Number, NAPX-p123495v01
U2FsdGVkX1/7rCF/lFmzRnNMzdNlIbZ1T9BTLiP/l6blGa/+XfDMeJ6JbO3ZQ00KBxMgjOVHoIwcIuHEgvrUE9DK+2U2/3+JS66TBbMgUlC6+OQQfVopVjdZnCKC73PdirSeAiHoYPwUPknZsf382LcEF5suSeXazZRxGdWluHiKg7f1wVPc4nr4geJVvGTfLHG8iZ+nQNsMM2Fa6JFU6mese3En2cs6k/bWAybze7/rgHdq4qnBKpLa14hJMyXM2SFSV0CiTf6+1Pdr4MQhR0e+CYUvfwswd9y04SHE50qW87eFt1wIwIEkiisby5KFPBozUDD1QRBzEy0FA46EBlMM5QRUzZX9bWpLr2Gbf46tZ88/4tzxMxTHmgWGiazUDoz4N6m5ka3mcK1sZR7vHl5Bi3DjvoQq2pUhTf3gqwWtreiFp/UT+JhKrF6wzfKeNIUFxF1FQuXMIS21EwuhJE/CPpmpMB2CNsXY2gGe2hFa9v76fGPvqDyk24Eh3odkVbGZbppb4TlcpttTX9S6GWsNQ4djpCWRKLxpBVHFjjH5ihA+cTfFGcU3rUbRJ1rXrDWfD9rSMQx/KwDzvcPDppoqEgQx9Tt8fkTQFtoauJfMRokLKqJEBvFQ7bBRKUiMTbm9FmBn2/igj611Nrngz+y5PKZITAoWWf4wPpakb4O77BJgFa5VMsuVuKVDUOPZkysGOH/nXcUPwcwlkNqUK/sSqoOtB9l9G97I5HAyX6QPTMJM1v7ACG//7GTUbDxfrABDPtp0QmLHzsqUAeY0BNcwjmpCWD9hH0dpnOf5S53ZjN/DGDWux6dNC2B8CBAx7gDyhmANX9WR+TsW3tQVZK2UMEulll4eqbXV4W2okVlB2f8HI7aNPz43wzreRo/9RqJZpB446AS5m0TY7oUJdbBs/nGqN99B46t4Ilw3wjFmHQRamtijb/9TGK3KxZ+sdYD0aJf1Ey+YWjOkP7CqDAK4EUp6JR2V0mDNhSS1DWuqavwIT1geeqm1JGxQtDeMe8PeeC0VfhAu+/FDth1N2fHvq8YeG/gkAwpUK6iu+ICrTKzHBPB5gOh6RjaWKKh/qO8vNMVOfzHV/cp/stGBDi0HYEO5hcAZfNynBpgLiWd44IQ5+w+Ai4ekXIk1Ejlxb6sZTIe7DThj0aWydcKm+25QSVfIAifDFajDR1LXRfzcoL4GTpmLrSc396EudkiKqLc5GLyVvTCqCC3BFcxbcR0GAHYaHp8xB95w5aTKpiOPlHbo3qmW92pE9awamAe36aL+71efjmdGCiXKJtt8kgdfxGfUdYa6tfIyfwlpaIQ/XL4XI9AzI1vT+vuW5+5DftjsUo+QiYf8GWG29FnRPh64up0HBswcwKzBTME0PB1LtAHIcsXWOLom4Z5rF8bkGbrgKif09tvoZ86+qjEU/eqbZUi1/Rot22ZlVINtVArlh2HVAkG77vrAFUYZZ8PXYVqWNtAFlanRgFPnc/r3u91mRX0Us6jY18XtiURfAXSZ89FUwLcSUaComrsEHbULij2dw9oGqlQSf69OwcsAqGH9GNidYNJzbJ8LQMb0jZkOPthoDU0c/N/uuHhcKik2MLyOlnPqqVPL3l+cmWFb3DwGmw7I0P6l6a26vRaC4JZ6ttOZbsZsqgvXLqmrgMzBCujExZ/p0si0uHpm2M8UWbpyvKXYnaayIGakH+K+ghwWFFtr2QuQtPIylxg0vA1rTYtwJ0/WJyBkNHKyrf7yFVdM+/4LlAjnzi3x5qA2z/sESxAfM7smXSHWJm219IBEgXPJESg3kUkgUUB0VC0H0A2pQkiQZYfUbfs7w/tEoYfgkS/AjOUbXWhcGhsNrENuLxFCpq5S9TmekZzyGsx5ppd+ceELQEHyoRUieuVYKt1dKoiUnEDMqAcchtKKs6Rht340giwMaRGJi6tp8U5uQqE5XgfPUDlz0buatxuGpcOMkJGdomnenZAoBVV5btNG2cNSab4U8+TZGibkM3RUUWHzPMIsuFyrP+xTUX6zgFP5yopCnQsSWnzIVdJ0P9GRs4rOTlY3Qvgze2r35/U0EAQPdcw3ObsXq5l7R7INEYeglWNfyvdhkE6y1qPwSepLWvaxwdKVnnqpKjKyRasYafHuM1ngrnXdtuYeq+hyjLoM24GjfOJLS9KavhjC0vHrLInceUV1wa5nuIp/OPEr+CSx9P3ZJmF8ILRN5yljegI+HA5JXT80m+cwv+c1BaKRIz13mCgWAiLXWotgK3SV7+T1FsQtUUL/yHXhIxKYIhtiFeLEfQ4eeol4vRicXUUSuohaLzVJLGVDZYhkJs42N2/CisYE0CiL5L6TqkSn8gwiZHpyZrYyx0+T/Yv6k+OHz7/jzlL7XkXRejDOAeVj27ZWV+W+5bVx+H7sQs2d3//idI65jqC6JD/1yvfrFtXG9vSwUYl9fiQO+H44tFSlZYMEXz9faVPLwm/CI+PQ3WU5PyL358UnyiQdMCbAniiBayHatvKKdqQz2RoK4WlaICu8ppnYZTf2GeqpJRoJAF6nzwUHUvPz9WwfnYr4z/pxsH2qt99E7zTZH6oiXX6rGBsgYp/eI9E5T98i4RdIKUXXxwH2/vTaOLBq6cDYcr33aG8IUK/jzTb48Loo1GZCYFnOPNM5o+ttojNXbTaAvZeiaBfuBXT6BqpF0zQT4kTTRo90NSSuSFUmoeh9cfvgVJVXiViFMcMHLIF+Wns1JL7c4yIwAF37JUOUQqfb2u1CbqL7XZnh41yH77Ikd+vJ6OXJ4FNoeScwVsSnEPQdgxO9DYq3k3kR6Jca6FoeOOqfdG8VAzghmE/YgKC+ZCRF8k5Oe07OLwb3knKRlheRTptXRYZ7GnO2rMNSttVeXZY140uckVT/8WlEac0WvB/ucrVvcivAqHeg2rlTSvCIKJGdUSJpXLpv5Jhv6inuCnTU+0Va05m3s3k2k4eEilQ+C8WVuhFV5VH5GZPsQaPCQtsiQOwwdGlKjt9ZLoAjAL8Ljn1403izyo01qhX/IzfknegO0/07LeKFC+dHFUVbDEGvRrHE0pfx5seMj4dJcnwRE7KmhEf8wXcm1xe5GtsC0AkDdRSIPz6OxZw4pQxUXpKLA3Irq2yIDsl94zofRHI2vZHiBBQe/vogqBp1AQBAnh8fdFiQgPkoGG0BN21pL+TqR/vrxQJ2lXnNj5lbpvCDy4tcPCDnDsvLFxoxUUy4U81ZNFrumS1+I4tXMcynqvsWWztvHrXTNyt6NefADXG6nZJ6iVZ6n4wusMk1UJIWdLNM8huM3EejVU2IiygnI/SEgjpfBfCbuH7Xifi17JGZSCNFHbXYZD5AHONeRekcN4BYovll0avd0ALMed1PBNFSYuQs6RhWSWDjm0RbtBG44Bpg0dHJn9z8HbFsEesMabOOcngpfauUvL861U4yDhhVXWTZ0FY9Ky387EMGGY5fJJckpsqhjsYlEOXktxGBwfGgkI2NdBN3Dj7gb0sWh4R7dz2E/Eixr1Kq4dLEquCFr8d6ecp/tYzQyxad3VmKyf6wFHK2HgXWs0KuYnDTBwLAhEHK8jRx8eyvNrP5b6DVwCWJNTacIMVneDMG43IfPE+emmKZoqQmzcBtN2Uy+Fu+OMeP3osklYmpirQtU4llKedc6mJeDuyFg1oZ4UEIr7aT7wmOfnHT9mlZnJClJcbQ+lHHTm/ZGdkfiKo9ub/tq8dKl9/tQ+GJTvJvenMIQhqFkrAE+ezg/2yt88FvDBK+Alh5c6flclhPc4sJTmUD5V5Iix06C0X0yfohQFDYwDLUWUF2HzwvPqVatgevnHw/EvluozZHGAqZDtly6bGH3Qba9onf/ykPwolZ4HoobXztF8mSF3e7CDzbzQ97BCMvAL/emFCYETrQXkt83JjEzgmZZMqDF/fWP2LTcOOmm4U9onEWvKzSbdK94i/wOzI1Wl9EDer3kZ5m3LyFuIFzzo4dzmOdHDCrfoAvPTMWBfGMs+c2dVEWu9yld17liqMGP89HwAnyPRq6HV7UXyMnh65bBodyYiaJrZcYtfC0CxM//vwnnl6I8JVgkeJUAs2LyM8qufsd3b8p6fNZBA3eTUsWILvkGkfTBSyB3ROmppfhZJxuEFJ1g7nu/r4QUGC5KgTY/wwATYeTvPUla6OohJNt4a0TYDOSrAZNt9Vyzy/n5dLPn5oyGBI/CwuR3hh0W/8BtkxXqg1B+SR+e0W4lpI0IHY+0EviFos5R/BQ6MrzFrCNTnvDbbzgkJ+KS4Py5rHG6nO9zdP5JTmikU4429Gx90CQYkM4fLgE9RekyEnI1Dxn8H68YBmhZJOuc+4Q9JjrHhC9xsJXNTaJEmmfeoFl4vWTiWnMPH4gc+2fhFvlCY/jXilPStGibWz6Isrvl/ony2BXSr6ZMXnVsCsGDlQYN9l0Fl7nNt+YX5n4hnboSWnl19lVIjNJupazF96LAugRDtLHjfMVF9ezbDiu0nPDxzHGnMw7DAd9hkP+aXelk00JJTooRP9ocdFyJ+I+EFUMElny5QcM7Ve7noalnBbzeBm1rDCGx336VPUsTGN6drNIe8FZFXDjXCPkjLYQv/AJt/5Wy5K/Ws6mXJhVlFVo8XP5aKuwYziNn+Xl8N/Tiib3LTMWM9bVT8gNSXq3cNG26P4KJd6XNflS4H3FQKbLoH07fTx4Dx4bGWWkcxEUqc7cjnfqyCFeDi2Rm/NHsapz0NlJRYNE0soj3oyvrf3Nu4j3tFoZnHl4fQiyNAHFvx8xUYB5iPHgzxGu8zgaKUOmoii6hfQ0GHH6EDb4634ZGetyuFreGF2ml6tg39sz4y8UzV0TqUsSzFD/gcXs2eXk1gDypIQPmUf0P40EkDDq971TtShy1u4UDcykTAcjSweO1tBck8mFrjUxcMNVHsLTNCr4KYvgUqVtryCHtr1DBSd4jgLe6D9GHnoJHOotRM+UvCuelQ7naT+TNddVLuH9luVg8T5FJGmU3PQzk7DY/fSt01aJh9hOJvMaBlWTkl1Ju1eAtqCSHyCgnkMurG+cCwEIUuq60YCyYIB942zoe+pk1elcIiaNCMfWy3BQwHFghoawRmD9l1VdAXjOA0ut0dEWyNHzdL/gyuZt4oYWGKCLs7o1Hh8FzdgWDgs3AfeXzUkzrxkZ7MtHJQAnwt3wqmROehJvGN1siconAGsBhDVca4dF4mu4ueFMI1aTzJtfpvkEftaVvZb8VK4Z6H4ntURm+Ui6wbPGqZgWlKdVmaqhffsIkeDLkq7Q8u9tr7DdDt3kcX3vpxCRQIPkEtUzkrxvAl/UfKwh8p6uDpwS5JGpBlyzagOgAwf2VR+Gt9TGN2x/ntofZIGX4AUzsyYi+EoMoE8RiCXQHrs84pjxNSaybcbreC1R7J6EpzXerg8RZeMVS1XycfRj2f+Mgn/nOUx3KQNtTCpXQcRxHYRhYKeYh+o1wgIarGjd+10epi7RSWxYFs7Mgj/S0njA5xbr5TuGyhGCyjvBDf/L9cGzFjpeGPnnvM1Z49yJCz9FbnA62qCVTRSfwK1DSZrxSEtNwrxFg2iMTy1UcarmNXYSIMVoFSpwXRTTaAGvFT3Gv4O6YIUKF9zgkVgU2vy5wir/RcSFSyOuBtOxobkqJBf6r5heRUPqSUePxwZmOUfFbL5l/qJvci/BFffNpsy4Bi6uz4qXkQBJFtHxavoY+yVM/km+WLh5LU2NsI18YnN7hi2VulXQlj4enJwgKSMKvkopYthurRSQviU0IYHmJFUTvR28s6GUalD/NYtFfBbpgH38OoPSdsHdZ3cEz9F2CLZsxLpUr8UrTJtubgX02Jp4cfkePAJVj5BDGJiqBGodZ0lroQ+XDAV7o+XP8QCewJVzleCfvAi4+4A3Z+nwyPSQLmtv3ZABIAiswM0PC15JhdCs3O5qsubnvtXYiad4dOYj5E8i30ijr7pndMXEdd17HT6tU8yZMiJjT1n9EewGYngieX6h9CuCWRypB71qLhTRNX4D2/9hGA6UQZlJssIa5HQy2CBm+TBkGlLXuza5yIuCU/HKWMd8k72r3pEgOxquTWZEwZzmQI2rpeDVlTUoIFAg4V3Zoj/foyPqy+BEKO5FktuEFECQYkK48IFNqq3tLL3BSQS3q0uobB/qEq2+vm6Ya3qnWWHIYMSlKsVY4WcltZxJWhMFs5iYbJMumX/TzPtr4A0DgBdVgLSfUINhdkVDBUJ74lLBEZZVN3eJ342a+hUiN+qBSaEmGd0OQHML20tgBKHXmlI4KGSWmWwmNYmqugbHp2WStLEaFbvx9htlcpx16LT5P+/asFGMOFslqR1efTv1UWp6mUNCOH84J25d5l7xCwf3sfAl2E4ANRrXHruPoymomuuEzXTtXJUvS3E8c9JW4DM1FIZU6GG3vArVEqL/gKmkWOVh7jYdNULHm9VidPtXPN62eC56K6ZDjKBpGynKp7SKd0WNNm5PYOq8349+fsuHlyghyilL4SpOgsNynJFAlYLaoHQkT+iyZjzFUf8V3E6qK45xQqlU9+ZO+8q8R9NB+m8ez5Q6yYy1hGZpgx6+RlwKxSTU6qKzYZh1/fswROL2WDOisUEkWKiK2GnrjLRpsBaT00QvB1sJAjNtnkbjnWzH1Di8i3qcrC0HTic/Y4SCaugzbChJwpwnxRVMIam20bpJePEyszMzXmBkSSYxkdpg0PBOkbUuM27tYHxgZfQ7TdhQd9FwRByC4ZRCD47gIGs6Wpzn6qPHWkPgUOFn8JzQyGn1t+1DsQ+TtlKxVwCkgN0HtXbMKR7noHirX9X0qOJDhI8WbLIXX3K2GDGE4olxKTyMMGr7dktZKxqmlu3oNwdLOj1wLrO25h8GukpZyN1LGTDRZxjx/216tgfjIUmVIlMz/NDsv230VfpuXjGy2dMZoskiSgLAaC2mQVt94zL6F8OuvrA+/UhjV++GMoO7SaY5qO/35ewhsEarnTf8CTCqW07qDHmv0O7kocLSuLcIZ06aqF/TUHtR3EGe2f/IeTsNTRljH0yUnM/NoqndoPht3fcoaMLSjs8rcdvo/NOJ1SMj3stRMb8trvHEwWEh9fniw95iaTe4WfljctxO2TsWNxIN7oLy12N3bDXzTBjTy5OrIl/iIUlUsEhDFB6mea6+c+Rc3Lxuw1AaTe8NLg6T8457fNgD7+JqgtRj6UqyuY2zWqTz95VDzdgaDJrEOSh88EcAwXh3vl//gk7xADKpxFdKVwGNW0cj4Ynjyoq7sL8RuDfwX8gav+n9fhUfdHpa8sqwE/ThaTkNR6yn8zOxNhtBM1OUgBXJ8GjPrAjjOU6REAwXayKwMdamAGmhR5rUdzAYNkamxWky5xTCOTDOpVPCTfuoIfOvycwJ/RFy1DgX8o6H1N4tHt4BQm+XjRcgsmEXr1ZBkawYcycGjrFPCwOxrM3Ac7tHkiGXvFdU0xIfqXCb7qAi9TMjtMjwCqtwi1/aTadYJPYXeCLe1t4echQHjJd8xHg1lnUIEwZYtmF4ixvSY8Eg7u7Xdas2r8mqeXkClWezbnuuuDT9Syd22CiMjPRIqIf4lz8SSd5iftOX8t/TZCgh09RMmZ1MwG4oNZClJ1O5ea8h/5R157XJshBoCM171movjFUUhJj4MTZJVRa3cs2N9iEpD4/1Uw+HhV505SiXujw9ylgCV14OAY8gaOROXAB4giW8NzvBFfV10bcrYwTMilBuoh/kIEA60mke3Fh9QzNKasbyeYqXx6i91LWLTGPmPypqaxNLjAg4HFBnWacl6/d/q1M2ZBI0bPuj59s8WQfkos4pL9RsS3bCzRQwRc6agDmO88CTUnu8NcivuhgJWhhTsztYBLzCtBSqqLhY4X8/KdRNyaXSGMQsvI6Z+02sSEIv2pVIagJ2F6GfvsfqYfOnM2DOWyxpsi8166YPQCcL3gRI304coaCn6Xo8YXgtKEXlcaDkpgtNwr6OUgCO9N78KsyfCR7ulqp6TzlpP/L8TsZ8FYqnIQepF8vXBnDZ+tZzVkstD4DG/Uc9U5zlvMYecWDhCJRnNseTyws07Hiya74u+RPj0EBkqXQOSwjfPKtR6qIYHJ2yzrNxh1lvGy0w05RzfhygrJKLYZFafqWVTqk34n/MgVIn9KT6lQkTtVJ5EE3unRIi7ClE+4Q2DlMm97F8p0u0YTIa6+MqIF3VDm6F7pa3pCQYP3TJVYnGANYwpIDu+v5/kvAwkHNWuBzsQ/ewwwhS2jljNvB7LcvjFGA89HQ4MfIlzjSL/HeZtcyRStaUI0srqU9q5BWOc4suk/87Gdlr8+/Ig6OzgFd2441ncEnA6F5dbVMIDo8Tz096Yntbp7FwJbevXABCvLGnN3CM0mg4J3Hv+zVPR4BqZXVCdkevAqNz7Ax60GKd2/vekH2gduhiQLMuJdFLIa9+hFtRUsgIqHQ7YUglmvu6ACFdaKZ4FAFQ8cTXER+N1rPWJMBXMmwZ3BoM2BGK7Ef+2Szv3WykZH4iFQSPeNLoJnYe1c6fVOEFA+hNu7cbl6JSFHTB7OaPSVFzgrpbkbzVjY2J6kdod3/gCWwykihibaPeYofCKkjN2fazXNIGxw+MJGB78jpjhDdyqj/fMFby7jQlE2EoeBYW2XlxoZjlB7Agev6IgIBbfV4c0wNPxh9HkURFszicmWjH9nHgDLMG2IoD/tzPBeDywnBjUpNxfXuQPkMbjIAcqQSSQgwymPk5oPCTt98jkPyDKufmICTx2Me+EYi6Ex/AzKOLpkkFNFWOMx/duxjSrsiymrdwtu7wllEygfSpS9zdvhMuxhXNZRB3T/2F5MHGSn4PIoGd/h7UPWbc4LLpYw10PUR55UtHglDOcQR/SHHS3JSkFnNrjGgLNz3Sno11FVhXKKN92mJTIy+zOb0coEU0gP1MY0RzEsKbxPuY5G6NHMcFspwmhkbUhskJZet2bjbdmTaQ7gnMyEuACvd4+o5ngGnLgza2KVm1XmSYXVWP1Q5yiVemRLgENCrYzaquj6BzkIhqMQobYAtcuAkfptEvSHiH3WMvGf5V8KuAG+UrNnQ4alESmUeT0UON/Vlbgdz9PIaB+XOIeP0IQJPNGh2vFGo1l7e2pzfFC3XEaslZVX6bp8A7F+nwEA+LJAUau2/Nj+j6HKU7wT0dE1qtdvZgsOmil8wugT5HEWHAF2zjpULXMoDp0of+MHWZJKuaai5RULLjumzcFn1BIgq0/dIbql+85dlUPDBhjvuFqKtHakhQ9Xt8yRDXVvzUq3duKZl0LUETuocjX/dygZlI7O5/Skvv18QtpDTHIXA8VGY7tKKYPIk8XkVG/gy+UJuJrsZGPrpWIoEM9JA4wZ53e8iDTcjc+9qN0R5R0iYGdqmHD0/8zGDCQWf9i/zSk0UDmmM4LrzCb5XnmRkmkMNu5EtMFdF/hULZQwoiwoQJmNoaZtHKoNaVdMkn/+7XGNJwzGdmAkCVRuQSJrIM7A80UwHCcAunThnshgLXEszFsC8eCUxhNmEawBs6lb+0ErbCPEbQjKUgXoGc5Q5IV8oVsVYtQe9K7JAkXxeji5q/nBl/bDCmCauRJIx8E5+eF9/g46y4l7HH8psudAeXLh8dgQOfFrOkfuk0Mi1V9UuZbL5G+i1ctWlWzpfSZo7CRZkqbYB6R8XZDokbfdBYQ71vpNiuMwBt5x0X+g7DsICX/Ii5vwejoj14wSRpWU/6wWWdvPvrzgMf+AqM+bF2wEw/JMvkh4eTKdLADxahtLFYhvfnJ4tZERI2kBEtiFI5Egzq5vyaooYlYqCfCyx/06igd+p73Q62fn5I3NA+SELEq9pA755DDYgcwj7aQFSEmdWmJIITiVTLLhFIaqzXI26enjqN2MH/7T3q3CfapnXDjhIi59pu1jI/nnm9zgpgoVoyQx+YKiRQhVndlHUmkkZ6pxOmVql8F/CnHu0w+LED49SzNpNXn+oa8pSOPZxRVmd8+u7ES/MFpVS0rRK70WP99R5kfRFbdBAKUC2tlo/5nySW/sIjM9OsavR/W9+n9VUFWYXfdn7HqNWBlWax8jPrW9XEZAI7RrABykcUiK3sZ7z8QU1Gv81KZ5/j3lWM6tYxLYgZ7s07E1LZdXFVsrfjxccqKE+8uIeFTxmSYMkbHkGV13g7gysl+qIo/wWB3p7+/SxlSBPS+UJj3ip6SFeo0XO3uF5viISovRVC4w6wV/cl28QL5lLcca4Jkep7noD1+FZr+LuTxzTi/RWEV59AphBXJi9IdJpKD/WHqc4ucKeG1vANnsUvlZnAsdy7E0HScCQHwrmo1sBwLNVoIPnKoKsNRpQ3BwPIOzbrNOFbc4VWrqZZT15yWgnwqJZ43+RNEaJpnuuRpdSVXGlDHbyZ7ZYnPO3ZVTIauTEIlOZd432poULwEdNxoP70qaBnhPKG05E2NDIftnYCPSgAqkurlY9PdT9BE5h1ZriHoFtb01jY4jb+y4LN+hm+/QDMUmmmImP8ZiOCBrAxKXpWIDBM67qUHPUnVEqBeCjLDKg6msN3Hw74rwmBLgku4Y+ecV/si3swAWltBI1PXX8NY0Gj07jbREsXl2TwWncY47VTyWCZsuYpuza6q14DLTCHD/zsuWi4OftGZ+wcIGQ8nhc7HFTeTzJ6rxcCATPL2vbzl22Mfuzk8eGDBc3oBqHoYrFgspKTB5IIoO3Jp9ez3LJi+O265hdQQJMuo/XKf4HzFy0wUrOKzci+e4E4I/GCTabq1sOH2wMsKiZOOCj7hew0ew8GM+M/ORnEiJcSo77YiZmT+jYOuyCPgOWv6iQGyy0ueeAcKB2NVs7bP7rTBrt+tdJ/fNMMBxDhfzhl+Bmqkpvcvc/80+H8RHClDDYp1mEnd7vm5bDTVdUF/ngQoflZwF+N9ZQe+TRDIskVDWMvBSYwgfrGXgX7EIY3FLxHcBRpILUEQOXPg1Sirh0PIiFTUKCyKtnsfd42Ztq2v5gSS7hchxsrpVWvUCmUMe9xdwSXALiGgp4ijkxvZrsapMjgQ/ZWrjCul+7YETCW0Gxa6OH4rLXIrKOsEfOk86uYCSnetDUgMFCxLTt5BIBLqXJOlVCoK9LIWk4IzN3mwC9+pol3kHA2PDxC0UNa7hf+/YN997sSrp2WG7KgXkwgkKNom6SeTFa7ukwNT/aPJIvDjPj0xOkqod+2Oq2W+llSuFX1WCrOqojbXJYh/OnWP+feB1AO5EMdz2jLRZbuflWHI8scl+h7J8Y5m/TXiQKgqmztKhSHs/JQLLzUfSkzsu5Az2taCaMPo6iy7r2qg+xzZeKu975DVrVEuxzjJJaIThK0E5IJMtanKTi1vTd3xRscn2bTe3h326VPWbTyl8j6fAN48TzXnRt57LluUHknkNUboc2Jk16uPpbxjQ45IjxuCyNCO9PcOn24mAeEKiOX03R47wpiXfkZ5On/xHASCgjoMTaq8t1EiaVSjcukjkumH8Y68c2xZU1bVHqhEq0dskqXpVxaNdFDIfhBIAS7ZyNO7sEbukwUo2thZNiWaYjvTGah/WIVB7AumKZy3TT5VJu1Qs+stFIajZdMV4FoKCuhXrUmBNdljByhf37wJ4ydjJa19yizAhXu0ieo5GY+9JiLosQbGWjiA8R+f1PQmntMhRmqCkB2RE598j4GCtI0s2PDN8YLqJhRQaG482Imh/Pt5r6v82Auks14Tetc2m9IxstYPdz+p8YJQiP3yD1M6Z/fWzCssH8crvi4Zw24+0bPYuTfUXd7BdM8OZiK0bFZ92UczGtR1UUNZQAK1pX+9NiZ3WDnAe0p7G3JQQd15iOsRuu24lRU1hQCxJ3td3Orpueff3EUp4XmgiBEI/4V1s4dGLDcm7GLf2UGocdjt9WMsWriLi0Va/ngAg5ObTCBEZn6aUeeKE7xcfzm+vZZIat/MIPKyPipcHf75lSLTZjuRIPcW9F/MGdbqRjIepJkc6N69Y3T+dNZ8/J556KAxqUz/KDeACxcznSIGgu88xPfEz6XCAQlwpwLK1bhZEieP9cy2Jd1dyrHbt7eGQvkCI0V5bfNNYFmlmk+tuEa83Z05wePcmnjB9B3lLw0Ai6NmcGfRA4PZTJp96Z19Jgknrittbxuoihq0DDHLzYAgxcQLMDakwiwBAnVKVGxW49N1SENqoL2agcASmVqBtkjn9X/3gatUbhZdJUkjAyaL6O7hdePHvDAB0jrVAl6l9OpNik0MrtDgJ5o66sCumxY3e3oWW8l0MkNugjyf9syKY7z7MF/ptsq/+oUIO7PVVuUuyo8Xk9joQEHdFJKk4AIlUkM9hckiyk1bHAjjHPNFVa91KNpvXvflK3duT7t4OdS/ygJPynykv49fVhpSATcnPhjBeIEBAv4j81G30LSc+D3jPtMSa74gbVRLcTfG+q/zQjffrL1Txqi9qAzONvkOQ8wbmj7DfTRwenb1rLWdW06/4X4dcp4+ipstpKNUj9Eh58CpbCipM15Z2zqpyb428cHbBUo/U5w2Y7KS7uvM0KaMoYjswefVzimAdvgvS+LJY2YpADPnmDiqTPVm/7d9iQUf47htHWuDpCQkbkNUvmBIn1dcHDKa0sSi+QiGwkHWJu9RP58YUYHwdvXkrMnaRrG4VZ+PWK/nohXyCf5wGREdeHsX9keTCstVzD5JTzZLeR8vOUsf3OV5vVNNWe8ONX+HK7f1edZx1SdhGprf6yWApS2+TCCTOn0YUPHlJHRhQ414tw9GHjlFtD3Cr4h9WSmIENBxZW2Briq0F0SciCHd0/S4MZuu0GVcxaBzrgnQnPDia09NgbMutkmwglYb9PmRp4HcPVSMavDaUlvVviAxyB5RZEnvuBLMhWwwIjpC3bcmizMTuA8ihmegqO3G/gZGQAv5mgbpTotw1bUu+aE0xw8m4WJ9jwRys5JwcbQ6bqN371J53B128J9SXoPmjNiWDjRFEmAHGhHwXA7u63ANtsz3PqBrMQpUm553h+am/W56JImfJb58qxfDVjlUl2w+Nm43dl4TNU4cSbMXerrdjtWHGwmFO0wsBCM8aJXEBAtsOwO1/M6nmYcFnO1ZoYAcn4lt/3vv+d4/wXvdcBWufA8VAMxXPcungBKWU2ZxGTMahui1meRSMQCaxQ8y+6rr15b0uP/akRKXCryWylEssNeJaIWDym6gHBG7ZsaRUkesxjgmMf0FqmieUhlYm/X9w0v84L6Q41CRamPz20h+1wqFne76adQTu+xS+jzFhEZkGFQx8MMVF56MHDTJ7JOaA49m6YuTP/zQGPR4xLDJ2x7HoJEE5cUoss+ocWtcEBxlkFYz9YK3cFg0gybsvVJaqF4ROKhzx/MJqZyAVssQUyVMrJI4hJI+38wd5d/OoiJO2tP2r/erwrZfVoQVfdD/LEbUzMEYK4HXAbshktXeEJ8cOs2Dn6MItN6sz+Sdmo5UuLut/cts20gScTMOqczTb0mLdwa3IezNdVJqA6k8inB+Z7pViHK7ElrnRIV5gGfxjMcmVXajNjgC7zodplRlqtulVRoh01NiChjZ7UMXNRSekrHzcNYV73yVmIgn7LMeXc+td1EjrZ7PAjwWBtPuNtIhvTNn6kQyK41uLXvaYI/uRUIYpRMlpSmA0cNEXpyeJVnxbblkLg0oPhV1ZGZUkqGkwvGpAZ5Ksrg4PVfxTuFGIl1txppV+SHwnZG0yURev7POGZR9YPiZo2GwRfMMbQXVXP3Jvvu3CDbM1v4AAFCyZrbi2mJgD0UyEE6VO7MAMFP1JoTbU7G9aDidoDvEpcs1Hy+hwIs5tV1/RAfT/5HXFzrrTxMOvKW/fHQbwgHj+k5/etiQz9mpPdBruHhev+TwK4h2A/fra4w///tEDpfCDd760nlKKHiyR65rszTWvdCxfhT1iYltqVEPMYvLKGJbnI0IaaRokTXfCAEdAgQg1ha6P5Ar2tewlRxbH8boQUyWFa9wHK5/0r3xB5afGvQY4aH66VLvOJZIdYRhYeQCCEGeo1fSuBVH6RcShwOVZRcEw+Z6ApFaI9NHbxKh1oat5utY7V8oo9l7HKMJahgNnnsPyfWLaAe1dAWyL5NtAmbkPGdzibph9jIBipVr3pV0t63AiIdEC1+Y2In5euig+wQxkrxFBMmW+XwA9FHSe0TNLlfa6pJbsrKWPKIpxwCoaMGrV/EDzDOW3UfLjg8lZUo7jQGQBwZdjo9L/ELZDHxgKB1r9Xrv7GcrVXvaNlXUGHj3474p0OcMl4nu83asa75kOxqSE/pMcZkPWbB6zDnrr+WYiUHIl9221pTcpu1OPoqTamSjeQy06TFs0bR7Ns5bRTSGUKQVbD4JYzFlTcpXIG1csH+kibVEa3pfmLP95N/NEmGEEszLJMn7io+1EvW8kxAjDUfDrBfMt/2vvLmHINGzVe9Zq8RwP+Z+eAPqMXMdJpR0xcAxGzxnTjoz+V0JyOJpzAh7rG8AlwHlwU5b59tVjaPgiRvaXhebr+MvCxzDFO0dM3YxWJ8LdoVLbQTXmmT55VUdzzTxt/4ba3dyUr/EIk17QuLqOMWm4Fs5LjCTQknK5i2+1LC0A9l+azyRpXXrS3+96WGvKfOi3QhurVFbnz08oPzNTJlwcTtmPCH9Bo/C3k8zmRBEr2Jv0nhnuYNkePZd74FqQAdq6doU3BqqSwMBvcS340S01t+/yqL575afAVyYgqdxlw4LpsPhRoRp1dC27PwtybGeFVI4zu0XbTvS6pJc8kYradmgkuFBeDFOV0MkyAzKyiP5XAmI2mDxFXViYxNEPxCoDINGZRiZwkD2i9LltPrn/9En7bRf6WHagVd3S0BI9ZxahOnigS2qGruKwhK/4a46oXlRapOZQSBtfqdMbNd+nKsciqoX1v3/+4C/eII5Cx6z2ib7cy8gLet1p7GHPajuvrLdzIiAGyZRRX0yq7uGaJJ0Tbqo5xyW3ytvewZYYLkX0nRKPOwLrxPY5v/aT25c3mfilC8mf/ATIxq7ZfS4JlxePyPX1P2AL0Yf47FJxSNTgkvPY5N1Rjqp6cm4M9HhHkjmfD6kUkmePHu17EjVlmr4qYEbceSyOf//ZCUK63SZCiBvVcFN8vD7Dc/Im6gRiqcHtMSTkvkJ0fRThbK1/AqkEbPzkv4QGh221T2Eq12NfTf9IlarBQi0OgvNTupxnpdYqhQGWtp0HhFAOPa4xjFVNJBd+0dyyMnBfKrK5zhvNO9uJUFrGjpMS50+WEHp6ArNxDM6ZV1q9gT+Lce8ihaWLeT0a0JpYJQewQ0jfYd1G/AX8Xp230TXlOgKeF9OUajODfrOSIF2ta17d8v7F9hCeSnHmgrWk2TvuI5VHinR2UN2lEWQDmE2zwQ61dPCC1PKFaxUPMjR0DnUHu1vo3MUglEEL3K02V+gA57akSL8Dw8qP8RajStgq3miAErMTB3Zj7XhcdZd/1Li2RewZRuODuVCcqg3eGeTaM4iNDWZ39MRGJ0kRQyWE/l2fQNwfzmHNSu4VHRaPXhrFPw+DYs+yn0lzNczO9kmi84V5/KBzHeZBD+RZeTgjLtDiIilTg1bAPLVm0YkIpj00P94MjK0WiUiy0TZofXWf4ZJg3DAalNaPkYdVJH4CDh6KudC37f5hn9ZSbJoCpk3bhbpNZmPXvAXrHKmlDFiYvAxAnm9vLHeAr8DoT0CDJZ8tCoDKBPCkJknO01gZhGSbppiRwqGZCHOPyge1k1bFtrIsyMrfLGe1jKvw9+QTGhQ0JhFMNdRFGxgzwxEwK4eYN3s6DO6X8silpI6Uahvj9JuREysgvbgMs4CWvCGUZufJNuEpZyJTF8ZSIv3tKbeJWTTBsu4HhLJWO3toERa9bXR2o4ZI+oG+yWCiUeY0dr3sVbqFnRL/b/ZmYAXO21wx25KCIgj8CjD3sNUxifO5Zs7cYlkG286oskgap81IZLDauVOxU2ZiTnEjncWEjluAZtYDZWz9pktinsrPEKbXsRbWycMaNyuFnsLkR8WVzu9F6OuPqikpmNhu8/VitfAeZZAsR1mdCobQXijQ/GNkm9jxKTItVYxusDD4FjWyTVwVxa1CBSr+7l7x+3ILPcz6d+pm50AWjYJzKJbzCzJKR9UVn4BrJxSHeqh3ujnfg3jHYOUtaORZDKEjRlisfylBkDOh4BqE0znBLnJadjsHen4UhpcEKKBkrP5YkdRxa74zL+x446gDePYoZL151WH/nJEzHhJATJ37fwa/1Y2ePqvIXIX6qQjKf/9jU5YK/TSZBBEyZ1QKdGNrO5iZnAVlB6eYfcRHSTXE8A4m0uND+eIDK6YfFGBF80/8mO8ljJJdslX2FFs4B64zaghLgogEOZ1fh3cvyoJQnkNWqov3+ENBLw76AEaf4mB+OmgJ7KmzlNGab7sva0RhFYd5gajzAL/TNYBd1HQLNIAZT1n42NTwcuJOq4Ka0na5SOCW84l98zl1qo3pSYvZgPzO/UYK+m+ajzhQOtcyXva8M7KLd8KeOTxqUxq+4QyWzvMxiL1zorI+wsaqMwwXEiIyFGQy5vtIh6wK42M8HHx3ogHVwBgmQN5/av7MiSFbZKEr8IZjwX9b/g4ekVAQdpCkHfo5YuwA3fMTifUB1BJfrxvenWwSlddqniE+QRyVK87A8rdHgrOfoQ7eCeMFX768nSLlBaP9TwDPcAWptY8wbeCJwZOEHeWFONsU/J4+WZ18O3SxrHU/+T6qoEQbJB936wXIsl/UalbfSHXQ2jDLRjbb97kdtfoGPm4ND4I95O5q4xtjTPv9Fz6uMdA1z0LnBf4unOwraH6O5NP1XiGlEPcjMgN4JOO2JqlgO9ACekrDcQkZPq/oTAmbZLXB8LFFvitamDrcm2/EmeH6kEC+X15jXAQ5edDA1qqt6vzDyVq0DIMnIK/UuQXInJoLSOdgLeyy+rOLckc9mKbz3KuEg1azIRtzM9765kmdmd3EA=
Variant 0
DifficultyLevel
566
Question
A cupcake recipe contains 53 cup of flour.
Which of the following represents the same amount of flour?
Worked Solution
|
|
53 |
= 5×23×2 |
|
= 106 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cupcake recipe contains $\dfrac{3}{5}$ cup of flour.
Which of the following represents the same amount of flour? |
workedSolution |
|||
|-|-|
|$\dfrac{3}{5}$|= $\dfrac{3 \times 2}{5 \times 2}$|
||= $\dfrac{6}{10}$|
|
correctAnswer | |
Answers
U2FsdGVkX19Ac1ODuk0Ufcmm2i6AQ7bmBxPawxlpohYkgvm7DoV5Xx4kS0VQYon0uaqCdKwk4116OGMeS3gIh1RbpzHY5yqDGpUHcGV/gXPba688pYQC8cXp7ZWZuIOcXFdlUEYVdmRvhd9dwZbQxYoz2yUFhaKJWN+Otx3Oh2NPqIFwBvv1bpRHijaZZhPxgAfu6sIwc+mALCfm7tVRVP/7JYlDUSW6zebQkUCaBg8OM0wxOcBpqk3+gSTZvGuKtxI7zswDwq23WjNqusjhe4erFrI7lRDsQtCUFgqMBawza/7wJIxMio2p2SZ6vNKuCw30VFRVsB5LBZB3FGKOspogLtqyx+swTEiviNNFBm4Tmhko8IhcvXT7pH/SMta+BrV8GlD03u4tALgsLOwfa02Rm59+Ut+p2rM/5X2sACy63rcxp71Jfosc1JsfKrhJTClwozTkbo5YvBtdJZCoz4votifd8EWKwAsnRqv+k+UqoFIrr6pcJH08YPKYHp84/uMO6EqpZZlBvC34Qim0R8stmg4QmKzU58M2/JamyiuLCUAalPkSjQdLmEpK6wjY+4JpD+M/J4VvEeifuSOB6wGWj5+4mSJsXfj7NGnCGQ4coQN/FTuCE3bHNohoTHlcj59YrA8yMaQQDmR5ce50KpBO0IOaIDUM670KUpKk6qXitf6IMmdbKk06yR5grz1nh9czhizEzi3pUAlA3m8YCLydkSDZLhdeldl00m3Nm16SR/1ibF5bXaabzC8wtb9b2dA7i2N9KE9FKUJ/uKNuRt43GxNrQIeSlUOIiKJw4lhMizbkqPFatkPLQRQLVZt+0qjOFyN5CDWyMpJeCnhrxAUQ4P5jFO7Nc9dHptSzY/qNiSW7V0zFtvlqOynsgfc5aTHdwOC53ruqHqYduTTeWnDQ9UMM936z28Ax1GQkkUMCswAf4y+zMDOhiHcMLwdGkF844YSXFRNpltvj2lKfaHXV59WGO8PZNpGZd+NlWF6Nd8gsOm4PpcgWVDtMj1edisgrSIJkas9hX1Xfq0iypy7l6snxYxXcSXchAOHOfrburlnMN2RkrxTAHiAfh+VojU2KXzwnIxzvXlmsgI34sdj6+mCTco+n1XmbXqvxFTf9EKMVxP52yz3O/y7heWlb4bk/komRI6eqxJYSnqmYH0fpztvzNXzOyqTilDMX6ee2d1B1CXzR1HjUyHJp8gxeZuoR18fwmFgxQpAvEneV+a5KbfGQ14+ZmIlApGq61TASbA4iqSkBpX1zBjtzNEJIUDJqS2K1jhaDbEAV6gf4PbJbrBpv84zkZZtx07Vs5dvb11xloCYLoOl35tDZyjkhhrQYCZRv1Rs5JLIbxLqQVwmKAzibJgJcIzLkUbzDbXXO2lyQZHs/07zaVRmZ9j6OJP/Qz6dRvXhbDOutnELdMhcmQQXsVhX+j/hA2DR+uLKWfKswfepUUGI10zkCfsn6dYHfoGK6C3YChp8I+ZnMESOHezV1hbqlL0KN1Lfp47zLvDVkHRKDkqziN6iNbA+tz34S6xXhpG197T9D1sOd7ALmg9/FEWS8T/YDeHk/ppXKwaqHN02i4lxHgrelEsLc2c5C+r2UJugcG01zU5WO4dB019SLHPyLYUcXb+eBAYpA3KgjYVIFFacGP74iWl+RBJT8ZQvJr6ZlQojExys/rce29k8noVFZkVc+73uej8/Opw2aNwALc7YuvitoXrKyW9CpxUlJ8Bht0epQSxMdSCuxYbi+S6G7ZYIAmKSJRiv25Nefj5ah+NdbbhLF29fPwsixewhhOq+W6RMANMlngk4m4Pk2ed28rt33yD6pB5hDW0+qbfm8GtYyQUMed3y8/O0LUdtJxJpT46X5kJaoSA/m/ct1qr8ojqbUik6ekXVS6zdNVnY9jvnLXfqYp9sU4wXP5gQHQIs3g6rL2LVvEwNsPPt5jWJu9GccUNGFKIZhSuYyhbUnpby0t2Gf4z5hmJhCcM8ptaLBZLGLald0lq8h1ICgk2uSCr4W2tIGR+iS4WiW2L4yGk+oau0RbSB5EZdccG+PRAgsMhlPEDVt8W4Eyf0sXueCZSokL8y6rlvPed59BAN7yn7qL/V6DfuW6ph3xxF4rZXVf9bxhwWi7g9EtGO1MLWSsrCm2CuH5aHe/W1jqki0W0VqY2XOo8T2r3vLnVx5bpJVDGw35Cn3s8GvEnDlouxOhcTN66OEYJIUMyeJMrM7Ib+Dco6QoVN4xiQqlbOe0vqbbwZ6/fwKggjv8VMiNuZp29dTdvpZ2uLXqBrUWev7wZ8xYNW4QXw4ubYqSLoref9ZWU2O3eaEbFebvCrtvzXI9TysXqH7rWbvvtLZQohZxFfLqhUCUX6tNa6VeoPSQPdwPTObrYzuBbeOgz3RYmJbuHpO/MU2BI0T1OUALuIo0sYc8Ah/cMDxB++jIu6mu06y15w1TTM1PYcXiooIuccuiNMP0/rd1kKI01bAHvDYjMRDRBspR/VeUZdEiAJnpPQXPEaQHZ6qvhKgDQwR44cU/xZqji4XbU7THuiricNU3enyJZJh8/N4PrkwcrIGkwlLucThhAe+q16erwPoV/9KhS1mxWh3bMdpsYzqa28kjk8sB3AAtvUyAt7UqCOSnBGVIBOyI7z3l1SPGCX+57KwJnHjyBwKJoGrq+osrjb0T/V7WKpRaWKIANxbRjIkIcgp+sPWdxMyHWdR8F311uF418wwhIAH+9ZlbUakFLLYnOi0ruJ0lD5BIlv9oUvM45ZZnIzigvTWDwW51zghCOSpQ78WmEZm8lVD7f+69ZBNO0K2Mv/TwBWbJsfrA6aM0BXObRpQcHVeIxxK/C7KAeJ0PQ6Ylc/6ivbel/WuWwvlCaRHn7d0Hr80Kl1BvWGycxUxK1E1A93bMke2kPjJb8S4fBBDYcl2ubW8JcwbqAREjpXJrK4lhHZuUphFhuN8bhoZHUa7ianGi49gNKN1CoamAvXnvKaXfZYn6dDT/Q5eb6rEYRVT2GK5Gp/2U44RA409PqgbipAklVsTuE6Dyoq3BXubyjqhjSNNJlEV6TP16KlhHZcvlZYcoYAM9H2YQZ/qI0X1CLW8vU56OwPzOP8hj0bj253rL6ISI/nP7dDuCNJOw52CiCv17aAssl7MydD3j1FZLStjRE221nykaBU1585nMkSffxLqA/pZZpEwzt1mIBWkYvdJBN4Z5Akvmd+Wz5kxIVoXNr3dA8/vQ9mtovTxSfpg4bySUIA3e8Vu7moQMSJqWtflBf8q0ac4P/Z7LavbrgoO8DrDnRUMWp60zD8I8POfUuahJgC6D6VUx+bNN1/7vTBEGzt5vD/at2gVqVRK35RxE5auW3sUqup92FeTUr8WkjvrMvsGPKmD6sHXANPWH21sXeGWApw7HU/y7Gy9n4no/9s8JoERDJCdCmETsCvs3Yrg29ABc076JREmhxI/wBBVcQCyT6p9gjP8zqFcP2pQ+FCzB7RxhrjHgIi0h8NBUJG/BYTN06AgkHg/VEG3TDfJaPuS7VpCNETzukZQBAVk/CfLsH1ZCdG6uTnkd4HkUh4gX4uFvAajJ9VW2TVkvYWVoAu03cMqNh8/csyhzEQsqKGgRtraUb+Zo0iTLwve4/LTk0eFjM5GJiHhG3S8MhVjbDBW1AMWx1bzP3HYsMgBzzf5pPg6Np0iAF56K+1Hcs32BijCkMbAYRniHbm11dkuLnPQRJNFj6+vMeun3V2iuXuIBvntWkDFj4DQEakJ2X3da2jbZFNU4MDkvuGqJQyhoIKzD4MT0J4qzUZKf/BvJbdnCJJowrolCBD61HIrwfoR6Iba33NKdsSule7q7mgliT7TqaSb2fvA8uGcnah7lFSp6BmlE4Un+FIwoWR897Q0QiBe/wucwSZcZU1bzgteaHiKOeGPhZsB7zZVoZ+DH4uQixMPWculR7wQlK9cTuSWXpbJdJc+BI/uBWLMA9Yhx8Kyx7/z/18tNACeL40c6aipB5tsTD1+HNgsdVVLpEZAPrl+BgXArJ2y43aMbFNpeIzJU4zndRZXUWPBR8JErVlIaBYFhwVjn8AXhpk+nspSEWRXhJakK2+SnfZxxrTJUZNfsQka7yLPhzskFgEVj4bKNYkqYmeYwR+duG/bGlcAf5Oq9uVe0W7dqNfwotdDxAxUKiEz+RH/wKrYotjICe1NLjxKxI6m3KRX7SMd04BnXZhM3DI4/9tRSnxP92J082yoei9kDQkklkslVdu6Adzx5tkvbkubNU1X5ylmPmZKznrYXU+uPGJVlPlG8DJmiaaGkQobMzw2RCPUE2OSpWwfmts+Iuvp0Viu9/vtwv2smOX44QPKLSD/ioB2oE7fJV0dTrMhfeIWKyfFDCixm2Rf8WUXhaLBWFHli/gRl6vu7KIXR1eUN7o25ODJV0DEbD0Blxk0SRnHFXjWJ6htLQ2h/1w1t7tImi7yGzo/RxOCkcTSjRl3d405QXoax+1mqgAKaSZQKHigQ7hsHQE61+LM0Gy6gVgdUJDmT5JYp/Raczpu7K2dTT0IlH3rD8iJ/PUADT6cfKHB0FzW158VPQkKFqEJDPvmusYA5ePCsCdjHbtBmSUBWbdc7tg7GjA4vdNyBlr1GEmVT5PIgo8UjqzcEtKwsygx7RVKN71lIVwrf9+BukaVjeruAk7B4mQzcuY58uckgiuxcVPHPhP/lJ0fjne5f+5rj/WDNjgDcYXmKer1D/oUo+i+PQ8qhJbsgymYeVCwD9Jxg3/WQDvMJym5P0vHei/giBJpfltFevYqYK340FFlHqtWlXiNRGlMUkUoc6w7B+Ji28wniWsX/i2O3wl5FIm8gLmFctXN8i4isFpGEMp9mYU8j/riZZK8LSvbcf401TvZM3aXzJ4MhABLefSi+NcuHoGNoSgK5Ndt5nU/0SUlyIOq0uu+NxuZpd9/1Zg3pv1920CYzN4HDM/zVBb93WioC92XRVQvzb/liw1n3LvPfmT3SCBii9/y/3vY0GlSE7bVikiFT+bh/Y6n6LBxBzUNxIxa74NgylvUSR/uUPc6KbRYofFiEZ5qzcZ0K3VrzHtYcj98R7VBVs87c0qBmi1YjADH6DrWnTWmVskQvOdS07EkSYAtNTinIWiU7OM/hYg65QCz/RiUBHeK6zVjZ5HmCA5blRq8Fm1RXpggghVsZD/D0jCmiD3RJrqGPlp8ePU5mopqxPsNjOuBT53RqpaH+4NPQwFjzk3kDMMr23eyUulVcZxSax9Rq12nL667kvTAdkPu4Z4G2RRy9XsaQM+ZPuvAIg+7yGEiGldwn2BWVDrISuRSL4za3lp3UM094u8kr7nLhymtXappKYPGgS7Zdo2gc6Dj1wK49Z9eyRBBP2d+GmWkmGxfZpsjlz64nH57/KlBJOiF+IjLUM/KTiHzakGpbDJ87NqjHsITr0hlV2mBbsSaCAUUW7OAoYEBCm5ifW3IyBRzv/UC6uBceN6asGJ7OQroVoLxuNoFSMCrCLgIrKUDRjtaxWYhiER394Mf0QbQ9uFGQ3pHshB7Wc2tDXe8nv9iuFthwBOVWpAQmfQqAFmrUwlo6vbG1hguMyym1z/uijRhqAN0qml4LFYetaVVGtKmQoG9F5TG42zoXEsjWn8154oMG6F9JP3JArcWs1wjfb7frfbXBDHvz5JPDN1DYxyYskeJtITPNkxpmpmmvihfDm2QoPbcHfQSdSWjrsLFRvXmMBuLQUcRuFny2qlfeiRIG079dIB/owhiz0fWnbitepPQWzhLC5pVMrZ4R+Oxv390Swyu2rmTxYcfq6LBqNmsDWueKl72ifRF306b1oAyz/UkqyvKB0/qZC1z0cRR+H7NabLK1kS1YunhhbzfelctfVUypSHFHgE9ec+2rwmLuFv4V8c2IeT924qgQ6M8ZuUhofZKZF+ZWXwSz7s5nuzYQT9AiPIanuyXo7zRvCN/FtRydEplEIUCTz94YNb0bO3a4l+OOpsxDNU0m6y6rTSh76uLobC2KeaThXfdWqQd3KWt/NY9kH7PDzAS7+Y2mjAJ1UJ74Nuzzl8LwZcFldBUmkSIO9zK/0Xd+NW8T8G+THv7Z6S8c7+OV/GFEs6fo5aR7ddu5IZjLh1JSd/SthWRehO2+e66M23o+/4DI/3nbuhPMM28M93kMOXOxL+a4KEdue0NPgv2XcQnr1jvRTXar0s+lgLQGCDn5oVYDDp82l7LRzNt5KHen3QfIbkfs/UAKYzK6FptQhC7VI5vzrLbXYAUuAwLpeZzLDfUHUPiKLLduB19ZUZe/V6ocDakH7w24oqWyVQVeB3xd32PL76kPKtXHRjId/X0uRg2iD7jTSIKWJ6FwaDjaKrRePcEsstzX51O+LOdn9KAHcLkPMPMhVHU+arLmCEg5ffnNMnmrNm3mBjBbo2Npexry4xy2p+Kvumibwd/1J0eEnS6/1JhyCvi47yVWCy8VPlLihdn0Z012l4/x20Jc6eZyjT3T2eCM2DPzWl7pU1oHNfNnCe/dN1E0K14ZqktSUwTUtbR3ctC4JHVLLcpd+GR46KLAXTY+qntbYI2jxJYwtrZmh4dEOBmXXVnVeKcawvkoiUURjSuviNOsimA+7O706c07v8GJKRSc0EoxUr1BLhLl9NmktYkx7Vs5eDEkx9cyrIPtVrkam8p6SjolE3PGDI6m5xF4k0/+9vljJjUC4J+PkzwvY/U1IiWnD1Li2tgEe3zRQedBjbSYRwDIyBDdg6cOwN2z34/KlmNh1N/92i5VTQoe2TGiox4ZKaBvPKAYOV6eES1DL12WQ8MG8Uo45oB1Q80JDxzS+kQ6kHEvgle5b8Gv5qJb3djBNrthLX0HXwSwf9xyoG+F/rmpwMLxPq14/98keRhmvMmUiDI25Ig4rb0aJWkAErC/E8a02yOgjLicpW3F2dQLimwSk/wmD425YGnedfZwu4e9r3IupHwfhhrvrrsZd4maE7vN406qzyqtM3BSvKJ3Tofi33rxPMRj23/ynL0uZYbmIr9akpPdGJRlolBKtGyQprCya5Dg2QSFRPlb7G/VDA8F4MB8mnaU/DCWFKyw8YE7LpoT+nNMGYpt0CoOHYrNvly60ATq0kPbLX7W90ecCxG/oA4oP/z3RB7eYdHBiDQKNhjtMuarUFeis6ye5O0o3qaMUN2b5tjd5/2hYTzIdlwhoPz27hNAtNzVGQNHjEXSguQ4O67LyP18E3TYvEYTh10TypUJXNng0jUbdfOR05a2OmdwwMC0ow+VrvCDqL0yLIaNH3tWqZfi4HVrgmFHnfGjI1/CxJAmi+Z6WqvzT3lXIYx4r0NCoLxOt1jfkzjKnVDJbdsvS5EWIcY6olcR+tFPT5AU3P8YDtYrV6JAv24InRVQh3eqTBh1yJqb4lGChfA6bWNZAMqEmOUAS4CDK4TIIP60xiRFQR8cyI/Umwu5Ufn9uiIr4HSf7c2obb0GBtLJ/l9uoV2qq2wKAAzSpnKIOHpORbsKK/xSq4xg1yxlOFNZJp0rNgJscA3+wmEJ4C38XnWYmExlb1/wC1Ns8vch8KnE5b8kKf++sIV6coRuniTLf0rk4zHTKUDjhbmBctVNmn6Gp0nQjaeJEUCgXUCJIZunAKhqKQWirVA/0x+zdeIlRFXTh//oBz8t+P3MaQIEJt+Km2K9BJCkrK9uPhvRLQFjvdwrV2Dfiz0Y2Q2wy00NnZgRb2oUk7MZx3poDAFVsefZM7fIqNOC8XXOkgsvLUTx9AsX/4UM/qpx35TpriXx+jOwxRZkAVEo8Q5Tj1BRk+KkXWNCa7B+i1Ac7BPD7MlhxqqV5m9Z2McRRLBk3gw/BT8kDIqAyEj1SRYQf4sh59rXl+q84Nolltcl6k1opcA25Z3i+vG4qy0abVNjI+gYoEoLbKa0pjNtuD8hk4p7XVDZLMJyL1AKQsB6HtaQGcezePfHHkrksO+JR7pSJHezbhXC8oK1mzlTcawfZejJE6woFZCzBxo7fzE89gPJ2W33T++IVyJnH8cfvccbZZJp7WmbYsmaa6bxa9tk/S9iHsjUbLx58gPjfWUErKfN5vDDtmgnCnFAqnrepEQ4xcDapt4JT9MbBCjFjwVkrPhqusQvKQGgCggbd3/aaQVkNVlx+0YGSY8ityxxx20GOuSlO8RdDXUT9ZumYEAfsRE1QyU6vSEH0JpUz52vY79FE5hHV+X8V651WY4YA074+oAD3Fjbo3w+kPW6j7JOBsssq811BWxUocTN1vdvWsvpAaRc/5QmXAZOONfzgylHJntboz0mkOn9YpDypeyp0KtT7+4NPQUBgSHUI9ZM6jQ7F03L/UyT0tm69MUsZxxTBVDfvgm4lIT8Ay3wuN2WIT9tX9MYz8ZBy3aTbA3DXTZGbrWtRTa2U1rsh/kfSxOHrx2lat0DKwzLvhPd7uWcni8NOo4tBwXEB1M2RwA04HXkyLiCcQAiHNUHotStRWqeyoRHX+lRYXPH/SrVmTgUYxxSi6LIsYIQBJMoaOmbQW+jJFTPlAsvL3xVmy+EZCIUAladXBbKND3zXeJFPYi8KXpoclFVrPyk25rJ0VPu+wem7g8r5OCo5cS7fCxuBMpF0c95oglD0e0H9GuwajWrN8mXnYnqZM9n4PWwL/m+qmbIPqRTvGv21M7AIZDSgzS4BkdYoLJfVVacVOmZ5hewSCmuekaLU8OlKk2DiCnEw/0sK9jAMUlKehUMc4BgSOHJC/WAXhA2GtLZGhjUk18vMA1EGoUDsKXmpChevrGfahxk4jL0RG/cn8z5pCz4As0PkzH+NL6IZOYYzJk9LsxsFGbVxsRPz1dj+mIlSh4DSqK893hyo+6fsz7ZAdaj9QTWiHYM7iOLMfT/dvd+kJK8V1MBY5vwAkx/vVegyWppYIelDZRWSbEfLnAYpz1srI3v9MPRm59wzOk4kmqnPPQHtiF4YpPqfy8l/67V+8OXUCCCp9+hrR1FDOjBu9U3s3pUqKCWdal+nacnQGopXgysjtErLp57RrQdEJdTWqR5lF42nwL55+k04vk+Nq0NXfUazLJ2ttZRCwfmt3wMqDrxf2X6tt2Q/9tWCFA/2hfHwpOtl9tq5TiseD4uHbiv7pvNAaPYEcrjcnWGjdqFEAeAAL89nvqM5Y0NqQhiOL0UmFXXXsm3ezNO7FoELYAmOpZuIwgO2fBJ/rXPzUbQR2ojuc+jYEmz1tswPMJ1gdZvOo6tHXPlhto2PMWtrQwjy8I1Td4VntIXJKRgLrTSQRDzA1+85vAYGYMmy7Zi633gLUPe1nPhMACU+bf2E482oMI/6Uerz6EIFo/I8eA8jIpM4+3vohrihKfQ5TnaKkBLr8+eitMyFRE/tHTCHgJpO3SF/xWuDTsYreTfTVk0nrBSDIPbgms4OzvwQzWGi03/jiv9vtapv+IPvVhhzk3GdpzUNh00gYEdoUvFE0AqP6DBi6S5XHCOU+12rWBqQ4vfEgSoZh+o4ta0w/1d7S6LyJwpNfH3dDJuqnB51iXWsHaz0stlDTAEs+kQ0sr2gLX3N5uwUYe2sVa61t/6SIY2VRi0n7QOD/sNE3huSSbVNK2KYY92d0a3mgIVSaVP2bkS1ajBRS+LJOLBkDLVRUPzsMoQHvZNxJnF8GdWws9kOZ+zJyygqPrwodo9QQ4pqDlSuWPVwiDMSwpxclfqo54qUNWNaMCBpqeTlYCDwvevc+zwjSK+2Zkm8YbBZpkzYc+zYqEJyG9APCpH/7gQFUOQ7ahVADlMUOukDXmx3+7xrGzmU64WK9l4LYBouQCF6wCjJlMJ2tUK6kgXWa4aUvxwtVBY8GjNSCw+2lGeCtU5KKLaeFDYV63BE24f+D9ZBUKG7Dq9gbw/oLO0awY7/G9Sv/b8vbDfEYyzwBwIvwNEGNHNgJIgG3eKUX/9pbjrtQpGVh8PW75ly0DHv05lb/Dr7Y/oEQGvEwTTL9A0Q7k4WGQkbl24tnuSJS/B0eDGmL9hiJQhqKpoIqX9F3l6jWNvO6WywZsP2GFQJSDrHcILd/5p4myrxrD7q7YCSWF59iKKcwz4nt5u+SdgLle21G4srlrjRm/3uMD+WJSKtu7SxbLaqCBw65WmfDVDyS5ovah2sXr4pbVPLBqAglrzr5wCD9SHFMYYRPIm5rA2iImO2mJIIRYiMTkvfBy/upmhYPp6vaost9Nr7JtmEcG39kKh5Q4as+ebyVMV59VX17j4niig1A2qktH43vi6UhKHofEZ3RTInJUoPqjmDVe15jrEtwWcsbiwfC11JjkD9R3iu157SKsxOuGYFODVGrOWTl8FDh1LDGBUyWBn/Th4K7iRtPcqiTvMFIiVXwLtNLZYAnKt5AjcWhPU+452bprm/GSyfoCkg/mgLMxtf7MKdCyY/bbWXzavLBH2H5ehk2/8acFoWO1BzY7Q+T7j+a2tXQQJUcFvc7PYwGYiOKadrFzk87NJRX8Yp5YPtRLCZyDxE3VyE5ARK95bRxO3k7Y5ZXAqAN2u62B+VB06FlRBbpK3v55qP7DZFHe0noPFXupiUsCeONqUYlkiBtU9eHMXPofyq6lfxN9Jauq7LM0XypBXS00VhJLS0ivmaYYi/vGKBhVi6CAoI7zAnxWcqww2zJzo6omhmkLxKRxhNg+ruokPq1mP7UVIMaMg24XXOKx0f+eejvc7XJfMC73jbBR00JMPz3HSvgHFp26hBM4E4Se2EdQPxHuJjSNDFcjStIEVd93IGXrmBBGrE0ql7MMv0cGZeHnOJ9hlqmWzhSAh7o4LurrmYHae/cpsYzZ2sQ6IjYLQcrMVZdpcraNoI9r8k4K8P3WjdXXx8qJGYjvq1Shd6l8+iRTbrb7eYGrgxilO/lWUXPPUVKWiGH0BQhjTPbR9Qlro2/6mW/FfDBdOnfyu7mLQh+vwIjBmO3JXmJ+qaBF5Pl2oKnSdrPPQOIr4rBVlPsefha5sfL6s24AESWqr0+sUMChsmBsT11ZooZh7t0h81YYBL9v/m95lCoblfqgpmO36/zFvaiATWREP39D7+nkkLipacj2OyX8wmyxy4vZGc43H5VOjXSVmcSroOTH5PcIV7EDElDyjfTBfJbl+69ZhpQ9UHxAX7orsn5sr+4/rKmLjqGqeJFOELxsOs81zY0c1F5SsDWtXHiVJ4qDpg3vLta4I/51eAG4VbPK+O9DWrcH0VBFpUWsn2mgDDM3J/a9RM3B/e4lCaGZ/phr3b3YRMGAmc1EFccOUz+weKH7nIQAHwZD7W1xBbBG5BccUn2zPXTJAtDBfxRAfPcuvV8gAxf1po7VAzqRGnKSdFZ6a7AyJ3YZQ9iiXijhb/WOb4+DweoCqEiqdXIgq5vH1Yb1TltCQMu9ebZAni0/3gc/QV//JQ5rtNbUe15QGMKC9hrfvbDKnHE/JoYkr9cFhJTxSL31sRyBtMPucJRIEfmDhWRkDcSFashL6DnWgoHrU+TY8/puIs5XYZ6N+oGs9ZqnQW0Sre+WV8Xf1DsKLNVJHG1xCPzCqRtGHGN1oMFOt6aM4zVwDHwTThOwaEpqK9R4pzbEWSAbn3tnEEueIwcf60sIum3hSpX0HajQENemA1rNzSxc3JhervuU6ZEYdZGKgbebuQO+FvBMocmafnOXKqoWqSbgbTtrL3EO6oeUuuSNeBZur+ULEogQX4jiX2/QRq2642938cx5zaXWEPVqP8jj787+I9uhKQLsWrjD8J8XU0LHjxGIQU5Q1zK1crhrN3TRhxuukfvzpC/MFlpcEBDLY2Xo2MAK9oTlpXPo6aLDPA8xsuna5pu58RxmNMICj87Rfb+zKTNGKmKQUSBEWAab+Qut02NLD/ClvQpSLReyK0gUDYnvXYDgDrXKMkoEbiK7nvSX4rv6WOWRwog7ZRqZpuJaPQM0qVHFwGxC4FLVnlmfM2zLtjcGqapNqqvRlS2aBIwLwCYSpXssUZtROt3dyroMIo0qbl8Fl6swMcHr/08Vx1A3nFYC3ufuNFdM8Xga0LzVU2oMWVnbqmhEo8n/xMLTiwLcU40Aj5ABKNi+cWJziaVfwqLZxmhTApyrOtWVnup0Bo+87UP+zJJSIOxOdJ3MrEO7Lkx8Sn8OYkUjAPExYNuezO5iFNpG39jXZ4y9gaL+9rGDviypSdt70eEvC6kG/8IArkVsa/c+YF7UOD7CMemu/lyExK0c/tTQbwYxE3hP6mly7ek8JLO7/6Ak1U/MxR7GZEReQ4hsizoDWCL1odFhcf4U3uD+6ih/TXqyklQNLfJeFOvwIYHvEmDaUTBV0d8FPS4LH2noRvTVwsh6/c8d/sMSXZ0mshOOE3TB2Pkpi1WR9TPJ039im1It83H0BgS5x43rF/Z/23RUMABZgmeXTsFDRWQhdH1YT/Vub1S7NbrKKH7f/KFadn8lgH4+uN9NTbgSPfDNh7rCwsNEEXAwOvdWlyRvM85VIHt5J1ZosOyYLNL93iTFMvE/E5iJU12D/J1RKnovBgKckkjLv5cC8nZQELDU2y/iPyFM9j64l8LatyfXlqa+VOYxAs1YdpvsgfirSfYYfBOm5F1rNrXdCyiqxsl9PogQVv6JJ+2Pw+JPYHcCtdtDUjTmgL5Yw/vfClSSu/fCrKfKZjbND2VaAKWEO51JelRlw5G3B0rjzzAVYKsvUy7V+dmherCjnvrJVVkqygXywz2b0ebJOUHGv6WNBX8/pzR/HYljCQEBL1f4wwo3unLb11PvaCJZzBF0haDOJq6NDHoPc2qQO/FiKcSh0/il9ZR8Sv6u4e4qgHT09izM0R6bcZjCrDaw5y2NBMqClCgXkKQsbl6d8hwOM+Dey9/n8kRttxjY9k4JMvzbJehg8tGNI2wcmjjXIJGPyszIPg0LmrWYKZyqN8Ff5YabNYBvadZvS7x1G3rGE3C8FwuMnW0Faksq14m1j2CoNkaLIeR9O0PYK3CkimKYq/KS80azzCyjruKH7rpQTnbmD1Z24jlNUhHEiJb/YPOoZfv7N2Kl812Gln7fyLyT/tc8o+Qi3FIipaMM2alKO7C3vi1sjcB0ZPlHB8jaUMFxxUe1GKiqDkNP8z5c8QW/5QP6718M4IgrbiVRVGRAwzFj6EtcwhtNvejCPends+/iqBxgS/LoCHNyb8yu8LgEwntwZkHh7Og+scZV4O8ZOyjS4FENSo+YnxgczGEj4qyE9az+aaze+A/pg6Nu54lrIDVi04xRf+gEAUTi7R6rM0n49p2Qy+2QXeH+6LK2eHGQaIjGuucL/ElgHpyigZvcQe7fNfM8/mHVO7tzdBhUBr5//3+3FIqen6CgwW1MIY0LgSEVMvdZ7JHLk2xP5keOb6tAad7CO5s7jVIEm8u1RrP+qu6xECKLpdF4471K9lDGH+ACqYlfeDQUW7kuFhbWDX+K1zeBNhhCkHtI+KIZ+k5EmtEgvnb3qBax4fyq3NUunSWS2kXafZp3BN43oapx9AvDZkmHSdburwMncO/dOgWHRgOjncolL/acD8EaCyPF9S7G3u6/JUv7L2fDppYXEiOnzjd+xk5lXXbIDrz7JmLkDn1ymWkmvEWoHKoFXPdvr172OZdNkdoM9E7LOn20OBjHQ+UzDB3kUrvA58No0b3RX0YqKljFlnJBK+7gjj6K/b6zPRiHmNJ8DwFnW80sDC8NvNL1nfZaoEeM9oTesYeoml2Mb49r+57WMla9LUn4I/TKbnuPLpgXV7m+LqNc/tlXv6TQ3bP0LeFEFURwxYPxhsxqEj/mC+S1n4zg6eDzGxvNDr31mGTeMm01JbUXTzA++4UPs29qXvTkt/xIwJjP568+IMbTDxCZFdR3uCBE6K6CUVKkP7VSYpTOwtjDMlxOLKAHtpLVVQLuhWGkg+yKyW48SXq7t0cLTES7SsMSCuB/saqn5b8uQzY6ArOUq4y8o0rwP5U9oMLG4zrXlS0cD+A7Iaval74AUofblJXPV3qOx7DdEudMn2BBROTlxgsfIOgHLoDWsLu+zY2Ez5k52bnOm4Sodk0QesTmSKUmZaWYD07SYtLdQKMaFBxYoE+CGcsDheH5sx2h/mpEthdc/K+NBlWllFO7lJmDPdRR2LEJIas/WzXf+TnapPcRqN3mpKd0aSSLjhJA8lwfUr+WeMdYeIIf6K6lE05tfH6rzoXQCKvG5/bmjj5wF0BWaRdf+Puabqq7ODabOMM0qHhejjaVVstjpRGljskYQGYA/q1HwGLoDMiXLsdDqr0FHTtjwKU9R9UDVnwgJIxuEg4Y5NbIJwsbw4nybGIeMDjeTKsyTV53JxVzKrLFvj4HDdQOOQViWUxwNNS9W2elvc6WOldnLDMe43ZdOS3AFczAfCzpy6WOhXKSLXXFLv9YtZvhu2rn7tXT9Qwd5Bq7p34BTQdP+zMjXpPN33eNx9VQwerRUn1wtrP61xnq8VRwOckP89GhrKS2UKTffX3yNFuGgsKIg6uwkn0rpT0PQYjnYXZMgK4OYPmUgSGMupzAhjopKUdEDyf4aU+xo81RCkXIcRE1BMzgcK+FYCJqAAD/zibVqzna0sc7uv1TjLu7Z5mOzQzIzAMMip6PAp0PddwD26WLhcPCBO1dgvGDXYlZhHJeWE+wKYsfVwLCQWi3dXU8ZwtXlnOFslsy6AxaGWMdmPUEA5nHTvbl8dPbZMjSe81UWQUT8koxngm+WEexlNGYEEL5t892re7HB0sRLiyzgV/64ChEJ9v38hn3i3pU2Zl0LSK8TONW0NmjEkLizo6BpV00rEuKWVe65KKOPxf3TZHkYhQts4A38Pv99fFvvH/ZvqG7ki77wQW0THB3zCmp9L86vT9hIia3tzt5DTVGNCkrFy/V5yjudTzBcTAVbSFZ137KiG61pdO2lwTOeHDZnAh6xIzbPDiezGmPazDLLk9i4IG4/oa+kvLmclvx+UXDPRIYeH9L87FBSY/84iC2BaxBmMcLwqlQHHuSzJ0q3Am2biqO/JsK/Gnu/2d+Wd2/8rlh1iQm3rVGm6aZ+ZjYkN9SFde6qx/EAkDUepZV+2W6xTPMNu6rEPwMnBZJqWIk2sKwEu0WgGqO1VciDiCJ7F0bJ3AAHJNprVVZ3v3noo9LavD//v1c8CFf3n8qoF4RnTYZlX4jRDp3HlCwsY2gmzb5D1HtMdqyeknNT4b9/ij20J7OOhS4rmgnTmdtCs7ewZvAjVFKMKIwhYZzmO31SBy7vQM6EQ/LLLqrIlJ8Z60E0MOFXRQZLDRlTVYfp+vGS9H3TPaNpgJQfMK403zHHyL/ea0f0bEt7lXFfG28uL0V+CWARWAeLgTdihTKvLHogUN6C/2HTWkW9grnWNl09cnKW6yVtjF/9irXV/as1acmK7Zrp+juSObUmRY8JxkC8NLxgUjjkPAm9MPn4RLUrwXAOLAxpH81+0v4H0vEHmw/pDWA5vh7OuKnH10HsphPTpy8ADXWWDRaLP4eFFykmzgKWnNznXG7SqvhysutUFhNnTeGx1frybcBLYzVj6OtLwbMRc+oviV2YPSGBf9LJuezIUtcoC4U4P1vBCYVAX01wyNR1PYD+Hq3sAyAGdrCNHBmimtmk5ZhkwegMHw1cZ2PFlnTp5kX2wQrLJI7X2xEbIXEExonH8K9DHizgTouyheCiqJ+9n4RW5n4k2Wt7L5L0cWHH3+Tej9wx8C7IjvBCQPrx3Bw0dzszKDv7+4/Nh9/MhsOIVtMxSOyh/qtEcyYOAZRZRmrap1MBWeDUkd0zbtgfwtJgAzFRvFgDC84nv/N71qL30UPYF2XkGpxfbKDiznbQrg+y1Fod4ud/hTrQfKXUYzyJugxdVUPrrMDOCz5DvsbUyLGd7J5AcF0nJf0c7TmDGVzT+kejMo80xXdWVUl2hQ9TE5ZIW7kS/OK9Z/2c9VZQt56HcF9h8fCj/WI9K8UGmvqrPdx0J0RBs6JzpsicQsH1zwFCjSo3sVGafae25CpUMduMVYAF/neAl69dEJWGNmtwl6lk5w+IL74aRxn+emormIQH4iWdmxjOjGH4Bzr8CMPs51KiQU2kQrMfHQNh+vXBxAp79+OYYVO6jJxkJWZlciC6Nn4cXJCAHXhXP3yY2hr3td3q2suyltUfSRHHrmgI3Ljo1z+XTda7qzop7/UWJs2nOFX/5ghGVq9gQn49f27zhUp/N7FK3P7oguQTueRQn/HmaUxOV0UtCixF76ktOwDfOgBAZAoykrfYTOx7kIBSd2JWqQGQJeNe6hXsOS0KDnUCyXuyo4ghyOPqkvIDSNX7oPIVTDWtsKYjtkHZb9qjEwPwZejm/gqPglJTqkUyqr3a8rXla5GbNT25X3adMHpKTnw3JBnL3bk2D3ZFyIpM38E8kudnnpJHjh9PZTTpuWTf6WSMKsKpUnjOwQvfJekqa7NrQtBJ1sduFBWnvQF+nWBF+fGrWb5vOczkn36Cb3yJYwukUqCnMxY3O5Wvk/oMG/8TRSnaFvJrzg/jMqTYJq05Y7nT4Bxr8gqQh7oabFz1P9pasMZGtKUy4VLh0Dez8sK3yoG2+XDBCdWvE7gjQljCQciUtinNjseGyOLQIvC/lB2Cn21AGfYnE2ynLO3XwQuhD+imJem2LhX6P2TdkEEMnSe4AcfrZ0PtjzWahNH1LS240GTwMfJboI62NyWWomyPykKwl6EZr5A9FigSIamhbG9ai+odgN5/TGvCZ1s1cKrNs04rC126nryAZnuZQdGSg1jRCNCWOsumLuwnuKVR10lbJeaV85KzSnQ8GfFWhX44fYnd9cVu/7+Hl6IpgqVZ/Onmm4+7fXL8bEkRi0MaCx/zD5otNtIEqjk3bk/InQLj9Rlya0el/QdHwMEBmwLuYmo1b08zjv/6I0POADQXZZGG5Ww9KAI/yC0rkTXdpERq5Q8xEL7/ZgZjO5UbZnIc8k41TVgF6PCfORPuz3BhlmpZe+fUp0+OFSEljx1uJqH75H5hEMeFQ/PWRn+vuVR71eSnN6grbMZrA3u/vsf2Xiw8me8xouUPKMoaDMTwHGoGg==
Variant 1
DifficultyLevel
566
Question
A cupcake recipe contains 43 cup of sugar.
Which of the following represents the same amount of sugar?
Worked Solution
|
|
43 |
= 4×33×3 |
|
= 129 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cupcake recipe contains $\dfrac{3}{4}$ cup of sugar.
Which of the following represents the same amount of sugar? |
workedSolution |
|||
|-|-|
|$\dfrac{3}{4}$|= $\dfrac{3 \times 3}{4 \times 3}$|
||= $\dfrac{9}{12}$|
|
correctAnswer | |
Answers