20295
U2FsdGVkX196ShojPPaga/HgvYoDG2lc67LOM5xYp0NCovPGIXtfR1gHeawwL7Fi+OIr8iN6FqSTE0gr+phIt7lKRc0scCr6qSXPqti2J5jZfRcZc7WRv8xsddPBvGm6lJdyDJ4GsR8pJoB8NAOuw2VuNGL5S7lEaYOvBXyC+w+CuH3H161xj4S9l4yz4mE07spZ/DvqItlx0QEVpPhY1mADDb4kLC6mP9kEI0/5kr/FDZDdAJOpIsHqLBFvelCIvfRpFrZhvi69EpA2cnuKS4uQYE8H2y95s/6vRpVD2+KIUYsMi8xPOWjmTns9lSacWfMOyYvps1BuMLgxAiGP6CVSzAjwwq1H25QpynrhpdGohYrSGusqaSAbLlKP2COcUDGSvmzz7UQLXxc93LCSCjVjK3InoDsZs6ojMsyaKE+LoXLxDEp165/eB1/eJiaxweo4EvfNF2t3h7Ip3BD2EpbHs46A1BoTZ6QgViU3JiORBXDamJRO65wHoJ9gwxRzouA+R9EOi9RaGIKDtYHR4JANF+TUvbm9aztJhfC9K80E1Np11sU9214GsCULSF+nLLP8rc09FJO6EjTXncjiNjQ1GDNceMkOIPqc4UoJ4TQhnwnkxQZxAV+Ekgmb2MtHgEDxxuE+ETqF3/NBnCFQdF7Y/BQ1Hw+keh7mYqISc9h/76vWQIjxJwexe4TQX7kLv78ZqYOMRFrR29ULIOND7+WqgQb0/0AJ2qejr+q0BHw/OQVrk6vA/nVt10zIDMmU62P4fEPV7x9AttiPp/rwrmsfdNFEy3MGG3/yfbNGEBaQ9bCGTmSLywhF8GdWCEHPbNZKU68x/soEng8YsPxB2/eGKBtkmaM44MKR1eFPSCEqp/WKDiMXxvQM7MC6gn4BU1JivlHPWJ5Fgp4uNMqVEHcdU0B8cL81Yl+Jlyr6GKVRjCZQB6ZHQSxUA19HN/BIDEKbAeSGS3Jyi3AsrDiEKRc7GIAc3I0u0X4E5D7RLzoDz1KZvpFqGUrEuSXanNjaY73xwBjGz2KeVWq4BsnCUpXCfuuxGGc1vbs4CVTKhiDCH+WV5LISgvwmvWgHHv7DuiAPEGd2Bzy6NIr8L9ifPdWTPuVMV322pC4IRXp3sAVYoAGerxiMAJubMEQmgUnNCYoU032t8IjoprxyVwr/ui1gSz7b0rRfR+wPnpRTucmBio41+wdcCmu2b5QHzWhkUAXTtszvt5Psx8Esu08tlsHJejIEJ5eMz1nr6mHqbhgbL+nstJU7g/eI/3mMQ2qGnPacMIzN4i6J9hT+atvERSrcR5uaVsHhl1tHr9oQ6qkoqePCKwDY1su8OO5Agu1QG3/Eoi4r5RGt9Lhd/79vSobzKLwMeKv62lZURnaATC9KRWvbDrV/PR58xSdeHwD5bg2dFkYnU+FaBLAwM7VGdbGczn0IAYwmRPQ7iU5xGcOUu8nynLbZqe8ehJa8A8NMhp+/85a/HlpTBoqivq5dqpzWpqNiAn8UKbE3s3PElOLsuwyh30hpF/fSKqz5FW34GcSxtAOo+Mn959ehlxShBjqpEfGL61QGY/2D9Z5ef6spt4wVx1rehw2VvVZ6Ci2tXIxi5+ESyN3QD3NzzPOuWGufufMWL2PV+a+yCT47dOoDKI3IQPgtIbD7Rqz3wQ2KpS+R5w4lV4AZ6JIAH/wLwa71ATI0JlIU8QcXaqYxqnP6MSgLY7/NNKf82BcT8TtJV+HAuhMirEgobdRqu6qzAeysoKdCCtMfNCvcLbLyilNJl4t1ZZ1ZHDK7LBMByrpojUUJGpERMP5Jk2vlJ71N3Rded3dsXTdYLrD3qr/uwLwx8N6mFUVZ4cKZv6V28oSOTrjIu/aICzrV52xac5UXRz5SLC5uNRqR7lygmqdZjwhdBPJidLChdpeKKFEA94KMht/AAmsIPtkEBOSqu1DpPUaCyRbwnWHFuxnaCbk3asLr7Us+DLTgdFU0oz0JPdiA2PPx6Q9aSMiFUqcctGDmWyL4ey1WwXCXam+BepCXnPoekEJNBFUMZw4EX3xqcyNmB4p5KclbaS7cAYTaT1XfKTt4h/lQrC07EXN4KugHOC8DtB24wOpudkZ/9yq0HnAETzEXewbivqjEC+pg7WMs8k4M5yn8rIkd6K+MU60wLFAmen2zWCk7zS03mAvNPigOUTxXADQghlw540mvcuK/y/PEhppgvI6nOUREKmze7z7DNXhSQZMfWICerHV51f3GB/PN42iS/CXlVYzhyKs3QwodMKzPGlRnWuPlh2DaOMiVY3jJ/RmUnhOkxWUH+iE1CK2fMClxowEEa9ru3JAIrtzMLmddgCUBd0JDetj8pgnFrfMroJRSboMYVDdF0xoz4fWD4mRoVqLfQi33qZ5lTEzdFEvmT5pC4ER3yn56VRIMp1UUn6Th7vTcyFIw/4qpDp4PuNMgdaFaZ6BfwcoioKdDYks+2wEI/0HvjkK8ZRAgK1fXKfI69en1n/UWJw5pfhMsizOog58WfeBhv0zGBDiVHedmwJNIQwJiZ7QNTGEeicY68vYNZ/PpmHSbqy+dBvMEmSeHJsy8akpVnWoeyY/1c7v1uTOLnqgcN9arYByPXKF2kI12u7SXf1xRW75fxhyD50XPUfjtz2jvIJuFcCUl/chFBErLmlV50NfvsV8WKSOMkXFMp60zWQkhekCo4d2Mod6veC87PNdUmR02HQfSSkfvJ+UmMHBvuiCjZShygRxSYqttwg/+Hg/eP563sAbqc+PnZ2IcNaNPm0S4xDe9TpXTBVeay5Sgk6c03LWEE/Ho+bM84Q52mXBtQfVnO9mzp+Gtc6i/yryY+ghjZHPexgwn25DxZVOSzae4hhK3s5hx5FGEo/nzA7E99c6DLpqX1OgRdgpkvRCRlkJOKOo0Ra1y3Hn9W0UnQionP1umUh8At0TeeWHACWlgNg4GyVSyA5RuU6s4OlNdj0uRt+a1tC2w9dH/d+2KaIjK0D+Aq0zIbXygjJs/PKrdqpvoVcjCFo9WYCKc6BydyxNSgtwAKPZtQgnkWn717xYSj5PCcar9HiZy1GNdyMQUX2D79oFtNx3EpS4Jx9cr/pCkGdkof0q0zKt6HM4ic3NfHvBon2A5LGA/Y1aMGlEcLMEjJB5I+GsPiVCkRCk3e/OFxu7qbjJIxKrAJmxCOeK98Nn1yKMDnrxD19MHrlqfMK7GvJi3eC1iTTPZQp+3ugpv2Vy3+9chYkj5NDvsJ/P4q0yRshYoYgnIx/qttrEDqeVr8sCdKtPp/ZcbViS0lpfRI8KIDHySMDPLFw6zIj18kcrg8pzDQSHe33LQ+1XmCEmA6JIfpGxQUfzkrMReZpjuitW/uS9GImopv7sYGDvJEYBbNR5MHKfF7ZF31TePXma/trKX71pFpponnmnQ4sUuP4lAlZQ1hrgVrCeWvIwCH8Ci3SEKunNa+ClwQw72w1rzuvCZ6Wugq7WO8d9rpGskoCPl4/RPCIGHQsooWygA7Z/FQ4VPpgBDQVxd3d1Yc8hxLEaaUIhmkREA564J/RbE7ObwFHjpy0KyFP0ItL//lv2tILbFdq3Kc9BR0MRoohcJOkVFXVrD0FwaSOd/YbMb8htLEUgvaAedZVCP2a64WY9SBg7rBrYRvfo5F6k/IYEnFfXzeNVD3q7OcS0bzHPCJeTcwi1oo/LpJh6DmC8DjwjNiVnBpLroVMYZsuYJ0d8v9axIgefzvn0ro6VI6UBIfSvY5PVI7hY4tbZy6ZcQ3ixHGbXBdxvmYAs4vm2Cwy9kGPnC6m1DpPqMKIXq3oG8V0qrJAo1DjLiuAvFCJqjRqngiI0T/IInbjdZWZcjdvhtmfLNUZuni7604EHhFmK04OvTmdm7N85dDUv1GN0us4JLZCM4IBBdDumYtRk+SSqz8qHmumK7N7CWuwqRgF2YPqo7YigarhWAW+Dp1WAKrsJ0LCvO3bzw/tbfQ4gKK3zw4t8w9U5L+sN2JqXhoBEX2L4F66alC/cXifK4Oo7DLMULyxwvf7MBMArXyLW0fjpFZDnAExDTaQHGmCBe0czM5g2ylU/xnZW97sXo+AaLwVuTsyagYWs9zKV80Ridc0f0msUYPHNhyu1BJgWnvyi+ZoX3ZQcCZJ3zr5DMTNANesn7lx43A+Rjv9j7+aSHkKGEFvSHaUyzhk1vRzN2BkF7wifJeUIznpBc7qt7+p8NISC8dd656Y/9oOqtbHMigndaOmeAZqA0Z+xpLKglKNMscK4AKj66sectaWnn1DqMgFMbkchxbIIDbPnqSe91EN5kpbiMj9iMluPzfjIBUBMUCQTHBCg26OegkkQFAwDsSohBG+Ov+dSBzTVlgZtNydvuabD4e6TKZQ1X86OwPBj6lYhlyVbaDcPL6Qv47Hw9X84+eSJJAgp++n3Dklw1pq+LLGn8Ky5RxpD3r0c/Q1TuHHKUsQIWa+DHXQD4tpB9e5FgWNnRoJpxxUouaP9WsAV94wvUjFyGrNBj5pCkkyf7WvLjQokUcqOrClVi9MRR1DlejjRTuMDabpFhPe5NdgxUGK1LD9V9op1zP9u7Zrd0DYRHebXvDNnbgT8Z6z3ELAIsRCEeHvWJv45gM7Va3IUn9ZMtEzE1FD6weACsZ/l87epq7txfR3ZCAsxTusKq3JOTWfcpPcG018aIYEZAwmaj9LGFGzLMe7XcQzEyWPbJGA==
Variant 0
DifficultyLevel
542
Question
Adam is laying tiles that are shaped like a parallelogram.
The longer sides are 2.5 times the length of the shorter sides.
What is the perimeter of one of the tiles?
Worked Solution
|
|
Perimeter |
= 12 × 2 + (12 × 2.5) × 2 |
|
= 24 + 30 × 2 |
|
= 24 + 60 |
|
= 84 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Adam is laying tiles that are shaped like a parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-K4-CA10.svg 218 indent3 vpad
The longer sides are 2.5 times the length of the shorter sides.
What is the perimeter of one of the tiles?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Perimeter | = 12 $\times$ 2 + (12 $\times$ 2.5) $\times$ 2 |
| | = 24 + 30 $\times$ 2 |
| | = 24 + 60 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/F6JelmZjrcPIkTHkq72sZd7BaFPFJ3g78xqS2rhE1e415cAJSYXdUL4mu4epetncpmDa12VSdV1P3hYJZCKVkroJXQP40NuMqetAmsmtGAW0dPfbZ6XKiSmfOdeWf34q8XCv6gXYdMr4IUZ70BJ4SzooHjljxbRAp5j2d/5oKAm+SWiY24+66Lw2JiuqyQZNaXXIpnHuZpKPvIXJMcffzWuEd2DSKxUnCnuMM52AZh8MmlporTHSeymFk7J7tVAqoIihow3E6K4Wu9nKrnUEUw/jZU+eHWY0w5MCEpU1qqBdGVzvODmEBOM0bwaM2udBy82+lXWEoa/XH1Pi1zJJytluOlb9QVUdsZ7EkLN/0wnPvZOMdxrIL5A06MX5WBDGCWNRUJRViL2ZUQHKN9wcs1wuw7oJJmjB03kD61O4tlnq+esHFMqfQBYeYv6FPhUBVd9qeEk8/iHquqa6+uVDMLgWbi8BDr7lO+qcwqOGBrm7o/idZkpnFYtIAPTdmo7HOPhGWTrRs+t/T4KGJ80QRFRkjGASn/YTeeiEdyB+Z+nlvFqCpzndxI2KbdX8N2NCkkZbxgZ/ZLMBRUMak5n4E7SPoOTl3JDvRiXE8610S6AI5wcDD7YY3LRR09NpUZct9UN5PmRn96zG/qjTTHhTVYTaAAesNM9OZzWKjIDGslnIPgA/het3t76i0VBScuyD3H9bd4Mc/snMPlIwaZTe/rXBSxW/x8YYosOr58LVZ4o6y4HDPCIZUb2ULjQ1qePer7HP3fmTOp66gnIz0Zo9hikVYppyC7C9qJw2fK77naT32JG3WwKYQX40SXlq3sgCAfDW4N6bmBKzr44DjxxSQbt9w2/sG+xqbGRCdXI7xsm78x+a1U/7uMSH9AMXu8GiwO9c9o9CCHolqS1I8IUc03LCoz4+1PGyglm5Q2VNMtVDkp1lBW3ghqYgOONnJYtUj6c6OVJS4CPY9jCT0hdVB46NtY190SlbIBcwMP/2WQCpMZNoWWpN/9TCgUwb7DGMgneSyX6Httqv05pzypga3gmYj9llpU9Lya+7YWh/hMWdbHAPy3UkUrgUkh+3pk28l1fwZ3XdJXAwwL2f37D8EVhWXmmREAlqSb5UCAqLNcLzClZeuxLyIXlxPHelnBaIroxbSGV9WFiRMbOM5GRqp3pv0CtloK7EZSg94WUC96aWgAGggeKZfuAyG5jUzRCY05SzGWo+9ztd9pfPKHjK1Jc6FaqyfjpiAuXo2pfCReGep7j2JQrho8j8daRs0Im3JBaNX7rWlhzHRDUXg9YmVwJON1uiXaRd9y1sotVuH5H28p4j+lfyF/d5dTZlnFyZfF6bRZMHE6cT72wcelJ0g7gPKwPB1cuRod3iMxSB/poJwYExT03DL6IG46ZhjoLgAqOd3mFSa9i0f80JrFrO9NTJJZDTC6PdpHVmVixJ4IJDW+tyx4tygDuBqQAR52K/nDxs1b6u5WOTlHjYFPyzIkI/RdndZRQ/1bwFHW+hZvRUpqHrth6WaYw7R1w2GX8hmJ1gPD4rO6Luybxndwwm4kI+kDAngLwiocHgILldbFYwmGQntrgkr+V3qgsupebfSnIwrhfGdhr/kPUUmShmcx+iOg8+NdpfdKSFLt4hx5vzqVXvrmMbcOTG3MGduBPMhAwoLjL6YavdG529BLrKjI3S90d2ljiK/ATygcI09lQbdYsl8eHukTpJpzwAOKKAtSDtMUQwSDfbtCwt+3P68vqEhQY+ZCXYDb/1yfP7W2UoessJ75TIZIEbsaUgXvdulyoTtkVigAQS8ekw6y9fehon388RxArgfivtKpzlWJNIfpFk1LdgEvH0AIushU6+WXiBhS+86V6FwOR3HYrLql+YE78ZIUL9Y9aGaUbAfxiq6bBcSTACre5L9hwVP79T8REDHMys9qMfJ2muaXO2McVXSbe1vNRhpfMXBJcc69xdyYqnzyIaGYyIBSSewU/juGpvFP71ew8I07hIr6utHTPBD0Qw/ekiwnopHkc39D6FCiqHoqUu9jL0mPLMhBiEGEnQrnYW0iZfKAXjGnNngYInQF7WSoqXDMjqV9is8Zg1vWdvLuAE53bfpMwcHqCn7jL33pibpmXd2vfVqcxzaiAyj68CBKYltDWh+n2K+m7eccfjdwCNA0R9m4yg1KW50/Ski9krsK9oPc3/FWgrPpMmPfGNjNIijQ2lnrPB6jZdSp7ju2PXcdkykVED/ocZc/IvKICcX7artsTF2tAVni8OlTxKLX6L8zxo9l/xouzkJgE85UJBUs5q0lNHgB2x/dytfkv/Yf/XrfCBESZa+/AK345ZjYCXNZNx6qHQjcQb5h3pDq1dgUJ1kJxFLYWEt/RoohUhlwDpQJym7n6in1oYr1Wt+wQOjMAPLNpvkh6rfuVlyZ8JiB6AcS9Gw28OPIRdLM/D16hS3vFqI8IgeCz5FPOA/2qz2+WI1Hn51R5e6u80Cr3oPDc+JmbjCZWwxFJakoeWPg9IG5gcFaBpx5+Mkrpkdo8kMXaspb03eMn1NrVma2X4RHIsSRZwX32fWWVAM8gaenMJ2UuTrzH7gpP7eV81x0771tocSumYA3R8p2ytos5KUr4GRAnT/8gF7WguV3Kf9ix2zeRDd2ih3U2jn5r5YqW5r84OMF97dNQK0cinLTIJICtJCl6zx1Ui/M/BBMtPSo2actR5MNdBPeXdMa7gnW3UE4BkFcT5YUY2PiDZi13fyOzh0prp4i4mW5+2NYdgAx1Vu7xLZk+u5JkEKi3QZAf5TRbfJy7aYLT4v31xsOzylMvPtw8pf5kV4qD7V66wkmy4qkBvFBXp9lM974Yv3rIaOFqkJ9QoEjYgkgLFa4XMl50Dlu9NESlH6D9351cFiQFsUXK9jATnUG+v+1kug+ZAh3qPG1tvVuoOM3sToOY+2re1hvGxRyVATxGlT/9eojLYpLoGGNUm0dZ/EMHJTNFcWgAWhpeUZJE0zOwxf43gwdxat5BLVgUMkb3eH8G+IAklCs58fr+HJIrTrqSva46yE/oBUQmTOo3Q8buO1gpyo5ukHmqnFkuV345ANqkCHujIgOtdkkdQDHpMwEQQTGQkPy4aKZe1d4oTd+SoUCXg2TDZgOUUBreUmVGDepboAmVW5bAv5RAOweLhPjoy/jxR1yEFGxfo1jUO1hrXYoKa1CTLHNtf/le/WhUJ0iw8xXxfiDrKa/0i4omyJStpp3zpohjGLzMPxdfuixzcgaN9Nr3BKkcfWyWUZDgiae+a/xDM7sSCZvizJfOfhR9EpEanRmtXnsOOj9YnK5h6qJowbAugvl9Ht/IolV0rLGpHlo/LUY3in5hxhj/G5Qdc5qjygZuTiYLBgDQW+v02/iWgCmapt0cqgg+rAU0WkWd8LzmYixhs2yITgeyC1BJnBnEOph/Dp7+NlHvUpL1BXpLaPNNLY5Whwb9pfN++95QBIrcu4yBaFrLLpIhvt/oQnyuMkJgd2tbWFl5J4CkAZuNT7kQo4Ai9iVbxAHVAcQFKFegGYv2DBvkchAPm9vwg22uZC61pXwcUmD+WJxwLUEudonAyZox5b3UizQWPRFJncav/ToMfsUUU+XW+sjVhX7r0qd8/ALbqtDLTAeVLgrNRHv51qkqZNVJmbaugFnqC1H8dQPVODl9RqWCoaQSmFha2FRoPX0FiLFc0g7ynbUelJ2j1sBacXkhKAI46IErEz5Mp1+qUhwQE1KF0+mjJVtVhyIxmnPA6F3CdI8Kbvh+tPdxGD1g4Wm9Bk5FUxXHd5dqBC0jUVlGu7bWYhMs/36MGhDUTLsSFsNCbcHmEGADcgyUnfn1Yc2CyF5qYoIY38mA30muAbRoOvTWilKOGe1fOwKOCsDarpCwnZFM5V1bWlwczrud57lamwooH/Fm0jTabITCrHTLGjacTz7xg8wqGvER+uinBMv/JTa+V/8KT+kGPBww6lcCQoYE86KwDXZdnD9qLKZyrk6p+AyIk5mjtlu5KluMzbf13vnKmIDKt/7D9nCTvM+tkuLahA4xqu3k6CwRGv55QQscKgjT2JhyL3DxI8HM8ubQxvwi33yEq6oC5NCdmpXMthb/OrfDGd0Ktvt8WWBSlmqTtDcLy8h6SFbleMG2H5Ki4HfdF0+LXu2btNgieoEEGJumhweI8KRg+YHcF+e6/t79ImRl5PchsGCW2HVdu1tcNR97uGzb59IWbxAAj460+eYaDYzhEBlPQMxk51wgoTx5855UXwh9n0tk7TcoVQhnTDkG+pizQRIUKU6fTIgj+egcWAGJZfb425e2x2jYIuWtv2cVrXZfj9krZIHVzkwl7pr+6p0mTgmWweVOt4cJ4/a+9XFo50aUviQxLjIOz2VaAkGJvzFjh9C1Ani3six8yBjKhZwojcoRO+8h1TzvjTGbYIE2+ECEEIEu/pav0K42abE6Oy5n89Rg3HQnyVb6j9bAbSKJL/Gn43fuOAtM+jneTd3tlIczdJDU0tTDoeRiON1GNdYalsI83u39kxmPQMj+a4ViTdvJbsJHJC72Dk2EKVdewMQbOjB61drTXqLSmtfXwKKqHPNGSyj5kvCZ8cLKFYFTwzXi80wcyKF3M+0cHqkHB5gPjrKB6HxBr102HcNJAo+aq8OTI4dQSXayQXtrcN77piG7PH1K8OlrWpIuVeX8qUu4AFQUXBG2kzSk+smCXnizg=
Variant 1
DifficultyLevel
541
Question
Fumiko is laying pavers that are shaped like a parallelogram.
The longer sides are 3.5 times the length of the shorter sides.
What is the perimeter of one of the pavers?
Worked Solution
|
|
Perimeter |
= 8 × 2 + (8 × 3.5) × 2 |
|
= 16 + 28 × 2 |
|
= 16 + 56 |
|
= 72 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Fumiko is laying pavers that are shaped like a parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20295_v1.svg 240 indent3 vpad
The longer sides are 3.5 times the length of the shorter sides.
What is the perimeter of one of the pavers?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Perimeter | = 8 $\times$ 2 + (8 $\times$ 3.5) $\times$ 2 |
| | = 16 + 28 $\times$ 2 |
| | = 16 + 56 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/jc2o9fVWSm8FbeRQSRkdJSwiPGKvvKUyQONARoU3VFTrU5C4AKdhesbQctV4AvRuFrXpIBrnVWppYurkXxZBTAHduPiPhM5oKNwZIM418dL0L0CSgoYTAMUr6Bew8ti5gIheTAcPbqrUO5sax6M9oe06Vn+3mDd712ahDQRwmvc1et69AqmxX2p3oKafR5tMuEr3hj8aexCZc7ZYxJNwdGMZq90OmDhCmiRRPMsgXfzTfsko70Mq1HtYYsdz6sQSoQRgE+fs+PkJmukgD77RgqAzhDtuFgnGQX+puaIvkErD3f//hQ9rfr+KeqAmx0v8qv2EFJP6kfErzLYmrvy+sxd3rhmbF6smkVttJgFlSiyHzL6kk4zZ+xlf7Rpk3Y7o8Htn6xqr/lHW3bHhWZHXxiv/6PU8NmO6zMfH9LQ7HXRnLyvRA/voSn9LqMMiEjsjlIcbQzFgFHYN9v7N68GfIkK8ejinxpP6GiVlAWWO5kt3qZrsonlXY9NBM84ZtDLs9qC9Mf1tIeRVfRNgJ5M+p0AEmSSWkmMUuk4AoYOtd4oEppQqKdRRzDUQyc9sNUb2BDPkZN6VVtRNab7hYYzDj7Z4K9WIn/r+sY37I2B88jYfwVxJvwymz/roq0qFPFfwcyeH2KqJfY91Lvqox+Hg8ng9cIsbdNb+U9559SUDMY5C+gfJ4fmxZtBTnghH1BzytvedN2KOISq65zBSg0hrr3551HrfWWKtFfPqOm09jGNNCcai5iNa9AwyW4u05LLomI7R3YD4z5npcVywiZTjz39alfXFgUwUiZJgYqVg8S5ibZrX8qD/W1QmaAogejUOoDzdk9QDP9Jo8XzNNHeEvz9SPquouRnOnIoi09IXAAaUgwxTSV5PMGhAew4QwjuzMFf2xLxzf+kXoyw6tye9kTU3kD8qJk45xXREX3Q8gkqqyVvFCCVeuhtDi9pT4cCmwijZ0SaOEpLepO5Lx29vjdXryMcGf74eLSLrrxb9HzRaf3OTRaeiujUPI6/uZmkJemNf5mJIaxg2Qr+bisNJVD4BBRZNDZF+iZ5n4wUqpGfmPbio8VGlEj1Edx3aqB4ega1c1bExA75IwHwPuqvqG4XdUzMOliBVHGhNh0TIEP9WItXycfHy7CGRGEVGw1+tLQF8Tt2OsElZQ5QkeCT51V4mtwvF281MFSLLEsQNhcQYu/Euhpzx+34eENswIKOlR3kVy2E47NEkIQ/MV0ow9fwxdGFI1Z3eL5n8hKj5hk5yTzgjDO1y587PZNXJ77qeUeuQRKP8fo+m5rCPmHOXigx/kIENSuoRVJuhUq4NBcoX1NvGlvi/fslffaNxlffdSCAbfT8+hK3x//Nks/eRXLO/lMMNq8GZTY4NL7utEyQZDpmviWD9rKFnQtiriVa6fvXlWCRBwPrEN15c7Taqtk1ZGBm6J8eeRZk8bfO4Ou7hdWyGNo31lDNVXZRPNkIh5AX6OjCWV2oaRhHZWjcFc0xRabzQNlHqT6AlyYF/S4YLvLCGCBWRxuiLQQIv0VKiw17VfaxxlmVgqy0cMFrOyZi+AAbRCgIVkYLMJlPF3QdmLKQsRdrNhuauw9NK16PMo89j88oXiT+5aBohb+C/5MNrZ6ITW09ffjPXiCD/fBzEtRMmYGEYRLwpFMOUwV4EQLJEzxncp0VpyNA/kEQZGOfuIoqBcS0ZdEUtDHQzI1bY2zdRYTKuxDVmM96W1NznaX5UZWXqy2b7PoZ2oLcfxAVVLipMWYuCaSVRi/G4dZooy+DD/4MLBl46L74SaY1oby/LSNiX5JIevGg38AY+mjAJL81qeiN8KzGAg5AtSmKYWZTxBBKhmYfBIC7ujZTuu0sQneXIk4egI4Qw9TtPDmnePfkNwTpwoL7AuvIENowkp1dBlaZdNCLGy+gVDArbeCjhEyGtcO/a0/aFT3GYzUsaW6TwFu/7Y4xF5aHd/IBz6krq+HDb2ztMHFbnuQY/Wrt1Ha3lSd2zpz2aJYha/TxOjBmkSbwxNzvt7iaGAiZMaKSq0H+/ByxEwkbrjEb4FkQQNJUF3PGCncRRAyV1ULT+RozpdbrMec28b9yxXPSHhEKqDO7bYizgvGKxgtbWerTiG9CAuE4fCVS5D91CNjjPVMjlGWwvVu70cSl1erbHqzXlEcXVA1lODgEvOpsA2o27B7g4SKphQu8vp2jbstbEHEqJU9qylBliqpfikgwYwnI5X5+ydbCv5RcLqeiarl5v0+scsrj0aCHtt/zDqEd97w0/cXQKGWpOAd0KZSXekzx44UAGpxt0PYkSI7/Gdc954WKtjd9/TRfWaHeLwjFNf56UZJv1TwqAcqVoXd+C8BPyYcrYvsKce1WycgEnrH3Gj70kNbsk7EcDtqOlYMx29P12KoCt6CqchQVD5XqXc98Tyrwdm/cHGxZxARBaXeZtuYW+z4+NB6c5f2dx+8WbyphqF+TJ1TeGvgFgiM87u1ZobvXFdPfZ/A2/bWM4EaEEsvd0jSPXL5ytDrNIqKY140wp1gzoyLiBULsSpDS+KrawQPVQxhOnoV4RLAbVHLB578aABJf5UyPjyoMA9zmjZ28NpYUxWlF02CjjxA7NTHjhR1CPVkQzQcnD2xtGumwrzZe2HPRv7H4zEvYkiscGxs/6mT6NxETIlFfi+TzdNeNDFp6COQLk9UJfj5O39w8EydXVfI6D9YJWnE10OytR4MQw6c0Nl84v0eVujGQxZtqLAM9Lx76B5URKZQoz36C65Q9OU/5ursBBY6B/FN86VqCsfQ4Q5Dg1teTNQtDJvsrHBFndN6PJLbd9iPz65euRaIXySmdIQgnhvRPGGwQLl/sQnLfwKHFBunXMlPmphpncYRfpkaTwPo/aNwoecqZNRrF6CZQWAVq43/pQLdTVGBEyxSvDYtUubMdrUA+v2cmIFIB1eHOfBb8rc/L+fQD5dLo9WmTgkQikzl2pJ+eVoj84/3wZb186KS6xqK5NAv575ArCniQBjiRQHwNU9TWAO5Rh1p+2tDOQWKsyGRQ2cp4aZ4Uki2Jy+UrRK2UpcR0J5G1DwAJI0cj/tJGXGpl+O53WL9LD7UoEaXXza/H0jTwpgdUYOxBw1GwqRg5QFMyYF9EyuVcVrQ8CwT41KiQcmNoDX6Sh3LyYkTNBh/Np7B/zJ3K0HHwITvA89Xnq3rz7IkkF9sD4Bh0/N+ME/QBpEe5NTMB2suS+cMpTpldnbhUW51LrWLqhcpwxwN2YJzOXWMj/VKvaBTcatHUbF7Eyn28FMg6sh01hxeUT9CvrkUEHWxZ2jbXu5sHlI9EEoFMhyAwPJkb+r78DIDW00et0sGwNiz6IxKvR+wrkJE9hgSo4UExO9Sp+E/gck2pNhCOjx2jqwTWom7Rjfm/BpQudwoKHwOhBSHzCDb/Db1e2fkEOjls3B5URjk/Og8gZCW4PUNIQpb5vNAyUwnPxSNHt1jsjhxzrVagQfb+xjPUL/v/dOjSsAByrtUz4etbHz1E5ZebQF+KPdbCBm9GSADahIup9Jq0kczKTdCFZjMPf9mytxPSp3G/naa373vzceswKdAJJNgBbrL1itECBJ1RFoTIwKVx9Lbh53gIt/mct5B78TtgcuJoMcjEiPXu4yN/Vuiq0f3rbJg96uhsudBT7gphl2PiFRE6f/EiJpCEI5bvzfQl4YuSIQpfB0zDLzG1DQi/N6YPldJTYo5Q6GHyf+2YrvxcxOa4iWCwCy+vzWDoiFE/M1kElcX1Zq7rMV3IjNKor6RLwCgetdp9arxPZFcaenLO6QLhPjlKqA9iNPxe4HFOUpgPZlCouhhIBWDFRA3rRe5q0j0BPI9vtLWMiyh9Uazso07LxHos44203EFgqvR3XtmyGgLY+qRNGVwlz0/1JhItBgitUdEmPMhofoWBU/jyjxSHAtlo4n6H/FS2khSZJAdhfEI4NnZHhcVklJ6Igx12/hJgYk+jjQXD8e9pM8VadH+9fOdP6DHeeqbL3g+J2SgrOuy28wQH8adRp4G9MOGnV6vx9ikGtKuSiwFLSKolMrri8ki5NT9o65S1KPu+oEJb/yYZ5Kpf/S/xfuyzGHfCIfg16WPWp85E0cMR9Z1Gbg1sqr7ecsSBPtMydQc69doOvqeadhcXm+Xdz+44KTHo1OshZdvYnYbs3N4BfPT48T1vhcOyrBE9cBYF57TdGIu/CjHD2s2f08AhlUUcBBi6xpPMqW4T7aPnflNBHONFMdqa9J9irUMIeQVhchsp9XMRjc8ulVzZhw/hQSYreF3X2u7EojpfDXAZCwCW33su/uWs3h7yEK70OlM6tQwELeL+ychfaR3uZsJb0khMIwrcuP+pZSswuuzvxbnuW9Q8xJ91nUDX8kZYJiBIqz1cxL1IoJ15HZeM6s5mcyN715rwc4wfYABoihKvqLvtEMTCAcsD+4V4ZVQr+Zo6HuJ4BynkFk7EYYPzlMAFUuUbPMUsJV51QQ6ynyvbrckvaqY3D+LiRmMDhOaj4RjvEr8PVJ37HJYok55nHTtRbDJjuS0bH9dR1GyhqKv3v8pbWAWmtWcusvzsRuuavfpVHDX+IXqSxSWs9eI7qdrMULuxT1Kn8ADwflnRvnrl/aEtusSRtwcH3AHGzvRPjKpIo8yf/Kqp7MZgy6lZX0Q92QZW0GAJ9UlSPi6IaTvv1ROjl4RA==
Variant 2
DifficultyLevel
543
Question
Arima is laying tiles that are shaped like a parallelogram.
The longer sides are 4.25 times the length of the shorter sides.
What is the perimeter of one of the tiles?
Worked Solution
|
|
Perimeter |
= 4 × 2 + (4 × 4.25) × 2 |
|
= 8 + 17 × 2 |
|
= 8 + 34 |
|
= 42 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Arima is laying tiles that are shaped like a parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20295_v2.svg 350 indent3 vpad
The longer sides are 4.25 times the length of the shorter sides.
What is the perimeter of one of the tiles?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Perimeter | = 4 $\times$ 2 + (4 $\times$ 4.25) $\times$ 2 |
| | = 8 + 17 $\times$ 2 |
| | = 8 + 34 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19n87bg7tgCIbIqUW8J9ZVMp/6f04QOniL3pJEb8i0uyGJ5kogiiNkF30DDeTanIgTtw20JzaxYtKeBf3gHjtWkCdB6ZX6VU3jSDmHncWnl00qgteycMTy+RHgxTtGuu/8c1DPWKugQIM2H0rlv8XaAfaR/Ser6Uco2M1MOsF4wfpuwS6hnouLIxQNRNr5tcKlA3ezLVgrfmQybRe2iummBhY8F0W0RIddhCUF73WGrFRRSftb2SKYZTgoBCVrcewwVkWjxrBrBGgWFLfi132ZKU9UooZOqDGd32bJo8AjLKCOmT1y8NO4+y2adc4MDZh3EPXRZcIgJWwP4jDxO/wm7zS0HAQ+thnMD1hr7oDprMAd8WmXe4WxPYkaOVOkbf6tHohlBjl0j9GWOxqah7oVSHGputquEgdHirM56IGkUmEHgZfe/hO/rb8GdCICrFkNe6TW8yPxlWYY1cOFc+7Lyt+as0IrGnHJwsZsYsNIRQbpFRVOu+s9+3g95ZG8e1m+x/SZ23/ocyT06jKpWfCL4/0uSp6N1hCIacF1H2fTW0rIyHTgrQZVmnoyXmViY+DS6Rg6Bn1pvIcnXewF+XtULCFMJhd5H8hUvG+99EdvQ/rUxKxD1XGOn+KWEFTUUmbLCqbPG9mCBHPRXf1OHmSu5yC53Lt06A3mbaOveObItRdHai5XNlLQkwduW9Nmy0BDQZcjRvBErsHpBfStDpj2Ww4GfrF37LtebkN94LzQ+ZtZnCi0klzhAyguB7Jwulg+mML1ytzxbtxMKi27AJcY9w9o2d6kPiedXDmYbQw0LE2l756S6pi/naI/D65fSiKTyQ+L4rs3sev5lPszcIpG8KpOcbo66B9XtwCX2UILBSao1VAxpxE8SZivUOWM7caCCKZmV4eO3+YqGOJ0rV+h2ZJmBKETz1Fk/B0j9HH4YjT+jnjdDYeb24hyYwn8Fqn1JcdLRD0S8ky2D/zivoTg8dxEvolk1T3WTpBCbLotaaTS0vQK+E4VYwLMo0URE0DNBVYQ5T5El0T/9Gfu1pwKPshXxuV3qkaHInEw7o1ERbDeHirXkKlEa5qmRsr9Cj77MuxV706KC8vP3EhZpW3biJxepLNEn/Hwd7Oz+0VPZJWk7FBiAZgoyRqWflnLbGImokMTGNMuayEoS5aCepgeYIfb2rF2kyJBqraN5Jwnb4MNZwsM5bnt/bXRhD1PxxqKZn+jOHtAQ6zsrFtxMJLEdI/g33D85yWfgXh1+1Xdw1wkd5njaSxD0JAeqVnDUBFKCLvRzy2zeSZdXx97AItM3cYkjbk/+lo/xQJqGJr8hNU9zO+yFVRywlwV94pORilmzSHr1085r5XEot+tYUtDqM+sT4T6bUbyUldOPiXxjRnYBaugN9b0BUqF4lr5ow3l+cBJ47YYUaBlUmosrZ221ltwH7KmgajSj2JfPw2TAY6ByMUq7g/xVZSxOsClwc9dpCONs40vwNlmB+1KZGkA/Y/MIqlu3y3MwXb56aHFF5EPodUWZxnRy3L9+15TBWUorYUg8B8cxVRVf9T7BetXxPWg2AcUYu7O26ZFze+vbmPnY5vvGZClM84Rnzs6zSqf/Fk1bByGlOGKkuhk1fiTQp6jvQypKTC78SmjNZguU+Oli354QbbssbTS+Zy3J7snEPUWTtTDhPUqQzyML3E4dYAleSAfVgrV6/KLjDIcfBuldcNJ42Zc2vAHILrLTPLV6dS/JoMJHz0+BnsSV63r80WyhntIpLlvJMf1z6XC6XzjX1FHCkzbU0IPZI4bYzhJYRGeSvSv+RpZCnFRfrva26kn8O+1RFJGk4ZQzbmarbFaMDm612cXJYKpArgeDCuY/LDoi8V3GCmdw3+QHIlXzEKBowAA5rRq3PQxqxQENgigzHqZ9/7E8FL2IiwKlWipa2jALgFwAC/DFUQKMkF7Xv2R9qPvGmc+VYHRVHUsP5TnxM24YrC/ZwLS5IjxNZY7jVWTe9YXxtDld7z9k7GrJvqo5ne4GTUTTgLrQq0blUdX62YdBk/9rC16qzgKa6eoyR+YktI9FK0vJ90HPm4/us9OMPbGEnAzd9T9JtK6UIkleLVsXl4iyTRQ3I4TfTZYu83krgLJFT7EXuTDu0gzJAPk9qy61b9RsHypElSgwTy4WuiCARQU3wcjuqvokR2Yov0zLn/dl/lQSrqV6DYrBKXWFovaMiPzx3Uvo6xDLI13VTDP4Jbbj31PQkqcY3FnPXNzSIErZG+MxpLsajY8rH0Jv25JgyrP385Vkn0l+A+txZe8wQcSyvlZfa14ECjUov9X1X6/LHyI6Eq0XS6Ix4O85gY10kMBRl+/In3tjkCOc4Ev/efwlliqtba81h+mFisgPWf6cPU4RUVjcuqzo1BRp790BHVLje7k6t7WMDQVTFPDJa/O3ptRRMQLeRUYjQo33hp8R+DMa2WfZsHVEv98sguKlqgRi8QSMo1ZlHioQLI2+IacjhHDKXcAY3CH2WEOuAaw7zsT6FJvfCT3IC/nEGAWbfOFSxVNmor1DewUDVZIUvIMwIr0GSN2FapMEjWvhvH95W6GwPIQRWbnoGbDpEYfvEJ7/0ALIhLFx/YGnzrxm3Ts8nEJvOR9Kvadqoj9BdmFXXETdG0aVK4eKaOt0vDsztIoaR5Y+LRbghOFdtz/m4K7/e5IGFHttFXuGlRXe0NozmdykbEwowBuzk1QwB1CVwSVm1a3iqGR3ajSJfChoYf3MJ3byqq0OqzyyE9WnvzqyERHn7LnFOxi+asQq1tsFJBDVGV4ooLVrG9aJPYMEX5pUra0j1Lcvrxeqm9rz8myhFsaXVLv32A8I3UCDrJc0Z7oOYXblNOPnIPpHG9ys4mhfCCmxQI4yxhqHxIKOWc4zbx/Ng3G/lFlBUxkrwPuruIvtDjhgPbZRahHU++PS2LBQzQ1q4uSefD3LiD3MOQGuGpqJuU2XU2xqlUuV4mHTfFm3b4kETajbgoTHWgliPw6eQbfUAM2sMFYQjkTPzCKCowR1wy3i02RvWAC2msK/XWO2lYdcJb26q4l1VU1ukPZLuOiFvsXaIz+CGDzNT7JkmtfROhbVGtEninwQbjNRyJS4kGss+fpPPgQeD4rEEkSfSpa8ILFF3BHqb3dP0B1qHyBgX9zMPF0iyz15ZcbuB+2GyFCk38wh1pgKG6eQ8wtIXDLVK1/sJbeKJzcE2yFXlTtyyV3x3tz5hYb1a4o0seRqOuj6QcYbh8ERtX08DcqR7XAAjcaA1hgzhKtEV/HyXodinSahFj1jdlyzHFrr25PPIUy4ArJeuSXK1jvLau6GfS8n3aZwy6JIqtNRZnRmmRfsRzJv+G19uREw4h4v+jpE5NuetL0X8ajiS2c53M5jBFzRRMy6qRacq+ODFZ+YMsbov+10cNGXH0IRrKsl4qicwjAXKosxKvBfkvvHhC85zbaFmsXFk0baMtg28Ee9hbgFkAEOtxCvXBbFEzk211vmbmPMzR7BQNO0I4ehnDv1wltFe5knys96XTPx5BanFJJThdOan7u01wdH3Blv1dZopup0edXDpGAhBLeivGl6V9WVjbUfx6bnds4kxP90vQ96vYC2sOVxyBcgRC2Tv8LFP9tzbFvP3jGygwY/FpsQ/Qsc/1mjRqom2R+ORzTLn7vqWPkH5fEVdsg+ZggQZLwauHnRdbJWerjFV6u6/GCbMYuBNdPs4dRHl12rDJuZvC0D4F4McugoksQxdTEYeCZAF9T/CDKvrgv0+3+yPpZQi2Z3jzQgD/9JlHL2LIamBaI4+IhoPVnLlqi8+SnPsR6ULqQ1AYuxsepSha/l3WPvGsH4o/p7QSHWRnSbwM9k5STABgVR05PDFOQhvLMp6KGegnxcRHEgb+7NSxQ9A4MfsHXua6/KyNqFfi4cUaDdQc78ahqG7fzzXn80zDKQvkZmk6D4Q2+ctPcSskC+0CqO+/A1SdK16Nf5wHSdlwEhgV/ASB8B1iuuFWSoVzkJchkXvTirXdVoPkZWyi6etzOwkasjWjZLSGzBRGWuLgQ0d3yI6rch4hi5Z9LXwjlrMqXCoI5mAb2WFMdt1Ip63FBTdPHFALohNq92GU+cSzmKt91xuPFTkJFgm4GlKyUL/MunObVJUeUAyzpoNVmEvZ7vGyvHpvh6xTYxRCYrcq7gosta2ysvkbyWTjNcTtKvWamauRSFIpKIGtrnZt6jpR1KXHqsuH9u1m4CrYoSs4hFwwM3X0PIUpNXrm4aT9SdVluOsJa9P142jGFroaEW5cz+QeumkXtlPx/2Xeq82dz4UwBGt8/vEI1iV26RcTAD/kthaO2S+m4KuTTRPz8nkSjPFhLqYbsr/AaXSe/FlJQyaldu5Xb3dx48aoYodIlHwU+TNyCzCiqdwis8sm7R8Q4gLLF8Rf1j7V+3ZZTPJqJ8hsUelCeGIgCYtGfwmjvZ062MuRXm9Xn6nsTqT/dYQ3VAZM/XzbfAul4FdTi6HrVZkyX/5dCQu95d5SXw6437xgGE/qPc5+QOozisSVytRdQk3vgbqqoUd3cYnwNxvYa9u2zfG1g8xVHJPyCtxUOkqJtVoHydJXVEHU3bu5cb2yUG14owkwCIjNoIl7o4j3+31LzmNZPhtlR9qEbM3nmVifc2bJBjXoIBeBiS1zHiSezGyC75dLE/k0uaoLXptLhhUGR1hCk4w68ZU+JJnwB7b2MmxZU6x1PfymFpCC32f+pDuaHmgRhcYzz1VzlCJ3KKgDcWqpatml8ZDyaefxaeppyUvjt6nar2QAaPXUCb+SNxEE70dg4nwCu+JZ2G5SfXNLxLSY2MI6KJ1sl8fidI8IAuDJ51LjFWw4cA0ZOjWnDteHKnR007/QPxaJBpe0P0OoKUS90aATTg1AKnIDlSG9Mm/2Iycp4Iy1/eeT6Y17zHt6y74GQ1Uh5zMz6fXMYBVduLmbkYfsNaaqr/UFmGsaLBEAQ6Uge43u6TcyZ0/9oyJ120bWTpBZB1RxEzr4MPswadWwmRZ40/IeSXWuJ/kwjj0/TWN274zYHLEEwRP/IDUi1aCf1VEbg1hb9Ps9ycYsgj87Yt84OuDRT/2TUaYlhHAgKVDZ2y7DsZq3owfcsmiXDzyUG2jZkvWJzCiEsDRQxhqzhLwP4zyUa5FJEz4gMCVcJajYPETTdSVBkul1YXuefhrKC6PUB6xpzSRuOEE5rm2+FCGbKlHRQuOmVNMJ2xjG7KEkVZvL5EIWlmZjaPHkXEUHTDv7Y1zJxBNqNhpupJg4V3oqE5diL3dBzvh+DC+t0GeO07Dqm3nJWSsbFLIGnaG1ovtsIz8/zN2Six8DfInDiCDm1tj3bH/jr6SFmIiDfmZm6kBJBmWEnHBBoG0UewovSuFZVoOrrkkPdzamodOQRZ1KVochNOl/nuV3LDhZWJaqkiwLFSk+2rZzSgyVYLWpuEBIRUqFoNoeBZrh+QMi16BM+svsKBlh9axGDzjL6lISxTTn4FxC5aYs1wO0Pf5exGgR91ybNsxVi7VQPLEKt145Ex2PDQ6leXIEqwiNNE9gWSEsuMCwo2hlQ4bbK5KwvWNAQuHOa+IdA4uGptRDr1DZKpRjRbo/CC9EHuiCpu3PRdyJN6rshNbrvWQ+n9JcXugFPUJQcakAGJoC7boG1ZVJC/1Ad1HtLiOKPda4rSSe2weKP60mVOPIM5t8xrjrg/RiyYzlUiKw5iTnzfmXaL8dUA8hlBo8bGrdFZNDOr+Ive8GYyqofGhs4RLcsUveDvfYvIEdg3D0K2Z2kKZxFQPaXvl9vBxU+3yQOtfPtvYvk5E+v00kra9zD5AC0aVbfeI6PFvImo98gMd0y6c/aNdM/KQwPiWq5V4lQQEOtprW4VAVZpfVd+HEi+z3F/WLFoV/wdDOf95H08s9rY/pLZWP4O6w7hRFHk8l/owbDkzXzGk1x0id0F2G/Dh5M97ugR1S4KbP6G1bhytu7pMzEPqLZaekg7L++Xj8GZ+53YilBhY9k5kgcwkxi3YnXdRcpYlUhY7wVeMd4QTxF0J+WTOJpk8iZZ6K8bTTmtLNR2wlxX8YfVDpL4ObDSuhxTM4eeNMsn4x6OUJJadNMWwx52T1/xkDKzlCemwDlTBM//Z+Zg5cK5ru/ztw5e
Variant 3
DifficultyLevel
538
Question
Bjork is laying ice bricks that are shaped like a parallelogram.
The shorter sides are half the length of the longer sides.
What is the perimeter of one of the bricks?
Worked Solution
|
|
Perimeter |
= (21×26)× 2 + 26 × 2 |
|
= 13 × 2 + 52 |
|
= 26 + 52 |
|
= 78 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bjork is laying ice bricks that are shaped like a parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20295_v3.svg 260 indent3 vpad
The shorter sides are half the length of the longer sides.
What is the perimeter of one of the bricks?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Perimeter | = $\bigg( \dfrac{1}{2} \times 26 \bigg)\times$ 2 + 26 $\times$ 2 |
| | = 13 $\times$ 2 + 52|
| | = 26 + 52|
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18QPvpkpPCoFk0PZ0FnUyDC/4ALkkcZu4j2fBE2DsvQ6x+p5q3xZlCTLpdb5MBhjBUUjV9/xwCpL55kcDOFNTOpWusmVVkhznrPmpPoAmhl++2KP1aeBGUat3UHbUe7csET+z4iuugXa28ZAgtKIW4y2vho5Lj/YZ4kHdTpQCSQEuTQUNdRu6VhSFvoIRF6KJr20wv04VNuXzCImr4pAkO2Fhygu2UB13R04iGuXkFNh5w6bfoqUUVw/XY2IvhDUR4FX/3RnxeeMU8m2wndjKYnqTtj1q7Tl2xP4etXJ3HhENF0MO/P18wj48LQ1hkSshMMnoV+3b5ZPI1Xzzi799p1FIZ10A8wmx0N3RYBMKiMvBhkYmKkAWIuuFcNkL8qwZAkKzIc3xKy0ZvycDmVqHgn2Qkbl9L11gimEZuz6gN9KmbOuRNixhcOKdVuCD8TiGKnhAR75VgHCZdxEeMGgfzMG71eb7HkP+8s761SLxJNNJwbSCq1mcOFeKjUYY3ssK6hymDAfWFKeuoUEqmhYsckcCsyhp45NVTnE/NoVG5E/SkSeNcz3QumNGcT011UDGzVKWwbrMfEF/Ycs6LjG7aCfQ/cb+g/n30PA4I8zsamZu8ak2K2rhc3KzgsbIjBMLHJqlMJkSQhvWHzLl8HhZRZC4hmdPJ8doe8+Rw4Zyo/2gyaVZczMqLKobVzbeehQHk+1+HjSirR21VLvTIZyU/mcH3F1aXik7WfmsIWrJRZyqkyRl+88cxyte6K/opK+W9j/1V5wo2sVCIWWdzgXqAcWCP5d6LYwt2GVDeGm1dVTRvcmunh5YhJZz98/UaiLrsqwoapDqk0ILjBWNUAOcQD8EAiPJVHx81qzTwTOuwYm/Cm8uGTfjcWj7zGGGSh+AA1P/GjgvCYYtAfgK4/8lgME5FEy5pAEaBZWMyXDpqifY5wReYqWH5jXPUEOvNK+3RTyKR94XrcyZYnvnTBHc+rmamsI496Pt4VqydmL1VdlI2mLUoWlZfPIOXk4sZqXf7ZnIbhveBf07vpsOxOGa7xgyxLG0yy5BWU2wL28j/BWGtsO7CqV5pHXSg0DkCqnxz9GFrxxH3CGWscgXuMor8rEggWZY6MLkvDsy6jqTSsmKaUIAnyH1fxiI3W/ezIwExyuBBc+5hw5v8lCu6OFhxqazK6uviiUGCHOub16p5Ej1mnPmSzgEjgCEHvBU0X59dxWtaD/O9KsFwCmvJf72mOaskz9009pU3erjtncyL1MjMekN9R/FO2BFcfeGrjYb5dDVW2ZKYDFXp0ePHd2vV0Zla+4v66MpXNk3emRs2mvtgpKAthQid2gSA1rPaxFJjuWb31c6R0xtZYcpt4WuBKAgtQBUPXnWaRXzR5uBCVaIvX+gOnRMw+P2RJmD6KKYaKLmiaxd3uqzN1njz7hbhhmZ4Qo16TN2brKDqhkbQYfpdrqZyrbbLWGEB7eswxLUAwzFqU2cvTj6Wgmi2LtCNsOCcZGRtz7cucOvVdpWlyKFhVfm5LvD4dWu/rD99+in4CXzZ88vEUrz9silfuvUCNh5m+YHA5DrePWco/h1qVHHfBEmi3UEnl9rOxoYViRMvbz4JFa8z/6WxxrZEtgDmXCxmAiIDMW2oNkG4D+QPvBNVm6CMzqL39vLWWrQhOtdwgKIbyU/QfQq85Pze+KytdjtQX+7Z1guBdVrewlpPGeudQEFTpAMFsz+HVYdHiG4X8MbsPOyNd1AZ5benBpY28fwYuSo5OuBl1KBwFzZkYbV5uno1FPuetAr4mvQKqog3eGKQGJFty0oCNKXpPvpXCcLhuPZtC1U5g8v8/HIg0YckS6wM/+dbB+62K7lSjlD16KWxKQorz8QKM+SQMf+qTjpQxIBpA+KlZs0Fj7SI9USvbeX6dRxOPbW8sTWWmlyGpZFFyW6yZ4NvNrZou4VW+M5CUq04arInuFDKH2Ddvxg4DFiCvAToQBECk46gAtRsoM/PnPlZLIZ6AfWUwZteZbfZT3uHbFI5uNOMmy3OlNFCY0BlCqgLg0/rdPzPMnzlUAp6OOx4dRwsTfNbxPEpkvu1h3kR28zFWFk5PP5fJiG0jB4/V5IiKUAyUGIUfbpf5cSe0Gq+w2amN9rwuCYr+5g6cnSyJ1oi+sFRFT/+9JXlhqbOG5foTxAQSCndOclSeOa1pRFE9Iz5qGlG2CoUt9SByliKgskYvzyMKVs79bGoeGiIt5KsWe/aKcIR5iW9IJnie3uEzydCJyMrtgXuPFK/TL5sIIqqpTgdMyVCV4dRgliwZuDnpax1d1c9lt3YNvhbBtKny3XO7PQK2lr+dZpTg/tJtu+ZJ8Qlvk/dYodL+3dwIft40h7gUEFBKArKa7IBaNfD8GKdI/89RXjrmO8An7m3Y3KvHGROnmxsoAw+UUeTowGvmjpP/sgq5gvqHDKVING3U9HRyfsvhpsej+wnuJkefGB2wfaCbacCrJNIm/SvXwGUj7d3KJ7jdCSSlS/rR2vZgbpoaRMs9aHUlHBcsGagk5esWjM+vn+qKO+rl2qeS4wuyDpU9jYRrkiWUSyzRllu2KfH8UHdbxuQNZlFZdKAE5K7fYyGXa287o8Eb3MUpY64nc9u8+hcQipPm6acouAJrM6ekYLTm6ojIxjgJCBrOH/FYidgYkM7lNBDowMt4kUoBUYFJjawknkCR6IeEIt8ynelNYzGJTmCQwWBOy8JLECRAxn80K15k71TmcYo2anA+gZqr9fITkTq39Hf3kNZ0GZBk/UMPRadosb+dGNrkJQinaGecRLUYA6SRjRVOI+1TOaAzR9jVGakoz98SKC8GSLjst7uQUS2eO8pgH6XkQXlWMQgHYh9xsK3lIutB3dgvgfkwZ1u78h7vtrlz7eKLXYKbmEO6t4ilw+8/rsGbbI90I1J+yLm2BE7E8vMt+mZ/KuY11GQ3xNcIFT4xm02HBORGkYfLu2OWQXqJqviUOwrxCWooO66lBupCx/cN9LYp71sUPLzP8My7QKHN71ktOOEaIJ2ylyx8Pz7LqOggo1emmm2RPBivvqgkmKg1jJSrv1mvw1Q0vE3YOMhPLViZa8Z/HLJUdqtnBTFgMNPdRLhKsYcZ7WbdhHXD21ttAjFznJSGLaHeHMn7rySF7gPLKrEf+3+0i42OZttRSOg6d+cZNc2uu53JD740mEGjdjv+lYgpd3Ww37qhzmTNM+b7+RYhq/0YAUN0vm/QG8PI4dY+FJoDGtqEKQ855i1owOxtMPv4dxo2UWfzIm1E9BOHRH8yYdnyMKYCn6y4Uh0VV5eNNVPS2e3jBFSDgISuAbyfiYRLSm1zNsAV/SkH0QjoWoeSh0nuPwSISPmJdMO3UYYHNExG5q6luIKrF43s95wEc4/+G646yUEDjv9MTw6j8dFOKW/7Ox8498H1Oat9PS08IQk7mNaNbqAmehmdVORq2OI1lEveWv15MH7TkD2A3E5BDbqc99E/5FhQ5GE8c7l+zSqdyUx0sDM7Ee8bm84O6dzxopPZCSfQktjgblNgW31w6KTQD1Ps3ts6eKL/3Pns++ghYElGmk1kT/MU4bx5+5YqKE7e7eVT5OVvbP+TBquj7ZBTmdOGueFUMFoETNg1L8pU3sYfoInWVBeQGjUp0v0FeMY9D/bkqW0huQlIGKe+10R3Cdg+PM9yc08amMv2h9Jblnndfa528pilLpQUr26q/i/1dfoPFwcXESbHoZ1Io0E9mzzYsM+vGBFJGVxpwzb1F6O1t4HN4dqyc5ykVH4EhPjVbo9/z6PoCcib9DrI4wmBTSnbGAMD/8LBXeeG3Bt/teX/EDQNNphnEM+l6eVcZPdFoQUUdFpBqAOHquuQx7Hxahd1QSRoQDNT6tBFZRLXhtkunVVIsLWTY6Yxu1bkNgnl9ZBjM99dKd7dGuecdMZLUJ68RIyH9H/qVOsO47w2xb4MKHyANyAqJ385/xKIymdnI+Ymd4+ICxI3qaosshTBx+TCUrQAhyIMDSJwFXQ5zewqp4r0uMzwdCR27td8vF0vRQfI2tVf50TdzOKa1idTK/d0QVd+gsvf10owArAfZyELJUOB1Pb8z0JSHONPXtWlUj0wJ9C02Af4mBApcLmguQtl20A/E0K1qceK4SA7ocI+sv2DcXvik3ykSwL12mr7hMVqFGMdmtov68gN0vO8rGfXmtBuEXrmFWuVjOWoKT7YwSrkXDXygPby5pcrSAf5l8bFNoJF15FNV5SlfwkiAyV048oI2D5fP8gmdGTpFhtjY7mPC4M6UEooPCams7KjA2DFPLo5L4yuX7iJ3HtYRSM9G63tNNcTzEjtmttFB21ndJVSYL7RnShjZLPjWPfHZTFQ3tVGuxZJz0C/N6WApbMCqc7VW6fTDnuZMIUtJ31dgN4FOZsHCbrVCkrR16urEqGa6gtyHaU508SSPaHor2VlNt7HPC/I9OOsMVJHFJcELa8PlRNBdZHE/OxfNHLjkBGP2nLmeQoLIzVXgOnL7+eiMRdCuMIMCte77tSAxcyvPUQNsyXdSyGLqlR9gxaiwGNaGuk9UEHNTAv5lqVM9Ve568G58phsSHIT60NBmkDfpxc1r8ft9ht1etD0NMIA7gSar2zL/4eIVGmylSNS9kghK6qEvegT+iAI/2TG8sAKerenW63ojYovpek9RL+VpaiqdmsIUUCdXGjBj1suSepAsGMByZruixYzAPpFvqkDPQx0YmLAGrOz2bJ8D5q+y/CkUs0hjwxidIRC3KcDLVWMxNO8NhBKIiDZaTSTWud12Zylo4hGMvXE8BG+outq5dzz2cDlqR1L6LSDwR7pDsuo5xqHXoO7xI0O3mnB360IhteTfBCBWFDyBURzQtN6kCcfHnNDcAaTdwU0JHRr9A2YVUb8nyjEuS0gg64Fw35WUpONXpyXwi59TT1xupzSHczLTli/+yqqRUbZPAN+RTq26amPAbwXTG1tRRJ/jmlfpE5t9WCzZI3UzfS/BuR/IUwkF/BadmnMkhmHVsID93CtdvliOopUF+o8y/gykAwsWwQ1x9wpkIVxlMjZ06dXDNIgN6pUorJZxo8Ynp3wJ/6HO1U9AjjPRJTiEb/MXhIxE3g4NuTcBZUDJda1koA31iGKP397yR7Y/lNVnuOLP0xcQZRTC++WM6Hvc2KWN6l/H5fAtwVg9tL944xISDT7LiJtxu0sKh2oDy8FuqwIKMh/pIO05Q4Jn1lQVDOcgIEhc8d8IO8WDVFsgHt90UnvQnEftpooqdM0Wb7QYXxYiYl5fs07msK37wkUweDeJQDhKa05KNNlgX2UsR5qA2h4Z+txbwG5Vk9AVuo2YQ146stNeuhgz6GhI/kph9kX+54C9WkyP+vf+mziB0inJ8K64V0CHepgMYo9RsvMwDyUH/q+YTXhW2MZ7RO/wUoE/dQJq3tg5QXN0+f6dSttpmZkn0tMMdWJLHTFQOKVBS2r3/vQruZh7goZRtQfPgp1WyhVTtIPUVbYyt5XyrJNoPAA54m84i62WnedyjXf4orSMYElvczUfAgtxxmEDlA0ibKTtiFpSJ7UBvKv8CcT7VgamsUY1qGkKdaG5NHcCxiYcIhKPXy71ACtJm94XAN1PlC7m/OH+3PW+miXaCdtk94WrbQFUWFELKn6tvXZzT1Ja1PDFQ7gAeHyfU3OqDu6xPZW8ePJi/WOP7T1dSnwtTsKXRjJVg9DxH8Di0soiJIuyl8RPJ0YJhqloYcjmlw+SiJop/GZzKRSY/g+Ig4qDHU3bnkiEtJpB6K+UpiGutwLTLYw+kbwY2IWJioZG7nZUOPLTCzPVwQwWfThBN/IQHRSknvF4khb5CWDa3weUXexB2AzgGCi2ZX6/uCpMdv+4iFw/Pa34VEEYGjYnvq5astAP0Wsu/5B/k4lbR03eTsAz8VY9VlQvQAN6qpVMcbEHSP+0PKokl4nVlvyCqD/wVvNywuk0U8OjSghANRN2wV5ZbLnoMkkk9gRMXq9uElbsk37NGRfiCorbzXutFGry3QgdMC6Rl1TStuTmbvdnaPP1BPWl5UOe9g0bXkB+ewVVYZIsM2UDRFu4dglmdhPxagPvCf9TodFnHkFBZayWnYHl4tFnzPz7eEDIdH+W5nEAxBXlRRqvS5FM9EH6aSKtfmYb0yBGxl4z/TQTqn/5ZnmdgnabEaGD5l3WvCcAKWcGBiCy5nBB+ucUpEN
Variant 4
DifficultyLevel
542
Question
Vladimir is cutting a piece of coloured glass into the shape of a parallelogram to use in a leadlight window.
The shorter sides are one-third the length of the longer sides.
What is the perimeter of the piece of coloured glass?
Worked Solution
|
|
Perimeter |
= (31×36)× 2 + 36 × 2 |
|
= 12 × 2 + 72 |
|
= 24 + 72 |
|
= 96 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Vladimir is cutting a piece of coloured glass into the shape of a parallelogram to use in a leadlight window.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20295_v4.svg 300 indent3 vpad
The shorter sides are one-third the length of the longer sides.
What is the perimeter of the piece of coloured glass?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Perimeter | = $\bigg( \dfrac{1}{3} \times 36 \bigg)\times$ 2 + 36 $\times$ 2 |
| | = 12 $\times$ 2 + 72|
| | = 24 + 72|
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18xj5J2HJLcNpq0IBmVfuPqvNi7sA994PrX3GSRKKZhPy7CcPuKzKnv6pXCF/o6vUynmo1Lg53m8wGaEgt1mGk1f+IcNzvxs551i30BvtGH3bpzYKpnTnJn0uSS65DYz/sweyACkQ+UtswTtN4OHUEkyhncsyGDI3oDDV7kFTJNiZmDgYsCp31tJfUEIlDrkIijc0Akx8aJn4GBHesHRoCy2bzKmt5vBZJgWxvfXw3nEvSKHc458Nju26ly/NYdafs9b5mCfkvIwZKJHSkL7iD7H4RCRBLvLz6XYTAdzVmUxhe/ACEkITbRLSzbjrhS59sMHAB9172SnK8f2dv6z9NRFcB/viyDALO8N7RSzOazk9z8glohc1Jm0g9XPxF9NKvBKDZzUZnrnVK3jAU/LIgmM6MHv3ew4v2kD/v0JTZZoiRGTqxm0OWW4AIdO1nxYf4BXkxWV8yKVFzhmII8+5j+Vq1nsYQPUrHnxIPaTgNXLKFHorCc02YvefvGqcGfcuwyDkFQJILmdw4aRRpwfhwKtnW7rXKAUgGxk+6TG08NrCbE4COiiYK1bmOgiltlHUK/o+qhl9MA3SSVr8NlXeuNwVzytG/zr3VRWilASrv47b7LpA4b1+t0ydnJIw8auWvZzg3aU6dI065q1tLdPx60/t/j7G4zxs6UGixqsNMeM6AXRSdChBhRK+m1T8zfBnfDY0COn3oyVq9Mr0LASM9GzYtOhyeGqweB9cVaW0PXUPlqBr2Y4YLSRM/UG/7B3aNF25LDbAAZZHU6ZLUNXMXPL5/D3FdFJ7SLclkRbOYlI+aVzqL1gVeoN8iyjszHwGIFA9Y6UlRBNLwKHyFPJJnwXw1MdOMRjGpjy+Emj+duUx0t/7CXnLKl1Nt+rIYHYTrV/afh/ta7v/A3lfVNstpQA0cX9ccYz4o5bMlk6Q/HfxDww9JsKYmb89ilXd4L2dV7w/ecH0jYMADmocVaSyZtMwi591dmKwwvm+Ye/v9wy9w0DAG21cDXO7uxnOF3oXB7j6R8Ktvj3lM8QTDnZe5phdPgWyEKTM0cSsK/Se0itypd6WWqhF/xFyUZxfoymFFW/wqWgupHwdhTyJJ0CILT1np7haop/t1WcEd9g7yOpfx0nTEgPi3Vw63StDaDiHq7DLyTca788TyJDOggtJOsg/Q+w7VbS8glXCatZhdARqDfAVLMBkcULTcLtaMKv2qFiTkaxm0SfV3+LTFVIqdqtUuZ/kX4bAkhtG98Gi6sheF+9HvSW3+85u2s4FBPS4jc5N3KARVeSeEA0MD7B9+y/rYEAaT5Ok13rmobH6i/nFo1KXG5uQkbcm1RKWo0I7TkyPwXjgyYbPiTrGBpzeXHO3tgqwi5eMXbGgRjfptxfIsRgGJeEniSxWO4qGsWJNtQHSRVhbmj+YhWeuAkgefjG/H19QIGDlY8TzO1UGE4+AfBGxUYKXzJdN6G/oUFiAMmbgM/9xtlthnRA9Yu25te9+QGqIv1bqpBEHXYhDdbyvvU5DCsp31YHH+e6O6NLgB+MQJDoWW8iIqen3BRO2Z6nGVue/RxxRbyzjF6JI75G0un6ftfjTY/C5gbfXOUIrnyXvUZ+dtqGsugToOgDbtz1UBdZT3SF23fF1vnXG5/8Yz9cApMfhr7sltIoQ9gmg6rlUNo1cJcOccqRbzxiIRnf+JCM84Gg+Td3Mm6LbZK2bci5sePoeW3L1wKhjC88USNqXU4fY3fWSykBL2UumAvnhF9ry5bq6Mv5QcUpxTXvJipa0D9kKrp2HSBVdQMkflZ/sXSVgsPsXAbDHZVqhTiyim2U8w9qld2SDLbVPqeBUrytyW6aTZ9sTvb80LlfL8Xipm/72UyGG7z+nF2nVjMa3hMkRTLrP8qaYC8kHowpCzW5FlXmioynQc5rw98drbqPvNWnnh3f2PsY+UK4gzlIxKybL6XD1ALimeVNJu7TySE4umhejwu8LWprqT1A0FCZOddqrJ/JFm/lQOe786lsFvrg1xlABfvPyGXLEK/kohZsSa5ynBFCv4eLhP5jvgbHQxfkWD49B0wRPjXSlwr07c4InMCYEplnM5l+3cqJ8pOuEHR963XzYUm1EIrPF3FMLRr0ea17NiwV/P+KZRs3uU8uRdMjtVxXj4HMZ33YJnSFbRMjTfx5ewT8t2PapvwP7CZHVPzrn6T8cEZZZxiL+Yxdgpm4OYbQxu0P9jC27Cgiu6X814xrxYjX5qtl1+Q+jdbXZsC+DpMkvy1oIcckIlzx3ONWSw3JAg607PPnNXSRvaGYiAbGqTOioSE5nvcj7/m2BYw8kwKN7h2CpgnOUXbxfwane0V1Fc+LrNolMXsid7IUwdrpaGOdgGvkYhdN+aZFuy/7lXas6OeEzo+IVeNd5rxZrorSAHOjrjxyiJMmSrjTdaHJxg8lFOo9XqMB0GLJYSGUQd9TW+vyuiNHSvN4MhRFNPZcW7eKn2AuU1xG+RvpKT041oQLMyaY22P2kTB6MssyUc38pRT35x1sLrq5AwmQlRdfThK+g8qAyilOnnFvxpzQdocM3mG6W9YxIxPpMQ9c+ilHpLtMqAuahVlXE9MiNOL3hsw15VhzhHhZMUTWuJpvHZjnyZGhJE8zbF4xP27CethSvqPCu6sleyNjKyntL7QUQu2w5493XZdinzefmJb2gpiAbN6r/kuLVKmQ3KbyXq0x/Api9LZA/3xzEgLziO1S9bmTMaNSnIezVP4dFyftl0s+zVyAmY3I9wrN8aDH4lDAG/ek8msPxqZgD8n2kpQvRAtlK3KgYwUZl+BZbU0gpbvEh+lkPZAmL29/vNmITIqsRAPMrRM2ETkZIZ9BX67KG7OVt6VvMbMJuyxQbMX6lPnggv9a6UykykcqQClvzrxaCaPWBmhhMQbqrMl0ka6/E6KaY9LMSB1grxA+kn5VNzrBYyLvlZOX3dq+TSSgVn1vEn/pbyEe08Itniz13wrEJ7/+QIYrvwHovmDRWY51cbkxFoohD9ZMa1wc/yK3ercBv2WSUD4lJp2VDvF6cKlVEPdaC6iqZ6TZzETMmyQM8V4QUpHt+H1sJtn/wIVnJfNjQKWjkYbrPVtimGhbo87EVwpWzA+PUZKaoVkToQYyHSIuQB3nV7k4Z/W0Nh57fKs8kWU+FxszmfMJg57KhBGSY7oOi3dL2haPepe+cfzh8wSUW4PwEpN4IjG1a0X19/0VtJoxYE37YeMCirJ37nT3IqK/V8gqPdzWi5KR2u9oJZy1wbpw4OldwAtrR+V+O9/aKcRD71AxHfJvgE548D5W1RpP4kWT9kclJ97BmqLFko5ZFFI5dK+m8Nhgf29n/1IEeDzMSoQl0hwJ0EjL+A5GevtyNLmVAcEx4nfApfPuTAoIUh7V0cbAaiveFKZiIQpfzWYRF6FLYVsWtBbjG6fwLNrdedDxrRDdAlrHUi/tc56cDr7biufxuTuya88u74xnEoZ1fzxl2wSy+Sb0WkUrAsUSGsHFelInqqyFYmfBr4HIGk27m05bDmZWyc7vR2ZRn6KKCDCXoTk8w+sGSRV22n3deQ2w5zGnGRM5VEJTUAl3SD6VF5ba1cUGKYB6diBX3Xa0U/h0IEkk9Q/8oxHWPNhO8emQWEsy4Qz+KW2yjkkfBrAFJe7ttNfzpkI2+x2m0Fek+kw+46+RRUNSKAnb3INARWek7fDlBp310vgtndhwt7bbcwhz2aR+VgrOxlkHcsRkGzbZniRSaoqqVnetVqqPmymtZIsgM0pMtx+8PDHLGaXE62VGAfLEpJnKTGf9xpxS73NONgEWb7ng3fCEOq08usXgop4plGuIlQbfvHPkb4p9/WX8Y1Kl1TGwmUvkG76TqtFriw5xwpRg1IjUqhaddt6xeJ6VTeD/ij1g+BIgAmDNbC3lNeY5/Hw5ltLK5072Y9PrkNRB1BbN0NWzuc8XiF0HbMgKtP45LlGYCDU6CLmgs/J29oXXUnEFBUWG3wdZub1BzZjPy8dvo78p/Yzw9q4LreksGI9nR5KwjByaRSblXnfHRunItkN80wyg0wzoHYezMLV+yYT8fP+GyADN6Smlt66zCtMVlXZEkbadvEOuhbVmvvHJeABnJ/C4JomL3nZ1IrQFvFL/SHxIIiM/CeLWAu911oLFf408IcofIPPHuJuS6P/Vk2/LZES8d+eGeiwr+ccfn2SZKPDchtFYmKNVjbQd4B3L110Paawqib+7VZzxuzOP/CtWOsmKt9HKXZIda5rbzYBM/TgcZE2WsH+NLCCKIlulI1n38aqsvxIxd3N/jvKItelXMHmP5TO6cO7o6MTqqBSk26XLA9a9Jj4DAyO7q8bMx6RzTDvyZAd7R0jDmxGL+8/KxkDv2KpQ8Jw0/SQye2XdLQ43e3P+VShPu/Qm3k2Z8uu6w8jKGpvfbxihOPTRFnPs+2OIgLoXklPcCHRYgaDLDz5/Gr5LfbgqdZBa9iPWswcwqoilcFgehC5FUkblR5DgIEIZ+7ZaXy7dOtd8DZ/brwSUVMOUJ4ZdWonKfTkYpqv6ppJ5CiDiWw19QPWcOqyTddJAqoAgk+SORMNmqr6ga1XTJhR9X6eDtogB7szaYhSDiRGKBYXmA6L7jGWj5TFf+EwHK+LmPGUJj27NAiQeyCgj2Ty/vwD4i3JSFwBbW6hZBIOlySTfJyGmXLiEqGZ3ofa89SzruTYb574Hz1T4uzeuvH6htVCwmjDQ/g71TJNIVG29Z/uznD5JdlaVfNqtcxDg6S8s1F4us+r9+mI/6Z3traXxPBj636vFAKYmzlBenRlc3iorp+4PmAHUxja1b94m2/InHH5GHgOvrMjRY1KAB34jcbehs8M0Zlg2q6iSVYFGfDInvafNIMY7JDhhSv9Fqd/0l1mZEHI2qkpVmJb4+ztsp0Kb7KSnAZG+xL+AH+UKcH8ALW+hSl116SBcvSj+/K0W1a7Obz7z6+DsT0LW1XejjN/co4nY34eE/a8XVHjuUWi/kjQfbdFGssvcmF7S2tkVPvIkgZ0KId+UX1UV7QRMsvl/Jgxa/UDZgrT5QqDUkec5c3rn2WZB23FhaKPYhIiZTJiHCM/5zwUI1/MN023WK6aoVhFb++FUkFN9LTxZf69bXYjgi13SANeSHmvMucoicC5GfgTQHlCt8nzfVOHly9SHu98VTpM5CmeW1+gIOhWM2prZsdWGxz+FUZ5FFIJuHYA825DRtP8HMGjDp7vYyt4baN7jCdS4AW4BTyNcC7LmPKbTAtSN4j0fPR/ivrPFRLV47er4bqhwHVrMmisdDL5W2QL7kiULNO6Rzew7lGhAtK6wptXrskli6ICBC7vZuNgSLrQcDoDO1oBu0KVfZGm/LBl4WQddH9k2+eurpd9dscPXRKVDbzzOFXR7PMn8kYbGttXoe09qphShrFOBxC0nttbvg1tKVgTsWdIM7Yh1Um3Niys22b1mGOPJAvsOU4R/K89VZjRPJYnveV/48Ho97U6gwYDVkQMD7tRKEZPAolMy0YrbzFgbboAEppA8ah3PFVrOj6HhN4+kfE3HEqFKuYiZWbqFyZgO0J+jnLMXN74ElEmXE626xy5uSjCgtQBCFMMGg+5jINpOsQqWcaez/syTQnZBTUzfTBPt+K96mjY4NXsw5Sa08lgh3EKqb4KJzqar6LTVgMD/cfNN16zbPT3quZHLgs4y8wi/+HMyh/9YmEZm63lkAJg/D+KEi0MXYGt4xTL2EF8EP92mVRjH/EZUK4Qn3Xrv+OiDnsafN9jtN4nK9GO7R7gW6IyKNv3pGvxDBZVnROSuZxqaZDU7C9vrzpeZHqB0CN9juTb4vLi5748d7argyWkKu3SkhsqrbLooTlbpxqfC/Q9/XgdbyXSzw/BO8+QTVOvyVgE90jQ8pmXJJg5I43oEN2jXeKxsguFl8Ar9kW0pvpD1ejsTo0oc9G3nDHqvwxxshhXbpVV9cM4nJshgRvtFKJUjhJ/JxIPlLmeleUYCaOaR+RbqBWCOmlbu+Z7VL4kZJ46S4c1GEPUta9ZVAOk0yplinPU+1qhwciy/nMiRDiA7h9VVb0y7UweMWcJOYOloM7pivZZbaXqm1Re3u32h6duwGj2vXyxu6XjqljWl+tCwlCZujWFVSPUwx/glyoY08ZPp3dL1GqiihNff8tF/6NpOwW6+eCzVvUIkLCCYPopvB6FCXNmqsauZitOrd93Cs1MiuW5eLbzFgFIA+5/5wpA4HWOkoRmSQHQjqUII9askW/Cka95pvDH1F9RIl/I+KGJ9qWfwCjFlg9u97n7yJzKk/aMe7mXDt80F/9+XsBTx1Cw44RuyHXJsF/3Wg9Xd7vW+BUkmOdx3IJfxy8C0dh8yKIX7jetWrlxAdK56Sv7In3LANIymKJYDSgyVfpgcMfm4rgv3iHZei+Ne60NfVuLgWLc8O1pAxmelb2gMeSCTm1JspzI/clsyelHXcMKqeSZntDB1auriEYPktfKEsMAoMhjxASIkwnouhoEHM38SGgQmnC7Focg1tLbYj4vO3pD4kpjwRyaR1c3S4rkD5hn11DUh0h3zFzfLHSUw3xmfSNMqJEUzOuZdcB16n9xYAuD0B/RhBx/yQn4kL1YXtybp+DXmz5Y+keBpEcmSCcvSVb0nYZLMQb94YpU5cqQQiYT200EBBEA29zlP09B2EGdRbIlMfo8E9VWLaGZ0R1+REto4zY9TnT9N8lEVtUQkyiNx4w02fY0DQBrkpz3EzcVCNY5VlEtqUFn2zVeQFRWd3AenjLro/x4PiOSEAeoMu2Dc39ux0smXdwN8ePSVvDaVNs5w8s8B8rOGLFt/ZrILz1vW8hEj8Pt7cVbI0IdRj5pf0VeRoPytH0cjv1rNkMSpm0K6J3Q9SaWOAUrv6jqBs+oyjUczzhNsbMul/0fldzOyvPNz/jPOQKEsioPyEeNVCMsIgwwSR0vZb+3KeUGyox/6NrhyUVK+ZZbkaabWj7gbQaODviK2krFnromDOu+iDqRiMKlAW4Y+z21zcKijeVejyTE1C80VCms
Variant 5
DifficultyLevel
540
Question
Tatiana is cutting a piece of material in the shape of a parallelogram for a sewing project.
The longer sides are one and two-thirds the length of the shorter sides.
What is the perimeter of the piece of material?
Worked Solution
|
|
Perimeter |
= ( 18 + (32×18))× 2 + 18 × 2 |
|
= (18 + 12) × 2 + 36 |
|
= 60 + 36 |
|
= 96 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Tatiana is cutting a piece of material in the shape of a parallelogram for a sewing project.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20295_v5.svg 300 indent3 vpad
The longer sides are one and two-thirds the length of the shorter sides.
What is the perimeter of the piece of material?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Perimeter | = $\bigg($ 18 + $\bigg( \dfrac{2}{3} \times 18 \bigg)\bigg)\times$ 2 + 18 $\times$ 2 |
| | = (18 + 12) $\times$ 2 + 36|
| | = 60 + 36|
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers