20049
Question
{{name}} is travelling at {{speed}} km/h in his car.
If {{gender}} maintains this speed, how many kilometres will {{gender}} travel in {{time}} minutes?
Worked Solution
|
|
Distance |
= speed × time |
|
= {{speed}} × 60time |
|
= {{speed}} × {{fraction}} |
|
= {{{correctAnswer}}} km |
U2FsdGVkX1+ARpOtIZdZB4qRQOB8exxEQJuIlsn4Jye0t6SAGb/qsm9hOmgNRynF9ane/Vl9lGywJ5XtR1Mqv/FKiOn49W+9L5x+Rz5j62f9jM4TaXHhDoVCHJ9WATdgYfZdHTgGQauYnY0W3rGvvIA5CqqmPE0bfYUnMq/cz9IvrHmaVullbJJSrxKzB9XHfO8RCDUzSxJQ+GM2dvApF+8FP55yiIUGgaUKXoaxNQDmGbTbCs90Wgf+R3De6Ogk2K+zUM9QdHk7MeGhz0Q77J68nmmSSuFQmxqwVEaYcnnpu2BCpakvB7gINb6y/u85uCDOXbua7UvHqPyl8xe1s5uXQYNCM4iWJYO+9FSKE05IgtEss5PPg2LwZukRL5jMRVfMipalLykD/9JtHK9/AN9ahSW90/SP3/xFpne0+AtSKGIfmU/U7Vr+K5zPp5MxaKMHG0nrm5a3eVefSq044bdsmJeRWfm/5u1pHE8dqq3EIiYl1YJQyFuKulAYEQQYlTQfTq0WRvfM4o6FRjVsvpgJw3EEYk6ut63ABTu/PGZCn6gKz+TtIA826hsgBArJYWNqwXAr2PpCAJY4X7as/acBnSLb44HsH4ladFEjxsUixwpN3akFFCGfjx/v61SdMTO3IfR0YgQHZLgRw8wCAyv4C45+OM4CSMiRn089h7C0LxkkFULVWdpN4qVm/x0lsO8woQiqOIa1uREK/e8s6loXzNyJgMX3IXiVVhrSIPKUpL979yD3X+TKKqhx3g+9f1KgbtTQgJzt3ZW5O2yU9hcAt+AbPsa8ynB79gy06AhsurQqjJCp0lx3nB+k/NnGg1L9ipLKKLIkvhf3nyVdvoiaJnjVkiuwUw8HlY71EfgUXxxT+m4bYVMHj+NWgEsKqJNWCcwMFvCBXxZTvAJ/IC/tJ/jDPFy2OrGu2v9my/GyeXMRdrn0t+eLxPCfEehGAy/3ux/dS5RjpopYdC7YD4jcqV8R8JCZ06FAJAusq4/5QEOWwAxGsLGK1XXK6+AT45rn6u8PFgnmZpVjuILSiMBbX1+0LVE6+Y4U1/g6gA4+hpR2xwyXwjWwrU1sc7kOFI99EnmlQVrk2J4hibAXrjkeCNRSrm8g3v/0tcjcbQ2OnNV9SQRNUzolKkJ8qenKoSR1cXJGqw9x1E62gNDbn0C07p03fBXde+HE5L6esdXAGcCoaqfa0KODkXQurbP9Ejy8wS7N6o78DxJ6k3JLJ4B539ZnQI9ydo7YaA+fW9QGEV7LL2aJcfBraAIG2zKRqXQLGDF3ipPI+ofxtYQj6w5NnnN7XgXeVnQFLQe5LCq5k2Y3nnNltpsMopsmRxdqZDrNwfLIQ1vrPYPItH+o9yERkDclBmHnn5U3A50iRrw8xpRU/20pc1NFnlDpBQiT43jn9CFWlfVxIMSlqyUBQok7275fQMcYGo2SXCSzdZPTRWPS6jVp3VqTLgAUg50zwxTAlKQHFUhbFf6UMHcKzIVMnPreK+GiPK3KxWFXSmS3zD1B9WB2DNfpgfwvHfbMrtuJoA+v+aZxTdTczmLL6di4YxMMaBJiDx3XAshdsjTOcHDxhZxC3ekJMZayJauR3R52JofB/rDoGpKueAQxiT5O06HWstZbManR9e3oSXRL1/dTS24aMf+jbfTgZ8gxG2r3TWZh9URa23OLTuI+bdMEdgECIt71g3BXLF/uDjAUl6Ii2ilEY5MWEFmFm1IUfQ+gwuAkhVAMQ6G2+jkVy/8kSbp0ZQP8dfy8kinkAIRCZv5qwtSlxXrlawQjBN02Q8n7jnxld2Dzpla+kGtn04wb9A0thLRexggTl4yub/54UA8Jh7iGMPNWKp9d7QhUVNumrqw5UrlqVdtH2F3FoQoQnbhBg1Xe2j/zWtS+skdOAy+VP+GDawwIyLJpnPlcN0mng7KIOqRgSe0y5FZD6+bpjl65FV4TiIS35Blooij1clAixOeJmaA7lzReq/dtD7eeQhieOp/NafOHayKNdpxSNnZyEHLBo+0fo/aFdhAQbLBzRhuaIsquAe4SoFHYJhRisg91H3II2vMSczyVeNw1D8ox1WQJ6NMGESghbmcfxtxIYyRPDyKAH2vJn6LxysjIlPjZ408AGqxpFAK2ggpcwCualPcpr9YJCTj8u9qlM0/gEDWsL1sDRN34UzDXoz+l385cKW2PTA1MbZxJnbchtSGtgSx7qGkFLWneOcR8dzJwZX0x/pJqftMvVi2ud4kLXGfEftaEiE7ngvGKZg2jcS40f0C0sJWfGQwYOmzMDEOzjHo9bJmRdT+O47xEPufvqy1rVcLYS54C6EaR/eBqMc8Twwvp4VmIaLloE74uRZ+8oN4Jub/LJsc5/7QvngZz2q9yOavjzgypaLYcESB4WfChQR9Po1fwNBHo1U+Xr2uw7TR5K1ZKFgXO297gqKPwtI32De+c4m6FO5A7TOq+p6cSI4SxzwKwEjNr7W6F1uAZlXBVRRz5FwTCBJVPtrA9AhX1Gj5V4wLO3NPIp6KmKcOzcIEwDGb830eJDBi4drBoE9ByzDKE0ZGb1vSYKYLM1ANEew0MBe0GGcdTp+j6L/q6x5KKIOq8va7o/i0tldjvIb8qPPOHVF/LasqXsF3FCphY1Wm/4LzdZKKGgoWL304EX+p65ZWwVKad7ylSRguQO+75ajJZTShPKy3wl6D8/tK3qqpyBZf03HqDWqb1esjPf70Uh3uCIz4Ujh2UijsBosaKQrdos4ZNLF5hU9jGvUOl/WwgJJWmXi665P8r13zyQGxhy1BMEuIvLnA3p0rY2p4/aLPbV1a7XZkakENZCLVOjIuFmWtMUuGcHjCUdj9rpAFqgBbfQrUJYpAiktF8iFsOG52xlOp20pda7bs37Py2lT4CWHHNHNhwzVk7qU2Y2lPvz0xJXc0CzXqBOp+hxQw4rM52EXrUvFP46Y/nGPjjEfkBO0R3XsZcBP9CcAk8T1FfAtiBktNRNh3nT4ZmzM7qMGIQM5co3XKGTUpRMMWS4cKjV2pNBNDA2GngYfcnH21nnRgmbkelZF81lVwSFg4AixFTI+PAjaT9sKPgAIrrbOMC11Eak6JyH2xrqiwrjHN1LgRHl+k3RBBNIHZjPxtdZ/asFLzPt9ke5dr2JDWdOnjvAZ4idjkqQDJ4+SzZO26XUtLhSbO2+Z5PaapZ/yGuQwdLVLYaz68joO6PtByJ1Ya/EjThdLFrWzAIkX31OPvx/V+JXHJOEGfXbalT7rA9lbqBPeTVYMu5j88E2n3iFWd/i3cf7u4275WEG3cg1F3uYs1DT2Wi5RNPjJBrnyEdom95hEHfrCXB41wSbf+6nL2cWYKraatnFkfNQhghXsPFIfpgXhQY6jxoW1J7lIaCf00Df+L0a984hBPug1wtG0qdKSEV0FCWt904tqnMjfypZh75RrKNhaGqFj5Ff+jZBCJ1B/b+GZCN2DJqaPWU4pUau+kExFNhp77rqWjGi5uhg3zXl13fQSx2jl9I9eP7NpK+nxxyo0LHZIMdgWq7MMTQZHvjeyNGFCQ3jnsFoGY1ecP7kVQfq6YWX7zDFZVSKbv1oAgbFJa1OkJAKwyh44LUCDCiALL4oUa3OSUIWXhP0ERoWqbC5iEgzIKDh8bBG0wlTY5JUaa1qsIgVIFZbuZJDbWdAM8cdeonZkJG7slOeF4VMEBZ+7FfJgrLLs4Fca53Xa21Po9r5i+0gXWJ5xXl5rWRDeuI2L6JX3DNlyphggUmT1fCdTEC4E0T3LIh3xeAD4OLZYHeqV4i6b1CEJWY92+C8UDChqVWj8uBHZU1kDoLle686uQgL9Sak0eGvPsjFBEGoRhNRCmiY8aRkg8ueJxobJyq+LdJRxwpN/Yt6khp81iJcgecNyouGqrJtvPOQp6VGJ3V93OgufyoM9jGBLhju8EGb3zJBG4riIKGnqvoGG1TmGI0SmN/UhyIRZx+VWeGSk7JfbGvYHp6sofyadotq9eayqgoeHsbJBsqlTrIHNXw391KdRf+OnlYckUOBsonccyDqPEx67k9IgoA3Onl73ICHPTcnvbUb7kX+snuu/IJT6ygwiS3v04qQwxtRluq/dkYsgjqJAP/TaRoX0QhJb+fWutr8XbtnwxP0qhg93ashFrQaqoxalpW1PtiMECdbgEzBwxV9BlAzs1Z9B/UoBOlY3hjVJ0LhKfdMmZh7V/eu0qTBA4oi1fWX2Mht+Up9AK+JqSRs8ghteKwu16+X0hdlBDovOHjlltmGiEOSE9Z736MzkkPyaS/kJmnzg/PeOzU2Ay4cO0nyAFRSjnhGAvjb/pyh2Yhm5q79N01FNkKDaZdKMyEuOg2ekCUYiFuCf5pv1V6RKVrKvCEBOpegGUUF3oVwcbSMTh7TLoN6xqYYWtRjdlIswO9NbNrmxbkI/JlWja5nFfSEH8YHuMC+05UBTkdZf0m48L5hRGGLtv0x7YrMh5C/pQ9DIlIbTSYoi5SqNOoyLY2bm3v7pVQ4e3czK3/fDt74VdUFrz4MQV8b18VYQU6mbKf51gj/tR0fcanpQJHAOEjixhJHV/WkOygaHLdaAH+59CR4ErwHmD3X2n1Ib+raN7Vb5KKgm0sbf/i973NFoEsEChYklYnoqBUxWBSRltvE4dSQiHNXITKZ19hy0p3RHlhRvuISyrKLMBPwaAhuhnYNCEdyLl4nmbMNLcjz2/q2KFzsLYlNw5wIX0NzEsuBHsjBRgkjknxVch7+SE5ZmZEb50hu9SCLY0q1DeGFcwMzcMqyv2wDlDGXBqaWXxxikjTiyBm2/PYegqsifvMmnxGngfLxC8ohaNtXpjvWukI5Z7OU1aFXexq1KIcq1RY5Huszdnoi46q9AdGZJ2o5BRE6D7Hqu6zBpRmYM2AMvsZG6BuX+F35KaB4Y4XC9rCWtFXMNSSRWNwgaIJGBKnTr7A1mZpDcYTHQ/eAA5xQ6qiBI2pIm6Tv+IEkcWcS789qG3o/OxuXu6nPnUuIpYujAjygENiIP5p/hqD0Wc9tqNolsx+E2waVLfWiPmyR37TT9kZk1cNgh8Wmhsv6G1mNd/TAgr83k8HgowEV3GNxBUgFgsfLuZvbK6tTwGuQKqXpwzmhwQ4/DIqIPohmTxpDqLFT5RKT7bDP0qzLP3V8tPdwm+tXiUoqrJehZ4u506hu3lZ0him9Fz/pI1VmoZZsaQ57gobE9PzBueCckwRx/X6hQofM8gK7CJVxX0il0yicvu3mKoGn0MF7nvIepjQHvvkOim75ElIFgtmzvFA4IDvTSRoGqSvck/BPnJIDq4O7pWZFU21RBVgE+FR3YGLtYnKBRuBVT7b1a9vAU8ZXql9dFX5RdwIJHuoJWOXDE9KJKdyR+rmEKOK8p7SFamDJmQR7iuBSS6NMm7RZ25MnH2tKlxd9REKW9TuI57l1qICNr0PM7NdwdrJwkKIYCRN4dz0ygQODn+WxvPSQ9oBodftzRNzHYUkPF83U0fK3VGF2ddIIpBuGB9UfR49XGsXDgJgSHFDQNb30yxjWw6yMQdXWpBMSzI7bcpE8miqtvo19Czr8ldR9iq+OnwWiXbATcFz46iywEZZts61zvDt1WRuQb6NtCKS0QHZpb8crLI7eq8piwQ6dR3mokDNJR6SEmvhFKQ0dquWHj74sdQjbo2fqt8ifNSq7lj+BEcVwnh6CooPRtk4QYoSWICMlwApUgPPOuQ+VAaghnMZ5jr4BWPRiNqiaK8rGPtMXjxEJCYuTiOXpOWodVchmdRMaX2R15xyrCMDlwB3Jg9Y8VEyZctMSjOaknvWgf9S0WE1u8TFAFDIRg6MN89ZW9q622Lmu5JvHLn+e6tyZgZAAh9kCKbxaImAfmNCen8ECA6eSsmY7DalN/wWgVdH5bpaeknOVfaRMyo6zjfvdHYzgoJu1EmW2vf/we9DxVZ+1ADB46U8qGadM4iag2U6nSqLW8mTa9x2wdS1kxsfE3olP9/KMF3/mwOiKXH8vhW4AHiecToetUdgUiZn2kpyEakV1GLlq0XwzH+BUR9YEbMnN4yDjZrdkkwnfSvmFKwhusMfjtzyuWyZYxNXa8uo3W8r4p4Dti7ApC3aT4c5jcSWkBmKbXAqFeh8MAslxGPL7NnzU3r62+YTQ0MRVCXgxx4gVfrFj74yrS22BMQJYj/xlQYC1s4POwv2D50VpjQx4h4jWkPiAotMUOp/7ndktdgGzuig5qwE1vRNX9ud1Hdf/f2mtEg29Ci/5IUrLejRh2nXdIvzKuIPxRQ+0ZrDt64TMx0XR+W9sfRLypHi+dQ1zOm1o1Y9FOtEuUK97ItCELH5zwVn2udIdWyxFLSKxgFbLvChGSL8Ml8Saq7+i3CX1ouElbYRK2PFk4O4OnLjCRA+ub6RyCBVuTiu1JZ+DUbZ4Qg4kG5+L9P0ix4Vra5zaLvGh7BE+Dp/gx6W/yLJooyHKIOrW1qQcJb9edCBOLWClhoM7TbZmgo3ZF0kcs+OziTcIUFdt6A5WgLqI70P5l6Znjmp27vZsAfdZKPdnIU1sD0whztya7mXDah7ICMKDXC3D811+hHa6dyC3mYQVumhQ/sza0tCAQWtOoFTKDtPw7ppe2jNOVV65Ay8uhYO5wMAnurDHlI+thXldKQ1yVxGhARhjVSJ59er0Mqb1WxbcStl1kmHv90JpdANupy2qC2KhfL7tkpIe+ysODPUeka8vG1FZUISqdypf4LBEhi4fOXcprXKCA9VyP2JO5PXOr5SgH6zKwb4+ZqSMubBc5xcDpjlz2xrl9rbOsUuoYQNlmbLdcXRsDfVngAtamhMNxdNzwO44yKmXqvjMBSjP/kwdRhnLBVsk8TNHSsUnDPxYaFUii7MmgtjlrvDUCJwWYKKcoaI8s9MnePw5UJSVfj0scjaqJvbwx71k24SzBQLtxXctq1umIY8tHnJm88pe3puqP7WqdrOWjllR7iXBrQ8a+2XB3X/01Oxjk+wtxa5D+NAME6V9QNOZYpru4lH37ohSzwlpJcj/7TJeagyvnIIiNzdBsXWaPzDGWmoOms0hzoNQqLCk/jLSYKNOkRtnjqJoOacgsA5v6AKJPsdia7CQoC1TTEgrvBTCWVRF+05d+uP0dsmraPS2GAah3Hbd39P2fWQtm0a28ZDTIScwULayyJ1tRq6DTDB631z1utWxVsPjeSqQaY/xtF0A1QQYw==
Variant 0
DifficultyLevel
569
Question
Michael is travelling at 100 km/h in his car.
If he maintains this speed, how many kilometres will he travel in 15 minutes?
Worked Solution
|
|
Distance |
= speed × time |
|
= 100 × 6015 |
|
= 100 × 41 |
|
= 25 km |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
speed | |
gender | |
time | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX19F8BqIyUsqo41inqkoN3fXWqGe/PtIEPvirc313baR9JG6w0oU3XiNxEPw7r8uEFZ2xMYc88sVZnT9GWkEL8NgdIfV+kcPI8itx/jL6weUBYwFB3xroHHNioCNG+Y58HbmAZkjBZB6R/y35nX7Fe9FItK2X6QGGHtN60lmmYy/JL7F79uWHHptbDptaI/1KmDET+iSHfaAy5EPpXMsK5Rs/c7ZXkcblyePiwuW12V3DRvVnlEP2vU6ZrN1aldqJCjmOfQ9FRPWa3BAVSv7j2cP4OCKBQ3PxB4AQy43RkU36CUPfEzNbVibeB2k7psiXozdvCj4PyUnah1AgHNJcskVjoJ/lTKmz+X4tOzf4Ki7JMUwhg+avQbCsD0M2jqa4MKx2y08ID0j/4LWCd4a2xudjJRq3jumI3Wm5h55gfRW2qL/OBJrB1TvME83TZ5mkIYNkUI3dl6Xc5vjbqW1dPHQNIxhtHsZl1zT0qrhwBwC8uO1o7baGP5Xdr6mIwMB7DRemXLc6e0khQUqLgCJdRIMc2/04a5jGZ4UinST9iDeGYzwOV6N2LzKbP4mmGIyhGvqyFwDqThlcu9eUu+vEqsskfCiS4GfpatKkJIfsOfpzspf4Jj8wgIAMtPyFnuKbwfMt3Hsm/9oYfGYRxDtoJ28h6MGCa9x1czx0Wi6AO5eqJaS7F4gbyKioOL5z1jZD+8vA3u6gEhnKtysfZP+xHfjLjpAZfWI38Nog1tbi33cadQesR04c7K5NFdIhvdgm3tgfoscY9yJLpOs4JU2u+/BCo2CuBwBExIU3nAR5EEpRF9qtJYDg+iGydAD/hGX6dfDnfUzW6FFtNz/BQtyUy4//iBkAjjSvuHr7e7F6jKMgiykuLRjhwz3tjwtSWfep7+R+7emxFOXzB5RkDT4pBLM1ca9gcOlPYEPA5ya5cvfgo7wi3/RZZUwmL2Uzimk0l9WmzkkH77SCq3GR0HDGiwp1cUgutCFokDBgscWFlUynyDvjCowkEIFNcCYIUwV6v1/ZPZjqv9uULVw+xNgbzEMUHujIXTlWBhIridDiPFU89AzViQTo4MNWnAeAg8Yv9CaPv9ayrF37zubETUrgHca3UzDkp5kCfS/vFyfu3Ounx8w31YmOHQeyW+pYovQxIUbXSoFH1knsTZPzhKR9TjjIV4jE5UjhQjnobDlypllfezErR1+r/X0T+76IhaoyYybhwRivS/PVmfLm9vIS45M/h4pXOVIf/VBhaYntQxsFVEsUr0egx3FnuzYdGNDERiZWHILAGGcL/J7u9/2w3gyGPGalKOJRHdP/HZfRHQ0jgbQhZcnAoI1RaKsru3jNNlneMwEuiSEu6VOdQFVZmci03qUEFZuD2fc0NfJoUm2BtoPtivWj3g3/Mx7+01DWnHRZUE3JzLxTOGGFWjU6Y0Z5f0wAkLI6SwT9+gzhHIOLT2VYh21wNAd/xXtPqKuCGZHCVmd9uKrUfUvsKqjrUTG7cTvegW/gNKvfojOK+9eedO7x5VCFqBo7xB8BQOs5v91o3PVxm0Ig06C1DZKoXvdCk2bJFBJHC+8ksSsFbhcw/wLR1es+fpqIGwes7jboF0sSB2HroAW87Slj+FPSvaVWSx7R613hT4Ip3bvlUWnl1SG/6KJgNxK6k7BRZBXrrHmA63BoxPBIfZ7qVN8X5uran9ucuk802y+O2TkQLEIC/YIi9XyO4CKJWicxjZK9TMC/dPukG8t1imjXvBtgsx+5OvPHODWwaRWM74CkqeOKPt07ZbvihlZyIW0oSNf0mnD75PnjcQyCJAke/KBqdLoYbtogDVRBrbFQIJ0SGftskQ9u5hhdnRrqr7uM2hd5PRRlLH/z0mjSVPCewCS+vdM3GxTuanG0DH4Sc2MeyTdpFTfRxtsmefoOldYR5r1Sznf6CzlsOs2eROtvnpdyBaCI1JJsJf1k+2HDxbplACVVRpjl5P50qEeeJ6/0QGM8kKmtkz2Bb6kTtze+/1Y6GDJ5A9+5pNRKgdPPSaKYv5DONV/2UiLZLcRFOrFSD1YjE4hMZp8DQRx+Bbdj0PsovZbj4pnebRQle6VgBI6QvHQRi+w2jVnpNYTROyAzvbkvC25K7vU3vKziWlfjPJPYW/lHJbLtoog+u9gm5j5/V9nNgUVFI2cvqbNsIFj0bZKIx5m4xHNGX9K4Kx0GQqzqtpckPvMOVKQO88fx5sFPZRl7KvrqBmo04MeR2++Wa48Bi4hPqOeZEQxeStgNUYSTfeo7xO3nUOpiBEdw8hehCjIMw3NoGthSU6xYw/uo5IukMcJSD13NZ6TdXo0xin8QerIHkQkc6RH4LpR6vS9ujroABKjw5+uhezzN5ZOzKoR2AypVD+PP8GlZsqaFvQ0E5xeat2EtN49F9Dne51vRmMLymk5BZ+SksHiiiZhJC4bRJSPr9pq+WGgXK20kyNGZevm+9036VxfYpZnP6vb/3pm7O0y2K5IRJsM8CqWOkHTVVTB8uaLqw9ZfaS2dEe67fFK+4RKUUz36cN92opm5tuguafySrHj2ttd6uFDp8m0Q+OUrqsl7GNwvM4x+otvxqB9oDdEywwsDx1CYinEh1EDxqbTRBp8oaIDWUae4jdo1KLQ1FHxHmRIXTeFOZGq3h2nfFKLpDw3YcXTSgRLi6oKSmG1lmbLoZPgkxalc+ekNwd5MNB30juPoiLt0fnD0Z9qY9DfnnPJxAg/o5GmS4JTlF7KCLoriKcLIGr/02Jfv3JjsV/B+r9eZ7fI+ZCRigdnn1DTuvxDHK5HXO4JPwr5A7Zu2BQ+JEIW6WCJ+hBbIRG/m9msriaULwG+Rqf8sbF9W5Sv6yL7yhyUAVey5qMloVjNcodMr4PTcHHew7/nX/lxwLUGJh5I/3rzWafvJOiIcAdMMNq8eY5fqrJ9agfnJGFFbTz/cGfS/Os879cEDGAarPVBDcu8LZkz+B9mqDwwT7of7j2FVL7CC0uOjY7iJ7qdXVhm/m0iG640sfl7f2OU2+a05WgZ+z8oIwyobsDgR0LrpQx8Q4RG0fb5UcQOe26VuCOLF8poxJx9dm5oyIoy2DEPsi3fYi6ImFi8516bMxAdUVwZqQwhaCHsuCwoAv++h8qrfrcyPBj1mCUkJ86QAeqD45Wzy/r5+UOyF9cbYwsDq18B+6fTspw7jgtSnuvSY3F/fjOmEeTflRRMgRoiv8I7VPySdSFRvfUT3oNQ6mq/MmJX+Vmnls7cFKzISAS555V7ky63C3pk/dOBVL/qEZAYqkYrojFTkRiYruKB17FOu56Tg+9ybjzfseE6NhoyWNSFhZwAGO75sjl6u2RQX+r8gd+sizqxSlovaHUG63ign4mTOHsqQF4jCqQexMTcwQko59zHzLFuGDa0PyjhyRxa1iAPtKhwrHWTAvSVYjuj7ThZ1px/10O0L17ZzESFnFBXt8PdfiG13Nn2+R5Qex/0Fq0BjzcHLnS+FVkU7WhjSIB6LoeuGyKIdpgQrJiiUhObduBvWp/Dmf5FY1Z6icIleDuSQMxN9C8PifpEjXt0j23IceEV/UHMUGSYwN51t9mtz/P75ewusPvNu5XAxj/j8nyvfP1PYcjfRozf6S7XrnOoUtrfGS5P1l3LaE9bRzMO4r3jju52ecGHZcwVKQLPtld/HtluwqV7GQPCu6Y9tWo+DkOfDOg9sfhHqGWWl/RjIBlGK5g/q02ZxjgjxVsXYo1a4Ga1gKS+nqEmaJLXcxawVnsF55LCBqvAHj3i9vUOCAuZPTIUhIFruTZ+aoyo2lxugTRuKbQ/+M+LD+vszg4FoXBr8JpycbkiXWtf0CJJpZZoPieyK8H5rtRTUjwma+Mt27Xpsc4HnB2n8u4f6Oo3INvdih9zpTdUWI8dcny4pZDoNpvWKp2eoQDGzq+r755E4ei3xVd/KyGyG6xS2Pt1sNUbOkibXc6muepcr9YFuCVsk75F6AXAldqwwHlq0cU2fY8Gh7i+7arY6AkYAo/82a9JTw7wvzljTshRAyzvBmQ2HBVk0Lg9MqKGr3+sjvnEVLeyWYvaDDE7pKzOqIBj3VQqCwZzvjphw0L1AQ73FDtksnbIx8QInTICeNa9P+x2Q4zTTVivQqFSsx1cVKNDMhPXSUyj1iHdfZDl9HL6JmI/YId2QHOQ90+T7bgLiZHWm5nfFbPsw/COncu6jpXuCDGqFcLcDfwsuM5+DlYGrhNSV9RZI2krySa82v73x7DqF9A0jD1skYDe4LcBmBL8vo0Fr53knS8bRsOjS1cj+/XQ+YSfrmOamKJOJCM+BUy/Z56N9NhexaaWGutFyl+dO9yphmibcWwfRfTkuiuHn14h8PQ9kPVhTh1WIIm4uR0nqNsJr7+0xW839XOJoegTyM0y6O/u8iCN915xgZZ58QobBLwdr+Cr2ZKVAySw09ZHJ0d8YFsPJdvhYmneGWD+K/L+ps0dlumunHzDaPULJfj1x3meNTyg7PRF//Iid9qjt+/ACVxwGl5dfcosfJhYLwUNj5kqaaBpyoQPUTMHINweTCJoraPE8dY584nnH3nGWLKLOM0FGAeFC6x7ZZ11YDR6tASgvr5qUfF9JvDGdXVHzPB0cefHj3PyL9CWFDjxNh4on0kFEFV1X6Wl31uWPvfG11hhag3C+a8xPZzVRvX3AZgyokkO6fMedfs5FY8Zaj1hBKG7YgFKwD8Hx5Rmo2ugh3ydXoFS913qZIecqcKDxddBgGEW8Gpl++mlhPzXhGT3sHkMXeJgRnYyJ2Q9rFBlK9oWe7ePHnlCLDFM+tug4ogVCX+FN0F49v0EFC9ZmObfzOt7jIrnBzQkmHHXzhU/XYnP1Hdk8CVfg6wt3zZ7DgmTyYGY5CcQr2rbB0zJxrBwzcm+dMTSSdsNHYZBva6jyM9nehWFIuhyEKFPldoGDG9Kk6sfPQLiRNITIhhQAii5wbIYhqyQrnaIzyKDIaMk5oxwWJczJZECAPyYMmHcKZcW/uZr9rwbGvtCaBGjNfXp8v43W6ROA8mDapDbOVqA7yVof3dJ1+fwVp347bIzzQJKHFQtF3bWv1Zdfw8otOMwQSxKrzftZX+0pRW3yaYVH5XJXRFe601Bs35BuUEj8DZCz7AQSfQfFTdh3p8R7LfGcqYb7ZiugYdYTDwyM+MWsj+xyq0ksMPpHlMWveUrA8OXruGuEhAGGczFE7xViMd7HmciI60pZ9CZH96tvLEsVnf/1tu29yLBWtRNL+onxpOVPGQk7VVQEmg7bIojHLAAZBkqr9fb/oKOJWHMD31yeTiADpeqVYc9rcg5fJdwx5vCo2OMcGl08Y1r4jOoK9S9X+TIscwzazyWHhHNfVCbRx2qv/e2mrFosYotsPiE7mAmCdGuVNJQkL7SO5lRJrbh65ZR/JwQSE3JHtwN8RBqN7dIV1H/33ysBlTD5DoTl+C9wN9ujyJ+2vwXA3ZKHfS/vhpmU4ki0mZRxnSRgw+XPswqOtmgoDBvLUU3oIw/0sqkYZM+dyoART/GhPCelyMillk3JwSFiEXHudNbS2VGUtioxj4XRiI7CPWTCvnDk18K/rmk7cth+Cbb75i888CRQUrM7Udac3ZA4gUJKuQK1sH9yp8xHwu4qb9ytf8BLQlmsMjWyvfuJbIWYZYgyWFNKC3oak/H2cv6EZ50Yv74yySAlKqSbwnD2qvDAKdN9bDpItq6Lm2Sl4bGMgU1PPapJPwn8EFyHYXiz6SAGYaYW2eLO2vfVlIs1qwKmleiPC+qlCdABzTisQA1l4mlizl9gjYdCIsoSWyCEeamk0hqQSy4zchG0w0U9geI4+2dYkL8e8Cmeh9U9L7wL02H4Wh7pEy0TzPuhXuTAGLuXRkTNw1H4SjfJxCdfaKKD9lAaCrJM+Xr6FgggcWJS/bnhNScmK16oTV+5p+gH967Ir8XZWxGboxyMN/dDopxo2IwTFmgmxkSkIHWReRUKUzKEaVXqdrLS4I276MFxi39LW+SP8kOV7uWvxtWoIH5FAxka2rvIOswhTazA4eoBCmrFKPYv1JVXAupmcU5HJucuZlcSfYrntrYZ//Y6mPcBTzOlzomj/CKBScS4ctk3bpQQhNZSVWKvuGtAtPLnLN1MFS+y5uPz+gzU2NiPLvEyY2xJDil1MinPy/2gaszLqQ2WjAziRcctotxAkbIKsNIAXYD+Gz2l0on5VHhRTDmJD1x/oqXUVwWllHyoZ6NIdRU+f5MhN4P3/Xzcs6qfHnylA7CAKHbCzzfcAt1VSgjhlhGu/lPQ3YpnwLgTXD08GW81rgahUujQooKwDTXD7Xx5ZbfsYTWzh86NbJ0SZWoCh4cclOkPafM+7ZDtgwKDGPaU45OAmfppgXOhSCYfITyZKnxJFjuftnTlZRJrcHYZ6cHnOQyKlhSTAsy2zK67r0xfX/HOkb/r7GRo8vAMR4y6kYtsZBmMSWMScAwFsdpE6tTM/aKcUEMUvAyghc4ajsOicAjAlrBgA1teD5GuOtNT6RcqMG7Xz444sgYyFIs6PnFlNPtrBL+9jY6MZhzdB/Y1LyIBRk1eK3LeAMaRxUtSA5J/cUoNNi96pF3BStupTifNbAfu3JBalh0557w0Upr09wBU59cAj1R6erK69pOGPluf28q434SRs1d6LoqXgqxr3v06Fx2pND6l1ZQUj1uLMsBelpQRsNU3gfnDUaj9yjjCZKAlZAMDPOhF9U3ev5Oj4tZSxnz+mKvOH91BWNKC8/4JLi4KpiAUBB8YMpEoTWjoBPcXlV0LTAR7fqIBrGH4talaAk8kGyA5SAz13Wtc/Bc05eTGXIQV2/7JXi7gI9QWigyugDp2SJ1tV6VO4QuL6mfgV1OokPrP+0oAkm+mSNDMniRMRpv73scWCFwNuxkroXCqop/EML4cRSRQDpKRROKlPxRkAnVS3Y5QaChbP2ok2RTmJN0CIO9nntYFby6/3m1e2E8nZaSOqaMhksbP/Y8pk5qstX0nSHuOPth+hsei2OUo5XQtudu+3vySSUbS61noOXPG8+MlV5nSbbb/QNPioVzrLYElRM21TMVo4ruY+Mw0dDCdjR/GldfGqIW3y/UgWAXasx4d0x2QyT58BMyHyOO+CnRZcMs8JqgOzWQiAQnfOs6NnsNG4jYGWPQ/eedMwIOHYTUkUPLqT1zg7ejV39LOd7+nT5iLHY9vw==
Variant 1
DifficultyLevel
573
Question
Billy Bob is travelling at 120 km/h in his car.
If he maintains this speed, how many kilometres will he travel in 40 minutes?
Worked Solution
|
|
Distance |
= speed × time |
|
= 120 × 6040 |
|
= 120 × 32 |
|
= 80 km |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
speed | |
gender | |
time | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX1/nk1wlzs6jUmLC2FZJs0gq8AWK3FbpdM2Fvtw4OoagaXApyD6KamR7wwxuvismzpreLpuPAdz/UXGekCXsvPu+wybsIGRpq24dXIa2tUlqG1eQJcQrW2ISrDmFL96/AyLdOeKP0YRVlnAPhjF8jwts/Fj6nwzSeRIKs6AumVdAfcfM2BZLaJ3sE85+BBIpKNWkQVjA2dInCdxToWVkymZC0+u4tfahM7Bc8oPb4qFwkfK0PA5HYyPACI6PBdIMkeElSAc0dX1MClHS/5NDQyIKUUtHqJ0/csbkp0uEGeCdqgP8ucIR/VsTtL4bdXsQa1dZZY78X4fuxgdjaE5W5fkR9Vl1pIcLRAZ/Lxl26nuo05o1ychAuqn65AseqUHhMsSTBZFeV3lGiN9sC6wRTkGEkSDoagIrEi1r7sNsV7Czpp1t0Q7Lr7WQr0bM8UTV81iEI3GHFkdkx8y9zghBhfWpHkyff9ZmEYo1kPAvUUBdPO+cUXQPP9Acyl7KaazzCwXi2dz85FsWGxi5kWGl+6OnAeczc1bE9wZTx8GXyF/zdu++xkyY7jajZNmdlI1WXmnRXzr8/5SMbhmYBkLckNL7gykuZwB/HcqphfWxW49kGiGfQOZMoDLjdCq1XfJEF+eyMyvU7bVMBcdvVzJWzlQeOpE3IWYMdFZT8wLZM0B5SCFjJPLoC7aKo6ngz3BbUHQ33lEw8Ptmtj5EUp8axsHI3zoRMa0HMczPzFK54WbWsuTHnxzXybEdfGBpTovj+FTOeoDyxxSwj0VcpgteaJb4Po4dgFIO3EoKVGxULQxxen49rCdw9BWUO6kE7jhs5gYuy/0Yx4LrnwG9NSkt097wAbhQAZyOQWTJ8SPt1pCE6t6BNlUJJ8kWf2kjOtKrFT/GDIOzr1US7SfitD0VmjpZB/M4LObQPbDIHxPImCdsth82di305+FF9UBWYl8x2ehAHCQNcBLonnMfMmUcZongv6LPZhMU5mwAnxvWzpsMIb2DhQ6uj+dpFxq1VCiUyaOvLJBB6T0js7n5EBN7vdvvJXAU0WPjqkhRjRNndNsezQAQp6vFcX5Wi+FYD1Eu3rj+DjVNS/S/7MLvA0tlzaq9oUYaOPikCEYpOS7mIabSDRCba6/xkq+lX3Vq8OgEsaFwdELx+R8PcW3nhZVdcw0oPD2LnaRGXmo6iVhFwES5UiEf3wBaC0ooVH+E9d+pht3zW5WYlqWVqR21OWBHL+k0ZYPlqUG6LbRaLueNx6y46TYHlRbOGcVbLX0nFUvyN0ZWlUkCCSmmvtDVfNz0aT2gS9jHKJY70ENyjuQaTI5oYFvYVSNnS/D8aKexZPt5Gi7tB42D4TVQUjyZMRqOMctLYLDadqo96odLIj3ApHVbCrskngh22dH2G8ZkYjSQWRAhS8s4k+NNzB8P1z6z7g5uYmNODka15RZdAEQIdCkqefxR8o3xWp7G3WQUqZ84mCp0PrSfbtvGs3pWPdfGMZlRIbQwEyNcPLd5Y87VAKsHZxhch/0e43QykRM9b+5nXsWwpGYnjytDaBWURaskG4pEIzUvMHGcROewMC6L7UvGT19OEVnooh3iN9fySx/XQfucjCx2UoKqeLUz3/WC7cka2plU4hPInjVwOYp+urn/kj3JogPhWILy80WAZAE/NelZGZIO4NqNneRNHAa1bXtArbYTQY9NUjJAKOi+S4DVoBLoem6/RsipM1WrPIgyOeAyU1pczjQyqneMOTFuqmk+fwhozKknby1VIW1XIN9fiesRx+QqPo8p5tmb+0E3eCpjSxNK1vUNu/KWnsCZ7bl8Bwelee04YLSBc0cHg2QFGkbm3k9EgH5OO44UGSifxZe4+n6voXJwIbwbRtU6Sf0ZoYk7cF2R1oARUKizN4B3l8Ci+rDrvZg4AeAnj/Yi3gMjNKILUMvp5ZfUvkxxbv+1caII0C6JdhJxBUzDfWAUBYkSxsuBjlyKCl2XvHQIk2YeeyzZbWHdHa28ofLwbOHSduFxcdv41BfvFp3hOGU8gzBiXqSadGcZ9mub7wXo7fx5Q4uk1dlNTBCZch7kp/wfiqjK/E95v5xMGXBKlzHGQ1Sy4Gm+AWC0vp1vARbNEAICiukBH5cYnB/xmcQUmOKlkC8lOdP7YiBiky6uS6LlLw6qiXjOwgQmLditT1NZal93bIOKIQDi/MgLQtFLIR5eZfnt8J3DSnM/xxLiqDQ3Y0Xc4LMm3d/zFbOXpNasQPiMAJ+1FEsIiQ3g6XKvn8iSEHy5AISlt0i1FpCLmO8S8aOD59BFNrbzuEft6FJAGNJJ3UnaTWUP94Czudl3qToI7b4YgnCQmOMMB7V9p3Wvt1h9eqjBrzrm9tdunROuUpIZz4MnBiFhtjw877iiqnUcNIwobPjzlBGnXq1XeJ+o9dg9dOQmDkWVrULAVCwEVL1TSeEWpDJulk+4WlOWtayNTZk/AQTWeoosKc1ejUaA7C425mYSogJh4Lx616UACtP4jWfWc3ZoTougFC7bExIgz7Dj5KovTFEmvKMmCjK1uVM2bQyELYyn3OJV2ioddV326NXSJ6Z0SJxdf3zGhQgH9j7ZF7k1bPEMqPNTeWrBYvSQAJqYDBFqwuRghs8kGSetjZxdBiLI3dXCK+a8CQuTtYe60DCQL8pkm5+fLpghDbuB8IdiXbKorczAuqZsslld4zmx0v7UezvCHk0cd7H5Nm3RAWy33viULQtAQv5D+dBdrGjGhEDKXqNYBaenBPdE5v/3M9BP0xRzOhGAY9xomOIZ1ha+sXgs9+jppU9dIMX/3ktvVi+lnia5FmOk28U1ULFMuaYxuZOF5lgoZ0wJcI6A1j4KSIh/Lqfb2jvlH+qmtNRvUKvR+AavDEqHD9C0JGa9j24j8tI022fLKR7gyOUZGKUYR4Yh9yzQCZoCZzLyeMYhGYgk7NMYeGPeip0PFvNjWopcdYx3MM8n8Vm397uvHrDYEGBAM/wseR1i1eBjRdKc0bE/ydVkf4pLZo3P+u4yZFZiEOGodIbgkaVODgu80hx8V/MVgwzxpMBqlroBKsRk1FL2mNqBfKyCSzWAhymkmtvIDdSw+/U/52CRmkP60E3RT1fjkgg97pSJd5R8owpGBvE2QjsEWU4SRJ2ZR2dbx3QI8SyeS+g57TB6GJaN8r9Trh7fqEYFF9NdM1luqBH/J7laP8vMoWS+Ja8YXmeRr8TG0pYYZ6iZ7HPYvVBQvRgs532vt55Nof/M5lsVrN5CBpW9VzTjAdY0zMop+mMZmpuhxBHwlQiuGo2vgp5fslh68S8bXN3tp012ZxQyAzHiW7wUHsMeAyjmkdVNS1HeoZPHgCJUuTqfB63HGnOsiaIiErxI30U57opBbrLR2Tqc4N3PTXMhrLP8h5nVhVKr3rl8QTLyQ2Jnntsk5SeIIW8K9norbHoplvkeLjrG4NkJFdu2MyfbZCQR+BgOSoKX7fM11kLdSM6SX92gpn9FHdCHXeZDy6o3nxX1tWG37AGbrE1j/aA+3rYs7WrvYWSzYEYi+SQ5ooOeNKsJTo4Pm1YvEWsXMYcZpdGRLnn9z19oK1/vw/o/PqMazLb6XOFcuxqmbbBND3m8rx2U/JZ1OAWxw1ZbSkreZsh3t3vO4C8QWTKL6844tKJ8mAZhkJAnHTSz2D3RaE6jKkGBqe5ON3v84TI/3EfKV4EGA2cMMQEeL1saxQQCe5xtFMx9zG7XMMhl3pl9nLNypDKAL4d/i9wfJVugU2FoM/pferk7rhaoT7f7qc+cZwqOGloPwuO7xfmvr+jfyEe9eyYD/EdKisYgROXthWH0t41X79rdFcw+E4j5DXsynae2Qm+Q+QBkyP7BzQrBywfs0iXOVC31qfcS3N9rBZssimFfjnI4vAvoP0O7o/QIlhach0CEWJPQwvbX92QkD9jYN5BpgJe/wJYhcQJYMSUfIqrePoUxhH7Bb/CGy0qs7s9OA8LwI3tLQX3ml9x1CcKRJPue2qvyHqWEmViPedwIyGYEacZ36deF9DfxQOy7cUUO4JCWgC8xIMoGy4wjub6cohAB0o9OR6cyR6I0tNrvI5i1vbcOsQG1X66tDnAaxVrf2SJblvkJtBjblbg3Ag3czagetmZF+svfA/nR9SISfMh5bj230Cq7yKz3KPOTLD7g65yR7jv7gIuy4t/QwTECHmHyZJ6gYAZEP0ssF1djhjqEiIzMfjlCHN6SXir6d21vVIfqZMaIUxrUNQ+9d+ryF+W53vlwCYOX0HKuwZQDdjB1dHrMTgueTlVQSVNZAX5w8vmQLuUSWw0LF0JB4Lr86RLQZLgjMY7NbonOoE6x9ofojTMv8ZUrdur5mBzzvqwi1MxcEy+0OiHl1Gu7y/IvWNGO2Zp1vnH1IJdSqy4sd/1wG4s9hdfNPRot5VCUArDEJsCjsrKtl1viQ/mKV8HgfU3FzsAc7VQo2j2u93w3PtWdZmHO0+sjHnd84Y2WIhJKoegD8+xJCpcCW5GMFXVlEgHw+oiAQpmIgxKII8Lpw8Hr4ix3bPi0lN/l6zD39Nutxr4olrKCpc7s3BzAxFAvamMhXJjiA4qO/lk9pHR3q9lhpQrGsEelTNg+mAhQQhxZF8ai0C5fhZsHzWCgmDsv8tPNn4zdVBd8+ozusruwxcKIseui1tPbfSYIwggfYenSSflyXa5sgdd9nE0bpwVCqMYGBNSqVi8bnH76Kp/jAKHx8vdeip9Tc4c0x9OTWB8pNAQJ3fNTu4g5Sl0pjtTBJQMin6sg2BqP17o7EqAlPJjSLgIydLHb2O/DLbs1KaMVbyJkLQBbTq6zV1E3/S4Md4Ih86uuQIqB8doCMMbkQKVMH94thovN4R9a5S5BSemN1wkA8J9lZM7m+l15weoXcNShnk2njSYUO146TXka9tRMbR1QiCiFXuC9Ecky93O7358QWpltIeOGW8XwWeYwK5PSx4J6uc6W1SGCvXme1azt4fd0OwixDNdI6bhY86mFTSYpdRnhv8DWU/XkYdZC77PZPfdH6urxaG/qUNJnFZ7YsvxCEujc8YiQRRN2St2mNXyvmIpNtu4WJ/VYvasIVZmn9ehMcED6ERdYIP8P3QfWs5ADcSJgIwQjyL5YjA8d83LX79385BwXMpR4U1KeMsn1UMP/vO+bXPuW/vAFweCmDlPJ5hLmKIccjnqujG5OYxpDL6ZVXYjWneWaOu1CpXHnC3EMV8kjYsh9SEsBdPvXz2oW/i6fB5fF9oVzx4Ms/BxEKnONfUCKACAE0PeBjE/VMsKVzK4XAWV9Q9YnRCMCN9KgNVFNdbFejWfWnfYaCSblrqkXPvglgfECrCTNNEOga5dLxEts4+aRuXYhOho03GKxRy9Lf47Lrb9yyFYkgHhCIbvnEQxepz40bljWVQFcnvyoJWElrd2HKF0VDJiwKPmv9FayZTl952ulq4vscgsujDr8pe+j7nac39Frto4KGYQVYAyouRpU4T7/YchNBHkXzNYvzIHGkjNKzwOt3n4sbc/G6haWfd1VyDfavw5xmRvJJbfwxujipnp1ekkAHleQrM7dhM/S5hf9RdCtd4w7pzTDSqqvYV+XF4306lHknn7Rl4f3n1MGnsrubYkgi3dJFvL3HRr3rxlum65Th0636pL9wfPKZumyQU9xMEVPD1AuVlCo7hVAERsK7YbM/H3++38gIdyAZy+fLLIcek5dAld746kiLk0yFOPTAvGOaX1ALjgSyu3OUfJfDLoACDt4aF787g+L5RLJrQZ+25stzytRk/qKofNw1IHPod76PM4XAnzY84SV2HJ7DCnn/ZQdnvaO26aFey/YyojMRC1n9R3tn0UuA9Y//PZt+DKlBe0W/tekDC7TPz1z6CvJItklvAw5ioLY25SJt0ooa2YPgZIoNV+svk0CXLpVn1/JdZbTGDMpFd4OgIswJIMK4wCdDxunL15frTimXkkiEkBK9rgJm1Om/Kkqgaz6I8xpFI25OLhMu8rMWqJwqwsl4ZpU0uiGCz3V70mqJrab/5/+1nDce4UUxWVfAUXFYKk9At84fH5rGP0pbGmLHGHvKW9fK5JuBk/wZGyUCQLEAv74syrbwaDfAw5EsBvQ9QZcWJLVQl5syXmWsvQUnebIb+axgxp4ujSghiZyReEsRlEVlyAbDuO////jQREryczo7Fw2GV4TlpfTQaWT9xNNtyU5VWMq9DbOVivOS8JALnm2VwV+mK9Jk0+V/cV4wpA6FBFt6P/gv100m6VoXtpvV0ISEd9neYghcn9C/GrYobHsc5+Nwx2wByDur7VotiYMNVmeUMFJ/AGfyGibh2USYE4Ipxu99BQjNwlCTbMBpskegKmmC6qnh6exYBiSk8WombOxKUha4nU95luGXME2i/GQ61Ic4vJXrZ2WHDZ7QQZf6YMAisGJzdyyujT2kpMKoEAkmXVCP5bVXKp1HUiAgXzf/dh7isOOtJT1nfc1B8DD92wB5ioZ+vQgmvo8OQIntyQH4zFM1mKRwM+epuXH/argl/DTlUp7cEbopF9IeSJp/VyGMaeZlqQltAPFW67TTyZuwt7Ym9saLVYPOce2iVuApTv4XQs9X0mXt9o6HYVFRpnmB67Z4Xd2DrbTeLEbdg0ZU9drgGZ0BRrCx0n7Jc8JmVVuBcoZlfS7OIxSiEhrpw+U1rx6FB8bcai4Lf8TfI3OsRrvbHzYTFJfvYSC1Fv05FpYFh2EI7Ibb+EU/Sy/vMnHJU6OYq/i7MxkKXxJrNLNuaiBIMvt4nl61B345PiB8Xu4QthFWheXuiBrZ0okbSqc8uTlF0VxXf/ai7iWf1eZT81HrEj6fCYaGh9PrmDzLwgeHeYBe+Kl+t9P/MmOe5xncS+ZCFh3y6De0Qg7cYHqdXna34E2+A+ajuw3KTq7wjw+HHz9Emsf+lCg+oIJqC3oW73kM8cj/duXOz7FmA55zfsi4bAx79+XNeiReqQR6YMCbi4Q9xoc65Ukqvcu1EZ3W57oCcuRpAU5DhEze1KOrVB0oPkNPwG2Iq02oxlOoVhQek4rZP28l9gFFLmqUvGRS3NN4QbKGLGf4I7fzodZ39sdYxsu6ZRh/kZ1FMkTKztO6bsJJa7Q4P3tPZIRvXWPqEcg8RW3A3Yj4HcZWEa8bwO/Wg03LH+5ienBYPwpvLGTHSz/
Variant 2
DifficultyLevel
569
Question
Vangio is travelling at 80 km/h in his car.
If he maintains this speed, how many kilometres will he travel in 15 minutes?
Worked Solution
|
|
Distance |
= speed × time |
|
= 80 × 6015 |
|
= 80 × 41 |
|
= 20 km |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
speed | |
gender | |
time | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX18e1y0lH7QbL8Dk9iz4MXhGRsx0PpDBE/uVYjx2O7cVN6TYT2wd96JxGYe1pdsIDwzMqyJivddnqG3wrNnFA7GjfvpWvn0xXBNYf7Rm7kFNTBePekUzgLUy1LtaTgqTq/FF+0/WvKPHAG7O5iWMDYzHGd7rG99j7EGky2DHoOAmeZVB9is3m/7fdVV2e6WV+cycDHFrQbME1Wm7BSNMQpGp7w41OoWBB8ikDwr6YELFLi/WcmXiQp+RoYpzreh5q3XffMjStdV+mQt1s8Ib/PPz1he66qhyTsbCUmCrQU0GpEv/ZKLSQjSiOjlyjYTHoxurQkuksCJZknvfYWT92XCxugyEPKOH7QpywCgGA/gqsiZWXGDOU5wN4pINBImpccAuo96GCKc420FSsZK+os71y/NtkzLYP6P5S6WhNrgZtW/HpsGkyJJcj/GZC+y37HZVuu85iJp1GyK+i88OYKxWeLBN6u9hDrZaluCVHDzw7XehzJl7WSVBiM4nIm2NXjZ7+hnfyzKGd5ZJXzlvyWLON2ZWOVKkc1OFGyxHdGD5ebZKFe1OnzF892UFhrdJqb9XoKwt2ET6vs6AW4YLW9n2bHXGqDimt9dINtne59aUZJhDcB8Hj+ELXSxb1P1m2HHCCg0GRtsBTbJflvv/EqVliWvWtZkR8OBeOvTYqOGbCzrmc1UPRNJw87NnFOrr4Wrf9sBBXTQIWyN3JZqB9l94srpS+DHP6jprqgucUqkbxpk5/gdfiduJmnpzcYj4RBNOfjLOUYozZS043dq1zxE7emeD7mgjseJAKV30Gf6WmkYoV8V+0j0VOBbAlPD218tva+jBVqoXftDBvhaGb1to2vAPQE0m+8qJtQJTzY7PPBIJcoE+50N3BTlVx+FtwRRr+TOLqnafd0FUmmk1jh+iD4Eqvc5EE4y7FtFTe3Q+UK14VwTvEDHIkM/+4vmirTnEe2zGNK/FpLh/4Go9JEHBsh4+c1Oq5q8Dn2qwYd9VwmTo+lQtKQNP3h5MqJA+mJ6WfjQz97zjOh91j/aUyUZl5MLCLtcipXWFUefWq2DMuih5/93fk5QSEgigXG4q2a4vmq8uk/Zw1ix/hYg7NVEMNJOKHPMu1e1d3zrcxdEhl+MqoOaGjhbvnItC6DHj8d/wtooeATiqS2UFVGXMdH3Co6RXC13ennc1Z4F7yiNcSxAhfdwrRfa9lrGaKLd/zGTs9tf8lDzKaWW5081E+GdpuueY9nPPatwZXmC9jL3gjy26/rFrinM+dH2Vb5NnIWzdIGTziIv3t7Ek1nPfxHHn9M/orahzMiyEqeN0+4+dHOJkYkx3nDmZsz7604vgMuey76JLMoZLYzzDueiSGyM+U0peApmn+K3AMqHtQa3bPO82ETFgU8PKlwNXVwUwmsmVS+qXax9ucDJHpQh/SCJEO6O8ogKd6GBRMq5FOuhlwLb6PeqBPfaOfgBXIuJqePduRQPOn2e1X5mh8C15Wrnyg4SgGTW0dNMUP/KY9D3wMQWQ4mkMPU5/bh41jkU6T7LVjRxUzlo1FVySnNr0MK7BRFa4Ifx1IVuc43WngSKGGjdDeoh1QsOEjIQdhqA7uKhSu9rnBOPC8wkAHrgwKcHHhd1l3GUk9CPbDfOpLzQ1HOO4iFEeopiFpCPPZ5+/7RP8ERhhy2sbPDzSPNkjyzQ/FOSZxp8Jp7VG10beUx2p9Pwb/Oldjknpzu1pz3p2jKRsf1yVfcCX7ylSBzu5VMyqDYA/kBEGMVGJ+vxJspMxgHO2wZJkXumVYkUytRAbFicC6Y6T3LTj9DcreFzGCVZmdxKG5gLf1wCkdiXaG2BK2Zm0p+lwAO0hGfu4PDjn+jkr717n7tZRqu2Y56uB/B1q04i8LQvcpOsd//xoFLqEwq441wYkkZsR3hTE4YPNwZKhN9RX3FAv5u+Z0v5KYOG2ljQdYYZ1nIruiNLQzgsFvLA2t7BZ0oyF5Ibzi+WetysWnaHBeDtnHhcEe48bCBeEv9I+Vap0WG/eesbU7zsqqe7zJYpVdxJCW/o6LnWes6Y2qJXWZCB42Fk+n21BxjcCOV7yABv4EG7w+SgALqvomYXcbupTrwtCOcp+6kdF+QtdJJSlGNMKfPirw6spen4ShNC4KRnnbRieeWTarXIqlAdwVNhw4NfDt2JJTxSEytYK0Kn6LZy3VuJPGVCOudzGwZlMZby6pN8rRvvFpk3l9YvX3SbLZQkiTmKNLaOxxob9xWf4YHsEap5cg8ttJcYUq6lorrL0oZs2Z7y0RucBrNRFFgq3/xx82kNGdDLRl29C2TyvOBistTIMNEj3Yz5+O8I0RqP+WsT46MtFRv68kIfO8KBuvpOSQxgRh5dSoQ76DT46e31Y/YN/4ICca+lS3f/0jt+Upov8h1a1d6ap4VEMI/l3UZHDaG29hupbmnw1o9zmGcDluvJA8f3Pp/g4eF7awaVH/UQLsethHJmuNfJ19eqHeJpbuxFJTrezkf+UPK96FX3CU8LrPxAMDrX2R92gZx3AgZpmQu8VnZ93dS8WM0PUl6Uzp+B6zUGdPisEzvSQbV7Q7l1eycFtCxJKCj4DSgp29GUlJGo2oLlTiRwmKlgeuC5hVF261tUVy8ymUyMiVJ8ZHR58PrCo5BSf3jYJJFG5L/1HLbt8TAhmQjTx5sOvql+MiRDrbCGGiXq5kmLaL7LUv0lYEJf8GIgtHc6+mPEf+VcL9aipcKxyW7np64rXKqNBr6I6rNn8ORA+nV1ssXWKnER6h/OBeBOy1MdwNsrNnBPxyM+rpEMhueV0iePhFiC5t9MWsAPkf2FC1qxRuvuM72PYSz2/AM0UZ7JqbUb1AeAXPjVs/6BSLCyLDyKEiD4ZT8wWwyFlnc28tp91rhEpxwb5ejHSbU84hwSrl6FE9g3tgAiismlWGO4v4OCFH2/MaSogrQAsyyNNEi9mJ7S0lK+8vwbtRS0URlryNaL7YalBpIijx7WfXUHvzK2KTjdErF2hLcV7MsD1c1IGE4CNsQ19R7ONajNiHyP83Q8ncAVMHmZPOcL1ybDXgIY/l+V2eaHnmL1EP7GV7vm0kIp/eQMo1OhfV+fIAQhsX6DLOmQLJMqtDm+AEnNMnu8gJCfsJI832ETOL7gGLCZIJNfCXpITdbWJDPnlujj3PxClhcRf6letYtX4daD5Kf+02U9bRPSmOd/nU2zv3bARO4NjSJMzlD4cuLDY97fowM2Y0AAMyxtiuxPVLsT2w2PGso5nYiuUXrzLuxYi7o2VHF/yg8ItaReLEfzuI1w9meHbCdBfruFIPwHoY6bZlaToEDcaUTCMMn+4vNtH2BzUlO0TTvP33rySGxIF2PrifEWi7Qr/+oAGa/lgjySkHPvbB+OnhU9Oc0DoBSTe8kulyR5tIwhW/0RVJCWFCL5vVO1nEjHFr1o5rxKifJdSyJhrE24PNnLW9sOMv3dCwTJ3awCxzJK8y4FKXYJhJbkrYL4NQOQ7QvC7lmvSOvogvK/m0qHkBYJYQ/6GN3Tsi5p06YXiNXfGEzQOA+dR2GA+pvJBc/tNWNjFq4VP9qfSdhoFfACMr5v3L+nH8X7WHobIoOMnjpsoRrET/T1z6DJ37B4JZP4LsgTyCjZeglcUyi3BVgC1HGWCRVpV9Tgh0YBOm+W5W1m/3ZM3z7ERN8QyP1rqAP9VfamtkDdYZD3stN5FgT0UdmkMzdkwzqlp2hbBQOL3dXfnZ41L52E8o2Byyy0UXAYCkRZHRbMNdoG092D349j1VC68yxt0/Wliz2bmB/S/oWYtseMxBNFAyZrJ8dHnO4zRX5HRGvpXtOM5jG1/WBMnQI7Hk40vLQqYnlMYNWa4HYQwi+JnpiFnMn16oaZ00AV/fqTSMZ9ZUqFqZSMywgko9TfiB8NaT8OHwhDBykx2gJYOrZvEgsguCk3Oh2tdogZW3gnKlBPFFrSOER5zeOk8WfdxJqa1qf+Zesf11rxu59FBM4JbYF6JLry00/PMr+6pQhc/pZNOnEzQUWFbqkLWQLsuSKFeb5fW8U9yfVEymCi9iR9pI4HbJAu4VpfP8oz1lLAVri1De8SwNkA6e93o/qnbY+o6JTwmYLAZnqAIOJd6XOj1rgOz6lPMD7jeqWKQGXdUoT97JJ9FELLCuocMuZt14W3d0A0bhdHhww8MgpsYqfpGeKXZhAFkjNHOXNQNWMU0QKhpUyOeUMCxYNzUQFKwDFOsBxWYNRbBBVtKAZpBscPsmU80XFzVu9ypfqysX7iro87gySLUYLg3PLjIZICwoVFTCysnt9n95y0luy7NOMO6N+jfFThhp5udmwgiVazsT2OTo9FUEMBmAfnl0FHCeEJcuEKJqDH4fvK7dyfIHxE4TzK7/POloUJjLHgL9i3n+s7ZVrbesI8Do73F5fClRTGvk44+BisBx4ZbdMi5Tl1m+RPWs75CznKFcb8nLCdjuG3tCI2cxE7AV5DDiv0RlK4S+zJhwWwnLjt5y6qXh//eOGvARnaG1ePl6lT3mhmWe+8vSXiQcw9oomystgg5pJ5BbUBunNLxpdBwyeb6ukNiAkrsqn8uBcXdGmNzlYemAjCGZNB9jgbEpmWsPld/2om6TxX2Juz9qAkAn5ngIKCFsVVoCIrIDxhI4n0+GIk0E6hvQ/tdpghPpx7ilRKBueCIHoT9J50mEQNCxXKr5F0kaRZ57DO7AEVT5YUK4jTz2ozA5mR8tLcPqWQ0CW12ZqLqwp2O798vdLjSQCXdebl1lvQEV/kd6zDKaZadacUv/PrjCpwk/K43aJV00smtku/LAwItAW4nMUp+ly1v3LzxxTdAHGQhyrLx5Q3MoSQE7pO15+eLqn+wpVY+HGFKWEl/QPFYVh//4PSs2DfeTWLNc1x8Fy1zdRTbejTqenrgaf+nXtEG1LLn6FCF8bl287a9yHW+Z8r+3KNZTonCt1KMhBAbj/O0sBkuDTLmjK8DJdmxg/gYIEqGhSxejflN3OHUFYhz1IJLhkwV71l5xVyPPROadxyDUtDXlqkH5+h0grKM+Xftr9b8HPVPRqIVk+vSQo6KFktO77X7G+pL8BRLG/oxd+63c9VWOcyiNSSejXbFu7CIv2NURRQgAmxp9Eg4wOV9lCMJ8muAK+1h9Xl5pwirjfezu6S2+WryNCq1bOXSVVG38K0GEhKzgfs4wpZiUUz/9on2iebj2VKLSNJu/BykjSoJROysK9nmC8oNaaQeQ6ET60MqWWR65Af40HtC7MxmrvoNCBI/8SAqDl3LfgG30P5nBT6fDOWOD6yAjQOSngwNLkpA4Qr7LITmKpFsm+Z/N1xxvWtSVWkZoDfA13aUcTQso5sqaCBv13326MEOz+Bcore4+wK8rwKP2TMQhSrrXrIO2zMgT2Umc8+2BFyk/OqqqhGYTzLX8Lq6nTrsP7yh9/DHsut+s9nPHEGQGpOoarh0iXpF6KAavlJJmzcDzgRd0nSMFBValRIZSdB4eFlnTCsv+LfLlNtIc5dcjhI2Jn53kd/BYKZ5X+sJVKeudl+/7ZNekEHkr6oMk0EoPZ8NTXKInFY+02Lqod98/IdneLwd70ODuYp7bX54eal/Jf98Dce7JKU5cWVvSOBA6zTy8FN2DC1z63ZE9HjxnO4YTDohVD/WcNCDSbYscgfZDS5QieMG9wRSXiuGQ/5RcspmS12BX2Z9AAaxXvSwDzE0KVx76tojwPb57JQxvcaJgXqfbq5GABeVmWhqh0ZgHrPVAliv/ubNksUqkeq6evmSOQnpizLQzhi9dMByYLduxbydoxvr0BxJXCajiKo6kYiwKutfathVHfKGFwVJx2bOq7hhhR/oWzw7cvjk7rKpf79EovfxcgQYlLvN3LqGK2hhjlFPNJdkr4a7J0J+hckWuQ0kqiGbt6cSAabGcvCDc/jI0TVsErdLO2LU0isGzflhiuO/+odbgwwNJ6dby4BSQIY8Cc9JRbp7pDsn7/McXGn5hn+jgQytdUHDWOROBe+FtTPK6x46PJ5wqBs9EiD5NxM2QRJj1+NDAoqtplLsU7TzwMlWpw8AbSrH+fFr4S3yBlIe56/gLPcjC3+XdnXInimqi2PJpH/Qp7WjB7XRQQHpW0RYoHRBapoHsoIgxw16ai60s/q/IiidZzNyZiONr0Hj8LXE4Q2Dj+RX+ExoplBHRlQ+Lo4q8iKvENvdgmfnwiqkad8lcNFwvWkd1ZPhXWUMQhPg5VUWyEtiRKo7a0esdPDSBqn3d15v7ymNeFEPWntjhO64CcZgLekc/5q8vNr3dlXyvr809ijS0qDRsxWCXVL0rqRSxqYt8gNptZO7LeqWMFz87LWG/H53mMoFjkaoD9nBri4Rj6x+Pie26Ynye6ka7UnUq9Iddu59rqygvBOnPCSNurWtaKQATK5g2Tct0Rh2E/rf9vWkvVvT9/VzwNA/mlfguFuQY9BpxFeKcLAbPORZiaJZwYbwzQzzk6lUOrQCyX7cPVV/3ahGPX000E/P6OChbWOeaNEnSUO7NR1z+45zyB3GL9aF9Ous3Fjb8s4u9zoYTG+1BuFEkWm86Hqe/N1KQvWjw3WHyCApRVZUhb5mPTRLqKCODtxqI/8DOvFgLWwbEOzF92qznOauoi4k9ZbzSiewtTGuMHo0rQA5olyQ8odtAaoptZzrcWzKnUa3Xb/ZoHdpPLjBt6aOwixMXccuPYXXEMptjZByrKI3lTh8GLfbUyWZto//NcePcqBDrjwHR4VwQ9DYX7oJb6znF2Hsd8QpxHOH/BdfRrISwXJ/bbTQOpNP8PDren3JsjYYtwpj0phqQpxkGAYMKryukaXDW2kZvz+sqPynmV7ehmM2NR2sJtUX52ypEqd0XhU+4jkCRoJwDjiW+NqPJKpjJnffTcf4NZxE6uLB8rA1/1LxVw3eujRQAAeRmh618q+s248q+W1nhV4dhwat6GXEtlYZqn0X5ZIO0IJZ8PZewmucg5bmOqxeLubwhU08m0p+gsf5tsNUF0sFIs3yifu0HVSnryVsN+y8jntUOjgDthBO1bv5gYvhm25L1MZKo3ZwZ+rhyBasYavcimXf5EAY/Sh06acnuqfCV+KH9KfOJH2pk+QX+cNmDszVVXWGsCUiM1In3J78wfgSwBdHG4c0gzbzT5JumkbZZRb/uXSiwhFICtXHYfK09VuQ+xHdaKSv7Q==
Variant 3
DifficultyLevel
572
Question
Choon is travelling at 90 km/h in his car.
If he maintains this speed, how many kilometres will he travel in 20 minutes?
Worked Solution
|
|
Distance |
= speed × time |
|
= 90 × 6020 |
|
= 90 × 31 |
|
= 30 km |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
speed | |
gender | |
time | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX1+zap3kTun9N4rGCnD898/322ogaMcuNvegG6pQa0SNCMz9CKu3aCcyjOCYEKe+sl9nlpcGhuprQ0Gxyf6nxpPjJLlmaUpedCNrNADp1Awn/2r5TLByVcDcPHq/BY6VRkF1bVb765lhPjYzeKkLbbIwtZuBEB1NiKw1oKMd+SeZYsBqvDKVr8c1nHNu7AeJLUSi4qPTEx2dENKmbk3TqRwV9vGdUz4e3eSDxxFAPg+D6Ol9iyECivrf3+S3oXQRVglHKskzONWr0ysvihYwN0eQ0P0av+F/JHOz4nNR8ScVLsQxPSvz/nKpAmJVULG2TbHMXv8Twc53EcUm+caZ35Jq7FC96RxWqx27tKyInv+IL896iNcTUB0h1Up8wBSKRDHtn8AnKWGdwvgvVQ0DpuB9uviSDJm5+RvEd0IDxhECZOx42/nJjJPZPKUa3VGzCLJ5y3flhDC5KlJQAisj93LBa0hZ05VV0fRTihJQr7cLxHp1yZIKweHDwsM1EClHelNdajNY4p6yLhSHc+Ry1zpBegT5batNZ9GHRJHLRPaj9rkTWed05nwW4z85AQNKsZsDnNOVf+d4h0vNUsWE5a4rmLGfl3m1POssGXidaZ3a4VhZ9B/pJEMcB1pLNKNatlGbd1YSjxRUvSEAXasv68XtxtZ7nP6U4bcZtbnsL+LbeNT54pMNZ4N3uGZtUYViDFo+deni0xYZFQaye65Upq3ykFOqwRkNGya4naar267rojPmfsYNLkimIFmWJWUyMtdUtL8lQJRnH+5JNjyE3zgqceU2u5ELJl4NCZVAqJjhHhet9rL32gPSfVynEAjt08QG1/4urLkvH6g3hQhG3OMG2uAf/Hi2XDarwGyd+asDWRTHDdiyxuJNxG3rArReRwQW3oDISs0F83Pe6q2Je8fkABkG0XWLzsGr0kKzouZ9r0161upnP4Z6UtRO0OdcOgHuP2xKJ2lCNSFvBTlVKM4aqJIKl8k9XbuB4qjK3zZBuYe7bWZ/p7XIKHy0oRN/DXcn85vGn9DjiDvTgt5kLg9GU5pwknRkY90k787ywXMaInWBpwHtYX19K9XoYmq0veU5+QKFDFgp7xHGgrokMmVIa8m7ms9Y97ctkpmQIWCKWjU89nzTE6jZrtmlcs4F1e+06VyNVnzJV9zO8HjZ+SE7oC0WO14qSqK7ER36uxhrc20pRVV8JZmYxpFq5gpAYIVepG4+kPXxpS4kRlzQgyAAxkpmj6/Mu1zsRrY4NcV7ab3Bqa2UVWLfPSP0pNIVB1pLT34TA0IB/egaXH5VZlMRxS/zoTbrbqmRdJ2ixC47GUFmgdwwf/WXYrrm/LfdnBIUwNAAaTQfVycFNVsfi6sGCi5top6IjrkznUEBtjxhgfH7CJ6ZXOS+oAg/WEDA1yquHS2yQUWjBdNOLauQIIEe5t5VRNDZoYSxLWkgYPBvauX3VrzP4TzQC4CtvfQBMuXphzRj665zhWesdGcH6otTl03ZhsgnvqhfNFP+yjw1PvSHcKCKM4S6hbG94uk0oPPD2toPUBN767uo4ysBcm+ArZPlTl0oOoIAWnpZlvxSA+y+A4h66rncfz+f0sWYXUDvGSCjILsdjsx9RfWnfX1G1AYzznMFTJGa/uhGCSIv7UIbWw9Y7MBrcn+XtUnZma8jucDVSdLBS2XlmbLJ2OJZgbq2P39WGXgZ+yF186x76SqEbGm7hkgA9E0NWCnl/KS4KEFlGOk340J4M0t5A7bwD0YsluK23zFGav4oJYF9TkFqVTeW2cpN7wMOcs8cXN0zr1QSEMa5hO9jOT4qst1DONpTxpkU8/lftcm/HUbfFwtQMANwRZJ1ROjYEdpV4Y1gcu09HOuJ1w13VGLgiO3c/mIC3qnayunTTh7qEi0ntnbM9omT54tt3eDNwxe9GZZGwsxc7daiAqC+W8XV8Wiiqgg4Ub7X5P9oPptlQIo7VX3U/dAYh76fweYJIpgyC/tKGwWSSQGfTatuXkw45FDf7BRNXSyIQbIsnhYm5YUoCYY4SDR8hE5roZPTv0pA3JtNB9yYckCegiUogfFdzhbd09Y0A8xmpafy3XEjv3vgogl6UtYsqGZDiAS3R1KjYXlBYYOXz+WEvNO64uwh6C0umQCY9mobT1ywUs1OiXmp6x2jnpDeuzCHphmhWYvgH3g4RoeDMlnB9SIXPofV+D9LtgEXm9fjDFrifrmGhIGIKCt/hCCJZmvds4QWP1kh2Lnp4OatjGcKdVYkrrbCIYTkvjj8wSXgzKkMa+21rJSL9Ik2rl2mzANpUDCChx230ivNIO7eDNdmk/xG8ICvVFUClCnwiEBsO2iqXIb1M1FEKCKnXBvEMMlUMPGzQia3qvbPgBCKzW97nUGhfTcv6ub+GWJbkfckUVvhC+ptc54IAuPcg45whn7VH28E13kGrZzfapcM3bMRjXwBsacP1MoVp3MElgj6N4FpDAy8vTMe4VKz5kQCCazPESQIdhZYv5EfkSQvOb/GV2w5dYeDA6UNRXSGeoRmhb9RRmSPjrEPy0Sd5pjiX5yMubca0xQ6HNlhcy+5JXCIB1iTd033h+dqDQQaIDi22GhRVmYtdpbLcCRwFJYT2S597CivDpSCEfJAwXUc7L9lJZm06EhJlOxsoJKCl6jPjc/jvAJUXdb5p5K8ZeocZPSUhgXNt3cpxmtYf7eABr2pIcJgE6rgW/CWIE8AcreKB111v/mdyOjjiBpXHQ5FAtaLLD7sODPkssAV4oEjzQV+4tPV8P/ayPJGT46O0CJ94BL80Wz4U7SgnRj7zl+s/EdzKitebAFtxkLQ2M/iWZ9mKbKskluPgN3yaywhuq24UUI3oLdrad34m6XXze1UP/zESd7xyDz0J6ikOzPMVEuHx3yQIGtvBKOQ1cpIhwzb5xAlFO0cGA1b7Kr9kvVPKXg0aE6SmLoHDQ2A8Kt2h6DV9GnZlB8ZTJlmTGCHC5LTjLQFU8IU3xs6hdvrEL962TGPz6197B613LVQUrk0lj0z9bX2UF6/3MM5Tq8AsTz+mocZKef00Kd8KjwYFpR3EeACdnW3A1zP7As3rHH5tn9eJnj87LpMZGVouEzRlDDPLKHtwKFdG/jvVSyvlkb7w+yseTNvxi+QTP4xJA8vHKAXIg9V72dOxbUQresoXOv4YtOhMulg8YYQRWTDX6bCilj+r2hJo+mBxu8Tn3EmlWLHMuaEPbONj3E8N+ICSwsGCAk13yN/9bzJALso0Ll/3GnLXdeRxd0kZd4D6ljfstmY6gUe9qs86YS3uWnb6DfubA0pZgTAqQpo32gFvTIE6ROCDLOdEhbMCDFbaA13ISp2B6CIEamhvSUD3Yliu/GlWPCFWJuwYeLoS3P4N3yYMldBbkM3XwZCmkPUxSHgnB7e/gyUyymFk6m+ybwfzQuz9eXBvwBmBhM4kV/v2/rq2qeNC8Fsl1ymjWjQA07ZkD+W04uc0NmlMPvL2Yrx+hK/76FenepGbnsMlPcQaeNKE/v8hDM5USGSbm4+OYtLJ9C0CJtckSM3iVJtQ9VqAQcGL0w0hwcG6MMhe7PEV5p7U6CSz4CX37TRQ5tcdS9JESmLsB8AZZ7KjKiZNbb64YrLZ9xzPgS0IHQs10WnbZi8ScMmdNlxIh3VJrNs3pMAu7ftvf0RJ/eSC/Ymjz6XVum4MplzLCZOlq2IF1FDCH4n/wNgKUMqJLNOOaHKCSWArSs0mM2nZbFpAqDk09d/cCfGgOHTwNnicI9ygv8W6tJCo6zjy0KVDNj9vzO/0oogTwJe/2R16kbI80k5sfYm4laTCRtPtCjwGHFWj5Dn7a2UnfBCQ6qvCqLgGQG3jpIX/g8LK/l+GC5/yJJWCQDqOYaviHT3pJ2PHa1V893Dv36GYO7e4MiwPIN9veQSRhjMmMvfd5qeFJBm+iH+jKrR4GtHPsCFuDbUyDUum9P7gfkoBHGU/+m7LQelQl+R/+HTnTSEdr/4bbW4+mrcFUD9stcfoZbTD2PK5uiknsvCxF82pSG3WdvR3vFiF4od7yJY8CFKlYkt4INiOpIMxhATIn1NSQz9+tTJIpTGE4FrkmuACKHAg0NtviiI8Is7LBbsIPx0ZZWzy/rqWS9pU9vdlhmYpapgziOBmyHacgfXX7+WMXMy5Erzvu8V96i42LoVzany60WxNkGRty04jinW2vbeU+gdjrqcPQa7vfUMbMdcW8MorcR8m8/bJ6AK4sdYdIHuBQFEDMemH9cvuIv1+1ju7KeGffRlVxr+RnhscqAWEnk38tVWPOURqfJd8IzChGjdq7E3eaYe0VJOekeKZPZezD+cbt5Ja8Kz8lN8aeYmLOflmai06RnbclxfmfBIQm0BEwCytrE+4aO1iQ47FB0L37XP162fmbztgMAXl6fppcJIoP4b5UAyd7FiZ+nhXHN0LQ7gnyByiwBKMz/jM81uYfwQW4L7xcHnwPtLJhROxMbd9GNBGu24n+Ji96Jd9PiS5cs4u3rLObAwl/hIQQAtvjT5d7JvpkZYM2jx+kYVaF2gM3wXmh2MLOMfxhajtuNFW15E8IJ5L9IJAXuIkikbuFR9EALBtlq1uCfjPrPQyAoLqfMrKny+tH8TRSRb6dtRDdD1UJbRA7Hknqv6fQmKu7j403iZDdENUh0wqfqxnoiac1sAHCLnjyluSSAlkeCBvsznlmmBfE3aaD/O/U8d7ZY/XodJhVZi716z0xuuzLfkE1ESDnfqiuEO5R1H6aAgh5t7GxzEY0PbtH5oHG4kxmoc8duK/j77dng/B8+2BwD/cYHXHIlHHT1xXzQoOWRmfp7Vxkboo42HvFMV+UeSs2ebN/h2BMEuKWjXLSjk9Zc5ZfrSnHgRLUo3A+eFEmvxQPUZ9xL5bOOMcj5Wxq9w1GHux2VThL7pAeTB9joNTnJfHHq3tpx5FG8B++6iEGmm2i2Ozia3+TaDabVWTTlE6/zz3RjUq0GAO4DJdAcL75qS/ccqEjBTwbjY+NTPmrS3p38vJ55t5wmPnZ4nY86ZHVPQS4Ip725amBLmBxmm1WasRqzLBudpXny5TIiEbHzYafnCIXOuMYd2oYXTO6Wn51mOp/mYJGAjf5aRD0wHc8hk1wEI35cYFfkKA3R8MVWgVdv8igQz8P5/DBz082xt9YxMlvO6Z9Msyzj9YfVJQYTyCtsx+UyTvBTvDgbeGAknkeT3SCchY+bSvH1vgNntyEru4C0CTeBU65jklsNCUjNFzMlgRpgPSUNTn7M+xdVb/nLqdax4aMWG9UXx+0w+nPqyFstO/HpjlfVhE5X4MxyQZ+r7lyLcgXpDg5XNnfzZ8UYy4sPycXfShYqomTncHoPiD1s42QoGJtNcsHvXcX70RfU01j5/tRz6R3Exn89OVF8WmJ3qQDP01m0eda1XYe1Klp3Bix62cn9yc6K7uZTXLwEE1BfpHoO5Hm3Nd1olzc9SknT1wf45axmDOd0sSGGlK4T0AAea06fWibg0EGgtQkwwVa09vN2/+drjez7zHyIve/bx7YLet74VI7rrl8GKNodwsGGB+U85xHudYqqXYw9t63vhid9RdqSvxDJTnBFD1lwf8KjZ7K8PnXeaVfiBXuoF3MlyCGUKnena9BFOMg2jESHhCJ4DiLVZWaRkLXv8Z8C7ycxV8UW3nz3nsbV03YjBF0sN/bsgcoG1jAckuyN5S79QEC/VbYUCgfqCsaYzz85ozDYb7jLvUkuiFhA/w/3HoPJU0BNPu0Ql1Tp7SrRxCe+OTZAklhkGQ2K9fsESM3TgYfZ17L7wfnY5TqXL7a7ycRkdfoiWdfPfqH4EraUQRk88He3JyylFxTtsLLSMGfHT07zFw/VeKdp7a3RzJ3we5HmLd8H2p1Y/hhtitcqFN3XTKvguGj8gRQMVxxGKWyb9IeYyhNpdAC7MsAMGSUHOEv/Nvcd/3JFWiF01TGzJ7Y23mpkFLqKyLyPjp7xjPULhGVWQZDpZIMwGu6KsQ+74NvVVePssCHPqK/6P5GZAjY27xK80ilxCCAPLrxd4C7/m2zHEhr2IwqoX6bV8IXoNnqpSdSXhzec70k28reOs/4QH3kGP/ccaA+HS7/kLMP1RUvYEJj/Ucb4iCHYq/Jooqsl/I+A7ukUWOPo5qTM6UlSiuXxrtoiiKojF/cK14Ly7YXg/3Cubq1QKV0cQFGG1P5ig8BcMdHZzysSQWySVBDqYHkgCZO8SXsp+GDzMqp4Ho1PqnPCLY5qDZFVEimC9EnNnNyPqkCzfYuq/C1hikALHw0mAB0vZxVANr4TV4JAERr0eAUO+XcA+2jMOKfKLK7vNloX8Xr+9x/wF4apLpJzHJnHMGYY66/asNz8DJq4+4PyT+tLT/2oII1kUIm7fepmKyRl1RLoQob02az6f29ehf4uXbtTKC7zDp4AyujdhFI1q8G5+02ShyildhC8cqwbs335c6ORoq5JJmdPQILX2ZkED+Nuvb+j2zwddwQPWsGgwtKzx67MRpIQE8v2pWG/kmkhUm4SMD1+BPt/qGOr2+aefS4qab36Iz5qwHqCS8gBAqdv0Yt8sF4ZkJag62E+rgR2NwJjewFI8CPeZhXDMDnLVkrZOUDqRWneP48/NylZrzwlXgiwE/Lj3jOtpbu2VrSvpK0nYroXL5aw41i8N7OJwKPqASTsSOTRHnoPbOiQs56hQ7HxmGP71tzuLfKbswJmGVLf/QhAqP05rFx0FNEafDJ1yEEYr8RIqmBZDiiE9hsfcG58GxBtaiQdkAVM2JHpxw0dAUi4yjxyrX9QuFYW6cpdO1rKmlvGCiegZsij0qn7tsm4vIYlJQIH0bgDd+MmpVrbB7Rt6Nc9gm56d77dPugA367TTlOyh11vZAss3ElZqe2U0C8++O3K7QAg4xf3tAm1JWponFgyUqIE8EtYCXPODS3w7UFWMgjBLITI/wrvDxErXtLQFkKp3gEQemLfuvD8AwacFejzMC5GRZkiykammDXU7pIYn28g1wLZ6iaBpc6A3rWxBwtYIWptRZoTMEiuJ9hUHJEvPxB1B56Ur0xDAAO3E20KeWMLhDwkRlPODzGELoJXPYFQrwvwcwfRZ/5pndRL+lUF2lYuvN7Kx+IMd4h641u/cHQ7MU1JvDhaRrC5Jn8qenpEciqZPodYCN47FUxDKKL6luyiCqw0giYmTb833pg==
Variant 4
DifficultyLevel
569
Question
Ranjit is travelling at 100 km/h in his car.
If he maintains this speed, how many kilometres will he travel in 45 minutes?
Worked Solution
|
|
Distance |
= speed × time |
|
= 100 × 6045 |
|
= 100 × 43 |
|
= 75 km |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
speed | |
gender | |
time | |
fraction | |
correctAnswer | |
Answers