20131
U2FsdGVkX1+5/jXf/pZwNUlM5kHQTgLVXvHqPt0Qd3tICPL7Mrxc9/j8jcLw+fsM47ftO6Wp9ceaWbklKjuiODBSuS2RHofbirMaOy6k7Y4dvyg8YuhuAeVij+3f1ryH1U3m4JOb7ZKibgE2m/DhRLc19QrkZlvTAuE9VvzgdQB4GgzAf4ERO+uVFVAQPTJgbH8n9VxNKufRDk2d/7DDvGN0soTzrYApPoWgouWJ9Z6cPOuLbhPBqpMnKdiNc1uftLLe5bTJyntw9MOsk04IhMGwK1VCjCBIkBDbX6G50XW/BFmdjgkamBb+CVfhxD6XraSlugROBUj6JGG8tgkBtuEqNt2jtNb4n7U0PU0eV+l3jSV3GpPQ0cRaD/JXlTrdfo0q/gZWtbdTm9o6vYnm6b6ZxLicJmtJrBWBpBYy4EsTpo9erzxU69eg9B3FY4iIz81nd1aguu0yRR71fHt3opKZ0xLfZQvCok/FlI9YE425uc08qFVZVvEFPZOSSAxGSnwNmbSNfOi4SCGkw+qAPnCYR2qg9Xf7LopjeJvGGmOD7AtuHMttO5J+gRWwKeYA2NzTW8qd/KNauhKMDBbdZW7CK8PCq8C5VY962qfK2bOye9ppxmsZAahCDrQVR0Cgv+22Sz2HupeufCm5ccpQEmh7gGviH6Xjbtc1OdYOYohin6ZnT3ua7UhudtWXYRl1+SQyzndY5DucrGvf5w5Bat93tyGGu1BlfGv/2prMswA0XCZSQraNwuZbt/eRVp4dvGgk468qxP7YxICW89X18V+dse/jTJspzMasCrfySdLf5ycTNpmx3zBrwzYAOxioOeUQjUi5+GB8pd2yfWSM8e+1MrYUWHEXEiZUfcPbmF4Czkc5NsPSTNporr6oZU1fA3JGlVgpmuXUzzdPE4aLJuH86kCnYGZe34KiRuWdMspFFJuWRZ7nIBgFfA67fM1FwK6KGWarJawxvsDKvyYXDzU0Xy8CrHfBTwZyzAa2QFScml4Kg7Q5Kz6GySa2IidFdQ3te4uoYpvn/Ij1SauAl4V8TGD8M5HBIgW+uwDZ3EfmDSV/UwYQFxiOMgApvAQjNOk4jNE7JrzGvMx0VKwmPF6A1PpEo3rtGYXeJSAqp5aoXWxDIAM7Zvs12dEZYCjSWIouXeIYS4NHiP88O40V9b/vExPLL9DCGUGp4L2GCRXcdQzzsZlGvtZXqFSut+qmTvpvX31nnS9nEsBUOsbuh/tyY3SdFjjyTJ8TbzBN+abVwFm3LdJEyHSYCyrAGG4OLOM7D76lLXL1ZrlydAI/sKpugQBGLYzgQyteeb8wypa7/VyLKM/QtfolSrAAhW1ltxT+q8U/J89VzIerjOh/deKFq7q5y+SfqXw7bf+IAPCEseDLxvkrqvqlDsWOLKBJiIPqZVk7V8g8XAEP/2o/5qLM8pVqkmnn54tVVdoUYI8g8SqbKCVYM3oxrluJ0Vwx7UEZqnYQOpuNyr6SDNUvLSUqhEyCMjY04PKsbLGjU8yViz1u7GhAhiF1zJ4chXam5Sst3ytRTdlqRWHxic20He+I9fEmpobiCiFlpIeFV3C6A0A5vngkQPkUCEqxk/DazJi2Geyeh4JS06FTdxpzd7bBDhycukAE37bjp9AN6Lcx3b5tN0/p5Xu8omUG9BRE3z2pDhUHEECBjLY2gAfJYmaZMqQHqR/bj65yi/aIB0TsAhn5i7cAgagTkqM7pHDp+z+anV4r21wgaffkVmnpFAHB+q4kmD5D7MoqFce1DqNLKevgQSQjQxzgfmh5+Mny+oLKGXLVGTFBU/iVixS6Wse+Hb/iVflD7NNjik5GG2P0pkNV6KgfAiFgaarKyLa6uz9v2inoRGT0M0/pm27ls+I8gSYczLg028usWse95nU31aJ1wnaUyQhvN5lHfUG9xeZrVAuFjSiaq19XYOi0bM5waFfXG5nP+ocurJmrM5TlJ3/YF8jtkb5l+e9UESXGmzi0kJGTCN5bq1Z0gg42CNTd7MoUPmMjp1bPyNN10ZaIY6N3KAovvf6o9FtbQs9RKZ4DY6/gDITmz7aefYa76ju/z7/AVTY17oeZ6cm/Nfl19pt5xQQDN8wXc0uhV2M26PDipkdUu2cs2Akfc8bB8/1cW/DDijUf+4R/v05Q2DFwnu9wiFTqpm+mPGWwge0wO/1Fr9L3Pj2ylWWtJW2XEddXkh53uuiWyjZpyxWtuRLrN43mtUoCvQyBQd7X5QRkjh5Eue+Q7Qqq1R7dSNFXihCgLqfuXQM0JQEmSwC2qUnViP74boND/f08zyr9pEehbNV4e+VbGHJl4w7ao77g6pIlZJ+aJIVyvnIaoB1oXPB38zX4GBPM/oh2CoyDYeMzQ3IzhyMuT7HY65Ht2co60FSFMBiwVQWdoHy3erDJxePwDeq48vCuH3lsprHXQrrNOxP8v86vacn4KF2xPCMVfMiuruU6qMs+tLo9AF7OsxH+AlymcPrTidWr2BHUuWIFVFPl0LULbuwB4onynT5vBs2hYJhr2c5zOJZghFtj2H6wgkEQV0vGR5nR3eCHbJl0P/K88WcuDGHYAqEXktaf7XZ5Z1vF2F/Y3wZM3Xd/ftCnB/YRQ0fj8I1tbKYfgsGlpyn1JcWD4qHYfnVdC0qAwqZ45FKAjmgZCC1QblrXZSw0Cw0K9H+BxY1GIPYD2HwEAIqiyxYR/QuSY4fXMHxayagqgg9HoSRtwlONksdhof5ZSRzcn38meqyWaTb8MXWznc6Fj5IAQWsQ1wSsfHMp4ftcHd7M65NKPxrA+lvBzIXVU/ew9mQn/ueUba6TErT++4SEuETxVeD4B3A/ZaRa2ur/lnfA9L1G/c4fTj/wgYQ/x83ZcPRFOO9JN2NoI49Ww1KLDrYATb3KY35eA7R92LK03myRVv4Ql/tO212z7QfaZECbFcZ+oDLUlqd4lIJ1CalyqeXRDKxHplSLd1BWPWluu9Hku5G4ObDTp/tHxdFIoWOxy+AcpZc9XaC0NPpSdrjWM46G1Ui8AU/o21jkc3SSd9scgFFmK/Y+Xopui/pWW08V4GVN6iW+KjsznpMZEQrc0NSvqXMS+1r9nHTFLhrbW4Jjs7vTIek4zzipbDNKxRDdT97TwlYyszinXnl5SBE8FHXRjUUGpmY80AkAcS+0QByEQTdU3Io4/TNLVxraGNRB4QXLbQENLZUCuG1BWBc0WNJu7KaioxzQyOU8Go8wQvF7+sF6ofpQViLRyqTBxb3+3mJb5kV5zjfeclV+9DyNR+B7T4NuxNs46HrrqzgznUJ2GNvLUw5HHi3v6p99MY0sXYM8VUG5rL2rFhLSStvXNrq3/8KL49FPib2r98+WnCzVisNWUdsdnha4/mwqK/Ec3GaxJ9tt1eWUXse+JNYAv0Lj74e5RN7PM/74cqXYoptPHqtOdVWkFGA87UvU/xUvWMA+i6KtDjeJZ/vxks9kSq7h370gAdB5la1LXoxYMGPBMKKH44mckNK0kJE9uzfdjbrngJxdcL4PseQFm2giSUanmMcLPfEavl1vSE3mwwX2zZe1LsNiSvIH+XOpfHc3nZV0aErWIV2uXSbLFX/xWAZRr+n4VRkFrN7OjhlXouS7MuDXIpeQEAnwYC4ug/H6pnkEGHq1Lo80ntjqLDx+C0cUhvXTabX2bqCi/VSybNPjKgiBKnbIAaXPUQ9f7D1yzK0upVYHMS1pBOwieyujc9/Z/jw5MkhGqsIIgCDtDRRZp0LMHnKhi3rxMsVxVn8WjxQwF/Dva5I3PxkJlSxlxTdA3cEnQXiO+sB+KMZkxyQuL9+hOml4NY8u6x9RU52OmsiwPLnwV2F7nr4+VdjfpgLLeXV6FpUrb3lAWxF8lo9mcSKIKaB4tSXJ8lYGoZrTjwBmOfgv7bkG5kBwdkfxWZit8JHeRfp6CKSFB+oVigskjouYcwfwgiMTZhf1bxybbC2ZId7utiykqW9otZX7Q9aAXaSwWsgThzmgN/6An+ud1Tn2wjzvcRS50rH0krUseuvbz6EDFih7lbOh+oB/Dcq6pqN0XESzpVny9S0M17/H2ZOcKpHnDtZfHm0aqkep5/Gb+JcujFy48Hpgs0yK5eG/ArKj7bSmiMYCujnfjGrnfywGApSF//DcfnayCMjLTDfdS3O36iR0OEnhX3Xzq5tJYYqd1CJy512ntG0KJeJh+O3J1NwW2fe0Te5O55mKMmFEcag00/uujrzd7DdavaZ0qgYVNwpCqCmS/Nm7YVUR7eiv4rczRsbpAAB0E1ijWH7awZ9pkOQWktOMoCoHjNQhy46KjIbQG21iLVwKobO7Is5BQwIQD+05/AbS+AEu9haMelufXez6VI37x480Cbj1M2wytazUmgyg1TVtZSTd0j9JVazFhGYGilnSdIiUpanhZh7yD5nl4AiQ67IUill/a4PXnbj6Ymjk558Zmfu6e8t5mbGXawFEjbfDSuRGH8J9H1b9i0jOAWBBpGXFZF/mAOdP9Y3Pdi0eZtmmLiclLRLSnMk3Yk7GHFIhFXTQsb28FQ41dy25ja6Al5O/FPYhNEv+LoOoV8Qf6hFXdsTErymdctIjwG+KX6OFX9AOs2lylckeVRa3+0Uweb8DBxMXeBb0oPJfClY4Yhz2lfixxnT3VN4+pqU4hkaBSDAQ+JHQuJvmB43neiQQFFs8WkhlnTlkQZcK96thxDTGn0cgJDqI78w+wXfZ7Oj656pXNdk4y+eXBYYCaf20je+Aq0PmQudzD6B3czfnt07dK4e9fZib8O5a/OKDZENZMuWkniSGXAckyVa7Qmn3hq+qdsTG45ONx2uLj5vPP2VJBUdFM5xS05iCwM4XZ68nVuFZikWfQQv93Kh3kpRPFutxVj5qUB2R3EYK/KOKzV868wFKIMw9OKeRxMQJItTbdxPSbCbtPeis9VAgl+GJcRcqSc0z6fY2erOCnkmWGe33d0birm6oJdzmzzAe95b4alpyw5YH679GiW1BKGZ1r4sBOYW4eXB5hb1LpocK7t/MAw3YgdQ+m5MYDVMUwFlZNfWGrAUEendqqwaRngVfQcjMrEZ1cmtKj8ZAvFZeuMM9ILLaeM3hAO0odZEumaq2jZMi6yUDg73G8KTozSlAmMDWRTUgWXtZH105XQ3PQcn7GkNDzIIfKvd6o6aE9IqZIgoNVn0F4E93SqDVtgAOBpgIELRCVJMnCFCkVnfPDzaHux+JIObxyhrWoFPQNADEdLaGjrS2rqVjyouG+r/sY+zJjtDnI8wdYDGGB/U/qPvUqqUP4dE4Pkp2GSJRo2JsVouvyZ3g0lHsvDfPK0ShePPGlls39d7zGBl4JuksHa7Fpcta3VtsrnMbYqUILyUXbAEBiNUEoWDobJjr1tKgq5jmf3Us2wlREhm4bL1tC7TlwBAgY4NWcImjXk9kNGA416a9KCAejev6m/gAHP+PCBJqXFyttjvzw1FmMPSmH5bWPfro1XSWaNY6B8UYsWP9+isSlo+71ycNR4ko2u/JCIfKln8rtrHfU9uGtPsq/s7Na2IYBS6oa3zryD1Ux0Htcx3RqhDdJdNHULIEjff93q+CaSX3P4b26OduYwkka3DaJ30QBMqU8SNEyRe5WPk9HOWAcxKAyaRroMwB7Eh50LpZyTPacccdQN/lTWX3f/+dyH1GYfHE6LgVtuSh4QG7tpdENtdgN9bXPtnCHCFg+AA7cDnWPof1wAxWDxItNIh0FHdMWT4QAIl7LwCX2cUaWpFT6/RaGSibzdZ6xUrgodM2Yih/xwS71kFhLSf3iw3CDLtdoo3fj+T1zv6qKpkOJEHoYJ9AEIhapVko13ZPZDWY5wNoD666wCuRiEGGhmwgl+e9KTnrhrmzbHiRrEFjT/gQZ6D4Se5KRwupnCQJDo281CNvWB1irZQC7Tok2ME+D/jh379xil5MF3ljb3EvF0d/v4xqZRek7EOga+uo5j+JVE5pG89hbeAS1fbTeAU28PBaoglWvvcm4eT2pRjBNFzrqWKgRv2mMpzz5Fni0Os+S5BjY5GZ1eu7S1R0uszups9S4WigJShxZuq9e2mV4vMTXXvJVw7rufToUpt+F5rgHqSsVvsrMpe/mSRjjfZm6oI65JgxRvf1h46g3vD32zIaCKJX6A24cSax68CbUrqwNQ6q3N34gAihZnbkpQlFEQLJs2Y5gXFFThPj2RveKGwTQDcoQmTTI7cou8L00yCUYIaKjbJHOFxwNj4h5zJckFCpZwQ5KGwp0WJM0q+3uDygJzTzDvv3O8zch390KYSxHklvneONtWIN0gLMXTGQnhgChZay9w49X0aSpyEet6HaaE9tGx2VhRehzIDRu+5l3/94tQw7YfrGQYl45lCDTjl5QNkFY6nDzh5qoNeFmICT1u8Qfxd7gPcyKpsbqmSacJbRNevkH9XhM/UfeDLDk5da5u5YurVCX+nPSN3LI9R7lrpQ50aR8UjYQV1U8+CE6nGtrcIUymhQWmzBjbNCwh0gbOBr3S0UZvwyNClU7kZj+J/7JWVZCXHsBcqGAeZ/LXGVsWhBZ8xuQRkB+BIi801dfU5iG5VPO51Ev9awu2VOBn2gXCPBg3X9H21zV981fh/jdayArbRJHuyaEEi+kFgKaAj2FkaydV0SvnC+RwVCxqiaBcCRxdnqEFOA+6TZgQa10+F4lo9iYYy1bHRWBczSFnTy46JWx1MVU4Lx53w5HOmGge7l++SdOOGm+m/CUx7cupwHsbWP6Zm+fBAC88XN0fMZEL6hXnbMzEEviltDwrE9AEOid4H0/+6ZagLnhLx7eM4sfpeykr4uwQZkGqEFYF1bO+SsODFF7ALzLlbP0/xmMYhb4nlkTUIthwNAZyfF9/dtorf7hOb69o4UJ/Zas/DULxxLnmxu+sYLj+oZ+nLEJsMcEyniB3QnsNYvP7oBmD75mn/ri7GtsDG46S4JQ3qfEIVyBkwbRe5SIsBSAxRH5+rbmHIIrIx4XAKaIhSDBC3AcmTyBGIErtjB2fQjV8BlmRGciwlwgBeX5sb61FYMRwwRbEs3m3K1+3HsmdvQHW4DknrQwFWbLGe0JZxPYN6BEzAN7MN5MmeuvN7E24Y8da3JS+7mMKUJp9uPE0rtfkBadCc1vvdSm+/Ll9EcHEdUFGvcjLxfTxDiJucLKlpMrSlzHgRQrBOM2ztCbLobZVn4dCutbi6Wh5v8ZQ3cp7SOW/8XxyrpwT8gsMnBFvKfeNLylcQcw0Zc06W2OzDNNkdbH0w49hnv3JZpAoySC+oTmWiiwh5647qhexWLqDZf4XhNkqBCSNLw7g1VKxNs0Pz+Ei2hN1bDich9VqU+hh7FeqBavqlsp7bRCkf4SxlKPb/DRM/BjQJT/YX6NmH8FsJp236M+9vlBBg+nP0nnzUFHYnQiSS3wxKVdGnandZxFhatQooHpIJvaklZYDivaDk05uNGHQ4fwRtkVxgcsdMdiTB2CL2AxwwX321AoVA4iqHmHAAYRdmZnupMPHj39PCbzsguCLgH0rMBoPNosKG7oozfOMXK6BxjVXxNqER702XpH7wFX+OCn82DF5htKWsx5yV2lhOX7zlk5pGht4aAV6LAasRK7btoBUcjfG8hckCkS6MSlCOlY4o4r4+c5pRqpJcGL4PKXUHInQ2uwkLMmp9YKE0XnuMAZo1PhGLC6THYkeTXQfeFMuVFDS7KvXMCCTCLmQcsk4nadzUpQtaAu2a08iifKap5cxKvD7mYQKlFZRdylqOntt/z+S9sPHM23lIqv3P3ROk62ciNvOFD3vzy9mZuaCPwZmyGEl6TepD/U44bjJcz70AV41ooYlhr1AP9v6vs3miiyTuUOjbEhenetBjFLH6momEAewWlzfS/4zU4rVdQezLx9qakEa0LnCt/8PxMd1H/xcZ9fvDWq70IhK4aiH934WHGSLdklqKawztOHjvBDirKWtqNw+m7IbHtzzClED8CPutp24XxSBrIFav0LW48VNYOgRKKsyrJu1p1rVbiQyx27JWF4VE+jAJqNx/6DbvpshyQ5QCY4QwW/uJ5zEwCYlXzMqLKnApk/U00CcPub3hgGCLa/9Dit0dQu+HXULyWjQnTmGyYH78FQOCC4ObAdpHqYBiD83RMxxOr8AQkN6Qh21A8HX79s+kuVs/iKD7XzEgXXg9jrKLX6RHAmY8cyZ6Yzt1snpYdw0++jKnB8BdrvKwxcktcpBPriIYCSld3T5gWMIfmo8qKuBwgMtc=
Variant 0
DifficultyLevel
609
Question
Alison's petrol tank was empty.
She then spent $55 filling her tank up to half way at a cost of $1.55 per litre.
Approximately how much petrol can Alison's petrol tank hold when it is full?
Worked Solution
|
|
Volume of half tank |
= 1.5555 |
|
= 35.48 … |
∴ Volume of full tank
|
|
|
≈ 2 × 35.48 |
|
≈ 70.96 |
|
≈ 71 litres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Alison's petrol tank was empty.
She then spent \$55 filling her tank up to half way at a cost of \$1.55 per litre.
Approximately how much petrol can Alison's petrol tank hold when it is full? |
workedSolution |
| | |
| ------------ | -------------------------------------------- |
| Volume of half tank | = $\dfrac{55}{1.55}$ |
| | = 35.48 $\dots$ |
$\therefore$ Volume of full tank
> > | | |
| ------------ | -------------------------------------------- |
| | $\approx$ 2 $\times \ 35.48$ |
| | $\approx$ 70.96 |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18tGHvvLNGR1h6XskjjoNpANmJKOSPxCP+jA4dBdcSKP+Cj0ay2EFvZt7fjJkHRmHyIaiwfMmuIS5AbRGsqdCF2xvDOt0KBWK37Gu6WPWho/9gEzT8mGxtpvx8W6r/D9L5XavGBxi46wtCKBdfQTlz4fbzQVC5GGEiN0bSUjj9AiUTCwWRA7rhmvm2PvgiDh78nqZYKrQrfpaHq89ISSP5rQVVzeiA9pZ25wheDMAxEePu5YbBLip+x2wu9bn0Dtf8kdyOtr4CSvFWGkNBP0K4ivObfiQeQfKwohDpiyXpTiZa6qBtnl/n8FoCRkmbCSmgvbpojef8XJ5vQjnuVV66KNNGBcmtPQBLub1Pr8gjze4NGN4fS6U9WW/X0QU3+/s61i+6bxkXq5YvONyKLPFzY7LC+/Vlh8xYsFWEy5pHUgcDk3r0fZ+q1ggMF8C9hN5NTd5KiJ6sPYStXJBi8iyDcywYFAwg9JyVYwS8nET7kSV6f/2tq/AI6vS7d5+ZHYqC5s1tV3s9+6PM9P6r4gbG2oaXB0yxR4+fMa3TEojEnExOjoz2j+G8ekqx0/fAjvVTYO/F6ugXaImHOJ5XlBPSzV62mccn1s4xlG2DBEJIHXbwB/F9I6D4WWlaHLzGA+FHXbULUCryrhWcplIfYy1wKJuEw/saa5ftGif8rk2S/jZcy+msiNXa+IKahuvEetoas39uiCbyK0Uq3+qKfO6jxcrIq/QjpShEs4Dw9p6DqUKIY2UQ6PN7MSzHXNp7gXbXsF8iKnOVvyz/R2c+gYh7u9qi2UO+DrT6YZH7tpbwd/MyCBJM5DcNvTfmdbISURj6rOb777idrejJ7ww1pYCMOCp7kEsm68hkRHOpJYR2vHUOsTnaKuDE1C4MMUGNl83RIhgApPaSCvEkCvAReFnCwj47mKqHHUyLbLIkGCRX2V+C3BrO4nTDR25l7Fpx6OsCjIexUlq5o24Ewa3zpOPllnBi+eJfTdHBJqyqC5vu2QddKgVYB1nGixxTFrlS5hLkfk+V5rO5zPOC13XJp9ENuROJPd3EvMT9mUy6o3Dt62kWnFHqa92XgeoDVkgzRqK3rZ7Lo6M+3yCl67jEV3Eox71xYxCoTWxYsUbqvE2usxU918z/fC29zSPlYyx9jza2arV25Z9QNBerQ3vHInp4GkxGWTVNMWl9JHizEZ7yqLj3wIdeF2hSw2axmMHztNvv7XbTgvD2svFTH2Z4xDZS4284Yf2proTicwH47Jzo4yW6TcQKTeLOjPdN/QFLnLTb8owhQIvtNloK7kqXC6O3OzT3IIWYG31Jxj77pOSyMzapqc3XiIii4QQcW2K0ycmn7BrRIv6IKMAMW/Fo8iRfnvJALXzN2Axp1/u8N8fA5Ta90MfgMamTMjTYEo08g9r7a6cRtYQCHjDEEKaKLEZ8pzSakNsPqLkKFxPwhQzFhBRWbgQT1RnAv4pqpFRAd6sGlF/azPpOsvEMo0oqMGNgSHTHUF/0kZYLd7GK2F6bIzLNhjoRo1PGfy96DPtnI3Gr5unhPIvZsa81QOCdNRW+2duukxHxpMI1CxHtyR957nqF9JR2/3rJV32fyDcNnfCejdscqn6ghPbbcovgXOOu6NQNz7OckKzxiSpjuvKhvEaZz3E934womDVG0P340HkPaHnJBOtyvr2wrbITK7VAEiQfPKu8VbnjoEYD2j0knKI0vg1zSZdHgdv4HTHDLJZAkC2gvEdhI0HX0TJsPzbTcKhWkPFhF6S016S4ktU9tOKw4oGU+4YTxVVCGOyQtg1ExujY2k1Ha1OJc4pHMrX+gigkah9/41lRokGB7umVSF4rGOG1DH5ZoXFHxL4+MviQygU2JqJD6hRJWBd9iU2rwn/RGA+f+Wq85oaHeQS3JICpilXQcCLGzAtJovADFmacgQuJSwrcat5tHsuzhyTnGK8ky0HpVj8wTw+xC002/1I2HKiTA6Zs7n7MRE5mb7/fcZz17KmYFBclzA+qozUxcWFHz2fAJDosWyXy5J71slvdHaZ29Sr4dfk2x95U2p2SYS2660E5B2VQ3EpgXN8wkeKhCnAyFotfV48pGLF5srZ49UBFhOWq+b8JGQp689xXYE9OZdN+2uyGVvAowt4LwnVrdAG7IyYiyBDKJZdc2maAVfK58QEeunkSXzd/IKoA7JQ3W1pEljCzglxtwg1Ko30hXIzcOikMaaKnrPk99u5ortBnLi5jy6Vn0e7Kikf0dtJzG8q+CAQlTnaaxEw488lYH+etUNDJeNifqK7MGJIKJqAqqqgxBYlhK6UOOd83mruLxDSFhhX1hxn6dUPBUneMIktGtQ4aVB/FfLbliY8BS4AoNXlCRl3yRmvE+GR7N7kpRdj067jXBoXKrC6tlEcceDtPbGubPE5OxVxJF9tjmcYhkrIbx11J1wi59+cSp4EumaoG3x6Fa+JoMSJprw292YJ/uS+mNrjq7hXJTikTeR5ubARRZQmc9DnBH+47Nfzp3h0pfFgkX7Y+4w5OjMQOynWte3Id0HZ5VHy8UeEgjDtref/l1oJoHKkZiz6hT9CX77L+FEKeCBCxXURC7d8AksDjgqcCAqnZBwLoAWSrbyyD6yeVYYRM3IRtVdfRfhPZYE3BLxHh7QGj/YuMsyEHJ/ryLVDV+QTs4iy6oz0gmFxDyUtUTQ+J1MVccPIlzBn/YmorbXY2AyaAkuJt3U3hUb7Rp/k5usntkGglpgyGe/dQ0J/vmLqQK6gLW4BLygmhS+gLYzatVUNrqkDApcehqyYmRz8v0q3vqdAX1XaF1PwL6UvqoeU/qRz+6vXLtT2+u5myb9NDilsHr+/3lWZKAEbOlYiXTTnnnIQRK97aP5Kvlr+IKaHnwL+2Y9aRByoGlqQE0kwD0n3IHl++coRtWRLKhgZsC66tj0Fpe8FWbuGWIEq4yCtdtj17SVnLXaTvcqmROnC2sLmn1ac4Phq8nvn2tqdgvVWvXSkEB4XuzIb92xwC6ooCqPnoqA8gx/JeGHU8LuA9mhAn5fPmjrCTbX9XSWgbbMImr3A5OkQk9qEwahu+SL2DhqXncXxQOpn7GjLDp+LVclcCir3O4YD05+JBWKa/YtiogOhIcZaz1ANrMp2BcLSd/ZNiJJk770FgZDU1edB20s/xbHh2wm2KVplD2/CEkep1VgUJSBmgDNiaYWbZUI9AwjinvI6yumZ/eat5H7sIzoidTwfNvSj9YiNxw0DpcAtBqilhsVgAJ/mLtCShzhgbGzBhdcn8qHPL0agB5E5Se4v9AAl/87rNKT+EKg6Akub9NqJDJpx7Og584BKJhLL8yvCSGKXb/c9JSC2AZ5zBDrcap8QfWRnEzaQhMVd43YUFmHym7fmVGcgtR4GG1WaEyrlDH01Aj2/DpEM/YRf/gAnF4RXaFOSsAHcR8btqa41dWD4q29LtX2bEgJp4hIGVa0zas39Dl/RA7duZclBvk/K7wwsnM5oZa/ls4QFJFSHNp24n9vwCjAjueF9kOt6GhMvYYVOzYo38mYhdzce658eKa1Q1jatL1ZLtiRLr9nsavQBzpH1ZeDAetIQEnDayIULc4X65o/Dz8Xe0BCJz2UKayPHmYIARXAG8RCck0xjEC6V045RS1mLxfVeSAf3vPIBxmNiwxLLW92BBqpqKJHZxyspISMa0CUYuE+ajQDL8cOkx+kIfgxHDhXVUy/MU0hKPa2NQvzEeypE/l2o5J1TjJ/o0en9jxDJnnE/F3ijMzCwOJhE6XIzhccDIJpeK5yF7rC/e8AsFBEuFD3bcSWNQKP7CP5VpzJbyfukdNskWUAbyYRF4tR2FwKxUPJ3LoW8M3CF9VKbdb0ZTDeMucCqGC8gSGIdekHNsqh87O2WHQ8x9BO7y1mrgzZDIrKgi9CcG2Awm3X/hT0uvtF1+Dq89EwcLcyQDMp8qRYx8JKKDhH8wiKhhAO7Y10HSEkc7wHwnIQGOI0Yf1KV73AAU8a6DwLWEtgG1V9imK/jSGXON48Oxhv+L3REFlKBNkeNS6i1M7Dif8onLmB/OhEgTu8cRHkMBx9W5sDLxaZ6SgxFlE9Lsj2Ki/rySJOYEGqMhMhNrh8LjgrpU8bydQUwsj+/zP4UMgU57TC59EIW4CpQIrOX6eds7OcWE2TLwOFgC64YE5VE6ZXiKcjVv+NT84T03Jlwfx12tuF6eH03Tew5z+7GFhyFMSsXYeQiNxcFWiR7oVMH+I+v3PhH1XTigRtTwRWoc7WXN+k+q9HfABlv+r5QACoTcSRPqBshkDm86VVTsdDGX8QwIR1vFAJRXUApTekXcx2Frr1Xj+Gg4jic0T72tNLH8H/maKa1JBhaC1OILC//tMDo2hd+z+iJPipinoDfMBE/6QdhW72yH+PWi835OFlVoqGjRilO1OeDT40IN3EVmdeQvyrJO1GEuh/Eq7uwzdVNVU81Jr58VAEIaXOo/gOp4ShEmVT43roaNbvjYg43X9T7rEN2WlDpaLWS3jFFF32hriFGb/C11SNmCRJjDpjfolAdh65CpCzdb9zYzmMvrrdV6d2y59iGiP7i0/APGAXzU3luVvZFINfpPPMFhxR6vBIdFs6On+L+N0jWFbbO9HWgRFJ/p+Q3Ujh/LCtPC7E8nnJR6HZn2s6gGhSV9e7l/8ElIz6Ng4CIw7miC1Toa72oZSsjtsMyuGZ+MbFY0q6C35JMrNvvGHYuunXnAm0lTScBCQDZL48XDUBKyhWkZal+6V51i8N4Cg5eaFaFcA7LNJdNzoruEI68D2rbD5xrvVv1qz9/pgLF4+UyGQRuvwEFh3ka2HgA11AstLqc4mWHTay1yyC1QjOQvfYGI0R8+VNPAUkCZtWiHmQL38QPhhL4B5tsLp3VgvLpRWcppLwcsJh3L0mMD5lxNcrqEh8RS7ND9EVBmtSU56aa0KILruefAO98rcPa8dQ9i6UPNE4mnAqMm9jQ3OdVelQlR7m2AMKvbegLm3tTP5QXY/d1W0aeJOwsbQBc80YCS9L0UHOz9jS/B4ZOZWpCdLNKGmkJdZFtVhKDtoVGJgVGM1d5OcJd8q9q8jjlq5/gsuZYVxIOhgPrc8DOBjzPiJNNjQskGek+QnhOEVSnqmBhWNETqqFxeVyRsH1SiGRkoaCib/KCpjEKS+dGC2OJKVyCVp7/l/pj2MjZGaOOzvh2rfW1uQU0SpNBPm/TY5SK/MP8aT9WNKyTJk4S2wUTePN7apgsxHZ4DDKSgg7nXMQFUnBYGevjgN/jiF5sjDcBmzgidePDh0BwfMNA7pq1YQqVg5Y3jMzyyA8w+28UibC/xrCg3NcauRv1Dls2pqozDasDFleH0HLZDj0I+oKvBHGlDyp88bKIMAhP2BF92sqTN56WpxdGlHSA6hOGTC42wqlTtiRClFbP4n23eSndLxBr46jGdWee9D/nvQqNX21qXRzPkfOexhQUaT4AZGprh4ssgE/Oa8ZGSfoW/Hr0KxIwcs7pOEObekH3V02DJ2nyGmcmbF5Ra15hcm7uWBwCXUNjWVsm/RBkLI0/G1MyjdsfaLJUfVxwaEEuddC015hT6CUbOMTJH2kSfRjTv4e/d865YXqYqlQEU6vNfWObesNQuM7cUDeRjQSL5SD++Ir6zWZVgfqtIYQ5cABJI97N/zx2cp8uc4rR3rqmJa9YPNOPpeXhz2x8sc832JuRfW19tJi4xR6M5jVvNTGH/SedwfnHFOK+8ww2wGMpToooQQ8QG3K3DksNZ2XyIcBAK9HqFygOjU/abOAajcngm7mVU4UR2lNNZUQcTlzEvvQIHDq2RiWzEFYCT/6/U0//eGoK3tl5/mCUFbMcAKLzmyjDO/fGArmvnAePcqrbhgyI2w89xhX6hVq0Wz9TICQwXuNeHyz7AfFpwWcYRykO0mwliTHFahOUX+YJo/M+5OwebXoEitXCGMkfmtmIbPDdjC2rz/P5a6VTBixeM8LwkpOOWzpYwzp2XQxCym4WgUn3JmJhQ71wiKJt3DNEmr+KUJPRXzd+16s1BCZtvr0xIuixet3UPcOSisE63d9GKCS23bxpxHAQMCRgby8gLsGgPcdqIEEHQFO64BWh0lzb/f5kC51MoooMpkkfa/rwmg7xbOKHg+l1vlSO3/pjuiHkz9T9dzqdrRTWUH3W8gqJNETb56R77peCPP173WEt3CJ5KGS0EM8sPs6wQVI1s+boK8v0x9KE7WUT2ce1r3mvWTNJBChN9LFmhWnTKgvLU1rmj68JQi8hIf3vuWUTBaPreZyaJPyQb4b3fpXnItFp16VrTTWK0J369Pjp2hs/9NfIST8+s46E6wG19JhLi0gC8gHCYNFJBY8HoEhy6VGoyP0uhpF9g9gdx+8XJ31Mr48By+zBTO8tl/g5+yTjQ+6bHRFeTysgvsXqU/Fu037doNiunSRWi5JQcPVSMr+0tT/JYqW1WJ5cKaTqKMuBdVAO/1iU3qEUinm1/0zHLuGCstsUwdbOenLVQROd/aEH8NgbHrsghCeP3mIy7bY3HE85BEisqOImOQZbei6Q/n/QI/5qjAGJFH2+gANjHTlGj0lKMI9rb8V55LEeY1XtY6vrv3NEYPVe/1b/BqTS9FsUOo9gQy9JnawlIRaEjAQvppRPWSi/HkGKs3SrfDmi/NlfE2ilKtSFNIjd28eeFe7i9VatRc7tz4qyoecuUxLE/R8t7yTwswailU0kP2ST7U9Me6Ug3WuwXgNbhRHfzezLe03th7Ytl4dNOeRj/zz/W1+ZeFi++bBEhc1Ev9N5GaqpcKSDTzeUw9d0qBKTzRP6u57z8epjKRa5X1myTOMONXMEuKaK4EeJPGxDkXCwJxOHn3H4kBPt2QpSMUIiPaPO4herraWESLK4Y275ZzaCnAdeyK+pHKhLm38GRsdLs7vtIK+4yn1N0Dmt9yKMrgqG4CD6Gs+FrOp0CjDjknV6ZGEp1rRf6+t1sIffyBWvIRhE4WjZlHcJGZQJqoQeqC1GppyxVt43pF/jtVYpCW2QQaqBXs0G+9JG8Eskt8+qAL5+wOIpi4e8+YjioPeSJ6qbcHb3t/DJe8Jjgphx0z8V3yIKhbRxuA23XaYSiVF1nEs/1QxFgNJwLOvcj6QvGg42hTKeeF65kkzWVZ3UyXqbQg8nAz96RdKlRrc7B8wsz1EdNh7ii66PbjkqeIGNoeS7C9y/+Nhf0XpK6Yglh/vqBBRGJxxa+E1tQ4I5Ou87L19JAEpPQg0o19cufRAQhCH5UtzU3rKmh+UX7KSlgksARXC+QpPOWc3FAtr+tF4RANtwCcsWmFL6YMh5zmr8r+DPJdFRyZMJJmEE19G9FkaB40/B93oLHvKNx0pJnfjIqhP4m0KmzlGKkHqDuzapdToaS9fHrF0pTDuiCAMeoU3KfdIzzKFBy3QLitw97puTY+8HJ5CDvqM1IRTdDek/au2IrD63VxdaRil212Lf1Ia9n9x5RYWS2C6DT2ZnQzY69oegpdV/+jKzjGkvJr0m6/2DeF5DoAMJZMd3VU8gOaZ1gpnNZqBpnHL56S9ND4o8kvyW1FtoCRnBVrNco9cmLPqToOK4xPJPgnqQNSroFpquDRGM7NVWIXT9OaVOMU2gsMSscZbNoqBoD/TqXxuXUolEotW+qX9EKCe9d5Pcw7mWb8ZURe4hpZS0lFEPgR6LEAc1Dg3ZY7hGHdn/ApmB9CxKWTIB47D9kBhkEtYonz2i67g2fpk4iZA+LOe7pN4+5GiKQug+topfM5pS+qZ45ZEhnW4p6GpaKlZxEqbBrbmOLGCtnnW9TWemqDxlRSWwoaeBZaXGmciVzPCLH/cKkKYL4gWH/WptKw4vawCOWxbdu06GQdmXgAKJpgJhhzfN1kPkDYQjzGmt1xFdc33uPTBp+zMKOA2CFw/EF03GjKRKUbpfDqiTec0Sm9kMSvDOH0aLyLifXE2jQcTJl+azndksecT+KlMhg55ngEL5I0BeLQNRZZ5O5Z43bSRoMyF4It+B4EgTBiAI5uZjMH3f7IPu9BKzZfDeAnXQKRje2zDctlGBNKG/lHQ29EHnUGET/l4WTz9H1l9blYiRfZn0q74A==
Variant 1
DifficultyLevel
638
Question
Ryan's petrol tank was empty.
He then spent $51 filling one third of his tank at a cost of $2.29 per litre.
Approximately how much petrol can Ryan's petrol tank hold when it is full?
Worked Solution
|
|
Volume of one-third tank |
= 2.2951 |
|
= 22.27 … |
∴ Volume of full tank
|
|
|
≈ 3 × 22.3 |
|
≈ 66.9 |
|
≈ 67 litres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ryan's petrol tank was empty.
He then spent \$51 filling one third of his tank at a cost of \$2.29 per litre.
Approximately how much petrol can Ryan's petrol tank hold when it is full? |
workedSolution |
| | |
| ------------ | -------------------------------------------- |
| Volume of one-third tank | = $\dfrac{51}{2.29}$ |
| | = 22.27 $\dots$ |
$\therefore$ Volume of full tank
> > | | |
| ------------ | -------------------------------------------- |
| | $\approx$ 3 $\times \ 22.3$ |
| | $\approx$ 66.9 |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18Sr2B8zresbm2Z4HuBHHN9KcEOhKmmfW6sMv5F1F6MK5vIX5gb/7v90gVhDRLTsy7szfYFecdv6miAML/AQuFVKvSeZAt8OmLd/u7Z53YJMLAVdh/R11OyQcMY6/DJgupkka3X18K4bzrgj48ZEcRmIcsM68AmV7t3GC8llZh44PeaWOvNMOWS0hbZmYmViLOYctFXR6ahro8CAfi9kALv5mp4aOmL9TcRr66+rGJIwcvySSv73pLltHG06Fef2BDMI2eQvY1v60/PnYJJ2lUjwWcXOqnxD52c9l3jKulvo7Ea0XOljR1fHVqU/EIYHo1aCID66ArvoT6CJtajUqzvbMglMgEit3u6ewVFJH95BhooQdRUukt9jFbxSsdf5Q4BrvEwywJDN+G2Uw5Exfsu9nDRBNQ4+s+66M3Bp7x/qSbUBBJOs9ntufGCX20jPwSASklT29UcL3EyojKWjEHC97LtO+22bQM4d92LEs3L7545gz+y7RAifG1q15ylo8WsFj5m1weFQmMcwsaUAPE6/OjqtVqhoqEAtwsEgcYlU84qnBhXBJKBFStyxUXIBV8fZBgkA49xlRm+JdRILHyKY2sCND3oyFLb1MZ/TzHP9/va1flXnPwNNf8RW5z3Kz3dURRjZ1koNAVXXJQW9pJOl6FDre6pOj8rtUIKz1K1Zo+X+1PmjOJnl3rh4qq4sTx+p3dx8lFUsrKR7GfgWL0kQn5jm/BfOiDoz/60Hn00rUY3MRbue2fv8mJuKIIO3nT5jBmf37prJDJOIRCMtZmffrP5taK+6nvxt5wMAYd8D48UMrwQkMmFl3/yBarRZLIUJUC/DD6ulKXwTV9GTkB1AJvIhjv8WfJoL9uCxtdHeB1pRwy3gqKGbAeRI5K0fEdbPolcdrKqtdI3hW1tZ0V9crXlva9CXVkdzzniQV/c3CrnUyLC3isLhlDHgLgLyaS/qdFIh7dqXR/rtxGp5B156z9+s+1IkLNC5h2BbRYdoQoaMu/STCZQx0fkYc8CltYiwYV6vNb9pjiJDMiFSIU+3Gcj5EuH+I9Z4Asv/pI/6j9lftjP1ko/QOU5IduyrjgTcFhdEiC1t5mNz2t1EC/hsoIwJKjmLBtifBCyh0Nifb3pNoTFsWo3H6wDyT3BBfOWV1GCQcHCUyY598jWvDORp0h8ZINevGnxa8QIqJwbsMUuTeoH7tiWRkiWCSrEmHfj3SkOrb6aNGOMKLrK86LD/phB9A4E8siVopp9MPrrmhIj1nutnxr5kGUkK0CN9yAE8lyBs2AgJXxXSG69C+IeezHiQ42ox7uIR2fCWAhTPRKXCwHI8CFS1DfCEOLmA7k03uoKqTad5GgJvfVDwweI14qnSgntdhHptFZ914PiMrvCAeMd8EHMAHet8dyZd4ZmwuuipJvMjsWo3zjhBeLt7Pk08ungzQe99Znyp+FhVX2txd8NP46SVJsjgL5KBCV92OBoMAq6ngIOCAP5IrGZSWfE0treuy4ynRwFTCDId9EoBqpomPzljl5lS7RpRf0rGdWymnNDjHsve/U1axKBp98T5Qgog5CD4wFnWli2obYA6naKwJTkukqBEIzbbDPwoDZ3OWZpEEcMuRRkEUIwT2W27Hcwml/3o6jXpC+0pn3kfNYjs5dguGnKB1jvg1EXJwElOR7EQwalOOeYtyEqeS3tN6yTb4woMLzd9vaXq91qOMVgbQSZFdqU4bIIzhbX0kf3DIVWy1IL+fF2wqUsdKLGX/vilXzzmc+YUpgwZUWrWnrtLk12Y6GQzGUi5yqqpuXJjU3NJkpH+AWooaZ6xM6w0oiu46oF0wFysa4+ujRb2LWh0IVcckXf+d76S1Stwmyi+6DxrbxxpaAorwuI+FR4jiUGWWExwiOzqxQ6AUwQNK9DiDE3tfhQSDpP2CGHZJ0foD4czbStDTIzTzcvR2lBAOGwF/QWfdyQmSZLWTRE2exADMu8My2hBMtkXIlWBqNwR/AHOY7zx0Eqb7pW0R1n02ah+7BBs1jxtLJKoicF1q1I3loauwzjjwcPWKyHNpeygaQ6NP4SUn8gEd8fB3z+/Os1cHlxyx4pQaMn99MuuY61/JLW7CSxFSXsL09kaH5ccgKMJbj9ZIW70qrURmwm1apOb5eJjAoLnbWt3yOOhK2V2oASzWBmtkT/Kjyekc/f41JGOkhhrV7t8Bo+3cHme927QYIJZ7aYRpxb7entTTA2J4etAcbdOZCczmtN8piPvMeMLbCQCAGTID4CoUCXfjx5fD/arn/ENa0DoNz9qri7oTXQHCsVNgsSotl7KHEUqwRBEiX0450Ag/uhMUOk4leaZ3Vr4uRXSSI3N20nAuP//hIEzskVUsP/sMtbrWYPKq2Q+A7zxuxVomc15z6u1wLDxTociJm5QloBsNhG9T7/pbq/B9P5s0v9v1a9iK6rEk6qRIiY+BL1H4X6fdu6FuPiiSZvcdhljirerlbMZmuOsrgi0LHR6EZsGv4QxpeN337GEwjuXit2h2k53gW/0cOPb1nd8uOTKoa4LGfw27kVjRb2gcItz53aPMHwKjZsBoTAxDdIO6OeP3bWoDOVzXELbbR7/7D+uagVpWLiSriyAdIzoBnS9NsGoI2PcPs5VMHhkkzqSSXkdsV2t9dtTfWf6XeT8cE56TDU35L7Dpx/EpfTuQl2l4Ktqx6AE6kkwIG3eRDJdLMBp6GRYLZerg4iHmWy0NgA1C6/FKqfjBR18y1OAz3948H/LJ42UcMDINQNwmFaWwJXgcCXFnAbgWv9vXxbL5R3uup/70K8a+aK7J4gaujmVjykV2IQ+9RmASqekgTSFVAKIv2lt3bcZacxcxi/h7hUP92cGRWVTEacSSANNHH0+LdUPugyA6N9xrPcxYWQhBjBoEfewQ/7Zxby/y3lgxYl72DDhvTGKABc7ZCiGmQpiFTiUy9uxp44zqLTr2K92iYEqIyBbY3XDqS3h/YPDV2s/tDNy61/4v6Mc0H4scp5/ILhrK8liHuqF5EuPwhmL/EJ+KjMnTDukEPjjwFahJnR0mGtvCpMM/+SnhG1/tmJ0D0vuUxPuNmjcG7vOemRSuFMIYYHWdk0rE+LpXZK9Hq4ZZg62I6n9KCXmvSues45rZTHko84Vdqj7tNIPTavheryAEWwRbjQov1h6PVddtrbHvelGOEF06WxxN0GutOiWaOdq+SJ710Kz7qkTg69mMr4DegJdgdcy7qN/3pi5tMmedILYDw3Ji5lLWqz+VVeqMAj6QjRo3OId6XxpnRykgsPpVOdkZP0u2kdU+KhraWq36V08PXsOXuishIHVlHdbTHy/CXK5eDHXAtzH9ZjBwjoFmDmjEuM6GD6vUq7cg7irFq87UxStolK6TvsVI7ODDLue9aBy199C5vY9zefF3GcROZ2RVbKfEGjInJA5T/QVEuVE9rg6XShbPB+DfyeBMZQLlEMdtobvVLkKE5gA7aoyy+w8UPB/hebmLZHLKILmwGzjAqN/KG7Id2MkoGxHIoLbsrm2RqlL+dv6QTp/ly74tAP0jXiuXNqtey/zdx1zCaEqSlpgerxbtyT8GV9IW6sgb4yB3qrnPoYskDCPye2FjSwq1v6XTWA40s4Vvy6uRdrDNCwi3uIQmTWiTbK4yCc77AtIr2530A2wuojby/Qw0/wOUh8TTVCYHUY5l/TXzsMrvbeDMST6LXYHCTEJZCel6VDe/kj7gkPp6ELOAR18Nf2BEOwXQ2QSootN0xQE5Whj2qDsi2PGSYexHIOk3tR0cig1pnopnB0zLMnt8LGlPqmLmvt2cgInEWK6yiZxu82E6snXqSw1isIfnoAJ3nWYqy9woBXiAYQvzgDASvUYYcTQvUSHRKP+rOjsTJFNpZagAZniyiivwe26G3UabxG9wL9Bn0bGPgMPSnDkf1MWQ4X45f80D08C5syw/qdlt9OZTxYrD4kvG1hk5NL9BQh8V6t6zZyciT0qSV50Zs2zzwVSPf4icHQ+RbO8sBtBJoYESSRSv+npk5GkDlf6F6ADvmyEmrVOeckof6r78Ivopagwx+BiHkzxhBlGdAy3Whe06kEqNW1SCtBLmL20b2amve05N621MziK5LpQ5pz0Gn29uUqNvmCvw+FhnDbuxgZCfiOZu8N/lCIHfLOfoQwUxIATrjEATfFHeXdYregViToBw/2RPbq+FRuDMPqcvpPaLuwsha8tRacK9XtcjxntRiMFM4SG7xz6dKvmk9W/JhNMFZdcQNRjgFZ+HllubcICXDqcbqzvaEydkoyuSsZ4ZIbBar9WcwU8UhyV71uuJmu0hojJF8o6epFtEvIlQeqd3CVBpvExQLfWo508vcpMKyFJaOpRyovDFKHGhPeXxb6ukD4ejDmIwjWXIYUlXIHJqCpOD6AKSlOUZLDXLgljoi+CkiWsOKpn0RJPfPk9buFPFW1epG/V/p6W+rl74CBgSZCFeq18oWd5g54i2cgUh0V0yUn3GfV90iZxCxCCVGETlUMLqOBwaVDD4jrv/tDLGb64j3LhPx8XsF+UDpX1+p2wEeEadYNqpChjhIMc4129Zj6Ns6IKfZgUInE66EPCyLhQ38BifNw3TIfD8c9mkAmVl9VHilUB1wpDJRFrNry+Q0jmQMEHqLm9FZlaW1WOwQqCkYei4GL6mydNIMYrwyn/VBpN0oPYKgJQg9wuOGCy3cZXm+4rZVBiW62GpbRUXhDe/tP/77tmh3MlYjq/UYFtemhb0NMNEWx4Y2V5mL5AC4191om0dBd8TUtbHtaoNBPRnlh489zQHBRcJ0WTbpy83bc9QuGdzT2KgABvvgLFTGOhWMhfvKX9mDn/f1JaeJReyuSqSExlrpKpkBabfwiYr01/9rP528ID5WNPujlsy2NIbrvZoAORFv4KhWgbaUrHv6x7B+txfh425iIL5WdX2+foHN2FWLxdY1Gw5UuGfsaNz53yo524v0OJYOipCpYaNsCTR7jtgtQENWBbfj5E9VvRKsyhU4j+xwOsX44ysNpwQ4QG8XKZeANEFDPwTt37dRtk/OUA+e5DulI/2bIX6aXjHucUZ40H/fMAk273hOnugWUHdeoXMduzY0UGv+2iCjcIF3sAYzDQS9uI85B3qe7camZvLI5BUSbzihbuuA9Zb8O8gOIQuUdowAgrqXwfi/Ok6GEs52qAC85ejUZcjhDHNk+VV0ybjJEH/sXbb8BNdItPb9q9OEFNahg6SuUxZmXKTqBVN0cg1oPD16DW3WS5sG3i4RkW+5l/CGas96v4FLc46FgmN0wBQh/kta3BRn9o5yI1pFIRVwQbFA0blD9nQ42tiwI+LVt1Ng8i4b3XSsXUXOYMczf6J4vSsugGk6Wfo/RwwUot2gPq/LO6INOfrEB5bFqyXWm6G6dIottp5XDU06/nW668y3mYY3FfJAUg81fmnfOGE3Uls5I25XpsFiMk+x96MxYdELawUzcbi5U3ynP5qT8fpanJ0muDMiGph/NR7Elwwy7ComEP3BFTAsd0UguOg88zgek3gP3rNu4r0hAup51W5y9yDZGAIgRKkLdojUVwqZMhBYc8pX+bYbHcLDE8TnL+0kiXG1rmhu+eTrUj/2Hq89jV8816ymLgA5aJrJLjy0sUaDWld+Djqjx05DcJLf5wMEhcn/I7uTe0quth61K8zqkhk4y7M6TrnyTiX5IvX8lJsqP/Bc6wEYlZQmV5rKZ7/ETjvhGFbOcHOE9vIHfg21rTsi7190ZYothJJOCyyDPfnWl2rXgM0stQw9jhV0Ufn++wbzb/IXn+3jUW98mZAgZVRBfctXrbPGBLsHWFC5Fbm4mXqxLQF7jb4/fPEn/74yIyWsN4dy5bIdefFBcXagYhHA8LeCrdw7pt6HomnF+5Qk/8ujbiA0Rjl8OG4Ga+y7eEmH+NX80V5bs11CusI+3zVJxRhBaE9VyAqZxgAcvNr0bJNxjjSw4Rs3ckbgBy3atLOJm+sk0v/jNfKnT/FzqZQzzu3iJvoaOM+4yt47HfszSOJHWePAeG8IbP9cSzRmzJxyiyohDYEGd4pFve2qiaAbZBQKtWjSCVPKgu7ocPEBDUHluPYCZcDCET4F/56mjgifxN/bqTFhuH/G0pN0HpXdj0SLpRL1PVWhtncqdbKoFA1FK8DzQ3wNLnszlfgaCqNIogAWs9EYJKuk7D7sogMlYHjjG2kp3wpnzwIX2VpZMvRPcEoAN2E+CfhL+0Gbg1iybRWByjtR/oK5NJ89IdWWQH4gd1JkSilEOJuJ3Cc9fIcl0N7LKPy4s6tUf9EvU4hF4wZ0Ko0x10aO1/fimb2BwI/4pGNbdKZ0i9TbRmTadvpFMs0hF9HGROOYyGgbQ42MpuklarFL4V+4glgXwWki9O7ouWUkZk4ytJeCr5UGvC+c0ouq1ycYHbZGo0OPWKcT/XsYT5UpbZWd+BTfk3O52qXEhT0mP9S9/PcODvm/A44PvY0hj9GKGtsN2/aOQNYiOS8nOQq+ZUkT5N8vpAAZsOMfQanzOVQi7MK3/1HvNSlb1Wemmm1+CEDikA4fYxmi1vEIzJ8v7rCLcIgkc7FRQ3Xa6yLl3XduPCMrre6W4NJHtvLPKhMqxHtHtPpOlYhnmiWfol+WsvvJM8H4s6HTnJVbyiwtOfVKU1TCOoMU+2KAt8dp3PCEdn4JL9m7TTXwjClW1897xAL35Cpjp0Gkux6tDNAnHFpLoCqHDHbM3qECRrdkOjBoNZ4J2m3Y1s+m31u/4TXQLMnKcHxDfFQ6D+TSkL7sLbefImPYFssafYTfjhu7qs+Xow+h5vnsWFD5WyayreZHcuW+fT+P339GGpU3pyM7AbBW/ien3bMXQ4RpsDNk+FW3Do/Yp5+tavtNZvLruNMeZ5Ftu2SEwDSliUajwgtURio9Gx0/GO2R0t65RN5eS7TwVH7gm7We4fO1V8gTtZiC8yhTC2C4z+SFxBgjrc8w27aJ07GdatT5H2ClFrX1i6PCzP56ocGbCH/UWZByTzVw7pW7ePRqT1j7eSpElKB/+nNN+c6cHG/ayCqdKnFDWTiyGmZ5ARoyL7TYCLmuFVrX7yWgz7R4uhJc7/j1qc3FZbT+PrDaniifTJq116iAZBRibrQ/kZOnHUG+QKKG2uLF0lD627Cy0eUq8kVoRVC8H2IIOmEJtVlTZkDOotrRyTGGhbrXu5eiPlcbeqnD37JxedQBP9L3VDONf0AyiqXNdnoAhlK/QpLRG8vIwdGxLsHrP9BF6MKgO3shejqcnuzFzSKSDKb7oq8A692thVb/OTrhG0nynfSFegOQ0kUbGuhjzwsua1FnVgk/jT9A0uhd1rTWKsFB9wWZ/m0dgha2y2KnpwRHt5wGvRnAKq77Du+hcW+BYIrsuBaUUJXHH0cAx0nlSlyZ3Qu+4wQY5h7Q+VSS5ROLolc4gnfyZFtst4dkq6ezm3nwoznhYl0AhvDHRcqu75FOkPPRfoSNuiDu7HIGvAhFY401FSxAYL8XMw7lm12wb9afOUny9pVl/elLsouS+GFZwG6U3iMKakx3x/MgdbbDL8INsgOH7WU2NcgI0urYgqKUwU+Kac/3jAU1dpJeYV6ejnZDsoV8VIy1KR6tHbNPvJyHCXYgE9OqkVnpdrcTnMCF2+IIKRHwPzw9LxxobKI/L8FxtsHtuN+WyMNmtnBgQiwdIQz+FqoGxYP+EjO+Cj1fXzhmIvETYv+0HUljwPJGDaiiryM9FZPNa+FeUExq8P+EbhUqRumvaiU5X4tSsD8ljxzJWdn4wNctyTq9d4dbVGFjPN/Et2Qm2vL/qHppPEj0QgGu7PEqn5ug5hDaSCwaPp5VTIgXN4cQe1TJK8aPSVGGcTAK7oOuv0p4skMLPwBK3ujgKKNpvumsQwdCZBqAqDFdw5CtYpfn1TftiZv8OI0X2vQw8DyqkvWdFDgsoALk/RaGJ7DyK4fOhCPNsxpsMsqFqcwrbSXBvrMxyRxv6jWWkGKCwuqsuhiPWTAjrIq2LBalwSkJhjyXjNg+IZvHzMln2spzhItmMP/5HdcgMgcZBnkl8rnXapgCTpaxg66aSzMQ13tEKVxLxRj//mbSeMGcDN+aNh3txTuMPAXPOMxproxOjEj2UYJx/lFpymQPKqVXCoOrt4UGxJHpW8gwlGiIV9BsJmCFjflvb9Gs8L0F9DLCRwrd2
Variant 2
DifficultyLevel
636
Question
Gerry owns a monster truck whose petrol tank was empty.
He then spent $87 filling one quarter of its tank at a cost of $2.09 per litre.
Approximately how much petrol can Gerry's monster truck petrol tank hold when it is full?
Worked Solution
|
|
Volume of quarter tank |
= 2.0987 |
|
= 41.626 … |
∴ Volume of full tank
|
|
|
≈ 4 × 41.63 |
|
≈ 166.52 |
|
≈ 167 litres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Gerry owns a monster truck whose petrol tank was empty.
He then spent \$87 filling one quarter of its tank at a cost of \$2.09 per litre.
Approximately how much petrol can Gerry's monster truck petrol tank hold when it is full? |
workedSolution |
| | |
| ------------ | -------------------------------------------- |
| Volume of quarter tank | = $\dfrac{87}{2.09}$ |
| | = 41.626 $\dots$ |
$\therefore$ Volume of full tank
> > | | |
| ------------ | -------------------------------------------- |
| | $\approx$ 4 $\times \ 41.63$ |
| | $\approx$ 166.52 |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18dF+vmXZi+bYjAfILd0Snbq+grYvuGw6YpbwfcMEF0dwR6gKwMJsguQG5rNCZOMv2vBHnhK9k8qsJLhHLlmZrkrPk9CoE+9YbeW/70BwAQpD7eto19zkXXijn7t+dXVWn8w5urSziFmnptfFxBHRNHciPzCPGO82iHsv4xnZ0tb7eAfsKTxKDNKsVg9lxnGHOqDbPjDygM+TKgLdqE1CxAXBmulxJPn6sPNuzccHC/aZglAnpfa9Sf/1Yf6xg8VW/1Zt3N+ZWQOBp79n1ZC/SIQ/QZwM5duyjoAqEMvvKW916N5OcB6NYdWJ+AsxmWSEU05oBI4nAcPZ7NeqLaACNfeRyvir7KuFjpSdokQpOQvYduwUyKfBO31Z/zURH2ZbfCHSrOSpMU24EaPg+4baKs2zYHDXViYw+JlnHAX+BuO0TN8r8DvNgtTHClDOVfF34Tr6wtYqueL0evzkftODXW/v+2OM6jdkLHZ7nI+AmZGAFzNl5INNB1eHRQiOkOBS0LoUJcahf6Uc8di52sY5oLMxtMmt+5v/4d/3y9bRzyUralVTd5EhFTupr+61UwT4ZNsVcRms1HQ2Xs2C5ZXroCJVTv65ecF9fOb6FXxiKSVAY/2VZOa7JoIguddg6SdfBhkx5aYTisLdxaZGRXUKoOJ4vG0EQ4jFf5rSG3NZpP8sxRDB4mrP/GZC+ZZ5A7CcF9IJyNBcOt4P4yd3yWAWcEptQZcTm1NMteMWAOMLUzDyutAbjQ5gUS+LQQUG+b07QCH8zHcslqmEu2UXuB71KA07FL400ANAM6T2/b5h2Hye/871b59j8UnMqHBukIxv9d6sqn5yxfwi1Rr5Kz+fH5QwJeI/X0are+J1YMDZRLPhdh7UFO5NCp4/7Mhwvs5TEQpeWQnkIxBclvmQN2cd40UOlcUGFNWhoPfTatj7BYy/Rb30yPEeGiJlE6BXH2w1uMLY+R3c+ShAIuCRIx3eBSxw2ObNEFgWdIrAZsb3g/7ec9MV5xYaqXM9mynZweFon23DwSCmO8hu9UQ/F8iAj0WsE064UhGHX384DsniVb3O3+oCgdJG/j+xLJb59m/JGLZ8dqB+fZSMfkCM9E0g4/oxqMyg47Dl39Nbxjpi1qUF3prscYSQHVcAlP/tpYoDEvZP2I4jy126eVtntWg69db6YEIT8R53JRyVZwBwKx5mZ+XcFxYcrqTBJZwn/MG7H2JSHpb7ZT5UmdyaLgGN9k3ocXgnfF0q9j9Za2X71WwJLNhvl9LvX96lvUlWy7uj0Z8jj4N2Z2nkkyhFNoT328Q93VegbmlaR7rdi/3O0Id2Azb30poQsnHt5gpZk23q4B1AHetEgJZUuUNylfYja19516j2bJh9YyyAw/vYvUzqrbDV1S7qYWMoQVco+M9zouB3BhFzhyRuaqy5JQTj2R70WAYWnBuz6KLDB6LJQVaEslEf2bmA4L4Pm1ymWcpkYD2qTzQuoE8Iy1xzNs/J08k/hDw3v1fHxrtUhLH6gD1C357BrkE7oBG74kLKlO426iNKbVGLhbxWRDfztBvwUrcHB4DtpEoqtTTBiCEfP5YrNcyOI5JH/pXs4qeIMXxOpaPFrINSB1t49QjsS0Lm/B55FudMIQMGT9JO16gnIHzW+4ASZljpUImS53q46WSgC+lWibk+Wl2bAwQZ+htvS/8BDQPBViDb6GKfqF0BhIScVggAzXhWpynbuZPUBtBIpHgroXssS4S+2oeB6h4L7A49+oekG5I9No72oTPrY2MSNqU5AhfxhDapRH7HvDi+63sEdDvBXGNtzX9lPplcVO7NPSvvzO3glvlj4fpn3c1lxLV0eC5kaaFLazje5jB/MrX9hAfKR/T9k8RiSIhnh7eI0nRilybMoz2UzbvBpF0ebO0coQV/KiHDi2RhjzGmCsvRHzyyTDP4v2DkOOQA5QdxnuAVoKbFC06i8VxoaeuMLG9m2oAmA6S9BZ+n4DuaIFHX+qOcJWO+wnqOfRmasabnwpBkfBvKfYtAZZfIbtYpcrnHzucDEljtLmb9Kh8GeVfB/DIJicKUR3bziBWGWuRg/O7P/zivXlliL9Gz6EbcO+1JLqAq13bljzZoiHDqH/Nyu4FoeZ/qmwObHr4SnoxvbIR6MoYfmzbBl/ox8DTUPgOEpb6ASF21cBh1VikFGo2GVz+HYQhuUG0j1CX3yJvgCYuxfmywzuOY2wL/aajKVwjYK3WaYPxzZD7KfAcS8LjKoZUg4dd6bvGc8Jpp/jXhIzkERN8aV0fcecZOWzkUkBGYSom2qLaOAOSvC3sIGvY21PLFkaNZwFj+PdHrbGuWGg/Zn5i6fbWS6gao/S8yDUuSntG2J+YvfmQ02TB5AYhXlnhEMIxkvXVdJtVfpE9guua5mjcqWDk6U6CYlL1BXw6UT7qRZI1BXLZ3HFdGNHPgNNGXOdVbfhI9Z/UGFE5qBCKabzIa+rd8KCiK5UCDS6rMoDyS1YXKqP5W2bfCQMOW0qnkciccFZJRitq/JvKrjRA0xhNptbXiiNayf2LmMNPk17bgo+c6gU3DWf1vrdTj1QoiOKWuh/v1V/Htf+PfNmk5mFFFqg3QZ9iLKY0aXToVjTxsEoiY3PHxIguJv7+rFbHbAXe5oBychM/FjwABUEz2tGq0TRwPBPeV+eDyzfUIYXH27p87JvmZHQmHo4wp0OdKey3WjFTm4uA419OeQofKsGGO6GDrxt9Spclwzuo6fb9D0KaXcrcAIdCA7W1D5eqG8Z1MPfM/q7Jm6eV5TruEKhXyN/vy9CnxHlI/cO4RsXgGqYdOEIT5F/Z3RB4RMsAYM5GVroroGyR8kSiQo+8Uq+l2j7o/5F6pcT+LPWtrkt7l1ZJwhSHZODUPsL1DzkaD7FWH4EW+M+5fH2j/R6qkrgCGv2ql4karQmUDDTcDlt9vBR3oVdpL7pJy6ibvMSOFnjkGBEpDuSLGGAFDVonbnRpBRGw4nbiFC1CkirMAvt9r0B/snmielYLgD2AEDsL/rTQtTJWwzeG9xgW/bmhtOHoVCpe8+8aeRhXqUB2kqgq50rLC7HkFYJURdPlE0IM7JVHFaJFqUdSpnuTyamm/cJLcODu6ioOwjIt1PDvqZvaKKlg25mWokuUzcf9EGFieYvs5w7HY4Kh3m1CaUvMLqmUMMa0+SRv9zUBEOVhQvv2SLj8SlW3zOWMDw7plnK9uBERZgUEV84vFJ+ZP4RyWSH1cmAUwDI+bHDOVTVtMpKMfw8wGx8uk/VVLEcOK2Bn0GwxO2SjuCLrFoDMQhMVNPAVKRvpznwwOec3CxYu2iopS4RrRRMNR/S6LjjzqNmQuyw51kS/ewBCZ3YhopLIlcdw0heEo+pILGT8saS2xZwpJMwwwf3PqXieRsti05MOPHBzVCkLDxJ+sDkpSPVbI01Hvn2xX83m85yr2grUIMkUM1ZiRaaj2dFvsf0Ue6zELOaZfNOlBurCjX03fnKwoqDlosSLblSTA+ePWd20VSYJFmZ71Agpe4aadipUrS/lCfDVHpbiDvwayWq5Mjj8kHhCgiofNAN7Ps/wLmpS8tVu3KmeEAnntRdJrciC8NgAhmG/a6zuZADLg3apcRta5+U6LF40nDvYkir0jVXnwHcqsiBizJUGYB8nFN084SFvrkDXP8M3EuZ/w6QxaeqzQ9Bg9P18C2B5aONGG3KhpNdZPTr2//bm+p8NhPJdwQtdMtnyBy9SLzJwWaYM/Rw+HS4wsYDmSHtc0Qgp4XkBChBQl43qxT2s/scxk6vfkCgkis7s60c/zuNaqVuTd3A/VgAJLZioxNFom49qmKQyHgM1VS23O8msPPnVCGU8r+0hUJGJTkmQh1EXLTS7QU9obHEW0gP3zWEHhpBw6rpMhm0/LUddSZu4f6/sJjkJhgGhHvnZCKlNMICwTuJ7ZKHl5id/YWr6VvjmlMmHeaOhADqbGwocTbnfIpo0lesv8tR6D53oy4QE3NNp+BvBJWRQLIpMzpuumzmU4d3jnHiZQit9LUQtiVadYKXc5IGGHn4VojDbIE772sSLErvAcw92AgPh6fymQDljTMTN0BAslXZ6tnY5VbKXT7y5SwDqM49oKlr4j2BxFWtjyJnQdueRVkDWihJnhp2u1SSxll9WiWjYNHBacu5R0ee+qpdnJ3047I8fPeSCEyRCbpNMZYEgzaSgPfk2vRmzYFEEGGyLhYP0Omg0RAz6KY12SySDXL5MpIwFflxfo5KAM4LNTeKfW6lZwfaqvjjnkDqLWHnPB9QvOa9tfpHg0D+5Bufg5bKR5MMjWphmzg8JNQO6RIxvziePnGCoaDpHIeMu2i428kIJ4cUVD4Yhg5dAs7NFqJx2suAOjoFn/So50SbTms9YUPrkKSoFMNfA/F3cXpY6HFUjTLBQ70ARexRQo6G/b9bUf6x8E6h8qihuummPyfiyG46U1on6c1fVxpKb5tmm+NInM6oLr7n6SS5M0rEs9xD1ZUdU5eTm0a5E7noldGSoVRNJggrqdnfyFjYFjsxVYA1NrbCkuXTGroKM6ge7vKIBfHojTV1MYIW+alMdTn3TVTa70IrSJj69IZUaUqakXm8aF259y1uWvuErpkzED1gJFW924P/+YAe/HYyQTU4Qq6ux6vjGh0WUcA6Vb+tY8iMkjDGNOgv12bJxypzt/G8GXp3qp6Qrii1UuGv6HPrevxpUTFulycv7QIoQ785ad8eajrC7OzlJM39kDsiDWAOqZ9AQezkBsVirlc7nvdkLYOTdo0ah/9/48ssq3PaSeL0AkwQBMsJK0BDfVyDn486y9VByxc4wJvpHRc463SGNscaSO8d6n8pV0SlncurfhrAjQhum9VkmQJqtHevaK1RluXJ0ols4EG+HFEuTTPZnnpILHYTL6cD0ISVdBYCqSDAVQmJxM7IdyM+nz/zpoPgLfiTWXnZxG4m8nN+Xq8KXwQgbyIsKMg5G45m1ns87A0y4LC32VVjkwIo6MWIAQB2mDmc9+r7sZcmungsYdutnaz2Q+1VM+W+5wE+j5Vn1LtZ7cvusp3ZgFIF+J0ArLEHQSwbqWfTEkmjIDKXiPru2/AI0JvpT0IJ6cp8tdmP/RPmtrqVXFMjrWXaSCrABo2Zv8ls4ES/lMbyhO5ipkbIHwXVSb5JG20X9jNC/OXPqcX7AV5+NoYhe47clByblDL+SgmlGhEYWRi5eFaNV2nZ1S0fCoeiAlXKsBLuSDqi17peisC0JO2OzCzlVbthwTVq1/sqjRrlnJ15ssNu8NIWACktwx2WefTxuAnOe592vrWhf4RUii1h7EBKQUq30c9Xo1F9X7WFO7Ioi1A9eiWvO7Lly+KdeV6EU+zz8ycF9z5ryUzQSFMZm2vD+eOh8sW59adTWKvF93Tr35s8kvaINttygH9+tG+ffyZ5Vq9/iRCbpdmlR31A8xkFEqZuZ9cPyrTVQDZnVZJrJJ61WWcDDKefzf8w0PYUg4uwHw3jdAUnZtAR/BhcbIsyDCf/kFB24sKNYgjfZXUGrGSG2ZoaRAb+UjLmCGLm1wGzsA3V+aDqkdE1cDkdSIAA3wqCp7ht1L8VUits0Me8iblg2LKPKbNnaJhlTUJWJS5u4rEdjYaW+W/jAVZ6YXscgmdKEbJdQARpfibvD+nt+2UYbsQpTBMcRkTQgi4C2MGxJjrkxy5qryB+yI2C/KVGZvlPv6VBxr+ubf6xJeMHtgkE7OiSV9iSMeMSbX0eLn6ZnlA96O8vQFsO/TOJDoekdo0b25eNvdU2VChE3Z+M4ejeeMCo+vWOaJjgo+3UL8vaD/kMAleQUXfs/f49mA0PwYWy9V58kH/OP7neyqEtnfJljtnDNYlJeOHgOpVzo6CoR7+1RVyEvY7Z5LcbTfoE/i/iAGmhqWO8NNW4QMH9LoA/+w+6XOd98tvrCi94MMa+ekvKHd+Jqnzx6wK5UmDhPd4Z7Ou1H0cwc0IruicpYRAoSlCNRQmVAvYIZnmIVNo7Zi1ZZ3lfpBAEd3nAnqRriZw72DsKNbAQql/rjUndkjBEk9Vtb54qH9DQZkGCEf0dXVwzx7Np5mSOKa0fezVyONbEy2Xet9JQg1tdlTaea9XuzxzDEkxDulUZhaYhRS94dVAZQPXUlgxfu73VTUFjv4JfHAetSQrjLDoXAsMRFcWX5oX4PFGd1BTztd0G3VkbHDBvCVllkDtBqDRUU2k3YiQpG2hWDPzSicZ8mUcX3U4zWAU8mPZZtr8G3xwXtaV7w5ub93GvGqxz0fMFuGrfobAuV7Fve672MrnxxCiAmAemvM1YNFg6ASAy09/t7sevqeRMM+5FpKNharrcFMRdOaJd7SYLovu8SAD2x8FHNEki0s7sHVRHQ2XoSn/hFjMQbgh+IIFg4IkSvDR9kvGEIwmMNkRgnglE4S9YA1vvX+v4rjRge+MDtiisc/ILCVEGRgojdVGpHw/hxxwslSqCQUa2Q+iR+4RevIOvTScYw0kamiY9vEHDuVrZwnzND3R208qdeYWULqQKwR4MTwAsbfpqwvC9cntSKMWy4dgM6FjIQtbaQsWjrQxjfVvA+PqhyBBg0xZw4LdG8PSvw0KReZlUCMeLgl/+D+7Tt3LK93lkf2rvvyOa2OViTO2FuwCCJYckavsrEmQquOV/sq24AizXXPLxz/5QIDMVB4QDHC9smD1SGYadRCERcXu9BvMA39IxjGB4M9EwO2jnzOAsSZpys4FJvt28V96lvjjMuOH5sK2TiLe+ggXpsTZPav7NPlI7pnxrFTPtiNUCbQECEpnzHaD1+NH/41OBfrwaH4mIH7A4v8u4ThHPuGBsdWsSYlheU7izG/9msS4jMqX1IetShNw2pcuGi++bOmgS7oPidTE6ZqeE1fB2yxmFySIpRY3XSVu7Sb2lzeBYS/pwf4WAq7VyQdRBqB5zhn+D9NIKhnm3VVtsjS99vdBzTx7/0ohW+t9XemJvsJmZgrLYhw+7cfnFBgF1LW0Fxsdxo1nWDcYZYWTe06Ar7UNEYjxO/On6O1Xma/x+/eJCekc2Yw0Fbe1tYxLMkFbrraPjd5uzV24mxv1jiQcyT8LO2E8xpVrXK1oY8PSO3f++8rfGiRKpBFVR/NkIslEEYYeIAJGqCVUiyXxqbJZRXM1v6DnT3vstTcHg5X8GiuT3HnKAe98eHvKNVtaCmCe5HcCYCp6NEaMIToYPVFv1r7uUQOn4pZ3INCH5Pqq4TQtKhryA3/SiS2kvkX26bOhvSEtKNRQC+tQnH6OYfl/1GjXLfNsrRgn4flT+aijygX5zej6KoQ34+MrDbvMQCK4gumKo9ABT4d8aZU+k9D01P75vZ7vDtmge725/rg97An7I21y3Eus5IaZNgeJ6BRWJjb0taHPb3aH8UPHg/SG12ZsfpWSkGkipLRr3bZHMwSvIqGV+/IBEIsxZqHwXWaeK+kHGukEN7tMWUwXZY/9JiGqb8QCyM7o10aywW3pxRzy+ACqsXa8MRLBALwEBQX/sB276cdQ8qDB2BfnlVuKsACz2i7RKl5yXyZHYuJMgtndnIsT/O7nFMr8FNODF+++Xcc71jLeB3PBUi8I9mEqnfZwor1WUfd4rk63VFkn28pVZTuTsUjBtRbNk7BlE1U4X1gs+pc9awC3UjqJjOgXTBG6QMO0GC/2kEE4RyOo2M+wahb+61LdpaLKbspd1RtDF1DCdOezSlH3l51wiTYoSooUdCBO08OFTU/D5eSivYZy2HgkEDtrr+6IfwYu4cgyw9erIENJW4SSmOZZ4OuzUlri3BJdiWKEPi3Acxoiy3h3JTfwuYl7Scq6MIs8RtWkzWkoUQoOh1KivlwRwicJzFnD4Z9uAG/vXtk6tIOQPONa8uBxtT8sfUrjGzGTt5UgC4PNLu/udqbFWJhz8+IhywnTDMhCVL/FfwkycmY70KRXfxEK8Hly0TcrPzUn8hResE7ZESpIq0fj7BwVS51YuVssMNhuyr8+P/1FBQ2akv2T9zTbQgwHJC1xgNp/4Y/TZaKrUsTce8tECeNIPzfVldV3WGcas2NrMfU96MNxEfxSoFf0E0eP8u3W1GyhomutozizNBV4hu9DL+6vgIPkEGseAJX0na+GkXr1JElTyBN/TL70skRoHA09UOnsIvx5eC0RRlfZXSgACdvDWePM=
Variant 3
DifficultyLevel
629
Question
Batbayar's petrol tank was empty.
He then spent $39 filling one fifth of his tank at a cost of $2.11 per litre.
Approximately how much petrol can Batbayar's petrol tank hold when it is full?
Worked Solution
|
|
Volume of one-fifth tank |
= 2.1139 |
|
= 18.483 … |
∴ Volume of full tank
|
|
|
≈ 5 × 18.483 |
|
≈ 92.415 |
|
≈ 92 litres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Batbayar's petrol tank was empty.
He then spent \$39 filling one fifth of his tank at a cost of \$2.11 per litre.
Approximately how much petrol can Batbayar's petrol tank hold when it is full? |
workedSolution |
| | |
| ------------ | -------------------------------------------- |
| Volume of one-fifth tank | = $\dfrac{39}{2.11}$ |
| | = 18.483 $\dots$ |
$\therefore$ Volume of full tank
> > | | |
| ------------ | -------------------------------------------- |
| | $\approx$ 5 $\times \ 18.483$ |
| | $\approx$ 92.415 |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX197zrLSjOBpgKWZ2g9+tAkQJqGlkQxpT6m3ODEJcu81z65CZkKReaZfkOQX5ppVkK0v+6FV+lWenqbRJ+J/1OWuMjbLFkB2eq2tU58IRNiOFffhTUqqf1j3w1uS30oKxynVz6ks3na3WKnnG9+swLQS1iLX5vs3crgjOQkc6quU06KfnchsvuVpJMnlD4MH+mXc5voC6SrlqddUMdp85Qd6zStoywqgtHRbTrRp+1w3fvWcvYwPpRzACDh57lgp3Zz+hcVhRcf1GZyeAjPbBc+LyFQw1+wHi/6Xvp4cEvzm3CwmlSMAI7QcMk/1TysDXKxxKrbrZCm77tem/aVqHgtGv4A4NXYJJXEEU4/Li7WxhKDO87i7ojfBfaupJXk7FNktaVNSvdc3JeteofGhdfRcuOXAPrktvBso6UjxHoixi5goaBGTp7hy6iLuJdVBBFksY7KyQwM9fj+OxDPRMBexatc5Fh7XUr/fMLw/hJqPAptErRoUiyMYxsG3PC8ZA8OB7QRiRoPE8EqSyAj78mf4S7XNunJIeZHESBBXLGiph8fe9dITkASzg4axUCqNvqE/Cb9wESF35T1Q0SoxTkB9Bv4xmVLpFu4qvEpGfALpv0qc9RFt46HccY1rXWbIUoAzYgNlmvhr4rt78/N8R3YguCfi1apIn9Z+CvkEkzBTYlnB1iwxms+fSyIbT28BQ6M7IR2DXb8n1s9riJ4PGdZDN+Gl2a+si0xZtoTm66iLdqh0h2WxYHDq/ncVGUz5zTekIFLvDJXXKPrce0P7VxQtbK6Q93s9uJeeXDNJKoSkGyQL2j02GPAIsD3t0o+HishXqWdwll/uKOAkATVSKDGtsOmm5fVz+SmIhlF14xn5ipMs+vDHzDxr2FsCwJ41t3Q2jiW+n0vLbNYp4+eP8u0TB91IlHygntOCrS8gfEZosjPEnblhaHA8z1eXvt/lZYgOZ1VkpROrfXK4qCv3yPaMbyoMLBWO33u2r9vXy5eVHliGEsphFTsNmm0Q8a6bhYKjvDf1VspQMxgKVXKV6zG3+VzQ6wNbb1jtxfopiFv4Wia0VVZkftpUBgcAr/Lc1x3nMtz/gL2zc5uVAV9uOai8HJKOD796VRphPs/0/5HQ8Pl6o3Ph+Zw+8XfeklS/AW2uuOBn97hWuTbktZC5HJVhSmu2k/uPEaVhmifjGOvZOKdhFZDQi8PSDt3oVb7sFYXrdrO/TYxa78fvmEDKIS7s4YFQtc0+8AevVS/sVHMwohJi34C0Ak9z5zwUe8m5bwob87OeLbTvURIo1DB5gl8hOiUQbdz12GYEEkgmx9Hh4oaiP3e2iz2t/2FfHcyEBnup92BZd1n4r2yg8C+YFP+ZWUG0mgisd5bDuJDEZNHfz+SiDBNKWlzZf63SgIYHa0dyB3YIt5L07qIPHtZ9gMpP0lXoq8rvVxBz+V8i9acpLnANv9qI3ow4369FCCiFl6DlmiuQOc+iD3xHDmvdWdjyFGXpSXlvcwUPoWNJMmPqfJRa5ng4o13013ibMyXhHG8I56DHs/ArlvUmTGlomrSLxCuhKpv+YA1s2LCOo153q56EVdcidcvtq3vREusKxJX5rsrMbqBATEqOtWZFLSON3cJkHgcKEe3q1K41MyerPgATx2jGh4OxrCxvVxiiAHRKOYCG2SMvND6LCrWHkpMT4G2FSAl+bzXmcD+SuGWFwOR6zyCuNJpf69OZm5yPc284XGNvRG+xUVMWRyyZIH7jyuz2U77/QYuEVYUHiHQNqpdNP2ppWO4VMexbJQFfOvWR3FmSfZLO8CJ0wEBYL/OSCADp6nEOsQK/2zFZ0Qn4AK43UDwMTWvDABpcFJNlzt5i3u2KfEpsdJy8w6Lfaw1WHvVxkbPqkr9cfs/esfIB3g8C0+a43dAtsMp5zJsDq6FfNJN3IyX1TpUgiDiN/KYA/ES3QOWb//8yhn9lZ9pHYwJoaaxQZwXFkbu9F9/B1GrVHaqvCfTwo4xiO5eda2MWO8aqD29z7Jm2ZgU28AjKVmUzv285W7y5aeM8pRLc++XEZwhtvqY89mjYibXudCNZSEASDmRI/BfVQ/SaS9Ao6DBmPvUsS5ImqIMDVvgdF0wNa1PYMj/G44YAnxpsluMyzvEGcSEXzUTsSHS6K04i25qUyG0Vj/iPlzE6EHYWc5xxPdK4EvVyQRwUFO8eqShX0dpsB1cvqdOkwF2Agg20AjdRIlN5QvGg3J3ofDilC71ZFaf2Pa5UJ4DvrMheRySE6tiJvK+DMBuYefk2JlMEkf9cr2JoJ2fOBD3I0j61G1aNV6mTrmUqqtUTiYZBKKHVpglfvcFf2xOSvdM3yfcZFHuyhCOUZ5NChuBZ4n2aNY4BV9EH/VQnDj+O+r8e4EFlD+tx3zeRmSg5rH/DH+1ql2G9Zk9a7CL+wAAE7BDCrHaG1Xnkk6LvoOhAOucI7LQzXtsgVAxKAgcZ4MeDLi+Ak0mhRrC6wuTPdxqhN7DcAd0sNT4DScxFfX+v0DHwZ7nw8DbMSwEV+Vq+bMYMC3XGzIxA+/SpDWqYF8q6ZfTQDtgfUQ5J4n0uBGTd1pU6+S0HT9pd2zBVw8JdYS8DcNxthHFT+kVmy4ysHT3ipxbRVoB702gkzOBoZmhY91vWDS+CYRbkGyqr2NwjKrzl0yEVn2HL0d2DIlALchmTGUeepSExoEwuBI3mxLrOt0PvmSUTw1vP81FgrnJC1IyZMSSPiPPTfPsyLwUM0TwfqsHHKcm8uZyXlHVqqQSJxSb+kLLwqh2MYAVicwG2TLKTxO39NU+hxFFplylmwtsvwVUzDvaOhHhltCgo4LGOVVYdn/oCxjw8qRn5kDHrae78LoqvekVFpDFqsV1B2MBJvaCoCZ7PHVR3GH47yui0+YakoRbrTnCphdMAj0dF6Vo2PzAyRshcwI9iuBVcwpft54yDwxmhbBQ+iiyGjxxogjKwZwNtl2898tsT6XbB8ry3I0r+evcY69bnaPdRobpmImmUBc0jO2CogsaJcwG7hRVpHRfDb0BluzHwMArsYbjJL2MHqFCqri2205zP3zJ3cbW0hy13pOYUV5zt5N5Kt8Sx9/4F6vJhtoSeI69i7MkkO6HwOslNPx0X5vgxtEC+bcoT6fKbwCPUHuNBpbU9K/PISnrfGB4CCRTbxT/1zVEasvW3k47Q7w/ZxE5jKs0N3NUdMudrN/Wosv0vTFuFsmZslBWUubuXvigkT2BHI6sO5rKTDEhAkDAfh3NYCBtwuV54HQFeeZZ028+qbYhVi/tvW5/ycWuyy6PoMPMNk7AeUgj7WJFKIGI9f3L6/hB+wyialqtyTgVGgDI36X+RTDyT3gZ3ulIFgjmDgUUncv0ujtntCHWNdfJbykbHGaCJMVacpsXsq/1pJSN/jGrg61foUajFiHSlAcCrI4dyqFWCypOtfhvCEB0Hg13iUkPB8gDo5tn/tWc3P0+Sbe5ueDyfvXiHTXSh85mirqpSB2lT7MQTPEuxOk90IaAXOmZxzBzTKaqd1IyaM2sYesaOd3AITcYI8dQ86c0LxuQoTlUvVI8e5nztAeKO/pKQd9ORh5HVbFIKa+IvuPamGm9pRx23ZPmBi58GlGWnVdrdmCQGjmETSpWzaHWXiwki/2egsMFLlQAp4UtMKYxz1ktTe/+bBki+Lim774QB0m7xWfHU6DbIb4smM+PqPt7WreQU1xRo+p2MQ4eKIW8HoR6cZchOcNTv3O/ljpAUelIEc53MrkQmZzM7Xf3zpf+qKaj6GFOtrl6Lsl3DMLps0Tq4lZ9bcA1YuAK8LLcRbib9ccVNMhU5b4RFjScqfLOa/zrS1/Wh+pAFSUgt6ewPQnXSUeUD4/rwCJm9PdA2OtQiwsFxmKK8hNwITgQRgGAsSFF49fSKtt0OQ8QE43Gk/kRuSChyTdxm8w2+Z29HaASk6guIwldngZ9F34P7mfAG5EGkDBG1ahmdYF8TF2e2ES4ya9s8HL1o2Q0VLgX3odmsHvnt/heYeSXaF+ab3uzkYZgQursEuGPHJoneUA+vgahUWJ6OeHHqkBpCMyn1KDw5CBxHj5C4JZWBqhji303wshQ9+7KrEkA8FzoTfLyT1nHEsnf3OLenXAYol5vTbSMU/GJiQlw20WlKD6lWADYaACf9dcq5aDZPouRqIRxHZt8JZLj+FaDTCV/x0u6nVWrj0Oz2wy13UvsqSGzvJDBPJWFRrBH2z6JmPWGxy/S1tiAvVPFKBFArgX2nvpCxNwk/rahKz7ugDIkI5rGeTPBXE6RBzOfBfQqnwwUedTMW2Z8Cdcz6jdtMPOPAkgLDAT7Hs4GvmQJx3n4EoEd14yeDsEgtVM9CI572nK9I8ZPfXA9YkC1PBrkc78PevqPfRDGKgS+bxiibqDdRJqdQov2xDOxeJpHHNbDJQ7VS9sXLk7i4danmr9kHqlTbWhR30hH0diD9urD7pNvWLwGN6iwxWrvArJzID/yo8Q3+KtZWU2vo29lXHDq8iY2ciulddKZVeGcVIvHyzUTPAEM67F9P5UTzvCEScZO2UevdkmrwqCl2ZqdJW4IEyOKTeoJEuVtvk7/xQB63gjhVPflNz1C7rJIWI5ZQnESW8mV7IWuGKzEKhKavJwC5CkcF4jGEZ53MFG2zCBc3MotPkpiGNMO4dPlgRinjy5JCjZcCP5mseun+h+sH3B2A5UN6aBUI7Rpb8droSTLiWnS6R3MbpWEgJsCKumHl+o+rOZZECAM6t9rOdzj5ZddlJhx1ItnPJk8YTbhiS7uIVGarWwDa4Biflorru5U7zLr45uf3NetZQpBhMdYx+cQd81b8rHqRuphDZHgpWze1HkYy/kHg8sBpa4CuVt/Hf0sxlnIaM3HOXomS2YSN6Ig65bQD5QLZ7LcMGb4Pb0jKaKV3uKrqb3pAwPeN9zQVU0ZOH7IfF/CG73IRVIcMBmn1pQYR44mdjK/lYgS4eJ9WgfH1R9SQ4hgo8djSfKrJDlpuhDhbzyT+UrDo/oIckrOb3+A6TK71NBjpIkVY8IAE1vWnQjZtl6Pb4l2qHG7IFFAAi4mOWZuEM0c5jZ0ukNKdJsoqmmuEf5cOieCWzyyfl65SqbqW8a/PzwSeAZNSvQgtNATmX8nwTtOddb/Ld2ctTZpG/lYdr/AUedowJFQ8ZSB0nyKvpt0TXmRCItkK95wQSH5GGBVcalCwRaK2TBy9MsFzYamlw3jTMe53VXA2G72NY98vGJw4jnOVdcslLF698QFqlaz7p+yz0Ct4pRTXRt2wWRBEFM6KChVdBa+dD4p1FLpWOh78KsAMybBFwbRC4rtc92Xbem+Lv9rGXJJeo3L6mDv6JuX3qEBBeHYb0NAQpdwKOSSpEx/eD3rcudCVDefv6h56VkSBBGaMIcGJIbwhk9qoE4IBVWnvXLCEpCebn85zBW331jgYqC4E779XBjQwyBgn+Fp5nIVHumOyayBKCt/tGENLwsD8Vj6gePxcTBo2Hx5ohjoA30t6B8YYFaJtbB4an5C/3teRTt6PgYgOdUADgDqcyuZSv2fBj+SbAuTvbh7UPlh1oDbTdNWGFU/oJ6+dl3n1VqGkrqtZRM4DP/G8KEVkragkf+00QEpv3oEQj8iUN6R1TEDjZ1/sE0TVI2TfVbLacFc3UnjkMvv6piIx+sVYzwfA/P9DZYQV6MwTnzTUTnzBVl2uz+s68sjyf6eDomD4J33L/CMfuSZEXQz6DUdRMgiuv+ACfk2OqC5+Rt//B9mFTGkmjb4qi/K/NGq/t8GFHqhFYALZ2Zlg5Ja88Muuyo+4jb0753RlXZ6Z4z4N/fBCr0XonPHAFdGcKyVsMc87xHW13tw3jKO1GG34U+VYuzhkoYCbV5NpKTGMjBam6iaxYtb9BJzwzHzNMTOQItZT6MiFmMz+jZRucsTgFFUMS6wUJLU2o5UnPW6BQrjCgfT/i4XiS7DXQcHNgx8UMXQikT5S690Rv5hpd33qZHboxGrTlAVz4HLAcXnddZ6AifMSFFd9boO9JuD/HH2/Wq52WNJGtgtcc3WCBShEolHse+QgQo1xWSe2cCzn8lEfb362pFr29nFvYFY1KINEVVrQbgb1EFItNr4yaKLetvn0agKyDqN176Sd0+BCjm7AT0oz46nojsnMpMAM0IUA73ycmLyTqQQOmd+Y9JSG13vq+Wxb3KS0nd3v3DNqUpwul1WvUJwTesg5mTv05OsTLPefbtxEtxqf7/sCKIMpLbFuwTjX0Vcsf1qBk3VyXgKcfwfGlzjPxr+o+D+mDNSRh0kJLO1gVTevtBsr0LnKfPDSxB0HwVhS+ikC18/FurCRLSY6kvVbykR+2oCcbmr6tLzrlutanGOCygWhq5nkHu/lvsf5kA+9zSgFJU0o+TZ4x23D55XEgo4MSApJaLyMUKLlTN+/AZAMCfT8iphet7KB4tOcnOBN6Y1tWt9cvUU8HZV6qHB+d+8sdmHa403Nlz1xrfKSU0qqzDhVrcfn3I7oEkk8NvMBOvjppVqBhFAxRzSS4Ds9QEBJ4gCQSmksgLBsXsOyTdcCk7P715Mvqzg4SAKUn7tPTOypUGrHzU+vXXxKNDJIAM/qYg2ozGQUbbIBh1VhLqgxLM2tIUWtpbZLLIfYwAjSo+7d197o38j0wJQOZ373OTNkTBQ6IlPBOGiyFcdSYi0hnTFVnHs8YZOz3v5O2/B8wl0tI2/aUpD7qS2nKbd8yQTDKvyU+yuWDyTWpSam4Txr52VKHz5Qt3E3jd1ZgQrwyZmpsCJaL5MoPXl0rLpqZ4+tlHPL4Eo+3iWOjrquhEj+Fd4YEwa1AcOBAmYD7Esc2XzuGqHNqntCmtjrUT+YI2IN7MTxiJotmF4bmpThs7yzgjlu1MANsIxz/YkiGW9uOovRhQht97N5c4PMjoNfu30hypr4kYj+ypoY8YMBZrVjPUHmMvJyaUr0+Nyp+aWqWexTwn69tDHYuPkYNCm5Y8VTUhQNM54SedcKa6Aa/uIGlpa+P6+qEZjaiFFseGdu2kGXPdfnr3H8CGdm8Pr4ybM6TkUsVsXeIpRHqWI3QOzw5mR3fWdE79yeh1yIncUSufsQi87AIwPMQ8/d2bz6ZKSyRULEPudnxtXoHWViQ0xoHZYZ1id8XzOg1tP9uaRVE4MX1HPqY9Hre/2NsvpZXBJ1cvpnTmENecJWJRltvOwXrU79ukv5SuHF5eEi6Yl8IwJrwnQsIZhaCgSPVISsIZ34OGMu6z5LlThEVYLL2O6Qw5T3i5aKs3CdCM7fumWXGFt2eYfN/xsQ6ZedWWmbt8Ia8Iv3+IbMAO81EJwIBd5tExprinoP+QHkge518D+JxViFwm+NMYlFnXqUcpTlPLRmIeFto2JBmocqzX5+vUFPCUj+O9cH9IL9lDiD+5+o9zb8GaMl2C1lkek++88dlkcfh47XUdecZ7oxpsjZgtsLipKtDSuvYPM/HHmHURfGyuCs8vMwLJSn+jT4D/KJigr1RjQoULlj6VB1k4lVz2UTT7muzFo/nioYrAytF9B2K3ZtD9K4osKk0FnbMN/gVFzfZvOY+7HwC5xO9L/An89c+1/nYznD/4ll97qqf4KbqzNup5+9yMwugJcetOJ+qAioh0s+oCsMWfM+OQo27k0yUUOwO2w+j1l1tlw9+/5ogTqbwL4RW9ZKDgPVl7Huxj7HqSEBBNT3ErByMY6UWf5O4peRB9mkQzNnUB2QXGPkyqyOVboa/P0plU/1p4R2mvpNcMkFNcBjcULoly13wj2gjXO3K8IYJKMD3fAlCjL1iBBYMJmwnNhA5LxNjvV/IrJuh07pg6l93c6xznvSmdhE868ncrSVC7zpyqLnN+XWXc3sN3+tkCe5UqQsE07AGuImX1teTDow1XoetexYq/J+mnk+Zv9s1TYySNliNfR/WfMxTWH56Fuxn0kC8Vm6I6KUEVn1NPf1a9PddSWzDBj0XnBnSrBSi/FBHN5bBiHLF8V0sDtCpLwmvUOgtKMtbRyeO7rGJrFl3qNMf6jSr8jEOEYjdBAW6p2Hlzw/ic9ZOSFQXq6ishc0jfKe+SZjwbo5TFmEvNE0ZObYk5Sa30grQlNj/sgcPcH+mwY0SWsvBhx1xhQq2+ht
Variant 4
DifficultyLevel
627
Question
Bataar's petrol tank was empty.
He then spent $27 filling one quarter of his tank at a cost of $1.88 per litre.
Approximately how much petrol can Bataar's petrol tank hold when it is full?
Worked Solution
|
|
Volume of one-quarter tank |
= 1.8827 |
|
= 14.361 … |
∴ Volume of full tank
|
|
|
≈ 4 × 14.36 |
|
≈ 57.44 |
|
≈ 57 litres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bataar's petrol tank was empty.
He then spent \$27 filling one quarter of his tank at a cost of \$1.88 per litre.
Approximately how much petrol can Bataar's petrol tank hold when it is full? |
workedSolution |
| | |
| ------------ | -------------------------------------------- |
| Volume of one-quarter tank | = $\dfrac{27}{1.88}$ |
| | = 14.361 $\dots$ |
$\therefore$ Volume of full tank
> > | | |
| ------------ | -------------------------------------------- |
| | $\approx$ 4 $\times \ 14.36$ |
| | $\approx$ 57.44 |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX193O14zvzg7De79kW10qEnqEcCZJwIxUubaX0qjAEAFhE1mD1yyyTU+IeX4VEXtJLUjeuzGtoUqaxzIp7hEkMahuQBDtE2ptnDGf//0w7Ih4CYeSLVexQhPt0BBnQXLKZY/H/7zjzLQj/TkOqiMJgqWVqqByzI6kADoYlwlGyVwmjqkLayS6sJi1QjH7jQoh7pPPfSmS8aMCSFDI4sim+pZN6qrPshoftpyP7SiL4CaFpwMSKmdn4W0j0sFnogjRYkr8Q2SbxmylGdS104UpnBJ1LZc6D8gYfFG7GY5jOnr7j53LMa85jAEMSEArGjTnwiPl/w5wDvgrFhxlS2dYQR5XjGWY9n32jSTbKvrcQvRqJ/eotA1mS/GXo4cxZfXOX0ijrd+4kbiAzkVYWUVapKfEWRJ9WnGs+ZYzpcVWgORwS6qMO8xOIT34+78HXd2YBv9/D57/LaJkn14DkkBy3dhbenGaPlJp3dRhM46ORezPeXuEuYFgPDeShVTXIO6fqdfugo1/nZWoTWZ9qheQoEB1gKtZUnSnpebImo576EKeYhW70f5VXGOdd4ZxlDt96S0j3nZ+zkYgbAJvLZrkTjcqnRNhYQogQuBFhiePal8uvUxIN8R3UUTK2rHWLhpVIYR/xsyn80wmqCuXjW7m6NLyyMXVisdMh8rAqBcq9rfY0L7IMa0i5O4C3Q/XRO7NnTLT3FNvK+8RIvpq4+W+HHHuaZPzFKOv05ToFfMJnnDb33dsaAOMPiIdp4TRWKi8nC95CriK5ZTlK928n1pF3DiJ2OX6RDa35JDxKdyka7ranfYeFr3svmWBVDXm/lc7DrW27NA1PIN5zrRXqTkaxV1bVhn73MSkIs76OI1yuDngWQzLmOycOE+I1uMAf8l0ckkSCHKIEewRRLuzxlm8QvpKW4L/I8zYQH5SaXVIsU7kRF2rPgXaE4F3clp2y7nuTXlQ66n9p5Dzfef0BQCe6+26T6KeYa2qVFVRWuQsaGViEhjc9lnD4LEHlrn4efwQta8hBVPoh2kUaBy6ybGC+0V04WDb9j5vWhzkst23KustMYPZ5zmo8lVjqUC+NGGddxs3sUDwLFq8JOt0Gj5J1xV+uEa1T/KMS7dr2fQGNjv9nyemx6AAO4HsJr4XS2uaP3cIxi5W0YLZ1H4LhKiCbfQZyioNB/RNoIXrZFGUPjw65zKarTST6/GbvcitjkTxHYnVM9V99obrf0G+WV40WaFQNhe3koW2Uh8zYSJjy5LgVBKAfjgrgzC6hK2Bhj0wBrKykPWGDZe4zG5tQjs5VkLwYxsD+uoQ5GkC3aoO3Ud6InuiJsdBlpHUWDVnYKLeVDLqSMp12qNpcOC8XNoiT27CNHabMzhskQ8L+5nJqxMtnc8QGFalSimvcjfRXvzBbRMx06YNdxqhRJNhSNO/8RDAqygS/38SKYu6PZcKJQ9UyPbD4nhus0WXBItIAEbJY8Q6nhMURoVg9XnVInRCIR/bhOQMugbm/Kb25FP7xQxi+uPqNprmp3Jneltm2rqKs8uMSBshn7Rq8ie/DS8UB1vWjNHvE5eOUooSX22KUYSr3WAj2E6q9zgNeenf5rQZrpX9pIH+Zk0NsGe1Eo8B2MKzsKgJz8VEar/cIXxkksbYGUvN5M61LVixx5cJC2dlwhimgeKe7QqviopFdCQpzosoWWMUXEJMdsYppACYSfZTu9c5rXch4Ra3MfN6bljNpvhgyQ5umIo4KQHP2R9reLwJO31KHp+seF5TkFSgjAymbKxCa5Q//QFOEb/8YLLr1XC/foPzbt76FrJCYt+coa7VaQkf1pVD5bUuIxGAdi9zSdk6e7KA8/7RmtmfgNnaw615tjri9OPEFCB5Jx+0GoIRcILAu+zLHXcrPjJHUSJKcsrCKBNZm9BPwgh/j3VqyodLWFKYJUES+2XzSRggtoqNKog5ase1I1WttRB+3CoTVjwlqzlRlHFWUMzka/CO9MTmwT/L11Ow6Zkshp2kSvUOTlfKlk7UJp1tXQQ9yOTsp5Q84tLpXbkJlVNSMq3vH9Pi8QfzcoGsaQ7CdrAMNtRJ5Nb/f7EGS2RC8AiWEL1zPgJhZEWiubBfJP2F4O8/M4jG30drKXxw3qgcNAnws4FSOoB98M7hzJQrlqlCajNzWBORodMWWZ3uSlE5ffSUypA83QezxE/WNLM32kkekdgwwqG+f57u/j5GDK8tN70W9dUr1/TGKGk0NNyEpx+bYeqbA1Qt52QKYADF9KcH7nAzFe8Iww6PH+nl+p6i6NH65YPf7mxc/n6pCrz9idvelJf6ff0SfrQtMBNoQ1aM32aFNgIaPwR8aghntxpWqDlTiuPnNlj6JT/XFsoPOyklNtk4GAqWkMEua9BbbGWw1WnEa3zNrNTz3K57b9I8GFrcVuRA82DiREk+dBaBILwt/aWb2+ywk85pu43Jzp3Co0HhsOcQqxnyI4x9mztx47TOLnRRSuwtsQ4etw22QIMRrpmeAkF1md735zGE99C+4mqTw0y1qS9iQJ+TElaSHiuIarKrsfXEayzoxsrUohT0BzkRRxrHDI0cVoihcwevh7F/f32VM0iZ68Qx3zbmuUalvEyYOpQPDldusIYw1jbpVjvlFm7kHgmsC13LE2FBXPoyghmN1QQne6yRYfci4VQNf+jNrBhJb6XIqdOtIErJCNopHeOzdNnrYHd9NSSCm4RnRNvVoBkeZfk4Qxb577zC+s033UwqoB0Ao69QYQM99lprKt1byNDurav0Fk0lssVTkILJdAOiblkX1iA5ec5QPI3NRVXLPlEspYvFdhuuIDAlpHByGvWCMr3D3f8JzwzDrgcmAPV2cMtI8ICn0koycQ04okcHhilkO35/D3yjwEuEWEL3ynlJATR8Ypk9Wp2/QgutWPrQ0NMSQWdMobq+nw7XyBBxnMMa8Zt7a6AeFOjDsQF4JyS/zYAUZVNQZBqdWiX3XycYrPxoMn8bAK70NxHRpkZGblAUaFo2bc2gMijb7qyo6qsIiX7PMVqAFHvGajWrUn1WSFZG4Wu8jrCkXLReloHiXv2qEVnBrOHz0INI0x9jk1m0SKpukSH7OKwyFOTQci00EhSEHSDqjhIAlcWTLSUfuXKBMo0k55coGGfTsdjwZM2EhZMpukYDBibvtF6qEsZrCivnyz2VjdLXwBd24jALIzqEPjkeTrQJjKL15lkGCCD8FbNiN7E8B3tWel2YKvvY6vvTFXtDXlNaVGcd5QHf43g4v5XK8Xr9fyF6I2ep7LJmIAgZUXtasJa25u3/ceyJMyJoqVvEQaJja0gony+UuYjahOcMxQ+R1VjnJNJVP8TGb+PenGc+S6t7QQeWpHDUsaQwM825uZyndE9GDKhQcj1gdXiWbVBMEn3yrvp83L11LPVVW4fqm62oG4uvwbfnhkcPp/x/ZmhznFGr2rwy+213JboQRE3V6IyBNRc5c6IDILMXlsbHykdr4kqS8eYqHtpyts+A0vBKP65UVrD8h6pCTLZ14TNIOg+N/llICvnQ3yWbl0/MhPWHqY62YqLLegtIQmXcpTNCidxlnd+q81LZy6vbI+wK68vk3DGIx4DLrGhECHeAk7TrYGhCVFNMKzlzxDr9IQjQpbdcNpkI2mn6UymDO0AANIvd4bblhPBRqeFP9RC487PavXBw8MT2y1Mssj9TQQZV2sF9YR8r8AGvVqC1yscAEXQwyu1h6aIc0ojFCMUf6zvno5eUlFhF9xL6lw4Iv1sj3aPkPmbLcr0RHZdgEmjZffg0/m15bZq7GE00E8tjPtTQGbBBPr/jUkKLfK/JW83oopxpAgClEsFLpDZzwL+TQHtTiWswLHy74ALV8MmMNyE7hWPX1AvMWgA4GLMrDFqHV2DnF3WMCz4RNtla5DV6Uyo+GFsEuVwMZcGM/KacJ++igGbJIJEIA8tk8mIZjKp9oeFGhSg98P34WRdoxDVgK5MOCJfr5K2czi5fcE+tLizpNcvDBUi7X9tAi6bGLAmGzvUyAjEa1hWKdORZ2mK06/W2U0krsS+FVrYbobIJKdC5rtzKWUCZDLHhhGoQkDdwnKvzV97Cehdt707SG8ngoSE5QDfSEiCNGOcRBHLl3uvlyBEkh+8iE+AfH3OPFiEzXdygUXLLIJZ5mSjNqvv9vgGDP0bD6J0yf7BCM1T6LvueGXPs65wG2GbbFI80gGEaDoV7yEwoaM6Hi5ztjKRP2vmNzjzfaMR+p7X6+J4oxmEcr3HI1iHskJgBlEK6LJACq0OPmKoDTIg8uhr3T4jEa54hGh+kaMt8DZ3J22iMWa0ruYG0wK8m7mM7VFqDk9pofTL0c0UUi7HoCcKWmF34Lyv9IZsDcPRbPaao3cRAeMzhR6cE3XjlsREe0bpwRgyUupKaodQI0UTgUvlBpz4Mq6jSjF3JqYKwGa1nb8a0JaR2AObUNzzh9r1xsplsky96QGjJyqYrbI9wVBSPsASHz3VS25F9Y09kMFYrjFAqgnVOkThKcZWShj5AoUzMfyc39ZbysulWs4kLPhzQ49qEiCtlY7a+I2jn1IBXA8dqKB0fPxdF954ts9Gg0cOKp4RnnpMJ48zZ9zdEFOsLmiPNRaTWdwxvMjMtYYrmOLba6lcsv5GZi3XhRXntp9q6utd0lY3rRoSI2lJ9lNHqyB8dZE/TSUTGGI/vA4vgtZNpDu0GfkeX1JU9wukBeKk9uJ9lYuG4Em00v6m3Gz76SwqFSbGOPzwISjgQrYFRjePDBdN3l8al7F2AgzX88dZpysyq7NAsL4Y89eLN0gtvmTg1k60am0OTDZI9M9/P2JJYjzI3T2DKnyInmyXztWLki162gb4NACg+WxX6eb5tgBp1jhkW7hN9ePM75t0+6pcPRZBGp3HXKaqw/MRW2ImTAJXNSgxr5hFbcRE44u+XpEJkZdaVl5sxJROjFeKzx8yuOSTRln04mI+AcgoNDqwELs8BWU9y086wfIprYbyzuuis3Oe72ETlb9jrtt0oIMb/xYGJf9IQrxeTq2ldIUynUEECUafyqYroLLRKwMwLSyg0BDgu8WyGMh5TfGVhxVb3/CSTRn4wNLo9Kfb30CZx/pEXn0ZIUGrLi6OnbFXTjjWbCJCMEjaPNffREwqMqbBYAE2/a5XmUwI9KQpwCaXf1icq4KimtZGDOQo0ODM9bpjoqop7zitnWJ415AmOjJ0zham90Xj+IWt0XWFgJPiwxCAntrGqqKsXRZ5G8pdr8E1qPly0/n1REQP9JJvV1sAISC4BpngT7VzhV8JucMijxGohc9LC+Bx4MHU+5JTWNWQ+ElxZhatomrCbrGEIMvW+E8SabCL6wMM1sfK3qA+HEEcF2ZEYZ1i1tPLUiEDO4VtDsOax+zNAnTxEh15IdL6MBXrwZ/PjCNcJvcOPzXd3bGlb0N/SieT1a3Be8nnp7BVuQkIi9mV5p4DzQ+vnwMHVFk6VfZB0AEzmhtJLVOYkMXD6ulklKUxTf3dJYZuIcZ7KGt0+HdsBQ7VIZ6zv/vvO1HPrJtguHSxQx+TKuj6BP06BZCfS7QdsQk/Q9jejYWoYP1Sq333F+uy94lnGFnx2NckqpTAd0IAX0rIFlb8oWuSK5nD7jrb4nG5yAK5wnFVtkNAVNd/Y5bTWLcZnL4izO7boYpCcStjpbHmvx12T0kXWDwLJb5hD3xcmjQopk9xij3lGiWCMsyWN0fyyogeYXUGwQbdHEHQjlDPIch9ZWYS1OOfMWx8Z/igxy3m3Ytqggf3p4zcQsBnusnVAK2aiwDkoWRCLP1A7zjZ2jGr/NmoGt9PHOVkQvGnefwBv9r3Z7So9BPbhsKmM+qOKSKkmd+li7fxCrMAENRqhX8IBhvqhYX/z8NnvUqBouIpY6yByO+8sbVBshxYs4N55MBK7FQafV8OaiB0gTjnaL3OVfQ0cpvndmX9n0rlCExeuuq8JvEwfG2TwVRE7rnk4pkI/17/VoR8D+f1TD8zP2DBJrkXDcc85PyjpbBAg86iBTXpXXrdRw3jU2Ju/qgBIblP1ixsJMUutZQEDV8OYk0u3fpxOql53GrUFWitBM7kd7LfFokhUPDhrLd6BumkVmc9UBULrOR6sKlSPsL+d874PwiFyQXeQEf27MjpBecjW1sZeVIwSpxFS8kx9fK8MxKTqX6pbAeYq6toAY61HA0Vms1J7LzGljaJZaIb1kYOsE645HuDruFHP8/owd+Akr+ZYnaqAQCqlZ5kFEbU5gcij05sNQvTowAbbQIw2HGAFonb3f4vtcZ8LumPDq5IGsITjeeUFetxQfQ1mG14EAnT/lrOQOGBKWNUo6gYb2k8OvMxmYY0gTkIKFa7a+73kQrPXemkjrGnLGeE6NxoZa9sJHPR+Br9Sm+P8Mj7RFXwMFJO0iASwxwniO2vF1e8n8eBzyNWy9dvpNKawDQpauQL7XMGN28SSypITZFnK56CIa7wV1EHUjzy5ka8bCSUY73mOS7+/CzALoW+9kfPMfUrOFbsz/Mquyafu/OSc/gqKXgca0vpE90EPyxaXo8ZNVHlw0yAQxFSgt/yC+B0LLN886a+ahq1QjcEELsO/nTitXYYyJ7jvM+05IZrM3VUMgRixY+ZbvrphHdrkj5t1LrYUC8gqdynAbFiX31L8mtVYejcbqlSFZ37jtsCqpEnrhS1yfpd/4y1AOmJxQvdT7gDhZMpKh07/2I42AvZ0/IlYw9mQM2bmy5Q4+VZsfbGJwTBrFbVoHOkhDz7gyXPzBMZ2YtueNx/Y1I1Pr0mQ+Dm102rS64cdhvd2h77JQa7qDb6mDPugLhr318Kb0fkDKF2AC3GawMgQPpctGYXGAVGOtMJNdq4F2urSadyTfrolFIB44Dh9hVKCqE3z0Bfb/hXQB7Eo879saBqsecO54dCATRfZ/GOTWBdmX6e11/LE/c4K4VINNxsQPTX4lPdpX9zpOaeVQp1TRUJbB4YRqedTVeE7KBYjPy5l4CkT3S2h1KzQ3QSiDsERJgcZNJDe1EVOKfdJWm3xfYgmcCPgEJBjvspGkhWb8qUY+KszrQvLP6xM89pcDmqeBAlIVQgJdHZpTqtWe/udrHcYSEKs30YDtRTrUN4BTkhyiByArrOOnd/PBJtu+piArgsPAPw7z37u/cMeWSe3+K0DQQAOMwUTVTYskWS75dCSY4H7Vg8B3esnhITVue8mSVx0jysvhv31GmNztRbxiSp+uqdoiQBlLUIyNvVpu84COeTIQPycMioe05L95t3hjvigQjaomK08zGuvZ/+9qsrw5lysxOUJC+676SRIoT/gyNd9V2kl20i+FxWr3R72BL/TWxhMjsILROMMfjkSk6eONo/FzmNQ0exYyhHW97uoodNIKMy3pCoGGk1ufbivhMdSMGYloDMdDFmuj0iSn8CC3Kl0bmlbFEmsh7p7OGJfNPxEAWo2dfD78gWb0xkeP7YgZ3JJqhdoyzoPiSXylwjXUysgNhH7GKXWWy9gPVY61iuVxieMI515v91dPKc0oaOwuI6sVlnrIULPNwhlbnF0QLOj6aypGnLU0homzNvBrSvmK9PWmDRataWYtwO23pRLkDI0CaOOvfhj+mE7iCTv0A+uDNOTNd3iIiWiVjA4qfRWYZ2sfiPSGvRK6AM29EtgS+3EdzzeceCPXalyevuVeMeFadm+3KjO+9swI9tq1Y0jF1/F6/rxLmAxbj22BwFYzw62pYGksAj6A4cSKjbff8+qbuRS6Z3fJXEyJdWS5clOktGVzlyNnldqPJqbfo/9XLTdiQSPSviExgiEzvjaqDf8geQ00ffP6Y3WnuG85ENGjnc9dqPw1P2nG7G4JBgW1Njoq1MLsgIjza1nzYdkTFIvBGwX79wBJMuFC4dgcPZcLe4bkCeNXrLzAFEoAZmda4Oh3bjYDEcU0FyiRPT/VbOJYsiw91SZww1GO3RojMtQgAmwnq2qpTItKkxIItEaoimAh6HSy5VU1F5qH8PxFsTsnHfepjVt9ToYlCsJFjAlT4ewS73AX2Ol1xr3ef2HP16mrAVnEvFfmDlrQLPhhwS
Variant 5
DifficultyLevel
620
Question
Amgalan's motor cycle petrol tank was empty.
She then spent $19 filling one half of her tank at a cost of $2.29 per litre.
Approximately how much petrol can Amgalan's petrol tank hold when it is full?
Worked Solution
|
|
Volume of a half tank |
= 2.2919 |
|
= 8.296 … |
∴ Volume of full tank
|
|
|
≈ 2 × 8.3 |
|
≈ 16.6 |
|
≈ 17 litres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Amgalan's motor cycle petrol tank was empty.
She then spent \$19 filling one half of her tank at a cost of \$2.29 per litre.
Approximately how much petrol can Amgalan's petrol tank hold when it is full? |
workedSolution |
| | |
| ------------ | -------------------------------------------- |
| Volume of a half tank | = $\dfrac{19}{2.29}$ |
| | = 8.296 $\dots$ |
$\therefore$ Volume of full tank
> > | | |
| ------------ | -------------------------------------------- |
| | $\approx$ 2 $\times \ 8.3$ |
| | $\approx$ 16.6 |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers