20150
Question
Kelly measures the length of fish she catches for her research.
Which fish has a length closest to 25 cm?
Worked Solution
Difference of each option:
|
|
25.14−25 |
= 0.14 cm |
25−24.8 |
= 0.20 cm |
25−24.76 |
= 0.24 cm |
25.3−25 |
= 0.30 cm |
∴ The correct answer is
{{{correctAnswer}}}
U2FsdGVkX18+pkhyxVLesKQpet9lMY5aiwPNifFRKTJrc2V8MoLFuFe3f/1dcrjAxyRlO+rEgqWPXurciS7RCsntOAvgGHubgf7+q+ak0ajc0GyXu7aqPfh09JDDOONJ2Rwu9PE7OYvgTbj73H3iIu9UYL1qWqIXLYlV2r4y7Q+HptUSvMg8fLxLRR1h3/GY+ax9I1whR79vmKopoePJ2f6MyyZ2wtN/ooNAajj/YfUUMsVzg7M4k+z14iJqhcy58eZEflcgaEH7jBNGUuvuGfZm+IeG8yWISGqZHT+UNCimZV0htPRPtLDK+YIIXdPuz3yiD1bsvFh4MZFSD6aUlQabGkLOjg2XICjBECcablCLs7bID0DO+TgNvw98pgCdyi67Y2VlivVJguc20BkbnhAKs8EQJSpcUFNpiqgfPr5jSgznxIUea2P7kvFlsrooxipzAYdQmnwYeSuVH0zhyCTFJedOcLXI9tg5kJ+MVRRIa/5wPcNnHcEZebspI90bbE4TtKKWwXs238q7cqduL0ohs94FInCoT3aXlkNoJezq4zSXpVpUiPDZlD2cjRwNEWBNnQR72XrII0bjkOjLaZ0EZUsPKA+vBgR/SONWuAUwp+ABilNePl4WcW3sW1vqBjXVL+AXEUhR5nxFrLFTWsDFXNgcpEC47JdGSamwARJXf6qsnL4tlP82CRILgNw8lWmfVVjlB3eb++nKjVNi52zE43ypZ+zVzvuc6/9JOcCzAYrKxFW5bINf4RbkLIW38I6vjric/p+rpebT6TssA8PiAOahV3zkNK41T5+FfL4l/kI/dmazVrDUFqHHKiVS6PVrFFAJOHvmyKT8cXd/apTillwl8C9SrHjINidXHDpRhPTtOVJhlJMNJASlS0n1NV17b7poGDka21VNuWQim0YJo7JL1bRdk1FW1fQ017SKH7fuGWcBKnEyEJwZ9M7Jb8T22ymWnuEGFNqhDinBTPbjKDN08lKH4rPaQOXvGClSWa2MNRsEWPfGIeypQJZCsx9GlONeOUiom/Qere7NsTr6gTXDAkILxJuBjo6sVUooG6+Y4hw2Wk7dl4Etsc/zHJtkV+lD8XMsJ9ai1ChEi7j671ExPJNVvoCbR3qqZL1phNHMAP2tfBPfLZVsFDxxEgMAPq+F2fRtZ7EMSbKr+txv6Vy54/BHoRMi3xZTM4JNgJ+tlM49Nim3vF3sKMRpaAPi3h2pxeqBevoN+HioX3/67RLzwTLfGcuiTR4tELYrqA7dGRUrMyhaVyCEQuiAGIDtWGD4djvGtDuvRg3GMjVMtQNWLJZZHHjHjvPjkYUdMYCecuXi440YW7KNLTymj2T3fmzGggp/VMgIQZSPWnKSH14tNlNceFgUxngYeQNYZ+vbtoPe3vgjleQAS2qJ9dM/OxUk1Zezf40Kw+F7undEyopUZu4yHedXl8enWp7jFzGqxSHvGSgF2yGIklz2eKzU+4r1hmpuiG19RRZJ4R3EWk6ueoVgeaGZg+OzCbUJ5di0zuqPFus2oX+4yZyQ/2QAToP/R867TPk5HiYOd7FOH8NHgT5EM35ALaqbZTs9Ilm5fREF2vt1wwztc5IEkum6xrXNm1w7wqeXdZ1LnWbExrutFukB9kfo1H5AeDrO1N7iDJizV4mSm+hwSPVy4XATpDHz4MxhW2WLELJY/y2Fcp4F4XCGnhiFnlx29Uyfl4Wa3wSQzG7nNZc3Os4FxNNS+yV5svbAuxIlzdTZMjpdNF6rx87EuDSEemzO2ahAOLOvAbWmTJ/11l1Ib8yQ638E1lk65J+oFtXKzlLqmYmo4ByMoN5xxCJ7smDtgRHEE0yC1q4FWQRk39lb390d9bP+yBdO3NSP7/M1m4ifuxXMHKRImE9kPnTG8WNEaVoM0TsZkDy6nEGmvtw5LIcHRFMMVe+hFb5BlvNlrvmJa32q7jPw9+O1qXWLWOqgGwT9f6YDRtegj1+DVrVbUcGS+zVY8vIfE4UuA4tHnnJ0xlsaQqmaCu/1EInt2FYXW1fBrn0x9WaokexBeQ874faQkCJNlwPpnyeNw2NFxmuIHCwovfZHBhJrZRl4pJX3nbY6R5kB6PWFz2eMYJ8k2/JQVV2RwxyceveSFLhKSZ/8uogeYo9qJJWZX5uImImOlLzBbsWgqg3QvPDopO1fTa+BB2I0Jlo4CmXvFZo63jCCyuV+io/orjjLY8ouzHrVdCe0lZ4jwQ9X53WJWIeuepj+YrjN7HDnJOXa3n28mN7D8WrNdVAIG2qLkigpx4xkt2+sUhgF3bnvEt5F2T4561tLvXCh6Gs4jYVv8VGvRoLlQK/aV4OQ5K0IqTFaEUL7c4iV39CieE9/RIIKKLNVt2g49FlxDzjSDU824YURiIuGfzXS+MGF5vhPegZWUJ0q2v8VhzGuqK2u0OlzvDiXR/mEpxoX0hTvhxwmrV3tfJ541tc5G5zjwI40pLzzC68MIl63/D/V9y71vEOU0rUZ/jQlO8sAi9GmauZwg7fpruGwbDCXMyLx/pS9jHQB1bNH4bZcyDNADFFxx7Hk+l96/1OZ7h6moBtTlAh8qk5VZl3DVoz7sogkBzL4UL+lx/ZtTbft6IWWrxU40yd9tGBmuOV2m8Q6YBu2bNF7Kzl8K48cdfeMiDOSya/Varux383SodVlpqwS6OfQVeGFfgIoU9kRGLatfNIv6oX47x4X53GwFb1NY+X40wjEhTGBIIr+AD+mI+oW1gudynPse3V7hxPOKGGiPkYcMchlSaxn6fsaWtHE+E/oXl56FVTCwsI+0TCqMSHTuLvLPMh9eRA3GjsgeSlPZaar17vGrWh1h7aDExrT3CV+Hr6cD5Mbid6p7aHCuvHURLEah0DDa1eq85dlJrWDIxtNnGyPMkjxdlLR0vw1Y60ahLjHEqDaF2z66tcAUeOgnivuOk3eR8vlMoekbb3ydmHMpc7rjbI7cJmMnv83LAZWwuQK7eLL0QZHri444o2pEGdgqkyXLGHdvI2Gt8DI2WryeFJPSTBWrqhG4hsIKZHsv/fMv+MSFPR+0cVWxDFajg4c9IlESlDNQbAtTY2wxhRD8LRPd7htLSabeucQh5vFWuUkxLVBo33X1hbJnKFGmASx6pha2jNcxrpCls7ocgik8cMSOeU728NB5X/0fsCUge6eOyJcvXs7DMRsGR561J6UErF5GgsnY561adQv1V6zfoNP0b32gXEn+7KE3Yu4KUYBzaghTLAizxDuNN6gq7bGrYj0oNwqeT6pnt0sRp6Vv0ST/cTuZWckUszsntGMtSu0rCgC1NlmJ5rBGis+0dd2zQsVqMNf7/vgJ0RBFFgT7TFNobiJ4GAg50+Y5PX56ylBmoZYBeikm2H0nGE5lDUR72Mcv21QhCteixi2TaaTPyJuYHt5KC68cHZcXkXDwaOFnK3aeIsOZWYD6KtDXQe/Q+6QaGL1IjGmrMPVH4lhGnNjkDNqJASUFYWogZa0zQcIbR2ThKP0enSLi3vsLy919RlqgDQj6jZ5dEco2l/5avBN+5ANnx0wPERmg9+KiKdQG9Pwiv4XGejAgYqzreLuNQeQIbvaXJGFkLlVaHZ0flMADuMQ3d3h9tyAo82etM+hYlWCZ3JUYMei/q/duoH4pTLu0u4nBNUs3a0S5hBi7DvCfN12nLd91/tlD+TyeeQskeDEHJ21+8MCsbTTab/D3MHPGv9gm7YunNJwmeXRgJ0MFfo686tYugpFVNt4km4+7LPUONqKQS03Pt6EVv8REK1fEiX2eZAoCmtyvjCX214wNS2ttcaaRAB6s8kZvVigLdwf3U3pdOKQTFn+ZfZ3n/DVURUPOF7hN9QTnebltXhe8l/9aajknUH+PjRWQ/Xr8Btumz0TxkfqIsqTpEd9Npn7VOKgaqW0FDzVRHAWvZ5Q4x5DEPwNggKosPeM5pY9IT2Pcb3CHbBdCritM4XO1OXt9bDmwwqhNA8YnfufSZMBUAhc0EpbJl+fpKpvkWe2TINzI7lo3DyoMUQ014hjnEMwLFLXjbrGaRS8+5I3YLJa/uIBJr9TnVBKhI7TescmIx/mqlGRStzxMqgl1vc7VMJHf3c8Kt0KfHV5SsSx3v6yVwRQD5yLIT2ZQleifZxAoNVcPFT6OPrl+9q+pqjx8/1UBWCje2FtXkU6HPdd5CWvUvZv0SAaO/R7x25Im5dq9LKTZpK7cmMlZVTej0REshoBPVQLYNObObCes+3Sjf8JKtRgoz2osh8wMO2VV/rJuAWWnkNy81j5sgoMKr8QWw7bqD5jXVlUjx8T3tPr+e74THGbA54+tVN+WCGBNpsvcJMcC2OvJccDSxgzG4eJgb4ft5INSAsTD3cykfBar+8P1mQL4g8mKLKisjRAaWIPD2+mvelSh9rg2itGMerIFsY+EAUQbsAFgtA1tawdRwuxdSJ8ocGgbOPp0xQWljueNDivyupqzKMRsT83zwAEiMLIMKeZdbP3e2sTvUFotJadHYPksHYCTH4x6McEdvygsSrk3mjBO2uQCRmsEkQ4iV7Hq96/XmzFHgai5ZUHlfa2ozBsZMM1kJrf9FpzkCVOcE9Yh0VmXfBeSoin9P0YwP89YjG3iyG8X3l7QBCwTPnk/K2Orc2lejb49a/IBbR6nfMp14kIKS8onkgDMfxYDT1/U098KM8QJkViqPnSritYWO2HL7K6wvIb4txpqKpCWGpdQjyEDhKEcYVB+F1HlZpvhgznT8mI2XAflzfSzGYphjcePlXK4M3Cda8Ht9pb1eSLPqMM8A8UaDJRh8oAOLVO4M/gAoVBxDiZlp6t5RLJYIBwFJgZfDgmL5PjlhzkKl9xXDpa5HaexpRK/uqVWjSJjPVwg+IhUUC3hdzo3QmqKJYRsdH9w6tngkesFJW/nSs8pb19cs+Z9Wn6ivM3Hi4wK3Qi5n1K+IyxHS/X7TO0koipYptU/lZzw/F2luhSP737MUrdaca9MEK92l+ruhUHrT8C17Kad8Vu8RxIBgdLAzQxLdnG+4Gx5rzzB4WUjuInrCYhfFYHcwZriDsOV9tE5VwisVDxNE3XTz4ynjt98qpMtcxobvXD3pBFEvaKYqI2osHk+afA23NM92rqusr0JAxzE3vMpZHm77TNxvPLLOGNZIEU2WA5bJdnf5XIIJLf0tOWbPJL5gzDar53490fl7gwdJlbHE77tofSxfZ4+eYhRRm1ru6bOzgE8H5wnAPCePZ5ny12Clz/6VjS6IhpjTxDy88kFA6MkhNq4Q0Jw5M1jZQxNaZegJsD1/oA0NfadwwVGiTyA1kbSzRAnNS3byA+5Q34GiNbss4HYvKTcgvzRh6Oj/uhd4cuHSr8m2XlG3LtnzX9Cr0hDFI1/7ukJzjXplZwyK2OAdP1ZpDztsjbcUSYegZOlL47lvyWSoYCJfMXMP5n1mpKQniIn28g0QaFwUp4Dt0T1mqZKb90Xc+OPcfp+foMKsMSDigM2B1Xl9EA74zAyP9ky+Qyp9QOYWP/tG16X5XBKhM4OMMgrvGSJnV5/LdXuDXW8lwBMni6Y9B7TGVGrXvhady+W+hauKiJR33Sq/CA5NURbzLwwREwmDuErEUkfwm4nJZQVev+Yw4FeUQ9jbJlU1tGJJP31BJWXK7svTo5+J//PWqy33NUJcH4xiwHqHGb/xgr3rgYiwFDCdI9V4RASGW9XUPKqSTFhQRiFWZJcVzb1f4Ni105vQnyd96HxHSyLaXL9bDmJAU7L23juzwxs0p4/a3xWAvqpj3Ws3W5InvExtrzLJAq9JlCxGQwBS0eG82G8/8PdBXQMXCKl6PQ9qWp2wol6ZqVwGJ+aFvyP4yEu/SICVhd9368J9yIzm1gsal+32dtPag77QwProh23SfXQC3yiIB/1eg9KjMvDJ/RrufIeUovGgXtBn5yUIsjHlmrpioPm+r1U2TQbVxdrDmzEv8i/Os89EvXvPJj/y2Nyvgr6s1qJcmmDSwM3YPjF9v8fU0Rbi7br1lam7YyBECm91edDTGxeysqgmsD/8Q05vutB1F8gdTfGtFJ77QUqI+iCoFkdnKOjUFcvzL/4VDO+NMLDfRLaqwin6efAYQ6hqhjWb/8TARPLhl9emMrVM44jHTTez1sLLxw2/z6EzfDagJqEp3LxDiq6f6UZ/RvnE/meJLKeTa0jOUXue/7cUQjCvu2UqoGBD3qm9eQmiDy9Ogcu3TWn0lzus+IFdc5pmwCGX8Qj9PU4wzGv5gGEeLyEA4qeuEmW+y5Bg9QFc2/LTWNSS+h65izhPPAGkP1nUvJDwPHlV3FQM1tTGBtIWun5eGN2EgVNTrpKSn9XiIYG4YQcWosZP6aFwTFkKZUMIiLhHUwiAQAfTQTaNxLpdnU2VG4iIKaqT3jACg34zGjmNUEVHP7Yiy/AtsjK+szEW7BTxGWZ2boZ9w+4tuseaQy2eANLJgRrXmiv82HFAElB5JFcoi85pEzKSyCjM9CTf9b8Xpa+4Ii64d7K5kSSma9tl4mW0CYcTIaQho5RxWGqD1SncSvFqdnufJmhRwizAdcj/UeVpjR6BWfD7OBigAO/yMgVuLQlKClcqjpgFpoa8DSU2f5Grhev1cb4VqujiZycNLDCKSSOEIDBD9tWiZA27XLx+4s4PHC0z752EXR10hAN9/QKpew3gqRxnME6izs/ZQM5JxWmYIhkM9JjaHV+6syRmkS36GFGyFleDtLHu424VXIBoJwy/lEerL5plF83rN0Z2k6uXGICHNoTdKlwYcGG2ittwoUJmtF0LziqnfIJED7YLHLKkZ8zb3Abv4BJZpNTJSPMs08+6InbQ08auPxAruaco70IBoi9gIBcPDbRddLTk/xkeQK/LF4q7/1zWXRP9FlFuMU9Zxnt4YNY2iMAY+ufJoS6OfOq1RQrWWefD2EHZGU0tVkVtQPfsBjXLE6z2E47vR3mk1YAx3otjLLCz3tmJrgg3wDfBmcS5xT26Crmmg7xR8FLUmMbs1bnmvlQjAEDMuyFtLFKgWc4iJmI7cUMIGG3ffZX7Cr+eeFsMrjLgTFeqlWq8M3Gb0hjc1r8JvB7TChnOUCT7mgf6WlKZ/hrwJLY7x40q2/Z4M4YHiPHzOeEZpaK9LPxnGD3mU22EgSuIMHbBQx089nJXU4hm3gLryjBNWZi59qSO+IwC9KKXUTlqt2GnsG/EctnkAFoQcVhlTNf0IeFTb01lmN4qT4HzfM+Wn04HvQeLsEBR1ynKo9L5ThFuu+PMeIfA+my/fycuzWtAHvg3keaOcEJntVhxStTGxfVAiP3XA0qo/p2jA4xs9ACT5I43NwrvNtz8dHSSXWqrTRXtiVHa2IusnMZwZ6a2gERuYgtFaz7rB3TUkoMUC48PbON9fpB3ygbHfGEPl2Xf2GvK7Vu194gYFuhPQA5ZwsCm1jAmD01Tzmwo5fZEvJWxnxZct2rAAAWHk6LNmGOK+RGX0SDe3/CcXbWatZeNci6QIozWeX9SDMwJdbd4mGvzJDD029k/pL4APAMc5tN+Cre03obkeRb3sZXYoHFYWSkuXGvgc4ozXz5BRrvFixmnxfLdcpemhecsBKVGlJ6tCeC/EDCQ+pxlcg35os0dnK6eCR0uTyr5pCcrzaNGnakOtu0kytPpvR3W+Z4CEHOPKtjPR7W2QZeGg1LoyLBGdBxJr3DgiN4EeaqcR9phFneSfON7CTNSXb7RQ3+GCTmoevKs6iCIbhaL39aRs8e+kqTqh3IWD+/ACUqf/bRhB5Fh1MKRBNhAxgCMFy/9P3Vn7kIDxNqJpu+7OqUEgiEt5q+W1+H4UYJy+ipeT8W08bg4QXmrXkz4lQHuVZw/avW9Pd8EVtMpJdLtgXEve9kwCzEGQ6frkuVlGkWmNDf2H8Da3yT+5Pevq1RXCuFWFfIlob2IHnZNKV1UwJUEHwZc3yanLQCn5/umNiIGDB/yrBS0Z8M4qnHYEbBy66LpgjJLiF3YCsb1pJDHiOkvogMWLh1xZ6XrYz+ZBqWe7jD0YTTvZuId3w6YbAcrN75MA7RnrH4dsGnuhzCnW6+NVsjF5TFi7iVtGzS8H486Lrks77uv/3Q6MkGNzsMHPORPnoNucIj5dFq2EtM39QQ0I=
Variant 0
DifficultyLevel
501
Question
Kelly measures the length of fish she catches for her research.
Which fish has a length closest to 25 cm?
Worked Solution
Difference of each option:
|
|
25.14−25 |
= 0.14 cm |
25−24.8 |
= 0.20 cm |
25−24.76 |
= 0.24 cm |
25.3−25 |
= 0.30 cm |
∴ The correct answer is
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2019/12/NAP-L3-CA08a.svg 130 indent vpad |
Answers