Geometry, NAPX-H4-CA30 SA, NAPX-H3-CA32 SA
U2FsdGVkX1/93n4jX58DAvtKEC3oXZ0R9KlSw/A2Bx/o1zulzOvjrgoR4Q/GaPDy/f5PD6O8B5T9w5SyFUkcYKj6DQMYsH0UM++JjyUVu/kgdHYS724iVb/Svg8dwXvIHHEtclRm5fsod5v+AOpB3llNh2QaT0MrDx0jv3Zwy6RcGOm7bFYZWeGXLQtS9xgRZQBbYOLIbUtGM0YsbRgKXISuMWWSdcK1pIXLQuVPXwt5OKp9pmjIS3vSXE3b1LIuDcDsJP40m9B53vSw4Mmkcw395qgG+rsHNEdEvL5Cq8wLPIvXkjpeL47Dbn39murnaLEX9Q2tXFbBot/jz+W8TofSsJWPHFtksocxuKsJyGA1mWtfaJ/nmQfr9/oZGOetEvQDom7RwqY+M8Iu/8W6G52nukaRy4um1C0ZV1ADx46nwMI/NWFq3t/NNwdFytzp30EKnd7yCfMptCVr+RZWd/hIB6p9nOp+kDX9+RjKQMy+M2TbSJek3nsWvYC8fllxMA714apElPEQBfV1jyMOu4heLJttL5ePjO4LbegOdIA1KGT+EcaOwXJj1Udg/JbT8ai8osW7aj2EWAbkHktJ+uZ3Xjull+jF5eRdHS9bFeMcboQhEyXHYpPLzK/xXaJAx7VQAn8ON6J58ZuclUOF5achXEfQJnzqU9RYliOH6frzFcQJPfHoUV/EGBLT+bP+j9bHOYEOqC/v3Kk+WzGb4LbwdVznAQDnCnvn7e899yw/ridNPPsi9HqVGXzHMYCRbM4ikemY6CTKqkPk7VN/6LmnVgpxmUrysPPgvrzYfPkOO40CqaR3BBd2K86CccHpTf2Ma6DiVnPxI7j9r+GDCcx1mqsBG2YdZDn9ryH9w7U9VjrvIJkEjt7vkAlOxziB56AZ0Ceu7JFoi7tsVdVd7KIPmAHKpbw284QxVzysKC7/ZySCSTbPga1lLEJzK7+UnpgRsnxcUKE/LlBQvnkTvXbxIFa56dup/nOei76sFhupoKGKyxFkPshLve/VVhVqikFT1Ztw8HiCTFpY4nLor2BCDZkAJd/Nhjj6GgdjDfxOXReWBjROpi60jD+CBB37WWcgWmsuUuIdu+a2ctswUg+XuNC/hy+I5fNvfBL9/pJFifJ67aXKHBTcYYcDVJR74KMzTdSjogv2v6CuS4+pswU3NbLZgThpcoOuZAP4GOBt4Fz9EXX3nU0qzTF6e5KD8nV/WxO0cV43ZNk6s5OFTMxl/+cWRrj1W2CIIsIEtmYyZnI1nx1FfJMnIkdreTBX5INp2F7DPoD4OONQkCdkX+sIp+5hd6Bz32+fmgQPYlvAlunrEswau9ABc+Lg0VCTsBWSa5VuKdbz/9jzBQxDRxF3Nweqnb9wrhZ6CZJuGhMTp7vUEUlnZHmOoUzTmqHUpODrt1dk6ag3y+/RscPx6Moq7P/6ucVJaZpHOM58Q3xnGvOMffwE7MZhvWk8ujpCCrE7we8T/abaWUzn66cZFt9kchZe15i8a5NKGJuvadj9wqV85xno32testZ/rDRYw13V8/Wue0+qJZyI/1ukIAGSYqoSavpcotiT79s2ZzDfEFoZsFtyjsh+1f8gahJS1LK1IijTUWXuvAGWiuYie/reimqB62lefqEnsC/xIqF4SxBPw5G7yzTKgqlHMQ6JZmZcI3IksrE6zaXU6auHUXeKeszSDpjWs2rdv64sh6pDIbIPSses404ogm6N22Oi7T8TBj0SqyeoA8LGBO01YPyfrp7Uhhs4kozR9YNkv0UJO2FYlAYBhG+Qg2n+qYjY4ZVfmMkHvEG5FAESkrzXYSaAae6PMqtRjLUeRGtjvpOfW2+SiCiMnbw9tdbMxKrfjBtIVFpIDdI7V1p7MUZdxB7BLF5PX8IlskIOtd3J2sV9Y/YTg/16amAA2RQWa0Uker+Ha/MIYr/oowwG+W6wVLl304WmWtcezWu2r+9SrzOHHNW3EaTnMby+oTPclWGLgz5vW+/zhDq7aZj04su1uN+wllbiRAWlwADRQUiKHp9pwPCM0Ub92wbvXPaKAbBLyuANuLIt8vF4wMxSxoKraSNZgSU99t3V1y0awoI2YqM98H/oLBcyxCZWRzXGzzKfyI2RZgxf86jDsKh/BYdfPUcDDQwedDd+POkSqLPpblr8FElETx8Tw+xTAqFkkNLjvjawoAb/aTCoaOxCMoNGRHTS9n1nDZ+Zhc35ILIUAdfGtsQxqtOKa1qAgwoZRqrpmKtPYXEGTOUrBJlOeRfPi8YKL1FUL1V73mVQ7Q7msrSwJ8ZjJ9Y3eml537RPatlu2AZqKVEh/KcBZ+sTAbJVi900pYQn1l01ULYhV9NFA/ACihPG7w12O23UzPG5WLFdXF+R9CDjJeQt+JsMLgVS/j3xAEzOVrRH8TfBYAKJi/sGO85WV26HuqzQwFVpPzfmkfxtUDZ9YLsg9WYPt1r8OaEIGn/RmfIDEMkcEMybQ85HwlCK6hB9LZcHQPRmgNdziudJhSv7nV/GOgK0Tiep8X3OivXeJzAnaCAg+CJz7wNqSYqrd5MgrYPICifyQ7YKMvI6yIPw4aZnbvzMmntBcR0kqIio2C+O7Ywk+8qDe5TIT3tsIQKE+Ncq3ThoPdlzHtssO0mhWIqX3E/Ip+BtEkysb3lIZxIH2h1I2dFUNOfpTyhjwhbqMv4mGQBBl8/jgY2OkTbg2v9dIEYuu+eknbBN4sROsBjGx0nsCH1zt/VGf04l8BbPRtnNXTFrhXGkofcUkiZsN45lonaFmNYzMyKslREPM70TFqbH4x9DtwfVhk8YBUZwvQwFnrpaMd085DDg+XEPlEqgArvcJsfdeGCHQMEgddeFsxZg705afwQzdPDgpJOxM6+NgdB5uznhRNRWdoNtqLcBlTkNqffHD04EmZ0CDp9lyTRJ2iXCjJd0VOxI8lBfNUsWqdU/tqjgfg87xUEQLMCfMnDYgZUuGRzymdfANmRXfbkLSensqTCwI2Jb202d0QNR6Pg/TzCOl4aGU6DBWeFBLIcDEje/+UqxmdIfa0Ji6cH2v7YSKJHdzXGXdVxwndsE+OeV9oIZvwNMqNz2ZWvdmpgMVaHzfHDkful2EAqMKvqRlFays03jNAdAyAQ+wt03FlPFWWAoBviBlBapQsgqo6MRSIDnqrvoRv1Vmwp7uZPY3aFNJ2yXhwlKgqwGAsMXNcKgU/zr3kiNKRzlzZiUxecZbNpYQN+tOIiKoo+gBynS8z90mytDVL9ocANWD4fixwiZrwBLc+beudMdjnoROflQ+hVGBU5+g6v9CpZCeyuYPfOool7Bo8xtW2MlFbOLcZJ/e7stLWN/sNrAx991PJDs/iEc4lw1QJ2+R6lawBXwDA7yJ7yurfW250JRuAy8O7u2V5C1p69lzuYIFUcBRz5KJYsahNd64PGo7An6evMfyO1jxFZyMDZH2pgH98H+kQ+XIR1DCPFuSTaL3MpbVkF5ioqJHbsN6b5V+g3WnsgYAmPRXBmblkcnSCcNoZX0UK5iuOyPqs9aeCnn6RwIuG4aMisl4yR++GUKPtWEZmj5qxNh2T7H/uvl3yQfdzV1qYr9zy3mq/XpvevaHDPOj4l4ybvJclFtjB3hAFI7UNo281kSEHNQYnPrPNFUcoU1p2n4+a7fx0GYqydl45Lu+mCNFPh00q+iuvy0L13kLSOTpIvyAtkYHXgAlcv+hnMT6QQW9yPvyfXmweIXvMeFVdu2k23D6QSNyM874vv5YOh4kylm3yqknglI4d5iZ/822lgabpncm0gfOywbzT/m2RD+646SNte6quKJgZOTHL5gg11RE5zyKYuwv00FCqvwixNk3zLygrvLGCE0eYl8L8Qa13PStAlacl+6eHFSteAh9296ZoiI2LTC/q8lhJBMp5Kgr/NeB77acp5ghxwGp4DGpKTLIIsejfiT0ZhhsK54YqZXF6cQ/RjP6htD7n3WkOQLJuwDZtrBCXhhLmJeneA0OHUhIqNsy4570UBE3DvELLy+ekiHF4apa7J1yc96VCwid+R5zBV/t0fx7h8l4r6oXzba21aO7U3WGUA5gQTnpSmXCFleZTEz+Bh1kUxtBVXt/S7Cj6+FQ//K3PtasQ3CzijEFIVAPy9GrnbH39Yu8fKxQnasZJEpchksw/+OTSFhyO6nOyTtkopdghGa8PNm8FPuTK8CbruJaAW7B0fVujr1f82EAYsQH0YeomdRPRDVLeUro4JUMoQOZ90Dtj5388FrTgqOSAJpgCIYGAwEmVUrF+TYMyqaC41N6jXZJ0mBfCKeeDPzSlQ64E7jHCWIXwEcrpl1W3Wc7zu2zKYbCA6KonI05YCbW52FCCdRKk1YCl2ushEnAuNJC/uNrdDs75OsFXxcLEqA8Jsr0eI6M+A8N5YhYOGaUV1YMElbFdUcxDRgPjbBtGB/KTptCiR4tIEF1/yWP4li1VvNiel2RJdoWlVjqtOPTiBe7ztVh58JglSA1tyf607jogUVb4uhpNhCaNULswwUYWv41+VmoUKp1P7xUg0rMWkp790olLfRayNIlQChPSxcpdSjlZYHR46xBNhsRhRTcf1ZdAIGiKfJRlAtcgjQl2sqNxHkdxUBiAg53EKO2XCCU0uRKc8rtQghmTtrfi+HDk032iZL/qwXGqwL7G1c8+jfdX7SKG9CDA0hhj8N1jrxXoXfCNkJYwQ3HIzElaRMXrWFN+85GXNikCvmfmkH6/R4grcJtKz0kOJccnnAbs/WLXBtCNCqqrXj9FlcCp1yjemd5l9M67AF/esA4hv5pNluKu8TuvEEUrGtD5/WsfzGtsXClsQ8pI2C1haJ3WwhJEhdAeahQ3pWNn/KVINIP0taPtjwDb3j1TsuE5ALigPhfW47RmYGntghBpeRfq2WUVD+VvFOn7tksngwKrFsqRBJsKO+T+g1bsCf9gzCafyjcs0TJITDxzpNyn5GgI2pF6yEUj2ZFxpsy6PreTJ7Hrw/ERVh+bFT9Zxz6o3E8FMYGurQVBhaBHK45oUFxJd8MMsSm+tq3NGhZIc73hU6DZ6dT+viByzbtQNLRT+jiK69F0EC3vy2JR+cf6l9+9HPTsAqxZx2qA+nEc0kosMvdimsEprZdDKyq3LEe1ISL3FYMLd9/xn8JmloAPdVelqy0O2KdT2buK7Wp0izhW0gn1fDjGktPbKUEXWlMfrrMwpM5oIq66MqQrwrjDJgLY/HcMubeETePPL2yAkdUqZWnISz1Gy8d3AYnRogmEqJZkLeXpANuRQdaS/9LPWmUksYxE5jq8IYzWkQRw6zy71MPM1dCmSq6xlWY3Ef7qOe0rXdcKIEwoi96oPq1E9RqacFGqCnbah+aVLz0p12BTzziQ2amG4fd7mQLgfclLP8CoFzDKCOrvFbwWQv9hywCvBN1/v5CGKip4jdrRBaxW8pJwONcMLR1rBdhZ/AT8DyQK8glbzcZ5sMwFrrRJYnpCu0IEvOalw8Fe/uyTrNKFwDQOpK1tjox/l+nIkw3DuuStHHnHV3MSOHPdS6Kl03FHpPBIk26Jer0yPTJHzXK3xvac4zsN9KpRNdnlwD2AO65RJuTIqPKoJlw1ueN/LjckEKiy1s9gNR27hEFl/GkMIg8/vTwBXt7ohgqb38KIEYa+aeT86YplxoZzcJMLWLiZkHI/nOxnR5Qb/NjGH89pViTeOpdD3VoFs/9Z7Bq4626MByKQfKsmz0CiT8qQx9rLSkz1+95oaraVzdnEnaXI2dEQsB0QCLz4lFN7zfWHQQxTFYGBSJtrrcpKJp7CntKvH2kd+l6U0J8EnSdE8yiUuWkoN4Y3okef4DX6nuyxu4/f8NWvP9Sf++xLANVgIC/shXXbBUVgN4tNdvVdidQJGFlc7XaAARRQOVrSVQx3Hk4rcOHDoNr852lt6S6KzUGxGr0y/FxUHz8IcniDvzNBwlOE1q17PiXv8LLIMXAzkuFW7bMZ73bBstTK2zk7t0fIJtW0CwUwGmEzKDul4iNlFy+N2ZKR7v29qDhAKqSpk6YF/JhNuXUkybaBEHmb6GvPQzBrr2DaJUlgLq9L7Q3h/PTBLAyFcIHFKiPgJWBYm2LhnNmXcSZp4f0a46FLCP+sZ+DOK86PexWIMA2VE2nJthJFWWB3AGB32BEijfr+0o9eotABO1mJ7c2tfX5bF95R0cpxRm4n1W00AO2xCjLqqNUnkFFWTWRUnpsfD8mVEeicE6WxyJal6vWFZcxfkLl/j/XxcLh+OzmMOHP57n+1U6jpHB46ZB56yq/W7IauG4lM+X++X2Bc0Bw6Ed0cYbJaXXiZOsBhG1tcxwdMElyHcVSb1Bp4GEmQxFXWxIhz4DrDFTVFwrc1d3Bjx4bsKb1l4rduJ3Px4+F1bPeGC6amk8x85Mk/UH0j2SSSotsDt/IezKI0K/pW+Yk1qcilRoRG6He4a9y8RrWrKDYs5CmAZPlNhIRDuSkeeKRgGcvv3vpfWpINlpnISe2t0I7VUDIWvbUnq5Fymq0l4XZkGLKFI649XpO+BCk7oRbCBBJe7v9J0rP4uM3TRTOAaTBqyKXvcJqrk2q+X1LBTwVWP+hCojzTI/qIeIeac5ESPckHMn3uD9fjuVedkUCcFHvscvWBc4xMovqbrruQmFKAI8/T4CPo8k7NYdROm75hgPp+8oh3EI4RiZyA7eT+H0pVhNvhMrv25tFFc0q0WZ/qnMRvTieqRk/xvzLjofQANiMHN/qY861fYDe1X6sva6lyA4oR6OXD640hAXc/lI9j1PjiAsxoaQuSHVwk/2xseYWTFRg8HoGDvwAstN7OhVew6qEClkgv548d03cdLKofiyHt0qXgjgGnffbtY0gZJRk2TEhMOpABcq/ssAW8F0rjfkHuJSD9ZmccmNquqnFIPI1Kp5Fb7s2c9YMzdMiHSOVrigYgReNk84QZGxRITz/BNgODkEqjpFW7xtjmj/IQnTUZVL5t4pnMyRigJ7fumZ4W5NMF+S+F0cDONjtQ1dm6+UOrmWC+L281Ps3/peaWUd/kPKD/1FlmFylEe1L5S38mFfr44qwdalXRZOlm56ukG9CLUSMGwZvTTcljT67OvDkng0FtU99GkuVFt3J/hxTC8YrBPxHwR65vRd10txOuQnllRyCpAiQ1ozLO6Z0sUmetIdM+ReubQuAnwkFehHj6WfQiMWBo7ydzJgHBHnUiBVKPtafMMg4ZVZIK4PrtuhNRYZIs1Wv6gVyoD5enNKaNSsJn1h5VI3gcOChIa7VOyx++TXAtRVcQZGbA9m1KIwtyR2981jkYfaBiSdIuN30glnSRwMFYWFHB/9WtSFn/gnOa2xLThCM0DuNs0MU99Gdp9GzMnfIOgtpgCZZmc6vLsbjH5cf3bZCNIN7OaAmXZWEXmo3wj/koaWgopD6Zj1RKdBVZXgKJeWl0El3yNNGrHji111aKRVF4OWcbSA+Cp1m7JCV7rFF6B79PhMFGY186xlvLWYmwc2syUUlu4hJ54cjegLqi1vRl4c1na58F2dEX6xnLxC602aSoDbLe8l6oWYN7HfzPs5zoX/AUjnHf4+tn2LxLpASWtzGgFvs7GH9o3aikDx+1RzvecnmG/CXLjPrPL8DedkuiZFih7IvG9LFwUvTZGchtLPOtrI0SIU1akx3qNA1QpQnXT1RcZQiOZ395UDisUGryIiJYBE9ZYat4+u19ZQKs9wIYKZoGTWe8LRfQrAAoRPBWRJScD5unIHGWLDlBVZWVG8sPiQSPFji/XmyKO9rkDmoM5BNFHtGjJf0zAV46PBo/H4tYY9uBACzlKC/JXRg5VYOXAeBRy502IlsZ68BLM9Wcql8llCWBw0zrJQt/PikEM9ahkvQeNXmV7zkK2adY243dNxexmD1fh/hMIVeDso3sNCmDmTJZA35w3vL53uMtPLU4/EflsstU9KI4BsKVU3zN/rlaBRy/0l9MMSyi7q/9B420HDFMgaahsf4nZrMIpAURbtHFXCRNlVg7t8S+XVxyRK33RLo8yf7ifuJVt6U/ioAnYdYgaso2ODH/MNAhDBt3LAfvce9KY5J+BFt5EnW1OI6afhmgwp8B7oFmpNvG4lDiV4n4nE7rSnIeqUH4a+GmFQtR7BqTqnhvCL0k2UFp1myJDGaopWDcakH3ZN6aMN5n/XPoW62WSCqyMHe6VfckLMik/CdCHYuhpbsZxhPOU/p94I4x6Mwo6Ss8TGCIv71xjRhWfdsmWxCzYpS8phau/fl6W+di0pTnkjE4T/RAB+41Lx5OgODEqCwOVUZIwDECI58Xz9h60L1aHsu4j4+Hj8RmvW5aO57htXzARaEQBBUUEqQBdmHrEtbFleQCZIVwZvhXAZDWSC4fg+gnAVmmdAMZlULorl60s61K6Bitly+kwtQvn5DLmMby3eF6kpMzLyLGvQVR+YPaa2U22wU4Yc/o0umEAWeF83rqCRr/0OTIAfrCJhEEl7bcoq3L/RanBH2v4uuivcTa1ziCA/YNWVBHVfeIy2WqkfdTDUXtMJ0CeZ3XvodHA4NEq7bWupEQ==
Variant 0
DifficultyLevel
727
Question
In the diagram PQ is a straight line.
What is the size of the angle marked a°?
Worked Solution
The bottom left triangle is equilateral.
|
|
∴a° |
= 180−(90+30) |
|
= 60° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | In the diagram $PQ$ is a straight line.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-H4-CA30-SA.svg 330 indent3 vpad
What is the size of the angle marked $\large a$$\degree$? |
workedSolution | The bottom left triangle is equilateral.
|||
|-|-|
|$\therefore \large a$$\degree$|= $180 - (90 + 30)$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-H4-CA30-SA-Answer.svg 290 indent vpad
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 60 | |
U2FsdGVkX18GcTNTHiTU1snCnFY9if+bFmrrCbvIYPnjRisADXC3rteQ3gW4obVZcI87KbbEqjU4bWDWEdBIQ0zR2bk81gRRAjMStFPkkmxzbIJmp79S05MYtuHG4OZFgv95FAa5I3VhMbZmUlW7yT63zeJK2R3+i3i3ogN1gTAOAuI9YMcweeYd2VX6aTCRgl7tzPcqib2l+7q8kqO48ka76z5z+99hp6XS0EkicEoFoJ3BwyF2BsHlEc4XIoAbcN9IAi3imswrzT1RXj4gPoy008wA1f/2K3x1mdA8vfZxyRSlJ5UJv2PQApzSLu++w6W1qA9J6FMihw4QAh2l2p7goiVu32gS2ejhemoTOlLZGRNZRaGlUPy5DzwxLl25FJB53uc8jTBEYm4he+v/u1cyEicz/9PHmN8Zx2+Fiy4PEMXb7T8PfEPZEYU08/tMQJFlRHWKs31PDzFI4fWR0zF9pvCrbLnOOROHaABUImR34utxpWJHe9dX4USE4QtxOI0YDL6jIy/8Rp0kuAeavVXQm4BCz5qNINxPqWn2Rfs4ZmPXuDqgZc7wmYoTx5Z8Ml9QkXqpLCgI6l1DcRf7G9ztiYRN0TPRhCascQQj2AP/OUd8g/+Cn5b07jvE1cw8jVz9cDiGbbs0QdX1wEpwml7SfQaDAf/uoz4qAvZHEfBZyN7yH8+o3u7KYRa1GWHrU6RAYsEGty5b0yjlOqWBdTj4kH/n4bv5RiH0dmzfj85EqayiyPxoPHpXEr7Yg5FxyhMfLnR0v8eBD1lwSEKbd/shbbi2gHAmu9VLk8QQ0XcbCZjT8LHIJYmHR8OHi6tpdJJts8KV7YrU1qoO3oeDc6tZyEe5PBppOxqvU59yAvXgDI4aRCE28uHtnOoiGYLeJDc38XRtWkETAbxwUf+bIxNWkOcS8ieLU0TqhARPglHI/y1d+ou6kpEBpbIJhCaKTJOzlydyWnOlgIS9K9RXysCUYZp/ER/hba4EMIwYwQH5hgLGkyvNxkwAHhlEbxKMKQudHWemXkdqopPefegUha/rHYngzPrH4PsdSZp9Q50cTFB+t7iw/6/AD3dqd8q5Vjw8Pcy0bo38rjoh08B9KfXdxLtDpPEXkEABF5/ZTvJl9+tQKtHogz6T5ZR9mm8Zd6bnZJnP8qyIDCp0c8b8WN8X/Z1NBPzsWV+sqegOgYh4QFZRn89tsvu3L/2BJhZ0Kw229k38YRotV25itMWm0ALi/6Aw5jd1ndMMOizoizcADECmkVVnOoJ0JCLKrF8zdAJ3Ukg34bySE+Srgekc2mK3bU5F3n/VYot/2azPKe+Y+x3ownxO4JwPPexnGj2VGpjgNYFlaEjC/i1cSmvJmKZAtfW12p1ST3MMJtX2S8TWHJSXyB5zMWZYP7rnBO4Gi7RfCQradsNDHXp2DrT1VTCvKoeWAJhptsK17PXi7h+AH07PQ7XJco3ifEdQfLDXQHN7ugOCD1qEbQ7+6mTJY4OP/7GnF+hFSRdGSFPyLK18bCGGBTetaHeqic8xF8hnTeqW9TNppcWhOxfo6+A50VbGRGQLXyWZaOM2T7/0j9WfLBgQYzbGFbrwt1Ab7TbbnbLTBgS4vgRoZTKvW7y7TL4sj1XzAJIgf2O0HAzaMboBXi6/FhRoZBKJy2D2Ltw+5Q2lzRAWTF13RMTdIrfuZxyoAbvRfoB6PvLVOqrxYLiUxo6+gZCmBAfHVpv2GCQl6x6zt3rkzuF8KmlAVD90TINwXoGxF7IMSIcRhItNgc0Z1fogZ9CaCJbF2t6TjUOR6P7zV44sY3lDTWc3ieMRPtgei4Y0XhKr28dH4g7GHgZhOg6pqvZI2JjqMq9bYWoZiC4gVDbLa/0+ftew6VowhCF3OJX3XcenKdsmXlx/E6rSGSr3fOPHyNJG7Ko4/jZXefm8xiZi4cYeeAji1OlbIW/xEedR4uXbPKjlONAuA1jOrGjH+kfOIAnGQLPN3xKLlSnMO35+Ettnzvgp2Oj7Wwe1ijyYLXj/aDZ5/uW2+PR8d+FgCbIotAB84sQEhZG7f8cuCO0MIVglIRsOFGKwYm12GdU99+Ry0Rn4d7wWkH08rgu0bAFc9cqrUEVKxj988I3k1ERdGfVac7H5Ti5eqGerlaUpEGh8Rbgo3vRmojj0qaKrCcZA+Z/zyclwxh7bGvjKQwt/MWGdZ6HCzzrhveLa4C0AiYjrDE3YNx9+pa7T2XpmKVmhAYpt6K3W56jjjYMtA5/phSaf4J4rxzDcXryGe9e48zRaWaEjInyFudsXbfl+9DviMJ6MwUgdAjR5Z233assqtXbxYNjp5v0XeIgyKVXi1mkpW9kQ1IHmx0sB2WRZ07IRUyLKpcd8zFsbx1T5nd5pX3ZuS8tW12zAVC6NDkAn6K4Rp4SdAJrQec+ixcrCYcjy1ri3wpJ9kFnglikLYBXrauzAcxT0vQEj8qzLRCrUMnJODd3CBuA5Utii2diogJmUqHORIB0uqfoaWQkFYwKHF8D2f0ICoKldVgMeg21MjHWKKpevRQdpQIPII8/BqxmPZa3a70Xq5mSvm/kIctUqzatiUYlWYOe/gWoRYggky7lFA1rVVGrW3CYJiRmN2faIIXw8bJHlFCo5AS1/Q6tq0bi+A9CfmjDzsc2BtmylYkG2JkHdYtykauodAuWxlF6kHJEr8jOuigHyXCClHoZTk30tYuE3kdFGqHKcuZ/PvfOddxstEBqRK2CWdGAPe8avQ+IvG4Vu5qd3rlsIdmpAZ50oDF9T7aN7OAK3JPDomJp8qBhZa+SbgJKaAxIveHkW/qlkH1zNr0KJnx+O6jyLGfx/NxlUlpDs8RE1bo3g66h6Un2lOyosNKOUrwKC+6bmr7CKDtlKnDUDIaMWYXMj/5z8oZHW/LVViGoZjtyNkV/N+HbX2bRN4qHMOKlef8f3oVmu6u55j+rRlByq//G5BT6K8nP2DJoS8UADgkBbIL/bE/JRS5LolxIMIJmIAPfHagN1nuPG9XUk9wze6D/lUyGnIE8ekmYmCoQWqj7Z7a8E8AwzReBlDV6kB63PevfChS6ATb74DQGppD6K1b9ssyBV/Hkvlu7zjO126xdSHq4a0O6ln7Pc+h1c05LqKy/yTA7PrNQSWgfAIVRygiA3P+1oWVl3dIxFqmmIp/yPFsg02DZ1JYymlJ6A8Q07aHozJwdrijnQrw4ZU+Qa/lKhPCbJHqXbVoSUlAgLbe9thrqWKHAG1es/dK3YwhxxX4hKZm3fcHEb6f7uV6AQicFSj+q6OXCPrCSWp3RNV3OACPFf1hKknIDYh7UBZ5y/FM6dY6IVKlHLyN0GFMwDianPrCbuOHFvFfYrRNMRbi15uYsi0F/QUEZIC9HGrRn+6iHDFmGVbv/biSVemlzNHF86e7IHXFjBCo2n3pYftzWAYVWyUfJlPhgxZMibtyoO5yeL/+IhUpRMLrsgSXbQJsXMHs+YjOgvlm9GUz2IdHIBog8ETB27vvqMvWs7F0TRs+hpiPURjyrnQLN7x0vBl0EFpFxHd8fKFWp+Ifb8qe8dNPTJoKPWdyLhlhBdxIhlHAy+kgINdfl7DIUH6PNuGnLaMkWxtaPDomKRSqqtuFH2cqZsienFynI+uWy0w/q4qVvX31wDELp3bL8IavYVnnyInzwhXH2wB+mijhwlrLxZfKdxFMn0S+42UOE6uQoi4SIYT1ZTSMkQy+kyfsMrY7aJ+I9gwDIcDqJL/OwT5Fc0Qy9EftExuwX2/88XiPjDJqenvvoOc0+9dxeUYZSHTgFn86Xhdaeae8fGA27fp7cYtZHrM268IDezfHrqznLSxgEmcLDQQlNAb4b0cYlE9l6Hxt/MUWhwUy67bqmijbaZkmmXaBCsp2rKIMfsW69qnXpSpROMuM6I3Do1BSLut5NWSDJTMx6KFOFlrjOKAjt2i3UfLchKyCgP5nCVHl64To8FSaNFFrGV1deP9vJ5xQyvwO6j4lN0REjDdH51k0CSV0UheqxSmrc2aj3OYqfSacCQXfyQWNMRjlVWnPoEwc3KcvSl0xLENvd4NoUq0Dxdr+/AiZbxlb9Jhkw5zxtM99SLDzhaQIIphzuqFpwH/LAC/JZGX/FJH/0r2jiJiGucz4OnfKGvEec2uSsyopHyQEIpdIitgmhkt+kpcFda+Wq/X1QL+G5FfBXpxBCjcrJmwlDB2HMs7JAlJjfEi9WhOyxRXRfyaPxzn4WVy2zgR3o2ikHDvkQxnapWUGpt1mq5glEwto8zUULosMKzoFMJzHNYamggqUW/EZbjHLyAXNeGalTOMrtqKiEEQelGWp+knF9NSfqSGZGuWVA/1I0y29DkH1TFZWwiPVuGA/mshfcZZGiH5ccw5hoSyVnTovo0DPHXZjGTuaxdUK10rbaNCZ/ze6o8O+QiyLw8Eas9EGrLxQly7U8HuQsGGXCEJpyTR+H+6P0ibdqKnu+EK9+cwFXrOytD1KZlabBGl8DaQZ+bray4dbsiZ6LsbHTaxcCF/opDYbEQ9Da4gMNf7KPfcP0wgi1Gh7ODKdqpZTm/mkd4FZ3yRQEtafezo2J3yU5lidSd7IMaWbY0+Gt+rtYI41rkxAG0LjZJShBo4s8VOHrGFpRoPRzlGN0fZx4iYIYodE1qxu5+e0lWDOxbyaERF2M9WW950kYU9z/J4eMBMt5SxfTjPW4ND+BDC1kwAgHA9Flwtd08toYrYs6zKa5XgxKbFdXi3HZ51x6OS/u5VV2bDv2Bv7g6E5ScfOorspA3NZ2UEJHf32Db+7Yz/HfwKTo4K2UwA7flyD6jbOVVLJungXbs2AMRzUn0gveheMxaoSil8SHPSIK/QhmvOXYblsKpzUfRNordNDPH2ZAeiakZZBSs0GslJFfmUU2ieODzAm68lklE+Iuk1YZZ7MLmwpQfVPy3Q0Ofu5ZRv1SgVZxHbz/xPJYwTz5ke3alzyw4GH2XLH2DiBkmjgTPvMnhKRPK1CJ3HO48/oEyWo4T9hnxoe8q0Awem32ljXFrOi24RvP3jwZ+P57U9ldWS2CfhLiIfDHc9CtR0zUcntMADnFtFL3AoFb3LTl12hxAMREb5h2S5yz2yFrcl0XSwiEDDaOwx1r8mJgTZY8bDgNeN4UOekZrw9xLOjRZdmhGc1zrwOaKuQCZPgur9Wr2eM7VqXnVY4e2uZDACbzIPxoAlfNuIX1F+6/KuO8MNY8YYhb310ixPiGldMud9WbbQiHUE/mp4jA1PiM8UXDRD/yeDctM2bKPGV4J5X50a8V0MZ7nsawzy0sUP36SGKnGuUUanoD7lqiF0gL7h/lhnjxgFejxkaV+c55lBz5xPuEPVs0Isyca/P665SDTAhC7rX3PXdgWWd2Avep3GJoVjmesO3/UdSfd3gqkaAtlUcAbA2GCuvU1kezpvM3HOOm8jSuj19HtyK1LSoT1dO66veEXL24QWINNqlz8y/TrFAIZLhiI4LZAC3ziivICXIdmxedBBMvWnjfymk5LPVgGi6bsZddgGK6L26hu28AeOBvPJc8n47dumOrK2CpjdK1h0hvp+ClQ3dwRAyIAooTZBOoOpdyOZ2etcC/O6VhaWdzIO25AihxjQFpRmchFf3haibhl1OifX4E0jAwWP9xqwoMPQTAmaWvFe/0SjnVwRsadc9Wpr4+cStoMRRr/xki5JJyLEmntvA1cbll8N+1XO/pqeC2Uh4xkfHJNDbajIDvQJe39TugNapoACVt5QtMwVuTTr989CmnQ4hfRWfaQotgYqu0isgdbAiJ/0nE2RcQCueMHrN4T2JcOpRH2+dJKBjrQCtpj4kgddHvx3NlTXzTx86iSLZ7R4BlvI7TvS/BydJeNVgJ4em3v9Qsk8/FgFFa+KGl+Re6T5Lbwv5bA9TMQVc0u0EGx/l/IWCPA/88E+L/kqQ2RvmXN+CrAeVHU1Aab6tYsVlwoqp5AGDAhj2N4+2MM7ijvsJfm7nqOwpvBL2h6YJzDvJiU1fLs/eeW4pfsOZbEsA/CUVN96ACNG4CpZbJonLrHZxmY6T4huw8UU/czg1P0GZ1ZRBlgcmIEwoqeTv0vzoJzOcqd1+34SxKzqIPdFeb8seHXf6t2wWye6XKc/7AfJ9dhfVY+DRefOc125HL7rKzf7SU7ClNrlBR1Hd1agtt9IGnwHAT4y0r0atYEg1RBAZ7x87o2hbgkjPfLUppVnIMeyRv7w6zNtosHha1hK11KCpI0Pk9YjqfgAxDqS+iPNqAU28x+l8yZhQiOsRDFG5JiUybw2OzXe2Bta84bgS3flWdlYL/jFBTVUlhWOZEevmcO0GpjarFufAU5bh4HTyKWPWny3O8UYp31rR5T2wH2Php+f08rGS72Q/yG388BHfLGX8HWMUifNOuvJ+CGQEadVZTCbnBQgrUNP5a5B4sJPuFf0FmIGw+zn75PVgg99twiBocc/FbxpVyyxpSCCcTCkpAxqBWLO7kDsirxIxPHKAqpF4owCijczwXKQzSHnq4z/pw3EQ8xDRCXeAwcj4MdtJUnJn1F3CI/Ex6e7E2ggQfj+kawSQRa/kgFBrK266dzUsWjKrn3pr0ZymkTCSpytydRFLgWMcc/bm2fq4pM46MdxziE6iSEu62HHa6iszvlooIq1LKkqMhADH8yIPGPFKbGYO1aw1+I12VBExVCmU40yzE1tF5qnFa5i/qY0RAlxDEG2SXzxdoHXm9gUQuBVmCgeSuetqQPV5PO4z00GBfnw0bIR6bhXVT+G8aUEuFTsDrHad9jFclV4i36Ai7Imv8SsKIwMljLa6Md0jhiajt9eJAxS7SWpPcU0u5ki4+CsGm7udyY8xkZByTHz6ztSbr3jsyeiCdahJKf/XwvRSjNo7xNeRA9QE24+t+l6aE0gWBLGFt+Z97FBvprIRTL5rfAScduSF11jFH4SyPe/I71D4oR6nsxr3Nsb2H/Ka9sZXZZw8I1iwWNMxv8pvq+jSWQPVPOzWntAWgDkCO1RSfZZV3YBNY14aY6imTvzcwhnL1kAdgj5qLD99KQOwPIJ/Pfoval8CZWfNLNiftpF5DUyp52JxC1jvzj63lFr9MrVFtAR88SGfBXoe9ugFdwXsKlb5wcm3Hu41DaYP5qZ2TRrYLC1JYfOW2V9HH1JDerJHrTDqPOgKauVREFOZrCsOo3l/VNWP8W7BokXT0yLffSvah6eDNCqh8bXm20A7xuxER3om20lFwpuPGaMKzjOzbodpcX0XUVxPLCweGrBukbUKd9teRWsmHNudZtcU/8u1WxcRbPqo3tMOfNw8wB2GBJUoJF51Pf9BtR76q+1/vZqZi9uKuMl7hG5ijnJYPjw8E3sdkamsrLIOcogVqYFH2JN7Ua0JbigiVYjDWDDkI7O3HpxQzj9vEJWIabso6m208ZVVXGkbRVfS2HMvrEDKFDfboM16P0dAHNXB3XSeCsZuS+RXZqRnMsN1saPja9t/EvwdXB9CKFd+sJdZFxyLY6OrdGw0/Ah9G3t44nzaJzDJrIaTmVpv5UBRYBGtHCU4RG7V5nuogLGUaofvdBy1wz/84KGTs6J+qyKIwUQ+3HH4Qra9z45LKlpXwZTfsizj5bIJgpnW5khtthCdkVO8ERExA3D7a4OwpcN1qIAa3Jpoo/JPs2uhzhxuBpuDad1A3nZ7K2CKyM14kBP95aV5IlzJnbB6eP6JL5gQSR0Ba5tUTOd1e2kfGF3xq27DSim5Xk8rEAQIWDpmkJ4D1u10h98W8s05VmrbpUYdsGSMCby+bfRKMFi6kOx+3yRAHflCc/waXRFPkXWx4GGwnrCGG/vmcTBn2hIfXgUNlVMrFvQzAfyQSsLVu3cunX65hOordCdjRR+IIHQ9eITSomSe+MLhJ5jTjQdeSNxqKW6vVAOyWRH93ei/wsm3uEbLYhz0/ZOaE=
Variant 1
DifficultyLevel
729
Question
In the diagram XY is a straight line.
What is the size of the angle marked a°?
Worked Solution
The bottom left triangle is equilateral.
|
|
∴a° |
= 90−60 |
|
= 30° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | In the diagram $XY$ is a straight line.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_-NAPX-H4-CA30-SA-NAPX-H3-CA32-SA.svg 300 indent3 vpad
What is the size of the angle marked $\large a$$\degree$? |
workedSolution | The bottom left triangle is equilateral.
|||
|-|-|
|$\therefore \large a$$\degree$|= $90 - 60$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_-NAPX-H4-CA30-SA-NAPX-H3-CA32-SA_v1ws.svg 290 indent vpad
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 30 | |