Algebra, NAPX-E4-NC11
U2FsdGVkX1/FJ4oC0BkSI+mCPIsOCG+3LvZadfxHUklGlRD5ccWAgxrCWk3vaygJJ40+8p42CJ5FkntHAkSjwRuXKz8Ep7WPgCTOFSEu4bxM32eR7SiPc8ziquhNgpgX+UEjvT9NAlS7BW791+1Z9lqnxDCEhePjQIFnyoyquVnbhTo3YmEjVfZyI5f2sQ3FspQDglB5Yp0TrVInozfxGz7KdKJaxNBu2y7zDi9joJ5Z8R/UvNHbYSD5o+JejE9Pg2Of7KiBc/TD03egzaPPthUgQZ53RGWfj6/zlTPerxguShRm7G8w6Gk0GruNjr2ydEDCE+nJBELZoh9pI2Je3KcrppUXen4x9hSVPM4z+BogdN2VSi2F5lT8Dtxas9jZ4Zvk2JiDobhyyK4DmkwtGUxI7fWjHQLYr+c2BGnaIgoCHxYYf+wq9UxopUZMKk2qECgTw6BkcfoWxyB088I0FIvVrTeHd95jyfEsli8ZbPpeshzjYDxTJYqFm/myH15bPmiKmknNJlM1XFzl9Q93t4adUdG2wSsJmlJRtBsLEZa9ZPOyKRgcr+Pbv84bBiGNay8WDHsAEPR6wzNCDFO2U5LqMPb3ilsISQM2uI31L+ndrJWhNX3xAlNMiqhPipupwIfb3fZSt78Wn/9pidSm3n7hepfcyJBG2ua2J8N4NW9AM5Wp/6jSnhLaJosIHikDOXvJgpIR8da+CJppzgLzH4YTyNagpFKFfZauoH2k4KyonOUaPZXZ/qlFGOenJf7vRlZDIoRd/rS1vmyFDSvsdqlw6HSAzne/GoxEpRG1UqEm+XxS0Y1I/4L7F9co463AROweyCOGbXjRfHntIsx0f9e0e0kkhkMgSEu12VkvujOMkBnk8K5EopOWIlsWxM1YtpFwCTPJBDuu77MgSumNIJyRxtKITYV23W/9IdEG2qX0UGoLdeEeXz7vhliQc4YWv9eD3uGkiTm1uhX5eCO8CT9BMZnQf92/zaS6ybqprEBxc8NzZ10ONgwDbULpIOV1soZFEOWtulI4UL7zjC0wHdlhkoqgZ2P682NSuY90KhvmSEnr284oz0aO92TTSjpFQWnQ5vU0QR8sNw7IDaaoGaaoEzHFLTZMYkOWUC1J9fNm5wo0SGUzLZNYuGyKqbKWztQbd1lxEMlEQLVAoRgf377T97zHSnjCySoAlJTOdY+6U1Pmhn9GnCaP+yw3x7XE2Acd2fCSkfmwbCd5kTkfqlFsanCzjp9kKpR9BK3L6hRoY0dw5Pwfp3clKlRfZ/Cc2iiFh/RrqPz0RvJ0zTQRO/J2MolbohX1paT6ukfpGq+ht+7Ouet1vwGQR6gxXi5tssKhlBh/dqAI8Z5HW8kzX/bxDLSEI7dMHuoZ2EHnjFzsGOG9zZv7XKnlhWZvee5M9Tf1C9kPFVMv21T6j8zNsLeYxj0DB+H31bdZWC9SmK2+4lA8jRfuy1Xc0ukPzqQCEF8AqoEZKbGxEBh/Me3fcbxVjJ//aFBHixW0UIZeeNgzn7kqC3nySbIKuwDg9Ly2ngulqGTUDWLHbvU/920YJnmv0sd4KEoNYWBm1aRRXMSKfIrY4TujdQXBglSUY2aWUuorr9xYS00PAmK2Dqz1YDabGpKvUDo/v2YF2/37AgQl/mx/Cp20Q4/xJ8nmkT9N842ILSQy70jH4BsJ7TKDDTQ72KTI9gsb21b7NfKfDsUlnhJPONNNpXCw7ho9arZhk8GaagBXG82Gnvibxrjxg6icFn5Gf0gOJjrDMEFn56+z6Tdqcbt4SUE7ZzawumjdvzegwTogNM2TtB1fjL8natMSfVLoaZEizfxOkib36nBexJ701jH3Jm/8jh62/mQDWe/19hx2Z3cMTZ7fm+Od4hz1+ORG2qTwWJ7VKTTeXFFJq8QfgRjWeZtP6jwzSI2BHC4S3ZulehFTdBc4XcY41ctZMx3O5RfEzyo3OGYRXSLesRfjt3s+JoReZ5rFm64VHO/UrpR9g9cgGzIVrbWghtGwaoyy2BdVxUE/MPK7RxP04dcgVyaWS+n8R1OJy2Rc+NYWUis8FxXCaMpsy/wqM4HS3gROgsdG5Zg8Q6Z9UrwfUlDxgomUcOcB8T+RLvoN+e6IabrpRdZ8V/bvH48tphXjQnFnqHPMJ4r7jVLbP2Ah+yPASz5kM69f/Mistu9QvKID3xHrr4KtFZWVahECNWpiHNQskdcDTmyZwxVLdOdQEzVeEyOrqx40C35AQaJIWUO4UfT9agwA8OgQ9aBP8AZ/qVtcUZfm9fFb81Cbh08AcULfXIPfGE45zWIcMQS5Yy1p2Y6fLuMdwNDTLFWdVCBEwlfnKLFJCe5uD7+/qsGt0CaJ5ItPr5dL9OUNqeKJqtzAviDTB1gqKeHwR4IH3aiaj4JF8D5hw8uJzxJK3nyc5pmb28DZbDAeYo0O7ZmvPQv61WL/DcJcBp8cYXc+w+8hnqC3KXyxqOaxVALF2mL7Mad3l1SP/qSTuX4dKldkaMNchmB+KaHLrE10VRCPaQ2hUl44zUwK9myeIR3tIPSeXnkVHWK0uSqr5qhGhgB22JOgsRaYT1man2zZz0E7bDZLrTPrgpaK8RWIykFseBsJTjaEzx4053thRpZt0/GHnoZV78K/zR/UUUggbGHGwjrvrH8uuXNMbK5FNU28JmpXxTS50/0XOoM+sCWRiCDxJYMtGHsao8WNAJX/y1tpirg1LIZo/raXbwg/UHpNKv+OmjI2dlHN6KFcyt5Y2iV7Letaxg/tZlifOq/gMTJs/TJBD3rp6je/X0iOpFjb4Tky41Ni38Oi064qYYPtZNGnXTCxK3cUgxnPCtzlc20roJOsF2BYYO0xvRLF+jf37VWQ3/Up+znK1N2dUctPt5c/t963492QspQQDJRibUhY4ytAEnnIxkbgq6It2zdNi0p1JwYdCLuqVwix/ABR5lffBaYQBofDXhhNMefYYlP5ZTteKQUhQZORMTx5BxoWf40x4uOTDOOFbgM9I8uaJNgC2Xz+R4bigifxBtFttOv8sBBc5AO3K9Ro3I5TK3y6E7lARgEzFr9i1JaTf5rA9+r8v1P/iQcn0yHWvjvsVweTcCPPXGk5RfqqY38hlJpNcTIWAaGcZ96A8eN4XLfH/9pfJ0/wHS0DzPmGpDLJFA93AjdKkcb7Sge6ggOHlLGVq9uuiNT7gorBnMRz4OPizvNfbbwl4slpnWOD7XASVmxeu9n6VsMAH4b33qB1zv3NLKoiSP1vfg3XLZZl/ctaGXAPLdNXlG799AHwRy5R2IXRCVF2vcLVhAJvS3wxuyDiXAtrAFBucOO+O0MzV9MuyjZdk0isChHYkaRTduG7FoZ71VNXu2W+iBzbiZUrwyRZRCsCW5/yN3IVpJ8Qwg/lOtOqYEaBoz/9uJD7pb3mLC6hCR6he9C7P2PhAYFb3eMMpGocCO7+NfU7IiVGzLdSmIG+9hGCaPAuXucaFI983hlTFZZL/L2zMD3u6dDW1r+QUZQM0UW9FA4Bd1ladZFiXr/y3Prnl5POEL75jJi/JZVyZZXqEB7qTeJUaMcIp+nBaJIzMKEE0gk9qJdV25oV0cZyUYfdHrWfffj16rORbBCgt9nZX0QREGTBUWUwkl/JKKwxXvbt4qK4/RDuFz5NBVyNhEhuJmZHW07dEagjoh89Ls8p56dQ2Zmt6YDjKI6KH6tHuFTg79eJHPJ313Q+FcgBVX4JDBi01bXGgT+ZEoCh5nUMom1AaFGaKPrtNRHMfW0Y5wu1bzZiKsmAgflWp+pS+6P7jRS2hmsWCzQyZKQqLWS9spJjS6+E0KaT8jIBBZQatL/io80g1+FaAB7LsE6DXF5J3jFrlMckHHCYZHLNycQ/l5GJ4jnYdCluY3GEYDrmgYtvNyfFSKLy2+9nmwhucKfTyzs44f+/2NWs8l/IamFzytIZlog25C/I3U3eLe/jj0oKWdeI1UdHww5Rbe6VbwgP65YhnQVzu/vVwWcRyhmIcSwj02mgGzfLuXh2kDJKolEqHNjtg1CKhCifVGtjMQjRZLEFXRDHwx67fWSCzFm11YunJSqVuIWH1+gUmHCApCmQQZWnJVEZYFN42M71mb+a27m8aKUFX6UUHDEg6POxERc7zhBt9oF8Kbz1fyAsjMpJSUfN3GFq7TqJGjTLAmb9xnisaMa+N+WHwF+cB7ONaGX3R0oSIMfaOEVE6L1i8PAZaFZpiR3AIi8tA22mDIEBhUEksvXmA8pFNQB3hsoqAJmcKY2GSOEbiYYYlZmlaN6w1I/QGAnDEZX8VAl8/n56+BTUHGiRe3HraATOSD71Yag/6T1atfpEU3utbL3kiWsRzD2nkSdyz5vecsBwhvBMGpcJJhSzajwarrr72K4OoJf6y2IatFkDQn3KItGH60XuakJX0PzfTZ5343xf50Peg8uCpL4ova45Zo6f4Lm20GH+RHP1iFP+XEfxQh5t62X0furEW8QFIC/AUXPunmzjC4t9tMbP8py+mcDG6+NJY0rzhp0V6nUMuZKSd6AxF9Fu9xiA3J11uJASkmg5dsbReZL9ZXHj4BSWMrwiDFQ7foTlaUb/SmSv7pn+mM6S37XXCYOUnyVuF5Ibc5HsZS+wc5odwr2Bmq8VWsz/5PJRn2obVor4qDLgd/7tymxeNZILyzp/DV3sIAJNxT3SCO9R0z0cAilA4jIQt3TV2+bTUNuUsF9ecHmNxVMIP1PTi4aB3/4XYWHQVrwwGhZuWDA/drmY+bGKtwCxuAzzb18dHlp5liYlq/ULbuN7dDWcKMVcRyyFo/TwdTGK6+daDxD81LrVBYdJzuK3Cxf2mbzpw2zUNw1jm6Lflt4qcNTsNVkLTtPWV1fJIIubNdWMP77ZVv0toL0Ysaap15P6Lg1DaAgjiKyX8SSSXs2ywldgNJamsVxWfdpVHVXo0y97aIAz8mrWzoMKdXA8r58g6qhviVwG4Cu4uvfFRGRRlKu01Q0CtE6ku8JBC2Y1yQtHN2GDXAq7VpALodyIuYJWyLF+gdDqsKWELDowJja1KG1zu1BDFS8XJ1xfEaKGHs7sKJrMIUaYDOL/u7Hu95gsL226tZR8OcXSBtYIjKv/gKvUg+0i7X98XROzg4UbdHi6bAn4std8phQZl/eoITBtYcKeOuEF17sJSfZA+x4y1Uo/y2SRFp22SAyFQOnvCTWGaa9ew090LRtViW+3RJ9Ar2jTPMRt+11HB5gvAqw4nkW3icUcmbQ4NtHKxNchOLS2ycE9VNljO5HVkelrZYOFGpHARoHS5kiJTpn3J+O/vz1vKXx/H5kzyRyT3ZHNozXkSlvaUQ6MYCUnzIfPTzroyluMgJfjIflNvTLs6gDG8A/+TME1pdYm2jA9nZXz8+eGEaM7Cn/yIgiJdwnA93pxJ5KUzGPwWTR6zoy833UfDJblmSazxXdkgoqsMV/goPzeKL6HFFrg1jIRCyDgml7HbLHzonLBseTzDeVHg5jc8tFBhYGzK1+Uy2/6kCI+H5GDRBHavmNwvTH6vhrpNTZIQ4NwtvFbIPsp5mf7JwDfeOKT3SuAZOXSMYTaxjY+WrUIG4PG2iDcy87P8i620GqKyJzJ/TPg85xdBQ622GPgVdRhME6BtuXZz/TY0pGYQWG/3duCGmg9NKHEEK93zl7bUjR1FV3RXYOuAS4MFRM8/fP874zr5hIjoNKbQeA5Nj5+2FeQme8l75WCtW3h0OEX/fVhkxGR9OsUgMZdPaLPesYI9n0uhftZTEdJSw4HorUIdlQaEwO9xAuvqsoENZ6eRFNPVXTRhcfRxPxYSGczZ/XgziF1Hbts97Qv1UmVLtmbWvhHj2LebWIIXmqKxSfY8TFC2MdabWgRdm2Qo7pZ/VZRrHkgH+nkkWjz/iS7ruHrDYoTlbjkxc2JVKcV3ZL0y91Nxs5444Rp9t9Y5dMvhp96pDyyGe00miXyWmzsTW2Dc+fxyvWx12uqWgFJdXlmDaIPatvGy+LwNP1hdn2vJ3bzhniERryu9quxkr9OZiiht0wkSfuEip41hn2GKGYlSxH32MPI2xeMRnKcrWYsLZZDc57IjCUzE4j/S5J8gBk7KBGkklTFU3KwW43G6r9OdvZCvO6XOyVxPFe4L6WD8rp6c5WojpG3XfVn1c1Q13d6ZIfMalPyo1FOYZyYW8OkrlvQ7nlh2pKMJ/wn/9qgHKg0IOHI26PzyWQLx8VjV9PxSC08+4aJ0utGXIkVFDdeV/iA4ViOCMQVOYPBNskBQI0lQdXdBX7WyS76I2cAgGaMJH+bNwE3/267VYSHD4O+/yZaDdjeUSdlo7FXq9wcXtfElSWRz9p4sHAAVzPMewuwZ+tFY0L+bYb9erF3bn0djBFbUSLzZR85LM+JO5A1h5Pfm93GA/pOiMhOytgwKOeHlLqqomGBkAi9Nz9/yXJSx8UCOwCBZTULSCqTSiOGrsrDhy2MDx2/1ow3pSjv2A76A0exexCgqKJ5qq8OVHISp+NfoNvU7IFDVXNv1Uplv8yLAacE9pwl9tw8p6KbE+ExHxGMoTRnWxxZPsXvc6FvME5oA60l6eA04sYitU7geNJdbfx/IXfvmnZgSL0vmHdtHRLKy0eEEIKojfs2HtVjcnbh9qwWoUFtMjcSlrPEWfaxqDZB6hUONr7bhWEZcdknkpmX4n7R2DOtld9mII+G/+1pqWKGiM4zQGO8Aozi7VNCh2tJVZKRXHdqCFilx+jH3YHRRSjJYIDYVfl07VESekSTqtatCTepgqzWKKaqnxiPlt0YzzDqyUCEtqVCy6f7wNx87EAjDwkxDDlB95cH1M4VbTW1Dog8xSks09srufeC7FUd108xWxN2RzmjeGSCTE+zOEl+7LD3HlNl4WMjh+GSEM0vzlmlJew7q6yOKV8C4v2NqFTHc2lsULFa+QRH48VXKV5fZPYZBuAMRXq6wMacXCOgWzh8Ol9gHYkTZt0q9tbmDVVVa7iaOEmDgHctBzXSxHOSkC6in6HA8iH9DXscApoJYa/nj8e87kYCTRdfWjRuvImBt8109Y5Wn7jCiZLMPLN1ypMoFJK3B4B12iOlWm4akWAqCjm2JZnMp/f0+LQHj6ItA7YHcNVrwe0M7+UD93/ORH+1MWUg/7XdHKx1aKL5e0YS6u0y6PKr/uh6QfEj5fKjfOCL6jPHoT1lD9Lk9BWG3fukn8JeTtKfn7Chq5jQSB5l4o8k2ES31d40CT7gxnLR85l+FnQ+ci203gQAKUeXhQ2jp+6+IeGUqir/0L3LA9VxewvQD/5tlyWPBXv0IescS7NKhMwnHNfRBwglavawTZLPiUUsfx8rC4cIxW03HGn6i/Ad88aUEAAWKNitZSwLxzY4WikJF5Ic7kTVnv4PS5dBiJBoOuIxrBNB0JIz7fzobU8LHgHodGYQ+TJH30ewQDJ6CTRqIqtlI/KXibg0p930qc2PvAl+LcBW9esaYMPKRVpDYpYZXHsztu0gE1WOHnGV02U01jZ4goH+/yGD1s3832S12GK+6HkZCowV4PK9ldTVkFcdrTXDw9KoGtj0v3T/TUJ4Ouaio80QE397yffoi5GpqqlSfIJickyXSXjEncTj1JzIgGNIvG2OJ18Zz/BLTxQYktCzg6nQgRwqo4nZcff8LyJpd8RB6527rmRtFPHEK3TPvG5KYS57hTPsXV8wr5IN7sHNvzMjiEKhtvnLS1OR9N0zZCZ4ONIxHP0uJM8yf4lZ1l43/5vSs0s+pCu7ap6MiZKocSEpL3h+PgnmKeGOxP3k1qhlUJJ1aSL4tidYta1YZszg6tWJ38NaOD4crZW0HPOf6NH5N1JMmTEExQNlmUDhbZbQ87vP1f1wwiRxS5e2KL07WTJbC3VJBycUOvDm+lIzuEDSn/KwJheUsitBiThRb8Ajl9B4oluGkiPU4jOOhCk2Ul686L1N1I6dF4JNMN5KXleVqGYtBVtEHX4fPbpJ7Uzpc5YqQjmRY9uQLgLbCXQDBnMceTGt8GMedKQMkA/qNs229qo6Gd2BgCfzEq9e4O9lGwMP5z5Qe7La6o1Reewb+paRRGcOvIQ7BPsO6arURoXnZcMQi6eIPpMCgS3gJloc3l37x9QSI7qz6oMrI0YSk/PmnyZUC95jQ0h32arQGdpXiNKwduPUk4vLGz4k69+86/Jj2iQ1sV+joswN5iMb3AHrQji0usyUQTN9hrPhkk3Hr8SuYyBIf7ICgd1Wm2dWlifOm4XdWtlanALa+EwiaYWgL71nRSgAx4dWS/7VDh5EaGwvCwHhNUyNtXxW7cLcP2OZ9Wj9L6AxYKUpgeJX64sRWqAgn4uyJ4CSQCg+7xWp1kddT/Pd/imrJ0t0DgI7pS50AN0ukcvrO31NChPV7+sisZr4a8bSNA2ux0+vG/Y/5/SZ9DJnsQDmOeec+MX7PJ+jIHGDc7DJXgkHeONOwd/gbMfrdc7xiuu0B5AmI7/vg25CMUROP9E8topXU7ub8o5phFETJdgMXxyf8dLl3v8Je6mqZJc+9yfrv46H0OKvJCjHVjSLsD/PMZqoVvydQRZ10X2OwDV8bTfYE9xIddQlHIXTcBKGcDh8JP8dBMts86rBa1LjewwD4iksj/1AiV9z2gvGwdFG8hGgVkt3R/WbWgbQyLc1PCrTOpghqckgOdB4nEzegWaN2AmCQVNpD1uRviMe40mCKYyVQimYZjF2G6Vgx9tITJUiUO9Gne9+Lz96SkylBOGCiF8iz3x00ifB28k4JF///93aS/jj1eDjwyS70DRfDnRAiorEQOMwrQajzMFGNIJZ9/xH7ftnesxaO+GjNqJNcpG/sGjtJ0IvmpMfh2nPNhmIbGzXGZOk81PXC5EsZyA4JUtbt1nHrKjE4vOV0ht0zdCkYHOB10m2W4Vq/RbCr3ACHs/cEqvsym5FAWnD7FDu0N0DmDYAvNLQX9EHDzdBBwqtFDkmjZt26yy3SwZIhZvx+P8DEDuBBz0ClmlA3FzdMbUpceLozQxgJIzZXqHe3ApBp2Hny+PYyyYxeoWLE47xAZ5qtZ/xzdxXI2nHwcD6jWDjcFajlkpevpH6Lii32JGSVYpUfs8AcuZxj78DG48hKO8fgHgAfvrHwf94LQPrsdpft1ZiAIuMA4+mdmbNBhdHknZ9lqkB3DnyCEUx0+laK3JyqyPjVIj3EhTsedxhCLazyq6n+22vgFg4wpalykl/pVmLVQCmCHgEfbInv6O5ljhwOVrD4VM1QFpL5XPK2jxX/xCoj6qGnIqpoVe9hiWqLZFTVNKKJEgXRi3Cir+rWxFFjoxK2PyNQQViNNVh/JuuL65b/qAobXnuUfE5burL0S+yKgpGDiXg8p+Mjl2XyQ9cyp8/t+ur+Wxg2FfBoUQozTpMkAU4bjJxfRW6jhyi07ahJRhZeeF2D39nhzdLjrDYciqGm1kh0SrnMfyRmEdfNeayOOblAv2LPDr26GCZ7QEcGhcbwd8UcuXc+RcKxxcDS+a0fj3peqUlpAsQjaopmurd5QTzl3b/lQokN4z2qDGpbJDQdp1diVmWydra9Bk5b0kXpPeeKB2xT8WU0aBRP46dg8a6AVYVs11JMI/b3ftclrd530UZ1nBdFrSeC0zvPqreJNHOocQZcmrG6NGKAQ2uxUrHKisYShFIZgrSEcX6jlzqzIMVQr5Sn1OuqxWM+WE1iMRRGSfza39DgDoxVA+awm94qeHzghB1SSHdriXJaQgFSvE32o9yk6A2hVaxWp7u28WCQRMk+b8KNSQt/14JhQJCw89UynALqRBx6L5nCjFocMM8quNdHgOZa9Zlo/mjQab8zkKNkrymZgtc7Iz9fXMcivniP6vtXBRCSfqJeZHr2p3hf4NY/jQwG10vQDdzfR10nOjCBv7188OzDMqK0Nul0ty1As5GA0ruMFY9jhu/VR0YCuYbsH1htGqLMoQnfY0NAPbzBfRqvFjYMCOtRwdAN1d12AoRrUwOt07srsPsvpOJ0vQGMtQMbbfM/9bVvmDtV07c0Kdv11r3uIrfKSrI2XUHOPW17pjb++acGiHKU0Ve3pTZDEJK26Y3A0riKrnPhHMCBfDSRT0pR+nbdeyeG3nTRBIlgtdOsrJDdUrDXMyrGVpUiU+LcqjUh0xPTtLca7byf07dFPaRcILH1SjTSQJkbaVGkzPqj6BQq90JHt4McsSoXxKZpoBYFi7DAlkaKx8Sq3y6Sv6EBcio6joAwDsr1v6pTpO0vFfCFCWXpAvyWZgRkFIzFZ0DZBT5ZzdRLcG73583tIKFfFf6M3D6rlvxq2nArlQWoG3eLSmz5Egn5ujAUdba/TI+UrKSEo6RIHpWRMSHffeFapkOkBlGiZ7FsLypaK9w/rIaYExGQxUkVlqqnmasAMBW8ukUxn5HV7o5K4Fw7FXMX9e93nNK+bSqOvhi86VFkN1rqhqd/fQwIdFA4lYsDFzbyawmdvLC9whIRJHPD6zrryAJqQM+pt9kC/npDPKwbVB8DHyWBggVt1x2ob0WAvnoA0zBpA/6Kqr6TKE2mEPr6lPXPWpMOym4VY7PqBc4iuu7mAz20jYwj61evs8TnLBwkL6jOR4RmbrpxozQTe3ha8zbsMp8vpuo3rEW2lnYdOuy6L1AaFYi4FdtzcNYr+y62ZW5JIljVg8k9XjGoKV9OT9skh+mq/knPjU2nZBXVARQlXTLPNvvROS5m6LlxaQhEr2qK7HctusD2jcWGn+1H8OtGkbcfW2i4mHMzPxMubuvarxZWCa9TGBJgNeYqK402Vu7kvA6hdfFtM2dAH9/6RlCLNvNIE5TPcvSJ2ozF0nvrlvkHP6mSl4dvP96JePv86XHSkat7H7LhA4TIOBOCyhB0uSZoJzoikPEvmKg8SLZ2CAfvMsDJ5NRBe0/O9uhpkrYmY8AMpfcWLdu4KF4anIiS+soZiwaKevRp1+oSFfOWYgozFDKWKFS81zI1C57ZwZ2dORIccxUdkvwOvbvt+WIEIxJ9GWHu21HM++eQw243bT7fpBwK6bn6FazWysOF+A5jgJK/AWdsvs27ONGa4LkemTAzvg1gsF2haltbSAf6wypLCYsiHJ/TekpDyR6XKYKjdiMGEhzZQokIwSk7s6IVop7UI1UO2vUchjFhFmoXnHhCX28C1RXcl1o7zvjQ7TsAa032KSWKPEFY+dqHzvX6ZPM8lZ/7dKQzGlHiJkm8fJIQcRjp7qKyCIjTRkUBUG4sKiekP+aa0hZ+d/tAJGJ3k1N+SQ79UBA+jGHo47X+bjyFdo+ZFjxsE2i//IOHoN0SpkJIUYeIoCphEeWyKuUQvPNx5eOrnJx2s2B83oI8t0thwplbWWPz5emJPqrIZcIDz2taNRNGtUW0FqkuSfj91DKeZaSubSY2I88TcPwE0J9DI22uyQ2WebjAAC1yXSIHdSEbL5Y0VMlXAK19A8Fk7jHWLCLCZKUUcLXCNYk9me8tGtqbsv0QZvCqKuEuZEagC8trJobvtdnFUS7sc30oeNWjzbGVRIxslqVuPFntfx4ssrO2o8jUGM61cw3J5FnUUNitiVQ5f9uJcfXntjNwddua/n99b/23jJKuD8oZdDFbh8OAJiGhGdh6cCKa1TfejiBHS8nD47lxJz1Ef95ONboV2OiLAJXD+3qiSn7S0uzHtaNUICLC3DmEOGvXPpeTJg3dTSTOTz5dgkJOFQ/lJ4fShlUqm/ixYJAxG/6Zh48mH8NKAmHb8kfc1M1FlbCH2dgF2dofj9bkXiVs6BQEGxKCI5d+mjThSAV/z3bMRuTwDs7as3IQDiljlstam7fdNSTqaqLBtHQpCfySHc1REgsSCOsfZxhqDNKvD+zyxLeUgXGMrB00fYuWr6BohniYNGqMzBElYkQUUC/G6UPmKwhg/cf0iz0h3zrkb3lopCTp4s0xs9MFutIK8fLRw9PBDipjb4gvAfppVg0/sgFeTHyQODR2EXj5oXSBrHRUI2cklKfk5AqJ56UJioXpqCtbv7kHxAUEiD25kRvaMBwNweDjLhJXycvBclAxloof05ZmBe09C1hpQZiz4BcYqHFwpnontMiGBSrAk4SVsvZwXWFlBdn9qFghKUfWWeaglN2c52Aeeqp19dAjsvcgnxqOPabntvZAS1df6VRbE9hIe21EcOQiiqMzo8mywdbGv53hXakNqPDr2rhGi+iQ7yFjdMIRU+HqtJLXIlcxIj0icIl/K8/Y6YzUtJawcAk68FVfvd2ApjVbX8Hm7+NdbVhHBI07lyhh5vfv8hp6RuI2HamaTTNK4l4JeOnT+cWiNhwqqekktQtXssbfASRbUYPg0ilwfKzqVuK3XHPgBhUuEsPQinCB8R7AQuvma61Wx8ic+Xi3MeAXtrBeBfDFWSZGSauqq+zPMiMmHtjtz8gTUTK2ohzceMBcRvaeZ7jpFO8yipOQviPuXirDFqGUSYFk/1lG+oljqA7sMYhGgSU7HlujsTFR1hvMgk2hGvmOZT3RsFKbLwBcF0xBIuATIa676hxlljoaZMlDz4M3QioNfOsGTPaU9SICLNWcp/yi9BV1Zq9C/lO8ibj+6YwZfUs+OGIAaimqxAA0fN4umiPSHpHjit3zSCz89yerY8XHCzUqcW0XIf/7OiyNNKuRGs+5/+P4eAPLu/G74zLpNFYb02HRNOziovjEsdwN9Kp0x6w91K9v612S/3ebca94KpJWsZ6Sazus6Z7cPOq4rFiPXwZPz12YSXZU4wUHW0jaQPK1NR12DR8cXJ8dit3DZUGA1ra91s2Hf1IbXl/b9kMCWstxEwJmONx3psqWf/3l1buyuzUAqMNHeWuyak4h+KpEiuTfNkp7kteVXpPstyVisBKXlkKEfxfTfXKgqlzxiB2IZS5UbYr5UB2p9ouSM6b8yZNrqCm8JTC/UFYygn7NBpq1HdLTNpYPWMu+Jg+TO0mGfpOTtFgQGoSVg51dTOR0pAmNBu+I7LmSInVYbzpf51DGMzCKmrwW7vZDqobPsfpYI5GNikvRAowUFOGxfMq7x1KtQeFnjMboe6uqUkutKkrYpnK2/SddE+wz69ONhU4kzZQ1mU2hu7SPYcxQ16+18NCwQGH/A7B2/FBVjk6/1IivROfXAy6bJbHrOpAvzG1/4l2WwCU3YBe2x/P4h1CKp0OW9jnbNV4abSq8JIPDzGvdTe9y54FllZGuD3kUJe7FcXGl8oaFNFWDoMIA0k3fIhZPELuphRi5XbHxCsud04znhEJpYPFlplerxeR7oPUyA3TIsAr8GTCVUCldGKKOKol9SDv+cgyJjJWnlpIrSk6uHBI1WgJSiYe6OwSpqGxco7EE1TYu839JVM/xVM0jqJBbFySS8MExBHxpb9SWYq9AHsPmwcg02f0H6tbhjU9BFCe0HGiEEd0hS9XVfyEVOKrtOJg/s6dTI6i/WCD7UQeGi9ARbVzcMV8p+ftXCrBIpfagTEFzfzNco+2KcD1+xLRpYDMLPAu4zKXVxn/oLpagUgkX8PFprLr/2zKuWgHUt5T0dxc5+4UtdQpAV8lHxDnnea1LAOdJQmjewCg+QzDDEzcCN5QKJAte87RcKm4z4RboVqa423LaukmCkwskK6M7mE4RQH0niIgI+4Gnb/fUDmjJwo9hYwHaWp/0Gg09tC5lDrk3CwDYF7XHYehszHKzaGtngeRo9hanhi+HAAKqI0WQ9j9ZugtSzU60ahdAh9vf7aAndDY1mSNlB1D3vkwMi3ipTByrvzCL+EThlJdyr+5eNMvsO20nXP0ef+To/8rvLlCb4S1EtYQwBCN7be55UhVnuMRgCA5JGjkOpAuqoPQFzGJYXEVPFPSiAgIQEZmNVQHb+O1Rh36fMmdQ0EJIr6t7OCADjuNR1arramOS2Y4aDj3jpkeMotW79mg8oaFdoEtoG7b8GzQ0sJ7bfOomFVRC9r+O/Q39CeQZBSoC5R5hUzWBp8Q7pIDzalyB1KLCPBZ+dpi86ZmsTSy5lPrHSs89dpgKNwGgrgNuN3RCzP4Sm2vcuv47Vkuh14oEeXZ9N0X521M9qZUbRrwyaIQ2jIu/J7pybaX38OSMgBtBBie5GykpJx+SEXOqLaiGuK2mIWbmphbpt4AqxvZHfYHL4di1OC8Kc/Npbz/vW0oRYD7E9Fyvn0ofFbCKUkkKjODidg1MiYzWrh7GesUnnEXG61HnNA85Eq/UxBW7u+UAhX9dNsPp+saCEs22ClyryNhic3Ssq09ldYmu0403tH8ng8GZM56q5rfuzKt8lWYApKDjDT3+dC/86dAnFCOivG4JWtSGDF+KrqSgxBNmRiCS64p1iSq73s3bvsvyn7haajtR8ap7ZkRL5O5/DFL4l6e1Rajd41lQ4msH/YRE2VveLp3RuL+aB7zva0ApsGWi1PdorxdAjf1b7y8I0c4gSiQoSVpJJ6UDOrGL979hAYm3GRYfbHNEGcz0FlRsE6Logs4rNeOP01fXs0nB/H1OnpRaxcNsOaSdiGKUj8Th3sUAGXgKEfqJC+XUehMzjgSLHCxMKLAkMfgOuQNwwvxpzqErc3pc0XdUioBXITYxnIC8ZgPBxOTC6YSvTQjd9VBShs4LkGSV1MIpJg2qQQza4DnlupsClmqi0fVYy+5l5b2F3iaiKY9/rcGsGN8cFAOxspKL3O+qrN9jf6B3WX2z+c24bjhuvQu/ZOY5+WSPFpZi3vmg91xcuopZE0ElQrST78FQQpH5cWzg84W+NGh1dA/oZb8Vf1J7S5dY+CIuHr+IOqMFXLk+KgCOYowSFhjd6Au8jhbUbszJJKgFjqWmOQeRF3A9GMMer8FcBCrgvuQaJ+GXyFsqaWuOa/OD3udEDUkNRkjIBhJrhoZuDYegVMc2P6Rrlhuo7q/feuTQhU5c6unrRUZLyesqGLD7hclHjcAZKwtdIhKdK/3lGc0oUn+yoaRJdcBEAS1nMtOnAsiGNVc0teosA1B0C2udecIe1RbsZREi1DSzptDRJeGZVJOKhHK1cY5yM9OU+ht5LIcAk8/neN5A5zWPwIzGvFFSocWj5BjylUtfsv7n6jTW4kAE796DRffuSIYTJ9pOWUspHigBWRVxBMS1Lrdpah6khpXoznR1Q7NSYKql2a7NXmlWJVO7UyfgfR9lEJpVc6j0/V+A0JAw1Gfby7RkTwa1NpB5J148Av6ehrkGsKQi36t7N1XaSVKLdjaP7Jf2JoShO7v76Ij8LO/dCtjEk1mMA9gfXT2jzlS3YIT8ohaAooxhI7tJYocB+KHOGC+tfFiMEX0XLJU9KltCGKLvNI9HSgLT20nRNugKft/RVzp/MpooIDUldFwx9qnxPVrwRZBwGOc9LZ1ZR4zSX19cU47hqYeLdIgVl3I9YDn0CIknGjnXqrSWrYA+hr9k5zdG14PZN0FvGoZ7cS4WvldAe7yOWJFNfTuSXEUrrBQxwDZpLdiGKekcV2nSnwTRUYe1ZH7TfBFVuL2ErDeOUMmPrvi2GcuAxH+XSWRYfstayj9okHEWq7kmwtwV7qi/3Xk0HPqF1XO0g5McfwAiWhSLYKtUaDm+tmCWYpxHqf/4BCsHB6f82fTCRnGF5e77CvkUOmHQTqP7ux9L5LS9U/EQuLMsTNvulDwCzI0WuNUbWZfISKbH8ngk8GwRMp2SWXaOzNw4hKAkpY7CJf4Hem3zQvpZDhzh24b6dR5po2Z1DHgh9CXP+ARmVPWcuavri5uZx0oy9W9PEd3Hq5r/A5E1pFoR1le+S6bJr4WzLuLsr+lctRnaO2vAOB1KcW6lw6xNrBAToHhkd8jhJV4gu2Vkhq34ZXTfsawU5PEH/oj9oK+WbAfYdtcZmx/z0IyK3jDblPicMtTYZTuhvu0cgbIjD2FXS+idBIaUj+qU/B7arOKt8p1MhdzYlnTbUTac9RS9q+0K05TShhsOVRX+tSI6cWW8P93rtNpoBdYWAR5zTchmCMhJogfpwEZoV6fpDwsaFeg9Ftiqmsxv74O1FXjw2NQBAcrQSFPvp6utTl+CkNrRYJWQLImWCVkT1U8YjzHGYhYVCGuWXdlGEbyvGx23TDDxx+c5+IjxZnZDbOHtzoW57LSKPy/R6QjV0QKVbq5F/w4oxTKOt9UsiXE+jWdR7yHat2NfJ1hM+Fp1gI6x3OoDkRKP/fY/zL6xbw6NJNZoVJzzxSgIrgecz29copeoioR3nkyb0betZ1bzpQ6uelL2lhyozpb1u+tS1EfT7CL90W2gPa0QBR6ZJDfU/t7i/sqfeZ7rzrDaGOS+X9WWV/RN87qu36n/gkTFI2mlmdj6NU+QUKJbeiGWYREM31JN4Yx1PRS6lI+FzJEnaXXl/DJGrygH8K2nzuApvyUhI4vB9BYhPMbq13Iu7LjxwJ/7XTDqH9arim4oCoP9zVK1y5GYHIqEubilDg/nL3NHzmXs4Uwf3Cz0fJsv/G2ZefEoC8sbGUD2xs86O0uquRMyKi0TlJ8pUilL6+wlMaXVJG1l48iE6jiirDky5YD+A==
Variant 0
DifficultyLevel
566
Question
Coral bought 8 bags of mandarins from the market.
Each bag had the same number of mandarins and a total of 56 mandarins were purchased.
Which equation shows the average number of mandarins, m, in each bag?
Worked Solution
|
|
Mandarins per bag |
= number of bagstotal mandarins |
|
|
m |
=856 |
m × 8 |
= 56 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Coral bought 8 bags of mandarins from the market.
Each bag had the same number of mandarins and a total of 56 mandarins were purchased.
Which equation shows the average number of mandarins, $\large m$, in each bag?
|
workedSolution |
| | |
| ------------: | ---------- |
| Mandarins per bag | \= $\dfrac{ \text{total mandarins}}{\text{number of bags}}$ |
|||
| $\large m$ | $= \dfrac{56}{8}$ |
| $\large m$ $\times\ 8$| \= 56|
|
correctAnswer | $\large m$ $\times\ 8= 56$ |
Answers
Is Correct? | Answer |
x | |
x | m =56×8 |
✓ | m × 8=56 |
x | m ÷ 8=56 |
U2FsdGVkX19aV6dHIwQ3qZ1BjnDMry3QPdL5dbRSZDmC3XSCwVUEKQaHDIbysDN/Urw9lSkHNSyDPkwSVB1YzCgzsgKJ6TjEBtGHaTr0nWWhfEVeHEXc0/cMDgtpgS85Qqu6fwsNBNihjuuUE6lZssvizM/wdM/pIEepmjHYfhbw/8GUNljyTH7ItLu8SyIcGUYvLtfCStuxbzqD5uGqLTkrsqT7L3VjV+4Tt0+3HuVZCSlCs03/vfMOrFfI7FT/HzT8E977RrW8Zminzra3m73l774BCkZ1lIP1JsCIppV4Reoq+lTkI16eIcHkMF/iWq93aybZXVlMbs7t6Jc9qLZl4qt4f/7ETIi3CJFqZ6BDbiav7mi+xKE95vPRFYTZrkKsjfdw+Z8nHisHVXfCyOA98MEYzd7fHESZt+sUMNcMk7EgITPNb1aHWuzp3M3BX7EmumnIlnSWvQ20rD/2C8DnrHhD+8QHZKPX5FtHhfnONF954ZQZ+MD04RQt0pQgA3oMVpVzrP0Uih4mCWSy/aDfDz12yztCgc3WFgcqSTvTj4IDYB/Ur1UzN9dkIjzKdekD8/yCJhdlf2gWQl4f7ZSWev+hosan0uT3KuXdHLfTuc/8Qy86Eb/uxesapMxEB+S7iEY/qy3cUp8/ZaqjPqJt/UPop4PwEslXFGkAMrTai9uo92OhScj5OGfpN3cufNabeGOuuwcK4i2H5agwnT8Xjm1UTiC1WhZZHS23mSM87EhEr8bNp7Lfqpf8A1kmQORs3j0iuEM/JA0Qyc2K432XNKDkDCS0F4gswsas5AZ3NbCxhW4HCVTk5VKlzdDWlk5dPoG9Nf+19uMjzP6YG6xMPDrLrYAwQenr03A6HtrmUJ3kBJKF4qE75P+NwLkyUVJVtpnf4Si33AuMf1IOZ29D+aNH6Bx9bOkr0BRg8e/kfiMHbRsL+cys+ebGf5paexy322Vlj34L/GSoyynKru8wpwjT96sawIBwaiLearOUMKLkCKHrkBOAS2JLP2QXJrOn7sZdWDV25YrupHz7xBvtbSxOfwf+d5Wr8bDzjOSNWScYF4OBPGcs7m+5g/IGmejHnE6zoX9HVv67txvSCYdGT74VqkhC2nyf7RXEk0OCbJOfEjTjkJ5yspiz8eLeCse0hIhmh2IOx6jHxLM04y7ZWn7ezZqRfepeiqliR6MEHU8dKNpRhfVeKKuBb2pL6VBFeedzX9EWdYxUz4oRzCpWNIpdlYFh0Kt70X8QcwjUEOQ83Yom3Az4fylPXPb9GC8wx7C5S3w4VfyOeulmwp9VZsRWaxMGgvS2GtC72iY6iSrlXIBNmplKQprq3iR1lWwVwF23aOAZbmaWTdyE3r/4oJzEe9gQo4ypOAaohsCm6Spl3Tt20Km8tLgqVvCzVokpLnhjEfjyC6fRnSQ7ofREaYiqCxQsBtLoIW2V7JUhNWJyguvU6YdYx+3f+p+Bel6hWA2X+X8EkZjhDloqfRZmHhMR1vxGsGFhePaXzjSnlqKU2beO/R0gNFf3axTACkliMHWQhemT6rczP9NHLETiF5jtP2dJD9kygQpn71m8UmL9G5yzRp2TrSaJcneMGI7kjEQOaIRDUt0BFntE/9ZSzcAAtlUAjah9vYnHZyibwvMu6sqFvUuQaCrVY3CS29Ip/1CU3gZ3YqWFLvF6XCcjpnDDk54+RPTV0nqi7GXkeRdQELaxrqf/tOWQ17s4H/wsL84VRYtNwdi4YoKZpIQjkEB+taNTjVYtTAPvt3Ccq7KQY4vEvCXHWDlwcmP61NKWfLUX4vq5hjDbV8nyxWFI61J12QluyUhIN99fnM/5mTSdjHIGQB8PSMSXUMJ4X+bTUPWe+kgYPdnpXdahFsW+ReVcXCzgDlkXMrIx0uXaM6bOOCC0YyIk4YymYtm1uupQy46Gk2/F7Kiww513wx1S56yrdUcTJQroXQw8XVyae9xtI8GTRFG9L0b66Ym4admb/RCJA7nuMqjdskf0UW/kiqhBq8bowva+sSGeROT7a73eSZGhd+w+7a1fz7A8MMeKpeP5r4gr3ZYiPwhG1WsmqBxWi5oOtxL4CSMkvEn2u+9ZIcbgAyqy5TNnyBcHx/UyhHq6QF6yS798+9Vmg65yo/LZnaoPDgA/gnjdczvpj6bRR9pU1p+/S9gWgWIwgBkCyLWC3+fBiXsZUxs43MtEK1lCYdPcRb62AjZJBcBrYgaP3+7D7lK2b9+qvRFj5aQg7OXjuZUzyhAMPIfy8930u/GcPjwDHnAdhMLgSR3mEoq7O89g7HzEHE0aDv4ZmuN0Mo5zPeZ3otzDXyAW/ku2eBVesV21f/o6i1FgtXUmkJIgV4TPplFUY/a+HsNYh589goG0bLyNrhiCTe5IsAXCLOu9se8qVRrgJ++ELjKsaqOsCFdggJAwVCrwv3CedRCXqiLLOMIXO4RuhmxbJctjt7IoVtZ7AMVqSRvufX8SMcfKZbCNyboVvNwPt46HnfTzhjiYs8iWsDDBVP5v1taP1Fb1XNyKJG+vpKa4371xS5NlY/EzadDovfuucFjdUUXq5zDiZwfyM88irQy6sNmyO2DR5R7Gw4k6dOBDkeo/PtLgjacbbgqj08/BOscQggp7RggUVjnNP9s3QjYy/KU5+KOnIiA1dLsfeX+xK9NPx1rvUWYRDohU5ZVpizjXDRVDOOwLLQAxZViciebY6GysWcG0AUPXQXdm4FZTjCfjyj6TcjEOpyh5tzHGZ4Gcnnl2B1zsCFvSqTuKibjl/47UyTTM9wg3LCiG65YOJjJ3wc/cTmmENB7xhrSjNtjrX8Y6NG528Cq+qMOhn/iv0+ZAxaqkAv9bml0IqBABGt0Fkmrg6NqBgULlhgPA2eNUck1LpV0U1CJ+ZRr7rjmHlFv/3eLxY3+vSqS+HE33m7XEmsaaNbJ4/RFKGTAlfS1JgkZFmyzgn64114g8KxKUc1LSlNXZduQ53OoJAIWTKb4la9J9mJLvrW6DaGclOnoRsK8D9/cjAkCdCGeLCxIGADCW0VGswigxRIuH+16TEki9r3Upog4FwTfoyTZy3+AgyshLNfLxavnxKGgd/KV5QUFmFZjE4+LNRdXEwF/GFJceyV5BZ2yy1KXZypKd0j6zafWAxPlllSloKDmxVq9FRHktUnfUhITh85mBPMq3Jrb3TmDfKdZpHZrmDnedcs0gCcrG1HgHP4VWcQoX07cOzs5q5RaNHS9AmoYqB50QZ07y2Qaid2V9rgbhlwow4oV/2g3b0pJwO+ytWGR0Yi0P2m6hbTyMImvny+642SHpxGnrrJ7un5/hybMwfQrtMIZ+EDo+r5Fgzayr52jyeiog/eg9ymnGR+CkNg+umQ4mkj2hLzmeoQBxXfvQ0g0ceHwCJMgWxXql8q4ICbjGN3RQWIs+TY4PRu/DZGQRKhtUaF2MMOkFmrOAnS4XaDlfzeSD3qu6WnOBlymn8aP21R4gkoNvfN9OeYsaoMFwAXaoQz/KFZDs/W51EYztJq2wpcVp5flBNj8ijiOrLUWJ+2ClIx9TdL4SFZpWDH1q05G/2y3VWWXkbJYk/zxiYYjVSe1E37HDwo0NNfwU4fhn99ibxvJ7SyY2ZlhU96OhPY464nw+HntxnvDqsjUaHAW2/nSSdDfCUR2Hspgpx4Q2W0/OdUsbXeX27alxdSfruDf0mU6ueB9DQ9wpudAczBinCnQ7NMwVhi7nq9sZokQ72Vgt0qNhD/078A9mn6oQ/qArR0kH72I4uIJimNU6eV1eJyB8N7LIRVJHUyGCZ/0Xvh7+q6EOx8vZMHBpHaXYDAagJselpSypR2ecqtTfVxMJYWJqTJss2I+sbupvJFgjyd2RR4UwKVJLtppkbxwTxyPaP5TKr1Q2FxRGwO2AKsiN9fb8wio0Wv3wuv5Ew/GRI8lh6LsRwI6xM530iGqoAvieMSpL7xV2xDNTRvJ6Xfnt9sDjRtUkvkoaOy2Mre5o0pBI9lYGGKfM41YXUxG2VEgTF/N6o1InHfaLRSXgnhDp9Pq10GfbUmzlYxR7u5UI+L/J8/Q2VTHZfRmNNuPaqUkq5GnKIrQC2qNb7XZlMh3veElhaJvn7YWpz47eGDShcbDcFKejoZMkROr2ozmcsH3IG+loMA9qtEMJabFfaCCxZDVHUgRo45NHvFq5klJAPILhgDcbhOUR5LxUZ0yqd2OwIP4bAwg+zeDTiYH+Tm77Rt/ZcqNjSDnHTiHSPYt8aklUHbnC6JUogSlKArF7amx8vdyDCBFfSzqsJ9Br+fFYx/+6UdHRAFL5DD+s/s/Qv8qcBJR8JGtCgTsf3X/GLMQyUH3v/7pIQQ25HG3LuXQqhw7M2ZIoDqjBILdHHxAqco0jSHCsULNsIRCWBA04FvoFHPLCK5KrWbqinvi0nJp5iMDu1UPLSMnGmqMOt2se3Vu3bOf7MponH8kp/91KXwuZ/T6suMXB58QOLdadL0YSwE/f67gZZyK2FZeQYo28QysPpoP4FPODqTFcg4M9wkd769ULqtrwUueIHrMum1MnTUkWZrbJYX4I6URszasncJe6nu2ndzWGRLb2+oH7qVdIh6/HKGpfzkQFkNXk394dY3u3KT0knhULmkkePsGmfdLxfwx4OiPELIrKZTL+Cjt/BoB2PHNU9gS3u5MwSQwFK6G8AD4tdOGMEAa3YOlx1RFbZe2WXqINtcOuOBAUKSJg/OOgooVHx4UEzMPWp9iCK2GkuBnPdNmQ3GDIRi+FFjyc1xA8VpIaA2LrJWtd2TCYdQYVQQjgrg19SHDM7CrQW2EI+qxg+kXWd6ylzNcoHyQhh+VGQBN8ZdDkWfVe6ROuT+FoN67oUXSQ4H0agEAdaSL0es0aXMKxqnNb6qeJzatxk1ukj9FDPfxoXUdU7ZQb/3FLCpPrPTCwgGfyy1X3MXTZc/wPxK27K7+fPOcb7jzKrwf2G+uMqE1eNGNjtVGrghwYNu9df9q6YAPEfaGuo/9k7e8cXTFK1jljBVkv0GSqoykysDyRhTLmxPZ2vNkszrxbEpOE9zep7WskXZjHa12AtZQZl4P0ayhSUUbcbTm4f0xlMXUhlAQ1SeZlUa3H9zjUutdLi/V36K43CXZKPP283nj/QkT501G7LYIgdMpBCJpLoij3I81coEqzVq9pJ32v5HxtWBReLq4AhmT8jPWGauEW2qRbVgxJCxz0YlHCkk6cNEFSw6jpPkjxvn7tluEOq5uscXqk+yJh3dSSo3s+/Ns6gqKf7DYmPIb9My6+vnhgg84akDCmcYTHUQrN4BINe4DEJat4LOzMNH913vdpZymih3IASeHzV1iFS1ugdv/oDgc24gDRArAZCL1Z/kQwF9xeMgccZAw3eYegRRbOCFmFBKcJIS5G0748KMuj1V3xWavIpBdGiq5Q+yDWGSLIiRSRBvqgSkW7SfiuA/7pReilioTbxSSwXZaigF49JcKdBVdp4MQQa1QZhUgv8ar0Hxojza4O60You+Zidqm2ZpGz4dekMDoz1rOc5CrbkT5Qhr2voakhXcBOljkPTqMnBxr2VsN+BlCBGHhdQ3o4lXtkm9l2rOwQGRJgQE1d5Fo6oY0xfx7axa4B6mKhy4kvmQJcq4AQtAyG9lPDLngs30eDHT2iNLhpXHUwdnWHkdnXaRBiDEmHsEdvi99ivCPxjpUsAAzr018VVEzzc9FSALvlD9ki0VEeDmGdeGEyRLdAtPVb78VfxyiWuvs9r8xs9UR5KlmNw820qb1EFHz9ZXm9v6dmihc6G/8kLGaPA9sQT+84WABCpv30uCPLWGRVkJej13JkqwAZw3Mg43Msj/iZeFHnecVjliFyuIZ9NNkLM4E7OSLdXqYqUlpYlkdi5KHYgmqFO7Kh+Vj3OAKOZtThNa6UG6XFdeoIBKk2Pz+Z2lXT3SUYG+ToigukGZZztypr64anmR9hA89anB/iHliGKHlpfHI0cthm6TdRPPFKcsDzefsgIET/W9HMDJU+/bx7YmMgn0fJwm98bYKCDC37rBYUXWCeMKfa5vccXAnoSv2oOGxZhfYqnFnGCrL6BnKXWUunkm7nSuE+Xh9104l4mm4tPg2aGGqYCPDvzn+c0cSklIbgrbmx3cpjkACo0vCF4FKyjzPe+9GY0fIjH6fLWxQFW3Xeyh9vXxi+WVt/nHLO12KY59zx2g5xYe04uPHWS1Yv2rHkEO0+im/UW4SZ/olYBR3LpgeqIihOfADbXSLMiuet5UKfQKGLPXw+IcBnPcpBucK2YmsrqB5ZtCci4Du1eJuzjij6itq3EnPfZVAezTPh7VivahatavLEZ7nO4LevYqdxgZNrHJSe5VgD14c8tcYfABboZKw4WZKff5+KeVuA5Ek0rdFyuKWS+n6ShPK/JL97CjW9TIhndfyNXVwt6aDWt3rKR/VB7gBza74jBOPshZMSG8ZQQkokC3wpVCWrARF00Pwn9oEKzq8n5H4ItWm7bsVg8uGI0kmoikDcYsd/FwEES9u/3h3986/+Oltm29gtZi7qoGgbjEWl7rnQlOQteIkyiEzcRBiK7B86WwETtghbmg/5eFiHDsla5YSDMpHAyw7YYcPsUkSZ+eceptfOery/WrVGRxzswyx8A35m9xvaKJf5QBI18ixUaxF1PvGx+cw6LBeHU4SELuSPrCyrtHjQqrFmHr2A/q/PHN2u3luWh+UefLJrVqTcfDtCqQPP7s3fAUuzmf20R9MszAf+r2JvY2c+4mmsGve7PUepSlWKKNXPdg9QghR0gSHieDdq0N4A/+8PlIUCVInmKZm1PmtuWr9rbfptR0GnrUBmuBW2vj5w3DiDn2LaXkFWYRFH1zMweL/jL0/oyRcLHM9Vk1INHq9RBUWQfFZit5vbsny4QGf6jTOjIUNGHhPzOuGpmMH1bzwGKtKMXj2Eo5Kw6NFGGkT7asesJ9CMgdbyf+ot7sX8jPD7mWfFQ8HXGUyxGahsLoM1lKCEAXtN/D8Wy85xrF6Kk0ChC8uTWlagLUcqPtYlCCQndADhsLK9h7DeN8LD2gHvpWcVsoZm855bLdhMYQwZfW3skkAucAo3fbHfBJG1J8WkdvWP4apY3CymHOFYTTRWm3tEx452JyJiIWLFtVI7Vb3vfQE58I5hvj5e0OxoidX9Hq4penQhscQygFWVifmybvDxF+KuBTENEHH8JNWnoMWZUAWSEh/0qdZl4CecVBuPLBiq+MY70aGg0H/m91FPwOMCFp7lJ26nZN48UgfkSX4SBPoNy7GhVb+FIcLL3RL/7tprVySn3t8YMHHOW3AHNEkSHrH0zmQwlflq2UBc/F4M9ZmydNxgHxDqeZXq26xQaUp0Y4McPlEC1+JfwkYOnNsTvh9/m6QAxxG8xjnYa6LyKX2W8uasMsDGP5MjaE5/8mlexoIJhtR0fj56nur+w4FjayfNSJxFWZiJUk2SeSq9828/DboR+XpivvkgYEQf5KVEzeHf+z1Ex9USBnl1AQI3MenwruKdju4wCY0IUjZOHNVKxHZxfcAeJwGLiZvrIQOMUYM+2h1ABAuKjTR+304sFO704h7kiVkZJIxCj5CzzJSIG9xTIMYV+dsTMnZ+4cvOFOUhnDCGiF9RJHrONCMnES7o3Tl8/mtk61YQXGKpK815YZzaNSXQ9NfOMy0g2tlhkePmp0JjqrjVr1BXKTV1NceflZ5TIPNayvJYJsiTAPpbkgnE7qnPtfxp0wky7xPxhmx4JCRTJs3xyPVXTUdeO6aj07anEy52Ro5jp31wfbaX6m9qFfGUQLTOg5VINBPrCrBgWfICmaqXdK3aQssn5K3+L5m8M7VEqiKc6MjCuP3/zhzMf7Y39N8n9M0noCZfWEtC05L9IcKhFxzu+nSOpeSdksQcVRyv1EWf/sWwX5invNJ5vnhcoIhaCrTb7CmcgHn2Pf65F4Be0LWZ76lSNvttkQxHO1AuP+82ab4OluxwalOJbzr8IYU1dcLShWMGDCzC48VgjrUNmGTd9QBYT7oDlSGbxBNFMMDa+zFLA2yU1BbLtTTvIhu+AsTvCmvtGDMYxbUAb3kQTYaj9PSTlVgAvNqZQQCK4m82SImOnoTntN9avBRuBq2AW0/ocTDQhWNl14dw6hJZAUIWcyKYNL+Xr1mX146zi3Yq/K05GaIuvMit4hM/NTJ47r+Z1rpIEX0tTNYAdCA344AyqvUkRQ4QsoR/RkO9TGPONXHsRd449FAcS/xqTBTTVpjNjDJQD2YgO3b+QdPw4Q4Gb0Uq1lxfRhs3ivc1ynDdYWRNW/behrN8LRaO5fO0m0QBXS9Cn808VHLdpUtDrTKfE1Le7eAvnp92MjOD2yjtWjRgc9yfGK4YOzbsdQBx7qn/8lMZzPIHkfHXPHBj0A3YlUr/AkU5yGIDhC0rUA1sRHbh9AeTAvrzynP8CYSL5lqkizzzFXXgCqqbFNkXbRqDTiJ3sKJ11l9p2n9fpqT586u2LU4LX0w7E0fWTLJtQa1wS1e8Pbogv1zM3EnljCuNDwfgQ45noGzJYcJUjYwzCliMTM5zH7qwUb6JJSe7I5F+OX3ex35mKTZMs9oGye0MxZ0Zx1I7It8obiWPFp1pG/CbLlrHHqNkhDbT3AQYUTVDb+yDOJGyLSe830jz4OrBmlcOhMWkd5l+PVptgnMj11zvfYWQ8ULPs+1tX3ILCenMPnHHW7LDDO5A3Itf9cXGPpzORnVLHjWs7w2hNoFs2r0FuC1pE1izaueWNOPxUDoGuSGkYa3pz+JJr7/Awob8hWPAEyj39slu1WU79u+03rz4BmApXQIOTcm6pGO38donpTU+tbactKyFp10xHwgXOvsp4qEDc9bY9znh9Jpr7RAdvca/Br9p3NoYY7JEglfaHFi8JTl2HFXtaAqfAYmblF80UnLpEfKkEotxZKp67Etsak1yrWahOFzSxGfaLZ3/+Ny+8mHskt+nCMLcpVpNZ0XhFpmLSrvrBV7Ve1ygheweXPs1PC2MK4z+kKnrSAzWyQOjjTFiQwFrsIAwyYU1+uz4JRUGM3wtJplksyUR37BFRHABxYBwZSGBnLCgga3FZi1hglWVZCrFj6SiwsFgQyol2LG72G18qocxRXbXmeQCFGrCwnyBkBq0aODmW3mG+B2NeXojoPu6xBYyKCjhmBHFVgOt9huRGdO2+DqM2z0BCe/6rmmUroNXx2MmklOD04Tp+wDFYkqxkKWzraDyp3Po4lrHHyy7m6gUOmp7EzcnnnqdhqMWqi5b4tshJuaCjkqDoZIDjyrwIFeyiKdTOZGBIJRKl0bHyjygf1eWHbTBOOP3oCgrGYkhkBxfM1kVtSZLnCPWSn+ow/uZm1R4QcqIrEl3U/IoyJY5kjxYq3Oq0J5XyhmESXOyJL0l/nKh2KXHblz7vfEPzkfzaByQZetN242su/QI5DV6SaL1Ff5FqkiOaJUS1zcxR4XrB+l75GSt9Wv7M6Ye8EC6XRLC3elvpYqwBPCpkbodULotl5ZbqJ0UT3f5stBLJsge9IYPIU1a7wRH5jAFy8JIpYAldoIp1euliqovxkP2ZHBSZVIsBbJm95xH8HQfEFAsypBzGGNkXRgrFbcn5zHaFOlvbuvHKA/TAGDWjPPLbOoTEMkgR3s68+yCdDFcjhBjwr29KLwwBmdHM1+QjALNLrnYdmUGAPsufYxVBn8wgybfZG/AmT7hlFiaOcjuIEna4hrbsu5Mwa4E+5kxLeRt0k9J+rUwfnHJV0kiYMlUlET3SKwidKjcyuqlFGJ+U+nTn9ff15RSbGFFT4QqJXs4t0x9eMckJNCsjBkWErh15sQ+W6PHt5otWbX4rxz4GHqh+ift/ztSzs24vDd3b3jkDRreOxfJZDienr7bvB14WukUSzt9UDHdo1gqRyt64Z77zPd96I3OpsJVyhE1efTSQl5MX8sRat3Sg3P+Wht9V0OCKxMMTCwy8TeFjbDsl1aIGA4ez7GkVT7/RJ3G/xUtjQU69pY3L4VnSmuLPsCt4T28LH/BXK2cKI+o8j4GsT9oKMGXaZiiL7eiqYmVF1VrgdcWyehmNAYXYxeSqxMxbYRWt6cAJByAryAcusg7cdV6SpUOjr7cWSFtCW7pVikoRABOH04P0h06eiqN4wIUiJD/NXNxtTIg2MNdJM81jhaa6dRR6Vcd2Hy+f8H4MwhyE4gzdlSJ59GrA0wppziMN7cL9n6MmRfvYTmoqcrXkWjcfyylbdEe/6yfzdNXMwtfqVcIxNKjbXtVxtaZiqCLgcvfgpa2O/edYLclmnpAFWKyWh8kgJC768p+urUgSa7nLh+/8vjkB7k6O1gn0i9TRnrRJRep4D/XVWDhWC1A+Q2DuBX//6jBOjaNpwA5QMj5GXdpAH2E9iQY1ev45LcFURrAceTzaiQLLXrooAlfNds6Byc8Cq3RUKsHaRs0g4i217fgndJAMWXYqbzf3pQm1fiqWdGl96GBjo4y6/cFe19M4ridD4jGK0prCGonSFucnefKvugJ0qjRYWPwi0r1o92/Mm+RQgKcddMlNIuK9IjKUwXGXRfxXENSGEbPwmAaDaAQfe84udCbTYF5HeXOEmMtBplY27QfZF7jsKynlzSqrzxQMMGtGp9sTyZi43dpYeDkWH+Weo8IpPAlMTSqkmm8mhygOWWDtDaE259Lq5nz6GshvCCYwLrPbEbxB813C+YvElylVfHKzpKr5c8968eonD4PD61FhKUvK2DgaU04N2bggE7CGBIEeXNwvkGSUzOpXjC3e9woSLCwuz0MwOXhCFl43Ic/q872STuvo8dkcul8/N5yi8Tatpa56I/O0iw+7SHcG5larv0rWj8B/LJ9URQit8sDuFN5OQ4rDIwRK1zhB8qVh6mGfTUIwFkM/SRT73Z4dmdnFnDmVhegQSDpYmtIPAEzEinD2hNVQU1NfZo6N40QHO+UFqob0GZpByRMhVHQZ7cuu9r0s86rXZxAScDTmECmt5cJotI3BLS9Hug+9xaSwxtwHQFft3BzdHRmmRo98mXCQhZ0+mPGKWcuhZO6qpuNj2mAUoXNQ6wyhXS5uekxFmcDdZkiRrZR2HUav/PioFVgRxTsS9mF7TBx46ZYOtpBZqVK2fIibKMmEG+8E3sm8vGff7YwBMgAKFFVXi+fxPHxlnNtS+U12qTyRAdvaYmKNB5jXqUyNaLIgKodLqxKzW2ZABmEKYWYNYUWE4fStN4pDcJf8xeVuRXcZwPY2Ht0cRucNmWzLt25xIW9ChHA5EZhsVg1Dx6onbZG20mI2KywIBbiE3W8s7sAdbZr/cNQ7yZT5X2SSgpEZB2QGyfYimEwWm6EWuxn9tVWqyFkz0y8EpK3aeftar60qG+4L+GWdRFQGkJN+G2BbNfb1W3XKQ0BJWDlZIbbcjoidwnribVcMEfnhMiuE2a4v1LWIxtN5x+QGjhhmoyhYPaH1Xp/HumvPmkvK8AAI61fEIaRiLTnGhwygZKjaNKl83sr6YbYFv+5Wm1aDwbL87JYTsdvSwfDQQsMNubIvxBLsT6g6a0Fu56coJHh0mXNUL6g4eKVcNmHNQgcb4ye/G/ebmyCWcDLA1EZUQxYN7KCTehN5L1gWGf1qdvoBrajhBjNe0mOZHhV6H/QyByRx4D8l9vmw3fX/Ocy7dzelwD9E+RvuGZVslioK81nNrUp4tbwGqcmGjLOZNGPi2lbXp6iorfethrVdQRGUY+PEwSbDa7fz4pYsUguFpGpznTB5CmEYuxxwlmM7FrgYEbl8Q1n7HThIwQ3SMEUNsuNv01nuADDun7+tWmK5tvd+AkczpC5E7DeFpMDzFAXt0IgJ+6LWGoBpV9SGqYgZ6abYQeiGvjwc79XIhPGcU3ImksWQKYt2Y52GTstgz1pwYFmf1SKGWlo/4ShevWjK3YrsJi8BhQSO54LZnWH4iRRAigQD6DE6mpGsL+uV8tu9kvTUn8mEAKQNVZFdePW3JaH1c0ztZ+3WDS2wzHpZlnyJ3vd4AeWbrmclfP0yvQHVLjRlhVuaZWGfT7LhPOZS+Bes/lCDOT89b1Kixcyk+x36Dli6U3Ue9hgJUbsngZZSt7rfPAvLWAQvfWimxVbKIFM6QzAVF1lnpR5j+WV6mE+9ZJhyhAsBhubkenFOpMD7zl8MBQzQfyEq1Y0yOlvkklnWEZyblgqwC/hPewO5kd3Aug8BzN0HkWoJmRo88UHDsQw+TKLuc9HEqlCgGKk1aVPMM0fuRV3+b8/tPG+kIPOfNsz27rqud16LL5hbel3kd5MXei/edv97ApGO81rEk7SPzc5cLnPmRR/MhqU7g+u7PfZqDtwUvVLuWtWKSPl72S+78Rm+RYjv2i7Vpg7hhfdrWFJ9k3XttBJR+9tA70kQPJTh/d6AiFsNKtAKwFj0kpajKl0KY4jCUCqers2zh61cgkfi8oL4pilxs0AEfOhRynrr5gKJknElZNJ0liO+FjroFU4kiC4OCQxD7EUJqTbw85AXrzSiTZS1UOVf9jUQHQMVUUXovOUZOyoCVExh4VytfM9ynnWZn62nQF+XmNKoi8KMf+Iw1HPkR6w6r3pQCb/rqpsMeouHGTWpxBBZIKP7WeJNL+2BFzU1yB0LKIE8FrZx11puFlmLt45/RPIUUqqNJbMwDp7yLzMCmARorP7uWPEvsQqm85kebh5DVnmywraOyAVyhy3WLlKUGhe5CvBuipyOzdz5f6FU9MxTBs6g0Kct72uqUjaymokDUjemgXmVWob+MvXpD8mL4A5nrwcLeaE0CqqD8kd+N9vJAm18gJ57jwWAcvjERIphPxlPCp5YnbHDiNuMmff7IYJujx8TP7E+D9NfuUJzg9PWUfBkqPbYYoWG7YFvn9YfRxfJh9dqPbzCsbqQAL+Vn9AbJN8P3tD8zCD/EzdIxnCohWx+p/fttioCVCgmJWNYtnbM27jo4JJW9PQLNKy/y+OlKyZLVZ4/kBq/rGLiC3P4Q/je/qWuSz7EKEMS1mNOJxNqFji3vjgZ3h9VUh0ngCHck5qbmdQbVFJGulrgQ/T5umR6qPNPDMqLvDLRSBHJ0P2wMQzhBXji6Zri4cq/s4AzrIke/p6nCFqM9s3QHDGhYf8TrguiMxvZzOhPhIUdFy7s+vAw5dJV8xaUmz/rNNMlJSkYQXnXlbCTff9cU7blm7g7XwalHpxLMLcKovg9k2E6goGRKg3sdPA1MIOvU0/3+x2DrlPbJQFc5QadX+rnls6ZBEuZVo7cy9FZZUPels6INcZ6HnT2ZAf0PO3UE9c7KYLV+5P7TVE8sCqJVJO29wVzK0O2ZcQHFhCfab1EQKnIa5pN41fh9vR+zm+dmWYNKR3mFVZxhG9cJ1J0TUgXhSPErOWM+84qqvylf4MLfFEgBrf1DMQ5zIvjlqrfryoGYOG4nkk75hDzrp6BwZp+VaotSHjJwRpuEwkxcWAd8Fq0XmgUVWT0VFpw8f69RWgKBpY86qe0eiC6EbWsezXgIkvMSxznJnJt8Kxw95NRz3l+HHiPgI3BkRKKDsD+aU/6r4aUiAwe/n5DxJZPn3psbllPnRWnNR7qW3Bs/jZUmIxWiSOAbOjqsXHjz1mCDyxiZfjS9L/+VSvBmGJ78fHs5E8BVHfx2IMRI9/xkj4MQCmUCZl/K3MQwdPJuz8zewadcjXTbBfNvhFqfdYhVoBgjW5MFt14IougqMfvmbWNzOvbzpnoeUMZRnjqWQJWwnTo4UooC0MB7d0YWnac7loQKJX3urdszTVNfoYg+Wvd19PKxrti8VTXZqrgDgDpgsg4X4JUU2j1i9zJDNT1MEFt9QN/E/Hko1EQqwtiCdxnmLmJIbVUU1MP/HYZZfb7PmqVRM0sJgQwXTfELN04qMxh4sd4dlwESF5yLqxZQGG4ZAjysaFp1as3mQDxBvJWxBgy1SlGRlRRFtZXGxiR/ieKSyceJuntK28qUxl54i7OAsVR7sedu97lWwIWpbJjuui3zxsu/DWOTEVwkTGZKojBzYXoe6B7as8ul9yF4HLxyyywXMyK5NlsFjuRHjA7GpvAbbqLSO8FVITJD0wL/if4/LWU8Z0SdJTfuI74b9QZFWX88bP+W/a+GK4X6WlF+N5sQzQ3TvYVkt+9kAHxDWPKGyD4hWuAfnWPLuSbs+JvaJehZ53yqA5uo+fm+fY1pGfgfAE45RIbur7lwIQSMf7LlH2+/G/2IUwReX6e6pnpm9AjqdX2fmmJDV8dpWlw+/lcQ64A5GUKJH4uaQmyID93ceb89yLrWqrfcxw3aqYIipBSlrCMe2UJZDwtLIFaNq3qXryaqLKaHNfNUnhwN7Ydhrvncjx4i9gDoBqYDLMbtaF1vIA650OGw1Bk1wsDaVecM5pcY9Oo5rfaNlIUgxd7XJv1nLh79TIxKuAtYfT6mmd27ZX1ysncTsQ7ZWRViISF3KEPQ9oHWBwhNciY4YW3Fb1PXUBJ4PLdzqqaOx34O5FCCwMwZDwd5jaNxJCerl+wKhHYHMiJb07AnfCKeQ2icKKR7crEMUvAymfiyJ2A3U5BOuXBSQRqfo8Nb6ROSnNe1jzl9f04ksBmYYcRSlVh6Dw89AglMMVFXNzqf86L4nP5IWTLz5hr3xxmTFNFagRlbbmHgXGRA9PBT+pdPQw0MtHue6CH95xT1cKptCsI6hah9vuovIGRWr+eLhRdWxIUXlVU0Gj/Wyn8Ud/0dgyqLUVqEZ8B/p6SG8K0SPRJrTrYPcO+rSS12Ug+QylJYfucaxPmzQ+WMQi/lA3V3UQZSNVulMlfASzsEtKFRfth0K1qeCBFqUJqWFQaOay5Gq9UVyqa/ITOBtT//Gi+Reb0vGIrDJNMVjpkHuB7w11sw+CVLQOa2n55oZS3eQ7GqzVvkbESNOepzphwLp6bpqUFgihVcLrpk5AjmzaPH2JQf9EdgMDcSflV8OlGdeCvOp0gVAXplrulM0/adSTMiH15L+KZRNKAl9OGaEyk3Ns2XbP6oHEYb6YPP7TEJJk+d7BZ7hezxTwQdYhnszsbGwLjV+emJRfE6SUUWkUvPYhSdVdOtiZySttyHKxV75+xBXNl9vP7zd85ltQfc4ixYzROul0vrMnoURpYqCFNP8QI7/uKPPVUv7kT/IUyM+zopLpZUwn4077NHZWGKOXsBobiUfBwEuMuOug/GpOJvt0X7y8Ywar081sriO8p0RTBUAk0LphNdb7qRbLc8mVRsaMiGpSL30A4hd5Wg3xmxsOWf3tvdzvcDssern5nnHYcNahl/eRQeKrI3Oz45wkyzibWOHDAW4V1DtcTUUvWFzYFwgPlIVcQOWX75VgbgWy/WWS2tb+wtJ2GGEXr4TtNZF/PE8MREyL2xOfjn2wyEnbp/tbIILTk4Q0WTOoTl5wem92pn8RhyCsMQ+e+B9vpJSCA/yGnHldx4tDRwzu4O5A/MHPKJRC+bCBHiyL/U120OakFvgzn0PjUOUo2SgO4iw0HmAY1k9ZFPQsod61OKGrsiWSDIdfa4ea2E1zv0MqHIxPvO2t4utwI2IEt5PMBAsSgzsy8rvXLuDSUrfYviEautYWuSruxVO+u7NzUxdRMEOkAiazyRNtDTCUPe5nfEdC9upW/uNAAf0Z6eUAxzE240CUWPeowIgjvM2qw0mmNliFhKIP6iPAH0O4qTb5qnkhEAonCPsm/HGrnWHjBJ1Fg7yY9ErptzOCWcmi63kjlZtIbQBHSVZo6rcGXxhaYPTIPV6+HFmQge1ZTCp89wzQX9f4A+cSZH0DCAeSV/BvBmWlsmO+WL1oQLiYiS6SFwSIZDrAZ3fzlYW7nNJniTA9sDq/vCgbvmQmrj5xl0usptEC8aliGU7JkAngIPictziB+7oATZy4vos8b/IINzRkOyPkTGmMbHi25xvYrXdH39sy6V5XwuqW79/q4PRi58eXo2JpiyVJXpPd/4mi+KamzH2Cb6Vq
Variant 1
DifficultyLevel
568
Question
Jessie bought 7 boxes of chocolates from the shop.
Each box had the same number of chocolates and a total of 84 chocolates were purchased.
Which equation shows the average number of chocolates, c, in each box?
Worked Solution
|
|
Chocolates per box |
= number of boxestotal chocolates |
|
|
c |
=784 |
c × 7 |
= 84 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jessie bought 7 boxes of chocolates from the shop.
Each box had the same number of chocolates and a total of 84 chocolates were purchased.
Which equation shows the average number of chocolates, $\large c$, in each box?
|
workedSolution |
| | |
| ------------: | ---------- |
| Chocolates per box | \= $\dfrac{ \text{total chocolates }}{\text{number of boxes}}$ |
|||
| $\large c$ | $= \dfrac{84}{7}$ |
| $\large c$ $\times\ 7$| \= 84|
|
correctAnswer | $\large c$ $\times\ 7$ \= 84 |
Answers
Is Correct? | Answer |
✓ | c × 7 = 84 |
x | c ÷ 7=84 |
x | c =84×7 |
x | |
U2FsdGVkX1+o3EnMO+8yLI+zpWd6APUSCXgOOX/9l60PzAF2+1lH5aDpRtZVWhYQoxiOgko3BMxLHEJMDmDw+XmzV4o8rzfZxg+MVvN2c72EwIPPCpj10MDUmbotueT2t5CnnvDIljO/xJnZx2EoTUMWcz245lZtYZwMjtJcva2p8wVczQ8aWcIT1r7DpeZ7m4S6I9b2bIgBaTUEmGoW56jK+voC+PymjmrI/FMVMYyzb4kFioMFbVzkhErL528Vlwn24qXy4Q94OSmt9AQPm/BjbqRQpzY/neABsKMjhahsQGztLBYms56Wo/8nrAvLpFepD/HoxdUjGMh885USaOUiCUfb8vJ21E2cJZbjOImeZJBxfT3reqzIvg/k6EAjG3st016U+6dOGJPz/clxWLZVFlOtHse2Ndo0k07S2PYYwQaNqJzV1iPj67+4VQ7L/mdtFMyFpthI2UYKnoPzgCi2r+0VJ1rnIhDFsePdPcVNCCnaMF5IY/n62fcJhPNEeuLk49JXucI82+PTwCRPcJfOLPecghQ8nAdfaF4yXqII22QVbxxGDv1yxeGQdNvplciBcCSVzVl/t8LpmOWJi8J8/1RK24SZPb14IM/d7RJh1UOqK6pHpQ3qchI6FqobBJljnQbU1Et/GIduFX1owrgLrVcSlYWXvYKGzItVw8EdhlqN9OTMFrHcplYtTyqlQsmLGgMg59o5hlZQ6ApBEsiciMguXGr3Nj0ucRoamZvKt3Skaf7HkeGPIiKe2iw6QccezCQhk565ammPvN3LXKLmehWqDdpjcGkB7zNnNWOcAQOYymTzX2t1u581Ni+j8BgDMx8+1RBATcZu7I2KAmWwcSQBFVfx7otyewwI+LqsMKvDjXOns9rhdIAqvEQIrW3K7wf6z4u+yhjvFdC0vpgeOrHSIrNXpUDpqcfyclnFUyH11D3ospm0giybswbkfi3LcgGeyyhRhocluFevbyO5aBHaQKpJhGNTLoS0aCla3RDbM7L5WwJSeKsPkdLjBCLDNd2+Ap/712NBGPaj7+lK+lARwjmgzXhiS5MHRkpurXJmj8YgNP6HqgTZxbNiWRZDlzVgPWZZ2Lrmju07pTIUSpbYdEAXUi9HjiYq6xe4G74VXV+/0QKwyoDUDmk5yI4pMoW7bsFS+iv4gkQ8O+p5NHmuQNlpnQ/5Rw9pIxSaznVqLXsvL2Jza2x2ja5QLGnlSimXvhGY2aw54MW1YRcE+6SiPt28qD8vWGkgWFfqgIWR+MDkoEJdDRNBN+7tXUZv0h1SItK+N1h/ir+BHmSO+e5U1yBVhQwXsAcHrUqihZ5NTqWxTTWsShdf+d/VS8b7e5AwbEU1B0cDDJG+YmFqS6KVGvHDAkZA6CmKs+5jZIo+XnLHUc4/b0i0T4g8U7SNjF8tXwS5WSWgjh08CoOjUH7ap/1biaKR5OWB2Hdie6erpgPqI+dgutwsk3UJvUXzY4OIR0zy829+bvIoZ3LxJNUUwr9YWlj50/+UbHfpf2lDRjI/a5tIfbB/QlbQviVLVfgPR+GjTB6CYDq8Fu6vuvOldo1dEe/asN4MjQVOdiuWIG6YUuw6BygQlfGhkBUn1YcLwBwo7X/2Qmouk4mCk56e0cSxVSiBOTQWIDVvkEGU4klpJiqc8albok4FY2FPrEbILi/xJjx5QxG8MzB3YWs9U5RAEVfcD9fbehCbz9lxs3LAjamdUlospipUNZtzjaJrijHx/cK/cPfuQ2NHnPtqVQNhqwwurUw/QxG8vZu3JLqk10r6KSuMzYecgyZvCF3XQVqw8rrKyraR4MQGjLd9xmOapmTosDhi4ae86IaRDj+V65MszmImNIScG3IUe4vW87xjpIOy7A0JfoN8dD3MuEiuYVaVuTANj5arR9CIMho2eKlgm1M2FxRddVaqamYkTHoLPDn+6c46+2rTPlkCnOjdI0p6vd1xkM/jtRq8D7SeiP91yetu+Eqgr4UpRK495tVRlIzokExn83t/Dwmxqw5YLgjo43Bv8v8ka/erlPbgt3GeZADIXM6TmI0xGWiVfHGdwI+zrRhFqz4PuFFLyN8WGJjXtfZXUdZ7ZzvLefG9wVUlAygW8zDcmIxLIoGj99+PtTwCMEWdfOTxnsqteDi2MerKlYrPPgGOMnk5POtFI6Otr2kjc04XT+38HMhGRntmEI1wfVR3Sg7JxamwsdpbiZWf+nMLlwQPGqiMX3z1hJ/QAnCkw/zlHyPETHBtKnMoN856bnrLaiazvANyAUF77HqeVnPe3WfKA/2b0ObUrEsfHjQOn7jOjLTZ7EvTm/+cdL8yoRs1CdZPuabZox5SLYUFYlaCOBFZvr3mSc4JhgUMwgSdK0FiRKvBYUvxf4YvE6nUuA0dFrszsPxmIyxdXDtqnIhhk2JSrh8RZSxm9CWpIWobIUNrzw3aNdfFLB/71cjVx32HQoyy1Nq6pQiBcWXjE3kij1iRgP8OYFUykfrkVxhjAbE9QFFRO6Pt3A5wBN2rZMWuAs7U3wquGfn/G/CIRHSpwSaP9R01BD5EW9FpWOEmeTiWhfuMhhgo60DkNJBMlrNmYvk44jOxPdj/MVEkwLQSMQrx2rtgDYyuLtGJaLOd/NpXIRfVLg8vKBFtq01zBAR1xKdxnNgwLfMpXYY955IJEreg0GlQpTA9tcz1F5nMG3esUxyC9SMQ02UaiQySxx9xR1zCDjRkYSbw9ANYhGsq0JoJn6/gXc7xhI7kTJmBBNfZDmavBAmqC1H4MMR5+R5EYASMUF7zg+RmvcOeG6yOq68NsMMj+ZUAAlFN3RX4uhaCobiD42/H9xWU0OkeC+D+Dn3gJ74yoZ6K+UE3qCL/RSziPyJ+42eQbvtPl0tWXcl4dpKiYSu25A6mHR4urmDsyF0vAwaVU0igpx/1Z1TOb76DKpS11VjnHYphTG8hwZuIld/3xl6m9+hbP/2ZjjWIodCk7yljADDuCfbikoMmknlkGCBDqZzhwpJHHi/hECWV3PWrs8SDg2HUAHmLuP0clDTyExmQZzW7bChdjo1w3rGDfEgkTReKViEP4mZLOImWC07QwSlhnTacJluNSLlvt29nkB9kE2si/lWIJTaGgSpCmlS1ef1puGHqR7xzfdTmj1HREuekcTR56feQwPugQ5/smECMWUVarjEPBSi3lnwEKE0aoL9OGQj24KfWZ8qDz1Y58XXFd8plpYOD39mXyhWAxz0QiS2FdazZwi+7JKYOwTYmbsF277T4kvWmWt+/gBq6kXIC1ZHc9qNInJgYPMeqiUAx3lEaCS2/yqL3ozzw1un6vd4dGnbbggT8bv/qtCxX5F4aDF95FhNDiABPHpb5TPqaXg6TDB13/1Bkw8q1ngUKl410kALhv/gJ6TUbFNc21lomYj4ZbYUu7bWZc+x/HLd6AWjRhXBRHMj1bHk7liVsfLeXlPq5sYsZ711rmP93dZP4hFT+Z8JQWjUek3+Ze6W9ZvwJ5Frg6fl+fml47iS7qM3YjPEEk4/EYEsXvSxb4kjat5lsBVHP1/ETakCyNf8TlqAjCdwFvpyCi8Kje9zBTeXvNORzLS4Q9f9OeZ6ARhCjC6Z33ve55TbERaxriMY3krslasf59S66DRNsc6hKbYzLIN4Pewi2UTVcirl8e1g1vhwqWxSJyZfdF0WM8If4ONrCv8eq8asWl9dJoujg1WdvI2W3aXiq8H3udQaeRVernfz705rEjtbjlYsJoa4hnUL898MiRMGZ1gczjoElBChf8XQTi7RCN1uBiPBuHvfbYU7Vwk4Te+JMgYAocOSVvsoXkCWid2QK7AOeHXMyDXYPEj9jPIQ+QNqx+hAOX/hyaWGQx5oOZYFv6/+NirQ10/Eo6M5kIhJ69g0Bg7aysC363gjhnulNnExEg9ZygEvr22Tt+h90clbGhIkWhBxcHnoszshjrfSnP4G/cCY+pc+KCG6Mu2OI4bNJSIMbe0oGiTlo7xw87Rb2wu4JPYKkHm+iFOKq1gRUbdhx8Oho6FX4W6mUYiTCxNRevkbG0+26CasbpZ0piKWV/KGpbdBHWcxkj4S1WCO7T56IHiS1pDMBfMOU3pFupkLJdTLh3goWKUhxD79qBkGeRAv0ruGJYj5liRS4Utg0RZIc73mK5dGfPotFKhFsO8EDAMMHAP5GFEUMVWzd3iRvpS8KilB/nPUzOapjjjiSvxFV2PkiUH6AaLL4mofAZcd5o6E10TVwviLzxHrRfeR1ZsZ4TiwTj9Awjzodt5dWUp13uCR/+UfdemvfvrJTq5PuT6MxnJ85G6/JIchcBbOn0qPc8wdLJsCjqDycn6NuWF7qiDDb3rMGeZvSvE+NV6l2qKY6eSWuchpk/++dThKxW/OdNw8V6B/oYyuDUhwSd7CXcc26Wk47D2gSuqy/AqY5HyuehcpfFew6ocii+3j6CPqO4rIPf2vBgcpmW0Fs1hB465FYi/OfJTRlpHcKyXRFZJXPigrAH3/lNLA8H5UVN8YnKgoComCD4gf1JdGGSZ/qF5u+R+YePc+2gmMTE30sCH7akC2c1o1mswFiyhTq3CC8sG1Xk3WAL9gaBIsM8tQJ9SzEhD/kDaV23WBugNjxsRMwVkeOP3bN08ZQvyayz9DnCqHBXePKRaK1rmWwGCotC/woUvjLPQ8+eAbNQisEHcmCoUB+EvRqoKWS56A414pPmYkRHAz4qmsp90ilwwluQ6Iyf5dRlHLKKEzykG9b5wf9LLl2a5FbmV0+vS3OdLZcWtknW+6Nsy6N1fkcjLDbLlIr28FSLbOh4tPAaswNBXoN8eKMgcJ+uhVNDA56ngG2nmjI+hZggqh6m0isJEcO81artmacSCI0o4ClVl15+C2gjDuKj817kpxpnv9dXZZnnhMrB6QqFs7uPkDbD6/8mqGfHGc3jHk6Qvm9OgLbHQATdv3ePXps95O0Tb7n6qn+mfiJCj2lLRhiEJ0TNQuCGtImkh7sV3NtRmtP8kRzBgUKlVLxekPdJ1tfmhJpf6s9/l7euyy5ujLNrXRWAmKtm4Fno7XcrhoPMM2zxTkGTJd+qbOskOUeQlX09YVkAHutcF04FC4cdTaiUx+hwKDytnJhaQk+IsuKCxCXZT58YeQ+opSfHU+PnaEyqRGt4xL+5FBkH5cdox69hWc7q3vEh6+O85/hqXn8kw/s91rskGL4X/AWgm2rzRfIrBXCxOSiK+YInEly1IJkE92DtsgtFdqMGS7+E+YxVrtlpC+cW2SSxee176QaIDuUtbsF8P1YF2lzXwQ9QH0UYI9qj3ZybDokKR65d2lj8yFFBSYSlnC72W8Mp/u2xJ/YNOAEbR8ZeRF9jVb/fmApvSOHPfZKNdwBDTsWh0su70vtj2YE8KPPpv7TpjS09oR6dEqOkvtB5aJL7d7wa6lTWr8sGjNiEfYIog0mPRA8iYf5NSLUV34QXew6JSzHUIo+xL3/yxzTqGgVDvNEXtE+hYDXig56gP8YC9bfwMtQVQMb2RBGnkPA/JyyKY3JwCvvUW/IE8+u990owDOnfBzTtIzreohVNdu/kVE7PD3ZWmtcOpSLiMPgzU6E93UBrvmCiomxbuLupNtc+w4yaNpl7WceeZIYihsIv0p0HvcKBZ040NxUB/gUPcMDtqBiezzmK9e+q3stcH4A2i79wV6QHzvtivChW4X6yx1XSF9G9HsZTVwWfuHzVRCduxUZnANhekVUGGYO17P1dc3R+YGSQETkW7WMJKS5ROA4KSztbl27iS63g4t2M957rxuxVciBKY4qMUhZxtC41EkIHQF26jh9pw4WG7pbIMigfosII4yZw2EjCfQwxtPZISNtX5ikqlnPD5iltDp4pUyOaPji3XdTa/t46GwtLUThWUTArYicQbPqMg9LZ6HCRwOqomD6HRUz86Qcemgjjy1G2Yet9df98pzrylYZAsbJtdXti6jvQ24/CjBmbNAmP7fD5+l866uKELVfYhfc3SAQ0itl8rubdF2VEMaBRQ0/ealWxEvc0ffMwAZ2X5FeQaaDFhGfwrPqm6oAGWhdLSsbZY8+EUv3EJq3Uy4ZqJn++xthTGnS35ScK95qc2uxu8gsCHj7U+1TfzglrZDImwRBqc8a+uWZl68Ug2X/bcISKfFwgkQkvtc1CMiIvaTbBCHGrzC/t9gATCZylwZcf5l291WGYBT/Gl8iZE31rTIjuGroQ62jb12MgElTYGkJb7IUn7l/z9FhsPW1tkYM8Y/ujn9ym/Cj5YzwAR9w0gqPoq9U3HKZ7Kq/kSkakVEaSx6rSFNm92oh2ua/z2+0XZlBIaBohR2Z2Um9k1okfSL0yRkDPhAfcMK8VtnATGF2/+9h2kx+UN2cTfHe3zlbpcys4JxXzn66MaHfW8iaUs4mXqi4OSvub5WlJVceHqBSCtR4jY4rTuHQHkNtihH9dH2eauW/m+h0wM1QlDN8t2UYyvj6zPNz5mkJiRwuI0DH9e83ShuvS7TFcJZp+qny5fUz0vwvt/QJBsKIliN4REW+oEDHeqBzEDUtlbA70rEhqJAD/RwNaWUdN9qbs6GlIKhV6EFqGdcKTAKKvMk7HRaPR1uZig5eBDmDqgjiHqrncA512wU+FPiTJI6HRThAVheqxxXZ01QbA3T2A6zEsw+PuIyROpVVxhXKuhWkEpOH3LiYSkGlTFErHjLtSZmL87Ozy3f9a9BMvHqhVHrroPDH/MPVNQPr/h6f3OrUrtW2AkNnl0i555sNYF9+I8yLJ7bVMjM6xTANAYp5A9TsQqf9rh9WzYQxAKfI4AdQujIavZYvuREWdSGMv0i+i2wCeGeDggHZkF2AoAgog3CoMmETG9VfdV5e0kxgJdwIsSbJCBDkX16L0vMeFZmjb6LQV6cHw74c6ZyVFdHUb0wtNaWNx5V16Mhu8IfqgvU4xYY6iLTME1uQxSFlS+1wdewEUtinvbFjVTVZpIII72axB1lNHikN16dxnqtUriDKGl3FGW0n1Eij1+7Sz1zjdYBeLfAJCCBpZLCQyyM49fPAJaWvQcHQOUSuVf7eWuGyjNeRs9cRUzb7tG/famuqqwsGOnbvqfl18mUR5OoPBijsS6/EizhJWgtAzlYiicMa542qDySdVtX6m9EYf285JjCQ/doFHnfCQzqYYV9Q+tcVTKOMRBRlgr9wfHtTlfb3RwSQIeYX2CIPopupAB5mc62Ar4lvpmQRS+83gRRxATirEUKNNs4OsLKroo4WvGjka0y1zQ3H7u9aRFRa7nGUwqMn3IbvuWVfD17k4Mum7ANU9hCdw+6lboFeqQgW3Ufl68Rkzm9KGM73uNHxlaVp7nEnmp8TVV/Fp53uvgH0ITGLnVh9W/yirbl0LvSPn3LrMSkXhQyzKcxl34wVl2sv5+pOutJ3x/vEMyH3a5E1a6U7MLH8JULo7fpXmX3JYd1YsYNBfHaw0kpOrKIXduoBChFQISBVyodnEIhIVdpgrnJ77feaVDJgOfHhXlEtQU+uESAonv5R0PrNQv9HrTk8B0xDQp5HmebU3EHYx5Xa0FJ7Z+6n/Pkd0YkfaZr0gxzR+E0B5PS4aRbuBrQ6/0OlnEV9yfLtIo+4HLojdmfm9JaclpOyJMO2c9QzKTKLCg7nvH3+0ibnXGua9V+/lr2mDBPikBBNOg2OPdfoH+Vv5fKj9cqQY0CGizTPjISV70ZW+3oLGQKefGGCKL1rwdrAEDZnqwxpLJ8eOKtgxGvT32KEPwfnPBiABwFbpAOIgoZoxUwp453bOti8slNF1tYUFwnS0jImhwdTGA4TdIl+coX47x+FJrYRY5FKu2doXyuUAuaRNxuCcvNDttIJLce6ryG8J3X0dcC9JhQOuYs79sEQKp7ESZ/GHzoT8suMeUok9Jkm45W2hwDtKXk8Ob9qvhX2AjfEAxqdvljMb2XpMgL6cza7fB1V7zXyy0kdvmBEyErxLnTaLs1LZZWo01gl/LFCgFugN8XBeyFA3H31fO0rXCCRTJz1L8WH3o4hT7BdY0mz3KOrgiVuWjjXgFgmhfDI+Ku1gtBAxe1bx93cErhOsMJnPTjxzLisD7M0yqfT2XIkx/aALsZLtf0GSKgWf2WQlgL49rXNcUhbqp65u0Mtd9+NqYiCAC0+S+bU3N5ZKy4On+81QlJ+W9/b2DN8uRq/KolLRF0vxmZ8AEnZ1Jjt04pQ6p0362oTU5r8UWhFFlNjn97O9lHbbPWNe6/8mGQKqnjbnGoiBsWMjSt2neS4jfdVTPdSs6b/LiF/DeVIITyJuqVlLREdnHKIxa77RStA7xyamjVk7L48kxuJ0W7yhyu6sXDUnhEc0wGelwIh9wQH79lIy9F0mFsXgJw0/rqV/chK8tMv8d0UGjm+CYPvph7QbLwBgBgGQfciFFvgPnIVu1avadKHwo/nfWyLOv9z3elR8qoyKiMQJwconhTuLhAThGQLZnfyoDUK95Oq5o53A4n1NQXwEx7utlakFd3mw948cXGDd7QG6MDgIJ0eHpCOLQdG4Inuu2kazVfWRgQDt7ey+SFpcwDhen9uaoW/t/jqu5Wlb/jYp7ex3knBVnPUEdzqhlICnEqGV2uR+b4nB59fzQnmZSC/ypRLXViSBJMJQFcdBioD3wKMTrJe4XcbkNLtKVSY8WMdOOS8xBF9zyYMRA88XVn3r8zq1D0Nb18RpWNjcbxUDubw5N815mhj9abQEH0KM1KErPv2DMY+BuZMsky4kb07UJClRlpFCxOnRmq9VivYwFujN+3dlxThmveO6eA57aV5Nduse8ai0hFp0QfD7yLw4TOMbxDMVsT7k/MSWdYTzXfMbTBhIsa1cPwop8uhRz3QPpYEaMxDsncPXtoc6kJOAiLFh6os+pQZ2m8UbJ2CgVjOrxNFLvc5daAUBzHl3z2bAJQlZRp/ziv8++0B0ZVF0idojdKaTUN2peOF3YFssGJ8GSbG3Lb/FNo6Rh1g05AtW2dccNUQBTdqUfNVLDdwkTRHebIAik7axDyANxVy8FpWUmKcEHWiMYpdlIkp9T11kPR9rv5e2aoBajF/LzCeEKcNK6KsX+H0/o20/T2MzZLHIoDokHpazJjlSMo4fvnGnnFS67xPKav1Zj3xDZ6RV65rjiK/eF9etYEB79LBKaf4+rBvomVlgASFSb/gwPE9j9LaXq9BQGBma4/FVuQDfmNGK291YBdzqGejlxZRNAalfcy3I63aPJIcSEde6SsLRUa7a+UIGoD9r8fznbknnKmS7jO5JPZ4elnrZ8QbOWQWqdBAuaD9pFPQYU/fkwH6P/p6kSXonukwCacfnHOWGtH3KXwSKUhgTAqSKfgZfK+ASf3eYH1Pv6YxTCJ67mx+WCZmn7Q57AONoPHs4eKtGbzWl7Ak2qmHQGTTRHl2V4PfqaPnNTnXve2PSiDyqEd5wa3xpRX7zV4n1fJjmuPDlOb2DdVoCDp0GNtEO6L0MKHI4ix+q7zM+hdrBdM9l4EaZ1wx45lY7FqiisRxHX9C28udPZ25pMaVzmkYTWMZLn2Hpc+Fz3oZdhGSbsVn3BY/S7Hn3qtGgEJ6EnkT9iime33pZoDzf5OoYNAxpkpE0LuZG9ZEC2Sl1MjXReGJ9tU8/lrVJH/3d0PZBZlyl3LVG5+Nbx502ZcormBI+Oyc4KXD/UpKzwLOwy20clSNwQypi0Bj7ba/kXGhBSOA2SebqJZJ7mgwlb8LlZcJAGBo2LJOO8rSOjXn/YSBkcI/JLICJqFq+EweXinzByorvyvFFcloZbmmHPcS4EoWxxlT7A2Zu9arg7X6pWHz6jp9wVL1nACKGphDCN2F9Sp57wag63+uKt+AjF6tBmzZ+6wYaN08pV2BL4yULcIQb8qFYBWRvfNB2O3KttMzrfH9OOi14C9hphaONkkj8m+oLuL4PvNyBjsblk+0cNyGzzRYsM4rTTjyeSw9LjCLuvbMDCAgQMlLceN93AKv6rrZFw1Xm2p/YJTWN2RUW5KFUZdbq5xpNg9i0A5rzP825gvZ3ubicnnamcFZAPBvAfpIIiS1NSi7TsU0uV6CGe3oj/u8q6zVIh1uwtevhjJkpRbeg6b/LGKjBXEyv/Mk0jcCBuCHdQ4tKp2NrAnRKwYjeE783RusT7LmFBnf2QEmgRDM4A4T/+pIngYi7VwmbvTPqk9dbRcLnZWmXjIzQJkhs8aRBAAXkmVfxFJeYS25QuINcCOW9v+ikwvW+G9O6+nvaJqx22E31CVoeqG2rhGUWFJ45N2HYM+RdxDNd9LFi7cUGce64efg3YZdgswkGF8cUBtQrbEUOBkKC4a7l1r3bzXCV5MymTUdEp09FjL2V73SVjAR1Zs2qYZi8+zjCN4A9j7ffbSZ7D2AOu7pkaFuuiTu7YzRfjMyCMJhrLSpyCYmMcK1S/sPoEUODNeijnM8inOmjlT+epk/VHNq8mgyrrdhbi1BRajgPvk6KFB0f87PBDpm7KoWwWCYfCvzGPo0/Y0kQVSdOOHn2JGaCjOfSJt5AZZ4KwC67/93y+CBcGpe2CxFW4Pc0yOeCYIVA0DicgbzEbyUK4NTvfzBxzWfnSZSrhhI9V2/Rp2fpd0H2XfkzZZVkOOmvS/c419dQ0nYlzCnr/ZwZSzI01fc/zjj9CwLfapW4QnhxTOYaLvMyw7e5l1GcwQF9+sPPQZSrKJOPPGhM0G+LhBxgRPb204u3XvkIkcTyVtfa1wC0vtYvP92OtZhGYP0lw8pFh3qxD5JX6LpkHoORylaG+44ylbHEEV6T7IcT6FhL+DFM5v/igs3adr8qVLm5MR+qQuFiMILIXUFjxWETx+YEC1CGvvnxyGpPTyDzV0WKQdUQ3aINPiDBtQPLRvEU3T2iD+1mbW1KXnaKXxcpt7bhCDy2XlRTdCVFNrfgRONG+CFCWM6icwuOMS5+dEf1ivS5BBV6qfRTCnBSuL0LJh+/9e4qpJY7PjIpp8JK/Qi/tEEkV50cSffT1OLoCu298GsuBKLCINc2Yu8zuWKciwsIzoyfnpR51fbweQXjpIcSCy8M35mvigu+T/n9nPmrI5dmhsAKsH+jRlY4q+3bcpjLrag+ksrw+Cc+47s/NrQ6Pz4FOwqWnm8pRCqUAlugcCx9gwD4eyJOFV2wG3v0N0tLyjChQE3BsT6JeMVe3npHPNmz6juI1syvQbEhoU3nqs+4nbF3w3jga04/icg37cI18B02EIzyaTAjhGWwrKQE5W4K6bR1fQje7GUykA2u4+usu1xYuMWLkKZ327GMPwR5oPe8XJ1gFy1a+uFTEOBlKd6ntWw8MgPNM5tEvNs17kL9+/si0SeWZMwBJ7T5TV1DzYvosbv218/Pxzh200vIxhHlEBbI3hwIqFrnVbsjYudz66Op1qsvc3nF0027NPFDcBckRYGKqLjGa/jBhu5pg37kgsWIMtXfETIjgArJZtyFEwR7MhUqBTNkJRf+Xd3P18Xh870w/UmqznOd57Kd9B7x5vlM8vvoqz7kDuT7wPk+0w4EcahihfpuXqQ5PBbodGwyWqqX/QvcVfz2Temz44rh5jI4AkV9uBdCPGr5Mu9EM69ibbwBm1vy2CkVl0bxN7rBjg4itegr+xeMIf5kqsJLXuiyLLc0eXNt7bBLThSGE9XrrKmrIrKyJRN4xFBiRslxGYJWrcQ0an0a0bNgDmMVdcxfWkiFpDePc7ucBcExI5Kd2540WXRbPG2AKRmjC0sWXbJSbs58WXWiAuVdNKaObTMPrjUS+anTHnNL9IB05eX6dLFijOu+pl2zh6CDTrqzW30bPzNdOHUNnqsSiVzItWkP05iJr04VqCAvg4jPpUsOGKUIljpmtIreTL9m+ICOt2XsJtyPcDG4BjSJ6IQb84cMbEKpSdqgjiEExv7UnTWxoggYUGZcTFi9jPBkQA56DUofvjigrNxRHfWr13UCBqbux6P1ZviTY7m96SiC0xwNOQ1HG/V8IriNv3rEpoHSNlBpOIWXvrUckLMsX1/VSeqqx8w71o+YFcJqGLKnUBV2nTNCXknNUY6/Ovvbegy8F08ZC9w3EzdvVdfIxJM9CW8bCc1ISW4QJnHZNxEEeDLUS+ZZqxJtkibvoGmSl2uDugJFsBEqAUpkSfMDxwFURToHdHjUTxT0vaGxDm62nZlKAJfMruAeBAkXid9s/S4qtIAynUdC6jzvIImZXeHa6/FS1xsvpBKRWZFvPgGHFJ9znYiobmtB67SuB0YI8TsKpaO3gP3CPPlSsg9ceArP4I93wtf1yHw41eOtvLsnB/DodUieT1nOWqSKnUIqsCxgWsU276DVYbbjCwmy3MoB3zFlDHdo/SGGl0qsGDX+zRA+jFVJQqonST2BYxG3i2lbNQrwn9Ebr+XK70eIFpnn97pvFaIXxtZkKGu5ikOP1E6QwajNhPitOUB/g5iUnC3DiK2uLGMZ/Ohh4geRsp5STYemUsAoIL3KdlCiTUkilF56Mm7wHXxFFIEN/SwqxrHznl1riNcHsxevwkPeXFU9iUJyecHy6tTQtORrPT/eQWUSi7Dns3y17UHVWJIn+txal3+axmV1iCagjfmqL4fJJfmS606duQCvx8YTIYe4i6hulwVqQ+OOSdA3OcPEGnPBBmP7vijs8uxhPT6/tZqThiiCHYRQrXJfqPTg1MA6VzccQHScvBUHkZ9P+eENpSQTmIx8847Ag4ZJJqa4zPRbRY1aFEZ9acguR56AiAfV2EBHZ76I2gX9wR+m36Bk0rcmsk8jYJKUB8UwnesZffKH4eKrRqiY6FTnufDXDvc+wevT1ocPEGTp2JRZ544JRDTny/++1kHd6+uVX1griN63FTBFECH/cI4fHaOHbRfFtutJcL2jgMGbxT9inF4+lu/9/GjD41hoF4cA96nC9FnNjQklNpW7tPrZOzvvvYmod6GmVQGWEoR+kyV7/a20bf42/JS1TYwa3cj3NqKbKX7zRKFopgdPI8fdowY910IB34SDaL4b7SxVs4/TrAWhjzMA7frnAWLdmM3y22ULByL0fDpSbZM/Od3rQA9BuWOwdeDLK6PWMqsYjz8fc72tYg6lo029fa2F6z/Ram1eHUV/IsBAvMu2nMvA0ejOr4E3f6jnNDUfb4SO6Y82c0tzTOU4AsTtOP2ZbudSVQHG/+WauP+9V2LAOMCpQ68ZFr4sd9g5JmPfQ43gzJwnyuyRIfTUM8y3dKDwRJ7/S38Os/a7XQUJut/qmUFzTx5KhZKL5pKu13Kn9asOfkY1AmqXQrSevXpNVgPaWCz62/60X7HtvCAPAp+0v3REGbiQU66O6HH9Ddfs8w5f/5hnmZL0PZBKKauFWkZfkQgoH5Lg9CBO3iHgte1woJ8LCWj0MVfoPEfwZ0RpulRR9T6T90Q1soWgobj8vDlAeAKnehentKbQvW511H5ZZ+EwfnNVA13prYk+PNNwhQSjtSAU24zmQXGxpW4XhoHi2WLgS619Xg+MAqZN58x7QDVlDmPcH5nv8TJd49P11rX/pGyhrzatyjsbQwp3lk9vgXenAUUVwnvCRwyd0lSXmEKPNDdoQkMkjb+obSqRzIsV4luqiGyvW8sIet+i/E0stRf1N4mdYKGNcwtLXYr7oCqGl2w4wxnavc+CBcukrRsDw8cVXT+JEXSwFmxKMnHZeVCG15zW0WlJRVUIYbVwYGokVJPAUkV6ETutbxrsAoqn6jtaGrLjSklTylqUkE5BM4dQj1TJMgIcNmwKnYQ0AivC3xt1QC2LCUM8MJg0xxCBis4Bmg+heUTDdhAwuR7y9VPOHNtSMmKzzPthVl+iVtzar161Vd7FOPe8PvQqm25+0/LLu+GtV0bi0Bk9wp6w5rsfdbt+yOKlNyd7j4MOwmereCIK6wCdOted03oz9HkMiVB77uf7YBdn54CL/9d2xdBaXcCEY/kz2pPaZNmYYSm3AzqzdtnTxBqAj2SBQ6+hM7JqrRm6jLLe2dvJP1qh3lTNsRxkTV2H4U2cK6grrba39dKK3MzU2Q43bI+gw89zehCpX9Sckb47HFOr4xwue5jD6/e8oBmg/glWYGM460BM6wY0HVAMZRTG6Xz97nXP61CDgljcxKekLSmy0KrR2HCZKZ1ap7rvMzSsFFBI5OJvXgIG6MjMlL+qaq6tn9w5cfURqYcg+Cd2hTiKGBxvXjQRxpFCT2rkOSJonKYR/MB9gZqlhJeMcVWvlyB9xvUu84XtWKsLgJDUbb8vrp+8LB4bg4v/KykoV0/FPwC7jcF30YHS1QrPwGKaRhz9CttkVQxi9qRRKtWtMGK8camDEDRcgVVbHvGt+yJc4OOaUsVw54BwOEQF3cBzAVdO/rhtsB6wiKcR8drNC4N54n22StXzgqEnlxQrW4zR1/4+KvYBQzB36O8R6aBVLnMiXFylu0g8H5vmr9dLx8nxssAuMnjBiT/sfK7OtEC+oVINsmy/6y8bHoZJ/BlTiUf/d24xnuwl7zm8+2gaYDzUcux2UbKXv6fyhBBD4FuF4yA/3MMaKmQmqLkI8j5E6T5tr55wsioShPSR1C1E/BkcRoz7UU/LeV9cQhBXzquz/STGhJFbV8SAPpVDR0qcpfwVI60fzLirAPJJ0qfCSzylgvWqElFYV3OPnqgr3x80fZhxzsWg/vK544uXT+ZQgFutzcTaCapQpgOt60YMHyu4E88uSzkkqeWVQbqK1mZ6FfmoisEx7prseeCWWKx9B2LYqmnY/5nVWNNonadwaTk+wTT/ZrnqDgQyJwui7D8TaYOdfL1YfZhx2yZBAiDLT1dtuy76xbatYVd+RMbiXIj0vB5VipXT7LQocW8XVcUI5yyO0Q0O92O0o64MJQseqt3h2Xvjf4zhC0wD4BxGQ7qubMy5WVIDBmpMkKnr/upzaRnTvD/Q1psda8SbFBZ9DuXNBOcd5gNP/yR9AgIebeo83eQJzU5CL7SKXVN2GO5r6otNsIby6y4VDHw9K5VSFHn203YcyiX3UniDgj7ZW4el4YMbQvjELFxwyY4omf7oCDLyeLz1F4vHhNjoORtP6so1Dwp2qaz9arTXCXu96kUS6OHv/oSLpsN2zXAqHBnUhkN0u6i1hGio7TvSgXZj9Gi2bbvCHJTmEqEnl+HjivqVF9H0xxk7QcYTneXLUKokXiTOpevXQxsX+CSECVp3X4Ljsex6v1I2R8Ip1osE7bEOZVfIOKaczdKIfFXH8Ub6BQnxqwVW6ZfDkGFjfWGvYEqJhS0NkZozuuOb7xM77CHVqwOrxLv/AUH+okfZwGBBPgyralgMhsUrgOaSo3YIn/JZMixY97mNFd7WDjsxc/pY9qaCd1DS4VzxoMkZt9S93uqjJVGVg6p/qZahtMwV2Wy3YkFq9dEsG8rcKVozTF+oWx253Ea0eP0ouaBYXnQaqsz35hwYFUTdXoHLZdRpuY8Ej+3Mpz8q9Qxd3Fyg77Oq5KYFV2Fjd26o6tnqza9CbjqVTDMUPn9VTHWk1rXNJFlgw8hic3ih+JwkptJvnxb+CtkuSvVfEEVbGzhpQRLCYjGa9HJCPAaK836OBDou3ykcsimbcSMaHrdqyQJbaBDQeK9hhyaytjYJ49eSIAs5IhI4MaeHXLp4mhQZfMgHT1XnPjZJFPp4e471sdjV2WWAoDlymeKRueZcDqVoJSbqdm7A7pVQYSj/+VhPsXu/LOxP4v2DR8lN/US04IppvekO63vxnyWEyH8o++SROyVTAYeOM6CgLRKJ1MQ5KkGIJWtMbKE6GwAwoEMbn4Nc71h7ee9VRuxn9X0nQygWx/niwT7/RyasAHVw5xnn/XK2iNSSxSR+axz3UH+loXuY81ILj0O76kRNIoey+uV5XPX2Vy1soX6FXikc2L81zgxuvtUxaIPn7y+JPLb9/3Q0WRr8+kJzUfOcOLiw20Ns/hMTmIhOB4GGT3qvlCHb3tDnTmTlmqkLFM5e6q2GPF9OyOKnqLVRcV7YpCYB/X2sDN/T1AbT3hrpFJ+gzC47wA74jCIp0HUW3hptmCgBkTC/k8kci6VXZCDDqqKTP9np9OUNkSFB/PnvHnwp3zUp2irEIqJoF7RIpfKEOw+Imoi6VGPOEes1hLAgMbLk9HiM4J9F197vV0T3WlUBbg8LV7zZixSfNn4nTaAFO90N9Wa6tLhONsgkc6So2wAExlQXuQ9CLNsbXPLNg==
Variant 2
DifficultyLevel
570
Question
Vernon bought 6 pallets of pavers from PaverCity.
Each pallet had the same number of pavers and a total of 126 pavers were purchased.
Which equation shows the average number of pavers, p, on each pallet?
Worked Solution
|
|
pavers per pallet |
= number of palletstotal pavers |
|
|
p |
=6126 |
p × 6 |
= 126 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Vernon bought 6 pallets of pavers from PaverCity.
Each pallet had the same number of pavers and a total of 126 pavers were purchased.
Which equation shows the average number of pavers, $\large p$, on each pallet?
|
workedSolution |
| | |
| ------------: | ---------- |
| pavers per pallet | \= $\dfrac{ \text{total pavers}}{\text{number of pallets}}$ |
|||
| $\large p$ | $= \dfrac{126}{6}$ |
| $\large p$ $\times\ 6$| \= 126|
|
correctAnswer | $\large p$ $\times\ 6$ \= 126 |
Answers
Is Correct? | Answer |
x | p ÷ 6=126 |
✓ | p × 6 = 126 |
x | p + 6 = 126 |
x | p − 6 = 126 |
U2FsdGVkX1/+I7fWFl+JtF23UHO1zlIKXJn3kEaYdW/7TVyqfx6nF2zfcrVME1bj/5h3ayOneKmuRwymRKrVUOu8ZwwmeD+vMKPTpBuMz+XQ+VYMhvMqj2NA74x+iepr7v7Fz6Zj6JNkbVH+P6rfK1vkjtrye73HSToUdmJSYKLpQLavkAnfuJsmpCYU3+ltDJcT2XYR1EinK7/Ra5XxybNs9EpW2hqfUMRNrImzyJjF96h4vn64ckJu0ntAxAOE9jHT/u32/aotH+N40Z+/+v5HMhHNsGjMtx3qvM98Gk5RZCcNqHt7Tf9Kqv+ByAyUBLWer80zyua0hM2qEadZlHYTMI/Or6tIVCfxRly+QDRwN4U8KzkC0LF6Q8fvRR+7fERXMKn8RuSiuPoc0v4f+vOycli1SkuAEVrVtNF3S7d3VfqYD3NkJiADHKoaxlXbLJbi3yfPZChWzvmpS3GJPpdBN/dQeZQtIevgBaP4gmHc2oZ075tN9ai5Hg4KYnmLiEsMRhfL+C4FRfjME8pv0VlOj+x5c7CtsVxAk2Pu5Lm6UPX/B3rwrDqc2KwiH76KEJtqR35kdyMlmVrJAmRtHnIVzANlT/zZ2S+FysJo0CO2mtxf7ljHXjMsWNQqf71Gf8b57qVnG4yGEiNMezTmP5pMOmf0+e/qzvL34ITUpH76wQOlnbyUwdVIGhFaH/PZ1b8J/h4BIuBea2YOhaTi+ETaawXi/L0vU3qNPaNrvOa6n+qnQtmLswGAUbfuUYpuGG4XbMadPhvnknFOezzZRiod64n1M2crZGCZWdzGB1e9tD0zjx/NwYB+KL7+8wkMIBjfD+HcPi05OwIH2Rc4vxKNxxwEVDvJpIzG+2wSyZS+ttAHcmo47pCS/Y4aqup4yT1wf4/zCkku/UqKB1h8iH9gBGizrTizKXFZ7MxY/QONWeXiv1VRbH6P8VcWUOjn2ldqlGhO+qEkpC+nR/wE9lskesJlqFKqnb7eKNFzJjW8mecDXNDTcv6wHbX+au4ruG+aW6rYCcHHOhtsEs1ZDfqzxT0I1vjhWP9kmTPpIQA8KG+Osj7X47bJp/1uCPzUDjO+dWKVdTqPp1F8k4WlW9ZRBV68OV+DgF1wb8kQAjfk5+KRba6t4I8fQFwAFQOBd8HX4n25FCcXQkE2aP5T2ACKu0Oh8OgVUVkriJrIlxC6WWWDlXoNG5voNLJvWOfQJqGo2C5fESMfTgkB9FS28BNcLFlNfUWMqwzghlKcxbmxl5x17nO0ui61AdKU7MSyVz/Xj7PUv2exG9eu9UsO1qa1ewVzkclm8euVmvwJOrZsDhfUXngPXSz8o7bbjjamlKvFIbfx6AJN4KJ16QiJi4Bbi6yPbevQAKLDQPP3NqyU9SMn+unDGg7v7P3IV8wQi1owGSajlHXHuTA1qW5vN8fag1Vyd1u5gJNRC3tPSEkhuYMOfQH1lhZJ18b6022rniyM2f/fzbVnjy1uen2qdg7FPzP+1rCMxN0aai2f/aSF3JkygpxGh/CXULTWnsdGsRFOA6rHcyOAIMIobtOQGF1CmNEBDZd5m+Z8rufle6edwGF0JEqNevv7PaBvGFfW4SGuW5P19xdbxTeegIvSZNCP4Gg0FFD/leAAKjFrcI0mS/NvtpOVYr4lR12nnebaYYr2YJrXN3ScBrRRLdFrgjHjNlBRlP2xqarOlrSqR4CqRG6cMW93FvrFr4BnTFmlSUqZWqFA2g4Uk2Wfz/brta0wBndYITWIEqJULFL9Ernf2RpAvGN/EezAOBYq7aND+ba1NS9PJ8/U2LJqDgLz5Y71ifDukGR/40XtmCecmVJHFOTIk4TCEtwshZVjJWeHwEj1u/b0NgFPzLdiguDaL31ti+LZUPHoF+eVgdlbJ08dMNjyLxb15/yfnvPll6g3pCa5PoMkEgY3/PmFATsituWuV0U9lc44L/vU7cvcCmust/xtpEtUH6t5NRQM89hD5ZKckAGH8Bm64zJF3XpmCjAwgCoKvP3XJCyZMGY1Gp/59pkETC8OpnjI79yWYjq7Lz5u4JYv7XIa17W48L+28Ro9kjnlq3tUYGgPyYmBdEdy5qhj5m2xBfXpklCPG+qde8IPGzTT7O1dlhCrIjKCiSOEQmwsVjvQ00j0ehrmPodzi8qtdiLnqhlXXMepfR+0xKgSIOCywUnZmN9Y9ywAmSLAo+7hWqVYHRIrNQsfY1bwpSqMkXd749G0teG/sJdjxBnUj39ft9fKz3a5ScHwfpCHGssnmxWl8YZJ/CK7GBmIbIs9sa4wZ25gTEewIkyeh1DhOswko6GbVlEbTjfOToGPDXPkJQa/f41l7hkjQlfs0rAtreOC5TUhu9zG8Yep0ugNws95wWR9TQvQ5xnlCxtZqsqlr9ToZI+B8Y0soIWs8QDeUdELxE22XYxBKzI3kcM/xMCxVi2rDQIX5K0Fgdd7Ho4bBBBlHBbiDJ+CairCuB8/xxS56SNFXtFOilNvi/B+MOvzjdaWeTC/AnRi9RmiyzGF9osmJU8291mQiLoijWhL1qke9JPEisrBIOttwVlDKoWbUtv1Q/xraYSZdNfBJ3YsJc7yDirFjnMlR6dLM3JeHs9jOlkXvwZJ8PMuoCl8SzYhRtULa5Q8ZN+mk4hqwuFRmKU6NPkK/WG+/igVnPX737Cwz4nVfOAkYkzs3lNTVLuOsrmvcic/VTJtX9OH/nd+RcIIvVOXo4z4Ua7amB5s4WATb4kdtnw8yitatj1Yb+goEWtC2KJDbxJCGkznX3ATH1YgN0Hi/UXhNLMPcVNr/gHGsf5ztkT17XoifOlaLA6HU/OKparIjFBc//u72ENkCcR6xZAtrVrH7TYQWNZrY18XIitSeglLp/IeTE88tqv3P9jbK3kiwyZiZlvOEkX976ox5+Hci9UmJYFSBK566EafVsGNlRqHM2gM2eAV6NdPiUZbmZx9e9yC/xXu/WW2QvRuFHHlAqVycdXVLhwPuCbhI+HcAVssl12jrwktbfN+sQe1NFxXUclURk8jp2caW0TEN8XBlE8ojtKojLH/FChFqa+CPeSDIFCv0Bomz16bya+H2CwXzdVY+Ka5m+kCYpXv60IKTYnxEHqnA3cQJE0o23YRxQvUb2yTbVT1pmIOI9xcVhpaXagXXXrYiHkPjB4YNrCbdasZ7fbrYRWgfjC7x2nOM1qnBRHhfZ/Z2M5MCHS2CYgUnF/yeqT4TpwUzydO1h3mGrapZBXqE0YS4nQzjf1RCfYDGqtmrh+pNF15uaa2m4wWr21O3r9mTXgkzAXuk5qVc8RIqG1yDx7xR44fHnZ6bKlgLXHmk5fZy8mfFOMzc17ldNcfUAYH52o2yCgyKLsUpqzffMZIf+EN72QjbhuuPPR3HNiHZ31moqaVberjJ24TbuGJU8vTkNlIr6Exgs2uTaaZnvbaL6U+tQsIqm31e+s0NgdyMQznNug6COE3GNWZZutws6aFOnKl0wj1wGUmqpyMyTe45fijqHw64KIuo/Rm0ILsJopl8F1CIWBksgbEe31RPtNIn8XMdFoA7B0f6Zj3hLShkG7lTha3ZCQlhMRty1xN3it5D2+iVBjH4qDlG6DuSI07MZklc5fxnNoUSUMeiwE+2ieeYitCaiqEk4f2Qt0BpNYcDkbNfGshyhrBVxW/diVUfqsh3K8BoiaI0y6hhMHtomwpSDKFXYCNpSH3gXDNmtaHN91gCC1IuMJZ5ybOAtLHBkGgvXHsVK6EVETOAzOku1xVhxK1RCB0XPQQDeRRl15mfwV0zeOKzx16U7fKrCucYZBPMB1KcbQ/JCUlGIPewrLDbfKZQY9nzxitHp/bt2uHYIsO+AJzsUKDGoR+XRcl4FwP8USDaIVa8QwcV+rQKvChaX02U23q9tCxQrIZ1H8vPggjVwjI3DloYGUz+UuKo53s1S7/pw5I1E2L1CFBOgQWY7dZUOiAHgFvmO+3nxHwX6IVgPxmFJsC4P+j3ZhxPweu7ztbwHFIHtVI21bAxC6VMjTfk4m+Aw++2nKTuiBSuZDT1wf9WnsSOj3xCNceligK/jVXCbbgbGGrDyAhc4QFV5IyoRFb9qeEbzvi9WwFklTtvL4UU9KRzW7rVrYXeJGDVT2ef35jL/Txc8oZVQ3548L/aBZKy4+8F0OC/l2K0fkuw3/vMuj/5AjjRB6p0+R/7bTqtdZFQBo0jT1588381nO+zoL7Q+8loekI2tM1JochPAvQVOteC2PSXCQJpLLHW0mtm6lkVaREXfjNwjW2zHtKCCMrDVv4irc9a2cKaXjglJSow9PKxK93GURSFu929e2/sgQBHlFUC7IvuKPvr62fYEvxWGlz5MAlCxIAa6V+1ihMv9YyXLaagnL9tGoRChWS0C0GHZv+z4I+bCUS14FlahDZgohsJBqz28YtYc7Y7/jyvbz8wEuXgtlsWATJ2HgM4IO2nodXWymzMVB/byCzdbl2Bq/zm3eNmmzpSFqrx8++/7kLm+vC2zM/q5fEiyJbqIuKJ8ayjKFDtcTuWWsF8KoEzcd/JDs2hoftrS486bmx7CXY95Wk98r/jwxg+U6VxSMqcRL8vv8Fy8HczaQ0u5OuWD+5i9UA99hwIxjwGPGoHjebt+/L/PHuatvYtqBp4WXMh5MLGk9ReWtiGP4LYogPCwx2rqE1q2IjX5FwETp1p839gtyeVtOd21y/DzGTK7KPTbI/OKfY/rq65ookr//JVOPwkQH2oqHAlv6oUZAqBD+r5B47+EL8HBdaenxV022dzdNHFSX26PF5HmzOW3r5mMcghAe24adQ8PeleNSIUmejy7bbTVaeBsTe70hiVsCYCv9IQ8RU73yLk4ysZ48+fjytZlw3WXxqfpgrN9xMNwhaQVXeZnR/N+TLhHuER4OYbEnhwURLt5wNW7vJgLTaT7Dh1WbldPLJDdUvoAMRubO0IwEwcRxBqkJJTAteUYFVPK3d+skrjIv4eyeqcJgY01JbkR+pzW4DHvn03Wmv8xvLtMJY/J/4jZMBUzfeVSCmPrhbmOPzMpLJwcbtcMpxWA1RzD2t7aN2I/SoZRRWbb3OLeHP91+KrTwnV2MLcZqzSKHg4Otmhp/ifdUobOxx8R2foBimcGEaGFq6Vy6DjJVVGe9e2BU5y3iX6evpsZTT2frsYh2jfNh7CwT+ZyXKnQS3JmVeqGvkoOdA6sjMDS+p5ctPNXV0W6btwfAe7oyHOS6emFM5sQlZy7CKqn5hCx7Xc1yy3cdwQD7juPGHkcv7kSRMsj43EPuEI6ky7zV3+hFMDVeQhwdfrpcsdXcWsjXlSdyMEg+g9/EeoxAlXlA9RVykod1Msk+zoy3NfafZyDgAuVAHLa77+VYY8KO+uQyK03cdjnp05QDwrLdVQgGPYUxw2GuAIAYnMJTUtGaP7g66CrdJCS7xu5WsoMVbf0eCwdfG1moxSLW3jC+D4TD4J+XRHFMuAtQddOUy7obABzE76wKJhOEn3DlLKntQFCtfezFCo2jI56hvQnIdJSx6kYE49YVRtt1Coe7/bbQdgwQNdYBqYSluqBjcpvDW8BePD18hTgFyPowX9PTi9GWvDrMmkXD0yJ4K+ifeW8UUDa5kytfXP0wZAR8RtfLtxnRZkErSXOjrZOOSft9RBCczr7Hdqoie5eGWNkMtqJ19y+4wb2zjCaGePKiNCA//FP6aB4GtryUE19NZehMQObPYlqgqs4Bo1mNCtJUQrCQYpOfCc4IlaY50a6mgbTg3dlJujRiaLjyu6nYKVgd0N5Z3+uClceO6UQdoKC3t+UJ5sr3Yxp5uyi2d4MRXS1HLvfbj8OJIQbOL811Fava+d2ezE1egIiXkTpk9z8OSjkcIYeQ8U3RElCA2wcZ9JaWny8WAnlMs1xDHj6y7874jRjnjU0oUqDdrgnwkUbTiTeL83lNMfhGXrkyxQb0FBwVXkddEiHEwq2WLC2zy6EY6IbPiEcUHGdUlJPHzfVckmvZDK0Nt/2fr6HiXkaiBWgYrfkYxzk/wAyfnoej3DEe22fzBwon5FXYD8Ca+soW+jB3wtOQ21gXeYyQVgN69uZDWosxuO532qCOzAuftBlJHnB2oOMuZQV/QYvZ2Z91ZYbw1TW+yQKUYR+db0jkBa28h7UCdk25T1JHjxVra4VZvirSH2VL5C0Dk1l4pb8+5+9QRPcjAg2ys706BPBS5bDn+Z1lo5VX/M8huZjlFWCkECm2HkEIZYCj6V0+jz3cgO3uExUv0LyRhEREVRHROb18c1oRb15cpijUqDgERZZaoYAk0ROdQVKJ5xGT9XkbuInM9jpirTj8eM42AbC7a5T0SL6m54IpIICB1xKyJ08162O9frnrXwRfGJ3ELt2I+j92T6XPztEeoit4UxIrCiKhSGUJ3kULxLJb/UAUwkPuuIyOez7fZKVL+YXo38Ne8SSvGRmD0WHFZx2WWYS2QH50pzfVoblsJ6O8EFAaYlDnFPMDdBxR5+a0f5aZUYVRJ5kNGOWPB+4XCOlNtehe3u8+yHB6JxTHbn3rXbBq2R2P+1/RoM+57PryUQBox9Wkuk8h3Fu3rDd3poNY9ohfaks8xZtmLGznlGiOyTvGjzue+WpIGhkEwaa4vcO43pe4zXBeeSnbzwOp6NWn+RBR/kTc7dtudeQ/u28M5pnhn24TKflSkElVktzViMRUTI41ADS5SR+1ERRYqs21hvKpAAEf42DuH0w10A+UZhoylk7890RgW3EmemC+awlEptUmNeCmquE2dmJ7KgaX+eqZHvvv0KIJOs4odcgE1tOlSMtcOmPEj397q3asnSijS9xz/eTiiAyrOCDCzS7VhxTlv9xp6AzxCKY8poJRQjwAO9NwPPM1n/b/fWsY/tGFxToaqTtAUKxO8Asj1q8tKfk5T7/eVriyvVl33LumH4A8OCo7rCAFseO6YeDLpISbPhWAzCi84484YSd625pWBvi3NVnbXhcYfhLnxWXqLoVHLdNiIPsnYvqiDRr9WPzV/2YWK719vRoOQGYcI3Qn5GcNHIwldZT8z7cwpwAB48fUrlNctlcNWXQxtcvnqOk3E92Cp19ADWXnScsM+WEbpnEbTi6U/AtKAqo/rZgKwHCUqs8wRLBjX1sJyrlfrG1o0jWUsFYQxfm3qBF1117bfWJw/WxQ1KdFePWn5lL99cMdgWS9JoqqFCV6hz3iS9cpSArqaMJOD9HSZ/9vli+wJBQOhDCo7K80klKs1DyrtJfYhAFr5mVHlwXZ7cogN1NUNy5EeW0q/NgN9nOvnHXQdh7jDX7Gitmh+KSqhAMt4Ku/l+e3HrFpBxaf9VEKPf1ccqWxlxrcNBpIaaM8dRUlx28Pa88eljMsyYWOWo20RWkmjsN1VmFqFeN3i4RjR12wlne8+I6VmVxo0N8uoIUFYscqw6kn//9U8TUAdqWQuNKb9PKhm6SXtRLWj71X6RHQuRAeOxfFoHVEgrlYsgySFIM1hNJ3lCF8ji+0kvn4F/9Jl9erMOdKW+Hxv+v/wEsHxtWQX5ecKCHvf7b+7tikx8BdftSjthxOyZqkH0UzoW+nq0PVDNGXjNcd1wVallL3/vYOt+37J/W3qHVoleC4+Zo7tY0D6M01CPH/FlqnzQyJd+5rNQrWX5ifPdQr9MwMZKDA4w7RFpw/0SWVPsyQGIAvuU63CPXmvX8ZJFcZDopCNBickSlCpqlrzNI89JP4cCd4xzptuHN2gFGL+jTKSHRofAbY4kTtK45hLVYAjGPC4b2was2wb1MofyYn7ia8Hi0RWJWr5IBDEY/JY1oO0VkxvIwZxfKP/sfhn0sJhHQYI34bp/GSBPM6tnbpRCqFj3htoJwge/5jQquTXMddBcoM81d6WtbOfzOQoyyOB1hwCHq2NoX/h/WSvEBJFPYZe80Ula7D3Qe9PTHAZK4Lx8bWbScxOlPygsOIBD0mwRgKorGH+a0Be6YmtbfVpljjpv0DDScZrTdhILJluOKtazELvFsVEGI/O9LwvemMQbutJvcN3rapQY/joOigKR7/OlHzLmxs13DPQu1dcSL5h1C7pgcicNFyhBGYBrXj1/n0YTRojmRaasF6fzQYvvR7vyiAXrvr1DoK4UC0W362mncCJZQFIFcgIAx/RgNYk/xzZGPERg8h3Fg9/tn6RZAX/bBuVQbh2a2G+pHkZhM8N0JOB4Nwo2nfjQU4T6qHZ6Sq2S4v6ZOcST7yy8hvn/Hm/vZRV0nh+9WuqyDWy3ol2IG3hocDBdcwjNbqn6JfGdTo5k6leBteJk3fs5vhsJtg5dH/pp4D2V4btMvYdPJ0kE/RT+TI17XzC3CGMVG0cpAhUJiMpRzEXCNAHBm5XZPs/HCBCKJvyHOkADxH92mZnxg9rWn6+yfICARMRdJ5dvufY4KgEamove+caRcg0xaCkFl3szzzQePCW7n8sP/GkkBYRQlJtuUaj/g3q70z0ez1FMPOYqh68jUjPw/L9QuJ1lOVS1LK2gO+huCNeiGRhpqPRAW6T4CGdejn0c1BQazxYuEBIstw6WuH7zvpLNj9Ch5UEp71VixVk1sWmW4eDBKPIcT9OLlVSZ4oVc7stBXaoNxTlaZhISrwcOW7DiRxCd/R0eOSndjEus7e3pZgP/EowQBHxSYzcrUz6yAsJkafvb0PMnihEmAKlSGriKGSDaJ0py9mL78BimlAY/ww1+cGQDKZ/ARcZc2pAH0h3Jkckr8mE53kIJEqLTj+NXeMvso+Tvge1A4VICM0G92ui9O88eVXIVohXriIs+kOktbJcyTU4nGkDlfpbQxqlhiquDVpSLk6UJxSu++Y/CmPBePsrJ4qKP4qV7GCt1GG2rsMS/RXBjl7j0GoOc7+udj3Lsh/WXLkyzA3lC/19tMhDvGBZTd7fyqTyicXEKyRR9UUWJbHh7aUmPw9RENbNeC3hk9LBtSeiGY37+IbcWByg+fcmpMJup4yItMys2D5/4pBa+Z8OiIADxWyDgUvXstOFX5Byjl4c0BULjvZ7/M3UTusVsjSd8VATOPPVZYRrfL1deOrorKeEcPPAsoZcoSasncjSGk1wY0CXpwycm4qqIwhIljOkCWYH1ncgQms9303pY11M1e6etLS9SUqxDxBuN8t3GRCIP8sXhQTxnRi2YVHRMhfWyHP4EWyGJjab2lrGcYGqPAu+NMXvlX4G/Ayk+Uhk09itLHU2qP2E3Q1y9eR/PvE7Ksox1jwvdHjO+yizd7vebjDdr9oTzQWHGVvj5Ydq7eWAtC8Ts5/WpL46/hZVcv8gXjuCXbqGG2X1SPrhlemyKJsQncxKAIZBEuRgvYyIBSGiIJdabWRX3Vww+19VNgfZyAJiAfYYyZVYwqXzchvoZPODQ5z7pJpOwrpccv4P6GODKHkUjx+n/BA4yZjL0Dp6wYCkLBmBHYgM+esOaEG64lDcdqU2U/9VVUQIz8XPkv+4tgKm9VAEoaCgpsiCfQY1qqA28+t714jOdLA40jzj3iFhf/g3MEHnNtLjPdBBs3h4cWincPUPmj2mAlEN9YDWj9K1XhGpdiUhEBM0VhFbk7T9AMmsm40xMVZOBKL8I0dtMePCFl8+SkCQfpGK4IL8SLO61XlmzO2MT89c3vCYQOSgb6wCm22l2bU+tWn31nNUcF/op0mVANzJNZFVdp60xsoIycv+hsEXhfZuffj2K/YD+s49sGX2d4g/a+dxoEcLZMasO7YWgYz4rcSQMlfvpNqRszkxE9jydfRzVW6oNcUuPn/5qgIp6Pe9/Myb06+T21ulaawN5LZEQelZds9OLFSYzvr6L8Fy/GZrUx/JgSgzZT/0mxbPhg6g4VjJhFqWm2ayA907bb07HHMAa3BVz8NvFm9ZXw6DYA0i0NRH7TIp7zJFQCw9aaGBUldihota+h07JVMsZY9W8jm2XXN/Y37TP8ZNYXFtodyJ2mmtGZ5ee4FiqjI+lGwHuGQA/eu6Y7mPRKF9tgKkQphhFjY6oirGbfGUbJjh7o1gjPXAKQuOy/wSWbFl4INwzNBgoBM7XcdldN9rKk/1rk4Dyg4KZ2EoQ20lG7v7YNk/U6pOq3qNGDsUiD8T3SIgdgE5I/MF6R49xZEvFZDULatJQ32j8tntsb0uu0Z8Hv4EddEPeFSbPZ8bDnUz8a1KjP5RNgV/Fbi/BaUXf2qDqo+AiNF1YB8IP64LcKK6OUU27uWELis1dNKdwchg88j4psf+45ZX3jJuL3nyx1bWOMFd1O8UF6s746n3eywV2BxxRu0lw382+fbEr3nnCwF0hhit2QN3EASEcoL0UVuWyQTcW2ZS228I4rsNewQ+lUng7ZqJLtFrQNKdYOZNnM+b2lz6J4F+S9yq8oa4ep8IROl3OJ8otSglGsjk0w/FzhVyWOuxXvKtjpv50HOFhWmMXzKY7PAApFNJnRa3bL815nYtav7Z74yIqGeCztNK1fJLHR8XXiqqDEBUaa6ZMtrxWUSNqtP9Q6wwGdlu4Ldbuk3FRdlzRls4mvHBrJIRRq7QxpCkI0wxC+Nv1lhQjK8JLZ3kNJbnhJzefzEspMfdzlk1tlfN3d/0xQlomc9BRv4oIBSomvwzY5+YymfrZKaFrfP89sE+sGDBjja/7sMVNj+6pJajaaCrMf1F1Vm27vaosnwee+OVsFZMqHpVaxQF8zQlY6GeW4ZuhCzWN005i3GymgnKaP/LwyvJ4onvQ05u71umsnhts+MzaYLq5STUNIzTakXeNBleFnq37C2IlR5wZZ4TeuMRo95oIgf49BFri9zAQlvCUXF9kUMgI8oVsp3S4b1WZRLiT+Mw9vNNrii3upxenVVeq4LBMes0NIVQoqFtXKnDpXjGTRHOhzruW3pKtl8vQOvrWNqIXZk998aMK2OjH/hPXebLCoGm3llvPC9JRxHdd+haeGkkWObFAbi9jvpjh8b4G35Igmi7ySvy722xMagTdgeUlNyD9J3BKW3kFFSM2L+al23gJXUGqlt+Uxz5A68+cOkP95S434gLiSmISsD/f7cNC9k7cmflHLzFbVqq2Uu5RL0B1ZAGb2TTkU4FtN+jhvdpvu6nHxI+qFlD9XRFLnQLB7BcenvtB+YbQ60wW4XMwoPG3bbNtMdBiNhdb0dc6pHd5eXSReSJbZA0ucc9uMWG+Zj+c7eIbiIsJfOIpyS2tdbWlcVM/O0Aem0fH24i4PyGRBQdQ5a15Dt3a079ObcT/wGIZ+N9haKC5uzhU7Is1vfXFB22TavdQpvxal0ZfZ1qT3sTB2Y1AX9zy/G/RQln/2pb4fQcoIEka9J9wrcrhMa6aXY6ZcNZPNvef8V22xbwFiq5JohYMCkXARcNR/nZVJTbuBVBucS+zUPi34auB1svGcWoCjvpJvwWRfHHGE1osn5jd3nxtfPiCZSiR2BCRTEFDSit++N/TOa0B5aS7Ss0mBj7BiV8Geyi6AXOzgRKRsyJd8CJReriGgMEUHZIdm9ybg4xy3/sGgJTMJZNf9OgMu7Fmuu2t7kfRLDQdTHsk5b2JU89KzQGeZov+dcgeq0kaObtcG1ClwDfeYpTHxv219cIi+ZkhOuotuL+blsvv0MoJQ3kQyyOpioB55JnKGszXk6aq7lFACtZoJewZu1/NLhs8t1thDglv79z8ZdapTQ6Zu3ImarIt0JQXg1GxgbjxWjNyBgoTJNHVYBicn0M475fQQFx/7uhZcMmgY0ZkZbdE05yzKSj/Vn/b4LAJigqO1Ryg7n3if2XXGWs6OnDJAuLq4qc9oo+JBFa1VTSNb/+8UvqX3vYiEsC6ZEheSc0hNHKkPzK7DWJlgPuWzbiKE6Acn8SrnGffmQLR+nReDBzIdtgb8zyE5+9y/trdbdi5PaU1XSX+BfJZ/cTPFK0Covcoa10usToDpfCgW25m8JPPfDeqLOwrb+Zs8ZvvcooQS5uqD9dxGDuNEDfsW5RZNkSZEBOqmx2QFtsNQbI+M7LAM6nxybrMK1uiOF3Pt63oMWjTa4FyjjgsOVumCOr5SaTw5/jRrE9mmN82LTxj3Gl28wkRPBDQ1WT5xwAev2mLBGcehvau+SpZQgjRZ5gvlQWV+a7hLK8qEJPMtpAaFaKgnmStKEcF72h+1y2IfijIOkQC90+ByyXUcVbyVxxig63qjeYE2bSipAuVORhU0U4ypNNvuvgTcfhtnrc7LzOeif351eN97RIEV14ruiFDMvwUDSjFXm3V3RctlXvF6VHEadLGBrFzlp3g41XSYxoJVv6SUEcoaB64IrjLikTZXWcTUiieGf0wfbYWo5V+CXMpi74zoPv5OtiofklxHRTbj1ou7IZDm2D5Pg4/fHFCVJ0c5nsBnYRCFYJAARAECHRT+Eb0bagjYUEUESABDb5MHkokWeUMt3Aob/7+JSOZnPzlULDwgk05fdJ5hUHkcBzUBHiA9jQICZS8azNjFYFjDYUihrZgBZBqi2Amc7t1+U8O7TUgTwTcAMQZB8/1EQ3sM0SozGSImka+91MhSmYrkLtKMejdtx/vZJdJ/RjHczg4PH3fzqqUwe+1i0dD8JromoxhWpmT2ePZ0NB0dLklPwRjRbgwLaanyvBYa3VEb9Iw4ltpILIMGCD/Ne+Rw0R7sDeNMXhQSqR8kDsh+Soo2JhdMLFIRmVS/h88vlX8PxiP4tlSm46WugKZ6sGcRKrzZ4gL3hpN87f2pkpsIMbEmtQhO6v0n0ZBF9hbsynmKobWVh79UibNDFrm18kDfY//woXi5Rft0Nw+shmWg1iFozS6G3prIVWiW87zW0v2q4QMTejjDQkVb8ZRXIRgeZe2/AGBa9vd4FimUR5quDvkOJzaTrpKyNlF5qJ90JVR75rhZp4hfNb3yT8T3j7bynGgFygVqzWPN1j8AEQxTuLxVGhZG7qdh5Tp5x/q4XCV4uicGSJ/gZ1vTZX/wEfZkh9ooRFMjLwk3U3nb/IvnU2Dv+s03vwKa0SKQPCSiIAXFjQIaMGmbk+M/UMDCYp9ktFxlxKPLKzqDnqIy45mZbwQfIp4aQDpzy3QxBSZ9MqbSphJiDbhnmUwFovH+ka/vxFEmIBjO4JJpeH/GeLHGRmdbyNhGhXA3DzH9qRyT7y1nhTzPo1e4Qqot45llP9+5zLODqe1Xahg2HV/Z1QoRDixsVFiaHRm9dgldi74zTr3xbnuzRRU63NV9nJ+7sHrgTKD3S+sInlO6swZIk/SXFFnARfoj7zM78AJasmKat/xEFsrF7wJk6X8h/cXId5FWOC7r8BGqF4YRwQB9cN01mg3SI3vNlDXcgP80CPOY3CXuwMdAt33BH5ZMBkBSQIU9Jr8weA2ZZ3gPVEHP2IQ14QS++XHnYGVRIsKqp3+m4ITOFqvm4FGUSUcKB50NbPV3aelj90S11ldt5PIDU2FhJs3HqXQmx9OHUc9xG6gxqEXgxXEoakQ9wKGWdMay6Gh5ibXq3SaR6ak06BWtkXer93lnEcnqMZvQ4RXHn2/+3GRbWtkviXqha4dtRtxJqaVH5YRwxEXzSbtCMuIik6opyX+iDK0hStxyNeeqGV/YsdSmcAv1xLbLyHChdOQDsrD3XbyNPql0Ql+hTXgW+f5X+yfY6p1rk2fYmR16z0h6e+cIxpEwfmrHxuwbCUhLDruEWv+boL1B8kUtAT+/sB4VgoLgT5DZOr1gLhqZKVKGIdky6Y9zkO2UBsYwQJn3Hd/MdpECY2RT2btfH0gKuO0afKrBr2AUkPoIU/FezTsHlWaiT6ALWAjtDJ0ZoR9quvF+EDuKKS1nqvL543HJ/nvfWfOMOsmVZAojO0PiKbaLvhg2SCCiM9EzYcUSF6XKqs4P64NE39pJqIlzQHOUWVnQ3Idl7ShMsuLSKIADrW+5hXDI3RUm8pmI/wtZi4K9IFuZ7gXQAX9YiO1tIav7RNfp3ylLvgnWjcjoX2yAVENH0/CV0cxPh1BK5XYLS/dsHwDbhpTBw+CxanaQMCGz+0+Ax9BiuspQk7vtA3AXCiXyVOQwtBAEJYFbPuRS9oafazPU9hW5hpAReAproYuHz8KWQKv8HdU09qMRmXE6TJ4GIekU1ZoRDQzUOcBdCkMLk5gG+Gl75lQYJEW+pz4ZhpA3QEelZ2yikVn9s0p6VzkT3JtwIWGhAf1S/+Dn1NgfrOGLnf1KVCik0GTicf4X0wF+9HPMFlYiVTKPvNN3Wh92TpC5yjU1WVffnx5Y7FppnZcltQAFJncLlsYXRfhY82uaxIX4ov6Lf3vH7U2+Voyv8lFOLxEg9tO303gu34TSggPYMAHcYciLIeQHDhmxhpsonzcXC15RkHHe+s8tpuxGL9O8k062kYioMxTyecFytRLUFoqbFaxUjO6WNFtWleYT/qSZommL6fAzba2Hi21Wzyu3OSzI2cosGNpz4YbBT4POO188c175aTybEDuHX7AvY5VtlW6KzlIvEwZqkKw8O1CExbRcGfzIhRUZkYsK3e6EaVXJcmdN9SX7YhpQzdrUmmwiqHG7Qr4/w9ICPLR3rY6c/xw/cfyGXsWCM1Ol5bzYXxgmgPEn5GnoJQuhXwWEY9J9+Oc1aWWJl+3jSbz9a1+Y4nD2sxiQyPiy+fC9kKSqtPX/uyFX54BERGDOmFBHLXWiGQcFwJADjsr0YjBDCC9P8LMr4oy0kDDxrMyCQfRr6bNfV7o4xFSPlqp0xhFQvPM1X4OVau0POtrFl98hwRx9VRVZFhmrVH71lMVNXZ+pmvO9BZ8IUMeTuCIkTdx1KGrI7UWvWoV82tKVviZrhL6PNHqhsmTfJnlL38dOFrveSIIpGE5P3yMEuyWXR1qDfF1clRlZorzP3F5n6TXLm5X8H9VSgLNcwewy26JCPsJiLJ++Goqvgp5CLpi4Xac2CpiN+ecpdEWWT2xCAx3S1NlSrQ5wYqdta0q9uPIxNFkCuXI+8NIyja4xqFLw4uE2hm1t4CAGQx02JDFkNzczIyF5OzoZMe8T2+7WjHw3CKHTaScgXKQZH6JH2KfJl2BpEJtWI9el9In1k55SLKpktPN7y/DD8AXDeswyoxiXZ7+b2l2pghCs0Bbv/GKQCj8tD83tQJqtgn88qfKsABdLAw5dOeOd3W+AOhednLhGCTERsXIxQHoo1iCbb3vJ9VqKRINnxT70DnVi3j6OjE2ck53K0d7tU6WDy+YL4Kd8inAj5BgG3NBTgowAvP86a3z6Ni8QTFzmVYOumBoSCImejf4ln2xbsyeABXLNj5ug83ysgMkKtjT4Qu6MIUaC6W567Rc4VQTCcVPZyMaen+3weg1sUDaPAf3gXekxi+8CrpUoqoO8Npu8h41xWDZXgXJcS/C39ka8a1n9hgKZLGKgJSS0+5KmA+X5H6bsBTlPDd5w9DO0qRE//efbB4L3V8Sq1OcJ/xjqFnJgmtzVsKkrNJ1FoqkjmkgYZkMOJPiN0XZzmG4jMWQOtCPKFARAFaEKNZE4/B2ZjJLpGJhPLdI7JKlZqzWG41XaKSyLAMUaHx/L5SoXij+4OLqgG65ouYikuM1j1q/Em6XAXySIx03vFzpv7/gNk7w3u8MtxveFW9rZRU/6PKZFc0D77nv1m2zn5oHRfLsOu/hQxt7zn2Q4RlbOrj8cw7THlPzZ5CeFYlEX6adeM0KMJK36+t5nDVPxibLI8VslFe3gQCdpheMhusBX+hoXGy3yzpXAmEPcTkKRN9IGGRzZnH1PV9rVh4TjIoPwCOtCqTobNMAGVRqBTrGKMKlMK4P1CfSPsSF06FzRv5biw13iqTjVvQzkjD7Mz5L8ivJR5cKxuEV8IzvPCB8LOCBMcDqMZHw+AT85VQUUwxjBnRAzoWKttOWG8XDJp/ccudMKoIQgdo/YuzL+ufJickh51JDawnUXVtSesMjdVAiws0QGwFq9NyKRsWEAme8+5eN1k2qG3KjWdiMMBuVGwyn4b8bxlM3brAkUV0W5O14N/aCRby/lSo6MnheOPBloISwjv0Uyisxi23JRsuUSvJ8QA52ODTd2J9MfzeHqb68Qa2JgOwfKTUCkeShSqjAZuoPOUdcztVp70AIEQtmRSzuMIukLsWJOoPqtP5gXTsvfhw2UXVrBgotbyl/Iq1EPGPOugrzqVT4Ur8Y/ruk6T/bZkX/hlUJEqq2xs=
Variant 3
DifficultyLevel
572
Question
Hope bought 9 boxes of pens from Office Supplies.
Each box had the same number of pens and a total of 189 pens were purchased.
Which equation shows the average number of pens, p, in each box?
Worked Solution
|
|
pens per box |
= number of boxestotal pens |
|
|
p |
=9189 |
p × 9 |
= 189 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Hope bought 9 boxes of pens from Office Supplies.
Each box had the same number of pens and a total of 189 pens were purchased.
Which equation shows the average number of pens, $\large p$, in each box?
|
workedSolution |
| | |
| ------------: | ---------- |
| pens per box | \= $\dfrac{ \text{total pens}}{\text{number of boxes}}$ |
|||
| $\large p$ | $= \dfrac{189}{9}$ |
| $\large p$ $\times\ 9$| \= 189|
|
correctAnswer | $\large p$ $\times\ 9$ \= 189 |
Answers
Is Correct? | Answer |
x | p + 9 = 189 |
x | p − 8 = 189 |
x | p ÷ 9=189 |
✓ | p × 9 = 189 |
U2FsdGVkX1+g7T0ePRjx9hkKuZqXXKyiWXXfKAXurpIoosqYOpi6dyxX8t6TKqXj67HchOfXStlqs9uuicv+A6cQtERFc+8HCzC5cQkWkhVOeVtCvfsvLXZShJlynZBywZ745Nqcx5h4Wf8tlimaFfdNYNbl+XBUrrW7NeyYKh5Fa8e7IKjlpZZouTMXlyBxMxoG+rgdmwlEzZiOYuU1D1Jx9ZnP1aeMQZT8C9iDvG85QrByKV+qa8NNw6b4/uZUnwopotnF7H+D4TroXEAJTFw+vfBRNiDaULFV0q9AJyexrpe0SYcUsvokxScOd3u3tgcvE1rDFSMUxZvaC3rcv76HfnZkhn9v7KkdWL9ELDjUkLpwfbTTazN1qfFwdNH+VimfOSPImd74MtpjGdlu7bDGHX4KrxqmtdbfDcRDXHQ7kqeGNVCAaEfiILMo1muNg3MQy7YetU8TCz0oCCgLwwqKJsnqpXo2l2lRIXAtZ4u5a9qQ4rGtWmiTd7roCm2BTjWjaLWbuQJmZuDwyLZHLHr1pIiQ15IdWLTTjVEgOhqq44ge2gYBVm6THpopGauc9F3ZaslqS9RqX1EpPEEb5/zPpDoI5sNRPKz1nn9LV6/4sd3lC5IB6TAgWFFvxLFrL8+mpyn9l/+W6NKVwmTSIVOhrWbm/FFYIxDKTnGi/F+vSEJy3/1/NKMyIJ8mFxm28jMRtcA0XIfbJOQmfkZeicByOpEiG6jxeI9xZju+m3QfrO9Jy4Ph0kjTzV1wmIMEJHkV+bPposOkl2NCNRyOvuC7DMoiLffHwBw2gb4L5lwsFxH1ALcQ7e1dFj0pKVZmEm2GBRdF3ekDmDeYB4fXeGnGT+obFqsPztuED8iBRC3bzEVsheA7HdiY0NoBB/RfYA3n34LE/co/K0RC5OZSRCS2y0fG6u7JGQxGtbkzQiYh8xGgD/J/UTVTy03YU950H4X28YWe5rYQ2cQTCTwgzTMonC/DKZrUlC3hfb6acah3/rKUCGtDxJgoQdqBkwlUczVARZCFh4AeBLIAunDuwLPBI37R+Jv10PCsedSCjNKvFZagShRcdSffluOKYjavRKJccbrdl2PYohlupb/qdj5cfBggXVMuagynkp9lzzptYvnUXqYDFSXWWmhQfc2E7UkUw4Ypz0dHkdxPuRU8xsAc4gy1LvZVpAH3ZfY0zpbSUv5n5I7eWyD+IR7m/vf7HcxM5zuM7gd5el+ydFheOktVsI1hZy/d9m8QVMJNf0dJh+LNLr3/JdCPcoc9rbeNBJjn86N/hU19zMgmpA//XY4gSVNXH+5k5h9OWNl/TL6ZbOqwIDwFtkRmi2MZ71XVXJ5868A5D1T4PpLDuV4z+tomC0FervX0q4OCuSUQpOTHzD9x6USKECKGKag2OY57ya4qTrJrgShObyKq64+bOOt4ikZMfusEYCSLqQK8dpU25+BGJaTW5FT0WpDUk/ki5DWBENjr/KF17TNso5aQQzvEW8LCs9LRAUSSZX1opr2QGK8KEXFgR6zZviSTIw6Bp4efOBmSWAw6cNVrO6OzVDhT+lFgb2y38jGw0EQP1JwywP1awMMrxNPFyMKxKlnOTbkU5rFF+WCgjeodE7WwOZ9fvKF4tHEKAocKwQWAqcR9L6dK8C2Hy/QW1wweTo0bAeEE9VHqie53778qaroHIpPavJMwgWqjnvuVYIVKLS3J3nMg36X+Q81YJrwPnGY9wyTQDTs+gGtXBiFULhlv4jcrcAB9RXHnYL5UDhRjlEKqIwmyz+BZA5ch76IqqmkKJ3hbsQjVuxesw1DUvfgydV/haXABtIdeTU9HEvf/vs6Iob2WYKDve66u/ksRaroORxN5NnzSV8ebd5V/DalXhSTmiaFM8pkau1zraUqdRw+P+q8ne/XbTeZM0Aj2atbXBORuHFjxZvqYaIia+REyKS0iA1TGx8SpuTDOc4SlWhSyLGzZugLsBGp1wWt7I6p6AOuoaPbsJ5LRIo1WLsQLRHY0YfciyP3+eOD76Hk3/nBxSZst/vABo58iW1QhI5jtsHb+RHsuOyVrjn3Hgg4uJtAYEPWaR0sypfrKG1g3y+CAIqcYevJt2zpw6BxA8tzx4116R6B3CAeNu1cQp25Bgz2SIV9nuuuZgdHczYGQ9xEpPVyyauVUxLpfyTXLsRVBrk8+CZDMe2wdVTdjgbhCWlRBDtM66GwDYcYnFgzCKewMxZdDQOaTqM6HMcnM9MHX/A1BnlniggupkdYNxk4StIIga7OPBG6s6giJm5LTYeRRLf+Jp5CsCwk2IYdtgyiPqz/SWa2xWX/2FWg3fvPLpt5wAhb92pigz4KZJ9de0MqlPOzCfW9oTa0A2pGg7IS4fGTQqkU8Y305MABQungdg/MB4ZbTYIc3zHmK+oYk5d1hAX+nAwikax8WK0cvculD9gAp6IhRScJbhUvPcwa412haXYVTuvULVAg2uyIOrxC5qgP5Ohbj752q3OyEEVPVpOQQxRPPRuHK9XQqiRDHK51M4d4L2wvEyvis035fLwBCOb6WRmySNZXHpeAjqZT+Q1YHiki396lbrFRVJmk5GVeOhgqWz2dh0P9JLVZNv8BGEJKOSE9OdDWG7H/YilAm/H0iJscHSGAv2HDYmlKVafbYruinOKRVUnOfpcJlTM4A/VtqS43IParufENkxYWYvhpOnoPTGFP1lMqnflzeih/YmuiKAq/nZTjy1xEDku0S1OJu+PmMKXZWs6L7ZX9pMzrA3hXvxbHbucPbOAzJ8k7peyOMEj2IY7jBXGVysTR6/O3vytzddE4o7HbnRgwAP4UMjYIS0vbXVH0NRiuXzx0/NqzTHEQ3cmXryQA75vta4aPVQSjEjCIPMDFI4GBUrmIhIHXBPMc5Q1tRj6XooGRTL2KbwAtGeP5nuYgKMmk7/S0wxkuu6fQXT5Nk2wKmDg6XYe3hw4Wdf8CsgJ2E7xijAIOdVXuBXFcDpKjNbUkki7tpRJm2YMaHhuZaAaIkNiRhON2d1DUed1RqDcp1GPtuoy405btRUoUnbbHI5wKrg5+Nx7prYRxt1DYQgYneh5mPM6iM24Mi9Dc8fr91c6tfyKstB3do0pfhLx2F+T3RCJSfP95NiCrpORki2kBNj5Sp8udtLnLwnOL3jiNRMWcdhrFLV5/m+WrZk1G7B+K+Yf/2BTj2RjQ0TSoC8ddZZ7ja5PWwFPHEXvqhVikRa3LF3b6FqAxBIfINtjZMRQ4Kewb5bUQ2bPqIB5RDpMeVgD0aTOkHUWFQpFFSFnQIGCKW7nnXJY1XSfz2ZjdCCio5uN0OjtujOq7spuLCSUh7etMlaebqmceU3F3YE8AQb96EbdBXp5dzkYevqZ5ucMupHizO61KD/QRHPciFGubQaBE9stqL1BYeldfG+YnyQcI/51QOr7bSMDeMAJBBHDQz+RtbHKrgmpDD7iSnOhWFFhKv/7roESzYh1nkRstTDoqEvZpm4+zt2PXAr2ba0jIRx76lsFsdUlFs1pr96Tprk/UTBJzNEWYQGr57hMC9hFEnG9RGGsmmkm3YOdNlAYo3MWY+LGOcYalVxfbJNNqS9r1XP/rl6FiZqOQrj0IFxnTPZ++ztpr/RIwzGGnvtdrXLHHj8bTqbWpQOkmql52tovHnVt+XhSwUFY8CrJUxt4Cbvp1OBovNmPEJuMJlZdl7Is1byS0RAkqvxMNJioaUsQA4D0zEYHhIRo4irdlh1j3PNrPoyUoZ61ZR6R3JENWlpPYnqLDuC7yi84FVgFj5uX8VEmarOMtpo/jUn6JgVwAlnGDUY3zSP/61B0VV4zIHRphZ9NXBN7Y3P7GA5zfLUU08PqzR+d2M1bEwtgMgi2QW2BisO86L9/i076AD7IhNVJjbFIjCxVmpHUe51K5ZOUp5bEiydMvbCeb3B97UgVKNmNrzJhidwSAQ2IvQiattj9TMe3XWyZpMNtucKpI7jlYCSm+zCxzXxSD6mbu1kduesNxQY0pQWRQrkVQb23FyKpT6Q8JStBUEHQFJBJcpmRNs+0SrPbfLAvLNr92G2OUmtdSbT+2XVx4NtI9+NBcjmFWwdHRBUG/rokBI6BxMwZD3D4mBcv0prXKKgkYGifOuuepWIOR3oqmbpowmvm14Ta5KzA40IIEG1mcQbr2dNGrXx15qopHqGx4rtndhsxV8mgEDM3a26MeuUXsLwAobbCB8KKXO0gXfJxLi+3TSzaioq7CnFZnNgRctzVR6kf6OxJE9QI9i4CLtiAVMWsFA5atcTlGw0b/ndriNPhga7FOkpx2OjLh7gc1iLYGpOjAu3n4qlZHQCDIjod+AYrFPZ3ZvivFDanRnRBR1frTJG91pj1fbHE9qkUUWwLV1CCmmjb1x/ML15WS8uFd9oPvpmObfpxeRmP1vAB1/lfnL6Mxiswu84RUoRHfSyQ2DBApBNdyhDqBOKSO31vVkn58pX5/lZcuAdKf1/ULlkZ2dGKG0qy1CUP+f55UNLuCD6XHnHjn5mjuTWk/p+YBbX17E4Ke+/Gg5NHwfq1YabESR14WSOGctqhqgx6dWNiyRcMLnNAbk+q7WZ2HK38qYQ+uaKmmwqHmDUQrPEBGUPo3vjUH/mILJnmwgeORcvbEI98J9XdGsAOlt9ixzPgnnfd2wyvNVlazIFN8iTZjdLc7u0yysY0gx9j6URinGfqHaiLYT2kWphJM5uOyi5Wq0hSu26YymEot3mf6JH92jYpiUe5/M9Jin5juwRmET3fM4I0WlSrQSGaX+HDkoY9PoNQmu5q2CbnQZP2xJMb4x7Mn9uv6q+fJvHfBTp1rBojr5SEUpbwrhQc+Z/mFm12Yf7T0eOVUJqlPLvAlYclbA5lvgl4e8ssbHQ43Bx4PTzVhjNKK1emEavyMI+ieKNc/prU2rlq29gHGZ/BVPeonUAXBDpJ9kfLNHPCrJG7pkFtCdzclRhGQqFjBz3lH3QWlf3BMyQPFLdECVGEs8/ifJ6n1ZWQR6gHseiyD32UBQMd8TT4veOB3K/o3JwgxcAki8T+9FqZ/tAL6g1V9tlwpzkYo2jEa0oDs4XCgsvNcEHP1RrHLw7lvXyFM9Y9VUdytip0QpJcv1OIgCgtPots16rth6Wp6I3FIIHUh7VAyWa/4wurtJyLlUVuO9k/8O1+//+rcHMkCjmeffTvve2zEPF1E9mP3l4UyNMw/fAzRAnRgjd2xf1C7M6H1i06/CmIOI/4TUtzICUWjW1kwkCiY39NyFEUsA7rgj1Fyt05szRuFUgrz0aSd74TCo0SpUulKHP/ES0R7FYtYPt4U5UlVoy3K8JJHfUWygsLb/GfkkRobbc3ZY036jRsvo6BHsgjH/PSrN5CxmVzzAwXG7S/TnfCa+bfp+y2xxIPHtRIaTktJuygqQIgCM/BekO+crbXL3Y+MpuqIi1mhTYMwnM0a8qaboeVhHYHCmt2dDy1OIH1fiyvRY72u5ozWZInLqs1xooqJNewplTBmx6tExpZXSljLpd9894eVjb81OQCIgSpe/gW6iPQBN0mrfzO8XXuco6lE3b+Os3cIQEMwiOR/2Und9UUnh9PTb1imAIsnbC2W3AuiydPxGPlyIaNtooOfFQm2jOe7SpQB7m4xg4aC0q7CQNoaqz3ZZCEY2jyIjnoDImExITjsCjn+41HIoW14I70bmi/boAup38P8ksSkrCIkJjSH51WeSDI0glr3T8tj3RpGr3e2B68zurarErANpw/mIHuTH6/g2nIri+X6CTAwdnJ69d/jo15ToEa5JgUAekHqQ98Jnsuz6c+DID06X9RjcJ99OqZI4gIrBXOc6Lu9MnW6g1Bzwnoa2my2Drz+zTCTjG4SeRmCoJe+h6V9RkmjsVwZjsF1UldvmJDB7mkpuiNKJKHOWkoo1QbUOXsh1k5GjpfFVfku8dZAxLQCC+EU+PUPI43v1+RroB3OhhieOXzmbA+tiEO/M46Mw3ctyQ9GFpClcEwNw1MKZLXNT+Uc39mFnatmpUrfCVInLoHpIyZrb3uFo3DNAplcepojGP6aUILe/wHc0wjcttzt3xsnOdKl4ypoB0SR/zSmO9x5uon34+tzrmuIMUuUNkukCC2B1nMcB4OQ390+1mSHCOtNOH/8FbX9DHz1JoZKXN0yngKkGG1uGBhpJXMnMtHg/FzSua7qs2NxUZSODUHXKeAIgtMJJKECE/gDoYF3J7hBJ9JbqLXB3Jof2Z5U4sXBPVYfyj5JMOlgiIRUz3GbG+pEfHEpvS2EuuDTEuR5IInwEeUwZc78qYIBKmDxsGT6OuSOV58zDroD46y4/XFp1RRGiulHyRgIWXT5ZFfRqRJHyNei7E9klUgbyuC+3AHs1YR/aMvE3dBqchP60/hnVD3N8OKQt5RWZ7ddp1RBzqoPREtX2q3rnLEvE7qgL0VTE47exFqOnerxryK20WwGxoO0UaxfcfXMijbonqti0k4BkY27hvgJD4D4CNXKRRdJk+o2tLIhXafY1xidzPlt/9llVCmyVtCeC/MyiTumEk/cN4I32VtTr/ZkvwNHz8cum5PUOeTiZj5plc2+d305dLQnL0w8Rehmghe3HUzGRnfwcTRElo/6TwhZcRtwv4sktvlZNDbSXIOgeQcpEj0ZPLVQCCa5deHNCO33flwu7K4W9FNv4ZePaeuv8OvihUHub10xm5yUuCdi95wTnYk8Hd6YHuGapg9W/laiBd8RJq66Ftn5YSTNsmfYIAtYSCgBcgkU9qp5W2Dx/v1bEybDPD6eo37dwb6wEatZ6HX3WGnLad0InQ/ChjdSnhHbQkAtSQYjlpGmLihIclZxcBlMTJPNWMh7L58ZleP0a7eoLb85rAesUQ0FiPyLS9ASFsuu6z7p6czjRdFEsYb4yGsclqPc88l4L6jh1r+Wh65C9CrA89PRcWXHCKk9/NJi4tb4vzwVqu7GWuNlyG3FDBiekMYPL5VocjISAblzy5nG96894vfU2rQW7iOVXuBHgpPAbX6U0VY0xlPj27rLMOPZY3BCqxL9Hpf5LoVld7U8Lk1PehdEHo8HE0GDsROmDFI279LxlwXPkPS3LgfTWkYEAOOJuAqAXQmwiFEjOO+pohn8EjrmDZ2HGhjDbT/7r0H8CGtRiNcsOK6x1+8kNFeDxgFTZsjT8pzW6Zzmi6PXlCA/JExsykzxhCtaXEP54yFJ8RMqXtH+SqihfKCePLh45nMivnk1yU6MYSVGhoA+/S1V9WnyqCokDO7i8BcK2wCzhXPlO1PM2bvvI+HO8PzW3DAX1ZrYBY2cKjbwdIueQCvKcF8qjoatzDuPcyQgfonHlm9W6YKGVIedO+tQA8gCDcZLKivaNfa7mcRIbjhuVS1bES1QHB7Z8tIhOZWLZ9oNUlsoZrSOkKNdcOu7zioPV3d8QMo31zVuezdm+OGD+nx7NLQaRAdzmTgfV2u6fYguIj+OJPs8ZWS5qPU7WTVYz3lG116T3Yw+b2VNaeHYcjRm5ADFcVN6LACgqQixUNsWM6pAGcXmZRYq7JMJlmLQomh1n9Eqpl8Sa/TmuJsiwciHWGdTGqqergjjAkXLWvh7M9UCu2A5HX5QxeHOSBxjcoV06RgGVtVdjp4i/u7qHEiHrYdWmnlQ+Q7KnbTEfxlyK9wTJZ+ZLzsoQwlv5AD1nvh+GKKe7VTYlme8HmzP11AmljH4hFJd9Uq5rvIqi5ziWgW8QfJ4Eq47tfL94UEe7l53uqtL9J8+c/FehwY/a3/TRYRY7wONoJqaYIy+k7RNHDEQ2MbDOWN357KZecmzHxV8obyM10/9OFa+QZMwrpyfXwPHkjYxa3LtSRZlSUAIZ3BLWTQXnubqAV+uZD2vjOvCsslwBEQ07ZahMgclPUNYGyiEIxGyMtU1SI7l0B4pgoFu3QBmb5zhVe5MLbP3E9PLsicyqwZ5O0aUOQBjdrxXVUzwNP1Mm8ESE7mEIrn4uXtdNBmH7usfMOl7SAYRlJOjm4pvLXhJFYphKG8DWnKhJKdjWEcbdmcPeYyfRwFa2FlWmm7TbMfbWSL6jhjCQZMIuIbHklp4eUmf5cUTKIraA7MjVwmFy6AsnfbLhLTgzg49ymZtF5WxNUz2JEVj4Ggqw8qRj2oMefcu5nEztFgWqL618484oUh7kvoS8xjOid+oxvQv+EG53YbcAXzfDAg+FBvhEGdEtqtn96ks7oi9sWpLOGwiZbIhFyWJjg85ADZLGPzzLunGL5NeXtmb6wysgcgwQbNwGyLeNbQu2aIUAt+MYW9dGxl6TOBsKb91iZMXGAprm7yo8OPVoHlfz/scbPOxShs6775/1jXXidpb1zDIjm3c82kqdwc3VQE3PfPjFqdCn6JOqVr+Wb6ewv2y7FXl7suT4XDfSPcNU/D4bzzjkYENEFKIV5dv0j5XUnLAdsfRVv0nTp3oOtww31UObWwT2AMNrEm7MyoiO0Vf2R0TFTrbP+BxIUf6w82mCIWUh5PEPH4CyefDFBbZHCJqXl5jBuBND4qQOmcER8v8OLbCVDj14WWCDHaA8mdRWOaSHWXGis1ibpsnY8vSDtdA48Q+jVtF5Y6xLCT/i5fbPI8Ui4eA8Sst1Ha0lLa0tvsttHaJinwvXD15rx9Dq8JpMQ79P0z+ySt3B7c+LbsFIGarr0CgtSL8SdLnGSnWXLlfZGAmWZShK2sVlkx4McjOc2UkL3H6ahUDmMOQAOKaz1Iov6f6nIqNDFbzZm/0VZi4LmzUXBE18rQkaNbV/imLpHDdPTweMLspiK3X3gi1fAGWWlhPv4JEHLHvOJ3d1xAUXg7m9guC7ZFJosq3ID8/rJbkF60GPcKgPyKdT0J1T7RtUYUVjjDYP+DJqzGW3vjuzdbvlXZ/1+C+r3ZPg1VAze2I1wBdm5rz9SnMWVO8z4ruLwLupWNEUv9y+qZl1lCgfPS50t9MEIFer9TkSzzlrEc9gdQojDcLbKKdwQcbA6txpldfVtRJs0DbcRYgD8fuko9Qpm/1OwZE6+wR1gWmOBoU1AdCjFp/ME/9HV309PgBCLZiK6WUXAng5IWxuvS8V9irwfqG/E/+cP/ZyeNyiWxCqs51hYfjuDGHD7feDkFvhjy9f+IxeWHh+olOHneYm7ZdtIVpUA3xs9m2ryYzK6h7K/mawb8hmMWxu3a0xx+OHC8lDtMd3zYc6dDIWHshYFR0rG6rG10eBE+uEbCIv+i4NTCGrFy6tRyDu9P8+IaWwmacFg/JfdpePwXGJBi/FqpFVq4EyvPrqv+KI8JW04BQAK33tGag7IWkXq7UE63IIPHs7vmatDbIA69tZGo83vw0prRSiLxmGn49WMBDngi3umK8lZywEhp3wND26uYjZeyq6UJo5KltDPOj+0bUA6AQ2IjD0W8/HWHIKMg4nrPBqOJgNd4B8+Ykis/Pi6/N/EhVXGpahDSo4pIbrIef145D7UYsnTh1eHx0CmnDI9eFXWQn7KbV7vuFPGWINnCvChyAZxotrgXUi2fPLDiZ8odLWtWQOKJEIDhDG3G6ee1r3sPIJgt/THuSvXJG7rclERcWgExMJnF5EKvGJEHSAiiy53hx2jdV9/hDNW7IBdE0cO8MUPlZwHFzzr8yoAoFD4w5lTAEeAFhAbZ8YaILn1qm7Ht9b/wMZX/T3GGPSGE8BBHbovx9j+bsALdFOPq9MCmPl18MJNTEE/oxYf+N7gWvpOuKL/sVYAMDBfDrL8lJHUWrHKlPCSYpcE4QnSiSVRYWygbUYb/fSpLsWd5ErJtyKqIlebKUtzbQdbGZJ2UEk1U3I9yA6Z1Da7WyaIyZ35I5WeDaAAN6HqdLZHVhrWj9qvhjYp3+IsRCfE5tQ+mz9BOoINBM1mFcJjsTJnsiIm/ZBiWkpQL67QCFejWQRg6XTNwNKTzIzHYDO6DdSzSTRc31vZ4rnFOoA31JAYZ05Jhc1cTavklpOSSUYAA8TenjVEWP5mMehQiBq8g8q2yMKebHGgSbrczjpavuNsRpKUTKMlgkv9PXYP9ps5HaZfYkyPQMVB7oDQL1VmQ+aWilyAStvxPnDMLoPAicgCyH3EF9Pm26la3lIGqNw2Xi2o+yv0IWcmRfqTO7nH7F3f9GLSbx+qpTrCcW+7Wpq3TNM7TgTA6OljX/9/SQD62nnN/6iOGQjjjlVd6RkAI99aSqTle5n0SaOc8mHOk5H+GudaHj1onx/mK3cUJuKwW6Dsz1JHW5ltM/DRXTrepiEX9wrs5c7iIsFvSAVY605fv8mZ3ut+HEi1p82NvbTJt3H3IMbYtG1nH4GCqP54M5V9z/sRGZBOMp3ix2g9Dz93gEypbb/UWD8Rvm2gzKahWAzsb+bHURvRX2HBK64WRkNZdqyzsNOzNRuWohmrbDuOZC6mZJ2BGsNMEKGbDRJa8iCV1FDcUPsoCSSk5d3UKMyIO25Kjsg+n2n06MDgZBbXL9v2YVFBL3TUafBTqk7+bjEPv6QFxxxbGJWmQyYw52QZna9ARb0iqJXTcUuWvWUjKJ1seZ7zEKtvM7fDOyf2L4tngKLwMldiY/i65jZs+HNBTrozZcIuekQUqxlspV03RI22AgFp4OM/qClrp7SCty+zUTGhysIwRuziOlTSRK3f2r1xmowPRWVDl0zBBdIcyK65PZ9DCbYDWlIQEgQ7CFDu7NYI+Q8Cx97NbSbwCKWkJA3xoLP0LOWQEzl/adfZI8057g2u3VaofDNKVwD25EbEp2c7YcSfWlnNIfe9XDwDf4yfVXbry7U1rED4NgeX+Sss0PgIM47HCBRiBDg/qZ7TovHOENf1ujj6PTk503d7SqPtArGoVsyguTMyedBe7SrdG2bJII8AqExJbYIgxNR2la2ozmIm3y4Iu/yzferwLwYD6Wpo18Ww/QCmzxOl8pSNOsHoAOQhC6mqi8rU0vO6Pxkzn/P0n2lSALTVzqgIygGDxLJRq0DhNBYLRxpOR/9n9AID6HJe1eWmzCjGaiVplxRxMUR9cdRPzlR44gU7q8B5RsC7w9PLVCx+ITppv55oO+NKYo+F5MlUVeUfAQu2yfNEv+8jlBCeBQytmvabjM4cPfJXvf9Thlldn+jh38C4NUM3bYvnI7OjdbGepJkqqAr5ME6FneIARbaktJCy9684PZBnHekJ9ZYjlA8syE8PNY4ANQ2N80TIcN/F3I46rkKXpNJK0owIYhgLmbkyZ0lxLerOYWJs3p4x6fi7TKzkca83S52+ahQOysKN4p2a/cj8mX6EJIBe7wGlkq3CON7z4w889/igjzVGHqyL8I1C7R1VwYohHatU+fGTugen6OEhUYWCt+I8340Pr3lStlK7X0qWY0gJtPABVhPTpLCU/O4xvrmxdnyTrfZMby97PzoJnvCtBHM01SULr7KZWI+4mYdJyZ+T+e61FOXIGexJtDWVTLqn7ZVAt4nSr1aL99anbSRzkntTiy4/NvIKVqlcoPYQ6JEXGNXDwBYeSpMUEt+BHv9L9fbHP3v9F3iL65RzLFHtAtiLZ/r4gQMmlJig+f4b59RCeiFn/birMaj/o3s5wCXUMEbVQ02tazfmzGilz/nPMzFHkv0uuCYZNTWHI1eepewBPC5L9RI+ZaBwrzcPEm01laz1quYH8pbBe1M0Up29dVzcBlfmSXyAjO3bcnPMQ8OpREy1DbOMnZk6BAv+EPmiEAP+c7dk/YKmxM+FkZ7fBusDUCl0sZh37DSQM1BaiKmpKfaMBhZ4UrIqtKftfJ4cKT3XCPVaPiVXaUZMAGGsppWYVs3XADLqe0gEqp1qfEc17jGvsWngZFYfDFANExYXghRjAAo6PW8B1yx8CL2gRb/X9WFEACLL6bFmpXURs2lEqjBZMZ+MYKmSGdjbevRNlYUTmpMpTo1hfiEW6VcW1fT77LPZNj82ZFEO2jA3j6ad3MdV5T/qKv/ucW9I8lEWniunSNAnRhIE+8U56j1Fpk6HI/CXuTpb6Cgc73VrqSUAOU1hOUkO+eSF9zBIG3yUkVBTVDb3ZTYQNlBGEvC88R8eGYg5XkETUFGEv8wifRsTC0DMx1sRg7FRJWBidRWBp8xECN34uLJPizkiFEJUJYsJEB+Hn0nWzzqy3SH7m00aiyh1Y0M8prHYrLLqFKJBZXl5FjU8/9LWGZ5+vmncTjmlQ8BS4Xl/hfIvo+fbvklT9AtXiZ4EMJJCvRRplV6+rrZfq/gIROsZnJ3a80FMNkXsRr93Fjp9C16UYZYSpjBoyo2fuhOPk+otiduKTrf0h3pUe4WwGUT4RA9BV+dcd3XERQhVjmSFgnzpST5ogp4XhGtgWuahBuXW7IjMO04BLxd1cm1v42yoz2Wt8bEu+lCGAqW6YJKsxLm5UER9JXaQxVeAwDP2XECeNlm8gMLRFe2VlGfT/Yr2USOuCMnTDRfYaWiMPy9RNqMxLt6Q0ufRMxSUVcrjE4JDheQdD0kSbaakDFCGlo3IqRQTQQpyqLcWeU2+Fa/qryZz1BeTBiY9DBVm78kyHBCwHOlCQUY2p/YbVF83QxcHkzPHaEP6YylIjteRy2syndK2GUJC49nt/+JigeUC4WeSA/p8P4w9fbCM/+QenwgjxEiLC1sxT3/8TsvUucvPJcv/jiXgW3RUC3T5L1IyE0S1lUahuDM+jdjN4zOojd0ozcdYaPhOVzDfe3kKZoZ4j49IiFT+VKcx5rUL1QrRDzw7TcQBc0s/DkABpUHRa3KZtuQcExkc8DNFLMF2QXd96tiGB+OHAH0wfCps4feuvtMfavgR3vEKURuzszqQtBJnL0gn95xhxzu2kJeO9stiVPlyvHJW6cvABy6NH84dbDFwiyI5HRSArnEibvM3Zv45Rc9cLjevmRNsau5fG3ms09FrZi3YJPDaIqkUrjzHwNZrOzv+UTcgI/sUu6jqcLS4CkYJMTkwz1+Yn615RtXkGvPYCSmfpP82DDURAgbCfy/rlP1Lvrjc8K1dgtQjmcEmjqFLUq+UtIK9Mo3BlbSRoIurglv/qqHakl2B5Ew5jE50iWeljj4yhuAvEVwCM5mb1AM+emXl7dmAO2wp1E14du8iYpwfGCq6DsJZ6VbwhWQ3bL+DyOsLTmkoC36RnvB/nrGQXgAfBAOEEE3vOrVCyA0DwuMYw12eVaDlE9egejz9pQg42/+vcnkLLHdm0kPqfYavjRHga427EbCvE3CHt8fIz4y8WKFapS4visi+SZVRsH8xgXPOaYIoVvuQBuF2tWr0iJMYUGG/PGuZt8OgClxKJd0/ReaMo7Ny5C5AB14bus7gP/OmIHxFRfYt7PnGQPyRRej6ohpKaMJ2aRqgJ6K6knyWr1m1UPjuItj3kpv7fYPr4+o7Vppe5EHGE2g6hF5r0mGzcCr5UKTcdP3UFEaTcUHWrBViSV026fhlqA4cXnnqsVxUrN6BrKKagMCbyrqjnr3mpNjqD6684TjCxcjhnVVm3kLWhdzG9r/nJfKDmQuaFmQlsgK7+5g+BmHaon4PDdzoMkfqWuTTwG4Vj+oRqpmuYvCs5A1QVOcmaCJOSt/0l+QENorapfrN6VDtFl+W9p7VJu3oMevKU952x5KrpEeP4wFqp0GU1nqPe0XlLs7tLwT5pJ0BYkq8qoQQSJQXEkXpVpm24iugOv5mX5ay8YtJ8yXj7eFItqhTKOojsfoM62L7kGJV9VeqXv2sUNNvw3jVrvApj0SrZEwcWcl2P3pkYp447r3W8vwZUgwKLLRIBH25LJAC9oSMeDVyaIncJ09NhYcYa76br/x60d6rXuSFjatk44ZqqxPXrRo7YBTCsZa7dXH0n8QoUd1gz3jKOPlfq3Po5ZAtPQUuu7tM0oI0GfrCBpyN6uBxIX7N4WLJhCcLcv5TVKR/INEdmEaKNLN+z1Nj/lBEgVMWfRbF1yhHZn/u1qcqtkcb6lXwKyUgBdzQsvG5YxTqSl0p98YTlDeu1Fi6TLTUzm35xkQVwKdJqGP6xy/oKWMW+/Duvs4zL/5E7ORxKvMpB+qKP6VliCzSiomsogmFw9wTQEJNOyc5ITZYR1U9ZMfPGkLpKV0/BUO6lIrF9b35srX3Pnvqu8C8c99M2XPejwpfh21ldBsuT6pPPMCzoj0XKKfdAQ/V1FkbbwY9teeos2IvoczEEnpJothTdWnBVTaLd0l/2FYu2e2cnxKYqrT4/e1qn4BxgvyTvLre63+ITMgHTSXsJusUPXbWApbJKVaHq6mCFMm4+/20HiLi4PVIaPB/KZuiPYxoOmaeWuI5NxP0f0RtdZN06Z+/PAUmuOuGqZg4KbC/QUmrxFhQ1CpIANRvkIVVw80QHmDJkkb/DUPZKnXWEZ4/om3z1uRpjX5r2DyXZR59ax9/ZHoSbHf8Po10krPosVHxfAS9fhNZXlThO8si215DLA31MrkL2a26sZP/yLLdPDI5xsJ5be221f+Nb+I3/+JB0UXN1++aRSyX1Kv7Yh63dxtLN/JVZdxKYemDbVvQ9aDH4vt7R1UP8vEWB5V8VhgYK55uwB5ObLcxJNPB9zuyXJ9qIXarPQ4DnSOq+pf6uTMdDr2gbOOmTD2VSu6gZOdt5bP5RTe3ACSwz7Of8FVjOaXpXfk8B8CpLgL7VZLU2cb1FB2+MYEzpGmHW1V1yB61W5TIGUfytBg4B8+ltEV2u90ghn6NWD4lV4Tz1jzbFzKL1P9wDcTXQYNRSk+vXCOhrxYuB59Myez/i2smzbiwlvgvGDW8/0ctU8JjRCQb+RGg0M0iZvkERenoqyjDFbA72kQSB4PROUwrhpm/b5RjpCLsTUs2joG0i/JvgxhzBD0oy3Ihc62PIP54PdPiHKRWbl5Ex4b77vZWfMMR7jMpD7aJ/k9rG6/ESED1oSwCqhD+Szn2adeB6o8C+MXkAUQnGlFyT7ne32SuAN3z0N+pw8yd6lul2T8g4e7iKYEEYF4xj8vWyzMkFxFI0SjySRxVhRnfGpuIdYQxmtjnEFNurT8CcUNo0y6sMiIo/aPrS7bla1iajNrz6DN6B62EmExmO5VhGT22ZsVYqviDCGZ8AAghg2CqY6s1TN2wmTUf6Qt1f3Sm3/Hha8QWqYoVoI/gpIJCe9CmpKYv6t7OUFsiLr6EkDalWe1NW0Q4UpsMfroJP59Zj2GFtFkDM8e2/QNL5QLZMTWHsY4lFcYXFsSP7BpH2g0p/Ze4Xw1/15BWpxlZigho/283iHBBW8OPkHf6BIFZbnCTFXWNAmQn9UyddodLHJwqJ0ZpGV8IkF+JHPtzd275W3yf2fV0aRvMOe7iUpwAVhT7Z6xpe8TNwEalL0zDgqT5c6F8ptrhKDicRwa365KAEVaGzkV9ipitBaPr7no0ve7Ei+TYL2VONB7nBw1Q8t9gGvvmgRZtZjds1zebrdYbhcl2eub4MJrTeF9HOmtDHGAZmJfMbJXsBe64bEZlQc4CO6bJlxeh7Sejz5AfpEgw1wW28Q45W9mPxPtACbtzbnilPetnEhh+TsX0MZpdMgs4dF9mMxcLjYbFURX8JMNr0A62GHaFpa1z0jXYUOMH6BuHll2DxkzbGOK51kUAEk2NLFCm5uQpaL7Jfwxbs+uZZAPjHeqA9oxT9AZsHVszwmxPxc1qxFiO7+nFCEaySGsPLgdVML9eAsdA74JttNPZhQNtLWfMCE0AF2zAV76bfpymxjMPrG93Qz+YMG7BjQY+/jUM/eKQCBdVpsN4p2S3V7AYmu5QrP1IvB1t4xQbl77847Fj/XxqBC32AFiaPF5YH6k9IU0MSsQ740tAUV50hjg+ifLtcaVuD5eco1glPbw9pq6OeGDVb9vOTErBX7LbOwjeorVnaEjOJ36I5DHs6CiNZti1nRtYclZdfGc8xxnA9pltPeSyPFa3KXJviA+PjnSk2uMonORJ5W5WisYwdt7fyC2WXSapFes2usPbOV9lcqS3gaERMu8cPrkVTZWUSveCuYrWdSYJZk203uW5zge7mc0JiE1SYTfgyaiQZOFQJIkxLUKpxOZ+pPzV095dRqtHZH3zKiJnhSHq3XCfaNBfw1VMj2Rmj8PozaVyKwq5lR3DEfvLDtcl1P5CWs2mH//HuEWwdtleCjstUC/TSvw/vG4ZOcxcJqRgVGkKM5gk1xrjrREX9BcRcnWIdyXKpcp7Wjz0DyaaMHhuppgGUZ5TMSXCnKNqj47ygq487rDzrsIBs23Vlxmq26JYPqcYY1B0yz4LP8ePF79YUD7rX2FY447RR5BmpYWGoC75XygDPeJDYy/MCC1nbfarfd/fz2niM4Q2p4gU/+p6ijn35f/oEoh4PrTqBO+vOu4OUyckjstiUBm0RFshpPZJ5ZcpAI0z9omXM9tW+sGOfXXDMnVT7JRuAqk7Wg1QiDW9u4SD29NGfo14gsGttqpP0Sue/Ozdv9yEoNPo4uUao1DWNhd9Tm0uy5nQdXBlMzOmhrBfmNKoJN/K8FDT78JwAWi2evR2xteVA3gc2PEenPGbIxP9b9cXpfH0TjAN827HZOsqNqntAgdd07hItK8hhXsyZH0Qv/SHhWCS9bJMbG4PacN
Variant 4
DifficultyLevel
574
Question
Mel bought 24 packets of lollies from the supermarket.
Each packet had the same number of lollies and a total of 360 lollies were purchased.
Which equation shows the average number of lollies, l, in each packet?
Worked Solution
|
|
lollies per packet |
= number of packetstotal lollies |
|
|
l |
=24360 |
l × 24 |
= 360 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mel bought 24 packets of lollies from the supermarket.
Each packet had the same number of lollies and a total of 360 lollies were purchased.
Which equation shows the average number of lollies, $\large l$, in each packet?
|
workedSolution |
| | |
| ------------: | ---------- |
| lollies per packet | \= $\dfrac{ \text{total lollies}}{\text{number of packets}}$ |
|||
| $\large l$ | $= \dfrac{360}{24}$ |
| $\large l$ $\times\ 24$| \= 360|
|
correctAnswer |
$\large l$ $\times\ 24$ \= 360 |
Answers
Is Correct? | Answer |
✓ | l × 24 = 360 |
x | l ÷ 24=360 |
x | l + 24 = 360 |
x | l − 24 = 360 |
U2FsdGVkX19BV/ug2uU1DFwu+FVwLetzM8crm/22l3XAi57K6cn3YdYi5gYFIKXNB5FpBn47z+X2t5Z/X/3nDOQQKM3YFYxXuZAc1aJRgvLk4a2DxSWacZroLWR1Kcs7UVjBVdDsFDafbaBCVQVIeGBmM5Px6c1u5a4b2WJtchB1/7JWDYtmcLkdd4//s+xJbAqa0tCNE/E+n2EgUJ3RalAkwJTCes3fGkGw+qPMht0jeqhR3JCl919JHvsLDqrpTJiNobCim/lX6Va8Ob71ZyVE9orSpWFh+xG2nf8pyG7lEgPOsiU/RnU4O31CwplQVZh8MR2xSCRv+7RlrZHMwb727mJm7xay1nefQmpaIM4fyl8rfjDiGGanvDdEUR0gKoTvSh1Tma1RtALqCRDOwTqMfKPPLLp6HF7971Fu4YnXuKMkpAtT2gojODplqfwjoUOZ0LmJRGRgWrbNmCdg0/MIcK07/kisO7czHdh379sOgghsovbvhamKDGxPDVBJx4JUA4K7SlnPrmOLesJ79vZT6nY6W2nz8Ufra2F/W5IURECPrYn6SWv0stJgkGl1otdWgg5bkrKsJ3UhX9KrVR+/5X9sskKNuJiMH01AVOLsnZr4ROcYOhGGBrrYjHzgG2Ro8q03mBYi3IPWBBYrsZp4tVVARpufcdZ5Sbj4CqnCFu9PXrfan9jxFt8vjtlPvZkVzRnk5MdruNEqd+mlZcuB6wHIFZ29ITiRhGVMlXDIWvcqJYpFi3wr9PXXg1pclej37uUmDlxrs6CHX71jpcObiMwFVnnoHzd6MFghyJWgA3WH+Vu0El80zKU+JD0/MjgwQxbOTuYRXgYH2HvRcWuWhNtCFdk5L1bsBjgEDlnls4T1L2HCNNlCK9e6egoF1WRwaSAC4WJXZWckS7fR5yrofvA08jOvTrBtMC8EVdSR2AQ6ZLwbTlkvWL7O6CNdkEhOJQ8ICDdD5GrYX6RMYM4AFO5lrOeZrU+LjThUJixVLGpZoO0DDEaRpDJG5pKseBEzj/qAycdozreJm84IDa8h+91J0hwIIbG2VDyBJRUufUNpjFArFXu02WqO6CFgvQPaJNXI5KA3gO93/T4U4AjURTueGpe9kTY+s9mPdm3sCyk4n6jASIjnioJlttr3VCOMWf8j3Rlbv5hK7LU8IMPbrovj0MtP3u3M/c2BQAE5x0WG41S1CjLFSL7q23+Z3ekEbS0t1Tb49gxqiB/eZJkX1XgR6n7vkVerqzg8H2qvajUQMbzI7eLPqc27f9Km9RL7hC2fSz0Ym7uNW+9v3mUFVppzeWwxVaxRQA3yArBttB2H6QJbTdBMjRt9dEH/WpJOklGtPv44Yz7MZOLSdPhvPTO8Uu0d86vJ1MG6tPXYNGK1tgbmokwTohz957y77Ir8NXEjYysD4UGHXurrD3JyhhIrPltCaq1HHFIrl9Ow6rXLirqEZ66L6TvRe6QNdlUmvYYQDTb69lmgnPF3vkLwjKSOFWySZ4CD4tYxiHPNLa6v/O9OKk7IdL1LaOHK9rKGIXO5sfkQbDPBTEFC8zKK/+o4nBQDC5igWeI2qub2QJaE//naxS1MkHomlA33zXAVUrXDDwF7V5p44JooONUbuAvbGulK1zLp637A89dlw+epbDN8kBUIb5zT5NcP5w3hqbsSK9Oq9OAYi+MFI7aPboAjj1M5HNshW1AuYwPNxWHKTvGTc5I1riLm2ivAm/DGZwQFHQ7/7fJA8uLwj0lD2Y1OTO9iQndGjM1rK9Sj32ZVA4mCAyF5Z3SEu7MzwyphSVEsd0VUtjWkMNIqz6TWi6mc5OUYTqFKq3UnzY9K93MgcCqPlNAFWwb4ZLdKWoStNXDTrDCBWGJSRxuKqKSWWH9IfZGjsD/ovm+6OyNJrmjwMH3d2Q5pb54Yo+0FwghqdJbvVtCPysH1CC6SBkYvEFGW4nHZIU4No4vlht0GZGeDWgodyhOX2A+hGyXWRJujAtfuIdwxxBIAO1PxF938Ms36MjvtQDNp0kM2YFNlg15zgeoa+HdQJvSbmpO4jgMl6hG/My3HeNn8QPlAzs/RatjwBjROtzdumXGGJUfNntm9CLRGXcF/BKXflEepMPcd3qqDX7Xilu38gWuhv7Z6sg+4SbuzwrrQxpnZjlB+cOnb+Alu9Pn+kNQZ6ktjcdxTgQqAmoL5wQIO7xkfq/f40Yic2WFQCL1385HRASHtsHKPAXLz27vsbAa4mmOa/4N9f4e+sxqkgWmSuClpy4l9Q+DWjGUz4FmnLgzGO9h2FHsfkMLrtGg1k96wd8nhM11GjLkKo0KX+PO57T5WQNmbU+ok8j+1YYXiQuEJo456Knzh53UYAqnGYzIeKctw7pXxzNPSY1ew0y5Bo2oho97et7uAhs2XqvY4nbSI/vZN9xBhUmJjzAhKa9gl1AJoSYvaziTwNA+zqBtsW2fr3E/TEG9+sSJbRUAIYGTacPjG9bCsTGkPmt/ao0yhjTDOIaK4KllUeQ+uAOTaSr+dCRy6zXN409GEe9YXnEWG4hoIGRjJVVXyD5Cq/Pe8hZtE60FJVzpIbEDdfaAaXEqBY3LhzMYoD36kCvK/gmIFbc8hN0uIPPI3uhi8DDoG3dKpJV/5QemYsNgmfeyv0FGfC1euX+s/dbyfST3bE4qSYaRgeDW1sNLkct1tfC3rog1Rzgv1TkQnUGkO+ylchZmCV6F49HHzMu8X+W0NVLeI4FJ01U7Hau5hLBlv7j70FvD1/f/MP6GDgnC6sz0hUMkA3JhNkfvteaxdMw1sS0bLJOkQmZWnCQ9i9+Rp8XR5aaB/Dvzvm9THGB+b4+iVjGBIJFZLYlk4J2Y9VrHD1Mou1lwljjYkn5MQstjWs3+gD0QCVkfQ9vTdphr3acePQXsQxeD1MZetWyIqcq6G7sreAiIhR6SaoZLSqFixR1MaGGwVKFiMkz67j4/V5n+WjFW8+ja33PffZX1neTT6+Rrn+1sB5k72RE5I/mP240TOkUvlU5Quav1FquFq5r2pygg5yPnuwsn0wY2jT3a2yiY/RgDbs16us8/CbSdDb4c5lZquW5uxzY+Qp24obI+2jbqBbD4phOnkKG3WsOV4sQpnuuvHESAamVv23NmQ3nZbzgL3NT3bdcrluK2x8vHiURNm2R6sp3TiEvRl2dU0ILzELCwcaL/GGykY2S13rBn0VwdK1KqjehMrORAIp8Q2uF3hADNbxXENOcTNd2ZSeVZNc4AsLb0yjpWFv1Vnlijem49n0++E/bxPRr5MwVdoavAFN0rBPhC0jru1FyLwcfpQ42UTcxCVTFsVB1cGApp6jtbTVFuXM1GN3vKk+yLoD4XtwvctcqVYTHGMbPxjjysmhNrgDS99cWIzqjKseqmsJG/pH4zf8OiCKAZhpwnIhsEap9S569nYEeiYR3WKSsNhUqFZTubW/FCjYpAUrISCYxPusMvcy93ruN1aCA1cyvL1Ss5UtF6v6mMSfBSlO91L8gO2tfa2mn8F7iIJqQxPEeHgX4sFwNyqFS+wP3c8CmvhlqFu57mOVqn921lLEZEzZlzHKTnXf+0rgJ3D+sCPhP2aEAjKnVq5tFM5a8mEA2d2HazR/0PahZAKn3jd2vWrs2Kex2h2fcJP1zMZokJt5fIaP6rn6zXfhooeKt8noxTQPpeA6Y0l7T/h7jb7hLILazOieY4EjMSV9S+Uy0LTAfG69LwPPe7IGAkRtkUCQPv1lPCy913qlUqcwS4xwA+9jDkLqi7PevFgOOOboHPoJl5eZ87tuKPEcRHxKqwNs2QxfoxR42OLprlhzFZCJ5LCnYjitR7OpQ5qAP96W6hLhQFe3eJ0G/gxWHSQR+PZ4/B+fcjNSdKwI/BUsVnxkC2C9pT1mdopmViayzJqgR94E8lCSlsG9kbwbaew/gpoeRkOIGcD8laf3E730nSveg37za5FooxF47CXFWpiuFLbcNlDMOVCeLVaU5DLBMOT5N1bM4XgM3DJlr8mv9R9BJ2Kk+08jNCwxT7loVuXIvoKkJ9tFJLuQkNEktKqPQjq/t2S/GkKymiv1nUiX+yGh49priLTd6kdgbzr6WQ2SATIPXshDZqmkFF4HM+Zc7qTvxtHprqJ5xgXwaNno5UIbdS3JJXOrAFynvFxcXsrc9EPhfCWK1kOFCecpujuEOpWm2Jg+SAQy3b1Zmbp6rxcRNGYOslZhZlDYif8VVEowJUJGg72GOreUkHkUivvWX22Kg6ruZkzR/sMcN35A0gDartkiXrnU2K3I5UO8FXT2D0me1NO8zhCOAczO3CyBtFcR+E+lGG7sijp+wmADXfVYk8z9iqpJle2eiInyJ6YOql42x1bSsZYZZUrXMlPPvIud3/7e/H6BGiF3KctRGaoViAwMPQ48c5CE/+KCSMG/UEAeTP1VphQHJEf0lsZOKHErfsVT1XrAbJFvFIltd6NJNffLpgAzE/nRCGEUnEmPx/vutQmsFMjhSNrZQDgIyjmEmJi1YKp6XCUwyxYZApYacHzOZwW5jVkzGIC2yKnjTCl088YCAy0yi11aI4SmW95f9v9pGRPyaWUMZlfb3M6jL4uvDsBh6Z/WXhSBDW2os10nGYTAcu7XO/mnOQyULEJ714ECs+l4Z5V0BsJAMVNX/3sKzDXagUZefziF9jqRryFtpgD/uJM8ll1OCZxzzGfV2haGgAEdkHPE+AF3E6bfrYsT+amj5te3DGQnFxzib7pMhpmYkpe8KI0JLVcukR8y3b0mZ6gtz7cKsVm/rdOBh9qnseQrUtI8XgUbT9iAU2reUzfWoFk1NExS0O4Lqv+SvE3ZLXhXAEwm/bsn+D98Jtmz+S3TdlY7sscPFS7/BBhJZC7X+9HksJjLEJt+Rn8uWquxmtrogr//LQNzMr7HlKdv8FzfeWN4MMrQl5Me5gAqjbJ441Whgj3DU1+L0OcCIMfsHjSRDQ9jWjViC7fnMOrBBI46g0FWz3vlAgYoDUdiCdHLSz86bHGKLWd6gp2u1PcVn1ibQmwwfczfjHEC95xGCQhuMaXoJQL07tGZnT2CKbGrt6XJev/e5Gd8giZusDjjyD9OqQBEhL8h7CbETupMvDMsLqDJMO907w6Ja0f0DrCtGVuMC1svnJmurpZkOTLhgxALo4kfe931nrpH51jAfmouYACmveVnWMMKDldk5SSWQbd4wCFEHOvoc2MGCpP9zxThAs3vmwkhtqtGx3nkLzNXpfi5IpPyVrPtJ5o3EELpTB54unn3wQmJlSDhHri44zO983ImJEh/DTJShy1sDbcZDp/ZkjoIz6Nj3fI8zuAIXCIF1U6Kub0PiOQ93Y1MjBYh8yDAJH4i3AB2AH5qtBc6a+veSloKE1klb+7z4ZmERsEgMkUofRcV2v04rM8dR/Rli1PnWo3pP3nvs7xLnYkJLh2YXTLy1MCTBPhEH2B22o87wdUSEUCizWnMBbUHJb3JEE5iI7C9U+XoQQ+bvCu4YcAPbPhvTpXOuNqZRkUi56idMAKc0GdF6LsPIDKu2QS+d/z00m2Vagp2mS4IvhHhehiCCIFaOwuTr+RZlYmO3GvPkganxMQbXBY2cKcTnxJeZl3Ht0sN9aEx8SvuYiUeDUyY1X2/jPlEWIt+UZY4jnTuz6n1m6rVJ5H0/KxrMF/cENaLov2gW5jFAl1tfIvsFOIPl/HxMEQD9W895/tB5raC3UBoK4DKxEoYIusWMG0dD6ydGSs8QIiKOQ9pmUyXCQPfEaK7eW3sjxfbS51gTYO7fveN70kwde/6ST5FmgDFGVKvrKCTDcSmJS6owP6p26mP+n0LGso6y//iOwMN+Ftel75WY8dsgAqPfbBHLLU6kHW1tgZPtZklrcUcl/nUvvV15UEmB7dGojl/vkStPnSvFmYWIl97mccVb7jpq7FN+n4SaxkUyboufvpkpQhFLlEIkO5HoXaY58ByxzKAHY6ybLci9h3Y6WOCr1q9OH+cs+v+qzXTUIUvT8e/E3HvR5yalwimjYgPI0j9haPj3ooliUUynK2jCjaqN+23Orpr2hMR0EHQLt5OgaFIdQYcSove8QyNpANg73EVDdYj7hmmZ3aNNlqL5LhmufIFMp3Ur/ZAETCtMVDIY4dph9LDsjJI3oRKPeLTlQecykrZyCBwYMLVONjVE+ZZDiUMCbE4U8dPeRDRLFDjhQPvGe7G3Q0gXg45VhaA+uhuA7DPN8XrT/PTKFsiEpNNsca6hrzQh1jQS1j/25l7WsHLkjcMnReP6PvsRP7OQsxk7aOdGcEsykD2FsPrOTosbPnR++RBnLIVl4/qRHM4pU3CAdb/YlI3rZ3yxOVFuQBdlmtfp5Jwy+3drp5zsh6T6Ryb3QKiPjQYLMfUGL9li1kg/EsjOgDDbViJgcQUMb9NHzQ2SbfoDN0P5ziSgl8P2ywuyinAH5g8kNCYWSSxlt0fI5u2eZ5WwgusAAu774KAlXTT8m/MHWGf4ecWgGarKmKl9TxbR/PmVAO8oOA1Ych5PO7TVqt33+/uLLZThYKhqVqYzTp7aw8Sx0QwyRg6jsCEFkmxXl7KN7wkUE29UQX1cVSd3df69QhyUAtc5UExo7YmSEx/jJMNXnRHE1hEVA6yuqlNbBfwMjZaH1CaU0CyCkRn/GYpOTRkLu/IR4IZgpgruS/0vEhJC68V8R4fNNNBzLOGsqe0GCTcaSF9F6BExyYOHjJayRDAB8nlcG8qDNFs0RxsejN1leqaV4dq7Ts+HJLm1u+lAsab/hKsgcJlJ0bf14/zfy+c1y4ZBgNx01lzCYdMAasXj1rEurmmYokCz+irg9n+ZzxsTMOaRff15fVlR4xesgd7pb9ShCm3P3wEFi6H7Vwg5KRfa/seRYehNMuU/nqY8q1EcP4gMbmUkZ26RJmRMTkKy9f5Cdf+UraW1KNHTFGKdlL72KuJ9JaE+TPOe5Q9xoHlTb1rKiD3pwV4gnX8rNqMtBENDCZrP3R8kY2VXYVPIUn2YZHXMlB7tZYGBafrfzw8xQdpI5Mt8UZkklTlQ24+b6tTZtKlpWAIk07UYrWJdteCn5T373QKWmLe1RWgjz8F5zG6Sv05pKaj0LLRVEQAX+chwo3uI7YeaLh8Zc4vbh6yjEuSBFy8xypUj3SHq90Mo4k8sWKswqwaskMWLlnufigzJcfyXK9OPnnEofaeMgkHAVOVY8U6Ltz591zS7NHpcw/ij744bz98RIU06+jzy6A0wSE3rkS1jutk/ubXvOOcvRyWahH3Qqu+1tX4E8/mGIPCQnPcok71UqHSyq25KVpgZRjdqJhUj0Pc2iLu6SnV5zklSqaTR70M+Csbu4oIfGpcCA1mLrsi8Vfqjx++cQjV8ogy0AuhDvOqfnokPguhMCosru9WciHWaw2KxHYhCgQxqvRyKWWHcAAmSTkBb4Fb758kwqiyrreIgHdo6qiSVyIq+sDDdJ/JW2PmzDoGDY7WKTrYmcQQiANaIaBDB0MoER84lV/jToFGHq0W9PSgg9iAX22Zx64NMML21zlCayFzR/os+qnXDgAqYCLLIM6XV6r3fQ8HoSibLxwThrfHTqcAYedqhB7uudtWDkscV4b22mP+0EUyvKGzPYZwiuoSc7kmD9PBtd4oOPJZiNMJbQy1JXYP7iHR0VRmLklzGBUstBeIHSCEDSnAfFGU50PROmpHZ8XDz7pSPsyal3rN4MKe+WU19xmImH+JXMjIvCdxzFXLBDTC2O6frwqu/dBMLF39yCLallBslmD9B1zKVixh4YL43KqMXiGgpEq1ArYvQEUorUHRCsLCxMUFLiUlazsjs3C1NyWmeOa+oH4w6GBpyIRKrS/5+tvU6nCUsxF9I3RPjHK0yrG4HJ3jzESPXR32IIpgcOB0PKVFJdkDmnON9fT6ZMYCa05zVKx+YT/p9G5kVBWvdiegADOgn7c9nHfWf6RoaaIwjh12ogDLV3cks7HYh/Ytje/Kt+DRUBi8z9t8ehhj6eKO9bw9yl3DcqMDnYmnv4HKbECdUqdwUQsKt1viSbwPPcb6ENTSro55XEBO+4R+fIeWL7mpfsRl4Q8op885S/oXNuMgxRG3JxlLJtsSXfhEqHz89hdfVjOMxCD41kQ4DDHTWU44uEkSLy0QlBDCabYuIAFLztNZSCVTkcTj2Oc+N9BNEOQo06n6HtByTtEEIzg1TS0AZju9eST2RwnSCImE6Ll5v5gf+yq+y2Sx+Bz1kFn1TQgqGBwXUH9mTfWNq1NLtYLZPkmo91slGeYuxhy3mWpgAypmVOukfWnIZLun6ekjVB8n1TZ9R+64jLzxBNfcM2THmOD+RXzIpUCOnAasL1SbwPxHbiW4+5BGEqTnxNmncmt/iNvFAxy2nv1SUjOg6BnM3LZQcOrFIlo1GHLLWk8UmCJkfKbfu/QzqHwqDGJSeNo2zeXfyRblQ4qgmXP1wAGXNXRXkavyMpL4Dq+6bx50EJWGIctatuH2tspSpsLBOah9HorEz5XPgONEiuKdSqKRZWjyzYksgvsFmQEPhgnk4uEnBqPj7qpqsCBfKn8C9AbSbhP504sWDK9BzS4l8FlE1IWMmQMFEO+3XMo46oW2MDJmjCo9TjY8MqL5kSNIa8ngMrZy025P2vOBMwf+84T5DW9tGKxAI/5BF3EW2f3YQRu8J6o4ZNXw7O5AK6c+2OwQM8aPhP2ckupBwLE9l9gg7eLpOGVrZmSWpA1BPukRY+9MeapCiQVcXwJYryDKHC10xSLDL7AR7yQ5IaCRn/TUyypbNrD91dlIAIYlhxXwQy0IKbF61VYh8vrZNgc0hkeD9soI5ZfuQstqVvnoPDT/hbzVsegWdkI5Knau//p/8uD5L7xthn2A67dyCVCBRR/uSbk5VFhKgxpzLUfnxy4LjmeTt/27PQnSeK9fcLvcqq5nsbdx4SHMldkQHyyZsvwmigc8V2r3xBq9jeMfX4XFQH28zXh5lUG4n4dhwZXE8ZCfdKVO5Yf7db+9prx+IPX3R6TuYOQI9STLILOUFWnoRRfLDYQNDFXKLkBOE6dI05JZowGPsUwZjpcXQU8xg63wwwZvTLbNha+QVZ4WqPPlQji5tM96l9ysYlpdTGsyMBKXove720gHcpz0tcBBVs+oCjyK/arpoEgykunf4OhCxBNQu/Cm/Hq/amopZQi97BACZmyEGJN685k6FBlxOc5nlOZna3/AWodBsdfPlJRnb3WSWuIMTg6soKtCrFj9lBpivnLE9GIFfh+VsthUnxrcOzreM3mwl+4wZ8/KbR60IpjP+z1yP5bSjgvN+OdKQ7Z4XVzo8Gh0TvYdQ4OcoGmXpL6lRsEgoy8TuaSXr2YEX4DLiIAPL7fsEj1EEzXC6g5WQnKIZ9at6T6CVClVRF8O/mV8suMyNTj5CqZn115BxTa3KdG/koyJzgg5cqFf2bFJT5WEkQo57DpXixrSkEY4lIxFg3Id7yqjV44sax0ajssxwECiEuBhgJPofJiicCUiM3fxAswpSNInVOcoo1cju89SCdWh0hTzxqdRv170mrjoA4TidEZDa+vu01biIqXjExaBuXSm0oNgVlActk3cItniGY1lRDrDl1n3UEwOKWtM9r0VI49da363JAyXpJoqLoN57pdHZAI0jIxvz/D/FByNQlfmeY1c0WsqI9FzSlauxcvT8iFweHifp+tQP+iCoCy7M+H9f0QRa+TDGyCkhNnEYVodz4qVNjVMGP31UNLSKZ8oH79ehwQWHgh3yhBsYWPkOwdZ5cib9CnK9fRt55RMTNv+mfeBvEuPouK09GQ6fO60CQm5CE6FXHjwzX+rMwfXpckSm7iaGsPMnDXhUImmuFupGGGoeUY0wYo7nmnMpwjfJ+1sfDWwqOKheVHOjo1eCtPeW/GpffkY9VTQg/SeYq+dl0Xw8zrFL4JXYEsetZWBJfDqzmiBulat/trWHf6skvCPnApRgy5+wSec0+Vc5yyH+fbJK9iWPtyDTWUnLqjnZQvRqYLNnQ6T/FeD3a/0e6hB3BYSpWAbWZRH9xwqr6oG0cdQ+2O3DMMYC9JQKA/n5dJkpIDhWhnzf6U8MXBiGH3eIv0wrXkDnJC9vaeqKgYA8b672bTLaJNcm6Qj53wNFykgqXiiuD/x5fSm45Zw75c9dmMH/AhiM9zL9pgepDEMaWt07rBSd2rcEMh7SYyw698gsK+SAl4ffubpLWJSbAKNZFsFEPvkkEPfhv9BP3gzm8CoTGtlXuamQETUTPotNQVPNSfVjD87XJFN9lPUYKfY/iiRUKibArf8OHGlBdBLQNzeuMD+QoCsQ/9Eq07iUGWGYNzKJI4ZppJaCX6dDj1xBRzV5dmNKEsHHLViLkimD1ZMrVZ9EA11hvPrEWBVYLzS+eTF9i8sa9x6KurpTiWTYbOksrcdslycdOVjCjST1GNfiq15XJHKDhNFfrjOJXjL11gL/572dYKNxDe74OJJwFj4RGksMqP16pkq9nklivV/VAy5yHGDl0IcygavLdp/yjTjHFbZH8ISjmtAqhRGyNpUJQ3xUgF/g5sTMn9JtKR6H35AbQJO2JQRqW6bau7nir1+0qt3VLPDoQs9SsHtMAnrLUIdxduDn2VRY1kFeaXRGqUI64ZcGDLPi1bPakDUzEsS5bVsbtWosZ3CGPE0aPVolpg8RfRjUm8UXr76LlN+VS4AGJMI+x8WRBmlkLqyFVXHQ1WCJaKQJZNba6qWUlhkPcQgWuMuBdJhkGPUqltcmlbwXcPlqdFS8pKq468/OUBjMMF5kVZD9GCPPKK0FJOEAJALfCF0DNfSTQDgxPGRxacH1dc1RtXhSnuKbErcCTSIQI+FV96PFJw3ACVhNYfaii5wtIoXGqft6XOFNZaEHyyP66O1hhW9Dfx60Xbtg1uD3y7D2+VjtfmssgXoCp/956QyGugSXgR5lmuf9ch3Qopb4QHh+KG+AzyB2IzeVFhTpNAVA+4BLEDc0c8zD+7b2yNhRwSEZzv7+0sap5DbIRrjXLjaFp0MW3dI5aWirU+Bi8KvL+dwxO2ei1nirMA64BJsNv5LdSbiTMsNGDaT2IxfpA2M9/yH/xq1HloufkXapHFL48l/Rnqh+gFZv7L/2go4UgwTCxfMm2sHrh6DuWBfFda+BIMK4FL3pk11nyQcgjGnoYhcW7U+oinCj27wyuvhOg81p4Ol5KyAuMjwWXSbw7ZAAows9XXXATiACxCCRVwz7QaKQ9gqT+UgJjcROn5/gmhwv8dK3Ff22XE0lWOiojvMGHmHo2JVYvq4fWYPFFAjLUnHGAccSLoMqsI/fYdqZYkteylzR2vXi5hwPJ/lLn8W+oKznT+cqqDnuDor2vcIS/mwtBdX8cFxPWquS8bZVWlsJUgZPDPbhjqNz/Gx7gEhAb2ADV0vX7/2Bd0kMRwqcqRMjZXvpisQThr/ChO5BpQS7CB9LfaMI51pGXIYNKaFpizW+JSZkoIbeoOPec/gCgcIrCX7F88SpzhQGO1wxin/vQBgZSnQApFfhCbWKuYnUVp9Kp1Pz6s4Kpm5SSvyWCbKUxKG/v9rez4k+zbVrWi7YuE3tKXqHP6WESkBhNUIQ/afbChCxV8zGpnsugLSEIFpwBrpI9Oh4Pr0+iQuTdop1m2Jqbm+conClwOmwZNGRd+PAV+ikfCPC36Dn/U+gWkHPhkU4x08uK2FayYjReDAUuj+7IgC7VuDZSd3Ce0sRhsIG4cL5plgdaO3g+lZnbDSeezaYpEeRoRIaynRGKPSDeABnPNYJPyid9I9PGi514kbHtCC2P+r5YM9RoJKCLU5rb1CEc9megjUF9XfWJjH0N4KyNFZ8739hRuF5xjGvy/672rpM22Ul4nOfj5BzgFGr3+6CBftc20d9YddvjQG3mF34goAyC7RPmTZklR6V4nTptTUNGarsL78/yexv9T3AarkYgrKS5mzEMMabvvJ4ksmnOQ4znPupsES2uUlZWKb4HoZ6vnLNDDFkk7GKuycdBYfaXo7dHi7WZFFPDjPbwg3/d5R2Il2Mh4oiQQy1bjfd55mpxQyBs61medT8hW6Q7wyX0YLNSvTdAwAyTr7hdCBj0kn9wvaN+wcbJDRvA+2TdgJQUeTOnyl1RLRY9NyzEQnObTl9q/YzY3BHCclfedtF37kMxyI7deHJiYRXIc7eihOoFTuwFjdtCA1MMBuoN20XO4CyEs79FBzF8PdhjaPkJ/u9kzs6pOB2A+9B+3zxBu+itqRzjvxDIID+D5yejSZ7nFP4SnotQBNqeBeeDr7tipLdZXZpZDdimf/YxG7BcUG/U/rMi1UOMEIZAH6GCYStBaoaJATdgnEWS3RAhL4Ge6Ao7vZ1A1tjv2GQTybUjf0gQ5KsNta6Xu3nPXjkr+/cwM9CpIoIpp928TdPyMz97L3sYiic16MCfgbNF4V7gmHJSdFE/cW72mnp8ppphTkqzRGy69BDXfpaQMtfAPzwnGd73NwDUlyVun8E+ele0xSblSDli7xEydQXx3tXmlOwUmKdCGWRnaDHi34JaVSIqBF+t92GltbB5MoqOc2nB8X4crTFIKB6c0Ps3WbdXuimoO8E8vl0nvZQ5nRjQPtWebie7pab4IFEXO4BKFO2F4YdH8aZ2jZ6Ot8VLxW0QU/GYhFLr3N1SxMLUbuuXrKUv2w3CFcMHRSAbfR1vi2lfhJ49oSWUMVyi9bti3DsccK9j5ns4H2SbqPUHeo9ZDEFxV/102YU/N3urcmnfraREl/6jJYsZmUx1aEwpcqxMokyeAJ/t/JAU/PNk5rt961te2sO1qzS1qa04HbiBjRRhM2TRSKbQY/XY3XrVDyHbONTlycndAg7KzV7u1E/MTdfLwqJ3/8aAvXJP94ULg/lAs4RigPaVCF9W8xkTT1cOCl+uHNhMn/uA2jNEddiyl086jdNjfw1qN58yGh9bO0Xwkscg7+SphkF/rjx/U3tN08+nil3w4lBLJ8EBGK97I3uWsOlFm34M4yRS4bytcIGGYXl/qR4wQplWWlQSrrrMb3fpTzNYjINg+lSVA4dr33WclR/oYlMXOjjZeXkYvtQX6oj0KF9mADvQ6R8Njqvt2Kc1mIm12irOg4LO2/82rdRSMNz22aTTvkRsnCQZp2Sd9Wpo0BgQVT8JACTb6X7J5eWg12/hP7wyzJaKxG0E6jYPwUAUSNV7dO8+CuTEy6+o/1SFZoFL3ErRK7ASc04/M2nveaS2lrxVcHQYWaPmjoBYIDKAogGnvOW3ojpcJlOaWem+Wx8kNwF6H0pI205hbYlUG6jYTVCTL7RzmUb0ldGjAjWrEctaUcG98cukSk3PrH7Yq4We6ksZpUGKXIZnpOvYYqqJMwoFp6V8ENpbTg2ILlNEgauqsDeN3lEmhmYPMceaw03bvWP/b9IziyOjdEZSBAAsUDa57ctVEGTWmP4x1yI3G9Kz5hHa0NsmFp5yXKl55A/NlXeUhhsyKlsq0/5RyCztDhUUYxoCfEvHMxZWdStC0ISdU0HA8fB+v42xIa4Ea9Pb7QQC0Fn3A2QyhuHsE+AqgL+T27oVFcaRmIrDaDz6A5YLQhWVaqbyOs5E3uYN5iRiH2qNNMtfCnih5UI+udIyE3zLfhngGcT/Akb/iZwKtXl8GG86BsukVfD0FkaKUPZvXXHhAUZQCeUmyVQ6AA3hR4/lSx4Rjbwn5xvO9stZfptvi/mcFRaWMrGNf1YcOMDW7dIrwa54gzjQTgAjLwG+NtwooTDUD0v+YFBwUv3pm33iUihIK2T1J82iD4oPco4S1IWsHm4cBfVLW9LVc+RDLGZ424mdJTfHLb2jaC2s5D7Y9swDhPma1afWvzw0FudUw/zN1heW1JnzeXBGUgif0FCHuDTf+OXVVDKYvzi7m+qzPkJWbJHw8GJk1MbeZ5qGPKtt5rNGnc6+3qjQ9VnxjzCWXCMHNpcnIROFwthIJCjiRtrByeYilMO2I7W3lNcNJLQJOuR8toYUDEI6M5YBOBK3z6XEgIJfUw1eOYe2PKXOcnVO29xc40KPq472Ndx1J62O/ERaQYluS9gM+SvgMn+0y8ZOjJeK/qmCB2f0x86+YUAYKdftW7LUoeBpPTcHHFd/uLGksr2thqWVWZsDqOACCGa0t7L/ayjy44xAigaK5YqHY973SA9i7vcciEYgGIkGhsXy9bYak8Up5cFozvTBJJowwZfsg7FU4Eu2+jdnpp52yzFj/fAE51+wpV63wJ/Zpb+4hE/UIdg2jScX6hgIK0FOzDPCbPK6Slm747BW5MS7mewEpLz64wewcSym6O8tNETyWF8MflYD9u5mo5HxqVvmWMh23iQkn4YWJwQ/xbmcd89kdstBuqDow+PBcNw5yn4WPf1CdDwcXfdNaZqQgrVKoXYlO2dlT8bWOODH1CGqb48AlT6DrfCOXcML+uxFbGylwKx3+0Cx6OlSSgk1O5UMry/aP/DsZssauhknlsCFXhPEbi467kF6b93Gg3XTZ4eiehPehiv7EgAhg2V3q5vW9l+2BgOzWDCA4pn3E0eT+H7fp/Co8GnV/bxttRjgJ8raj6gVn75gqKao5AABoZLlGTRY+Q3JT96oTOplV9nyWiEPETp4EY9MFUlLq+vvjdi19cOUYOpzzIjcqlyW/iC/gSs2mA2QnlMywZvqdfjTm6i6NTZ9HcZ0Ns2Svih4I2bWvj/R/ljVd4Yhv5+TaU4Q+OjpDC50T2vqPfdka8OGxXBW1OBLnpdSO1iDebtHFoRM1eLVEYA2zjrbmQD43ed5T7cJa7bkVzPUW9tvcM+b7E332b9pCGSq7L1GD0oxBlvndCfVOyJ7z4EaU29nwrZordzxBax8JcMKECW1VnGJkgFfwXGBQZjhjIMtVWPxew1ITbYos0NGjxXNpzxu9+d1JRjhemEhnW0hvE7rmB9Lt8zTx5z6fs0pHmjIm6oqBqwuCqp5jilSxWTSflrAKjBzX+pD99Nr9c4oEolDQ7wkleEvWSByIOSwjSv2xqcpBb5IgdpSSsEb8cPAkzdBw1S5Yys5J5eiUMSabmePu15Qgs6Tqtu4jCqvCLg8lmR51rotP/vGjTU8zpIXoPbCW9qi8MA+R9JtuX2Xn/CwbD9EheCJlyLeaUVmoMzeJqoSOpwDWeiKTSlrRvJ/8y1Q3cHCbNpTZmEtrPgT63imdJdZprtTJyWV81lWf7DoQ4hUQy14i4YVgA2x6wUUiLVY6+9jYsKOUqjzSxVoUu2/03BHfXhGOuO9TdfQAIELgDXoLdawdpMUrT5Y+ppbvPFxJsNeo5moQOR0raMAGM0yofGYnhYT4qflFLu4lxsT2jGmP+wcfOnyXLusI8HI+/0XuM2hrRxhNCjWx6h6tGAjuHd2ALRJqFzq+Gl2Btwx5qpPAYASi0lZOB1BtFvvWbGIvuUDSfvGdqpd+mbYvAIUqN5bd7cvEhENEOkd3mImzrxDQELudgjlaoAlebAM2BSXM3BxHLK3nJ15x4DXxAfA3DFrHq5nL5/pi7ItVx62fXb/rBAKom0MWupVqMTjRKvtIgIS/UTD7cszmOmbcu+5VLGpw79DpAq/Y3EZUT4Y/BLPIgk0UMKbVut7THnL69oNyPVLJejZcyN7tljXZX61ZkWFErppXxBgWNsD0SYlyDA9nqLv2qBwMgJqldmxrCHIVL1Rx8olR+2xP9vAuQSZCCnhHBds1koHzgEOxU3Zyk/Rs22ls3rjw54sThI5IekKHYUv8ysaCNN/lirHLalbmTPoGD6N3D369T4WQqWX9OEgr+AgknHR+Kw94SaiFF0QxhAxBIt1Tra+d9aLXphYjriQpPCerzbwBHc53oyNIlcxCeVFqB+Nqd8X4XDqdYWurO929PkvAaN18xFmImUz84C5mqo73oiO9FSXx0pQLJiAafPTa+a19/FmVbp/QID7IV0m25Eqf969YUGuKrJKcIq4R2iHp5ZeOKOKOsw66Qmi2DeAjeElsCYINhoRDKoc2k39g6tIfJhpuwXcI9KfAu0mDMaNP5nhDoXb4qDx4KKxoqN+pN35CmRGZEijLbruTNzWrAFoEhODaH9bYy8irQvJbv5qC5Iqolb7j/x5Ztc3UqG2oGM6CjGRu0PWBWohfoMNArgNn0wmdY3RKU2doDOT6+JEGGHgYuND+fVu0ArH61WCS0KtQWCceqd5JIv9UGuL5t/2bKqG1r8H1wH3m0dLXTxfUQp8EqsAuZgQxfMXM2UptM11PbqkWDwesiKdSo+57uxgZS1ht3xViXvxoqiVrvb1YZs6zU05EBjqz7jC5tNHx3s0vtyVK69VSJ9uJ1R7U2wsl599EfrDflMU105o1YDrPztwu/YR4TINQUhJHq7gWDE7Pa6BSnzjAlRFATdsRjZZRNNqB3nj1m20MspP/dhkkTa56anG8zIjWVP1v2/zHNFWE3cmtWbrjqCLOpOHHtW5Gj/bgJ0vDIpBx78ZSi7QSrFcql/4n
Variant 5
DifficultyLevel
576
Question
Skylar bought 500 boxes of nails from the hardware store.
Each box had the same number of nails and a total of 7000 nails were purchased.
Which equation shows the average number of nails, n, in each box?
Worked Solution
|
|
nails per box |
= number of boxestotal nails |
|
|
n |
=5007000 |
n × 500 |
= 7000 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Skylar bought 500 boxes of nails from the hardware store.
Each box had the same number of nails and a total of 7000 nails were purchased.
Which equation shows the average number of nails, $\large n$, in each box?
|
workedSolution |
| | |
| ------------: | ---------- |
| nails per box | \= $\dfrac{ \text{total nails}}{\text{number of boxes}}$ |
|||
| $\large n$ | $= \dfrac{7000}{500}$ |
| $\large n$ $\times\ 500$| \= 7000|
|
correctAnswer |
$\large n$ $\times\ 500$ \= 7000 |
Answers
Is Correct? | Answer |
x | n + 500 = 7000 |
x | n − 500 = 7000 |
✓ | n × 500 = 7000 |
x | n ÷ 500=7000 |