Number, NAPX-p107114v02 SA
U2FsdGVkX1+jaOFcF6jfFR0IeIfyPZ+p39Ak5NYI9ZKiZJt89cyqL333VkJuWKF/EFG4NXVmMHKIUXu1TY7LSs3f9n2vPhW8K+3ZCMQrAjSNiOaTpKYVMzZZUibV3RaTVeUG0IqSExt+Hb6lclWDQKhSLm+v8edhgAJX6Ia/1yFHJEjMeUp/32grSpkPy1sz21SiptyKtYGPQoaYm34FOckUlACpWUYAZOYzpyaO9Oepp0QlJ44vJKEzO2voSMflM+9ptJHn775qPs6DAxZcag9DLpWxuv5+tXmeQG7xMBCRsH5tq2v2b1qYwOFGhsXFu7Y+wdL1gom4EGVvS7a6maTFOwS+gYCl9veHlGnPk8c7ZJsV8PDhOLM8isAGgfn1xiyYgxFoSs5uqC7vhhJlbUSugyDtiukZtLKgfqWasGv1wNQfik8k6242H48ogCca0o4AAPV1JKJRCupcicS5MzY/8JYav8G7nF40gqZW0Ah0lZYbsGbmPtQ/1+jCOFTmHHuqjbM/YAMN5ShjelFfNcTu5BEKHT1gc5YJhk4xqFNbBqXtpA9QPgAfpB2Y1TkTqMJsHi6y3SlEXQpUJCFxBviukhdPBMX8hUq6ogVsQwFxh0hpWe0DGau7Pavjairx/Q+cqSE2KAGR3UbwAhPrlmcJqYKuPaqVlNM7eiO72qdpw61f3FqjnMDnJV04BvZWGhcNw+su5PvNqvwAG4a1wAOJ8jetULEM5yRPXGlrj1VaKYvT3cDw5b62H1FgU7sy7I07MeTQSCvc7twIAtoToAOE6VvOciowKhA88fOjZ66TTZH34eihojON+fALcE/I13fEoSZ4oCWoGyQy9qOFnFAqXfKPv3grfyYUS61He5s9966upwafdu9P78XudtDrLaovly7wCdMT+8IleIEbQhk5zwPXvMGt5vL9+q3YyNtpifoedZU0VRLG0L7CXv/YvGyU5rWVDn2grsvdJndYwRrrOOgHf+pmr6V+2WKsNxJQgqwSlAi1icUYuPEwif1U+fuTpGbtWqWZ+wxHVIZ2Rc9EOvXuUUtWngUXD/xh+4g5YdtdDlFtbQNrYMmmbDMz4LbTxxDmreVIvs6wr1HK++DeN14gQJiviJGd525tPmiOCUY6XLAYmyAlY8dpMlZYOmpbNoiicrUSeBk1BQmSyQt1DLNzNS8wMPbw4CNIjiOaor/jLw/jJ8nYFY+oQvHPkmMx+sJu9+Odvjnf15ckGTYaHLKuQn1lH9VFcXYWlmsLz9DlkrxaBfvP5Voh+F/AjoDq0qHcgJmuc32ssbI+3k0ARq9xc6QBNOWqFVRwc6/8ymxaOSuALcaCOdOwc7k8ErPncXbiXTQCLw2gvdCmnp3ygtY+wbPKVz0GjpDOmeRTIBnaIdVXhZHUw5T/Q4VCGKitp7VrVVH6CHOQMczGtLXlORGfWlYJ4sEFpSJDW3WMgQRBQ0QVRj9e3Rp9ghD0tnO19K9I2gfehAcEIWdmAZzdCAYunD932IlBM4k13VgGgtNsQYsd/e4wVIeNo3MamG0dhlbwdbVTYEcvFOLPCvOrX9sWTZ2N0TkkGNvq/AVMQtUyQtNJGWo4br27QjlFI0cHvL8g/TT9xQKBUT7a0pUcsJij3ZH/tELOKhhMd0rQCBFmTXKTGG8zksCxi49SXqINjBewWfyTL88+gfTcTsH8NSrYcHy1VJkCJoAjgoONLdbOvU+LiIEoP7FVKqrZz4R3lLfdaK9Eg81jkBJ2gXQp87kb4naY+Vvpo/y2hMac8/UUofv7uqgWlDNbBb6LSpdKaQYGmPPZxooOuFolz919KpgKjtz5qC4nITb7/zYwOdzWCwpHaOhSHQ4gxb+732KpkR+V4gLjy/aNmMgv2QQ4rTXCdlRHsMMxaOxTDr0TaPHkQ3VbKTIgb3OmBivzDayalO9iHuBE8MZ8xuxKI5mfiMvAynRgitsGQcAU9TT14baog9iv7talH2jXHpKFxD0PKQMMhur88Gz/S0roW3NHRwSa4j8+teHrOu4p+L+oEtd4Aqnqj/AS9DJ2qRgqoGKZccKQVH0CLvxzt4zZamh93VqhHc/CRcSyO89OqETwgaxxkb+T9fv42FOUVNsOhKKCikGYVXR7wlNncmAEbBxuO6swNGSzp/8nbklduTxMWM+d60tRUVEdXnDcWUxzKBU8DDTZlaPFbEFbHmHd58S6cfaTaZx3Lc+GKYBKDlOHNCLGPDbVjPX2N2+DSGgt5ODjkE/sm7urS55Yrvp2zoT5AffBx4Jqd+gYCrDKZ8fGkU3wn3/sA4I2rcS5Tzncb5/jKh0lJsCkWw39BLk6LR9tMsow2pRM8uukuxR5LLnPnrg59niD6A7eaKK8jU/3eqNcb6sSeLUaAb3e4eqRUUrgReAJrBOM6WtfpF8f3aGv/3FjC1DzoxcsNtdC1HgbhX4M1hVEH/V9r+YmRbaueI0YHfSSd5I6tdv6LVHg8DsavlTHoMNbI8mJaw5eDaZ9GK7twNV0qNAc+Tg40C03atrjCdWWPgAkkDw2gu2tlZubzxcXJ7OpGT2vAItx2G8p0BgaLmylN7Hph1AAhKX3gu9FcYZOqnhB2QhmBUTep9T8AJR2mWAcOXo+2/ZPkXfvT/jy5cpwda8WQ2ed10zOq0r5rERvcDqgt1HIH+rHukRnwUvlQM8SDj6QXyuaCEdk7OhitdXH39ZzExbAnBV8KUiyj8lz/RzUVuLccSCnU3SNdXuefoKkD8s8hXZ+ZCsNeHTjv90pngtm6pOSKDsaRKm/x4i+WkDnnfNYUDp2htebDrPTCIZvD82WMEpbCgyCrnWlq/L1gHcbEczGwt0q4Mtt0VHKuzFydGqtnTxl1qce+oYcD27CrdcZ9HagpA1mTYRLNmFhNonOn5OJ2zbdHOQyoLI0YmQgKOcTatlil0mK/hZAY9U0hRtAGWnsAu5WcES2qZrkAziJgC0UKpnortPbHh6r8e5QfELuyMG4zN8IJMQyAG/u7v/DRCe+YGq/5aGLIBh3SnLd7mbCvIStFA5sNQh2JcFttsKD7TefAYocRAB7KVMfN4GUOksCp26qaM6fgEEDCjTBEmg/shmw6mIq+ScNhZGDx2SaYH9PIhe9TwOBP6Rbj4LC28lyEDleASjf8w5caq4Sc0xmguQ5WTQ09QefVt89NCt5cWfqwnOKi13ZMtfa/1r4Y9ZU4TnUinOdpefeis9ceeIKgsI6+mJiC00WPVB5J5nH8CFF0SMVAOHr+bwYDf1ClFx3pmo6mTWAPqxRcIRIgipDgN/W0gxsQ8n0TrAuCmu6UI5CheTiLhvj+b7gSLKqrwTt2gvtfqHpgj+WSF411FvniUZqJfaj65vonr6XuEwi9ml/oTuahIhCSnYDdnaTmpAb2L305vuAmRIUhwfuK0EiFofxA3O46aFV4GEsImwPBvJW2TCsYEK2qVRW1vlhfpWfznS+uBTrW+wKGh++VFC4VYLkHbbuts60WLoW45slB86i/5+XopHCoutaVIhO6bOVsrUWvKvFgXH4h5Rbv9KlHZhWXBVPL4yptL6GeBtsNVadtx6N3Vukg1yDcVopCFUMprckN0bSGam2IDcYzVrKcnpS7zx2UaqjetT7zkx3yoMw2KNTZ4wniuJVvGO5Flwqd1sHvKonYsKPN2Ockij20jjHL466mRDLZ389z/RMt7+2gpr9cWT9k4l74mWbXHAHbCjPBWitGJGa8fec0XI7kM3DnBxpylknxmHN7tNfCPPI70djCgZ4xkNvBYSQzfqGvddmSsl0vuJh9TJZd1rsii/C82y2StBkHWSwqxcKmKbGBiVMjGYa9qbn09AnZ8zHueiAKH8drGD+eocvlrvZ1QjfUkd2Bq2FOM2hutULaP2eYpVEyYWH3KlMlf8x2uOc2fb7o43kKA7TOcVvVyfEMXUQo3HREHJRww21c23cRKJYTw47LMuaOViuJukhQvu44zGG7SRXrjqq2xUwHv3ZsdHqKhDXo2ABS7O+4jXSzOE0ttXLuVcbQ2TJci2aWiwxcNxxmXc+KQozrBHruGnFh5sBb2Nd8l23Lxirp/csuslXHaKNbGPH1z1//BwgOxii6C5HKQRYveoNUycR9x4XUqVnkV0JyT60NHVdh7LOYtAo1Fg4l6C1nPa8VP0roCdMrNKG/HgYJl5Ln9OnY6WKsDipTNiWmvfB80C1HQTqg38vnama7veH/FeTUsVVxg7aDtxt82lZtgdrqN95pdX45VKmz5LrI+AJZHeDqKfBUrF/qjRr+XneSUzpiK4HwRX1LXEoPtdXKdhy8ECxhbXfzYvmBZeNWpo86jCQ+agZjnUgt+436evsQC/Y9/5vP4X4VSJrlokdDNc2Fmiuudf6lSr8QyQpr+GgyF9lc+aeru0a7nawMgC6fvmzobbwaL1h3S8X3UH2DV+OoDa1Kr90HbOaPUXyPzPdZ3V40LRCLx1xZGzvPFiSj0uMOxss3LJzwIpIDdy3dwBcROEQl5TAVcDnZ+oPSTQIJ3ZlHfMgEn6Iojtqt+xGhfktsYp8AvBmzOfVKYn3LHzE7T5iACXKAKZwN0qkSxcMoxAgnsq5FK72jIE8BcQKsiDkJC4pGru9JVGCyRljpGsAwKibDdWnFSH+FO+mYtFE3si8BZV6uZHovmZEqNRdqXh4C8ry0WawE1tHKvGni/KwJ/zqh+ZU46I3tCJR1ldZritSxdxj7b7MPn/JQzXUqBO3unMdDcrXeOUEWKyOcs981M142XQoq886Xgy6QYFSzrKiODYcjuxlOngTFfpqfQc3Ki7bry054b7ffp3QzhNhw43w07MuIveyB5J/fWqF9KoUDavIC1BKftxE3jH/S/ct55LNrZC4eTsyEWsAgbe8iGTBre+BmttuJgt7FK48NrMIbF/96KgzXcEZhyASZ5wBbfAVc09Iu/A+tjLqmaFK3noTHpe9HWzA+V1yaRI+QOtLC59SOsknYyW5Xd2MjyMR67dSxOGHcvv05dt7zQkfMQtUSn3IB4739MDaHsaJ1xtoRdZUZq7ETz3LZPaqvDNCajhMmn4O4NvHkPsQHphOeyi48LFoPnUF/U9yiPxOBGB62VkWhnhbV+UgDcScsnbj3BKVqGmd1DrAVyu5pgw2yXmPLzZSJRbsK6s/iHWBBhTmKMg1DTbK/md3FCYUJKrUePq/1OA1iD+bmpXFMQM842wR5B8NuPAyOEveovvSe/BImo57fvdVnq4KuX3PJtn7SuqCkYty56ZOBW9AjtD8WKwpj2sttQxy5rmhNPU+kkE3sw/8aBnEHsKui1iPEobZxrJ2OMPTKpqwk01dqWGmxY6LP9BOK5quQlcFqNqed9sfKezZxfaS63dJXAhz1R7mjGca0nRtukGN6TOqAR1/e+A8vmUsBROWyZdxhyalFbmMskJX1OSEWhZROz6AQhK6SqF9ZylzS7/uWF705T4lS5GaVrLupbvUV/nYu2oxHKMdJONCmf5Du9sRXloZ3coGj4ZdM5xTskPN11SCrPDBt8AWMmFTLSjx+pSBsJKoxZCOgAws/RMW3ZHZzr/2vHXTig49Fr7ezG0oOK+ugp5Pry6//SqeIY2ZZQYXg81oxuzaiIFpWFk2A1qNit9up0bGn04EBmnuq8Kwhc5Jo517d7kAJB0bbabdyduFDExrJAUWn41UwnMVJ+Y7m5xCzdsqA9gDWpscNqBtD7YyKT0dIeyopV5s/a3yWrx660xt8PAp6Q7hrAAVZW4S4k5P+4KHzeajeI076+IPNQANYYPMQs3Pd6T+hv7xjutkbJwiAOVHCyu8oLSV+V/SR9PeznTT8Xf3BILV7D3SyzTgJblyKUl2vnop+5Ozh+ujF+tFaoHY2ZDgFw368pjgpXrP7YsHoL5074oJ7VXLIYjIV8jsO/bJT6fRfO693VaLCjt/8FR/LWrgQO2A5XWm8/zV8fhk536XBvg8HAXVmP7qIQO/PxBX0mSnnBBLNFzj3HijeSGwwUqadTWhwFkWCfAApi2ZKBYOrfcbqhlqssghfNRewXNC/ku7Op2NKYqaXHSR9Fm5pMuqKSYTqX8USXHXnIh/FebtZw+0nbwlUzGJjcfhQpaQWUwE/0NrFRw+TmnZsA7Rx7ZYqw9j95NShpdKFrcHrbmI31iVIG34+raAiSEwiO9ux1lPRWWKpDm/P/TCb1qZjqqlQ9IYpHQ6AvT8FWPEq02AIjhgfDCNALoVs+NISriXk3goWFkvC//fSmpU2CQoFv21bac9xR0Y7IMRwsHg1cVyKfVx5Q1+pWHeWWbMVwQ+eWfLcmo4vB3zdwOxadXqUuZW5Y3FkKu14GjCvx/XapkK/inHHGMXE5KqIcb6MB/woJElqIVQsXAva7wfr2O/q0MaNt7baKasmSmE1IEkODNCl77vY68HjySM4QB0EDVa19SvSJcMEKAd5QCnAWv+g86rFoV2weAQy7NSTqoJ65TJBuewN7EMTb6rMGcarZHorHWQT33wftYEHdg+vlrkpWwTTq1mvVF7XKvXqgc6bVhot2aHxjnpQ5gRX0ImjfMJNGFxkC5lTxm366xPXP9TIPQSXpy/cB6hLITHHwrFzd1aoM9qlLNG94FP1Ic5wItdFyfxducKl0ti7epvr5O255q9w3+ylkudwNx9hlPFmjEMVw+ZU7/d8HIv8QOxYRNpOQUb3u/8RGTtR3Tm+NRaBLPCesdfGovJooLaTaRafzDmWANXC8+zdluv0++xqAjGyqapDyWPIVSpsu6frDkLGrmd+exfELys8hjsvkzZzcayfM5n/TcNbK2oniT2yiz+jSnprAdSl8RfqdlEuhPVyoyn1OuT2E70JmjbJazPQXcvQ1FlcNi52O29nUUd3pcLJ1yJh0dIfLHuXdKqk9LlURziyjkhesc0g//iCwudW91uXopx8aVtAu5O6U50sW84dy2yrU908HYlnmAtRpZEtS6NoDWlCBM0UHTNzZZ/xkNf4JvNhvkMagxJl3KxBenKc1QZ9XHLhnZ04RqQiNolQwQyYpu2NV3fbTHLjWI6mR5xxUVr0a6L2yzWjdmOrt1/d1ZUVT+KLkgjY1U92rfobO4gUf6v8IhDp5ZImw4ZYgxx64JvzTwRRCCWhDOBFiQzDqUvVZeyaYgPtGQ6M+afq+0t50ssfvkNu+tvldk23neqQ/H91YZ5pgrSWYwd0o54DEr/h09mweiA+pQu5iW1S2C/eCZtEnBEh1yeOCLGC0JeCeRbBrGQ5/sIJPg8dHyqHHTPrcM3j5yAyjgVFpuM0eJ73i4hPMqC45s33BzoTLTWzyzGg0rBC0syz8cCxecStzqj4JB9gr+44u/qss4ABk4TsfmqcuH5qFwfbn+R9OM5f3h5b8PCztbhaTUYZzc+XQovP6qJ5vv5aqbjuSGSNXhnVSQ9WtZQhsqvLWCFvFJqQBUG7cCUBdRc97rPDFVkpExGp592YBdh7syNEFId/uuh2O/ZDcacyxUbqMcFQ/QQtHOflDqNANHGRzf1UkzsPI4UofRB+cG4AT99Jb8wWWW4PpsQJGoCBSbfC6CnsN3KtO9sIWJt0fd5bczQ/NRlxpgsndMuAOP0isxIBvDmSzyh3hhzc4BeZ9+UYlW/GpQnJix3dXbrvqG6sY4R4GiV8obORgkimMana+maf7X8HYZdPNoC6Gc=
Variant 0
DifficultyLevel
651
Question
A charity calculates its total donations every month.
Over a six month period, the amounts they calculate are as follows:
$1520, $1270, $1600, $1310, $1430, $1288
What is the mean monthly donation the charity received over this 6 month period?
Worked Solution
|
|
Mean |
= 61520+1270+1600+1310+1430+1288 |
|
= 68418 |
|
= $1403 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A charity calculates its total donations every month.
Over a six month period, the amounts they calculate are as follows:
> > $1520, $1270, $1600, $1310, $1430, $1288
What is the mean monthly donation the charity received over this 6 month period? |
workedSolution |
| | |
| ------------: | ---------- |
| Mean | \= $\dfrac{1520+1270+1600+1310+1430+1288}{6}$ |
| | \= $\dfrac{8418}{6}$|
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1403 | |
U2FsdGVkX196hggSrNO7TqicvXlbBAz6aLt8nG3pvCh+Y3CF8Zb1ldGrhXaZgDpHzZNB47gFKHvNShqEyfPi6EEdLOEOBwAZTXPOErqqHZDQ4hi9XZ174S1rpsUrlLihr1skoQGU4vCj9s9q5sWTCgy/EocWQxUsycUQABWWwWyS6wBGZNk4TTz2JPN3X2TQX2uMAzOm/zxRo04gHyw0Pyb1M46ByuOVwpEV5CqeRhd0GIw2dEFIN4iKpuFnD1SHq/jyfCjpnLMCYb598hSMtKAdZHyavU2izoDbQ0JClEtRK25Kh5MOV9kMmZkVX/T19xaW8dud3KyEyANGnMnl03QgVUgyNLvN55DlZdzw/tpix19f5JWY8mpPPv6JY0nrt3SQ2SmCrUqgHS+iLcxqw8+xyFfoILTXz7ohwfRPrlxmr8GJ7Vyxz94joqb/8l59cjwhYwqO5SNQfHQfXQ9RgA4ABxov6TDqgZ6gtoLjESqFcxVdh4UGoS9PrfqYcpOq7ro0kfL+Tw1kkJ8qUljgHIxGoD3jlHFjVhfzLU3q7ukRcl9KcNsPTi9j3LgQenzdxw8F0ZCLwxvvlNapuKli4cQczcR4yWsvQL+EYYo0q5xVNUbZYxAYH7eCfoH8GLX0J8Am5sHoFTWtZmFzBObdWJVAr/AuV6CaAs6EVT66TsE/fj1cROnhsl4SAJ8s/aHWWfNN1qCMKfI+DfW/U6P2D3cV5AHDBJaU6msFBKM17VszmTYk+PTtA5bM57BB7+jiSkHt0K2Yaf6Cm+gQne+T+ktBiK+/upwXdmF5Us4Ot8iMY1fl51bysODi5Qolkz9fierCEyxLJ0k9p4fLAW58sWKl7MujKQJ2n5qT9hUvaIPWqTT0hZQH5CdS1FDpdd63GiFgY/MKGE6W3DgYFHUa/3+nmiCIRZgdvdUCv2KlBqQU3DNIW4bihmbgK/1Iuhc+Txm+HXvh0aA3jwPcUgcv2pcaPZzIVTFCjLZY2nfpnxtsajf/S+82qgodnybOC3qSoSdx55gib+N6G+h+tZsLsOkJBWeVcO3shpUFeDEzh6UZZlJSBKtaF2ViqWfuN71QCFMEAjScZImo49hKfzs0FyaiNUL26Fr6jqatdU64Y5scYbN5BzqT+MOnybVtP7cayw/5B+j6UxgalTN8HWKZHzTo8wJiq12ouUs940VOkEtsZBpDY1XqdfstTmOQ3fNNvfxKhj6oz72iOBP7t7sjri0BplE4tQoGoKwCsJKV0BqVYocdeCgiF0DUpFmuucGvH/dQVcSio38/yCe19KktCs/jGLcpnrFFBnVq/Oxx0eIxi0UYNmBt2WlA7lK4wJUdnQPsJa6SNjYMb0XEKB12jraLAmZflgt4sHd8duzR4xP9KSowAiyQn/FGS9yDQa1aValBEbglmsuLs7NlsvCZC8Y2qk69dkSry1n3S5BLUqq72DylYprQtBdb66FPnF+K4VGuXJ10qGphmdEFmw2JmD/VbLsNqtarEawRn+Zu5yvPCFEAMwLlD9vcIECDwxNfSNJytIfJsHRquAkMxLLWfwUB/Zl5PNgu6HJfgHQoKp2Vr/vTyC5JIz7/ejFP4KAbl9c19rZusAOvGXZL083IME0kEM6+e5RwE1+IAkd92dLZzv5Ih8I6TxXrEi6Rv/19OBovm9ytCROgrRMT2oE5LklFE8VC+XdjzqrkAsCY/dyUg6WU4yuiYMsaxXQVlxM1rLd3JNk9Myfjv2IGF4zgAi+vfoms804NEfRay/53ZGe3oAzGffu4ll9cyaqcAh5NlOECgw8KnN1kBy220EwYVM7mTVnWj80SYCKyjxNxD0vlGpkj71B5u+1UrpzsJTTJX1ywKb8ZStPeeC2JTTa2lceqXcif0PblqGArCvAC177vHcBqT6U5C+bk/P8AFGoHJjCBdfzO0Pbg2yTa/XMv58ZDkPuuAl3lM3t4J9SIYf8k9DpJZrvcT4OsH142MgIBlB0SiJgm3LCsNQokSfkmQTuoyMpzC5B4dZssX25KK7C1XM08rsqv01As91rSL7RJ0Kgk4968kBk54CwD/IhbuOpDJd58caBYBnQMpzMKCqTmS4ynPf1zyrWJ+bxh3eYb4y0q6KGJ3T88pFaJlRByRsEM5pkMn1ldOR1s5I0OHzdXjyPLJxdULgUZ9SVSda8F28xI27MyC5ZDyfhqyOkVnTkswhibRNR74n3kSHMQ4F0BLGV/2qnq3bXLKcrutcmQC+tZaVs/6H0h0sUjJWtjegb4M08KAIkroL1oIkyOxtdz4bdOW0UsqJf8goExdP3qLKmawXDQOnkdgggHIxXTa5r3+NaGJhAnYXDfdTC5Rw9bSpJOambYbE8gwI8KcR2S1KB0hhKMRTuy2ItT/ATA5am1z8cwIQNuzmUuNAxsUulCH+I76Ha258q1Vp6BYiWgQ5kkQDSI7bFS5FIuVKyyQguAnZOm3G8fDKvEQALAFS/CUse0ROTAwyVzEHsOWLc/zH5IJ9J0nvLIN8pmiruVch2ndYyzlFF/d6bBQQl1fqBYJCdvLzaAtOqKT6e+L8cwSx2fjsTckdjqDIiPUbWp1/zuInqpEmyevJ+qfLui3dZ3YOj5TtvTnkxEyFROZfUapf3F6ZIWiAWhd9dIW9UhwP+Vk+FVdWUlS/+5TUOkfDmrUVvXBM2fT2tHmOWovk/zOMZRCX/rSaqdWNhEWLXte52gAkdQQgvL3Q8FHihdsCEBUFV3qVFfwdiEl3uiv5tSt0MNMMJ4W3R9zlvy8pX7lBbSHmjO353pyR1kDs+7lA4WAANI24X2ariyfsYtGXAHYLNUgHonHggShkmDdJONd4QXu5huCLIydJDtOf/DeNTa7pKK6/QSWahfsrYb0y8ptv9am2zCrhnUkidf2GI/75QtmOSgF4HVuuKLyvuqI62RoUp/ty8HNY5eLInfAUA9OwcWOUJETmspkBRJH44JZxCv8tFFPKQ0XDnAuxRQA+pZqt8beXLDEwvErPjQqdrtD2VpePQHu4/hsT5JAUvoIpxRMGTDuY5E8gzjGOp0+73QTSQF6VaGAZnz3sXmE51SMqZBlfEYXhF6gOISiKxeF4nYykR1x7JAi4P1PZQ1TCyOCbglMAltqrr12hljiWFTeo+yNY5/4jMIOnCkHK6/qHqMbD0csalrM36k9Itx2LCYtmQnakpIOBtOaqUxhPo/2ZEdThBn1usHFWy/GYN6+sxZGQ5aqYWkowYb3rXVY9YOi7ZgsI4kQGs/2sgznZkK6wLWIOB4gRL4a4kJVBZDXaGPemXajUPMk92wbcaSyvxW5OvLxpWFjcEkaPYon+ogeC0bXopKFacGLmnoehQoMeTCfOUR0Fqya/idDQsqy6x3OJWHi4Ylb7um0wDW0W9E4o8mvW3KbQj8FePnKphY+OANm2bYVzymN9BRjFbtaqYadu/a7Iv24EWRFDVd2EwgsDCfpsqkXnkVaY8renz/STVEElkkF1N/4dQTCJ/vjShE1pG+B4FsVcKMee0kQ+E5jnreOZBsC841jBFEN/VbXizKA8CdSsc6jDWKDye4aMVtmr56Lf0w2mHBM/NkaAgD3u4w2BSj+sHYteC8u+3DCSOf6QhOX5fcDLgsFKBzZTmFOyeiiNtRPsZcYmI2HRFDYs3S6sx0pJjTXYEZN06Ja87AHdP51ASi4liLtwcd4VY/I8Z1PQ/RQBZzgAgljihavZX7AqmYjJZczwcN1tvKhVinvaDn5oeNtVBS3d9rG/FLTUy2lhP+jafISf85Qzir6jQpBxQrw4OJ20QgVFt84ZZZd85OP7hI4SQxgPwzzABT6V9bW8HFEIjTnC1cp+kx6rT2Jq4jDdFYQyuao/3Vr77Gat0eqE3kOSMuELUniyUmiewEXe8+oG1F6OagnSod2XcUICes3XArOPYiLLdoQH4TYtx3o1EH01JLI75DwmhB5mLukE1vF9vO8wy4WYyGK5pg0JINjXekUJuTr8vlPxS5ewPwPK4ZYZaHZFsl8iw/NvWpL0zYwgl4wxvOOONzLypJbSIjRnhYBik3Nz1dB9sc6dDA5ufalT8+hT/s3iAeDCVeFyGDz3/F8WmHt7CooeWGBsh3t3gga621gUf1LzrvzafLnG9f8WixFVUg3vN3TspkUTWLVaYuatvMfOhrfBRh6r7NXZ6WMFUr+DDXKuPxp/4vlTORWczZG82SU0XOWlDghiBvOdQZKlrDZ+ri98uMP2EAjy0K6beW8desfBBtZeH8QejawVqnfazbXDRKSjaiPcJagRgUwq6Fbti/foWCWanxSVQy4Ty+sQeLNKWt2uElbpjDgpnjNJq5b4gNRD2qlE6I1dK3fOTppwJhnnQu77ggbKyTCFjfnN/E151JxjzpoaRaamQlv5czsJfvdO8sGe7wqRFzqfYW4FEf22EUH+oOw9BIQ4N272KY3LwH2gLoq9OHrQQkBd3cU7ZpIaqhdAx+P+KhyYonp2tJVqYGd9YfFfmSmEysWTWRONi3s8zOxRNtAm2foQZ/rO6mny18s1IYXR2cOPaSqn0YPR7gAZlXBm6+hURJNECMD5uv8a16h/+535uOjSD2yEVj7ZMKhd9enUQFhNSS4en3JhdGdDXAAQR/rlrTGSHBwT+diQh9P/LDGzCEg8A/SXpAC19RPpw+XTDHylJHaq7wzTQQcgAJX8lCFH3duWZFDC6wwSwLLd/Crizcud5iPAwQK4ykaqpRGko3fNt3rQMHPk0Av07z87/H7OIqDczQxSDF0AHJ+H4DxiXZjkK3pd+mVV7E0tbxuYIH64okpO3Df1edNhzhJaO8sZLKe0ttGc1TKYYv2JbT86FoMm9k7v4P7VgB+qtdCk8Wq0FcEtENMWpDi719EZoCOCGbueTyDdVluGnXNHP15QfPaFGR255hhA2RQXlGQRNwJ/+odA/pTp+hLyaPxZeSkt5cxWRBYCKfX7rDacrUIzNSSDOARrwd+28ELfjZdvL23/hjyvPK/ustn0nimmckVSeUwsSLVJ39CbSwVMdMlBvP0sZLSuSpVhyBndghdLsSQ7An+D9Z21faEH1LloC6a4t2VubKNm/4clw/XS+R3Szpgd0laBETM4GkvVUP0B9PrQ9MhOi2zxJJWAZPr0TcEouj4JAdBBpwCx3vvGBrQBrommNKkypAWsm7FzMG5EmqFTcETgHOxGPB8yyCTEbrS56coZDcNzsK+A88RVxw6q1cJcqFiCU1mxkCSF3/rQFN8FNGwKXivI9uVmQEBxSdZg2Bba2UM0xmbP+hpDC/+SAF9UHo+p/lzZUwGSwTI4pqa6wquRShFOfgykWq/16vFmmTc/xU9Ha6okX304bYdsNnc27cvVMz+A3VEXhHPkGUGy2XPMDdM9qvh/IB3uycwJW8WTARnWYrmPf2hQ3/FHGo35qGulMSSsw3kuprXDwXPoYwDH3V5xgYy3svFBBfJRa/cH4n4MvY2ac7VQeCjMZT176A2S+LXmlcigZDZXdiIXP7EvjI5i5BuECOZSm6ClSnXBUyB4eZKU40R4zGUJrwGyyPL5bgJQGJprar7T2FRyP1Yvu+k7eEAIesMOVfGSF2/+wB5yYH6UrnuqjL9mDw886hun60SJWSJawi+CkXvG2Q3YtLEAuDXS1HhApe1zEvi6zXR4xHyehX/xpc7cL3ujaDZMFhx09U8dLAtzz3jnpeb29NrpxjjKfrDQpsUetPIpE7F2Su3zybg/MlFq13AVsnFJS/DOS2Xos2fZfvNq2yIYbXNfyKO6m8/EMqpDLCpy/DM310tJB/me/mhc1u6RR7ztE3zjqpiFojJ3DKVwyrkJqb9PknwFRkfWE6c2nSQwNkImKf9aNrr3989bxKFbrLBnRHj3cvrSWE44EarsvkjoLF0y2wF2qBf+2ySZN6TAdAAaUdvgZWYO2yiognupTWmr3s9mpaFtfJarbmiKUV4nw7vIVXHxUWvn5fmZcxOPeerqGWogWd/QmPRf5VE9aCn44IEI4dlHoTdmDQL005C0NvdAW56sC4sBM9SdzlLAyqR6TW8c/FK4P3aeQmfSddZ+e2YouQbAQuI8aQH0taEGA8WLO/deOpeBLIGGPx1pjkC7qVTESN4CzieDI1ZCMLVjRGAD8LWk+FDdaP38WANRebRD3wrOVZz66MN9ZCop0rbxfp9tTkpqz5cXbEx0SxhqWzlq9EFCvZD+3rcRnERG6WS56vUgW4pGmYG6lZSampTLsdjXm124VK0jF3PQyaowCIZ31hYb2fz29BthKRToZ0tGnYQC5cRunbqkrqu6wNe5r+mkSBLno61X03ErrK4nKqydmJZLayTcI5ANinUwG1Ku8D5GyjMyX1qJE0oct6vR6cjFVgk8/xI+ZFZBus5GfVh6AQnjl9vUrWZFCY9I2Uc2okScAqri/5+1OnQvll1qhHNepzWBAMbDo72koQjrIS/ypySyPCPxdPbCS9OD+yZTtvEcsRurd/49obqIJlDeZHOkBuSUrx5VaWIJbk1bhLEPYjR9nmCmjS1HcVxTRkuulOSkGFVUK2zjs6xPYHUdbLEEkD/CrHopBLPS6FIqrYa3rCzKe2VsDYY463xAwU/zT0SdkrzqNDzo7TMxqJN+Y9Fi9lWZ5DZ8bfIQnvcD7IjxoxAh7+TO5IkOkDz29sIjAAyuSQ4nq7YhhC16+4Dr3R7vTDoWTx7FN7+kIqJj5fr2qc0IvF0qV+0SDarm+lmt++oiCcKuefL61kXj4RliDHcQbtf09WyZaga3UW0yYMS2iFh07Ic4CE169aJmz4trZl9Uv5SiCwPwH1j4lMsksKEMA0EzO6JiAPOhw2OJlZ+Ud6TuIIO6rco1uLc8PBWBAdddfEw5zLNs+vRzp3cX1zkKSf9NEnm0+keOUZUMEP320qw/yjfgFUahat2v5Y6w848bG7naJWq9BQQ62J6Opl+OzAOpptfhw3LZ7m5gqK56ZHB94j5iQxtFWrYy0enhC7ZhLobgB6IwVHq4Lwn8bPnp5Stiewgy4u3I+BLJtYo/oOHxyK2YrBqi0glgPs7uXCbaduR37aLgCdMfcGM5AHIAxQnXoegYsH37aiFf5HZRr7YcnDhltcKjBslrghRgsVbuEMXnbhHLowibKj9WqqBJoY7Q9SOCC0zQpdNkcpzuf6f3GvYkb1uvOaf3Zf2lbIqobcJZNMKG9CrfpFfBiEJL/0W6gh7cF2xVHIninyA16XCZgXwQmPNKtiBVoFdO+zBUGfaaOmzGYYtySLyKHKKF8RdSKrkAi6ikOOyQnjBBhW2KBgEwYfAwJXU80t/qtwqaVgMUsON48ksG1YgER1mqBB+BA3C8zKAtT1L0rdSaLlJR7ucRlk6F8qIR+1PXb2UoJXettu88TLf/se4ZIFdfXp0DUSGT+3Y5fsO0DTY/mrpKbksSw4LIrFFojYgpKJcgEJ0Tn8kLbGIBIfEtE58ZaiYOEpJAudRTMQOZI049VFZun/YCC3OknEa45T3j9tMppMZ8Ez2qwjpzh799HNcaGO6QAPx1HnuwZ0c3fvYF3bcnr78FjGeTrArObWKwaNLnz93KHSoCdIkdB6lzCKqKME+PFCBG3ATvs53wllnAEjreGMQgHYWvIQ1u64+to7xLjc9DYh8HCi/5lhhQ2MFAlWFE19QVpxtuaBFL9OgWBkQXm/kadhD1LjbgsdEXy98qNzM8/klPR9YbQPuOlBs7aFv6qzaZB5AYlmsTQEp5twbazaSA5r8HG/jYc/GBLzOX5bY4MPDAK7PfYR8CztMIp2fwjV7WXwhzRE7K2+H6t6/rX2Ws8qR2BkVmSLJfDqWCkmTX7tm5iVvSvm0XmnvLHVH/wldj+kity8txWMj+95Aau5l3jxLKEaBPF85rbcPzmZpRH2ryNOgw2NMscntmRiBEkqI8LwMsZHbwqnINrvkCIeT76DNLl4/M+LGdiC9THekD+yzBsvceFfgAbx59ITy/ZvOiTiApSsUVC0wOx4cwsZCLYtYJQy3kFm0X58cj6KD0V4jtgKVHhQaQPmqi4zakXYmpUabKtMbk4IexEq9dGWvQpT9hdIpRRYbYDjysq+FlPMUderUiizPp3sFCmTdiiX+3SQ6Bj/jwXiVY+W+SyKSxnzAEkIoFtuUEnXdjbFf7gvo3vY5hWW3EZRusRJ7YsJavTB35XQcispzBrF1XFnuY5qvbt7JNIFZ8wrN1kYk9Y85xuDdC6Q7ebYkzM9mYgz9sFqAant9+hFKVOcc4bAMdA69Kjrl+2FA+TQbmWBjCWLmyEkWQT8I1ZSapX32x4lgXKAyO738PQvEqxyMQff+kxgVJ0+htDP8FmxYUKrsqAdMX8vWJ6iqvlL9Nq2Flj/pjeMj8MPghj4vzbFa1WS5i65/TCkM79UY/ALiB5lEK91I92098XpmGPAilNZqA5eT91NKTI1TMHg0V0H0juWOKJSDcs4cjNv89Vuf3cVAfgbn5RzeYB4IWf6lYvKN7Wg6L7ru/t2C0p8AnocC8UZLmM0ayNgcXhpwOBOFrZ+jYIu9EriNGgI7F17BZeAZTpGGCmIJwr7Pk41ldch73vlZU7pJO4xzYGRE6qzf/v0VTwfxSO1w7OxIg==
Variant 1
DifficultyLevel
653
Question
A carwash calculates its total receipts every month.
Over a six month period, the amounts they calculate are as follows:
$31 450, $29 465, $24 385, $25 460, $28 700, $26 344
What is the mean monthly amount the carwash received over this 6 month period?
Worked Solution
|
|
Mean |
= 631 450+29 464+24 385+25 460+28 700+26 344 |
|
= 6165 804 |
|
= $27 634 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A carwash calculates its total receipts every month.
Over a six month period, the amounts they calculate are as follows:
> > $31 450, $29 465, $24 385, $25 460, $28 700, $26 344
What is the mean monthly amount the carwash received over this 6 month period? |
workedSolution |
| | |
| ------------: | ---------- |
| Mean | \= $\dfrac{31\ 450+29\ 464+24\ 385+25\ 460+28\ 700+26\ 344}{6}$ |
| | \= $\dfrac{165\ 804}{6}$|
| | \= $27 634 |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 27634 | |
U2FsdGVkX1+t+ZZ8p5dJi+764La/wzcbLMcma8bxutBSThQfcT+oI+gf+9u8hWo9kKfcLVpq8euL/OJXogvIfGFlrusQ08huCpMj9lGlS8v97g7KdhDSW6p3nfYSAjaSqvMaVXwf7iMWTxHzYR1tEHV2z4GOQZCAWnXlFMtSZ8vmR1T+3HWqA/3Pzoy/Po7ycAsl9mMkH59mNbMvlF5zWpThtOkSiF5bWxVKQs/8o/5aqttMiPhkYiNBDVS/4oc9OO3kh/cYUegt/LNB7edACArTXHOY0Q1J4IULp80j6MBgmq2dJ1JqFGRMgmvHYWqR+GoN1lXQ5nCYehdC+eRZDQNhqPUSKAGVOadOFQjTZ26i8Hb8h855d7jbFRaN5Et6lMk6aDkFhuhgSJLn1ER35USk0oiWxYvk9EDmU18/1KqDtswOHHLFJFira/1Epynr+4WZZww+7fdbj6VsfeZMnIkuYgeVVUG5kw/1t6nNdBY2DkBEJynoHfhzYGK7j9x5q8yAUvsdsIUjSwULgiWqrTCvL5bMkquTLSlhL3W4VPTDTY35jBfQF3pdsOTdHL84ueaP+SXgIErjDv3U5xiAz6+bmV0Iq7dt/7ON7SzBAmdgJSNrfCGJXVhi6GH7yHTpflmcel8pK+3FiMb2MlGI42RrfKbUTwzeyBRmSFlFVEJSYntON712tmmHVUm+rahzlkh4Nv7OD/HK0+6Sz8UW8fgA+sylKK/lyarw/FRex3SIbBwCf6rw7yObH+SVaxXP7iWRqhjYd76vnhL8VSTb46L4xDJOtKVswWzSvQajw1LNkdBOVUyBsUuoQgxDY7SFqMwpZ1lg5bTXHeIZmx7q9mtzPVUUCZ3E35jVavYj4YMlje1Z6myromYfMY4FhjEj8/gcpGeFK9hjv3NX0mpsp6AE/Vi6X18bKbAZFhYaTUehwhGxCZL4Z4KGR4SkCsG/LOxGesTTz9/LtEBPrz3QRRoqnBD0IGHICq64C7j9XXQUe7JcOa8xosIoCfWAA3ZdrzFVFUo4oNpm+bL2JHu1Zc8pcjN6KWdY06DRJG9/84QEIZlf9ROe7zC2e01bYR2xMwiLd8fT1Ar7eUjXd6DMdPjqKnr0wf5XCkI38rjVJem2xe4BKtknuexELR+k9USGT+pQ9tLYAwKVqASyusUHryEu+Rpohg3pX+Hj8su0uYzc/AkfQMijo230OdqWP6qPR1bFjj+/ghGeJQ9zlt7oK7tFD/t9rmAl1wSxVi1toqq/3OXTXYvjBmgljW973vIRQ/9ci6MNKMD81k9cCg8H0xPTuTTazgCpG8x/fjaD6LvnhT18GN8Zm9PhJ3LFVprwzZ9l6IoGYqIBAokQbf/FZNbPo0Ki8Q0oRT/UVew1Ex2aCN2kmrnplpsDgBkQN+yjeIF8PGF6XqNdrM+WdYrwmltff3kswANZmKYSP/PpYfuGXL7pHayYTc5DRyv4BlbXeaCKQ7KAIioPIAcEYQR7i7Wyxl8dW/5seNRLJk0VHE00uzksAqXc2yqxXGLYtv2FRIjtMUCUdblJ9nZZS1VSigCXnZguvXrPHJ68k9nPgSr2hggaLUpkk3Okv1+8kXL2fSCgby5iQ9TwEAFg7ruaJjuvVMyKOwOF83ynNpWbLEi2Z/faU3ul/szJnXsnQ+aJ0MqY1Q6IXC7ryg0sGaPE01YzXkLJWmoUnjqZEyBcubtIaTV7bH0Q+rZSduZdGpGXJxv3CPAXmkLI8hj9cIJ5W3jKF1/76JyI+8kWE2XJogctYX8DNsw5Io5EapyWQ+sZI/rd/d3CRd4U8cGRjsRwbTB7DPyF1yKSQ52R7RKKkLVc1H0Wc6VpoAK2e+r34QbPa6P0yg75vh1QbU4OFOaHZZi/L/FbMfgIUDNgbaoX2RZHBTmoyiRGkAYOpXruP8JHDiU95MLCMbRmdhxqLatTF7OcCPI9hgK9EIc6KaG3/t+UR7qWCnDUs750N4bs71VM49FHNQh54KfR/QliI8Jbv+oup7kEIMU0852wtsEnvOlywlBS3PKjjr7QTlkbjX+JV+LEGeEgyM3AVEy2xS7UstUeEhmWxMkXBRa9OQeBJrYSN7YzShoBcsRUUUFovGeZvAry1nGaJt505L5jJgVTisW2guGUlOeYf4KVJQI80eSjiUrEYMn/1bA99LrJpakJpviyBTKw3d9u5chQlEnL4U1IH/1yOFPTAkITfg8lwHDUkih7iTxmjmINHRbV3JTqEOzCf+Xpd5ChtNes84V/i/QadNubrfzsH1BCabAZIULFFozLFH4fbJ25sOTRsecj/TZeqcJsz4H99mOj41NS8XaIjv/FNJcozIfrsQDZu8c1z546cAyvPRHrABA1hUS6lMMQFJCR2RKz1XEPOQ9RTDX60bN5HBjoQ3cAPG86AIsB3bsBCXeQdKEgpRVq/GXoegk157ZST8Gm0d6diXe8TRYF3jKv3IXwQ55+mSoCGmsTMCm5CnfDS06/MteBNMsR1zrIUQHsKMXTlAGWpKYnkK5lwNf5hy/h85IPcYnfgLLk6axiMz3OVp6sbN8idoEkSqmm2qFnF9hkNjquhumTwyQnN+/OlP5GMGiaGGw3jaOFcKN4W5hgzRcQqbGOTwiepEJmdqz1a3uKne3HJAwZrkLVEOn9mcI6vzrPKZC4Av1w6aLulSm7Z2TS3MARcyTjXEZoxF2j8Ur45OcnxXEcAzVS1kYVfXHCNC5ieEyz/7r9kxteHaDsqIGDta8oMZLwhvRgQcHrgRJQxWrsNlSPJpS/owiKsmhfry8zotTvPRg7Lw0/4MObr8Eoa6GFkEZFFYNAIIpfmuVNMqwEEPR53+QaPgQIJQsbCiBcMKv4LgHfB1Q5sUi4Slze2vyzwHLmoxzOE4pW8mBHS785JFbFicgEUDOfWFPF5aB+AZNEdEgbEXwIc+t2BvGPRlhg9Z1l9IVG0gocOpTQfYAou+hw0d+5N6DtBtEw6Rl2pjLAOR+/h2WPB52nnsgsi5WFUsibxTL8Qea3+YN3ME3kvFqv7IAIu8/9xufmroBWjeZcLa5vtnz/Yx9ZSJin9lRk5fBRZwXDaYMqC+0TGUl6othxHJiXeK6YfEnIPtFOdzfoArN3PjNpUVYd6E/ykjovgLy1ZLvsAnw5lGFUx8jBT+fEmrDp9WhXH+4uvm7bfFoP4DeEKBkbGXpkhd83O3YKUI2ebxRfLJe61ilA4nq6HxvsNqDQoRmmgj/2Zc95A5hgHKnAvJPXmojDbyBldFsQUKLhJFeTdIDy7GBFeE0RDFRiFQtj9IhYY7fY5p/p+MU6aeQjdruCXYElcWQ3pf9eirQtsX5sADQtPZPvzkLcKm3dW6JCd079Yg6mvvtPmGiTRucGMYoffKrHHwZCRgOwzF4eLoeZKkHPcjLByafKCHGkTJCmup3iUB7AuXUD2EJ765DBmP2/y2xQUHrqTlJSIaYIkPfVOZKtR5hqLwQ8s5p8HJROF4pfAveCzpUoGi7TuQnr4p2/ZW1dgvH59JGYvEDJtNz9+onmlk57KOs6rwjJjhr6vDEgC9KopE5jnrT5L5MoKpdKRZidwhGQwOh8OP7WKlUatgUb5Xots4UOYuU/crdQjOPPpcUNQJiuCefFVlnclh5dbupV7t3FyJX3hvR0o5ktiUvi9e5cPKgQeDWmtGDABO6pi/Ue/OB6GY9P/BXwalfEUDNyA66KixRwOKn3cffio4QnpFFYAbyCSRwdseyarp3rRGOQAmnJFf4a2L2I+FUyNMqs8lr7jaHuL3gwWZvpfk2b/nUkIQtbvcWPRQlnziA/JfzSxpclxrWj7TY9SEADvbyoiAiKfhjimwKgr/JM6ews1MEW5NdAoBatVd+Ejt9AX+PFnDbXBJIRvBIqbpEQsMi3pN+jq5DSB97s2cf4i1o/jWLJvaUumHS3wBIpn7J4zb+Sdn5zL57aCqyn6JH/IaxLE0JdIHEroX2BxsukgimLU2cCUTngPbxKc+qmRpfhN6d47GCp53jVqzclBErHc/dlBghTNiMU/2SkB4WuDWgK2vx7cxTL+DNY3gIiDt3N4E5wxzD5UxusvAkZdbc7zRwnoOcaVNSLMhT2rCANYvaUb7YAb9L5geDWJRiKvgMBl8N9wIRpzs8yaCKq9QusdtLb5ptg+LN1lWxk+U85AhCeZkZkhoI45/Oecs2J+ZbC+DwI/C2z8kNjF3IF0zZdRQ73RLUFLAUGW7/buxlnafX0C2gnuHyzbxHaa0G3V18GJzzHKslpeA7DUxhEZmJkFeLltdTviwwAHrFszYVjuQpUJaFSNf8pcftUVV6jm3RtWw1StUYOYO3zUZ95MRy0r62DWkBjEAEBYwdr+NVHIPoJkIU3MO9AEmJLEpkVQBLGPOHtWeXbt0zMy7ebC5kOmJRXDoPczbbWThRH6Udcq0v9C0tB2HfSl+WmNI/J2urkiyczU3vLnGMQCbAbQ97oCni+PCnRE7udxd8YMqJLKjDUCQ0LzLMpRbNl3iaqNnvxixz/paJDaofRtl1bPEHxva2vz4dxePgG4ipct0O00WT3c8VF+0R7HiZmAx7sBsZcd7vNeUCXeWxuuncI8GLBg+CA92emou8mIgcsMTsLzhDA4y15elL9YZPQg4Gezm4tXNMo9I9y15iw+3XgsLYH4watADErkFZEMN3v2IZEmpf8EEGE8mkHZ2eWSqZmwPKBcRZtY80l+XcCa79Y+yq7Gx5NjO9JGX+SFo2/3tq9pNmXQQXf840Y5tIE01YYuT9MFV9NW/SHDtVhFX0vX0WQuSs+PYLC/dDZqPCUb2DoU2ogpdA+r2httxavEkHYo4aR+ATtJQAJshUA9dfTH988E7HjI7D2eFsQrj2GhqX8Tw48veYgK/in+34aGrPCDMinaXx1MzIvrE0bh/bbdjz7pRW8aidxU2j2KV8NObsxSJIvYPzswoo8MnphpASrAtW2r2fKJf/uKlcM+CTlGSkAZqrVlXMuGtpkI3lqVU43qmYx3qqgFY5NqUXBuKLWRUTjZo1232w+Dp8xeab0GqnQ/g005PNk983LBisKs6pmbKaJomF4OtdkwntcoXk0Kulnp4N5fRNgZ8cB5jZAh23WbbywWenmClo+33g+irVADD5HcqbQc5CCno4/89D9htDjm6HBriOau1x1WK/QBX0PIFNeMiY16CxKd4vCE0c+/efBARNvtfL28MSukp/RjPdLAyOsjCIjlBdljPlnIXgYm2e7qT8mrratXi1qFy1cvNyjfg4g5+E6icr5x4JA3LmKTvHFbICbBcWps2R3YeAGGdyGqOWtnQqo3DFpsQuMgT2s6mAUdGaUiE/bgUI2+exU98ptKHxygFkCggPYsN4zT+pTUrTtrgb6KKzYweWfFqxTvw2w6UN+bdbmxPmgSnMHZdKKQtSXlG/Yi9vfHCTlY/nMPwkS36Upazw/YHYosWPGE5gX+n/CDPRtbL+XRZ6kXlPjcGPWGzFCfNLunEsmPV8VsK8YNwB2kgtrhHmbqbsqe9q7qLHDnyTczdRFWytEImrm5HSmHLiDVuOYKHENJ4vO1bNrEIZRdkBBN3Ltu/Ojb4PE0h/VGk8JVWy9qwUywyj4o1riKdQis9bj/H1GfUE8A3Q9UlD92lUj7S4qG/sxRWHgrdJpTfR9Mv0+SSec061jSnuSIKFHEy0fcde1nj4VWr8Ry3yNls2c3jHqoIgcQGtrvoH/h41ctxKhNGVCFJkjUkKv1RvTnPP+4vKbjRrrzIqss3/j/eEhhWGExG1Kg0prQFFtxSr1jmua4ANjqbhB5PtcM4vwuDS8dXn9h9Rpp0M8imGLba5mACNyyogVhRwbXYIcxqZtnL7/zn+oomCTcUVrIiLiok2QTxu8mQG7Lu8b0AuI1ytw4QvYMIrXH9AjKWIGw39jn+2k6E8TjI55dBP7jI1n5YY59Bs4UMSyqKWV7h3YdBHvAdsmEdvQHWw2/oaptBKS4WOtTUrxdC20Ah1E7xx3G1Fs1sldvrDrhDxNWWrmnsYRpDxv/Qoqbx/Cw5VoT2r6uatRSfXdit+g8aVASxIES25vaMwv+dlLJSZLWV02Xp/iKfVOQKlK3ENHrWv5koWRNlCbqBqmNVmKhHaDeoE9hKi3vwpI8xqfQ0y+0T8wCPe1YK0CvMjy+z1sn5sbBblpdgefnvqJNT9G3UyZzA2csRHaDTifZFrT267FDgHTYWyvrfjUG5PHH+Wbxlm4sUW5f8njwAECb8TKt6ZuN++OUUq31+mquoS4r+h5nwKSzPh5sTGjTuQwfnQm/cBvuZxR4k+FUheUBJsfBBpxE8sTOsbPPHDBglXIrDj9K+Zi5lN7+5rozLNIbBSAaUcwLh43ANNHQUm3qKamlF9zfNgPzMfyDJeGB/WQZ6buIcZr+f0GS2sh6lR8Np+05WP/K3ZPsfIOxMsWI5H1E+nNkDPMiy+9DtrmEd5V85X4tA2t3ClePpMc5jWtJ13Ux3AGzQxSAoSna0X/0hMNZTlkQoufat73ooWOZxR6iM3Fv9KHp0ShGxsHvjKKQt0u5sGMIdsDLnxXM9PtrYrua0UerSUF/I/uCJXs6Syang0TbkpAi6bD3V5yLJ2mmdqrcrIq3DhFXokLyWAAMUm/PFh68JW/ZDSKkFFuZ/sktfi9KMwtkW0jYD+KQazEk0HhO9i80WK5di9/1UngF9o1Var4pOsUdxb7dT6ATLNfe/g7rGEYIVBp89px+6FtU5RHWZ03FpHE+mijfbBGEsGjUT7gZl0fRacTExjNHeC+ebj/5PzKskwaBv8ZyBr9JoqN3dJDESnPPp5QM//WNIOhAFARtWndh1jwDp6lfIbJVhv7yeGIQaKSi4IUGrEhX1lMQsiA+CcTp3sS+eM7VZYOKgO4BtfW+0GIfMdBjy0j00OSLTt24ubJVS/qEXrpkHoWhd7a62tXaDyPO49dCQ9jSEKElBzweXm9xq2H7DMyJja+25IjTjF6oBnXAyzgkUCCUEBSClMAi6Qo9ihI9sl6QZOwrusKXDYuRie1AFECLhi6YSr33POkgrDr9L9OyOqii+DafBWjk9NRkmN7VHO0dnocvXzrjVEmW/JFBE7SaleYW+zv/eVVkKh1FrPwT4jx3q1D7ItQGzd96sHZ0rQ0tNGCD8traXT3X4NPxdD0iMX4jnKUpiiX6r8vgbV3NQzR7EGGd3XSI6YfamvoP6ZSoNpyXseTEcO7tsyKC6EPW2o5bnRuo1+gb5O78ut2VV5IIVrXAi5lXn5Dsa6gxglV4R1BLIM25W4rDiP1zlNOFkO1PwsBxSCgvhM69Q/YFLRVughqz+6FQD2JDZSeVF6ISi2n3lPEcV+seyTZ2iP+F32Eyxbbs8a/If9253yjvFz0+b57IN/yPUoovCD7IydP52Y4G7Y53KEHpbN4lWDxwL6n8pufrOi8Y4OaNYSIkCtIGiON0x05gUPjv0LfeRRegCyUAMtA18ICf2QDLWGlc0PtYVJrXD7TgLENRLHWcDxl7LSbLhktuxkSRtO2kVohURx/9aSTgj02qzuqA1jYRhBorgmA3pRdygmhxFsqyuaYJ2xvamzFMoK5uphEGW873tyhblsEqLPbWC/HE56FsQ0YSja47bS8hhryNyW2mp2vvaqCF6cofb2eQlbLUfpee+P/T0WIlR5DQJ3ysFCGfzOAzsYyvwbwLFJb/ZnaHfvPdDoGCypXwzeeluqoc0XjuQLJIxrRSxPpGFJQhaOLFPrj+j3TcGZn6FQ+MCF4bU/naGNFILyHXGSOyw4JxizA61bp8RtTj3NcKzLvF/7T3ur1mjKxs2cw2LG36qFVZQSzVD5W8PqNGTRgz+RIA2v4JfJRww4B902ak1Tw5anGju41u717xxuJ
Variant 2
DifficultyLevel
654
Question
Gerwyn is recycling bottles and cans and calculates the amount he receives at the recycling depot.
Over a six week period, the amounts he calculates are as follows:
$16.70, $12.70, $21.40, $14.10, $18.30, $12.80
What is the mean weekly recycling amount Gerwyn received over this 6 week period?
Worked Solution
|
|
Mean |
= 616.70+12.70+21.40+14.10+18.30+12.80 |
|
= 696 |
|
= $16 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Gerwyn is recycling bottles and cans and calculates the amount he receives at the recycling depot.
Over a six week period, the amounts he calculates are as follows:
> > $16.70, $12.70, $21.40, $14.10, $18.30, $12.80
What is the mean weekly recycling amount Gerwyn received over this 6 week period? |
workedSolution |
| | |
| ------------: | ---------- |
| Mean | \= $\dfrac{16.70+12.70+21.40+14.10+18.30+12.80}{6}$ |
| | \= $\dfrac{96}{6}$|
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 16 | |
U2FsdGVkX1/0ewXNV/8mFoUcrQh4mBM91oZrN8/+s1jHWtlFZT2womHpo6IKDlYiJnXw5ajG7Xl6gtUPV8P56ug1vxqQY5AYFxRDrI/2ADv/aaQYuCqG0S0qnNdDyertytGGq4eja1/ZI+EEyTVomFO1zBgQBZJgx9pF0JxF0mColHFnVWtacRHn40aRmgl02s9CTyquU8NJQQVtRqgemquXPKbHnDJYxpOYNhd0iFB3+E3gc0Y9+MV11zKFwEoo8OlgCPNIDuZ4jCpuipM9547cORfLnqNePy1wTwe1Go9B8SvHDuBk6u7AdoOmtuVkBrSloDYG+HUqgUdTgw068lHfO9Hn+K5plK8J4H5fcHq1bRaUGRiuDHpXOdaP3MG50B99zgyLPH5Ktyzbc79V05rF78JLDAslYujFZibqenIANbzOVyViRxGVUYL9gLIz30IZsYEpFtB5dhziP+VvoJxLfAWlAGgDFldzmn4bC9W4md7c0DGqa3CRRsDR81qtXbvogSFG2+BC/mPX0QNLC34YwNh7KD5qHZJu+S4Prcl6Xy7PGMFL36hTfeqcjOUDmUk6htdmEPZXeu8AmkyKQDEnL02zsvste7n+9ju6AgrkYThRY/bDENOALI3scBoP3uPoR/0x1Sl/IuRnz0Djgj/1inGFOtxEjOp8nA5Qh08y8+NDF7nLryG4peBifsMG/xojcF85VlIAE1j3gV8z69dcxCuKE1xbnjWnlAxt4YKE3dBFZuIXinTUjxWlaiCMaHybokcBvryajM/U5pt0PKCN6C5mdcfBCD7a47bJBuT0tH6Jt4Ti+uwRdzq6rkdiQnZLborsobM4FBUaf+VGGY7zDo0zzuqYYnpLH/W01b8NrOgEJrCD86Dw/SdpZvUamFBSvtiFauNGjgSxt2HzDI1YJjNxNil+eWvuW9VuLc/NUdGtfVwSXhPASMxP76YbXLpz40m10jhV1UDU22QGDkfu6We43c719GrUtRRzEMC2g2s+iYXw9ikBpj84s2LlkKilUuL5t9wxmtah8DFzRJd29bRfWs/nHYDkyIVt2TgTZ9z80xy4J5Phjjg1frgflLW5FWoJbM410AfOqBWaT+jssXplhCE1eGHCtlJw248fDZUIg3XGoFPKYOqsvwTfP+dMI65sVK7vhhg47R2uIWh6FL8QWio0WanfMF9q7OEvcUlDUutxTIHXE+GDxCDVBuC84W8kysLSraUwOpgxJ+OaPtzY0zPAQSD7aiGBAuBcSjLqcTztLYba3l56DEdFUEVxwEFfwC3nXmWvdJ3Dg8qcjDgBqOhMlQns6A27eCceInwtoW+g4CuxIIpnGAwL3KcyoRLCXvM+q6c3Wd0FR8iVJwNRsFEDUMCbKoSz+KaMthARsYqO9qB/znWFGifv2nJbcCpolG3JIR2dXax6rpU6vcrb+jDLBP72kZJj1N3uqi5cOdyOrf5TPxXWo47xQiUZ3IoWD4+WzAHpRlGp1myoadx5WGuk/fGJVM6X2EcaPEIPVMPjh3+jcwTpo2Y1br2o5CUM1ZWwzNiDIVMFs+u/CIi0xZZWjswa5EX1DDsAqc78RpkOtzZGHMlZ7/ZDhT++lqTISQv3S1lF9QcDCGWM1rPQTulBXIlt9ZONwyLm2RJ9MKkmxSvXllQlXTaumy0ecT6u8zxc8lJK6g67e/KPz7VbUj3K/ldnGay5qnjTBIFJbxZ03/6SbtYuPPamQcK3HWBViHd4PRyOhanIZcmi4TkrE1E6/7Rj9GPD0YCeixcNLGnyWYhTtwf+Oi5ex0uSeOzvsQaZNxr/plEz74pmlRBVAkomd4wtOme3ghH036tkqWkMMZnz/jv5a8VvhZQvjto+hgnWKC7nvUZsga5ZZOKQMS1jZZjCiXQ48jhNKtf4BWndOl+VQy7glbMd9MKUhx1AaQWlvVADJBDTMZx60kAu66191l+z+czmJR1HeEZ6tevzmmsce/hII+MXMEVCiWEqunOsV93P2WMdkTwlWRGAzv89HbNxCVh4gO5nKHRFGY8XkWDSJ+WVOL/VG96E4OZK4FCYKEQibYXgcOriGpiVjkWQl1P5tq0ZmK2ClSF8rb03xQnOp5FWpAJHAwLd/huh9dhlfF2T1Ce4vwHskEHu5+0987YedAdJMPkC7UaC15aYstQdeBEDhKByl2wlgJ6Sdk5PdmFGlXVIldkEwxmbu3RmF8i2wlBsIoX9TRyb8cQS3jmq9xEyLiwq+dZ11yDYKkg+ZEre212sDKRwrMSEE9oFIWLdfijoyPjPdkIN1mUA7Rc9PTsALAhV/vIEUXAFoUxOTwaZFBQEiiG3dmXiyjRMoPv4bQC4O4vxcVZs0i0w5sHfLwkUhphVczWh76fXXVDzf3XeCXgIhwpUhWIlDxIvm3oYxyRAsp4nFYmutbBZf8fcNs6T03mDs1+sDU+A4VsMCYubGs77trSch5GRKUsmO86KB8BojEFFFhdJHTpM6aPh6ESV+PL88lDk0CtVkoghhgG/sd8F4oqETRDIglU5QvvimxZi1dZ1yHCfDMYNOI1bZK6nzt+Q+IL5HjeUtpEFJsueOM+CBMpuyywZEVxGoP4kLDkeRAyplpxTRar9AcU5Z7b0v3lFroirU1U0QW5doeg+GMFKLV3JrihHAFjxNSDS7y4t+7k2L3bUyIgmX//anf0CTyBAQrP1oXyCryENeGjlQOYXX4V/qFWt4o5lFXDP7tzTYDak80B/Wo7Co7anh0meE/mGsXiZ+kWrgJJU5fgMTlEybxwbsZXN0LT7l4az1ROEOzabOh7Lq3tDuI0s3gQPEvqUT9PLjJajblJAj/2oVLigNkO3YwSZQDsFELqL+Qw8A4mjrY8Qaa1pNv7xszOIAXQrlwjEUsKGe3SOVUBw0MQtbAHEL5gtag4TIaq4p5uW9WBo+PJ0xBV/JmXGC60cR96IPfm4KJMjKTDkc8gbXtBZyGPR960EGBRlaIOfyg+NCPPioxJlM9Vf+HqhN3gS/FXn05LFo6L6ANPKnkQi+oN/vWkSncEJagpiv5j+H17yGomMS7ZXsbEAjpf1wm26Or6K3bJJ37RiATilMQPpxS//GjeQqwit7dFTqVoMyGm3lVOOMN5NQILG6dCb7r7WWW2rPqQ5wD+VAWkXLTvichXQwNu+o8BiJxDdh5GuRC6ydni0WvN3JVC3EUbMeGzvTS01Uh41ZvsfnGcDeJwisPASZIMKGlKz9N0XBFQ5zE7GYsCDKweRDPR4kcZRiXNOpVGE9ShYCDErLEWEz/VYF9SGiBwpL4vnYeaXr2d+E2Z1Z8V4jz2WRadz5mYdp1mJpoPeiNfvOrAs3ZubIB81e/d0S6UuiQxjhoEavY61o6wJmMvr/1thSxIC1ISjoLvNFohNBIUk6BsQKg/P0nzltyubltMei2w2qP2kUSQzIc9i9gJ5hXW4wSbXBdhIdBEz/7jCtspYWGMxXSa167oLbZCzRGE8cVKJlnGEN4f8Tp/Bx9ouAte9RWjegQ1dihf7f6SPwfUA6PJ+2HlWU6iHZMMSzXPRrPP7FhDgiXbySjSe/3N5m9w3/qBbsz8ZO2lPJKA7JbJkvdap5zKChEW2EnMfhEtyCfTZt3O4q/DWbxklOvnPBsaC9SJ5AfZ48iSpqWWOik2begyypL/EK3Ic4wTY9rh09ngPkaGUQxXanDg4T2Tt/1Or+TnnHmJmLUPNgcob+HERfIjWTphhXNPKzgTYHsOdlOdm7eOw+1a4yTPK54VTi1l0W3MiN2Bz7+XXVO07sh7iSUR2YboHzjnJYZMZqwiCQ6V7MfXoS6MooB78CSe0HNLHfH+SzsUlaPwppYE5kqcph2sYQaLs0KWTg68LVHeHl/Oa+LCGabTdb+plq0qUhFl3ULW9KCnDd+zp0Eb5Zl3WPooPXIstCAwJYIp7ea/hF1xTUNn/S7gx3KYCJ6RUvM3jcCA0ucw3D66BS7WIs5r8ygBXAQzNxvJ6fnWF/dDwLwqsyFEoGgwA4mXX7HvnFUuatxbbKNOL+8We8KWS8lPifc4YbgwFqSnLkZCQBdLWqLZ0nhe5XeTqI5EEi42gQCI6XW1u8dfH53sy8COYgfQPrAQ/HNW/4s8/hW/84J8fk2RNQbkevE8AR+jSEeOZ2ei0P0W28Pxv8n27XnM8rWc0ujhFrVMHnvfltelr3JZN1rvjvoHs64swGBbxabDXJZREUrA7kyKS1xjZo7gJ5QFiwt5Y5NwEFSkQ9TUev6SrLwu3DWrv8Zzs7p5LKdGzneMLVlIYzR0kMAAaq+Q5AjnLNWoRPZmM48KFMxgrK6yf+Iy7ZzgPjOAPqoNkRc37RrGVeyQjMBOx4mv0Ih/ecghiTWdKXfc1n5Ga1bYflT5Udq5POsl6UCrOvnJvkvK7BsN5klAjV0Gg8t93mgstUFdBdxiaRwDKIdwFm/H5FSclDM9RcE0fWF+l81xSd79g2yVwdbMF8XrRfn8P3Hlp336o9zlP4bOVKbeYJRy2mjv8MchDRqaRDAWy7lKjTW7T6iSzNTWE6oI0A02Zrh62mcbxtYXOiq7ouwVDGyAbmpSsD1biiOdx2yYHYQZxU6tdGtSPcod0uACdWft2g1BjDZp9Sx7O+M9cyyMZzZMQxXn0vXKLk4nQ7Z2RJ0AUGjgpYqk0Hg2KvxDCwPDgrmuscQZzi6I76xvoGYh2OGVP3XPgDADJWTSKFuj1w2eRQdG06qWi+jJu7DLjmblAWTtHLrzoWISjkpzX6LJ8IjQSZwcmIApLK48GQzpmYDqjmYhuH21U0/4wy+w8PIb9c4SNP7CKyeQeGfWaJk0HOkPfh08mOsRhLNVTHLLseMtDxn7IfM2rvMqgO13Yy+RhP9ELpUpGaaTXypf7NjllyqE6V7tG9QkKCmvwE02MguHEGEpbQyv91q/7xjqjcf27BO3PqybdZfdtbGTyzcICZipaRGSVoi4+OUYQ92Q5vA3Ds8yD2TWlnTG6yZQK838OZjlmkO2TDYQUtgD7XoeJg6kKTB/SqVGS7Zp81pJ2zIq4IOy2uQKKMWteU/d1pElvQRG8WCvOvuhqykRw7pm3SM06gg4MUpa5ObEHSCMVY8e2+LM1rICxsTvZzH82JlbMyP9y5begBLAgai3B8PfdgXLhpRDgvSurNOd8AC1eiXgW3VsHpT5RU/ZGLnWGTfy4sM8ePOszoGR1DMbfSiqoXjb4qiwKAahlrSz8/qFCGybfMMhxRUSpoaZqnalW4KJHloHF9/RKp37wmYiYOPKWmlpyd59CSioaUR4f0boA263xfryiQpYylJNt+M/UFs2AuQ9elJeGc3ZLyuz+lKuPvc1UMALj9wf3Udw81TS4ERZIz7emdgZwLG1FADRvashKcx5dQgZ4gQ/LP7JXJV3tFy1OQevIEgWExkk23SS5slDiAADP4B5Qs0tKVDkEoKmdkp6aUNXcfb+fVbHOckcCP/RCVxRbgNvuokf+6CXCLZX4EkZeEbdIiouzb44oLzBiqR3E+f7clDq1JVPvroDoCse4m2wMxDla4i7jdpBoS/Twufxk4B1B1yP9+9BCj2IFaqzI89G1AoSOBdHDuYUPDfgMoijM0MXt+o1ugUmqckvrYmRzHTRdZNzgvzY6BKb+UdXaOwMAc3hqAX2aTyS99Yg/GAZ/rBfeAiQLfz1ulnbbN/s5PSEPI31HfrZaMKSE3eo8SoaxDGs9gTYlSHytizMQHGGPLV1b1L5mnBduBbGdfkwvoOM1gZHCkrE49GDqX/6/EnltkNPwQOh9txxq1qFH4fSKj8rZh/xb1dZ7jPqmIy5vsEMljJuXNSnqMfi7/WUTNlMeI7nqwjt4lAVN9ew0gTxJVmEAH27WroP5jjtZtTISgNdnNUv1hB9nqO1Fx07gfENC8Qo8oP+C9zIIzEuEVCwexRZnad3Nqxa8kcyjjQ8Vthj5u+GgPUw+MSIpTun4nzmKQhAHu1ex60SMqcYtB7370m7qtOsY6VEI+oEKk+fG8eKh5uurX4CIL/SILygMlByZWBdaP8lELwkp7qfKGTiqQSoyGnHbZ37WkM7RrQFwJ++CMZtZHrB8tDu196Ooy62Rd9aKSz2wR3LriCHJkHLGzmDyfJjOo7YWIy/XbCQgpZPy3vi6cMjD+bEe4dJRvCLsnQbrqM8xdESFvURO9PXaXkC7XlI+ToRhmsqynCOpgToD5+CckBEKE4WaUAZ9JkfLY9A7Q/Ro+0QkYjfYx/aNU+nTuUOPH5IxX37/+T8I6Souw7zvHLUEsFhPReufkX5wEo5SKaMb9MJBDR+lgl/VNCH4TVq0q4fCgc1zllDO2JG9B5kKWoutYFyCP/ZEPZRv4Fo62zaFO/CeaIRczZchOhoMPrq/oUu/bs6RqXLGK0mRPSrsk6YssJUg/SSZEOMLeHYrkGB9YgiFeVOlrvUCRU42VfUhqh99B4c8ojBXQVPxpGUveYemGpXCqVcBDMEJG3W5mRP8WyJfi1t7fihXFRM8oMo9JMESsxROSB0JX5egggrPiPR1v6ZFFsEBSyVdpval76v6bZLKary2zfBp1q50RdrqYo52WuUmI7avmKAiLsYgpA8r0JAVejgiEJz0xvcD0YQPL3TRhuBW7eR4lTAyc/84PbZuLLyPq16tx04BHtG+lrb/B7spapzIPK3ZpudqlKrS1RtzxV8XHqbIzAhZR3zZ2ny0vUuTLEexXRRQ7s9rEtL/0sPg5B+r/FcW8daQnHzFFv2m5cf67SDxR8MPrfbfYl3sbtPKSz/o5Ykx5SuLNF3m58Z4qJPGkrxkfqjd9+g+S7poJvj9VBFuTjTTnjt/IOXK9ptAWtxoRxHYH4GwiKRVmUfFlaxFCn5QopWO5sK3g2mp9dHTu5bvaf1nUp02CsiHJdrunTBUjxFaQYMSqJeb6PvoBzlS7ZXHsM9VoPTJ/9ycFN6G/wbZFRe25CjmCcos6vuFsLLmkvrpmg3uPNg4jlfc+R39PXwkMPlbyA1e9cIbBPlw7N27d5yTpBxkrMASxQ7NSMTc0xSs2moP+3Bjv/J3m70KJyQxZo55FrmILxmrGrIIc/HNCjCsTyzx+OjCE7byIhnqyMfHqYQRA17PGZ4vfi6Fjysbfd6xrwEsL3bGm5vEfU2DFGaqm+y1ckDdtLF8liz+uNi3HkU5vIIStA3viAVJc5Gv6faQYbdlKkNiNLUA9MQo0enBeZ9wpXvxEaZ51UEktAzLHskpbnklL4ExUXKAHf6pUDeobMolj3SlOZ/NDscQM4jI6rMxMVxLOxHaEbFE/mSTocuPWpfYXIxUL52L3yz6KmR7fgTJiiS29A9H8cAzUX7eVatYtqH2nGZ0upSfMhe+1HEVydzFfnsg5OSw0y6OeX2x3DFEjxUXHO4ys8l6uVas5i02AKWlEZLuWikvdmJvh5Zwd0aqiq0TyO7WKJro+PMHU0+qdf4dcrIGq0gPkLJIn+fNGcSxO2Ob/62uQA7+GUnfSNXT5qrRu8xo+1uU7A5XLIXC5NPFVfqyXc/zgNbhy1PgKbRKnxNaxrdOsOodgkuXnuOB4NY/z/jsPtGfmBDSbKUtJY0701byRmVsQkKGtWS/Xq3zb3vmCErTCmsTcoMf6QX7T0YE9uMTXhGOKnlqcFvWQ3w7XjGP/T4/vkKrooiVD9Bcpi5s+LfLwCmU7Dc53T2Llq/o7WXjRHnV0Iy2iVR4pk6hzOn02K8nVt6lRsIv8sbZyDW/gtbgJIcoFziDS9/4LgPIoD/ySoHtwLBuK4MLHn1Xl37o2g==
Variant 3
DifficultyLevel
656
Question
Bexley owns a delivery truck and calculates his delivery charges every month.
Over a six month period, the amounts he calculated are as follows:
$2452, $3400, $4510, $3567, $1243, $890
What is the mean monthly amount Bexley received over this 6 month period?
Worked Solution
|
|
Mean |
= 62452+3400+4510+3567+1243+890 |
|
= 616 062 |
|
= $2677 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bexley owns a delivery truck and calculates his delivery charges every month.
Over a six month period, the amounts he calculated are as follows:
> > $2452, $3400, $4510, $3567, $1243, $890
What is the mean monthly amount Bexley received over this 6 month period? |
workedSolution |
| | |
| ------------: | ---------- |
| Mean | \= $\dfrac{2452+3400+4510+3567+1243+890}{6}$ |
| | \= $\dfrac{16\ 062}{6}$|
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2677 | |
U2FsdGVkX19OGiyhklaL7ZcOb5pp9DHx49Q44kOMX80GdPnPaj+BrR4FmzUo8wR3bIbSWhN6SlaDurdeby5oyX8iOTrgAJbc2JvRWMQeuvJMs8oEF8ZwkALDhrz5kw4+rQTzB6Skdf/kRyFKv/9Xwl9RWEODF4z0ma933majIh7U2hxm3V9DaGWK+Ja0eqBjoEsloD0s/ckuaL/lMjGQsI5fSxzcA1FuMN/75hjsNg80plwLZPvLtK5YsXHdUf5qJvG6glmy2qYx7/PxNt/z1gcRB3uzSx/XKczZYef7VfGk/Jh5T0s76yNz0c6yNGIsXLJsSJebabSFz7x/cAz3AZFJ54lEEX7IAwK0nQBmB22J/6Epwy6VUGXKkjBP09kz76LKccPhtYtgf6CHC5oHuMnJZYD4FrmUxcwrCu9yN7Mf38mwbMLAcwA9/T/emnPe9mHXg7Rg8emwTzzZ2A4Un+1PhhJPd1lLLac+fFr6ydieCbRfBQUhne0QUPp1xE5UcipWOvNZZjzzJJEZMwByIQHWe7dUTUa2xA/swyVSTvIaZgwlLEf7TrIW+IhjoWif1b88tp9A5yiZVbjdMzIxQkXeRWd2uUDeacFUNT/6GPRaXDJyrjyqqDzLJ6IosUG8cITzuMdqOq6rHksQ7X35NU/HTxxvQBVbP3NE/k6GAUIUFMyoRtm3aRUODbWpY9A8eKrfOFhPfB9G0AFUiJSsrCcgKiUArynP3QqBxLoxLyQrVBY3VkjL2Cjk0l+tIoCXYhj060NzBzW/+T0a+6IO7cdM164vYhUGB2xA3csvSLdW3W2e1KSNJSPx9U7Vp8ffEtljghkB2pNfDMFyssD7tX4toaRgudDlDcw/eAJG4KmynZklbcd/tbAWLxnXmXT+Ad/VEth5XN9F4ue6cgnNzXXadHl34fIi7DkchgQfVUZQzgD91fz5TR1VYX0zaTv++hNovbyG2HxnAte7utcNMxgeQrW7rocqyAbL4O3swpjEGSXyZRPwMo2LprFFIDgJg181hHn5yge0pBzkIL5Qu64S8e+PJf2PwAqaPQHumO3HuFOzh9yA+IkJ57uftI1CvAJJIZzWrspCFCYS+Q9Kxg7g2mTtSSst/FZBVUjpQAwQSF6k5W9buWHb45XhfdX6E9Aj81rS1Bmp2Ch0afXg2a/PCeKthalX9tLSchK3phMJa2oy5WElZeYIqEfp/Fs6JQKlaGnTZg47Ce+KjLP7KBkME8e/UlSTf5EtL9iPrYfaelP50CYrBReI6SF36h4pmCJzy6fx+GQWsoW/KFWPqo50P6am/wvOpDIKs0hZfrrHrtBPqUM/MWqS+dc8aUBN4d5t0FbFkjPfwPB0dWN8zDMWpJY/wcp8WpDWn05+AzIKVSUROopjkOLrxHid7KyEkDZ0ATKHqVS+4igqzM9aFxoIuM4q8pEPd50IXqeXH4wsRFiUZcEfbrpO2jNba0AxoPvlRmLlf2wyg+pGWwFor8CAQ6tKznoDvLe2IQuOQ4a3lr3qDGF47igKoYeKCyOEkSbPjnxdg7mi8HoGf+PueW4o6Z0z89IUn8YVM/uLcumxAKeQ+u6Y+4V14KAwcHvlqu919rgvWFU/72tpRjPE4xUhoC7BpiNQSjGpxk3j32LM+oAcLAaS/CaaoV1600UTU1EfiemSwemjDYUVma5LOxoErbC4WgVuSVix+1VwPwlzul+ZeyEDW87wrxB6lEI/6gojaLysukAV6GRGmXrOt3BOJTgbNQb97oXvMhiKh9HlyTbwUEpvjXtbREZgPv/F36opIOzlMJtWE92iEgIeI9+cBZxBQY18lpIAaDuhzau+5NU4MBdDXhDaqxPVYBHGxvoJF1QyqlCvWm6LLQ6+Xvsdf1zfuTjDoplJaCoBkJknDLgbGX5Pst6hBTUQFJ8Zj8PYDN9Zx+VOqb5kzA4npy9zF73YIPAl4KlRPIG9PSREaLB+uAWbcXn8wGOwMLvuFZxZOCqE4dWDjJFQ2RmcYHHtWG/jzV12PWc4vwbZineg1pdVjLv2hiL6FNJXgToYN0P0jWpBAfIsPjStgED5sH9jFxQ4QDpNve7sW+mZN8ENXfzfbh/blnllL0WjQ6kqHfTks4WtsMn+1HJXZPRDzcLBraCHUyGI+JshPZKWmmO+p3i7k3MB8Oj4YH/vg5MXR261U7GzVRKB/TLxTiiLz92SDo2TJ779pKa4NmDg/rssFuYaNegE7diN7BK8DmrsckzJX1x03mVnMB5NgNbXBTjsTe9wxyjZXGwZeDFKIKyBtozIyb3/rnxHO7uFUENi9nhDsx7FKgfDK9dHqZxTomo784Mxod/3AWOkG7bzZQ6/P0Asc77uxzannIgMyJmN/82lUd7n//HkD/1lMNmECDwG+P9F6Lqabk1NxdTlUr8AGXDn76qmH68F73uctzwN5U6IDJajgVt3s5ZBUt8bWkieP6a0B6aHYhcNhNQc6KC/sVBxt5J3HTiWwwhwWsBJ0joMJLh3n9x7UzHUZ7bsrGpqVrOdkNWIND4+c7WPWYnE3DDK/HE7fuUmVKyQawZ64x0qPRS23zkBYZmG6NgNwZrEpWxx9nLU2lezuOJT28FydkzwGk2KDXfJYflmrJ9332bclqyPZUJpj6ds1CtVkZe2Ubsq2tKapXsDoruwGi9zi9Z1ijjCGcfEizqV2AuV78dTT0Kf6g6rtQFZ4Ehb1+Rjk7LDYUt0pN9bbcJbzq2Dp2oZQeeuegQVA32jjEtyWGY3eYSjLyuN+7TVmh9YYbXqz97vL8poLEqfIGDp/DDYFHJK5LUmolgDbjLtG9/tQnHae5G76JbfeIkCNA8O5d4nMjjAHOXKb+TD83FsOxzQxA5SkurVyN4iLBVhmPNysQFGqPIX76ERiRwq5qyPP5EAM9TZwcDZdFuFxL/sI+DTICsdNsNm8exGIpKgsPj+q5VZmjSIiDrKqRUGugp5f1zMg0CnpfKk/Z8lt2wAaorvlK5skgQ9jF8NFxOezh6wdc8qtBViLKA0STKiqzk1E9kS9536OpAOTEvj1tS8UDH4bjTIoQSSh1F50Ndkb+Rhr3KUhRWaO2NHjjyaBLVQodDKweRypNmeSs7FvB5RaNzX95p8HKv2E9BzwDgW0yy1tU+RIqzx/+VJ4IJDLjVs75YEpoeTM5EARI3m2C8dAqHiwgUR+YZ3Ej2y3RbJL4ycmh6H5ETwquFuZpRXazaslNW74p94QQRJslmzRn15ypuKY+aeBXiy0qtDdPHFk1SQ0iIvySASoLZj1dNlT+WfcAsjzsn8UnRoxKeNp3TmOWjoIVUFfB0S4xZ/A861QJl2gQ9iUVa7VUNhnufw9HVqzNtInmLj81xHlbtr/FFmolQJc9rKA1R56OSgEu34FUDSFHfnDv/9BcslCW0cC5r77+fyAkaWMQNOZZJy/POnARS/5/IotP4df0IRstsIVcZR2ltCPOyaNJZqj3aFr+95VfTwshBVlG5XVL4Kggu9FNmFyzajRnl2DLScUSf4FnbIUWAxsSaTU6Lb+wRHvuh0LpzzNihnzhEq50Bu3KNineoy89ZF5UQfnopnWEluUfIwKJ79CfSMeHUeCTM7GVHXKT25WysbTCqRqRzx/V126Px4OiWmOiupO2ky8k3LKe8+RgWO1B5rSNZ/B+K4SVD0CWQWaG9y/TV781aeqRBMlgQtQmsn+fZrgYbN/w/JISRwcARPCaPaJ45uMwYq0MayyxoFweaQjEdn0Jw3YtGOrdhQ12gC11j/uaa0teSMybvSXiBiUl4G4/0sxvT74LCZ2V8vYSmgL6WSgjENQL9qbLSDAyzGMWo54gqSpreiAAMlLmauVxe2Dl6nwM2Qc4Q/gUpOJ8NAUOF5WGScpQQFp3YLtg2E6wWYAA6u7w+DdNNaXULqsN32PmDRMIMNYQc0KfmOKI52vEzEm5nNSYC8RoI9zuRiArUHBHgrv80g4vYn8Rp/Znb0EVTUktObVxvP9QFsK7vlaARBhNO2fygApK8nDxNuk2v+Sd/i0W02fBRy8lZVyMHW7g3n9rsq0gP2cHXzj9Ih2BgPrNvx6ie5vdCxnTFAEwpfGCrZnvvLjSsmtEDKfTwcZexRThI39w4RKSiQJrDpAy0e6qNR9uV0iLUcyGqcWmz2OT22tgkd36YD3oyg/wQKNlZoJEZomvyx9ME2oTDPbK/u7o9SPImLfx+GjFXT3BYK5QREcBwjEK7KXGIWVktC082P/n9P1ejnYSG5XKm84Pb1yshLUe86Q1LfLkqs3EAVBftoHU6H6UuqRkKZoh/INu8UZfYTuvKQJIU5KpY8CvWkYw0OW2wGwtOcseh3rxaXTlZhlAdKXKbVsSECZHAIJ/ohC9J3+77GpjSbJi4lATocvWBKXlv7urJ1qd7q1QBKFPqp9IupA7ezNWW/iJN527R++POwh3b8N5yiqhs4XzOypJU8o8t10hP+KovBzADIL5WipzKDy7W1WzN3tM+t5QMs/me31x6FLjrGmIyzdDPuIBRAsIoKGotz/ddZgh2lYPFMFPdmNprX1WCABBo7giEzXB02ADLb1xJqZ5eJEZIDoQzFiSuR2wVwMCRqGiJkX4d1ehx4UKUh3eN41/QA+a65jMC7PoMAN/SR/69WcHF6oUcM+1F0i/xlWrU7wqcA1gbMRD/IwhRUYgvKJDA6LjL/jyeS580n6M0EXbBMllkYsGfR2gbESWU765zGaaWySGv2PPiHyuiF+TitXUBweXXrvfclYfd4Dni7I3fQmxHhqw024pG60ta+ccI0JzSWsGfdLkaYENm1C75pn5uV3x+TPvc3t4tyGYE6yxzU9SiZ/byMyJar5+l7Z3uGW013bxaUX8e0yhysg/H8LYfLg+iBx9YheqdB0lIbeF9e3QxxkLoqW263L0vdcCyOOiAfZugM+pw3UmYT9HyCAmezJioKCvEC9j9KP5ztIkL+IXup3uXl77vxvTS03NBiOr5VTaTThdDqefh91uRin2Ewusj+dkEYhB7g9jcFjvTsohTmvFU8PGVEYd9dqsSXO2tGGQqZGluriY5Wkoohq8XdzbaiKd948xKoqMRXwsDTl6f0IhMpyyvH7gcP1j/K5p4iIOxcZH9++tYNNljckNHmbFg1nl4Z9ArgC2ArTbNSsCfqCzEEedZ0hzn5p5PnYuZxxi2I67P/PCFutKZFBlNYedfsF46m1vpO/Ub7+EPaefERX37uEUXcciIY+KwBIgXv4UXB8XhXeiMHgbLiPhQmfoWqDaNUZqQ1xBCEif0nKhg5jk8SkI/SrSL66Sj1A1VnYkWUjhyyC5oksyCtB8QrcvB2qyrukG7NpsER0vo9dxrfl/iAWHe391N97Ze8LWhDh2oWLZT+5LVFRgOs1N7KzkCBN4gpBgF6j6UWMsc4ET5YHYC4d8GbkZLcRhh3RcNX0WHYpor43HaDM5AaPSyYqu96S4CKURx4eKEKckhe3888F5Bc7q+Iyu9MAdJS+nHKCVWXrkxiaPzsSHUsAa4DoEkZln+tYClWiclY04oxEiCbMW+wyr6fqDuZ5I4Sva8uG0DQjjVn6WuK2C912K1HsyWVBcqaJKcpv7Jbc/Uq1S+WIFlOTh3KuFzjEM9nA9mXVs3KdqE/vJvzmjGPtQFUB6V7JH2A+ApxFIpe6cVvt4hK/U6oMCeImxwOVJ2VPtgYOGHj3AF0cyV2nS58iDawobHIcg8TFxJLIRUFxVB9Q///LUAmKeYbg7vuUAE54ipugym6wFvs1M6SWsVwFu9kCL/P4fR5SJvmGoXaC+/R/wpKbg6xCS/oMnqe81/+lFS3tggcIzFCI1O+6PO6dAfkWzh8MaDVqlhKvX4zVOk84L01QeTPqbUVZkPefPIAjiDkAudeDUQKWHVIVgz58OU6Z3zQmMND6oEcYVxTciF2zE6+maWAslhJq8qTCbVv/h3xZ3UdAEz9txaLcCvFSvOK1uRblWwmKEblx8jgf2Q0My+Get8CPnH5TisZcBTuqrHabpSWV/eiWwJN4HNzyvp93wayO2yxObWqHzVASnj6AJvSpq9Fcvn8CcNF8jkiBirESS9mNgbP/3ZIUTSuOd1xKqbwuu5vfS85JCJ7+ECfVc+JyT80j1ij4nl55IWMP/vKQt0pXAgloPJj4z3r5uy1VDexF7DPuaj+SOu9eKCeJm0UCbkfZPOuyq9NrI6QI/cXOAE4Jd8Ol2Q3oGNzGNwZxhIQmobSzQFupMY70M6xCOxuH7OO5CNQDgAw9RShzqJ2x91R69IDNQ3otoN2uiP37QabqyL9S/4lP1W+bLojKFFu3LzIK/Hs+yPyMlU7awHKmAqrML5ylZaSNPvvudSVAAsOA+i2wNKIzu98XPMkHL9xOCWHKzKbYisbtoUcmM6JpP4oJeXq+6++5mh3+wYe6xG8hAj9ttOMl6KiQAWJnDLPbvnvPFZpYnInpSVAgke7O3eMt+Mkv/W/Af/XIXjVa/Tqzt7DjBqwP3AtgAdw9dlTqqeZxW1rEwND0D3Hz0/A6r6qbqxhnVERrAhd4IVTDLmbR3q/8KaIrkScpv98Y2hZqgVOk5aeVKfCe5CtEPwabSsWWMcSPz6rW1y1TRkcmVkFyQCY3DPyTxlVIztmeRzsrjO3zVjdw0FTVkyIyPc8S/aJclyIKA/N7aZwUud09aAOemfvBmOCjflJdM46B5G8dKvFwD4ZTFFXuGm5yXNZfTe7lYX2G2WMPFqG9QjsVMHgOcGuvFLSKEggr8xrfrm6Hrb687Z5GI9SBadPTbukFm+zfxsh6ANX5MrSoA5j1XicLZxW5bRLbIc7ZUkcAP3GE6qaA+TCkV55L/DJeTnt+j15D0pAjK7Xvfw+0AngSf38nnrgkbW8GHdDWaJrkN2m2jqd7feCJuSUARD9cmcqX4NUmFyT5jjkJgUdoWttc6hmnvkCbpqmPhopCD94fzcv34IJ3GwTF4MS+3lDgsQInW4HFqyYCddgt0u6ZW7QMxZKQwtCwaEX6yCn7vQJoWcXUJmobPUCO9HMKzR1kDc11e+wnvhyPAjGO3Mc6QnPjEaQobwWznxkSNJXKg9BqMENGObILNpJ0i1rkQMf0jXsso72CnBfRzhCvehh4m/m4dv8+RWnxM5ZWUd663IoDR86PclnroHVOqJE0l1meN96iKLShCsOQoAkHpkZGH9wYnHYhNdE5H4bdWAKFozgUaW7JfU1Smp9XOLupbyqf3bwmvQqOpUxMk0wqvSzF8j6ZE0Hgpl4iLSzpy8xeS4k7UpE94G/tZmixTAE05ks+trKUgAAk0C8MzUQ1yWOxnSrgM5qi8sWUXWZoskRIynKNWimds0fFL9LVXddK547iueRzQHalVdydrGoAvrDkozMgmTWFuJf1SWTN7B8kyTNQXunsrBNTzNNgSOqRVYf2H37LriGgH8kqSUZbylZmRwKkETU5D1Jp97zHqJPhoC+ij2giXEvjz7bIvTQsOs9+mKO3mMyKz3lkTEQz4sYyiWAako2lSw4wghMBni/Cn8k5nmQ73OigSqpU9YOgC7I2e7qwYL8TFkejCTGXQHZtWYU7ACzYyJYxWz8+w4jexdS/ztZxEgQN6Yj9u7joj0T3zqEEaJGeEUhUCApqNqSvICzdj6jn7CLpvKA2ayeXZHtP7y4VPXWflPLJaPwOfdDXMOqc3cg+fOBFfueFAQ3gqkDNLyrNNpCMONhGyOJysWKKCPvDp8Nq/ems8YBcNXq8JMwcmQS6k1Kb9gUXtzXMrIkgI67cxNsIu17TSHwvL5uwfD+ry+QO6EMYFCDeguB2FK10XZzlFHqe7LF
Variant 4
DifficultyLevel
658
Question
A parking station records the total number of cars parking there every day.
Over a seven day period, the numbers of cars parking are recorded as follows:
846, 465, 786, 345, 682, 987, 782
What is the mean number of cars parking over this 7 day period?
Worked Solution
|
|
Mean |
= 7846+465+786+345+682+987+782 |
|
= 74893 |
|
= 699 cars |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A parking station records the total number of cars parking there every day.
Over a seven day period, the numbers of cars parking are recorded as follows:
> > 846, 465, 786, 345, 682, 987, 782
What is the mean number of cars parking over this 7 day period? |
workedSolution |
| | |
| ------------: | ---------- |
| Mean | \= $\dfrac{846+465+786+345+682+987+782}{7}$ |
| | \= $\dfrac{4893}{7}$|
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 699 | |
U2FsdGVkX1+bKnQKfYwwLQFGkyKmfBVsf0koAZGPZ9kBrn/dj03N7ZQ6sOoZaMpGGGlQx3/3SyQU6DrCzkZ38SQ76c93kX1x2bHiu+5+tSe+IM9JqoJKcQajRgwVJscqqmPxqCoO2rHHKgnT49vtOTLHsff3V66WSjk63j9cn5tbVFMlLAzo6wM52AYHPwYINZxT5SZMwY8wBPg/N2M60ox42asjYuE2AmOEH1tetioMsIO84mx4HctMVwZ1lhoN6hmLdgU87BDAW3CNV9u6GkpTKD12O/Dj2Z3L/OHTnMSm4AH+lPnPaG+OzGDHEbJd5WNIiuMGBTIIXtVdrf1lXnVX8vzspkeSqocGHJ6mIH/uoRjnbvVFZBn4NxmaL97f1R9tubC/gdLt2A5a3nbXNLZZR0Z45kC2hmdGcfr2Sa8Ql+hBA/kGgtoiyhdJ+9nFPH8ZUOMIVRM2QfICB5Rrl1G5LGSPnyndAEd46Bo5nunyvl981xuiUsIQNBcv5/tQZdfqaNyl4h6HtPlxdV1hLqU3qHidH+h9wAcIBLGRE9EI5jqV5OJmn21DBiFYN1x183t4FXgPRmt4hGv9oWMCITAnd8a9yhbP59i5PbHSJrYUuq0c4U1Ad3S+1V3afjvv/yNXp6aiTAbOeoPs7yPkDtx4seoZqadeA+xnnLZXFGpziPpNUKyaVyOSqspeYFLgkM+OA9dWGmW861SdJWi/Zdmt/ZnTtWtr4WzE35ux9b0ykJHh2o/1SoUOiPgP0yKMTnw8DV3irCzU/84OcbLvZUZMvJcpQKkTGDFS5eLUYe5MLrf/qVt/DWnc2cnRvaeoHHCmtKPoDG9EsbMLVVoC0AcuTedt6kED4b+ulNawvdHGcg9iayZ5XVfemEO555yNRP1N0p+82KK39i/ha6/FDGwdywFrrsSAc09mPhSwCqq1XSLEhOVqY5v4zVRO6uIoZ12B2Z5Chs0T1tPxpAF9rgnL7LsC2j9an1wWcIJ/5MrU3Tp+kDlJg/We9zsZfAzlgQH7QdIYetowZ1dDRKlp79MvXx7Wvr0KITiLRv/1ZT+AzygilhYO0JMvcF3IZmVyFOv+cmk6Ctjf7nFdaxMh8/6+eIQQshGi/nUlxXLIpuXmZezUwFwurfcQB1rUKSyC4zNdXIbPpP6UcTshh0JCFKO4ZVaXnI5OWYumG0UtCQkpRXs49LqU186BkttvvbuQxm4eIREXbxKZ9gRNedT9qfurM7+P1ZwleF6XyRb+8QSDYrd1lBCyGxQ2tBnnZqMY4hJYWN+U5aBm8sOE7QCj9elmyS13TMfTKknw/FBd/TbzkEcX7j+J3GQdL15sQWYnm8yFszzhLG1tdWTimAr2ZaThEs9kU91+xhatAs53TlyDzIbYFzSsyEJLCUZKaKw8dHapk1xzdWGASw7PRhScvfLMv0Edpv1OClfzWKoJA4AsyH1uKb5HxmJfeCgO2Fs4K9J1wBP2yj5IfYgaSNU/mik34BLspwNM+JA5+T73HTcuiZldiCjTHLvoLrvIRykHkm/UKKLLb/ETk/6qFwH1Yva8aeP2tIel1jb2PYsSov7MSSJLgksdT8VgsQ6F5jugNL5QVDoyLNtOd/JHXY8HS2ds5az/pOZdH91Ampqa0b4JBpQNBpAVPoXsVuBOc8lCyvd04kUfNxvvKzGMLfL/gDyV8VsWm3ILof0mmMHNW/MPJHTXhW8+Q82v4YvVwcLvtch5ub5SzNQPdf9IXb/71rwodJqM0Bs7MBOyYGXBsjMY67pDe+zJYhwmNNE2XtIDyO+56MIpygrOEv5EX9X8WSa+eDIiX3OPKjMX5bVXINxMmn+/gBI7QcTGGHQKdeoA5Toe+6Pa7p26PHYipuOuMjiSPfYhbYcEr1FGLPu702rONYQo+06VcQ0B3sgRGRpQ9wbvCEGXvVd1pdpk8K1d7gwfT95NW4sRTvoPH+1gzlwvyYpwaued3MlkbQA6oPZ0xPiFN/GwOhldCNX/0VgVLLglWMsgvrik7A9IFn2R2oZLe7FudsNYmVRoHc8sUw8NftLM6ViP2/Aeo3orrpPGq3BpMOLHXHCTXS+hUjYZDEUN/tHpIgNDLR/kQxHwuc8IqboNK1Ughx5hKLEZmc3zTkvsw0BD/hyaDCP0P1Vcn2ZZWAoPxzeZXBZ+zW6U+PqicUBmVzD5l4Q4uYOLjDYMVdxafWSp/7mYi3+x3t1FaMLB0vj9b71WG8ceU1vHiM+nnH3N8wF8EqZPwnOZ9n4duD/1NihuJSSzizA5EyIwO3SzyxGyQoozwC6+x1I7NSk9z7cwugXIJJ0fg5HOqKzll4+nU84qw4SGV19+bHFVxpLCelFoUV9l4jLD1tWxFgxGuF06HoEjqmWZgomImYCT2j7Q32OnXs2lJ8pCQKD4UYEffcJFWnVJec7oak9XYyT2EB0ujqxe67TLL1ElfOzZWjlZS4HzhRX6NxU40v7YOXKWYYs3eL1O1esoyvd43V2Owbe34GpbtCVth4UOBc7wmp9ffTDs1DPeqNIgQjWR2IfBlUW0NHJuBlLgI5PY4IDnplGUljvrZL0/cP2MaYJpYiTMxPVcEE69Hryhv6d8ejs/ecDd+olGOm6sh1KPVAVRQUeUPgcIv8gdZBo9uYQllOO3CaSKO3zXhkQopYnW9YoQASZfci/hVUWyVo5QJ77Jc7EPGZd1OhxE6eaMus+d8SxVbwAEbjY9KhU1xg9xrawJ+yWJlc4OlrKnlURIjMSyVcc+SAGXrZltqM65MRUhtaxpLKzmL+tb10E+ZNiAaSQItUV+fXWo6BCC+Uotd60CylLdK5uIbAOAquGE7VxW/WGivqL54TAta8Fl/Qtwxr3rfN2s4N0wQ+JrADk3lR6lYEXmbSzl7EPGoNuvSTtQd1o+EEOie/l7q3co+UYyzr5Dtj8jCZWL6RM3Il9v6BWUXitfZlNV7tmFiJ8lDnuAinHRMaHuxgDuBezWrGWi/x6YoRFwCQun/pCxhyuOR159oA8GJEE0uBr5GpeaEebGPuamAreQq5f4FJyVvngwX4UjYNaXVjjGx7rohDK9/Hy6Kfhs7EEf9HADR/DXcVvDZigmar+dCJecHaLc0m9DHn6ni8quPszadqcPMAWBMd3eo5V2PPFWKJUoE00RosmW/46npmV0no+LPyWzIN0PHBvyaXfSQjCtlSj5i0ZrCKt14/i3yWtqFb2bMTSQISXMhp8O6mXmEeYWVc1WoEErhaRmhjlrvO8xM8wIA7Evfl7sFxnge4pwwJf05O7lFlRz9+ev0IcNmj2SsICodPJadpMye5Yf2jCE+FbRqzo0vgjVFl6XPodLErOXwHNnzqZk/Eatidwmj1b9Q+k10xUgEpKr/iknRiDA/lehG3XgTDoNIMK8WEiWYLDgzKiPXETEPk08nGlmNj3Wj62hmx3ADUb6I90hZ0tB8FxQMImur1RQguKqr/BHYFAzR2uiqd5rsICwJnIl5lW6PRDa1evEzsnRPTC8+6hFbKmoY9Zj6AW0HnFdDgBRQzjnlUvoUj10djE6yBQjc05dtLZSzhfup9MpjBX11RP4mm4R+Z5yW+hDdgPbs0YzA9arGzVc/QVprU7QBFyzeBkPQx9xIKupf4cyqjtdfwdCExsAACPCAoJJ0ng2zxgyXfkndHX03jd+l+ZVtn6C2uxLid7RxqQHvvKnaVFi3AtSscGFNsk23kP2TRNdMYIVHRJRjekNBxZxUI96yPmKl90bNcauT6XGr+3BWVIH2Z3izsUp3cvNIVb20ltawABS4cQUGGTVPIFgdPUhjykQkPI7CSGgscQv5uxtgYZ5Rp5B0y/WK5IyEpJ0mQFob17CJvFYwdxbc/7SYsbWnhZJ+HbAq24itBkPmBIGlkfDP+uMwkEtVxphmYM/KdM4fV80/aT3GcggC6jkxXTapftFXtGtZ3yw82M/GH6r6lyIShbe7eZQpUJzZhwJvlfuQQk0d6J3Wgh701aXz51ZKuy2f8e7wly86m6hk4udJFnmLHtMgvJU0/H2BBhScUWCDeOcJObCs9rf1MtNH/maao8JhiyewjzvPAkBd11n9vfKuDvUqPEYQ3U6KK21Vb94tDniRJVzLADH6rQ9AozpNFkhWQrvjcd+9duyI7DP9YD+/XaEEDg2nj2wxP/TaJhstPgWccPT8kDM5pnVWvMsA32nqavdppF/yOTsxgYmEhXtqRcYT4/7f7NvAWMfD+rZXUVhGwHAsZfX90gqIQ52Q0xQhQAUWd/sonWXcCtvijPUIZbcOX4DY4iBXvVd7NRzuhH5ccCfaqPkrT615Y6MViovzTdMEu79/w12TwvO1xCEIHyA4ykNl+c2kWbp6QRl3KUfK6Nb0xzJ7tG6TT+JELXZPReh0Y9hXkwC/O+fZLM2tNsqGSyn/uMKkp1Poe2JqqKWA+8ORq9UbeNwPOpZ6RQIPZeJFCit1VPAXW46SK8GLAcHGZ0RqRwrTfixiVCq0RBQf+4QlnpWKGidm8XN8laYXyQ/P3yZKUsFMFhbcpRRIzn7dA9S0fjMlCfN8Kiw/6+xmJ6ljrJamf/OvInv+rQwKULpjq7lsgXzz4W9AIFkDMA3wcOVR1DrmmU45stXPgkDwciNsP/6U/BqjDBl1wEKmg3r35CKLAdnNJM7TqEo/qPbfVcudYXvUYIVzGjP0aDTkji8qrjH3vLOnaUHtuSXz15Acxk7YB65Rpc0F7uPJWtwnTt6q5loighAJLoLwNloCzXNeqz/Bvrg7zztvF2OKJ/JvEbhnJUVbrROGu4Lk0PKpTaCQmcPrY+4BBZX8psL9BPIiqxLurbtuYwDxjodwifbEmjlcjwf3BUWl/lqK/ScOsyQWD75fZnp/MojVO6UJsTmh5TEULMLdBIoIwoZeHFg1i8B9WUqWrgbWXzGVO80BIljJSOPgkxZa6YUUwA8eseM07gG3Z5xAnjJpSa9MiJyCUegnBjNfG1OsFoQ7BmztfF5T7ZmWxw3Y/Bfnp7obgopsaqyIqR4eTJzEKGhvGgSyBLSFodjnddmX1gCj9vsqrynTQm+gp+2WdxgRmAIQDNTx5GIwblRr2eW6pxKRSLNkAqIug9jN/X0kgDCQmUYbWC6VePWIcdsua2/YCSVsyROOLbWB89BN1bpuCqX6EtNlZ9JfHGzUrj7mNCM2nm24Bz1da7Q/QIH0VKgjUwWNtzDVJh3UHJAzlbyaN942iMtzW/sGnp7t7NA7XwgyO52i78R8gaHzQ7SEylloYEFK+uhuRgQi2jVWYM8LLwLho3X6jL1NTmk0ARjXIAfUOxP4xSgz940VxADMdHiX+GCy/Uivao6QfilP2rdmIRj9xpyRqKhaQTG+uGjUt1S7+3ZB9X01/RdyN53OyZDdX4C3dZ9fp0ZKKLtsuHxeKGJS+sAp3Si5WXsJkcvgKGpokeGc+TkihTJxwTmsZ9whjhHMqrGK2G1RfNeuAnQokyW+PCzHHIbDdDXjrICQvkwh/uhejr30uIWAx4rQ/zN0Gxc3+0HULeEWyzj1l0yQ85f5JcXoOT99ttjVLOAmv5nTUV4pYJVsEyJnEIvqiYR3tbdpxBY0Nv9219YEmLYTXlS6qmfI2fXOIYZHn/fmrGdp3Z0Vh1u475Awh93Tg0GeetDDAnWg5RN2N1XCqtKBbBVNbzIgzfH38eD6EtJ0iZGIh0Zih7q7gE64PupEDyXkKXjeyABqfwkZtWCG3jlGkpZgCFvUfGQEEegBHDfQ095qTJnV3WIhLwXkeRrp/wQ2YkQXAdAhaBo1DXLveiVILxhwanF5cmmA/+CoGfOssfaUrbm+8O/ZDBJ6tmSQ1I/6D4c2u54x4CDpQvoA5ap8GxynNNORMRkMtc45zxiXOKhBpUqU4bXGGvL7y7+ELsg/PyLUBQ3OpBXwlob2OH25STmZy+s7G8qDAi8Qj+06VviXLUV2P4hSTF2qxKMLBQUx4+zcYwtJtvD9cYg6uP5VTyZ7+/IpdyTr3LNPV1Z0TQymXhsPGvkOCB97QJlVIpG9Zx9T94KCQTqwQcFnxgH1Qo8loMDef+IBkC61oMKcd0QC/vx5x+doZsoNBPqDgddkWwpPTztcHbhvbF7sZCVDfbUQEX9tNqh8+oNSysyMPv3Ix7AyUI9jF4DAvVMv6mpxgMsZ9p1KdC4Cv5c7czvRl/gfvywDADv06nV71BdPN96GQChObRkvA56vf5bxYb8ylGoqIjIVyLeSiLiTxHbskQeWbYEFlbxVh4j5GXR5EQP5agA6xEZACg57S4JLz+MBAsxiirYnyTI/XOxb9JcVWmQdEGPDFFhK/jKv6OhFnrFNsK2q5CWCaFvHYe2oNJbeH+gIS49fS36VyEst4lNmv150Vbxgii9fV2NOCqo8Y5u9OwLga8+hMX9+5a4Aa7bIwZaxAMV1upKbUwJIdkMSsPhKKQYBCTxOSNpDjk94IekA9nco0ymTCLosxpyZHDZvE3Ixfav8cX0pn/sfXkMz/ScMicAiIS/QoVZR7wI7yHBWJHERvJkqq4QMAFLB4KIQxSeoW52Ab3pR6RvaMs64umMEezNsU1hLE8iJ0OZnPpU0jQRBBVvwht4HyIv1nibgmBBvSTYuSFbsnQ5xblEUha3nV1wgKbXhYIe8WIqw/AmHTQnQjBPEBHej5/NchCMLerR5PuwoxhzD3iZusiJAsnYSRWI6BM6ST5WK6w9r2fa1WAilTjcnG2MTXtRqUyRELhmkuFRX5ASiWgTOcqIPmV5DKoRQvIV69dJZgFmhqcVGU5/xKHzdFfDlNzvZOScVIz+kIrJgLhVzDJudakQZgMfxVOBiYJr5MGTd2j4n60YWeFPzdvW8UMdSEZlOg7kbPCyw+OWKMNJ7cQ8oJFzFm7WSjNbAZh7DjnqDiG8S+aLG4nlOPq3NH7B6hG+AlQULy2Dh0OzQ2q/x6BDwsqvlfVg4leQaGds4cW4BzYHkpkLsGGgRlMHYRrWcil3TwNWZL4NM14xKtsTYhJej2EV/iJBT8auhzKZ9Uy3iSD1tbb6sj2x3192XALLHaKtnV8czbxq+Q4HWzcaruH41N/i19ZeLFIZy5SmvKBt5QiN/d+EW0fgLu/EVsBS2a7eXw+HCld0HFexwyNFIGIod0vejz/nxH/EDF/z/xwcnHQ7HpUy0CmvgOrtWtyQNQJbuVCvbyziR4JIenaf4Dwqlacqd6DNra98nZQDdwb0fuQOz8q6Dx9CityJSSUlelxtsAT9B7FTVa/1ce6MtJ2AEstu2m07qhO/S34J+EE31GnolVkQYz58qo3Aj8QebMp2N03LnP0geb5bcopLryqxIyH08Y/h5UIEHYYY2mypbvVncGlelEs1S2irWkYzvv5moKQg4ml2MoTJ8lhJEYEpQzU0qlZ2DnKiQ3kzAN5Yx2lWeXz5ZkEqgh+rD4bp2g7jnC2w/GOGlCBrF8qZTTb42Y9+9/+KB7N5oU3NpaSqKjpgKb33Zfo6iFvud3Lbc+stANyKeZMW0IG/7LenoK3vXFHPav57rKAqLQjgeF9X/uhwwygRfr5qxh7n8TjPGy82NWFDToaleMHYS2FzrIuXUqErVMvDpCNLr/ftteX6OS7QJe1JLQ17z94u/9BxSRsvI4TuLfsXkjiPknrJfGFpiDUDYekh3d5NUrxATtk9f2f0NE+NMXr/5r99b2IcXshK918kFExfN302IYzuIIQ6Z4Uk1D+Coawt1dZVaM5HKlV7Fy5XmilSh+nvDtCr549aq87SISukkLrw4rgAZxTBnq3iW1bgd1pfMvdEM1iIAmXdHHnPyLyD4CDiXdnUIS7K8XiCv6rIEInAP1C1b6rUEYiogvK0gx8gowf4kVRKUPc=
Variant 5
DifficultyLevel
660
Question
A landscaping company calculates the total number of kilograms of topsoil it sells every day.
Over a seven day period, the amount of topsoil sold is calculated as follows:
345, 476, 256, 360, 481, 950, 240,
What is the mean amount of topsoil sold over this 7 day period?
Worked Solution
|
|
Mean |
= 7345+476+256+360+481+950+240 |
|
= 73108 |
|
= 444 kilograms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A landscaping company calculates the total number of kilograms of topsoil it sells every day.
Over a seven day period, the amount of topsoil sold is calculated as follows:
> > 345, 476, 256, 360, 481, 950, 240,
What is the mean amount of topsoil sold over this 7 day period? |
workedSolution |
| | |
| ------------: | ---------- |
| Mean | \= $\dfrac{345+476+256+360+481+950+240}{7}$ |
| | \= $\dfrac{3108}{7}$|
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 444 | |