Q2UXX1XOjJ8QHFg6ZkefzSw3ttUgxS/109yD9dv8Aq8xAepGLOqG5i+1jQ5GFxsBxd2LFNVdO/81wFhGtLDTHmYkVMcNgH6KjPrFHvPklprxtbyBVYXUMOdp+ceFZXwLqgm44BiQNnoeMBXb+D3FpCs3kGZldI5ZH17FlPYPkDX3DJ4dIEJlCM7+yLuUPXjikW+ghq9K8H8+yw11R4SjpftpzfBRMp+AEQwlnIUOKwx3DPMtzILJRUxP3UMT4vSmRLX45RYM5ssYVKU4TY2MB+y/wyU4cJYMa0rMkLf0+3SEtGKqe12/x5bNLJiQkkSJj3iXlKF406qHuXH2BHb0ZbzdVG3cc8goGmyk0F/MnZVnQypDQjBM4Zwko1tb9hado/zOSPwffFblXn2gb227eJ3fc6A9jJWVvSX1w2YfVzGxnyRPEJdSpU2kiDsO561VDFlPF2ur0kzM7H3zihaxl0aRAfd8nz2/L3nRiE5J7RcPhb4JPh6kG4e/ic2BIZTObM7fefoNO6OEoMnLLELc848hf2DHdEQ8qc3H9wkdaXhEaZt6dJe2BRgpNFp3WzjkBiLKeu7Hv86Q8hzLdvHwtkyPgdcMk5GKJ9D7qWiGLcfQoFE6reKFlbEYQk7rGgA0K0rKWdv36WPSxR21bu5TWu/1Px26YJPd4c8n5DYW1IGIikmzC4b2gE8yWqzW5pVKOES74d7IYZcMJ0QM8fRPovNMYtmzokzJ78UNT+vJsnXOT1dSoHTqkcFCjcDRlaRFXYgVYqVTi8yvw6UxmbxGNjjkxWgH7HZxnIeAjDOEpsuGvbaOn9xPPtp6x3ktD23yNbXfCAMQauaS7+2VveLrU1n8sc2smG/ftVLFRTt1oom0k2P/2+ZDjvV4FVyIfX08r2EZdgFYT+zHrVE899Ugl87D9NI+KoO8nUd9UYyktCjfsrwGGg0cdHzsBg6yRsQVO7xRs8ljdk0i4+YDuc6j6j+9KcHqovpbjF5Wk4nbH5ls+K+TA1qM0pXj8DlNqIuZdXa8B9pdXD7O0wyjVOOpb52lOX46R+Z5pf6V/1gggbMSePe4wldkXqGaPAKWnZn0Sdsn/n9829LAZoAtOYUuiwc9mdk2AgCFUyq9c7vpSe5fmsJ0Hz8S3lT1h9MlL6bOQZomIs3sfczHDyIj0S8deTh0rKzOoYKuqLeRnn2An8SIoHUDZsMD3Py9F4DeWyTTnU8I+sIErt+gxmj1tPuKkf24i3+SEmudRoVu3+PtoudLGojdvi8YIib0SQuWTtoAGMqGOXTbVi3nf2meHpjMR8KqqVVVxLPwF1GUElK24s4KdUGAcMuSag7XBnKlbGf2QLh62dLe/ol/h1iICgwFzJXkyeV1SNPOZcvRUziGWEh8NMdGKv9AQVEldNdDT2bBaab1I9D16TT/VEora8fSb9+igGI3ewiyh5o5+is+PcvVHch4KPHKj2exluPjpj+tS7QTEtwMjNf4W+xD2vyLKFS+Jimry1kuCuu9A+XDE2AV7bl+ZVpBace0y2lugCRIoBcSzqyDtYI+Zc8EXwU8ha7tq1V35ijBFlFGw/42fStK57ph3erXVGqJ/jE6W0NY2F+Jq+ywK1vHRR0g0uS2IXTcvxntWYOQwqsjtYjjr/+fD5B/FU9CSbeyrwxo9dypBfWqlnH5akw1tT8BGkSbAPCePaGwNJPHpASavXGncMszGtUMR+wRz8m94RN4q2C/UPRGDDqqfxdrd0yFm1oXeA2NKi6oa0ySRQ0HhLRdI/LyiQ/8de4yFAMbh0yLVpVLwGu/ipoReTBx5vI6Hzu8P8zYNUCrTZWQeYZxcy1bPGvgqh2ldAXydgy4+RAEnugy8dq1JftwxykvWwEwstBL6cHp5+IyBMpMUPfk4vlvW032rAGAdN38igOAT/qnmfE+mYug6cwWsqUXX/tN5UgBLa544gW7bn5OPcM7fnZH3XPgvANtZmu5nYI1qEupYPJiwRSqEkr6yr4zaT37huD8LFHNrnh0l2krUbA1wAt0PHsrZTMA+UUGZk1X/nEDI27jvHeVzd6QfjjU0zqJ3oFiCiE4gLG9135Tz0qKm7CjmD0p8DcMFBbg/upLYWrN9m7sjtaYXEEP6Y8YMb4qCWc1NwRFl72+5XCF/beKthzp6Mqe4QdPrC00Z7qYuOf8/mAwsAF7+aZfYP09NTFvCask34MAN1F1nNqCjQu0MsSfXyJpxNptIVLyE24ER0F055V4BfNkYguZ2Hgrj21CkxNgtsqkQmUtWKvcEa6nvCwUq1myNlj44WZjZvedv0lbAesLyPIZ2K6blfGntkQ2LPY3BlShXiMCeeWn8OtApbPalJ6n+/RNeFzJKv0sifCRpUyYIzYAp5xiVUqfQ2VV1oE7SJPVLJMZwmYhCl6BbBYaK4TwQ20fbs8eHX1VVTxztrHUk33zdicmn0MKi7D/lER8G3UZMlu9zMnUKIzQ5XpfhDm/yxCBTzqqtCWsd6nf8+0LOcr5n1mQh+GB66oBgwH//uonePacbRk+gAcLpGehD/GKDfdc+H7yqIEGmETaWXL8ZlYLhEFLYpWqQYv8AksTWT7I7KCx85LKOeCH6A92vK6bST5qfSmkf3BhkD5mErRFJ18agzcDOGIEmAszSrKdgD7/wYK6GcRG1jkRCHefSrtmFFrUYDHJptgG0uf/tKtOA8+7SEDeTw6Ba3rbZYch530ihYXx7loVx5VxLHZ8S7Armm0kfNRpRk3srXPSjz5RpxmwAsIKAYwXSVUFMKIUgW135GJMIgaJFrdeoqfSxliPeSdtRXyYyBvQ7q3iwrDbffVnN1smpnOJGOcbZzRsHEVUkeOodaFf/lxouX1oAIWy8mvP7BT4hY2GBZSSjP/vbiF2cxnr8MZIzNcTjABqZvdHtqAgl/5bHFTGm39jxiH7DTkeGhYsEVT6PmcmHd8EHVV1XNDykcBTZgM9SkAjK42EvKWfq0ss8w3dE38qk7fJNn3xOP888C0zzqpJiEu6hTKLln+lfdBy2DiozlPa/CjWEl2uZ8ou2NFL7/EWp98Hs83jkuI9k9+N3np6smJVGHRqCrLliVk6yNWmgJ/D1dLbKHTnYShqmX1rKQiGvqz0xXkX1YLL8jt5HPuwpjp5dcC2bx4VTw3XwJbB8HBVg7VQ5xikEY0kCFX6T4Uw7YA1bJI2SDQu6561RXIMOwiHZKkS3DYm6EqAmyQub3pWa8umnOGYp2C6fJylO81+TMLunQBS/EchpF6/TaeT8tW7JX+IzOm8gxHX8MThEmOJUQOxkol2EQCdeFU8B8Xcifhqr8+93Y12s2jY2Kaop2aOSCR4BZXrolBY99RM9DLb9eJG5GgVzH0iQgir9PAznT1t6taTXpuXfMB20uLVB7EVg/oTCCwGGqZr2jXeMVhZ1s5SUFv3A1qqYWKVZad0D85RNC3ULNq3Wrj5rZbK0WY6O6wpBy2KwHwqkw5JnXG6UvaJsDDe7RKMeFa2r8Dou5XwvxYQWArPUa3uR1gWRV2HqhRo78wpT+A40+sWOjiYfJZo/kuhGx7dl59WML64E3mjYpeuORFp241RfXc7o+rZTFp1TYLiSeJnzlC3qAkJ+OQvVs5EWDRw5MDVgy9Ls/Aalgzqqeq+PSO53oqwBtlcwe0br5cHpxOGmrkaQ+FGOvzeJaZm2t5zxKDd9SdBA5PGQdXRiJcRDZzQFYPnMrVJar2gICHiYseuM1McofCjhkS3jeMltEa3DjtYn7LeIG9mlHU7A92oiScLIvpa2ErARk6xu85BL66RC0Fo8J0fmcp2fqY9vt6qXItjswJvhC3p8UlYMR8RzKdL3iuWsYvXq1y+Aq89GeFbIypR0OWgnXYgpx9lEGJf6uhdf1kR1h/hjtfoR8vr9TLNVFrNQBYT6EdhdbhqshkzoDWa7nQbjXyHicthQoiYxC8sUl6ZCZ/8EFoshbnR5BXVrA9ctJJ6p+8M+L9ea2bLg6RA7E1MWEBjoKS9P2nmecPwEShBGcjNHCv5hvoLj2Zs9P+ynQb01DDjM5LFNaltYQgfxEeJs86IWo4un5iTppskYmTmNtQMkIUy07DAk5R1AYXZuoalggoe3EowpZAkLacI0ImdUeBZOaIVSNfBm+9FSFrgM/M8yd2coSSQsyX0OiFRLXhZbXIOy8gBKMVT/3YEQKBTh/DN0iOE3tiBJcHtJS7v4GzQdBbRR6rAGsLOQahO3Vk0Ba5gsMrCrPWlxddqvFQPh4x32vC5/KASlbsfjqQqy7YkqtXUouaHsUGh5hJr6qgwR/+gINlyC39FW7LufTl4skpai3f5eXW6avc441WK/fzhUw1wbyHYyYk1+rjQeOv1X+y691qnL19pTVydludWL+o6CfDeILHvoe0VIf5h0aGfIYncHP9xqh7NP7CiUwlE32jw+TRPXW7MIlRol02ERIaF5ZByvsc6NSdKdu+pLxQSYI3iqxQ2l8Rkz2uXulG7y8iJcjhree2A3mL9hL24LZQxd3FkCAr/2gXwVbeuQ9SYDo08U0bq9Uxq8ALFutetmR0l3xdzyUicY2FmmA+bjqAUrJwac0oGyDDcy1QPpVQozGWMvOgWnxwhTtLBwygfJpwrKVJD6nTTFSIAaou/rYTpZtYh9N6IQuFW5FNyYTih3ugmYrZKnXlQFJrc0scGvy5z7Tdk6bdquZpYTRt5FBsO/77KSVoyYrFP95j6/flAceHuo10xNZzdKNLAzpKXpSpO4ctHrOft18iWMv0U28/9swxnpSzL+4Reybe7iNv1/Jdfomb3sLJQDwwgy+9AavVeYbVmrTKQX51aKpApV5Txp+48KB0l6aXo5hIKEFaijlt/9e/WsslcboFHsCEVsufMHnMkqPKRRLUZeaVRETh97Ly12mORpTft+R43nKPLvFbz1g5220nYlLTi6+Kd0EmvWgppEg03yEy5Ch8DEooDGo9BJzOwnzm7MgpnkPsclkaRGCp9qG9LglsnRPdNoS6rNfTm8lkpwdGHXT3hk9l5oTKiJmMoyICbZs9UacO+o5cyMSRxQEidA5FkVGxxF0aDJjtmYts7VU85cwuzOkFdXTRl6RpCzfUBmnEFW4i2yc0RpBgqJdozPmOBHn/TBJz97bWQ7NrPuyorxDMYXubmH1b/cYusnxW5MF/fyaYCicpFXh9EzaseIIyFQwmLPf5n392drZWJzpuCCig0w/O1WAubp/tZ4748ky6O8Ag7zH29Eio3XJMssP7Yo3fDfzWkKtT9vCCfaWgrrilYI09tQGZk+x1LCYj1/fNFYNXaixlzQZxv/zKuvYdLebRA9JdQ62B1icl2lglFcC9D0iBTsVJil8LxXZoJPmztV894RZ+1Kchri+wbkxcBBMiweuaMaQ5WePfNwyBryJw+4A0EMMx4kutRZwlWoVYIsWSPYhwYPCVu9Q72yrRjCtocqhbXeH4RLx9oxIUzVr9RlhbjhC0depPOAQNy5H3PIzW5TsuvIUNJ4Sd9QdpFwpXoM2obv57fJkW8qZu3/4qSr0CO09A0DGF74odW4xDKjvYQOTIWaEMIKDUfxUufSB+BofvtXT5ZfFqrVNJMm6MFh/UsYO90Pyx0jpn2uCqkvHknA/JlWhWqpZJ4QqExnj77AKhGRiXGbLM81aGsyKDoZTOpLgyYoTTUUNRMIfe4fqKU7AEslp9fzLHJbAS3w3nPWPGbQq+zelmUFHy/+KYiPUBb84Nu5XyrpB1I749VrbUFsvpoOAS314cUZpZyG/+ON0YbxCzKb5IUEE2L9iOeeuWHyiq5F+nFn4ldekJmSuPhZ/DeKtjg/cMXru58HUE/fvpJj/UQUFrGOlsvaTQbmbPT5ZTnQA4Nk9O2QRX7P0L+BcE44XUpvu421ga86p37EwNXcjhYTQBMK/XZ2vj5ng7i9wKkYL3DBKrCMKRA3VdR9W+Bb7+wV/e5Qd+wbPuoVNfajIAvGbLfDBWl1nUoerV+tWj6yJoHlzjpSPeSsofJrFQU/6gFc6FiW++1917NHeektu6Kmqbyn2QuXDqtW9E3qgx3MTwevU3Gh7ao/UM8St54WTswzgMiG40w/OjRxN8b82Ex/VAsjKhaJf3Y/aOiLljqCbvPK4dLDz+dUBWBcI+FccL2h/I2kZpdk9zwPKIB+JEoReHe0HS3J3f0lJnA+CZcx8vzkpHgtY5tiR36Qqu1xVBqlUD2bu74As/KEXDwBwtJI1ToZFgAyt5YvmnHptTibDnpWMdaePQTPAg/AhjM0Cw+AGCXQkJ5WLPYBw46RnLlJOyvcJzG9CG5gUgEyybJ2LV1WY44xfUC06sSUe73dClFo1YZR+yOf3006/oapZFWR8iwxo80A+qft209Npcsv7E1pHWP8I6Xcv4/c7nDvjz1hG+dcNQT29aSVGf/GRpwdHG9WY62rK3GaU/ZBWt16RGt7WoykFDdZZXLMoKyQ3OLqXMUW9Ai9QmQLx5ACXqQJTU9vjBgcOWkSb8OYP9wG92UQ3xeSJa3UnI/6qJZByzM6Efd+V5TI8I5qA3XWfBF88YScZing4rHExa9o97gnDSMT85M0jFG1poMsymJgvh0BDjLbOsOzsN93JlOaEdje4fOtc4BvWKA1R1iW6vyVwVprQl3RoKD5kIpQL6zTPib5iorBqTruStzsAs42cx87E+NTbZpsyw3kc7znTuKCR/Chdpxihr7pUS9mKP46Gp9oX3TR8KKrnzITGWZExgnwFIFwswW7ALWVd0tZvk5ABIo8+nMgtFy+fVyS8Ar1ev/x8DzBNCcP+JQMBIwRlm0vZHvZ67y824VgWS8/TnezdtIBv5hqucwtLzOPpIPZsawdfw85dw3S6vb+lZ4MUGd9CBQ1FckFZt/qE0zeoTki4hNnAhMJ2Q3BPr6ld3fIh9BC5A9b0Uhg8S4kvMt1VMJI024Vr4Sijpll/H852d9soatqf2g7wZGl6MRUfY+JLoQCAiln4x9mpAO++F2/t4mHub1o5XL08jXvsyLz6PsnWv+fwOIlCAkEdAzwHo1+Ct65KNjNQRTXHD+BL2GJmR8YLU7q9WDDGSlyLPmopY9aSzgGFtHN4r9/fb9DLHC6VwCItaNW7AZvv8sftulo9lHN964smzyakIskX4RMWEiXQRQ1IMpdkEPD7ubMxzrGT4ByZwv5/bIUfNDeBzgbxnciPm4PzX/V3M06o5VtsIKIWlF2Ju5EqN5KslXfI6yWa3yE0L+uL/5L3VrTygC+GdymjrOLSJ2zLPjVRUY8oBRD5tdUb0hUWzFXhTFa41GtXKaby6xCBaXQQR0i0Bt4sMmAooKK12+bvQfLgYxlv3CKiqTg42Jkszs4lizHG/knC18sw3V9TkqXY7szwEkx1QSOYo6J1G0A5rpVK1J7MRfPs1baJSCCCmXAYHKMpCtLGK42Z+mfsyH1RT9zVGBOMAdb1eRov2VKbUpJbUokAlDtrASZWHFz0n80H3jnyxnnN+xPnsrJK2KIpiIaOZbPUoSf3KlNPn+rCoQ/cWr9OilgUZRglc2HWB3LuPc4UkTQhhZ1KTN1YajiuO+vTfaVKU5EK2JjfhMEEcqSkxURCqWEd0lt7yQi7UtJ193qRpAj0RWeDKTIeFMgk/M4JVXSjqykS/Vab0n67Puc1isK9tzoCo97LvskOaPJERe3TUxe8gYygMNUGs8EyJwxsuIXU21dUv3fo14eI7UAC0oFZ2I5g8B7gcAksZwC0UJWNQ366yRY2gHVM8LZqtoxE5fhSKnFbbcpEehrYbf3iZ8oqOmdQFdZuWdA8eub8Uu/wYpAefmttKGPdKxOJMh/A4E6fmHxqp90TX3C+Ecwk2O759pz5iC1sCFCpucgPxhBny1+DfhcFhV0f17x4bNl3or5Xf9iP8osHeGyvv2F3HfdFZfo9OlXWP/GISEa5YCZlYKPMt5W+Zkqbyl5hmrwkDXSuFFrb0ly0BAoU5xbVuCOd3ENiGXJdMWevGF4ty1HgMPqNmA02EkKok6OSTtWMKSfCh2ArgsCu7G/bAyF0n167qfBmbI5lIfefP8/oZ3qiQtx+FlFtWfehjV+ivD+YUGG4RQt7qjv1VX6U1N8Nbf4d/wwTpxepXgesvn8q4vKvFG2z359ENHSVnZQ/5Jl/QWtlSf0TwJCI37B5H7w/nFlGCwXYXHh+taWSSgfGmviBo7cInE1R01mHe9fE230dIhGhf9qfAQk7DtWkHIuxv/tlRG+5P0yH9c1uzreTQX3HNUvJvhLc9JSV4Bd1YOfb7OCVUkpr7eTSaBvMgJ3rKXJ9b2Gjd6Bv83BuNr1O7Hr4WWUM4gXFIC+4dwRHWvyFCu3tSdGw2WwdzkCoQ5/mz6oo17yLNYvmmSCpvWGvWgLmteJkHWOylJUg8wTLYLtmBDnb0YpNFjDkvCW9eItvCvdZUb8H2fWY5sdK7z/oocMaRuP6MByiBp3cqRtbQeupaVZr3TBLDuDNRg/7YmFvNqMbXwUcKOOA/sbdyYnPbxaCfvloJ92+PgOy5WE8xsIjqe7Ooyd3lzqtq5hkNG51vnb78Ll0J/ZbYsS6yhhaLy/Ec6d718epYT6PGDCG97CitWtjjPGsCXDKKe+yXchRzNNXrzVdA7AcHexcbv88K6EoDcGOgZj1IBFMP6HlZzoCMlbZNrdLTjkT+eNY7rGyC2zaF5p5WmuvW6kqlQJ3AszKv9uIn8Me46lfBBRERkvj/L3dxcKoFGEPbgGfhQKlgfVHnlF7UKLxNYt5puyjq7a29ZTENZdZ4Yxq5Z5U+3bLdu4GDAgoMFYHvknbqXBEJZ9RQw2+HHaa4fY14NyH/3wtAM2mdZKbwN/HCkwSLFXgJ5JoMp3wtPhNmuvRc0l9ag0GXw9QQdc7MNp4hOqU9nzi+nyu5Mb1tEyXsTvQUMbVIejfZ0HRrBCNV7WZM0+EikrROoAZ/0ISqMM6ImQSuGrWxVM6/1D32c98fUsSG3ZtSpRW8jsIu3gB3NnWqEQaKcjh9hZ+VHuI6sBurr2fcgKqHo+sRZFYcbXqMSk228F7g6gkY+e61IJ3U0HkBh6BRoQkCoJiLjhQUgsqcNsoUn6Lh21n5UB4SBik6dQkHTF63FhkHy0m1ayP5qLZvvB+sZwsekjKCJB8gXJFRLb7lqiLq2lKEnFx375HhQ9ibLgN+NTduZwU5Fk6I4SbwcKcSl72+nbeGo71icYxx0ZAxCmxFmJNLzzPZQl376P5fnTfvnV1SXTYSnlRQtG0SygrYtdQzV9uO+qrMsTJpotxrGKIJPY+ISYcrfvWctDQyNa7Op2+051nkBy0ncMhaVIxPpCkaplIOfdxvsVVFEdCmnnVQs4Yn2y5c614dlvHnMvoJWfaf50hP1B/8CRZWV4MLrRRXsjVo7Oc0IP8AEdkG3KrffpsgqjbKODS6MXY33xe4SnV/nCnXhBTf6rAzEWUsM7cnnMcDS4KSqOX3kSxgzgJ9Y+6TwVF5HrW23iFVQrWFu2KYSEUKWcopSWN/In4q+c6VqkcVLT7gqMovtmIhdwDRnN8eBk9mjS/zAK6n9EMAGzaqNWkdC+LHFc+TDAsPtDb1U62nMI6rV/JHbkUkvrGypMpNGR3Qoqa8oQkNFSjAyHNp3F+pbzdkGR4RXzXV6JtxbkYsDQXXNw14VME2x3sHbMhHZ7CVkwmJTKgn4ca3z9LU+vFkM+uB8D/GbVNWlY4VEULbMiu7PFHVHF6tCIVT8SR4BhmZU142xMH+o55/eAyITaObLDdwC8OoNgaSXgc9LQeT2/yRcjhPuY4kU24K0ittDvTUhV8sWxceAvsJMgyD2L3ocnZgBvm8rYd08w4NGf1eBin6kjVO4yYaYCC695RR2psR+NtcJ8k4Uq2/1S3v83y5w4hJSHkbUPbRpWF1O2cnfeQEGc+1Kau5atQNLs9hSPHFVzAj022vIgxConYo9RGNFsCpI6jTnecasuMpNusdzeIMAIKuE4jlSzEJX5Ok1M+b7vZkIrBAaTw5i+zZFK9w8yby+uxNceH640MW2X7OT9eD4G7/JNuhjvRJBEAplcccX8cGUyAfziHSAVSaJjRJ26V1Mv+bqnXfy5z5KlzY/Egj2qU62ihZNYj52fhvK+ESvL7lCADk4CRmrISz4PlpY49KH6khI8lUiclwwR32SfNZQqz9X72HxlhVYXnGxiq/HE6SDNIpKayygwHuiLzR1qLtCt14cQds6bS3a/rutKW+TJ9mQ3bLiNxY6BoF+Jad32Xae1wbzGdgKFWpOME7p1McAvH057pmcRGef1Db/jSv6qPRxNLo6vke+eobRCddYhVG84brjh656zsnXeKQaCjb1d12ouk6Sindyf+vjDkpCZGQcuvjwh/LShPCuc/+AQ/k8D7CmGWxW6oAb2guJrIiXb4ZoBP4DDK2m5VNWQ0bCmzT7OHKrhLbw0a2/IRwGVj9X1W2QcGXc7nyEPMOoNkdkXIj2lbmXUmSs46XjtAipyKGQ7EHAcJ61W/oQ14pOIJPznl8TKssFImJd/W2S2BDdQm+JD3flLUGiYLBn8rXXIBwlWltUg69iuN3bJhto0CS3U3gHTQziODM7RslS2i3rQrBMCRe3xQrxsc1GoS74zbiP5qkIA8voqEwfJQjmNKeWBtgerYZnhPIj5tHoJ7xMfQ5W72OpUIezvcRaxOiui7Dmh2Lx+nHEJJfTpLgsdjVbjr02WROZryWkkD9rtu4HhujyLRFyVIBoJXMBJjXAUUqXQx2ovLsQi3Ka0inVOcsUHUVczObiCXqkZcJhi2rUEVxNKwRuSk+pbqnAkUcp43LVfQmoD41YqHMiZiMLdbz/741cL4fFrfHgHonyHxBbcSs6R3juy55CAJ2dZsMwT2b0rhkf/nZH/jn9nMOsP5eDbRrcZuQeKdorlt46jz+MREW+DbgRz25EUZ9GXDy7wXs2Ylz9Hn0EMm/4lBsC2Gtud2ROAyJ7Upd6QpLtgVp+ghhRrsAlFrcDJBBdK8/+URpuVryx5omEjneaK7Mjq/E3rIvK5CSTyW2dI/eUnrloj9HF6AuHcMkDStAcFgTOrDVo4FeXsmRpomO2qgRKf+9TeEwDqsh2rLT7k26Ik10dahwLR0cyTp8Y11rgrRc1Vbtvz9sUhOOP/dH218bPCSzqZhfQ==
Variant 3
DifficultyLevel
739
Question
Sydney writes backing music for advertisements.
53 of the money he has earned came from music he wrote in 2019 and 21 of the money he has earned came from music he wrote in 2020.
Sydney earned $24 000 more in 2019 than in 2020.
How much money has Sydney earned in total?
Worked Solution
Solution 1
Let x = total amount earned
|
|
53x − 21x |
= $24 000 |
106x − 105x |
= $24 000 |
101x |
= $24 000 |
x |
= $240 000 |
Solution 2
By trial and error:
53×240 000=144 000
21×240 000=120 000
2019 earnings − 2020 earnings = 144 000 − 120 000 = $24 000
∴ $240 000 earnings in total.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sydney writes backing music for advertisements.
$\dfrac{3}{5}$ of the money he has earned came from music he wrote in 2019 and $\dfrac{1}{2}$ of the money he has earned came from music he wrote in 2020.
Sydney earned $24 000 more in 2019 than in 2020.
How much money has Sydney earned in total?
|
workedSolution | Solution 1
sm_nogap Let $\ \large x$ = total amount earned
| | |
| ------------: | ---------- |
| $\dfrac{3}{5}\large x$ $-$ $\dfrac{1}{2}\large x$ | \= $24 000 |
| $\dfrac{6}{10}\large x$ $-$ $\dfrac{5}{10}\large x$ | \= $24 000 |
| $\dfrac{1}{10}\large x$ | \= $24 000 |
| $\large x$| \= {{{correctAnswer}}} |
Solution 2
By trial and error:
$\dfrac{3}{5} \times 240\ 000=144 \ 000$
$\dfrac{1}{2} \times 240\ 000 = 120 \ 000$
2019 earnings $-$ 2020 earnings = 144 000 − 120 000 = $24 000
$\therefore$ {{{correctAnswer}}} earnings in total. |
correctAnswer | |
Answers
U2FsdGVkX19+pBd2FNQyqWWsSS8gZW0rdFSbVnQg0rBY3hSVDVTpmM2Rl1z6EgGCEn1Z3WBENHuuyFCnRilRDQ1QTEX5u7uEL60wMDltUvWJ2jGIH1ssLYIhCk9VdxyyWSFQ759MfyT6f/gIKgZZlqdcvU+QgCQueSXH1uGGl/JAbP22WiQNSOBCCY5fiYs0Y54Atbns89zsedRmzfQos2hq08OGFQLpoYbYao7kPA5fS3Gf3YSJC8gA3V2YsxtS0a6rpInfg/oV/JNziWhO7Owi0ef7siadWwffQF/xrTxEeuBrsgFtbzsVxFYpuu8HXle6gyj941C8bozYkIzH51HnVzpI+UzuOcrE46oFZo7J5vhoF6UqwRK6Lu62oyD+6EJIcrcDFL0ZrppE2rlC/OIHBkEFazLglkYvbqAY3j2lc8jKip5Xr0WthkmNZRfbW66GwgM5/ZNqc0m/ZWEN245FipqNVlTtyD1PES78EE6BHA/XJkao0kqWdP7Da85v0dK2PTeSbUow1HbHBwJvjcXiSRdxyoLZvedi270e2aVOQ4uzg6+XR+yC3eA1hKdDqx1DYxQQ4smErTtJ6GFTBLzPXundP10yonUc4kBxaVxtfJKY930KJpq9mz/T9Zztt9sFHDqCVgh8tFdU5QXDqU3DGhe+fGzi0sZ3WyCgNBdgbzHA9YppjCgodxkMR2VmjDSFhFPRmPGi8nsh0YQ7bhFaaWA7rCMtSOdfrv21+/vZH6KcFvVRaEUtMtm9FLXsAU6N2WveQ/sYvC+xwR+kfjm7KY9hHeQWhN97xmPJe6Q4V/zjXvY2q2lC0Teg2V0+m6bj/1FcpnyV//YA3gPKXUBUuSURhYHCjmPrfKLv2X8kOE7M+O/1yvcl5ZMOOLuG+XuaL/TQ2KC2Ea/kZWusxFyOMCbj5Er6HuzvDx0LHEy1WLnG3mTNi9Du2n5c7rK/dkdDwtzkLh4McBes2GdiPgekv5qUnxRFwiSnegaEWFBbzaVfpNipa8CSep/hEZCF6xrggIBhKJMG4BBwC0nhlDxp2yE414mf3qB1eGVd0wBr91uJJGO3NjALPsnti5BHP7hxjTCauWQyZFWwQ2YAfZeFsfco1AuVrmwac+mCbMyWXYJugOPBEd4SwtXvMtAa4v2h/cLbBx6ZxU0/u07kC6sNuvKfctvt9gdxGpBY7NuXIDiEY9N6gdbNbtIIMYZfBv0aRv6eOcnoCZOpc9fSvyWpAQHC+UtkQlGvVsXDbm0oHv+1j+wG45TkWkHLcQVG17NExdZsBbtEvomt661CrL73a74PjhxQLgF6lxFlT4H0Lma1Q7wp55dJpFfnweLo23y4FRgGopaTN08YER2SV+3WaJQN5jh2gmyY57PZLC3UCRTA/XcouYNjx1ZmHyjxpkNnEYBDU2uefOWO6RgaUSTH3WMiFM6kmYVcXhlWVfwlVW+fqBkQ/kY5JZnAZb3Osqoxsvn/DOfhII8BCPDDDpZdgfxH8dZI/HQC2EUhIJEs+HlVxtF7hcGdeHh0JxJqKE4Xgc2B2t3dXbQpyUR4LqqMudhQXo0lkJmNThT2BA2dDj1TVonccuYVTCNQMpUBUR7drl8EUkyNv8rQty3mkOmbhI7NVdO++rHHcrMLrBqtwgQBVSbJKM1BVJUqK6GC3KVtmNnugs6n4vP+I5qeSIIQ5xeUzQ+fGz+BzAeAl9+wxEbKRHfbo2i+QphBulZt5LHaO2u83+Zoxb8QTuiGy92epBpGGZzcNqz7+03Ha3kjiwGYCEN/zVdkz/inBT797bHjz75vrODOitpxdoL8jAjrFucbob8asAXP7Ap+jnMrr1PMw61D2wipfsQ3ogex8Fr8JIbfFbk66RthfeI9BZLT8G5uIGv0OEMkSC61e2WejtndaxOKqEdXekBZ9yvT+63jkQP9rTv5Y414KFTmqweR0zwCsGe1GTB9gMv2l24H6hcjjo/ui+jyS5gpjFXZqKMIxk0UUKPGEx2Pqld6UT3Q5uTuEpgIGpg6pNemD+njl1oke2UHfv+wZYhxXETYs3tvkW256TyXmVUMayjCA20MezdaZBDiFAmoAejH0HZcgQkjxRNIsRjJcI+RMmHuWCOU5pZ7uPUg5bz6SBJFzf1tVs5YC8hahWnZbvU91YqCNUvowXbwprO83S2znm4oUaAVMFe3Gg3OuPo40RO+grndc5dePXWL+pxhbrHMuy9F9XpZEC8+bpTBRxom4eKr38srLrXDReuew0S0CyxdYGYtmAL5SDL89UpLbKQzzGVW40xsFvCrHp5U3BAyuEuRikip1Klp+wu5qzxbsFhOyOABwW1MB8wX6b93YX7/rnKFHNJRvzHc0kd0mutxlyoZN+9TTSpYLn07NwsMzal323v1CDGeiF2tMF3IRMkjeM1AB9KoL3WsmUNzUZcJ5UrvNFISPfJCVg7xA6cbVY2ur+ABJzMkFGdpvQw/KU/21Ho0Lqq59DBBSXVZSGGVst8w72AC17f1bsrPRy2ARDciSTAKtSGwNifPqAJmNJC2hgx9eNPylCrdagiBPKQxU/703f4GFxHl5NXZ0ZJTYaAK61Y3YuuOa7D5Cvo8Zhk64yB54xsNfAXR68AtxPyRhRbkUgztWv1h/kK4OVqY3jLh2MV8gjINKAYELGxnWEvgTg7uNnlRmfVg2IxJ68dptJt8Zk5Y45WF8wHf9iKOqvzLtL/gK+XvgXsndMnherwxpVH79dKPExXXtR2rY3BO0BQ/undXad6BxnFh01UqMnDaNeQ1P1GUVZzVqVYtx72qIa1MSmjRuAAZf+mo2/11I+cBekuTVOueM6m39udKbAxFiWh0L8p9XE4V1NXh0oGP1kCd2JKFOrMG8F3ZNnlfE+Vd7uvqkkwzg01c5LlG8MiK+dBWXVB67Q+6wmqxUFr+9v5mproMYdT6bdg9JSJSMsADTRpV7thlroui95DTzONeKlU8rmr4+brp+2xVeJ6LsUs1PHnVE9kEoBYfczcSz5J7F23ETWsrkhYo48um39o+PDppS1XOFxWncandOGVmKHUeLbkyszjEjP039jxULZBM/dO4ApP4qpFC3Fe9G1Zft8JnOg6F0k0ifN6oxxu/A4yTlz8idB+y7+FrpxcTTCVrP5FROZO9UzjhZbXOWyD+tEagZEqzX1zaEVZWXNUp3VVtJa2dQFR9ncDaoYR6RJckPSiWF2Ot6uc/vBnjRDw2NhlGN9n4fqvvM2+4Q6U+skDb7Cv08NfbOAGXDwIRpJCQ3niAdaqHSrl0O4jqXY9GyNZzToRmA4GvRL4YRO/Drobb7Sn/6Vloq+c+fNvZKrAmi6EQwuPxPwD9rcsZCztWed+iFdLEcVaj9OZBMC8/Q4Dv1bJqPI010Yde+0rRC1ZIzIYZ2TkE+PJyXV2EJeCIveLYmAz9NZgcqDPdIsPEfw84pu5sH5jeBJvfwUjemoO9gQIlMcSA++Tk8AWeAIlk6A9+fGCTEu7Plb1SHmIOvnLseBsQfFGG3UB3MtlPInjghfMs+Wc6IF+7rjWP+kBIFY8XZ4UQsfePwZeFvl6fD0zTLwCUkgSb6joldS9tIHdP0ImvXWU2bPuJU/V96eW+q2xTkXVhdYvIKRnzwfFbA2hK6sQT0zH6KmemaP5d2PSLjx/iZcI224b/ODBHy5dvAs+9TZRNxeY7DQWkgdafbZ9a9j8jsKzpdZX5k0E4btN7odyuAUB/SEOcOYYwEJx3SDGx3Z3+GQHr4v3gzqILYGdc/jZp3OdVs2y/F11tDH/bCpK+fhjmRC2DBrImJXeezqsQ0GZazUqw9yLagvEmmqG+LLOgHLIbo1Ku6XCR7t8fTYMKIt9M24ua2oHxHEEVZbKhEbO8oQTlzMlZhwgJtFZLbxknsMFZoE07uImJ+yt4fQJEDrpAvhagO0260HiW4tnFQ6Nyrubw8ZXR3qeqZTqOibsbVEhyQzp5gF8ntvXiibDoj4t/sxiGza/oKLeIV7/Ct1EDAax5SjXEDgpzy8CiYN8qjHSb9OdzGiopcrLCe9NjfF1xMgS13B6KZcDh+NTLYaKVgMLxoj23IQG/oZpiBwJf42fIjDD5GsqLDAZOI0R+gjjJ8A8iewuLPTVTirM5SGGvhps+HTYDPx8JjNSS/Tni3lOU45jPuhrWHECfpJ3LQPfeFqiHXYhqueDz2xxP3/PA7aJ0o1V4GWJ0wCGj1xwP6YFJun6jHVasv9NqlBC2JLh+5p2qb+PtZrZrR7m6qqAr3k/j/RkG529FXspIZnQxw0Lzz4J558by2AIFa0QjUmc0JDWbdEAusJfeWkU7++mC5n7KzddAyag6uDPxk6gpqEZe1DKUGlp2jGPs++ktmkez7jsQ76xxYnLv1gx9+EJT12aflnTkn+toHytOGGeY6pw++DCKNpqT08wLM32nXN5xY9isNAu2zW0k+WrXpgyD2LEYiuptzkOHBSGSIy6PR0ie61u7uXGA8jKSmCm6WAZwx7VV8OE6rIjcE5/PnN9mOgt6Zx9XJpZ7tN0bOHg7N/y8EW8UZU3b+xQ2mROY6ncszH7E+M1096e2ERLD0RaEq+pKIGWYSY5xc5AvckWORXynhCRnDiAx5q0UlJdaqqxFf/qgEWGxGJWcP2O/gjQvD7v3SOlOB0k2VS7wL5WGIdLOnvHTg95jl/2vY0htmieS7bc0ZHpa3T75hF76cJBirFsi1TuQnsvqjIUuBH9mSlOATT9QKm3U5PouYcatPJLU6WVD8VtYiB4uLCWv7sbwWMsBoFhyVGOVDIpVExeeubYTW4Aqpu/nc2qlVrQx5vDJuq1dO1UNPFN+GNvE5tZHG3l5DyVnTcPYZNU691ZOmVtWUJB15IreOGkI08gEmnVqmU60P1f5Ai6oOWc8oxo9WTt4Q6xYggXrbOH79SpOP9iw9SE+FJWox3AyISQhEH4nat3hQQgosYMHOB0z21r5ME2ftEJw2VoQrj4pLZFN4FxN+v8r7RXqYPSNpoNuTFnPrU4tQCKFLIWPP9SXdDfYQpsqDtxVXYHDxnfQlIlPHCFdXZ98bVdHOaRwJiCQjkm0ZUtS0Yr3+NeB7CfPMUza7aQg92bJYb30zH/sWctUexlGqOye7Bvk2ADhxHdl43J7U1HVNIB0XWLLZhOXFozVukyvZbobyCj8UJJkDDiC+Gtys3OqfIpXMcRqy0Mo+gRe7+YtjdsTsQ+ga+SoO8y3/B8UxsN1MWWqoeir2PmeKhWyDRYEgY8tSYV4jxrek32dnp5nCALL1ZTEnnXEDBrXBUijpq6MCA5v2gar5FIcV0q53dqsytOL7wLXS1TMUO2y4yqSV8ic1kMkkKnOs4dxahYI+uD+OiG+LqytnPczo6LO1ZB4NkVeaPErZZRjPHptblAlhG7T7tO2q/jU5d71e98q8vkY2hs2sZ0VnoGVclDhJOKVCY4Dtx7pgHhKIbILVmPtHkZAsmiOHIbIf5KrAWJMF1yy0i/BPuVhVp6XfFHVxdv/AK4osq4GVsYFgMsthp9rK/vnjzlXsNuoBuXw/2GrslwvQvi6bJP6iy2gdeUZKj57lDF4TOGSOd0Jqv46KCkTSwQi4eZG7Oq7ao8sF5C0DH2vPvNDWx7BjMro1ortKdTH8AIK3S5NouHzFZEaCwNurKT06/pWghS01BZ/MD3h5TJPqFsHipNA0zt5lqkYCGGCmWw3P/ObxcSj/70bBQTsDtsu1hRAWPIlMm26PXCed1C1ENbuc0FPeM/5RWKjbP/eACLqsKlB60iu/7akujIuRoB1NI/DRfCNViImMfVV4vAn8Yq8qUz5g+CxNRY3Sm7aB0ytTJsxMNbnOSy8PqeP9yDNzYVMfIt7+5x6Kjabku4yCWFzzzPwTD8AyXGxqYlSSbIMD20qDrMJ4RydMEGppVF2x2DqvBIBj6AvKR3Tcktnv8SIaNNt2qp3RUrE4acceSgXQX4LbYJv9Mhinuxf5rGNFpoahjgyrSr2Y9CkNP1uYzIdfG/UrtaVBpwXlP8BM9F1BGR/03XY2VbdD8kiSO/Ze6gjvdTOPZgsvW5SlfUx3WbvAdSfNrqFpgGBUnrzSiS5PIIEuV7i9g9ao4jLn+wFDy/xE4+KNDVCo+1oYc96K14Ha6R9sBpONmPqXE1nR33jAYcvEn6REjYXUihTL7Tosyrgk7FBkPldcXuDAweuhXkTtQEuSd7AajVkpskRK0UdJgUYzdOH8cNpzFQFCH8Tm+E+FI3vNhv2TENRI1Ml5j2f3CPMoC1c/q7wWwfDUHtyHVAmMr0/NRxxcavUIClcRZTfRnug/2irStlQviGC51lmF5Fd1qJYKtn6JM773QUhVgTxFNg/CyzUownHAHN4KTtzocOMEJXGak/L6lAHOn4KfCSyFKT40j85KRPV54s4+LU/0T/VcziJeSR7Nj49TqovDi3taQu0bLeTnsI3tkLKG6VE8VygYOog49+rZMTI1LGwIn+B9q1xw1Dray1Bh9z5+amS7NkeyI508X2jAe7hvwLbcBE9FLEMRtoS3deJuKItTxdJ21Rdvw0QCx+34Z8FQTXGzTnAt8lD80jfuRGGRMJS8kuXeoPccvmMbU1lm3gWT0mBEgN9FOH0SThat0Ysf7IT+XVjuBnDaX65OL31zYO+9ki7hqFbPK20uAuDSTAezflpo5T4VRNbvJ1kpinEKnQVZXeJ60jST8qS2ZSM82JBjPSP2/uuCqgWtK7ipkjEEg7C6fM/WH2IU9D6epZFuX/ctU5QGlZeT4NceyxilEaS96ad1uh/bGZdKhwGoFy7BTiWSgCzhtLy6mgJ2lds93bIrJn8npTLFn20YNqXHx4h28f6xMFltszKhVyR3ZM/8zGQAKDCTMDxHi85PN7XnNc3gs1tPSKIFkLF9yljz4IU5ClQtnmaFoIn6N0TLdrMP5GQ6R3muz/O9tOzI/aY8j0idq96fVeUHQZJbU0oOti0mUqUS870AAgABt29jwnh4kD2KJSTa6sTSActaYLtdNBBWuwIjVpXY3Bie5doOMO/V/rWz4XrUXXcBPerFn1BPqLL+7/+WkOZ2BwdgQ3Op1dC7HQPoQTpKFzncqHN4V3EkJt1MU4UpphBzr2ctxgzOBF+Pfl9HjLiguZ/pTYy7Yrlq0TWbrUzZwcAKnQ/9wERPaTawUmhW4Ahe2DnmPlK6HbgxQ9UcmoQid2vSLDTYo8nh0fVw9t3bpBuJ1mTUW4Ko3zJM6tviJfsXgLcsrAtc120oegmvDNguAxeuMERiNAD7yoS5k381kFRuqjJmOECqGKM4MObwTMb1ekh+WTrVMdLyvRcpi4i0QjvAgYKmkuxyv6gFeS51qyEJ4DFfxo9Gn6CqftGjyd5eQF6TUXfin3JDoPIY1fqzaC1B+cHS9TwM4m63tKAP2T3dbET3JtmQzF+LnkAKUNxczTVYIgIJYYbI9GPKa8ZJHZp5/c6Temxzm9E7I7joxq/98/SSmPGuUZA4l66tSekJTLU1Gpq20OSSbPaGLj2UHDjaqt5RCpcmmXL7El/spiQbgfmGTdyHDYbs9vewkKuvKP7Q+gJbHycr23FTP5IGEA9yTsCYaPSSvVa8Cbzf0BFbl1oXxKbfmpuFURn5PpsMuEJAk8d90hL7ldVHaI+Mv86PHbfsKsfnSKhOpQH00/CgxswxDQFIqPy32C/dOrsjrPaGmxkKhCfZ5XOHuEqQlbYlhNu8Vv5r0OfBnpB8oMo9whof+CT3wyqTQ+6L6zx6slkgI9JbMTcbzzTCQtdWAeqVj1jExxZMc0dej4tv8mK/wA86eDN9LWD50Hh9vDsjudaZ6iL8NOGDntL/CAbBelaww4LOVAbHqH8D7aFrO80SGu3AzFBiQLoLNf1RPoBSn9/SHluEyQwo0JBpftc1APZn4gkX0VqPWdLnvB0JLXtCYa4fXzzPJGMTEeqxX98qEfouqxJ7ZDbsxxEbE3xxtPpPAPJe7EMXVVW3+A6B7V4PHeMRraujSQQKmYSKJRHobXHvsyM5b1DB7vdHba6vxgJZWWO5ZwRzzpcWGv9NzoCnTrYJT1qPN13PnqVPLKYgzN8Ag1TVa0TbWUol6nfu48G/2ZykAdNYvK4DmSVDKgblYJLFTdIE7TwJYwIWInWtrmOjnXz8p7x5NhJcQh3w8bY3WibYXjisLmweFUrhk2aP0wCOe9gsTHztSVxFUu46FQj+LLz9TpGcE3mQu8FCzeg9+Gtqfo4vRDy5sZK19aKln+W1UUJVHgNNKIgBAnNEwc1OEhHagfg7eoK1jOFNLVrbESsIj+4TZJKSAElr/OErGRBosEyBhjDkGRkIIFY+Ug7hVj8zTdTRWbZoWJEHd3Yjy7ht22NKvCDqYGtMK6Cw8uA/5utaT7XWnlRfrGzbOr0lo22co1bSE6bE4YwWULxYOcJnw+TvuSnIXJxJHn52+63CECFyz8Qsex3/7rOnqKT7eEx2n1n6ze1sxX8wNg6gjaeWqjVsUHfjamxceZ8OpUfCOv/ZXv162ACbE1lfD8ryKbC9/qQOKLXAes+LYe3R7ycDvcCdmqFs/3kvFi/Y4ftiQuEOjZovgaI6eBj+xlbxs9giEp2EoGkL8HMZ51SkB9reqBXW+WoZpWF3sb4jhM6/AIxerbW9HxSfDrqQCZbrg6hW2f+wc3j1FTfjHzdmxEg2Lin4MYiNlfOUoKBare7159JRe35GsVKVST1EJt8VG0DoBKO4ba/3+QyWKaDuEc5EG9iLYNYNPiODrvMWUGbf0nxlOdgLfacHWVZnwss3dsOOHHerCmuucVjgzILVSO6TVscr+eWXE+9tCecQjOIL0jmMZTQp9oVozDnQEgMn5WsNWKOTJ7IsOJQ+YY3rnoJLEpUcttUGBRQj1dq2p3Sk6Y1UUFNVTxrtim/aI3+PrFnZUDA/hNJzOym27606TfduH3Ro4l2aGRpimkRtF+Rz6PHWo8EhUcgymBGUj+TaEb32F9DYtcqZksoiDEJWOH9vIhO7MctV9TCrM5zc/VACsK9EIZ0FF9ONe8W6p4a8vJhck5qUWSmRh/7oCwHJ1a9h/weq8QxRnq4RYCYqnUP81g9Jxk4o6ub6NwtLI1sS+gv40zg8aoYt2BSUsy/BMXKI9pYjtPq8zebyjuQeektAt4f5ucNcM+/dDOSW/C/EMsF3eQgFZRAFy/Gtt4PhE+TpVC6ZJB2xUTT/pa0VXRgrh3+nwAmpLFalo87mY8uV6BFjAYs28CHnWLujTFta0lnixgD7prRJx6AgFTy3PiYaF2yB1AaWPAEDB80/s5d6vYWfOxn5WD+ig87Ifh3Q2Zdkw9X/wdzCGtQin3hs9nc9CKHkrif3VH/CuDvzaa6xPVXBKhO0K6v/NmI/d6Qk8l9L66JJrtJJfKXAP/UimXzf7YallIOjIXlmzbRV7XOO7s1uks80gzNIZyzNW/3CRqFagZvfsdL7A30/T2iMeAVh3ekZV2WjZ2MS2Pf2jgcYSjrx1oGd0ya/SYrAPqaFEHa/inR/FyWtGvpArmTZOsHKp8vrLt1eoqhzklU7xArs4jOWaP0Ru7QJngIQubV+lGPBCCelD0TlnxeaMHxei3+fqS2u47M9ew/61as5CtHqZJul1knJnX4RhViDn9ixvju5czlB5t2pd4OI50PJpDvf8S4O5ifqiUk7httCO35yiR/IhC2RFWzJzbRtRzjiXCTCmtT3DPejDAyA8FIpOKQ0BDmgtLFgs3fuzOIhAoBYhEgVJgm6Nz1jl3bqLjp/2UPQUDPq2NT4rr67ze1MZgBLEMa9X2Ol7qp5F1yI4gMYUXcuFRGGz4u8MZKihs+Slc6E+ryZE2lnodrG30PVIXPA1ScuernqX280EvqJPkoZe5TEw8ElVAyCqp6uENINRKANZena74y+EJn3zzP8z7iSBOAOQIZZWLfBPM10i3ynEwsdZ3GKgcn+uxHqBphhjfQx3u8QJiN4gVFByyhTazKyD4b3AWJOU+Pdep7a9Lu+GCefj0/F4GvO4Y/o0mP1ON6su6v7lGJf93STEvOll/i0z7Q2V6Xdn/ydivWS3B7sgd4/BSjsMaymLQ8peYKmP5vGs9Y1iQzmrO4/CZz/0mDrapQJnmlYAg4MJ/nyKETySWWP+nAK2nkv/xmtaqy7u8wKuv+D/89YQTOB3Y0kYO26pXv+34TtJ9lBBFk+Ei4ElVzvbOVAcSerLGK6bCDtDAnpaJQO0XAXwXgD4a0SgkHgyNOA1s/9SZFV5u0F6rWdL5z6KmEeNyemjYUKYtpsdkyIDHkXxhjWJKDS9vU9j+fQFOYfAyylNqPq5MXKhYQKeW0TILGs+DrS7/UJrtBANyjtVWWPSywTfI6pHl7RBzJSt/dEhfG/kXV1FWsa6iITCspbAK9lSmKW2e9TdF8IaJhPLF8icisoI5lluypYbO34lOtZEiToN0p8sLt77rtzLR/b/TeAwCBJGb6CMgHnvHtZjDKpfcguMwRg3tgUNIloZeWt9iK1jznU2QKGNG60xPKyf+0YfFvZkrz1St0gpfUq7PSRs3uKlDfVgq4h8zfLOUg4CMEsVGSG5oCPPRxVmZfkKeMVFBB3FWdJMLOSaushcLKlWk3Wzyuu0OLZdP4mfdvsSFuzQOOO5BvOqNq90utBt9cEZ6gZaAElX8PUE7KNIeHTiq6cSQ1IKQWMtbA1NcSQuJcMepZDkvAdjNKilNsLWxkLvgF4zQ3w4WiH+ztRiKx+OlDzU2KKy7Rnttz0b/jKYAVZvjuJ3vu+lNGAEMKuK+mGy6Xv/NmhrjyXpTTq17ECIUuztBjqDGbzrickictmCzccpmeV3hcZb43hWmRIehfhAjKacc70+UQKaQBBScXsal6AOSbEh1f+SX929qBpYgpB6uHFzjjvQqeXd5sPa3DimURSXEdhtjIU1qpYe6mDbNawXy7Ti9zTzVFqDQUY9aZT835/oAFBGlnpn3lZ0pxiiYCzwJ4kDsJc19lpNWKCejmRADU5BFOMtvBmTyL0NU5s3Rb/fCKxz7guZMZsFAgadpUu6Xb9kLxPUM/Mli+YT+c0gIzLjq7j0okXx3Xa/L928DqZoDE24l6oZW9Kbg2t3q/JRtnKXNMyo6Y1biqonYWR5JarB3Ti1M7Tm9uyx1BXccq5qcQgcjILDG034O9hOnOM9lDja/0T09MVMo1KQ8up4tpfWybXgDaU1v843j5zoEanTEyjkmcJ6KT88Ln++gPLOHvSH5RBONwCCWO/ILvz+70MjHEFpA/nmzmLmH+nRxv9DN9Ad0VhTtefHsXn0J/ForTiCcoGmNQU8NjvKdacIbLVZ8VzTKaVINxZ/RWfrki/Kg1H8zYxe9Yh9UDDkb5XvI4C870o23mtTiWD2qTHWsgD3qXmkzPRF29bLLbHa0sYw15uclaawDO4wYNtgf5FYscvzf5OKmEuRx9hqOcydqHLDzLxiZO7ATjyWBxX4QSh/tAHPNqp+gxCFMhuosnp2C6h1suL5Rj+KZuOqW2U7k/vCnylWwuTB4dH0FeT9bojQk6LxbCAOq22iTJTJ60jdC6XJvrWfE15Y0byunPND3Skixdn+4GA1GmRkFV5tuqc1ERM39fCvSY+unxEOj+4nSqfRQ6aBqLE7Q5R0LfsILO81f5/amIPbVk0ubKzSGSS1LDph6bw12JMu0YdHcRE50Lo4NqSzbF9B2LszZVWv5o1wde7Hv55nLCq/7XblbAlExjOBIArIPxN8EAIou/ij/qgCUEZL705FHvtGul3n0ReUnu814wy19yFKBptPY7vubPD6ke045TZ1aCC6XukYLet/u/2SC+20Q7tuwkbhqLE/e8cwkk9JuOMrMsBdQOl3xP9VDD+Glnvt9Vlbw51qBZIl1tZD6jwlvrazUkcG6OGY3J8dQspx7UamIo0F/auz3iSHr2A4cKFXjwVBg58JCrVliMmCZTzBQ9vb9jno58Fy2YE69+H7TlKBt+Zfv9BiQNorGytpFFOByrE8enz2mOxBWC6Jf5FUJSq1xXjpOQJntp4J3bT6jWO6FHXJrWGeehbQ5M6JZjhipuLus4MXi/2xSRYvdJUNzk1mAUBiRJGulr42N/gCb0j0slTQ6wU480uZmwWxSu0u9nEdcB0UqMMFPDSZXZ8LrUr//8KV0cTDLnPrbPyfPko+Pngsx/Au5cMOu3/W97botoSV6NMVBHXURu8ELe9R642PIU4aXjDPFyDnCCh/hO5HX1hTkFJZJWVlBrd/XGS3syV2zlkbvy+JXKIWw6BTr95pVpNd4ltDkzO0zFdbwFxc2byNwchTvSppQPm+o6IIlXVnSqOys/yebNV9l1ZVzTiVyye5sb8q/Me76jJJj0EhI9ueaSdSq+8DORyK/t3sGbsgDTis7FDZebEc0NzkMhoa+blcgNzga035L9RSIkrWC9dJUGARxIT0hhWHzhf2X70qI6gUYAijIh9+KzPrbtOwjKRSOTUaHSdVAi6Og4tQwGpqFxcj3BGfqFEFP6RzcQBv9O1YRpOtGyH1mzyQRrQrI2W8mI25GECzoRGPBl/NN6UFwMXCgt7/6tJjZl6/BFG60OT+BFg7BQuVOzWe8GhdZ5VMkn8m62k0WoNvz9kBvYpSJuKi8pYtLFCaJhl8T1tZGFnmbMn9wJlgkw1dJtrLtqk9nU5lu5Ez2AvHoKIvmEoW3QE2lhTsKtx+XlL15w4B4xJILyz7z7Gwm04GMpKX/P0iNZ6nD9RJD7wGchPa44xCLVobUX3vY23va9BHWYhxyngpLlLVJ9EJ7Wg4J8f9L7+3ssWahkqo5J2HHNTAfez1DmX5QZTqoVnOg13NHyq+ORDa4u18YnQDinIGnLG36zt84AAbyB+PRlQW3n2MYJ77byI7w8n9kjTLpWtyV0r6jvh/ctPMnkIwSmQjtAyajvi6xVcAZggmke28TpZ5/E9uhHrRD2EsZoTiXrYd+5X3T0pa5Xgw4CR6wRvWlHIXP+p70pnCIRUmczlVVJrLsY+HrLtxVF5ByeK8VsV1y0HW/rStvD4fROKYWy1lvbCK7rB7GZvI2sG6ByulZHZ6pEIhkuw59UJ4EU7png9mspeoPSzjG5jal5eWQdw7NwXYbnUsdtduhd6YrIMK2wQnIRSXQE8CQX04ORT1/OYw/u4G+ywwjtrOpr9WLoVF0eZ8M4ISHJdnit3ICo8y8jIoyWxxMVRfDRehhbOGMp5MzXnEF9PCjDp6EBJBsx/R4UPbLnsBrNFkw8CEILahFs3/oBxUwHBkiMi/X+2hY+5lXEVnqVWndfJyJZWwtamxehgQbR43YoSKa3VXcRBUxAfQPl49pyg6PrtSUUV4PWKlYsb8tqjagxfo611TWzp1EqagicgTrJxEqhUY7p/kCBb6U2MaHvtBigAXhkqUhcvemgj/OblYNRl68xvYswbAEvvg0qg3UkoaCYSO5T1y3JfPwj/3zMRvYw/uUUb2qL0EofddmbZLSpTPEIXdRecTJfQ0ERVB4TiJTJOF+y44LbGfHKJyRqKeyHczSVTgaeLXFIZHzSWsV7ICM9FgIxgYQ/kC/YYnxqu+SVs7EecJSAFcau86622hHX+qkCnc5EkUst3oTQDS7gi1S2+xi60Ax23HIZnclgcQGUFzkbaDdt5MLqmYnTuFn1mMez4tNBnjs9ZHKD+DRnUNtGIJkn4+fMUJz1l7xQMf7W/snawHWM5IEzg2pT87ozjd2xcWLcHOUpv27cVyoVPx/Fl60cLCRODBPoZVwq/kPJeh7b7VTV8rgXGPiQ/5iOk6hHF1dYKBPByyCJeYM8ol+R8lJYk5Cmnnqxpchnoz8Y+m1IXdQxtrMjLM7goNFGgzjq38w2DSq1IjycuDHi1/EEsvoDVlTspt6ASKxfXKad8khVC/ztZtLVmHctLXFG+AbJgoj6gRgyByVFGvz/iVhGijuQBdXDhj+wI4HQFv6TVpwzk+/RkYA5fItvD8BTbPEffn1ftgAeepCyFSJbXUSLLYAH2hcShSGQwrMUb3a/IX7UU83piKmXmQQzgQtoOu6fFg8RBKfpx483cVach+/30P0JQo667cvOcHOEnipiN763ZVMUzC/2Eusgxvn7kV13baGluxM+osQEQHyKEs4fwp5BNqh0O7ZQ2CSSQg7Lbb/nhUld7eaVdJwCsir+NLOvEqbNPEBUxTXsCHUmfLIByoqRUTNx0E+YbXKrCEnTRwxkkpFil64d5bYIMRgYOJkTimgNfCJsiG/ZQEWwibYPR9DynFUfrACNiqO2JRwRYKO5oMQU3Eh1WIOfIjG5s2eBOcuL/OSOGTWJgWqTfhaSx3PQJaeMq8anL26BYjc38MaxKF3k0tQjIW/eW/g90HDTYjF2lbtoumC7PPbuk8+I57shpB3FOkgDhn9MEz5u3n4ANQUy/I6VYLgXoDVOwUCIpXNqjcfWlheMzEtx1Hxn8igVY+Q6eEirM1aT/IOAelSDx3Yo7UOILE77ssl5FNvmK47vg8pajLANtbAod8yR8/yT7l2z5Q+wfSD+35FWgsefmZwobLHr3AIe5a3oYiyqls/ortmUqhuD/AR+wudB8YYQ5RfhyLhcNGs9WLiusF0z+gVqaVYl+pIhAcIB4VbaltOR15FOG8CEnWrAUNUj/XXnfZYM0nGfZZoCDvsZIXUItNQGXJgs1yyFHAY09Ak48FptBFG7bQIhJOFWX+H5v1sms9/VKGEJ/dJUHDFLZb/ULPfCaNm2zn0E7zFo0vKy8TGWsIpKaY2DxAVtmwp2R9HnI4ssKaIa2RmeqCh4LIV5vMwzSA0jQOJnTSAjNDFRY4JZYT6oFeSJ6/x29QtWc8aQwAH47JqLr7zGEIrCuxGOIvDvN9PQRnFhmPaEOOOBfo+//eSOP4saH0lwuBoTzFWbC6GE/PHkAHduDa65hxbpP4ty8hFzv8VyZ5/8zOuJ76m9lBzMMvovW6HCV4XDjPC3+2pJiCGq8D+salrAamLifx4TXVXwBLV0cbPPisFGt0EbmRn/RPmPPkMPlSYtyfJT/fcbwJNRnIq9a3XiDo8b7Ux1lrPwY0d9rEGWnDCtdln0vRJnkVmCIhf0n6bOIdMdQwwkztoV3YdtoM7Y2AlREtGTWoiiym/pEANwRIBKCRccj307ARZsyxFAwoWcD6orDvZIj3cVjwcPjXnV5KIsxBrUFTNRdTimZJ/wpLRJSMtSOFItYglIhSk7WzF4Krl8HeOV2RpgmamBhcgC+i6IOsquJNDrsnaumm/AY4efGJT0S38DkCzbclvELx25a0IE7WQibMC/RbxIELQ6bUSR+U2KL5dBpjjgBQhFDOxpmWiR4ciV27O/X6SxnNHA8Taej9srqBKuGvpCJwKp07RUrMSIPP6STtwDldFV57xqKGXYDuR/E/vTk0VP0w1we2oWI8q/recFu1PfQHfqtYiOvCycZmDQ7uSLMNx/e+Mekkz8XpdJk84wGTctnFRmVOWf0X/DfTUAMBgSFs6rT+ZC/l2tsPgkHcxOUHQxz+bmaFaPkDxlisyRPnnjyA/L8NjbxObOvqbgLyXr+sk00dXyV3cRFyFD50Amj8o9Gl/P7RRVUJ9yXx6AByniIazBM07l8uFKGXNjCaRsocgNcvE6HB9QiOE3pqgKx9tymWuiywUXBw649DQcBlFQxpmS6PFplNfaw1DlkECjnD+NdU925iRsr4FfgJFzTNG0F2yJT8Iv4b4mIMlta1vLQSiP1E7NlNIadVLII88N1UCL4+r3WLRGWJuo6G9q8Hl4D2FfuP7phCx3o9X0Eejtn16bD/YfcIq7tM4wOD0SKe6QCt3cURKYKsEuSa30ITMhL/4DdeUcKtOIs+qZshPERdYKmaNMqQm8Tll87gaI4SMg2ldAM+27DEpLTZ1Sa7SsI4oJz3fEDBjjjeeaFDZ9TjBqpIizUN+aLySi/4N24V5NAITBHtIJzWZlELaYfFtb2vkLUuunXTqmU2MCWAH+/B1cjP0Y3RaILuVTbokpxVCwChHC7j9JW9G9TXCIlOoPXowKlCumrpIIXC3IH05Tr+lNaUKhilKhoB/qWT6cd205z0rM6X29auxXsSyu1gVhWI9EvNSjI57CFBPnO+twz/jgIV7b2IYlVTGGYPatpcoCGh73/p6xaTeBWGs5mJm+gLfcX3VWEmp7IRjqb/G/9Os6Yl2FMExAOvrBC97jb9WKyzHAmGtgSwLilus0fie0qLpc23tQvNTyE2WZqzgNNNEOUk+3zxnwiiJFaiU2XzfZ2l1T55PG9DTaTKCpv46MmpmegyL8z6/RVh/xq9iM3eJofw1Qgw+3CnZp7UPe6JUjlKaitZQsRt61QM8KKTKUhXpj9h7GHXlG6jvbCBnFSmIzrUhJ8PwMj48m4I9/PXT0nJ2FVCzkDCIVVov6ydK1fch2RnQqCC9LPDV2yYlKN6zCApxxzjXC4wU6Tl19OlkqXftLBMgDJgMH26xgMcxXceoa5xNwh7PrUHvWXLnpIETy+2jwZhVDyWPFn3WiXLAE8Fkq197ps3mmCXKkg1GoV7+Lffqfs/NlmSDRr3ZGTrMQGOSNJq+k8wv+Nkmsq1yrZxud/ZcjqXDrzDWq312M28ClgWPBF616np8u3gL09xkDRSqdkh3ypAbH/mzDjGkXN1Hq8jcPCqnwreTyNw7h4JtzUES1Yge9MVArK6cjitSDIEWylNG8Qyhd7FMafNOPF9NUKmEUwSzADMD+JVdPDsh97zc5S1yvJN2fp6DKHTe5Z9Ph+auURyTln80p+V0DDWDli4am3WzBYu4jAc5h3hLbszOKXla589OurhIv0EWSzP9qwezK/x6ZjROSqy8N2g/Tjy1Pj0OaNHTAyZfz9kxEjvpKjT6K5JhdleZzmt4CT532di5xIhpRSPc7y1Kkv/PYiaydWQR3JlXzF0plKDwqzyLFVpvy/BlrLASOMSH5F81PRoDCUhAno/XaY3Zg4qaLV3yTR/DhGdooT3/fcl4zsKeLuFXvNXnEq5n3Pg2G1qwTxxVZDSzEYh6B8F/s1LZrVhief02Lr5oICdZlwjME4vuGGNP/TLDZIKxzpoK54/ga4kGyTY7dCs5RpJY/xE/ivc4bfEocVD/AsWySuLdrLklfzUQrBYxDAtECDBVEVBVi0CtBYze6p7XL9Aqz1l1kw45jbdIdizvVqoPj/TkiRjTNMgp4+1GPnVoPsNy5tNGNnbNZeCR1f6HS/ZM53GoRfpbxnIXCZgXGgLw5uS7KyiEGM0Ok/Gg0jI+GFPeKV0kIKQdiQ6UE3NJvUayx1+GdsoTWWAWnHkRzQKdKR80xBDPH6EpPL/dm+yeJT1bULJLwJAaBFkcbcxRJueqXC7dRSd3LnBbWjt0XFgPe94a73JFtWrlMV5u8RT/iotIz0l6WGqmIyaSUwB/hxvWbPeKhdgwBK9PN/1cI/O/B7GmxZf0Lcn8vVT80JHm+sLVPGIk37vhVJSn3b+AJGQcVSlRu2HN6O/cW8bwcBuJa5sSdlYk55KxcogZ4rJR1DsGVRbwxaSQdrFAaupSvIyzCjhyyOdR7Fg+IvygTzenNT0XV219ldm4Jh6OHWVXgGaHjDvdlLnhILZKQMCoPurI6TnR3Lik6oRrpPySEgMv7McjtC32vcL6xzpAsC8BJewXwSyHEkzG7YY0NuDw4ICLBhzmb2f7Li8BZSBrsWqAAGdNaE/syTw9iGTCtOlhvuqlWhqem7mooVIqKLLCgowk1bU/3pczXyCX7TzNIc0qvTga+9qq4NWoQiI/x8z/gtxzqU8oBw3qpmofRU63qwpdVXz4gZ/yTBtF5HDxXumIfOwLvZo+ihOG7knT6Loj09X5wluBUIk5RAg1N0bUq0KFeABboTbo4YwM+0NjJEGzAItVnIEB659v9Bj5XlBfV2DCydFZIHa3HA2Si3p0NIHpD4SvSzyGj3zlpgGSXswijKfTbM1uQumYiXnz0fXHkky4+88Tynl9ZDU6F+XxPbFvvWcbAYJQu9dEFZW1vy3gTmM4X76mYDheMVTcv10WyTFzQvy0eRZju3ggK2iZi7Gs+NzHhK3xiCtERpMcGV9nPJy+RIPi6rtNySfYrCrQWPrnF3rz23pl5+m+tcuxSJWFnKHKXXbRSHq0FSmpR/aEobM70XRa4dWXQoaPqpQ65cMYTbkQbUHl6A0d+TUgujqZ5IGTj42lnz4rEktE5ypW4nD7bTNyQ8B2XweWmPw4tnWzTkV+wvObivk5aL8VBk2b+WrA8dEr9HT01BMfE1xL65UK9aW53IrOnO9Znunr0qz0M8yd5WqKV2ZU2lG8IGrUzO4A5WeiLTEoeTycqwXFOCcVK9z1gI/Ee78872g/Bg05Yqf+kVqAzLVi0ZlnmBn1ZR2BcDmVh2+8nlmL8zX0JJW07bo3dTgVPt0AUcROxHBsV+qsA+EPg49hbvZuPqf3vexA7pyUXRoPpLppuNftfnFRkgJ/8JUg+JKdNWQ/vNSQvzuCvbBpaLBipu5JYsqOmYaIhK2ztm25TbSsaoe86Cs1u4vqnmZYR62MhOQoBhWLrd/dAXJLgAbeCi5LUNuGNsu23uz5J6cWg6E7i1bldyMXi4DUGx6nZtW9MVeMizssy+8sIZ0k5gU45UUtnrIFXxMP5jyLw+EMvgwLbN+tNTLYFFM13gtAiXfpnlJq1JBgGesSG8ZXv48J4QiMb35SaxLAxvS1WTkZxK/+O5/VFx52Imes8hxDyA5kfqmL44cBwHgUgtCxw2kIvugpfXrmfpoRWVTC07jjSGbYG+Uw8v2LRoa0/GsUHJQ6BA7pl9NbQs3VdU+VNOSXw9ZxTMpj2OnvczlR6El4mVE1L51CuCAdOLdL5M+O/cU9NrnhS52vhEdsJYpX3A4Fx4ynxMjdLIqp8nf/WBKsJPl4yWWMKe016PnZwqb1cCKjVHacYM3PSa/8uBxr7c+Xt1dXsxn56zcSTB8oDwoRgsyAV19A6HKHQufigIRKwWtqVQH097r5BbXoc/QUBGW6K380P2WWV6yn30+4H/42Uw5jgp/x3hNwiDTtazTClSmeVCrJCKxoZCjWu5KwFxh6f6eh0x39+S13sLNfywOckzvJHdppWQXUcqd0AGtOTAJ1BgCZ3O/u3+FojGu7sfipDYyGpUMkvci49pr+jgH8e8j0iNFE3VUDY30EfPuthTEPAy5l+7RiNHqoSH87vw4MbBVeNr5u6piB7/AByIX11XpmdHehkmtQCsScnee/9eeJ1farWxsVAJNU6Y2P/L0hG+XpibfQCbqjVw1N0YHcA9/flC5xE7dqIvVHvj/dz2ou0gI1qDAhCjfgvamKM6s8L3JZLiFP/R+o36UKKaSpFsgWxAtxDdty7W4o9vJbsNC15MPFzIRFvCLNpRtA+zZX1vyfKbMNk8brVRKDd2gkS2aa/2VvgvNuP9kpDe+Vh03p7qr77qM1ggupOORRPoVSZQm/hGz6aOKhYTQ9pguOVbzU7wVervJiLh+DdEiK2b+ge4/YAxtadde2m0P69eQjqqtjNA1HrxPqInFCWL8iiH/1RKa64il41yb5M2G/DJPTcBuvzpkW12rVGNWPrXUJ6YajaUolZc5j3sRkH+wOSFLwvpGp5HGQ/ER1epJV5vt6WO3NR2aKMnqnY8QMOE4bRzjKw3WR15+ze+h00MUT8VMdrHnrSo6vf0UFL6UwJdeBQJdndFqlv/B3kRyd397d9K1u8khWxQThdNgWQ7XprB+pAmTnzVTAd7MWAJL8O/kJDn36lAqf0JzYPrUxmuig6okfetZwyMhJywvDpTb3BdIPDRiVEEjd4ZAbfhUzsG4L2FcIEbFEF36vMQO6gKArK7Nl2GVY6rdgmMYKVxPCCp/48G0j0Pxm63nrRsgGg49OeXNTYaSeweNZlsMbRqo0eQ9MEQ5l7/U0j0XXT9SLvdyrxtXGyXBctPf4m5KQ/bmqTzzvivaW8d6PFTrZ8JNmqHrYvHlQ/ZJVwmYYZNPmkrRvgoHRu08+yuiswAsjFNowkrXFFOdZL/kJTNEeO+1L9hWmOZ8bYWDq0aXv+ylpe4Dc4UhlDRH1PwRH4j0Am1R4TNINjTXrG3HsZzaIQNw3o+Y+v+XzBXhsBaL3EEVhG1T5XYa3RIE9gy1Nawn4HWNNkcIXT5uX58p5IBUK2a+SajlkhFHffMkptOuo5+OlYt0kgR71TUDl7cNJyIjdwTV7jE3Q+3lm1SQ7P/hnlM/TBgufC4tg+C/q18ZWAo3p0EP8dJuxwfQX0yb60l2clCmtUzmd7lkny1bscQ2hRQ2oumhyKgE1eh7NiR359EK029dccMgceD9r8ScLTmKWQKUkcULf82cKKMgNZGCG9AvszaS/+KLIxIL4v+TBk7GpVW1ocoBTsAYw50Z2R3pHGIZdpR7pDdy7dkqZTcmVJ0CEcobSlbqgo998OVy9it9vNa2jvph3XiYs9hfW614nem3bH/3NeFlR0G4CxbeNEwDaNvcGaRFEf6hyDAoz1Ow9eFeG+8Ryw2ntEOtx9wb1pIWM+eVTVwelLJWwZVoqUlsMHSKj9iIgMQV+/EWfWEKCERWQFjP2AUOXW6+kWAg2TV4e/MXkdR90JLe3HFj1XD/qvqH2YwhWpu6PyVErjDKf53OYFpU0HUvhc5zJ1uJ/WBc+CHR+jiTv3Amw3TKaAUlzcXfM3DK9oRzJmPFAKLkDFrUIx59tKe1T2jAY5MD7Xua9UNrAtmvQdfOwHukulRs0NvlDVSMECTUCDRIi4XIfoCzVETX0gL1bEED5a3gEkyVb6a5vktvUzQn8TFzDunm1tU95BeAKNgD+oXk9+rbYiRWKNgGfh9fzqOYPzuzVMdh46Z4+6dAxmgxXw5hW6q3qxhJ7fnXM4B/pBiHYmO5AIPq2bdrTWhzvQezEFC/+PVf5BJsRlrpTcpmXDLdWhTRe5uRQ0a6hhFZ3BaCZA4DhETMnAkpP5givzSqLxd55p/s7fJsYHjxZozK/7zkMc/Vf79iNl8RflcdFf9PGdZCha3igO+vCQMpBRhBURgpqVTmxpTC11FGYfR1f3YErtWIY/TYsDX7duzxShGntYNs7IrLTQCxZuayoBCFvVl6eu1cRXgDDGukL71PMLKHhZdH6GEaQ0dCsBvXx9NPqnW8p5zOQdOX+U9vA/HyVETko4erwCae8wX1GMmwPIIzr3u6Vcqncsg1DflJt6O5OUAY0k7S0UgNCsHIZGnt1aC53ICXi5AHT/BtMRt1bxFU17cy+GI6UWmxmtGNa4L0JE4/6iKqXrbk9Qzg7SUw07DHDNI3KZXkSCNc3HYHSHczSoe10LcYb9M4bb8OuVMzSeHu0kz4rPG+3+Qcns/5iSU5p82nzbQMFL7QAYEUl+wb4Pe0pQIxfm5jeaD3ndvQBg2gw60+zTHxzCOy0JP/WTPDINq+5UYrjBeby9DQ6D/Z7jcJP4W039buLfDZSpGldYIsujgTwajbWhk+xnwMSR4F59roMFmgwQgim18WBf903A4Obv/8W7BMdSylITsN2qXZ/2+BwBHVOEl9F4qjFu04qZjU88LR5/d415iYkqnJ3MNZdFQ29C9xjlrnAatICLwAkg2L88Th0dnuCseTGsbh5XGdympdNkrAzTFGet3QZFzHUbt69tiTsPowpIuooGcLjM1ZyCen2M/8uqyxiLCtUdEBzd36RuGoz309rfhSjKa0doalvfocpKagOIRdeci5AEO3hFM4MVutWVzZEcaosMkftig1rjtZoVJOc4yRA4o8a5wdvQWVvtDTjv+v0OJDIHz9WXVOFvs9aUU75No+mLojkY4sJ7W4Uw5cHzSVDGhRtnXsuDUjAL1VxhLcq8K6cfc8ki6ItthggCTHdPl74XwtmgP3KwCDTlf/91n45ringYP3bWiLm7XG8673BAU/GWUmVbPPVkkMfHNYkXyr5+X5s94Z87T7tp+bFqOSGlp0w4/eUAcak1SoULSPpbjJSozn+Zxg0q3fHXqSv51ek7wtmH14xJjI/RQDeWjALAYkoVbINqkgbMXR0qzChF/m7SHeuDKxldtquAUW7NSpLD+FjFyypFbe+mkmBbvF8gRvuYlUf6l3QVMlH2otb+bNOvIiFjLm8CPvMCk4QCQ2tFBN+GZh2bfFEqmGJTFoqpBA6aBHlMEDKPQwdMrWZZojjW9ev34QRxT70QXKJHfeKEiTpcUX2m2LBieb+fsHuTMPULvoJ0FLRMwP5qUNJjSvmsnBKdIkTSHRPou4eK2LPkmp9Hh4hlNQf1nZAedRmjdAjfnyyq8xYgebV6Mki7y/IoGFgoyYqtsVyRy9nyHd97XFdpHkftWMeunhRMqXWTNeEPf6VL5esKh9MG1sEeuc4yUYkTGIxdQSOBSBvXW//NenMR2l0JvCr2PaxogXeh8TjYliyXpUcOy+EqIlR+FaYx2gzMAMAQWghdbCIMYM+Junj+GEPlkFsq8FADTFI/oQygQXSCBCjqC3mHOlhoRO4z104AlccLNZWFn0+dZJzzBV94FnilREcPiRlSap1OUO7gff1adIMau2+d6i6wOE4ORDwe/Wqzo9PvZAdNFUoOh0f97ACeTwMDcwmIQ4g3xCf+xudvd3PMOqCTrUc5MDfkPSnDzyBkktHxTXy5EBXj1HXlOn7IaRrqakNYDzdvEjKpNV1i2tRDw0BPSmRsFIurB5ERuHppS7Dzyw6MmiKv9STHevqYEQ3qA17t3N222lcQITJ72hiHKOJBnZKk1PZOHXB5SR3fiApgkFF+u3vozvjCdCX+H9pLfYoaiBqcFPkaD/busJ/HP6OvFuz8nF/2+qHrwJtzWvoR96MoKsQXiAoEgZxOs0dzeIaO/J/7RwjYVRpgSr2bE2r++G2jZK/ZUgKuDdusdGMB7fy/i0HfgITks4WEp/zqSXf0I48pFiBynvNcxBzs8aM9/PxHYHPNzDBZg/DF+7Vx4QjbQP8HjptRZXJ3OWwAN9JAfY9/BZtZVJ7sS9uIYpTzWTkhGgyA2b7xUSDx3XWDGVyInHX5fxY26ee5VEG9Vo+I1D0SdD020lDKoXo8E70QYCgPFYQrVBr7gV8phMifpdREJi1nPRVAOuxznPnPRLJKc86N53ylweOPfp4kJh6l2YYyzNiLFH6uZ20gS3HVMmwtLsYej560akpkvdly/YXQESKy8BKZFme/vSBRBseeLmLR/ybKhYUqGBn/LIeqf3OZFI41CBwiWmJZY8E1VabHxbReo5u5hGeV2AH+c/htXkuv83NXgT4dTDDskpmSUVxGScFwkfnGpEUx/BL4XLK8rIevIj7bWRtkQCKx/YcM+kg8ehTD7MTmien8JSdHdtgzjyWPKBY/xUJ4ESxIJbqnWoJfCPolHXuC6MTMk+VF7MYGGNYc9YPGS3bhzEhPDVWIfJv/qgizpcJ8a/CZFpOf+uZN/Wg2nGiLdtv+zpGyyNydpiuWg5D5w0MhRuL8QGZCNmC3cnQvJ7sX+8AhO7kVZxr1SR3AFobZxSZbm8Vm6HykDGstMWbhmkJWVS9c1xMWufFuOnztzX+Uo5HnL2uf7XGcDSz0RojGHMhhTk67HtDBDOR3bUyQGb7SfTocJMehy7UfobFwku9Sm54G43sssyzaR1VFXNrBjqD53eA9AAWPgYeB/cBcZKgkn4uUVBYJuiM30zAaLl8XOHT+DPxy+wQmCIZEudiWILiVXH7oxRgRhBra7aHM0DIFqmRJa7cT+meEs6fzbcCgbnQuspJSbo2GgAZ5+WcWxZHF3ndFlwPRno/kAj3HIcOj4euYFx+RVKR9XHOXP7dMw+ZhXXqlf91GH52JMnLB/cHZ2ZIEhLQbbVkt71IkbOskP2V7iVIhu/9o51dYDBpelb5tw0fbb3kBy2DKKReuPbLTQkoLCI9SU1oKM1m6DzoKI9lTj5orjRI10IItI7uLIz6SxP05noqZqMlmTQ4N1oLijmXBFJXLCqbcIR1hdItlD4FHUuaaeZvb+gt3Ab2RGoy6rS3yUTh9LVyWfIFhhDZ5v/5OfyQQNcHIt2+otXu5nVzM/R7bb2le0YgL/iWgsG8+DpHWzrDqi7w12OxZ5e5AQ+9WPww0LGA/72dP1VX8Lo1rPWXOnUpufzUOzD3ds5lJUHVpMW9blqQBXwZBtFnGvG725MD0tdtc2qeX2bFAzBLG3QXI1PxPbpFrAgaAkYyrT4H+6ISi+FOHsMg0V+sd7nnctP+CLr67fLg8fHNwEt0zlFFIhSSjzDuLQkS7yNhtGeIuJ/nzYXsJV1RgdlXMrBHIM1zohpS4bcxQvd6kBKvRUKcB9l4w+8HjghkXxxkNk04t5plBwCLOY/vzLQQQJB1JIMctvFhZkhPIpc2UEQa5sxSC4bA6O2VpPEi0Bnsm71xoaY5CwXo2uSsRaKAFRPotb04rf+x9xAQjgeFwlWv0sXo74gXL0zIalW949WMy6Je1EeDb7WOMKNqBxyl00/A/56WhN+w3MZQchCte7J4W2LLMLUPQNQ0fI6Z7MAxuL53YwzBqUvhUpPsn3Rr5GS+8aooA6pnpGq5ZPBngCAlUoY2MQTum/pH3MkA9fY77Vf/r5QFv/zuZWK7ADDVc5zVOj777esXcIpCrDOQCMzYxPcZRIRSeRXyCb2ox9/6o4FbOMNg8sGXkNXuVYdRvZuCsXLBCHknHyW0QA1UzbDnm4I3a/1z1S10vjkbRT+/Jy7sg62wX8kImZDlEVBOYvDNt1CT6wr8Jv4HWMAU56dibnrvHNzNVoJxci6VMmcGL5VXWozRXgisYVYiOsLIMdazn8Y8jw+bCEWVHYJaMHUDpQL1FM8SP2wyoqrhbmi9JtsMBYAuI72+2j6qgs1LLEtQMonKDVZUAGhxbbH93dv1EPD3vpX40zgSHfCLMkJAeEOMoVkdviLDg9IEBbIrJ61Eq9hc4OitNAJpRZ6l/FXqZ3t6xyEyHt+Og2rJ/xSMiNaXbLf7i3wNk2yqsJosDzeuv+8R8ItOXpKm3zIIH5l0vabVxA4EQ04BE94voHwGfGD3dYKTebl3AWmUERfushnpmMkIMzAVIu6XqjqQUkmpVIuPTQWp2sOgHoP6VqtRHoUwPhPtl6AYjozZTA2VhR3bPHCoRG+nEbft5bQ/2tI7NwFBVz3M2wJiiJRtU/vopTkOkTtIuYsb8JwSvMQMlK7gUrGN45Rcb/rnZ9gaJecKQmc3ruzjLFe/kZqvPY9CG0RAYFN83Tp+uaXBSd0O46j0jUz+acFyMlnfwY7IP2xIm9BVu7uhIopNkpwu5H+kOczw3PaLk9beDVsN3Mhpq1R0RZRPnD6mwH6nqWw7+n0GNMQtqWAizfrkpRGxMeHvxDvW3mJzJiIm++gLcjQ4G8B1k8AMOwq2vw6f85HbYWGBCmwPkAFc3XlCIpC0vN9UzTyAuClrwTB6UNotYkkTWjUKkcoIxSyg7wPkGgcgSlI0q14yEKzKLCBBxJdUs24Fr6oL2tUfPoLT9hcbGNzeshRRCoxCDWuwAjwnMslKiKQkT2UC0eQaVAPBy0N1CUebn094QNuWetjTS7gH0PoBCLqTx6BXOSluNhW0aQIsmd958wD1eWTAz5fSNuG0oGwxp+LQ/HSr4CWqR4jkLsaDjdGi2J1rWOULCAcV+4JIRGcZEQIyJq+d1izQiMPzMPZKWi/y6xK1bNZ/k5sqwch49a5OMU7BsoUGnty5NuN45BQls27t56fqkuox1chuM/z4UC+qwtFB5+jJ1WeQC9sOxnAdMss9HuK6VGhxHyMhTjqupfZNnkwZjMCvIzb+TJQDf0BmJMxNuFOBFc/6mlQBOy3KMgL3md3Ui6ca1Ttfm0BeuSTW9
Variant 4
DifficultyLevel
731
Question
A bag contains coloured discs.
32 of the discs are purple and 61 of the discs are orange.
The bag has 18 more purple discs than orange discs.
How many discs are in the bag in total?
Worked Solution
Solution 1
Let x = total number of discs
|
|
32x − 61x |
= 18 |
64x − 61x |
= 18 |
21x |
= 18 |
x |
= 36 |
Solution 2
By trial and error:
32×36=24 purple discs
61×36=6 orange discs
purple
− orange = 24 − 6 = 18
∴ 36 discs in total.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A bag contains coloured discs.
$\dfrac{2}{3}$ of the discs are purple and $\dfrac{1}{6}$ of the discs are orange.
The bag has 18 more purple discs than orange discs.
How many discs are in the bag in total?
|
workedSolution | Solution 1
sm_nogap Let $\ \large x$ = total number of discs
| | |
| ------------: | ---------- |
| $\dfrac{2}{3}\large x$ $-$ $\dfrac{1}{6}\large x$ | \= 18 |
| $\dfrac{4}{6}\large x$ $-$ $\dfrac{1}{6}\large x$ | \= 18 |
| $\dfrac{1}{2}\large x$ | \= 18 |
| $\large x$| \= {{{correctAnswer}}} |
Solution 2
By trial and error:
$\dfrac{2}{3} \times 36=24$ purple discs
$\dfrac{1}{6} \times 36=6$ orange discs
purple
$-$ orange = 24 $-$ 6 = 18
$\therefore$ {{{correctAnswer}}} discs in total. |
correctAnswer | |
Answers
U2FsdGVkX19QovptQlQYdpeRADlTxUE/d19Sg+y30dEsVtPU994abzS4jsWFwZHWNW2PQSYAsq5Hjd5RkB2T+mty4+mowi4w0YV9LIZC4S41G2vUFtGMekc8yLoirDQ3UndS1FKnmspmMmGRXwzNLrB6NMLnMKc4T3tPaHuknjQvpS5CWfpWsqdmh3a+6c+mDN42mGQCPwr43XG6RkLREfMC2cSQ/9+zMOQsoCYUS3GL+CYP9QA9SmlvwOW/zxnh3yMfWFvL5Dnp6kvzGTX5M2tcw0vYm/eqCT17m94ZnheFj0QIQI5kuMLqu6yeDzNp6TwYNjqu+qCLLvyUoXfDuvbUrSJ2+3rz4S8GXvvgFvIaNituK7Pcphz/x8TZlf5bNj2j9yR8Z9JcadN/oD0tMXy2i95iQFvvM/NLSS6SQjind8ML9fZ1hWwkKnupKPatD/JQi+Ee9KBO3MY2TVYEDFwCwI8ac7OsF7PJ20/sIB2Eu6iXBM5dM5EBsCgkhHRRBYYg9MA3+gItRvZgMetAkOw4Rh9xKiN7OqBgoS/QT70T1aeq5vp3C5qHtgUU0IKi4EMiXx3TFgjBJmoeiOUxv7LtURc3Jw6rpGrcODZlrKTYtvwxXaceXTr5pRuNxv0t0Tzrg2CUm0H5UOf/dXI+s+4iyM3ZsN911KA9jgjlrcxzx0Y1n3ssqAaltXRszNNpPSqeaArMcNtMAhND8/CeJyJprBEw88C7wHiTw2I9y32ktTwUDojxqZXZro7OehbPpgxbQyhTlf9Lat3zQonaaGNwfcxct7FdyK14np/S3oRAHiSM8/YaJsKReRlLTNONbIlhAViJ6lo2WyYYy7s2MQ8jY4hkTnp42GB4UN5Hf5ugOEpkzbR4bOb9EV3LQJik4fgxoR3JogYUSyi6qF3/FXJYNNCLXkvewCHFZHoJbHiTx+MjSS9MLK46S1NcwNivA5IPTcB2znh+IijiEoquuNGUCZ2puQSVEP9TZK+sW7NRhx0b25BXX2yyXVbGMx1ndM7SOtCls4nH4R3eItr0GhKkoKUq8Ki3e2qRy6PmtgXJ3Z1QwJcq2FXoKyriP/tshVQu9XgfqY7LM2wrzVp/bYAnqUzqVjeecVvRr+H5QxXqJDRwtKGjKay0slTm0sz62z690B4dE+rltN2zv6zFjQv/JnsetbQnDL0Q2/Pe9tfsGw3CvDsQYQHblNlh12/TKWmEHIs6jLgpz1HzKFYNQ7s5UViEVGyoU70G1SBWQUAOQWb2gONl1/NlDI34Mi9WoKfGX1QNi4u1R0iWELygOLywjlQUycf7svU0A+cZxf1wfjNCFGOd2htPOdt41uOvcTrEnJILjVN7mY8vRMxu6WV4WFmL2JJVK9z4QbtlIP/wuwAjMYUVDVtVwIW3uK65OvhYGgVOimtMwJUNXBfufzyB2U/SU4paTU6FX+L1FMLlD0TKypP0fouhJlN8ksrurYovqPzH6g5cLiB018w+FlxwJd/5lhd0/R74fXPmpH7eETeb8wHj7N/X5uONd+bSE7WEc2o8jNqjXgigIfLlcabUZmEc2KLxLxWBJZ2bw/QVV/xGfvZdpZROxmswoNU2QU5Nq++dLBeENyCNh93kw28FCms8RvuBMHJzEO5gy9gGg5oaXV4pic9992tsZMbPh3u1Ca9b/9FfadOCrCADzf3XwefcqhRNiYPrJW8+j4839PAdgM0QsQpc1baVfMXfrviceVewn7+TMn0KfvZXwPNVjhktfes5aOClaxckMskQU9y/9oQB0PzIjpOiI+rhy7U/6E3DM4pgHli0PIIE0GzESV0kyLNCGLIKA9L7wlqQE8+hqVQE8kJ0kd1snHSGStV+3kryir7Bxx/IoQMr3CHZHLc484Cquj41cZIbLzXCsuMyHoVqn+NauRbW9dX/DVW576NGzvBQXAa/2ka8yhTKWs8256IoWHK/qilPHt5Fkb1urvFQD5d0aFFVLxoVI8dltkV6eUI5cZxkCrX/T3fx3pXQqXyIxcdnS6/ErWe3NamPqQRq+2ai3yz01Wy1bKyDuWRovQmNZ/VmLZfWPH0m/DAi7jzHC+rCNj74HvaAjGzEo3rtrU7nUpSG06r/cafkN+4idlf7d3f9MBmxw6hm0BQt9JtP0wvdVYUXfXH1xMfpqkIrMXPWFo1EMcVP0Eq0dVIpc3EFLPYeyFyBzNzC5yUjUy6LakGHPBfIY/vA8mogIahamoRbvTm1QNtX3TetaigFiB6zr8B2lHnb6/oXb02uI2cze0y2S1kZUw4Kw98ZPlwGeXoW+qnZoiPLTdeZ/GTCg+EJNtTaAgp76eQ+ENDi2CTN3TlnGapLi7n46bMtGTAwSsHCHr29HecDVWEKkoIGQWsPfVJPat/CHFXu5b4CmPVAixcgtgxwOwJDOUDlMFqoAPKtrEt5aMbwazvMC2Aom1ECNoYTo/SHUCjnLDUdAuD3HjsnZMfszzdfcOCKkmk1aKz4znEc027ORH2oq09C5awUfWn/x0rQmauUQWuB9dxBTdIemF53t2/keo/CEPBsRIhC3SYcxaoZJ5xoNvLlfiihbxa9lSHjK1b96pyi3v3YEuKLyXegBOUlth8W+Xu/Iyqrcon38Eg+yVzR/PvP1Vy4iEFTzzZ+TF/9/BI2WyPL9v+HA4htK9+wuPoMVvFhnHIxJ9w9Gap8bAi/efhj3psZ4rAeGm+FWglo0c9anwWio6zVveIlWUWQf8VSK0O+iEThAPly7pMQPaBwjKBAok4dJYvfS8MneTeknwael5SiybLc2YJe7pOBhMvDNNyos6JohpEeC1gg4B2z2K3b80ABkh3sTP+I1ybdcwBO+5gtrj1qNSWSfPCpzIw/XESpG/VPOqjCcEe2MWT/ySqxvuLhI+XUfwIopwewvbqdwTDbmBRssHZYYQQhN3W8w9NE3OsYjFsR/kvuBsCZs1WxASsY4Ez+dMemUn5QWujjW4+y2AbXiDDD1pYTQuixoDqX2wcnSbFgAIRUPsYOvOrH2whA6jVqYCTLtRFJF6Whac7mDrMcKgG4G4KVPCrNirHRW9NXFP29XMD3GbSttMgZ+OC7QUfVXXIPWyeoCuVnJ9osSIlS8ZQ8wUifrgFW1SQRFPjQEqgYToaL+rbO8qbd4mBsHo9jUU7XDronf2uLvT7cPaRv9ZjIrEPQM98duwtyqCf7wonhs74GYWbxgVNa0K4evyDq75pHX+6NetzfHNfzumkrch02wH3tG2KzOhjYzAZJzUyRieXo7JLSLXsgpgyPJjVm/b7JcmnjQsQZl6Z169BGZ0VS63f7+EG51EwQ4GEyJzeReeeWsKDciZlJssRm56MCL/VEkGdG6wZy12O1tptWVMyaSdaIcoYwR4d8NjNW3joNyinKnSLK8L98x4YdOt4Au5EL9DAyp2yxoFystvgi/Qdj+x+3+QR4aMvaG5efEd/wWDOV3iGY/472lQVppBJ3xyIRlQ8umFtEVk0v4IMAwzs/Hxy7chh0n885HNPSA/rRiQNZNSV5XOrRUeeWc37HAPBeU+D9JfpXcWe99qxsv4KXyI1MTbFHM1WDqzJdB/1ohdBOx7BHSLnd3XNJn/GpdR4u+Srh/E+FTbytVqrHhgvOsH7lMQVlndlBHRxoKkQ1CkjJAi0amrPiMSUZHy8W8sVR1faO4OklFYpEocz+Cl6MhVo4jmkC7rKs0T2Rfm1PweExf3HsH44cpOdKrjb9gs9xTTC2Zl5x6aZ70yJjBqT8GFnLOpeZy5zGgrF9e9olq790reKiB7/a9swT0JGt4zwVuemCDHqCNUzVVUddeRx6llnki+T5eaINW3Rw1WLVV13bKsNd0ueOk6pgmLwrOY6snggGHa6lMcLYmoqZv/fl2sf4Vt8Kdu+Nh8nf2ouE+WkN0pl5K9GeDLaM/3r3oFPoqL5jOGEILBKlOcGpBeLNsN6xATOjNMyp9A2pbefX4p9UO0LuobJjYeKmii1qxbKHOOBZDR7L9sqaKjjPojqHYgf1IgdgNORf8dPD4V5dIjeb6zzJH+oeoOygJasQp20+jjhbxBYNgqNgkWLUeS4YjuDHn4UUw6tkFdygp4iJGSPlan3a9QUi++s756EDs5Xiq8Sdfc6suzOpXKpdPT0f67GMCOyR/xrFH3ieQdhWVmFNGVm7Z7FFMbeO/tPM5twhR9Kv46bA5V3cLcCpcPYistgJuofu3/tpTSEfFpv1LCnB20yqkrJAKVhimZs24MyCxTDfW6KDufp2H4oajqvCcGXzIqcjJMK29WWdMM/KKGBaZTe2Adpu5r/Q+fx3qqURB4B2GyDwrlyX/XUe0kO1g6zvOC/+gKC+IA7uBNgKdzLRfOVAyCDR+erpuIrMalctMXsuR2lcft4Lfin6U8WY/Y4gez29aJBz0NGtx/9plLs7SiZ1uYUraFIBym5eJKvBRuXZFHRBBxGngm2IYGiStS8k7XGmLMLSkvQNWfh9AIygtFDVaNr8KegHPmXL8Izj6D2WUVVODyHCRFnVtwLjn8/4KMX0hN3MXMC72fkZZM0uwzSTOHbBbVzuFpfzP88+DNiOdRN18ozQcgPNMbspdhsF4WQ9P0zmfK+ZSmGPAqwPGE1zeYqqMmtU7AzfgDOUPZE71ff5yLJigJuY/yaoZjaVTpJPhYuZdunau58maPiNidBWNSsWilyWtbdiH9/nojncb+k9Xd/SU00NmIcDBTSvSc8t1NtL7+QhvaF7PC92TMVfz+vP4AT+WKcaRKBDA3pPhaAjwJOuqbt21AYiQsTFMmi8TqR22C6XpcgFr79kE+M9gtWgaZkjq0XSyZ3TiR74YPvEXRJUD6yo42KwFoKO6n/CVYztjyxYGC4Dz/5j9GR13yduu7+v2F6z+Qgusl3wyZLyzXd6ZLRk7PI7HggXujOzMwrFNyJxPthYgAeuAZeZ+fNAzLv4fCE6mFSj04/y7REK3ycENsaDFDTjDa9XS7Vi9fnNFCSEBKpxWEVx5tmVyTasbyQelUY2OjpBn1UvO6/hCpxl0Ek3m6+whErgyE0vC0yk/TJtkl3qdy31D7LTC5JUpW3iQduFV+Y5MLRTDtVaSWT5dFl+JqkS/zu4ja6vjungiXSDNdPrnz24ikWOZl0S67t7sbaa7+swmKIgiPkCnPzOzRuzjHEgW/Yg8Mtk6NsxJZt/Gg6+SL2FpcvPpdDG7iSiVB+UKeAXkgXAbFZXu9Osa98kl/fNEFdgbfy11jzmIGFtFrk5dqBoWVGcsXE02oidWdqeck1/mm5CpwDrB8XKSXIauigHajb3g0CvZFTBzMXzqeeSLc3bi6kgWWH+EWtcoh0ToQofSquOXQAZ1YBYlWe4ZnD6RXsy4zfxSRt4lIaHqaCVBI9VmM5b3h1EJV8abUvTgKniMCluPcRnRaBKqopa3QbFs8tsUTV5Ek+tZPsTlsqbG9miZLAi0iTGy22tm5XnaxcfHlBCYv62amndZ+VDJUCpazBd21op1i8cG1Y/nVSeE0k/BONlmVH4kqy+4a3maMYANxo9kR3uR4j3HoMsK3ks1pkcN5quWvlL/TXCXY2TWXGPjhcZpyHxJoJi2r6CWp31Rkl9fsi1E9JSlVzXkbnB693XKAnwFpp13aI1ydVhgiZ6srGE+f+lR+fHQpBKCawDsc2PnZwiE/yNEeIMRPKGk3NGA6JF/wYjMBJP71mIvdsdkJ+In+5Szga7Oc6pOTyT4DYRfGfH+4BPhXJeMGfD3VBHrHrIyy/SVSYEwE2QiD9WM3cjECikl7GmIwnrMUPYzu2gVlrrLITBsmOH0WkZF66qXlML+iYDp58lUPdaU7+YuhUjUkYpbJPe7rOfohK6j5SwusuQhvMCBW/CC9yeuCKjjPDGNsomDxOht6GmciQKofmZl0fq1AiY85m+eT9rD/MQSwEsjT408jkAU+x1QS5kdHwAZ4EwxlJXhWOgGBSqCGv9QUQOh3DuzjuzXZ85aBFSOhzYvWWILHTjgk/h0MVwtfxCST+tMQItHB/3OFz/03gZLefooEAqw1QC7jHPRx1psGftA+IgMiAnq+cRUansN0LdxpaXLw26uDqA+uNvwBWwfWRQQHW+m7Gyu0+p321Tk4sQhl7ZHjgtsylJXNDX6AzebZqq2dpckobcOBgkJ+i2azB0aReKg5PSMXP4PobH9zic8bkhXmnOJn4lZQ/DJQ9uA/IjivKD1ZUxmj+sqPuEplLjzO/bvp/F64QA/dAb8mKk3dffz62S8tqjhjaAUt1JAOhWwEVA1L9wgZulW4ABO7p3GL/EPZvbv2KVedyn/LnAhF0KjPYsqhXIoR6KIKQ+v9aZonQh9R19eTEqljQ0BHSBxBKX+pGoT9lnNc2FpFa/D6yKxCOBBUkmBZ8ob3riCp3V+rYijqcNn/7BvbclCtfLU+gYgEJGDOxwOkuJHSBHDgakkkH2G3tDDp8OEjUIJXfZFLGZXUEJ1sLtjAtXJWlnDoKeKYIrkdpik1K/9eB/9gTNYWj720TVCsXroSeYBOcsM3ry03IgGxUFI1N8OtKaMmlNimhtVOYK6//1aGy/XbUkjoi+FYRUT1ebBSEN0Rw7juYP92LglJvuhcHLbxijfue94aSn72zBw2apTErZWUoswWhLS+icA5eUbu8Te98/8W75+dnv6QkQwvdJc4XXG7u11ObEcFH2hl5Km/zCAU8FUmTYbjDqeqfPCd/yw9BC4G2cChdaSP+TtAKoTDQ43dTvkeBO3qELUdM7exWTtKUWkLmUpYcBRhj8/YOR7aUY4CDA5TCVAqH1tq+x80+fIA9BBOvSqTrKYsufh14zuyGp0pmQ2cpH4f4dLqdcgp4rQesmL+MtBYJ934AYXY1tgTcC0m7Zk3XAR3NUyewT8OQ74rQD+JStZIMtpZuzcOB2xiSRjzjeFiARBRIF73e77rAnDENxZcCQbhBkV31shPRbVZGWmusXLVZIpDEFPih1/ljESZb9Q2t0DYODMBa1TRAEZu4eHrWvv++IDDMuvpf66bqtho8Z4Dx1+BPcFu97n/PFXhcTGPF8Af+jqfm2rPBGqVWTA563Y5JOhjgPkPdz2zAOQv+xzSZuaVv1jmpk9+AWItnrYacVojeN1XyWS/rH/cB1zW0+DmGvlS4gtJxm9CylJ5F83+kvp7iXdEy4MeUeYiseaDBTT84iytq32mPdnRw1nGwIXHA2Cor3b4Ukhllh5f3cv83Q9n2w+qmvd/mVkYBq9XKeMeJkktKGQk8cDyRobK8Xn/ZZ7XYqhkJRV8H0WYnoFJG1R+5ZvgrQFkcM1rqQZVp4AFZuqxSUwnjbDT8U67Cy4BUTcOt/mZZjzM4YLOTpKy85wNIWHCxMvsNmLH+LdAOX+8Tm+AhvryM4//f49jtum9vXaW+o+ChMkLsqBPVK94tKRaMGs8qSjCbXI+6Vp06gwP6EEv9pcVAdq4BOR/H2E4yQ7saaAwDDxnFTP+1nQKjxJ8/INxCiw1OjBVKXZx+RyxCODGYAfhd2b04F82iT84pp19lWXDgqjCUdnRx+LuzTdXrxCegc6KlMk+DTxc0IEpVx4wXIOuT6YVK5Jy3SJsvmxoHBkiT00PUGReT3qZERwAJpHzNUtLQjB38/EVpCgAtRk0rvjCCfwD+UM7hxabLKTpJHCAZL5HFpLVPXr8oBdmap7uEZsXL/5mSwjFzU1XMdhSQqfmeMJXFMWdgrukwux9Z3rDVLluzH5SKtGHx/sihNjo4AjbN/nZqQU/c5VnMEgDrEGuihpnoxZXC5mxgfB4E7gNar2DMo4HHFagACxGSg9yrie13G2MWr3ol6KSDa0K75S4FIFMDy5913XNmd5jwwUi+eYhtbKlVQ43eatHsL8ookt6oQK7gM7CzLUVrucA5Vzb3JrmqONRq8mN8ZWJ7CFPrIIPm+KBhdZvkuVGE+8gMacYKmrtUezxUe2MQRgJGVk8OmVhTLKdGDPXT8awDcobLIzEq7be90cwaJP1y+34+89S0WGcknfMDtF6v0o3gYNDRePupCM7lE9Xax9HGTxOZMx01QD6hlPVx0l0X6YxP4Sxit/hAnNPSlmeKGUDH6jDJpCDTBltnBJETFGI8pYmp1BLruzu3gTjunXNZ60dz2rWvzXlojf/Th21oF1EHU/Flh46BlH2HPajKX+W2IYzmsUzcb3WAAxMPWByc9CB8CbApKr1qAtJ9AQzkLcFFGEy8Y6+H3qkrmlx5AnRCDcSnU2SW1eT79fOISTWKisj1dVoEMU/2/axcAxkC9KpAUpCgTFaY7Tbc59t9yClIWTBaIq9gxaKEp7aXl55XF08H+K3pyM0rgewVw6B/EXmek8eaXf4L/68tswDAclvm5ckbm12T15ktzXeIkUo5y+t+iFvI5W5Dc/woYv2QgtuX+zR7kZqEh+0I7VX6soYn2sZz5WMx6OugP4LWqkp4RSmg+wyx7y6FFZhuRurYLxPeeZCkbM21O6KKzaYGfzI6qnqTqN3A95axo1loKQR04CgEx5lZPzFVdnwOkJqLnvLAXSJGerRe8kO7GLyWn2q0JDoyqVZc4W/4Jmuowr3Cp8qzPLFl1HiRip4Mz8pfqBwV2YBx11HfozI0bWk4HMpFB3mXvmvVBEQOB/M0dCzYzudxG+ZweN7hYaXqjmdiqpUJO2bIt34x9DhrROaSoMgMprJFzFMSAPYd95pnzUnJFrye1kKICyQgImy0oeaxWZv53mq8P97JQrcEWCgOnurJNbNsGB6i22/A/SjojfG7+VDBaWykc4K1sUKe4+GZ5VTtnfNQdhZXfklHjxlVev76hBwAg5nEArEvkSQmwqhhLc3AxSaNvSLcMA05hCu036npdPnatVeCOFtjUc4lrlUq9pvcZyOpyPIRxbzmPbmWYOdbgFKR7b5L54it4o9m4pi56mLhiWeSMbfPp0vdAvGjqV5GBu0c49HuuBCG6d9ENj3UjjEjxWn519N9dqXLi3TWZ0ek8a4KhO4QNmOd7A4umuJRzEGzgR+12D8NjWQgbgMdfGaJyidpktTUy9muSRnTD4inEr3+E+8d47k92+9pPtCVdcgLLWHKofMu8kvXNPv14sDEnG6G8ozpI85w0zsRoWDt3/YJatnvCUZpAnr+oQQt16IPnIXhQG2p1Bg7vgbPYHDkH0oPbptKVw+DVgQZpu24zIfxJDe7dDz4JN8ArdnGj8vVHg6GAuAN90wu08t2F1d7+NXPGfz1EIDflBgYzK9LfNXWBU9+HrmcE1dqa39nfxTSNl82wWlap4tkyvT6w4LmoLmzE7ac3xWyb9hHHOsMd20gagb6crLfUuf/xUJvGoPOiSmV1mQ6j9/rN2jzaEtO2Tdunvcng26yQmRvqLrrMyd0yJZm9g1jQU5ZSbBqJcD1hqZn6n/JRP1XRAF7mXD0wrVl+K8DtDJGoRNM70KMznAE6EF7v5sCPdXNd4pLHcxewWhSMPvfQjKt4qS9P43cI9LTVsJH2orM4KjleE+OtTw0ieHu2BR2sgpkenkqGqkv/q/8l4eVq6htwPVKtIaOorILsE1lQVZWo1kOchqEr3LizccFuQd0+0j8Zcr1HPgD0Gr2qIqWHCfnd31gneb4fqc0VvJznS24uuE/NRPScDGJ0P5C2NZQRQ7QcEvyCgVF9sQvIBulsrpWLgmGqk+G59Z67F/tSYzaOH9NhtnoBXCFdGnh6cglrYEafiRay6j87TrVLg/IupqTScFal/oGpWyZV/7gx2bImLxCXaM2/4mgjiAlg1aiZK56M5HHuk7T3x2OrP6Wfsi1PvFvVFaYi/MSdAXfhbBXjh5vbGRtH2MEu8evpT/fV6Lr99YsWHr4hB78K/EsuDI0735E0hy1p0h6w9V82NUzCJcqfZj48G8UnhZT/S+mgYQEjK5qc2TrECA0IoTmbTjQdNf3df6M5nuCBhIn68im/Wjer0GDewDpxOsTI+IqvE/6EOm0Tpu0apCbZrtcUBKpe4GN0BK5b4X9C4yxQFge5P3qpwyannRuOKF6SkvkvZ+/MwhmV7LQOirBBLy1LrTpgMrgnCf8IaaovEQlINN5PkW8GSFx5PJxQMt3bcDnxEoAMKj3y+OEfhWc2/KCWPO1ebzDa2AUJK1Y1zQX3NnpgyL1mPd0XUTe6H3GuR0qIGi4pQBJPQJYHESf5Sdl/IhI8WF5zVZKG9OnLkab0+iCbRKDeUZha44GsaOe/EE9qRqpUB1GiA0nh+7WOBk71TwNeeB9VUIk7IGUlJSVym0WDH9L3QkZm8ovNMp19ni4e4yX+bt2gwwwFCYHcok/mD6PbNbPNVPIidesr3xWq2mHIyoUF6bHB0KxXloJTec5c92zjbyTVftvoXI93homTuI99CVTpmL3K3p1ApMfm0hoWm5/B36fpIhYQqg2T91m65XvDPikSWxAMTx0M5d6XhytjgDNgtrR8x3TPl/1dm22uj+0gQJbdu6NfpyWwzXnJC59vjHY8e7nPzMc48VDCVsRwKJbjqfyR3wxqONykk60V18NwXNP3U0tRcdHg0Eb/zd6eVdJHJCu8nn6EHWGv3ATKZept9zx/tQf27Olnl9aPmF0fwYDE0iMCY6xasmzVN7xsACqE28AiyAxlsZMP2ak+NhqmqVGfmLhbkR3xx8LpUk1cJpfBlkc6F8koxwpaJiqeWqsGrnzxrF3LvuFZRoDGemQuKPCvTe9UuUymNm3agU0YHPoZYzTEpbpP17ama7zFPoSTaTccqWVqsuLPev7a/LSknXwxjgPkhSUbqcsziFcjMFM/CqeDIVG0oNNyTzZ5Cf4OS9oLkNq+PmstcFH9ij38B3NQppTY029eZvCIIJ7WM2SdrpD2pLrUUw6vUP/HH9SavJ/OQj8ELN2jjDocsVmCf+4K+piC/Ug1IpHmYP9lWA5eEkPNpnd81ck1mhfmxfCoczvi2GJiFqRM0Lh02FzetBZAE5o7o7tNM8etThIyQtLxdynyW+68JnPgnyODpC61BQnFUf7cCvyJmHjFwogrJXlT97047r/prUQ27wlQ80likSXj/PeeOI+bz8utSVpmRMWQeUQm8DF2rluVxBFIbPj7AX3yv+EMpuN3fm82EzG7Lh2MmpupQm0+VLbuwvkS0EQ2NteL5BTCnEsX3HKAKBAeL4NBcKMpOYUqu4oQpMPbexVheR91Gos0o+Dcfl9lpFcYWfZs9FqxF5LV8kXO2jsOMGB4ARczjB8WwJbHW7XrKSgeRIRNsULBN3/HFNQoZQ/XAiPEKuaOd9uo9t5haCw/bIENstEYYlVWqmS3FQHzr6ptYYsH9qc0NW0YWsXX+EjpnHdFlNUgt50sDegOZRS4bJKX0tXLsz4yv7RBvQDoGj+nsbF4EWEwS9JFCTEe8jvz1bWnBxGgEyHYJbUcuC7DHYYzh0uGMqXZxnRH5knXRDzceU2fuI0Ov/eSbJ194tZUzGgbz3HVR/Ik213gpByD3dP71KoQmk+n5XoA5/xlCcXIAyiF0EWhfMg6J3pjwe8gh0bIKcdoKYdeelYI1A8uA7WbFSoR+hz+W0I2/I1T8/yDok3iDU0QuYwmwT35Y/R6sd9J8jqHpQSFPtRTn6LV+tHM8ZysDLG50wL01V3pIDgOqeyI8zf9x0JmGYYb/Astla4loVG27OfvaIt1BhZqRIhFSIvHOL6wo0WkeWVRTCLfxmkOQroGIMfrz2qhxZTHCaX0tBYNoKfRVhyB7ikTI6ZidYEQXhG7aQnjk7aijw84NQgfUYiT6uXghauJ9isV5iuXF7eiWQ29hH2t3bUaqHxbWHY2KYyNOxdw7hXn7s2K03Zu7vBLTXa1UE85GEnfq8Xqj25Xr1/cTpq5q/hKhxpj4+SiiJWIxRghDqSbvC4LOkuuXzf/nizxV/XWxXorgsGKqBqoaj7iIpcWFLgm65NwvRnc0uc8UMDBsHARmOf3HrTyO0aa99GqqjKHBQzOTvfe6d2Et/LiH3c9Sf8nKKUky9mWsiIg2oLd5mlzcbLC8BIk8cNJ+gO6e0g8fbQ/xP76/0TLbVsNw2+jr9m6n4/ZJHv61ZSyAtRZUtWWrnMhYwWfnkm3/sOI3WR/+NCb9a08CElwIfbewEUH+v/zkPTllKdlf/021Idz4o+WFhaoPao1CVb97vf5OyzTfogrrfcKQaOqQJ5ZcrDGcarWWS49PySoNRZCMuMxFVC71Gu7FMs3pU5h7zsPjmgCOmuwUYIOXyudDfObsggFglVZOW4Y+4IbMhV+2gY1DGWRwkEU1mXmWz9LKkgERmCmN8GyspN4Bipj4rgfCwM2LqYi0E+wXlpnFqOWXUaelg+WX4dniRwmWZubX81i63lsk6nNHolrhpVPP1ek+yWRwai5uvqwP9ssTY45W+GqoL/EAdo1QcrDSR0ay8T5lYVAt3keUsLO8HcoXMFR9liyCZ1nyS8kLXzCtTwcaIkXm831uULjl9iileQ9qTe+gQyBCkg6aI1ykeA180pX9D+puzhie8Qnclhm3zMc96DKIuZCxZ8Y01IgkwXC5iSq8STMwzyZc3m25yLJtrCv0vkF1bDB/1rTDlv/avjGj2bjeqnnaE+mHkDwgXesye4PdcSG6XTzh5HyqwMfRXQGJtC2uLSELxES5rpeCpcpnDQH7Qo8LZJj6RKRynJv5X6OCOcEGdio1E+W45H7LSC4ikEVCMRaJao16Ts0VeduIdkJDXHnlsEHd8oCyonJ08e7H3L43sgDQEaYxT8fsrTxpfmayO9aPUkCIOnvB+Rwhpj9HxV04eUtoIM0tC6qLznlot2KzAU8pq2eS8Dd+5YwpGEamjUxl9+IsyszSo4ZYKjjkwbf24IpzjkbV9utg5R9K5SqesOoNYmEOK+oSYrGOUYKxBh3RQDlpN1TlX3CyynuoGesfY6lhDuFVMZlBUyCyU0r5VnPzHYKOJLjnjlpPe4oe6ceYFvqz2NKT3mjCexMN3a6bGynOCfGF8otxTDty3pbj9C71yzsobkI53Hrvy0y8a2naB7LjcNvW2zN02AMfj9XGSIf6MJ6t56tKo36lfwggbFE7HEEU3/wm5dJTLEM7Tp3ydJCeS8gq3FWhnJPa7CN4Lu98GYir/XVdyseezgD/gkntk7Qj0aQ5P0z38h7pXeuqQYllcIt7ndZAYu3XVPYF4bx6MPnRD3x0COqZBkF17Rm4P0rF4MOT0UaNVwh7+1CWAPUR/mPPUGPmc2fUwaLHa4yRiZVWkH4jAWN5f+qJHXBUwMAQJYLTshGhSh9nEciXIFFT7TlXRy4/F5yEmMzYun6l4cLMFzHZYsgaFeIUOemepDEeN9TjhiCTwaPbLUAU87A2Qh+YtMTqMO4bi43yjd9aPJBYIqD4bSvNoP5U/CIL9jxfkm3iUjQSxMswaiK/+3u6wktjbfx1E+GTu01sS+6jMe/2VA/NwhGuhsVeZY6x9ow9dBLHUIRZXeXP7apUoMnLCNoZ+fmxyAUffwYqjZa81rpFXtKVjFT2lBakyHSXozDp7ENu1tl4avuDM61D092SIytClLZ4EkWdHEYAlqHyKbRicnhBZ8RezPqQZhu67anQCa5P91+4frMOvfwTDbS+Bq0FnaEmLaGPP/UHY+5NB+0ljmWTjvpWBinLEqYRo1/Fvk4pF98lH5Cj/LCr6BzqoHMC5iY31gSA0kziyRv8c8FKKy2LvHjQioZAz/reReMU5vj1MNfn/qd+x37KXQ+4lJvsYqSOaFYPQylrWF+kfcGEubiTqKTxDC/zQSEjuA0VZtBe+GpKFIuwEJ8ELnJpULfcl+Wn9Avq1u6+h9PSMEZsDRhFJwzrvXX5dkgPXEXFgntBHCh6JFbzk9lazM5ckLNezp5lH7UBEV0QoMuNRdAs9DF/Ob73RE7q1LW40tpETAIo3PNOftQlyQGt/5Zac1lel2hYo69ALlPqzKi0InKJ2SKriJMZVUfnFlWQ3Bs6oF/QLcDcC2uKmUfGyqJ3j442Me43+FxSjTIu8OCrp3zCmIzac5/fwQmGqESO5el0p2VfAkDXCMobWPGkI7f1bKOvaIT5B3t4yLLkXmnQAwozjUHlSjiH8f/dTqtKo7PzTMtJhR71QRhBkNeySAp0su34zW9zMeJKaHBLi9+JTqgxeuvxx4JxabMgIeFdNCOPcrw5ds4WkQ3hGFu1lGPfHKRfxzh/jMBoek411/5v6XeJ41XaNFjYMhopZJHuYegxgZxVN7SEAWkxue78syjQ6o4UKAV7J0HiCHuAvjmL1wuuA/C1lWUeySsXA/ly1nGg8g1duIPOORtXv+2R7QEsrMP9mOYLYE/EPV//jKmh6YuLnNtDQe37N0RHzPbmoLdFnZ8Av5M3kKMVjPVug1wqQb76d7otoZ9OxxH6UwXRemnYqvRHbr+PjFOEwp+L1xNk11VgrZi3DUBTQVbHGhHPyMg2gD86DyB6zht6Mkl7yVIPtOdEp6WKRkUkj32OQXxEj+n0Y941rap4eNUvtOxROP23SifSgzKVABLW3SMrOu88x3DpyX+1Yye4U9IR+VboYh/k0QHPKp3bnvY64RdXM85H8k1rU0/gnNfo4T3wx1c5xrNbwadoSMjs6vLsR4Sac6+QTjzSgZsX25y9VoS1bH3M3ZSgM15Yx4YeokWMhDeNwf2vYFs63k9viXBtSTggwpGGXYYxw/ZEVEzwl/5a8Aotos4he0fxsHLgDy4nJVsAbI2BY3DlH4y0/V+rC4KMbP/5jcPKjxBL6vLi5sj5YGRF8hQXq3cEk8+tfpkgdkQRk1/ssB7E/3S5WlWtOj30Tcxg4DnSVFumaqOVJVMnX0+OzYfrC5GPnU2eWX9yOJ/Vd9XlXRE9eQ2aGFFq/r/rckxlT3ZofAwPwzK0aIQAa6iMqbnwVfov/fohOLASUQj3SYHpEO6gNJR48uhPxTGPP2bEqFqvzS+wPqq1nGkpMON68BzHtyFIfxKYU5NF4rphOjxo4t3be97XnGZJsU0nbngAMAPl9MfnidbUMPxbP+Dz9qWzn+tfbvYqZQKijSJzSv0YkRSj7B7xfKX3wm/oGE26TTZqB6mIAL6Myujx5jOhpwMh7Bcrf59CyZnLsjsyIOb++9HP28kXZ/mJxHE7WigUBXP/rBD0JYH9T79hAwLyDFYd1rWWpANqRcjF25ecoxmNF/F3Opu0abiaiZIJ5ZvR62ghUw6yzTHVAjeEfalQy9U+Jrt85kdErcHSUDnkHXJELIw6rdV/8hrCaCBUImxn1932qSljyxoeUPv8jzkld7V3XcjNKMGuKViw4tx4M4MKL/lvoFhd7g2tWbP79CoVbQZ6cQCKhoLBhWSsnp06jPp8P6DZp/wjX6xM63Ll7b/S9GhM1FTK06BZBrzadyx84v8cHbKWQJ9NaFUjcesmu5HE8iMoFz6IbRuSFkjZWKcdhVqgP5glurf/y6nW0mWN3NQa4qgfHnrxZuGIjxNPkrigTTn7vOZA7/sK+JilbS+/Q0yQwI3+FO5Jzci07XdJHg+BspDI4LBs9BM8/oRF05Gx39kfmSoVCEITDCpp8ETcaeq2rstVCXC7X7GjJ0zPBYmvWzuRw98NgOyDBWeuUn6qvNlo4bZzbIwZQh5cBVPiAiUDjHCFJ7PD1YVUf/OizEywfmQUkYpncf1KNmKe+abu7EvFLTI0+7a0h3W3ET1z6uMhgZw3TT477IJG466Tm0DJvlaAuLXC9bNNLCyW2dZTfzgxUc/2tuNM9cZVjOmtJXg9fHGkAkigOOSBOwG63mLGCDQkQT257bdKXLbTFGO9/hwY4Q8zmRgMEYy3YjAllk4l4Sc2sfhiPyspGehfUpTwRaqXryKUZYD2Jvlny5G12SA7eFq6eitwl2JG4f2+gQhLW3XmTyy9MtpecsEg7ZOoNenqLZ0f+5WWAoxbS/ok3y+ZWIYSp6l1ts5q4oSm6RnPuuPtg4Z6sbR5q2S/R+xpatLUw6Rkkigl4AQc6OUjCdYEtx3cn1jcZrX7zeruRa3sfc2hBHwo/4exONWVVhkV5kEV5f7owwwLOuIwr23/PFqVDhiVAtJCXE8foqF4six+TUnihydppikWAKlMerunImN+4Zlx5MSgotpFoCTWVSwYMLVEQJoNlUVfXOU1vG/VTB1XfNVV764SaaCi6/nz/l79YMJrxCb4Ni01Ghr0L+KV4JKLVagVc1uw9Rm7HQ7OjxnyUJgAiLyKK2zp3xakqZsWAZWJ8htKwzp21gijlbBksXXZ/S0oui+7NfG/NO3UuHaxz4O6JiWWBUzmcRFENrKO8vC71MM8OT6h734OBmpiaEpaK817YJJdDBTH83j788iGFqO8GRJcCh+QDrEqPgXT9NBxNnDk15EVTPe6ghz0i+c9XIVYUcoCLLpdVcYrz86YsMRjQkWO5eBT6VQqSaMt8UE76YGvd1OjwVyaj5eTZpQ2YKoP7B9SK0ROpWiO1QWMjLZVFuhs3XAO63b6mact4H5mCW+8dYEdR59nGMguX88ZkvaTqrubk6dkzE2TIAUauKunrE3sh2NxVyyt7yAHMjd0HqklOYcQJeUxtTOqzpU7NGDlIJ3MMPiHSbj5cSftQlBcow4Vii796X0h5Etiv0n4n6AERPG/7E6j93L9aSkjSmR1nHMb01wDDms/v//6bNDG3Lk/xCm3M2K8kuhCazrKzIvnSnIRWSUx1i0x0EhbDjGyWHo8QN8eTz+lUAriZCkDEThIPhgIR/vqmWpkuK+f25WPI4vAGEFLEZgAyuIR28W64/JMnpQaC2EixWAbtZzPZq3s+cTwpJkGlSk2XP+6IoDxaCjYwZwOtZl5GgZ/QaJOdGeQF1QBeWFEevkxgk+UxJXQ0oRy2nPOE8BJAKFmb+v6q7n9MqYq8kLVXvdhmFe+OgaAGd9+A7/z8E43Y9rm/EZBxk1MQSrJfokTGHoaMNT5nx25yWTU4urMznLUq7ncNEENvG+HH8Dk0FXhUGwFoDWz258k4rjFC/Hq1wqrt0f40f9lwmsV3X4sF7ukdcIrOKzOpwBTLbbOyi7cBN1ctwGMVS2JzlzwyjWe7Kw1JKMrZMEqPkDaIdH9VdVOLbIdSrSpBbkaizYPmFvHGDXnn3VSXdAhDVm0r2FPBDYC5EDrOTqGc+RtHyaOjfBCvCyB+vWy5Oc8oyjrrQTWv5hhzzQe0GW8FrGLFLr2biCkAsL1txAIICtbG9ywc09gvYo6Pf0A0zDjkDOcqzs2+RPkWob3OYPg6jxMAC8qe4wg1YY9k8ssTJk+9vBC16YGc7yXntVxyHhue1W/9K5T7ldYrFrLmEMVTJj8OP7Lo/AJ//Oe1ao8O+dZO5SNzkyJN6fd0NUjDS2btaGOOySMXgwlZUy/nNyir7qAc80GvPyCp+S/of6PXHrR5tlYePuP7fAlLFpsPnPu3dqTe2DJw2M69eSf8LCJfEifCOpvq6FpSqZZfFtJoaEjD24qHMWvhBhs+LtpR2LuYGEG3MDwSYpEskfqsERO/vbtYAGh/B2Ibiyc80EI/+WQVT4jEI8vFqIkJQr0mPH5Lf7tN7frtkscRe+t43810RXK3r1vb4Yv3aqGHvo7sg7lUE5WIn/y6nH1vxJMaJdBCburLykjJLdmNauO3iVRv4ni6ccLCUeO3iFre6fYSrGNa2Kl3EvjR/OlpQlPldAGeKtjJU2zs27kTTA3rlu6LNnTBnrDvkqDcP5SufVZxYh5ik2vIsqIV84gFQbjN0KfSBhGQ1TekG4x3b5ST8vX5vAqdTZdjWW3SUdJCINVLK8lVt+qUtMKOHcIciTbiuMpr/9GMLtmCqkxWqzdcZE+E231j8pq96ZnH96Xu9x7mqJ43RiahMkuNZgKrwKI+y0smRAre+JUbxsxLOGHErhYTfXo5m/Wy35vQSeQ1zYE4CJe3tsfM2pd4ccfe1i1psrRd2ktjwv2pdKj/EUDQqA4o/+BcdW+MbB2vCT+/RruxddP6BFuMCi+M/OOtA2CqzCPv+3qGCaIsHS9rQPYlslrRsV0tSVcFbkKmSVAtn2kf7j5SKfz7IKETSSMM0V0W342TnOJVuPzLpZudcgp/jQ6FpX2tYGsJluKbLvQ+YrsH8RCTU8Vh+hqYCQ6E/kwzMd1stp00Fh4HG6vMVS3QKU3T2FWYGct5JePdH0wv7lRFcdeXbutNAxzunCAML8ApUx+vhUf4ZFKf7a9Mc+ewa+7WA8TFuTzjEkwkMgDaqE5D3tDj7WLNwnppzc+gkofAss/1waJPZ2sejMxEsaUDH4sLtgiHyaeUgAi9RZIERumMgi2ZhMILlQNqjOyQWAbF+Z9NuuFWqjh8bJCYO2K1wmtpR60t7EwdvjNymJNYcukYIyHDh0puM5Nh6EPoxTSY7+W3TSn4y5xVIAQJA8h/xElZIH40rumMBT9DlPNgKp5s2Q9jUQxn/0/8eg8/acgLIk7MrhpE3BYPN+3IRzjMTTGXKtH5Sqzi3/A/wtQgybQAWRVDp6Wy83adlj0PyAet1bbQJfHb9uoV5K1G3NAjaXb0lEqGG2Z2NFw1+npx86cHcIZd49CdU4fSroWhimm+2vo8BPbpTRLbxyLfTf49zBoz4309Ynz5N82VHZPpNaXGz4gJ/scrvzcYpnnIBWpgdiuOTF2FADaU0ks9Kz92Ta2pEa3EKxalWvXwSvcFbMqbMvrEu+aWOoH0fCbm1/F0yk8rdUQPzSBE3Ed2IjG5P5C0G3v4JtUJGTbPPmFb3F31QwCvkEi/cOQEcoS0deZlSw+QVyyojzZqCKRMGUBmI0JjBI1rLt/6CQOx3+qykrKbMF/7HyHyb185nzODd7UcBNXyYsNt+fta4vtC5vDNd9IoZd/5RkmfpNwRnNNvIw+JIeqdtDFnsSvD6W1dheW4zWxzYy1PdhDhA4TfD4ohlO7a6YvPvJcHfMTUpJT/X5dddG4nnUzJs+Ok71Eqso/8aukB/Qynt7T4khAYS9YjgGhJR14jVQtXC49EJiGFYjOQwT/6IUetXhwor9rz0dQ7+RzmbtCJaPHAADbrg6ze6hKZ7Xm5Zae8+U/LUCgsnySt+yiu//V5VyMHKjh5hl1Ey6F2LQZFFv8yIEKMnf2gG+m+S/qmjHqOOtp4xkIKAvmvakqhFbfHJAX4d3wAQ/O0b0qw6uuhMU/9b8DJLqxgYf9vEkugRYirTvSxi1BkrXO+VihqNmsFnDYjvaldHfhclctG/Kn8Bn5eTjm1pulGKL3oNDUlM4uGyoLYCHI7QNOt1LcIFXOV/90kPvqW/d/m/7DFT5XQLGOZEBBrXw5LXflNd1wMr4BJ2bqwnREqFGo0u468KQYq32fAi/gcaQbML8zc4cDjk6cX+mgrFKYJUHzMUU5JBIufpS/iZ+z2Au2qZ14mA1nSDFGMgTgUjr84KMPBl5H8Ux0JoGao7HMHR/dVLaK7fcBnhpoErxhDQh88e1zEtJXMDOxtxLU84d013gNBc8Kzn6zsaXsJ4/IKUfc5+j3Z+jzTCY1dz+ICC4gS4aojEk0eVuD5GSvl4cPz/dLWFt2PL81VfX2pv0Zo1sLpeGAS1tTbvXfXclnvGrG+TJlEvSa9EkxgeDSDdB+1I4aJ0tAlqgg4twmfu81fDKzyj4YdkpS6An62TcTGcnVJOBfqXZO61+ng1QS7OJNyhkm9pG4YDu+np14PuWpnIRuky9ZcSVYDZF3Ims13Ri72LkHqf7nhBWNMmpYpMVLnSFw6YjuUdG0Ef72b1rmoZXyO2FgHfeY7X+IAjldw2G0nOeFzdSanXOFakb8Vt2UfyNlqut9CZ1pgWSEV7ioDMzo2ir60IpsGRtZ9gpcCaUi+CS7GhGgTWzB7jZczBlEw+B0ep2vVPFOy8gj5+39uhtaeAlROOMm/eN+ptELE6TWeiKEE6Abvy5YeIxFS9h6103Kr8uMAIF4GOwOSeB8FzGjEo2Bu1oKh6Al1WcbH82ZUEjYXrgndWrOtPWJblLtqKzEA4bHTX5iw7YAslJqITiVtLdpKTpi40Iz/1w6V6xPm/ADI4EoOhweSro4xPoVbj9eeGXdQ0Y2qelcPY5M5DtDrFbzVXfvj/LAH6+g4PdTyxFDOz/w3KAVE0a6wbtx7yNm8pHy7vyzp3auD2hschczNAtw4I/rVFxFkinNmncKlvgzQHl8IMcDH1b9ZIfv2iSB6GBncOz5kX7qNkJRSrsCx8JgiSnSgfFkF/BfEEYn+ZT7Bo53azDryTdMoANhL1qZH5/64zLRKh+gg5RQNvgnBYmLw8B3yDDHvT2JIp2/40jCKx9kbIUY2810/Slkx+//IZjSK3AnglIlDGuv6kvG4K7vLpZhcM9WXc75QjA5kuh7+en7PiPk5n9omkW36YXTlSJanUYw5qviwOatJf5g0NX1jGPt85n3yBfJXZZCB8yZZ/sz5Wc7h8g9elhQXd3zEpzbBdvAEnGUNIeLD3v/T7q95vZ8iJc7B2rl+4QOO+m1OPeETQxd2EXhpQjEHPLOPPYXzPWMlz1xjXXlW6vtDDLDkTCFnmgCitcq1HIkf7ZIPpfB4L54nZ+b2UJ9d19APYjQjEwHc+QVa+pqDdK6i/QiQu70Et7j+9XtYiiex9Zf005G+3i3Fq96pbIQYTUcHWZuIrsIjC2kqjIFspdVDhS5fwsNU83Gy8N8lS7CkO++/qGAxRq9uND+mFWi/3zOqMzznrr0+0KQta06lrpdOqGh/SeTYiI8zveEV1FnjMrsvq+1WppIowwb8vsXkigyxN7EfYkOuqrmW4S8c8FgoQgyrFc2VdSfcdsM5pLe41y+IC5iwwYr6nrvLn7ahFWwQ5ZJD1E2K5Z3aoiR9CyeXZs2B/ro2jLzsWq2X9BUscB7vLHEji7XKI+mDTvYyaAkTSqVWGzkIFysHYb9dZUmRpVP/4gsKoYcZUApQasOXWaqpPxRBZt2X3Mbvz0CCqSzvgwAoD5Exy7nhZyhnON54X+zm1ybhdrF+ptIkX4SGJQ40/HJvPwBrQjCFVcr1svRaTTtX6c/pTSrw3BWzPoadIu2xqdLuZYnK5oqUHwCMnaoX5pzc0q6IZ6lrcmFhBsPpswL+5OwM78XQIfbw3i81e+WxNahBLciVi0onnqW36MxwrSTUcAtQa7TG8TC5SsDpxLd3Nt0HoEq9+pQHQ3rAwi0MnNejx2ndJ1qno8RYv2FcJNIao2zJ7GE1KpAq8kj1/zjVo+3ZEapsV1uYPcPW4IczbsEBM4FdoUXPReUBsMf9h1PCDucx+7+J9NZTDUlpOJcELqP2sMtxVia1GkVL6vMrH92nV+h5eJChsi68qLSX5L0+qFrETu+w0L/fzEwc0iW68iqZvSgkBa4qyxcsRaETSGVSlK+BymhuT32AXQNuKJ7YvtxVVZbkhy9VMMgLuWBUFcSdiSPymF29jiMAmI/ZkaRysKJVJdqgKldXsPdFyEweyoOCK5XAU9KQqU0zXfTobkn3h12r/5N208+OQjyVdNE3umaEl3ZBBa5c2A06/R5jEdVBSzUO/6TVhDYPwrUQ4CnYDMZrgzJU5R7/zM4s3pD4ap0yoIgMAGcBcnRERnsw4A9+za/HsRJOdfVffWOBPYMCTCyS7fjzOfpx0BtJ/NJYY0Ns4e7V0wIuqm9gKCOcy+wcKPQlpnZH5NdAQtqoAfBYik/HqB98n2L7xeqNU+seuB5laYjc33Fez2nppBLY8iKuEjXCSQBFYFxzL0/+tOzTsD9NyKC8mI9x4bV7pAAkHp2HgXrXtaV06X/f4wUqY21pwCTJT1AhsbYMiDkl8qC5uZC/eUufRiXin+Spwh+Is/stof9NIugtHQb25qNgKpXDz2Vz5HWKG/wtHbVHLM8TE3zZtl5VQg3bnEVdjxzDTdYlIXMT+Y4tDV0ca54uMx6cyOxGkRX0e8xKKQBoC8NqyLTaiE4ILnmMVqt6fO8zCT3/be8P5jcyGWEs+BoDBVPp3WsUbdjPiXtfJPu3P4uT4LvPIQwK7cWAuztRi4YVEhS9avT7aR8ckQJxzM/2temfHQxmsrOlaEODur67eOHzkQLLPuB8SdVbDhMfmGAr4FR1Mx3Ey7ZF3bGFeKc0nbWPK5pIc6tyDu2knZLk02uv6Ja5Gp623dWWaNtGe6Vct8bqleK8K2ZbJiEjyHLXAKzWBOK74OX+w6vFr03TP9pRj/uYo62vSNPttkhYrsdb5a1/4wJ+u3eBLoDlS8AnavPegn8hqPNI8QPsqp8+B75M5Sir3BxUpUbpfUm0LZviX5gAHGJR1MjQe5W+3TpNgKPiHFesceq7XOZ1gkb9Z9O6qBPRpwqHgwoG22Dq4oH+WBtNjFagRGFmUalMPOW7yyFVvF4lYPOiBh7dxhDEJrTATWnqd56p9Oxb4eIOkiibUb5MupxOFjm3koHZrF/nXoLIWdr9nYXq9448/CjP7aYYMqH42OLSFk9Ff9dzHmWGo0k1ZTiLLEZZIwQnDIqR4VsnD9KDajr2TghSy/yKsSrax64jvaFvt/w1S5CERKAbi+u+0X+G+1gkYxzfYfuzB1i6TZiiV906+Mdpu4ondz4sSVa5Vyv+52buR5YD56MtNwUuOrXjkEUNUeIZfgdiaeOTAk2uR0gk2bz1y/emYr7DJaXum3MFbxtnehI3i2+YwkpYBZ4gpLiAGgZZvd1etYVX1BSB/wPZNTOvO/vCfgAi1exEIEgcMqUjXbHGO/O4TYjCrYQB55ZPjzFuggJJn6/gdecF0SpPA2nVcxxlLvJWLxhlBFlO5tbTGsEPjz3GEn0K3i8xCVDaDpnE+xQZ6K44UCe3eGsqlAfHtjrhK8Z7o1gUA5jFGIFdHF1ufsI4GD0M+uLG3XADamjRQlWcHqDXAC+ZYGYDtQBvVZjm/JsBL3ztFF0pet5+rO9F4PJxyGtZceDPhYgJKrp51QrXpEZxpbZfpKYKM6ktEu/eqakoC0eCIG1EMj7GxxeTI7rAZXoaHzSYp+tAXeIHnBZ/WS+ec9MeUXnSv1Q7+018x5obMGeb0kBE+O2ESxdUS1Of/vPEsBNJ2JCnGuOjjtSU8pSMQ+QCHeP6jaR7k01JhvC8vIMqS5mzf9mYtvy3HIfWWl9AD/qK+yG/ankeWylFk2bYpI+Aj9EJShm3fO5lrht7Hjbxd9NaytfeA2RjXDR6Aj1j+TLKE75kBsHw1AabvheaIRBQW5aWAULe/UkOMGBKo2F/kSbKIlkmTA5jh58feIKmCghjIVdxM/abb60wyKFZyIcRosJXYH5DwjlUw1Betl97Abo73cCFrB6WLpNWzI85fwxq6aBlJ05/9dEQ3ew73guz1hHwyFiovI9RaWx0fKYsf/vSVINmQHwhMKlyM9jmqkJCqWCkxiNc13QZoNpj3kchoTpedd+BjsgJhctkK3fhYDaktMyZTCGdr0w4EH7rsbG/d89PC+tVIjCtbAhWLz1P/1xyhU2W05em94pnX4SirEW5ulA46ASbXUDYA4s+TCB8njQQdW/Hb/5HyPuqG8XFMRMNmYo9kSE9SL4mLVMDjsJy27pr1C/rDc1lck53BAOxguTEKPejPoryLO3ILuAMcZ00a0aBs/EWZLSU+uFdFUemUgr+LpapBSdLJPBl0TVb3PoLcAlI6G/i2RREFJwi4FUf6xJeRD0s+olFLSSQnYS2VjmXPJNOd8yGpwLUy46jLfytua/bZO0wQdM5XkBviRol+ZIv9F9Twx8vKHIvSPv/FyrqfnVwfr/VmDiGjOXLQuaXGfQW5LFRSaNUtZhpl6mmnJt1AymY5u8wDa6/L9JZ1beCkdH2kuOO3iUdGfkcF9OuRmkrJlU5/bjqHRFE4c5MtZfXnrT3POloiLYmuMnOYuaL/QY4aN6vBUFavmbm4j0nSvO8Omv8FBqXK7H3mX/5QklHdWPY6SoQuY0IKMCaXtxJ4pIry+O5gjIyw9ihonJhOUWHcbGaP3L+0afDXf0WbdvXLXh0NMd4LIykRICldz/D4XuMvNSt35QtDagbiigXY3UhsRhDh77ZAuAhVHzjN2OH4q8l4BcZNaVsL2N1JPa8zTlC6VXlME92T3OJVQ1yyJL+XIXBTfrDM0bsAbCPBDKFOLzBi8sO962JBwDQtkrmzJ2nQmLbN536VxFVSZnPW5tpljOk+ncrl9vMPvGKWlyOjDW3tI69S2KUQ+QvamqmoAvJrgDhLtFcOJqczJtNiSVQ9fGr5qtbLgHNEXE5bgXo6cdnoEJdzT5vPxQlwU8xx52KLZyFcsT/e3gtRlSaF21IlMOA653TODQYrXhnxjf1A4w3tmecwvryXFIKZrhNQ6Bg81aD54qTWgKCTIvZJBynQpz+hiWGFCTqk69+F3PuiAiYwzoWquRUHMacGzH4nmBJxyRJRq+Wgk9sEZlw/bTb/JLp6jSId8/tPSSRCqYfepJeU+GlqX23SAdvQ6WrNOeyrMRBCPRrghoxkb28Y8WU28oeZN3Xw9GQFneQCiG00xhgkUYhVzSpJymYJNelLzQ+vbeOsZG/QyjkKVlWvoPcnuo6rRoJI+rLKToKOYEbUTZGmWP9B08+IfG6kUb/w9acZB3Xf0220UAm/UcX6vIUx1K37k54bfwad+Sau0r8AWSphnG9o+URMwj3H8mxsKcLAavNxotNHjQVwwn+493EV3qrawi6AhroNx2cWqzTX8XzT54zjSDo8jnmIr6oq4zgAA1w/NKoBRqEPx3h/RrIehAL5U5Mp1IAxX9IpxzW8X+UL6t/QUpVCcwe5+iex9AGJq+OVM1EaFVRMzhF+cFJYW6qo90r7Z5i2kmMOmoU4gDuGwhCgd/Pfys3bEhNPpBCUtnsW6rJ31C/+9N27qLJaU/6xrno7rknpck2SM+jVEnK8OgIQSeNgc6Frre1wdnJXG9BezS43Nq2YFQp1Hs0tdIRJ9dOfZgEC0qd7pFcStNdghRqPT8MYQ2ZArasgrVwY/TXsw9RCy0P0yZRyNgGmtxPuAYyuq/PGCj5pRx6tWoKEbxSeSCcBi9BYlmDoivYn/JjMjBu/xzr4TomGnzJ05yK2OlPeabW0EBtINnJFkfiynYirvDhTE9kn3MRpTqsSP7hCijF3JH3rr26zkeXlmvhVxQq8E2f8m94VeJ8Jv7XgyWa+K71JFYkVfsab+js4+RJiDG9bkXFceznknGMsrAbRylQbbhalTr+JNxpnd08QtW/yxc4ptkxTE8/yWfJbm0/Zyu2RQKsoYBEY/TFyzvNcuq8Vd24gehxoG2bITuOlm2fnCg75SBF2bGrfmWfx63k5Y8j2FMC/YRu/weLDN2aTzB9KVB6JbZ1YNND2Jq5Ek59E11iH3X8kS4782D1Z3zTD1hhqpuTbiZV80hlPkbNCiRQdns+mSE2g9cUfQJ49wn1nIDwKiKJMFFX2XZb97/2PACbGoL6X4NDUxlivFTAH9wdaooJfIVcrgPEy6F6elZnAAIJmIsOk74BziB1a8zKFOxee+1HCea4+aU0kpBmdoGiwmCp4xMS5xZRtb/tre7p1vFiDzE4eipxBn5ZIHUFnsYcfH+sKQ1PgJ0Ip3+BLY3OBkmFd1tQNSSzTRlQaDLN12xoqVZ4aop5OTGcSiE0ZDOxlPmOzoHfcXWjipawUVsc/Gk02vRJGX0+W/K+X8PlE38IljcVbycqYWaiE6z2vhrH4Rw6CXQSXlsXNxvC7L64yYHFKKs+iCcH10pSyyLqrEbFwX42EQU9b1szxPG+gXgW0m4Wt8yFfPx3nN/92ra8INqK7MouK+Deh0WZMKqQxkYXvJzx7oDo//EwfSWXHygvOjrnw++PnONJ/FOmFZd/LzxvSXfof6LmO5iB11C5762Cb6AhKf395+WTZ/zVkU0ojDYJdbiXMSKXWHhvkRfiC/GGQqyG4pNZS8tp70rNhfmzcTFDh1wZKAEfb2prlrs4d7Biws4qBt2fjsbPTWb0DIy6s3s4kKloL53uvB+wUXhT5B4saj+JYGiEmsBor+Hupmj62T1+0TKqVRCoGKP57uYH93uWfDlpHqTNY20gIo52RFxz2qnVDB1YiL3YRCyyArlFRFQqFzqbCcAA38fraXHHt7SXBveCSfhROeX8JjB8qYHn3gS7w4XimidDg6W4acEu79BiAPDb1S7cpvpipwnIoou/ThquTBCDO21IggD8+ze2GejyFcgGnMbGY7gdd0MG9ZhoLSVXL+fcS4Tlbx2bdd833RFiGx7UCy0UQ2b5rYaNDcGfqcZkOXbpQF/NoOtJ35OZZb0yzndixh7TL+SNACEUtsn0TefWDg60CDchbRbVwg2c3cmB04YesELGLydyAbezXC+u0vUd+p5hc+6X/5IJ09dkRxZrcFCiHZDLWNZYXxMrxL+cpCD8Ujp/nJQXZxg/NdmOAEHvj85pyfO7iO5LrEj4IHcMjoqRhoxwUHM1cCtRUyJa9TTVloMUsURCoO0QESlqzaCZ9cCiwJbaJz7ztVh50QcVDhjhQPpcx/kMaZz+6UbTRobTYJm33f5dnvTeh660rm+Vy8qwof5P0jNplFXznBpS5ivRqTmCQI6oAT2mTTXvL7XznwE+zKkQOYQT3Edehv0oKXT3uaPN59jLnxq6ZdIzJugmnZpDlMXyyaNKSVcAOaKnpR70xzdXD3jTBXZL0DWtlWxITGFnm1P3RlZq+k2Qnqtci7afwNLgaFtsC9MbPzkKlH8I7a+VxQtWK00H9xLyrfmz7jqBteQswJDCCy31Qi2mZmaARgncgxB8Af3cz+gB49qc0u9jyHSAitlOQZpqX+l+3Cz+UdRr90FeNbK2TnmXQCy3PP1dUQ8RZXbqptsavmbzAhreyPYNyHFu+NdJNkY8Xu+n8l+mgmHq/f94My0/xozdIn+fMgI+VBmZwvSLVWxYvrGOKomsCuAc0Nh1gPT2E6WAret4exMBF61Dpkin79rStl/I4ICCRO1vhskVkazvIbjKsOxGVjea5IMlJNIVLaoT9fJMtpv9ed/LoqBhgfhp/BnaqEjz5F+3E5E4doRGiAVrffSkDk7yAJ0ogCthO3vIode8xrOai5N5Yajgf02TM3ZZ5b2t71eodRvSFxVeTSfxZAPKgSnQ4qp3gHowCnBGA9EuCQRpVM9CfLLN7tG8ZSTOeBVG7UxarYUlNjHSZsbmJEajlR+5JrUfiIhad+rmhx0M8AjkpdKtIsssmZNHvl6arXxZIEHHEOoLL8zdJKJL1exTKOigH/w7qT2ft1b5TGpp/puXKN2Ele15Sce4Q1PakJwntZlGuWmxt8twJqiDk3m7NnsYsiHUPSgqfO+kPHVB8NsXiiaueZkFfywgzf/Q+e/lNCZ5AvxdMdjoyAY8hoF7VYHppBcItkFxFnxoNVScSSqCtu1+RZT5e/ry3qIrXOzfSrraeHxQPyL9F07N4KPYM5fskY7bcJ41ajUxXsSzVNJ2Su0ORkmdHSwUva5Lyf9R+b9veP9rbD57WcbakLE8zEdgg/AXmtT0Bmm97+h2KO7rkZC6YTqDwr2n74ht+aPszilDuE/VAic6AsFwgT7rWQmZp/m/BeW9yZcdT/htyQo7I6J+qKzH+20vH1VEhnTC9BaJeYLJqIPZuernvIxFquznzwJEolT4twugKYcUOcP7yhQyxYKgZT55YvNBZqYxJ2unne7u9/wiNnVz12Nn5HowtuBRMC6YN3BoVnwizxlwpi91Q3RbQO+9VJyAMK3OxGdbL0iYBjtkDE4zQ9Xab4gwMbEZ9ASDPifFTDRQuvhxp7STvel8Rz6PHouDT8owBLWuspWvRTM/ded3NcuX32C0HnuuXeALmnFPiJLuA3jv0V3b9GQyHMiCE3Ev+wULmtCG5JAhjC3ck7R6yDzHNUIfmoh0Za7gbYwtrzzWSPwmUGloxBsMl/NQWXa9BR6O7PELmadce9w+q5Shq3pVme2ze3rI0OL594fzthhVRO9odgXwtM2ezkbQOq9mDwZomMbp/BUBj5pZODf60p8tUUquHKF8BlV6HOmh0dOw9nl3g53/P7jDIR9FvBRxsREGJXSR7IY9bRPVgvoXBJu3egx7Wi/LBVg6EjkX0rQ9Ja7hNbT6ETbxBkjBXvvy+zA6uc6NiKYoAl7lv0MRNwU1gAEsm54hQHDeDpgda8lMkmwiLIqD85tyUl0UjmgK4uPnW84RoTD3O0x1X0n8cDAeoqJwP6Mt4XCxCyc5ylF9JGeu9owuQ2LTJg0agrKimW983td/1fPZo5zzrzpscHHtEwAbonwaeVOZq+SDdUB3Ai9c+4MPkvqHdZNm5EvMO1Sm2P3uhXzhkpasSO3AEjQ0oOtTaV4Sh6KsTDzKcJJVepQ3t0GLpgbqRxKcO9XNJDgsqLKttq8HHI8K0xmtk4xBNWv+7gG1WVjqo2F+liZjXSYjuCtOepDVi0q34cHqpMt31f41aazDFoIeSDeegUveOAX9DyCA5qTjnQle1/QgJwiogmCTBrJX/HYdw2Q5xr0aT7zf16UvXHc6WBYyb0LNqxTMEzXkLK58iN3UKfdK3YoMVsTilNKSN99SmLrNAo0Sl0EMs3X7Abw0+kh972Zp0K4erUP9vPrWE8PyvoVN0mWoEgp/5f6x4s0XVWkEyTCO90EU/LQAM5H6jKPny9ldkbm4TqQ+40CWdL1gkWdo39mEbeof6b3RdgwmPMgoLcIebOaTS4QSU+FSdJVilnVzxLqcCdhFnsUVtfKUE04wYlH4cctsQuT8oDnfRs3S1+XvwQLmq2TlRIxRYjE5OLsvXaB+e0xT9vVRqdAuEWzRHSH4OfdlPb3L1EoFuUgigo4/HKwrBQ78xuG975WESay2SxOWwmzBuUD1LvYYK7ZaZCgTPCyrvTIDxBFwQBTYVBTH3Eao2yYzATx18cE3s0+zLdVMKerzr4NedhEssAOFa5p9fY4X4kXix9YK7nkK8nc7+Akf1w416VJ5TlZJ5PVlgPBDAxGZTcOZvnUwamtMsbNPDs6QNWBGpNgJS87V1hUSqqzQf0I47ezYNGjfjNERaOILj0x8NZrgYPagOV507dEMR2EUCxufSZj2OS1KIqFkw1WoA+ubqgGpuCffv+K+pCFFpcN+xFZTbqvCk9g9fpw8Spk9VuJelxtwn7DH2PK27EBtx9WExSs905YVpUvsDnXcU2J04lPFGDbIfnCSYjCRIKAQdIvSj6ti9l6DQCFyvVHMCxj0A2S/OSEH+6Kis0D2VPi8crs8AZ06/isxrSGTlhTq5iY70jHJ+WgsqJTCVo4H189pTtTVJyb0sxeI+wOnaKQT6I15s+M8FpuSF28i9WNdfIbefCc0RVEGromBcNlR+VnRTb5+kuz3AQ9o6fUHAEOkPGhusIfKXDIuWcWBLz/PsrzFSMRlP3MCjEhbrH+NSwN+8+Gcj3l/AmlBQFVi7ilg0rtXpB3hk4QJjmhP339QrXaUWtIL3C9nZoT29568UPR5EhvPnKm/qb
Variant 5
DifficultyLevel
739
Question
iWatch streams a selection of movies, series and documentaries.
53 of the shows are movies and 203 of the shows are documentaries.
iWatch is currently streaming 36 more movies than documentaries.
How many shows are being streamed in total?
Worked Solution
Solution 1
Let x = total number of shows being streamed
|
|
53x − 203x |
= 36 |
2012x − 203x |
= 36 |
209x |
= 36 |
x |
= 920×36 |
x |
= 80 |
Solution 2
By trial and error:
53×80=48 movies
203×80=12 documentaries
movies
− documentaries = 48 − 12 = 36
∴ 80 shows in total.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | iWatch streams a selection of movies, series and documentaries.
$\dfrac{3}{5}$ of the shows are movies and $\dfrac{3}{20}$ of the shows are documentaries.
iWatch is currently streaming 36 more movies than documentaries.
How many shows are being streamed in total? |
workedSolution | Solution 1
sm_nogap Let $\ \large x$ = total number of shows being streamed
| | |
| ------------: | ---------- |
| $\dfrac{3}{5}\large x$ $-$ $\dfrac{3}{20}\large x$ | \= 36 |
| $\dfrac{12}{20}\large x$ $-$ $\dfrac{3}{20}\large x$ | \= 36 |
| $\dfrac{9}{20}\large x$ | \= 36 |
| $\large x$ | \= $\dfrac{20}{9} \times 36$ |
| $\large x$| \= {{{correctAnswer}}} |
Solution 2
By trial and error:
$\dfrac{3}{5} \times 80=48$ movies
$\dfrac{3}{20} \times 80=12$ documentaries
movies
$-$ documentaries = 48 $-$ 12 = 36
$\therefore$ {{{correctAnswer}}} shows in total. |
correctAnswer | |
Answers