20082
U2FsdGVkX18S2bCBCLYCR9YVEn4SFY8ZCDsBLfV4Nu7L3BQ5hXdgFLoijZ6ZJsn45BkN3ktN735pxOahpQN8FIzf2IqaUrTEfD03E2e3EBkefpSuw1cG+2cc+iXevrIOA00GtCePddm2DJ9OaL80E69Isvpl13OCQReJmHSIhYWQWqwxzyMiDRtnLJvdj6ScAgoRZD/HyobcWT9nRs2x92QTkJLKbTNCWdEE5IwmG/YFJAWrMv6MKaQebFzJb+MaRLb4Sx38cROXs/IwGktayHeLToqBS4T/lRFW+sXBo+qarXbV9BFNat6nydhNd3/pOxMAf+TFM3Sn1F0XPWj+zjFCswrJMtVPG//RwMHD1akjE1ExFxEhbr3VOUQ9qakqrbddLLJbG4R69YEorsnrDXkT6SE+0ufqDV9kdkd9Q71icDxuo0xXwudoCSLaq+b7MucTHLWa6kpxb1ENcHWrY3NglJqMFGrjtAOS+IJhAR+4mO1OLt9Afzfgz0LfMnioXeNp0azau8v/lZYuZlvx2OLKwaqwcS6mSuzd1LzkIRt+201PPhpPWpTOKe6fi2FXwnOiO0MFH9IM9fODBi5NyCzoyGfMm1QydFYQSmFIAmsXL50JuIFsZeTZALLQjW6UQhUB7p6YgIri3X/zw7s79P+M/dAbnODdcAEEQUyS4GfyHTn9Oj4ERd8ucl+wxHJsI9Viav7OrSrlGBX8SzhlhKIsIw1bwrRuI0jgsB00RXbMFbCOgGrRYXy1EI4x5tiz8txX9MMyBm58TsNoeO3jKdt9h1MGc62fWpbU+ybV48bCX6Wz8zyRkXZW+lg5U/h8xQhJcXiXiqX6wfkOqIah3yYJCLhmRFImM9BY+HMQIvoea1xf1uayztO0U0NVSisDCFVESERQti8ZSlUkbtSvtA9qJz74q3Dy/oJAFLqbteYUkNzwezb4fTsqmXszPONqw27xkSKrjE2shk32woy79yZeA1fdYqrVBn6q80r5KczsaYwi1WlfLJrEr5kOW3W4W+8ArID74waoJ1zfpKH40J8CnXW/k9NuHU8i1ntCes4dMlOAoK6TO5QxmUS0dk11v31VKG3iaB7wZU+a1XPaWGEwga5wf1I4lRPU6cp75JPEJGDsE+uNTMoWzQThlA2HF7BFsTI9RcHekQLil0rvkRHT0ZeKUybvLj8G97ZAL0uyqLZk+/Z/SPOldJCiH/4r3/pM13qMZtszf79KKPPirXdgEnipeqtRjUh6Vi5K1mI6EYY63pognCameaDe/XUK674PYq2LqqUO5GtCgZpTBCINJOhwIRaxCVCQT77fTzp9qAetciD/MNcPSAQ6iJZJDwxwH1gCWh6+cc9YwXWJjrKCiUARr3Ct2VKg0rogpzuKKXwSX/jRUaXB0fLFEV+EJuCHDBjsep411pAnpa+UUuPjYzsHmOKs8B174yWeDgcguD/rOik8ZKN9UwY0sIhfz+QQcYGKqMl90efeNrTMBsYN8aJ2kcz+h3W10nufoWzaqhI453zyuHL9w1nRUYQA5XuKEuGRwF9168SqBV/PYW3w5+6ZKEkr02TYocxiMO617kg9wO4s6VVr9v4SeVEkzNszA2aRg+ViwkPh22JOfaqmIuumMA+KeahrbN8iYAZ1wcFUl3lEykbTYw3Rmr6AkljmtO3sgLMck6axt3m+YDZHwiRf1297iBOl3he6Jv8EFRw29T94g+FhnFmCBJenEaIwm0mTQq7taAbhTQdH1Pb9eWf/Ak5HkvgpeFtSgN044gSAsVmcbQpGJkRwC2FLZVSkeUvjFBKhBGPNQGLW58+uzMgbsEzZBbK6hlcPfInZ43wKCMsoML80q2fUKBFYEJwLMuDXqT3lTX3uh7GRLZgPnoWaTa6yM+ZpVjn2Q+Dhxfk+DjVxwBX3W/EL+pawOLNHuw19wB2uSRoaqQeVOLONHIng0FeFgSRwMbHf0+WggeIEmxrfGZGiIFpkEJjTus23tL82ouPDIJWqvqeOnfgYGCJFFTuJHdKqrcicodKIcJRVRjC85wN6zqJ9fq+WZ4JLVTvkLWno6aoyqTsq/AcYHbPC8CrNxr00XnTxcLUoFQ1F0z58Hb4hDcwln6IQeo2ARkM0o7ejTbekx1fuLvHs8tDwXqJUAZZqCehKXFw+W6+cMbDZe+ZjJkv+QI9HVuC6Ge+ZCyjkoenR+SV+0S4bgNCgCzFOPNJAs/xE9506a14q8FZ0hmr5Lgj7j9QJrVMtx81e9x69qBsfE8WIhoTLqWj0y4hbnRmAvAGqBd67jVl67nWpeKpWykAsePs0YTb0TyRACSMxG9VKF0GJXcMGWYYaoi3RZTmAjhO4Wi2rlZstWFqQzfKGyOKvtKgnI8/SjPhFTMmndtG2JXQTHAjUQgFmC/iJy+Zl1aDNCWdO2sFljqwZGfpeg9zsKcur4MsTN53SFv3DXEWBeLM04WRhm/4skjWUNnwPp3NCeZ52zgUJF0H+ebwK41qzlC7HTV5CkF6OyKDDanMHtKIgodwCpG54xaVhXpRPWx6InfMPu9islkAQiGq5fe5WmGlcC3MnPnBJe2abe7YIZJza+1irWK6TF9uwn6KQX5uwwBHSjheP8CzqeBRN4ZM/bFyT20J0mL4nMsb6uGkm2pTzvzs0vO47nW/YJh0SpWKXsmbBcQHB+M+7vuoCKzwjqxTJMHAmFmEpHuTmW/bSpcSe1xaAXX2veVMSMli3kAF+xeL7m/sW8SMd3zkknq64166WW/qYUtGYTWLW4hTOGIQhAF3ww65ybmV0Kf2NUrCzXeDeV3zFOpMwrOShkIGXyzARPw5iPd9zHSIMg1DtY60UIQpB+Up4KzwlVMPpooPdFFXXMtKFc2H0Mbbdg4xDvM2IcOtY0OoSUQFoP78wmfLDvRF3Trgpszy03psyuxe/m63nKd+bMs96P5JRTkiQcqIWsoYAt/Ij4SxO88K0SQfv51MemvRJsmPzEgvuzbhPeAHw45G50xAZV3R4i6ZpPFq4vRZm9kTNTAry127lIM8PmrCe6uO64YbjYNHf1XHqO2XahW2LhWfVjQ+VGbR5Hwtl67WzXjnE8S/0Xr+eBnoVSPzNpC8pGD+Wl1ZwEE2DGpFabkU+pLrWLKbKhDdA95pjMJYzCgnjaNZR+Hvqp8vUPW2g++1SMt4dh9F9/OVgIR946XwzupRIci5XSOrGaOI1VwF2v/634cn/pBP82ci9H/7Be+TQ7ICiXJ3A08byb7SKX3sEv833/LPNqve445ZdXHiUDefcSenpUkiSMZULZ58zm6vKwAR4qTaWlVp7RtrTvZx+JhRYe9l41Q19kPUbbSa13X++QG+uef0czbY5PwxziF+jHa/8d4hLCyv8AiSua7P83E/uJD9HPaPDxmrbZKXp/0ntjsr++XArpwPRk7w9fxvlEPmlblLlyh1CCporY+jzeP3J8/IT7VXVcF/SG47m94yeuwa84QzdFnioUrpGeuWSD9jqWQkkD8nWUOnzF2ehazza16g7Sm9A8KKe5fJw//JDiKrl4GojLw4L2drfmUZx/+0RPSrQELjL7une0yqgna/OdLaclFRb5KPKcmJBbQZ7f3/JNpc6LkDRBnQwGrubf4lWx9foy/HzxqIaQujkhKWbKXT/fvTXAE9D1Wyxkj5RMcsc1lfhcNDPsqwRubidy23hbfVW0/tttaukMtjCFJyk7y12U2VRlZtOTVcdBIyWN38R+auRHgpufaDrone/+povd85VJn/qltOmJmbQ6AQ9XkJ5JtVZqbZRiDi+ii3fq2P1tlORDzG56Gy/JHi5AnAqT+WudZy9vBKtZ9tE/C4ErrzSaYn0G0SSxWVc7EiaG0ZWqKBr53xqZgBkMvQW9Y914ABjEX/MOv4y3rvOxwSuMtGFqWAMY3D0bE7amIWPv0sLAdg2xYyXN2s4oURdKotQqCa2wQRQQ/ig8NlYDrDBhjHR4n7+KCssgPKZPDBx670M6iCIhwqTh3OoG44eBkTJ+1QTkK1gJZY1u8jJInD7Qd6XWhyZv5vGvp5ug+rfKF9ORwv1mRd1LW23zv8uRIy+vNQ7yYhSr080OLGNz1Rr563rcL53QcPk13IB0cGywt53LLfI03/Lp0In3m8HBS0J66QyPgJUsRDVpclZRWnQR735M0MqUqSUctqqSYU0BgO2WCuOwUawdbDuzPvS189LELc2ipSlQ3XpQwOlGKNGruofqYJvvrHIvBUsSo2G1jpK2cbpLcRSfrBoMbytgMw6TSxWtoqNVcd5d4l63wGfJw/3Fym0oXjo0zBj0sJ1Ra3xEo8ToRgpnOenaO1N7VT8uxhxrkT9KNnhjeFhrBw+BIgLkt3U7N/CS03DoCKkcNtdHlrYwPScMiDR7Azu90wif1xA4X9k1EGbCEboGC+rGrLwhSnGJu9/4x8kBZpyLY8EuG8+NO18OxKyY6DS3JxBi81EcGAmJr941HT5Ox9ccNibfGSSNEVljAQa6bW8BcTpagHILaXji9d5mRH6gT8DJPaMdYY2uoyVeQtaHOV+LDQsyW30tTbAfacOg+YdYUh7uH5ij0LKybJqiYEYJFFCWqOwvgdRjkfRF16NLudZknEZ/qmKrFCHIkelx0FbBzE4ANZefWvs4KVCI/JVZQmz3oHxT8CzhcndtTJT5TrWdogASP3SqA/YN+Wv2i05F1Ebk99g8IkJWuwJ8wUwhSkVuEb5mO6sHuwY/xgIsP5pn3M/3HXuQxTldMolWlGLzwQa5W3lrQyVXKvwWTaxwVwmex9PXmmWSAclxu6mDNql0ERoIy2B8A/eE1cTr2dX7WzHpvK7oEFLf0VrRb7ERP1Q7THr2OVwwIRXTct6j4rrWjiFJMeO9Jk0qkRvElCpEUYjo2opFZk9uTwKynPRK/aLhEfW7qmrkDqEhn42pZABif2y6MeyDqAAfEhdYuDlZPwak8EjflxROfl/tZCyGv15/oBdHQdxoh7eP583T82lWp+52DzrWsOt9AS1F9iz77LK+f5XNzeKJtpScqDPPDdZA+4EwSK6V554OMZUx/51SBcJ+lmON0+mStU8lwtfL5F8rIMgXza1iFkkN0031cgccdR9ZFOWLGNe6QgjrIMneYg4v4GSJdRBi8MoN0UuT4LAICsl3Y5WuHorzvDw0zJZ8xVIR0XrEgj61onoSBYyEsf9a34J0fINMPUnThx52XHIUuB3JBt6Ny3vSZ49/WdwWtDUdr8orVz8ZkS4koEqn9nm+k/3PX4TisauSBeyzSdfuKcrG1m38q6HbWNsEPN4tJAEnGMsjjBarkWuJRAz340gBva++SuwkBwG/uaPUKaNgPFPrZGq0375xWyzz1UKVjrf5vZoBOAAfLBBDEv2jdMb5LgNkt52CJ7OmYsYuuVRFt5lLk0Pu7DGjQXd+VEWmZZSrmtprRqWtvh8lcI11qO/IdY9a0NdpEbAF6wSV/L9luqo33xZSVwiVlrbQ7pJ+i+x2jXQDAigNMWumO6xF8gDPGONI2OugzQENJQZHeSNd/RP0Rlb/hnS15TDvWkXKqt8scmuDU0CCUMvTU9/O3o17B9xN8hEfTiMj7GehaiHxfQSlITHdUbB8HHXab/vIshZgWFqS4Ok3emQR63+XAJm8g4duIASdBUZt3G2SPPyGCRzFU09P9m++LiDVmnyC48risKI20pjBkwpRAxMcKxBcdikZS6ze1qrZ7CU8qZv2zvEhyBlrNHgh90/GX5fkYW40kJgDQxZzMTV5z43+cI0hfsAQj4Cu45FG4E+hXG+r0YaruEjacGZw8Z1uQ1BacJsV+wmmUl146DTEe76g0hSdjhCtxP9KU8YMtG0aM9/hII+g8DugxzKvut4i/8+5uoj0SBa8PBJLHAAYNtt0/ceo0wToC89YbAzpPUH4YaxUiuSJ8Ln/qUCljXGVjO0JV20UeVuU4tjMVoxKw+QSYnIIVoO0JDkd03XWSotylpfblrm69GMqhh6bGPVSXq/Y339lpB1k4yb2ecBj9XpD3rg16IPmkY2IMvnBwPcbWNGFasm3aCqWTz+5qFyjW/xHQlfMufFWHKrPmVba2zMAgXCMJbv6eCA6FpBKCzWrKUlaSEXqI6kxK/Jw9mDQwy3bWsaqynXIpB556khyImEc/Ch/Tk7kzL3wbA8NCXLFzqYupk5mCIDSYl/TXIsz+GwZ7VRoUTbx+abl3G4ASGom94abUuGKIpOtJarQ6yId0gGbyMSbWXohgIS3nvEDGaC4oHazrhYznrg+FbG50avP2yAIxBUNbuSFXVM4YKGSASRfMV8MGrsy7eJSXyEHDrfjcps0SCkYE7plxXJwyoeyo16fEq+3Tjds/NySTnDLoEOjyBo8nrTpHiT3dfwoWFnQmoE716RUSgPblgg5fi/Bcwyip7QDOBk4NeggU+qPyasnRiMECQ9YeZ0AGDB18Vcvgl11nbmRyVQvbiAIMUnFnrHSrxTh6ohH1CDa4ZUxsJ//muHSEjRlBPt+QjYKBnRH2zN12fCK97e7rPJepwZjIZGGst4VdRNZby0xA/5XPdr+mXEtyvBVxSiqiX3suGcP8c+o+ZD6r67Fi2cU9R6Qxypo0qVyxpaQxy67VlE4UmXLlaklvycn5A55Ig70c0bo5Bkhkk4O/lnC8xN670jVLF9QTcUkR9Ihviv1NDROdo4CZNMQyXrnHDsujc/Gd5A4vaccPtLrRd2sOPw4zRpv0lRPsftfCAtjJ99Yzc9sSrStKMxKF1Mp3gmB1nSnqR2E/yZoaGEf/QbTAtk/ZMwRGVHYGyGuSXrE7ytMWmud2LVZ4KViYb+KdG1qb4RbkRJm1j+J2bPGmCNsJeeukhHFwRk4LG1hkTQvrA2TByKH3nUVnWgupLiqJcjOABv5Ve4C2PD+MGdEF/B6GPMR7jD5p+bphfbMJCE5vUHS0Hw/08RNR92a35CXodKmHCj1nG+jfAHsz8e+ITiV3+jca2Ng2ZLWNwzsL4nSPuZdpy4d+iXRpdQz9yjU+9REApYMPDboYNrcgnA9qRIqiheYgd/4IZGLLk53Kk246/wQShlhCpmycbeECiNr/P5ipXg7tSNOs2C5xMiz3uRk56AtCBG3S0vH0Mrj3UtMivgVfwuN9OWv78jjOml0WE/Ux+0+DxprmnQW/GeXHwetkkvSn/IWJnmUcarvc6Rfi4Vs48DahMyefJwZReU745Lqt7lw59V/Rjo1FHKgq6WY9T8h0WCxnitawTz25HndfdrgBMAMQgNykkDrtBAm0QbRdOgadiJ2VWeb7+sBx1L7hf2FGgizAoJ+PpxjCqiH/yo8BK2OFutrkqguq5jrKPTJrMhvbgiEKN5dDTD+xpG+e0tkEIYHS42Q7txeuRx3fD4fFpBNDmGNytOhweWiwMu2+1VCSNbKEjq0OBTPZPuGlu2YwvgwRNfm+qhhF5xe4rX5ZltItn+kT0j1DKMSeIAocc98ZiJe8FRM8w8ENAUlu5v1pjbVdiCXMC9Ly01JR3JbHyZJOPbVqL7kR7mnnWMsY2AfLk3F2X9iN2Qa9vEcwmzm8o5AezCKeZsLZasRp3W14oIFx45tOR2qVdeLxlbZQC99jeRGlpaTfKNz+zoKoO4bLtznSqAPyxmJQVEllLT9IyBGWkPXrQWDSqJscPjZGFEuYirTS5o6fzVK+7vbgCpVRn3QEOSaRBE4JSY7+aD4oaRG82wzbUR3A+5tpH7MRKn0rLpB244vWbHfmTXJVaDcho0OwKcDZcfMecyzgBA13U6z2CaIZ+DAv/bhjzpkPelhvwKBvr41v40KKbeXbAFTXtOMDIZudB4YnoyK+Y7XYbIEDxSNDlCPojQb/ZWfZWA7DUUFg403hCx/EB1mEGn6ryLis0kDC6k5Tr7CyyDh0SA9vz3oZM/orccNQrylBL+HUVXOLMjmAasPhpUK8SOr6dITvexhTFOPupryJUxER0rTOLLxD/a+p4gV7bZT9LqikENkctesYytVVP+JKS72Y4HryDVh9obmNDLvFnYn+0BnBSoYWgKCkBIDK4RbwdYNJ3UDB7QtmZY9/xKSN7qiHofEO+tt4ekkG9RRT9mfCdktao8UKiXQuVaL6xNmcbkfrfDZgoVqp0c7TcIWTSCEsxceqdsH2Fc9v3BmytdZcg+6oX5TNudzbaPIPAD/J1eYVyLXF2+zJ7qkRJCwWD1JA8u7BZXnlWNAx7jtokmxCvm7l5K4qscKPle+2kctRZnK0jioSb64Ryu3Cv9jVCFMWyrFKZHe//khOQzrZ6KAtYsVWiTjIhtWxKd280ytVDHRe0n6h2VV08ujcNsIiJhBLtKBrZn19YkgXEsoffcxH8EnOle7rl+lkBYucx2cbe/bYCPL3nRC+knozqoFS5crtSYgZiLVfZgteQohK4NiaSXoujd/xD861mm7Eyzv4L5ALwPOFMQ2RNBB3stThdzyLmbpk5c720qlZ7NIxg4jnf/2wqflOW9xxcJR5x7f/stpOJfPqbo2izPiiPSnvqfA0vgZN+1QmdCo9FiWm2ZVKl1pe0cxYwf5KDS8GANCtKbeiOszh0H/eWg+OunqA/+T8BnY936/U7KKIBY8TSpyeJ5V3E9JBOL1k2Rzrip+GyGeF0IflsAr9rbasxVq/dKF8dDlUKHPJR4E+b01FWoHlEL+MtKMMpOvxkmZ3+4XpYm6u+ABfCNcPkk/lENGIg4kOytlBy72QlcVSkJQghW4rhjLHGNa24kFbBhZ15JuehJ/cp6+C6hfTHM5HRIBJv/Vv7boTdtSgs6h6xuEcCCqy522ddKu7BhRVbOP72l4kvukFJTNkzkjeAzh2lZFTrT+iR1xEWfV6NE6G478TEuCd1vdSyW4kUBp7lIykMzTwsLS9UFa2gKAniAV48+FO8tlaWY0DSuV6v69sVo7jHFiZW5z4PsKuX0woLDlHH2P/u/Hr6Nhu7nZ+lJPLVLfcWlgXCofs2MVZGZmVLA67z/LzgXZN/ndtgHwwu+IMck2cCTqqM5cNOckUgg72Bl8+qeCO4JSlz93aOp7L/Ho+Bo9mHSRdabu5vu+nANHI0IuIjFwxx2H6O+1tt0U0tEd1CJccOXlobvmUmVp7TP+Tl6lYhoiCtQC2TqCaOp5S4zXnBs7qsWg4uoFZ9ynDvdu1UmHrQbOoOW5fv3FXeOQ99UFAy7fxvz33xHhJtuboVJbZv4zFnFLONGDnTu8RWsJ0y5bkGZB6rO/GuUcSCs2Ue8NvGVx/c8ex5qWw1qw/lGou1eOYAMcu9WIMva84Nhr6DwDt1Ry3XX6Zc6aRB7MuMN0w7qdtivSY50KDAMveG05nXCHHwSsM3Ifbx45ux5/I7IaWZdlCRXoQWeFJ49rdYCIS+5MXOpyKkQ8VNqMfT3q9hfe/coQrOQnQnQ+E/dwGigdVBUlhiqrQXa9WWuBDpX1DH4I4Eau11sltyzj1la2lhEplTfwap0XkhyPh+waggZaKc14/gpbT0yrXSYLeXNRQ6rISAdsT6GkcnuZia2H0h37G0x9Cewcmp84r4UQQ8L8UHant5t20CnOITJCNCpauBY5UYNitZu1iC4iQBoTAyps0SAC3p8syKrUjy1kDuQY9M2K/PXtitYvtb6cLInqWZOnAgtvQ7YPCS7nHEgieCS8/u/o/OZ63UK9ocsF+achYeV1CFeDxigkCHyHK1G2iwEx5GOzVO8pByZBpYDAQhhGsHKs5a9tFdZ9N8jloKhB2fj3AV4hO8xWIraLQy3iYxQ2IeLBk0Y5NyrY+jqclDGwqmr/3unl4ZF/4pngXq9ZBGv5BaS12iNRp1QXiVHYB8YXT7jOVeQWKe13wbOn/WRomhd7roxG5FTlDQKktaKZTXXl0Al7AXKeWnfwBV5OlY5VkQ7wKbNeMJMWVTPgWGL4Stg8YOHhQF2HN4b70vMc3AOuwUngo3XsCFl84Jrm3b5KhCwj6VgCdcwoT/tI1BctL6u/xux3Yjjejm2khVOCk41aCsJPVtXp+wqadNVDQ4kEEwCLQQV4mJaBOyDTNLebRbSg3pjZfzXpkO5V8fwV4RwMwWj72IjbzBk6BO4tur5B/FBlTe5rzz2nXWe/V8hcHxdfhVEVWt1rjteq7AYKnpf+fu0T3gANm7ZoHIaMPrziJ0USG1Ctpj3gy7GfhTX8AosOs4duOqeRsanzrTiBzR5IFMCbtz5Z/oaQ32lCVIisbOeFbCBZ9oPFHhWVNkXbKVWNMBEiGBFGr+Hx5menENr0bprL3ECQynJfomJR4PaxvOhHO+WJtlFXIK0fG+IMTJwMfxzKLNU0+egJVBtViYqifMXSbPLXaPiDQPaiKpes6Mp9tmON+HN439hPTtoyArhl04DLoN+EcPnfX2VJyU5NKr76J6dlFkEoXsPminz6nKwbhpxfs2dJx/7JfdLSeNDkCt9cyEcOhhvOx1bh066cfEjcRmFqizLVErtTFde67bPMkU0Cq16qVgx0cmeqaped2Gvdme9nkm6i9aMLvwspAs0Zwr0iWJYOefMVgLc5F7vSmlprJ2GsSw7oudhBGICEfjDRpw+VwkO74jHjab96rs20NqwP8NrC6J28Wk+UJbdw36lxEFX/iYoV8tssqFZB/NaE3F3Bi8IGUEWErzBgby2ElvEKEnSdHB9ekdnIx0IjU056TDdsS89EECokzDfOLGPOKoylqumllspAtwSNiY7b1UQQTVZh04DTBE4ARCnK1q0h/0o9cr3AGpDEUCNooXsUVGHC4xGvsrNSns25bfsJE1332MkgndDOiS+zI8ayGpWVF355EvMQf3b0Re5XHXtLfdLPVJR/l0GH/QNMtlr+8al3BB6Mn5IlVatF+zcdjA1qRFJVgFCEUeJTY2GZ67X05dCP/YTNAk25Uk8kjkbeBEsgB6JuYL7uiCAwaiN+r35fO98awZE8zh1wqNvNWCaU9F7X2AqfkmcBbjceHnyLMD9hbd5NXHlcFLLM+fYOnKBnDYiV5NelSYRyBeD5tMJAxtShhhZnSkWe/paHDE3JhtFty65B7KbiVqqcYJkkXddofp5RmFQqfa+Z9z3Z06aPUhZStJsd/kk7lejdCIO5CD63HD1p+wXSyHvDtIR26ShISiEn4elsbbr5opBelMT+DWnP/rgsmdzptiU6qxVKameazqYwYCKP3/hQs7IKv3Kl3pM9LDbSfMlnJmmf6QXbDG29yXeXUFnp0lm9NhgGj5UBj4Hi6/dgg760nM9014kJ3qtORoQrjiHWUWxTcmOgzsEXS1fNhFCV4nG9YdkG7ows3jXScyrFnLB4aGy2OMVUUZR5pY7ykG9OJb4CzKaUxRY+8WbCBGLd/8hI1gJoUafmBY4u7DmCH6HM9IshqZpZ7yYFZk5JZnY2z1mEtUDNDNoIsZw/c2xLWE7vC1V30sVk838O0QNOc4vXE2FCm++m29Sfogy1pOY+OTM6mreAiybSQf2New0LhMH+kbUw5tEg78YqbOh03yxbAF6LIoYwxFcFxzdFxGu0OOQ9Xhexb6kVZdnc0NwUGNZzN+qkacVFJpiMpCPaKN22gddOLqrtvbeyoXTwu9rRiZryvQArb4g7SSI0u+bhxa+j2+HjuFzkOuS2rw34OcE+/SHl9elZYp6ZlwjaNYdgFkSMbTrYjU3C09Pp9aF4Jbz1drUSLbdUJJvewLNWI0cfcB8HG+MUeijElIUBmngE9vDy7nqpB1aSn2vaQ4FqaRuEmDBh4tIu5MtfnajKphCbY+3cjoPf202b1lA1jY3pl/JQfMB54MS2Qr8LUmrytHV1T3+znf+6kPDf3rb0ptrWtaabjGpgj5hCB1DBM3iZqCWMzANeztvmNqwHHZCi2O40SGH5aaPtnsez/XZhcP0hyo6GsiK/76KTO0ec43cNl/CPgnG5ogY77uJj7OAr7HoBFbIBFV/DXMkOEvAbulO0kbMcYKAOKe/mgkvw2Eklzxj0ee8hcfTOpp0dqmzc2ICjM9qnD+raz2s4b5ji8YDA8NYq9kNpZVFQzX8vXBbebVlP/eJRWZbLFhfVGCN2idtyo/pjdGQkObQrkjVbiKeGMrQHTNycwyM/cSIMV4NbUZJBeW5f5qoiBffP6Vr/2No3XXZr4WeJMyz+LdRbWRComM2pxOuk6OeRcc8m40ZYeqh8txnsTNFAcB1V1b/LBwkroHtlKl++gDAweBIYQcyNmuN9Q0d81l0tYSinLmvvKxDD4BoRQ05PRt4jNOhbWvzanZRop5zbHzhgWt4zfabGLPZP9/QVOrMhkb44NdRgsr3LZRuhd5wMlH/B0H2KQU6g6biPD1yPhDlv4SmB1KAgRA33gQMUB+O4LSiZuzfeqdE7FYMmO5tQKpD/uZ/NCU/RExy4Y8eA8Cm5VX9IVMthGtyr/ygr+bGTEywuul+dNnb5ezDDwt3FZ+SnzrYrLevM7McuFbRhQelK4XfovjxxC1i3mal+3lcwe2Z2jmX1z89YOUeiGLzkow=
Variant 0
DifficultyLevel
528
Question
This table shows the fractions of the Australian students in University courses.
Course |
Fraction of students |
Nursing |
151 |
Medicine |
251 |
Accounting |
401 |
Science |
121 |
Which of these courses has the least number of students?
Worked Solution
Smallest fraction = 401
∴ Least students are studying Accounting
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This table shows the fractions of the Australian students in University courses.
>>| Course | Fraction of students |
|:-:|:-:|
| Nursing| $\dfrac{1}{15}$|
| Medicine| $\dfrac{1}{25}$|
| Accounting| $\dfrac{1}{40}$|
| Science| $\dfrac{1}{12}$|
Which of these courses has the least number of students?
|
workedSolution | Smallest fraction = $\dfrac{1}{40}$
$\therefore$ Least students are studying {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19T9OfiKf5HFoRpAl8MlqiCNGPYk8RpVRsThkdClUnKyIlZvFPMdu8Kuo50zCmeBc2ptrJcK6fJZIMQ3AsDYekRzw4R2bWESf6QYRCPKI6uIJRSBL5l8X5QWkpl9KEBoQOO6+I6LPpOboBdzMQgBCIEXX1ljBZ0BVlv+wEbIcS72BXUbIYvOf5cdRN1/GJTpYxTatx59J4DaxlbwSfYtTLPkR/ZJIacQcPYtn1oZKwIFqZCsq9+ZD8+whsbE7nJWPnOdMOJmyykGpCF/+Uovue3gikAvakNBjrTy43OsrTk9WhFf4/OhhI2V2PmBT5Q/1rx94vtARDR1yf2eiMWl+DXIlAPP9NyFD86N/GxczSRMvnHh2D19TKFkktR04tjOMD/nt/SWNbsiEG4Bix41okWYekPDgBWmipkdg9eQnPs+hvrO4ow9mWLzgSNRhtN8Ar1QcmQEBqPDfVybTRri9bgTmjRbtq9q6/+VoWxJ9FmxdYxXLAG8zBlrsLNCeWg5OZ0xx2McDB0rv9cBIbCwtJ5pXGYPn0dGmQjNG6NYy7brQT48w6rLfFdlwiMkF6lJ/a/JpCVv1fgctVYa9qZA4EZECfvhTm+EeBHHgrcztJvXAyY8cieehgv/QbLL96FeheQjtk2GYWE6eumk6O9wzWROyf09K+BOhGQU7y5aEJtbV9pZ89cecdN+BDTo4CehfBXA9yHzO70KcbiFKiqmKKbR2VUl4YDsCYXxDfubK3PekZE4ZyUaqmcOOek7NfITUmOLgzljsN3FRO61HMgL9QSc8otp0YvQmifzGUf68I2kQuD+m46SSH+Ha01CHsTK7Sn/GqPo2CPfKZ5R556XKL8noi/Yb0qo8ucSvmzodwTQZz4kyDYvwhvUyAr1lljXVQbjuSaH26OLfmup9vVpRQtgH9kFYJRT+xQhzi9zIbskCYdGb0lJ4RDyHqAmcgLlaAvu6oR1AaHhXcC5XRcCFbYa1ZpnqjKQKAMEVlGVGt8ndS/t3EVsWPv9BYJzmjSLiRurZjsJsdkf/6AggGGJC0MH+vRroeFzJ2N13Jw3jaThGv9eocYQFsK3Sbup7HSRjZDZaIv1CBl/5NWDMcAunaGmN/YnAsUXdMbXqfQOeA5HDmY+3A9ultJfZnyA/03SAfg2GG8Gw/zGjzbqXe+DmK0zQykBTfdcrfzhdZPKBimOjFtnWjLGbFKJEPQBXio/wPiYbW63q9oDT7vxpohKC1dZw9KZcvr7mNQynvGSruZQXCetncMXaylTS46/6zsYA3XaKoDA2NGsOnFz6gmpfASnR0AyFzs4+hFE+tUPuAwNVTldB7l3vIJCHxy/5/0po097gakaklGsqIvTO+1z0WP9iY5NVejH95XX3/rRphqJicoRJdMvg4hAQIyXUohRuPcEvcpDw1oWeHgsnk5UzzcmBL1XX8j3uO+v9rHhULrYf9C+zSj4yDcqx7RvSy6ar2eFWW6EQd+2JFbkQhqgFUeqM+7wRhzpu8+LSUUItlYbvjYbpOXaQXhHWHbvmV0lkGt8Ym+OvH5WI9zJB235I0UPzW2hiPRE27ctf1vOj1mT3x/m1weXq3xwb5pWaf9c0jCFFXL2z93gRZIR5L3PwXi0zBUyAdHGA/pUdGg/zAJFvG10VPc3QYGa3/1i1B11u3m0xCbWmuS7z165zwU/CZxJiGWpkEryArLkJcezl/Zxu01AHO6iqdTDVya5JTAN/EYAfYNHsf8qYGiZYl9m0TBd5sUTfNTAlXHWO72Ii/kw9ntdWYDOqGVBn0AxBSYZKhBGQkK3/ckA3RElxTtXc/nm6rlaTXp7LwzqSsmO37lmtQjo2oQOnWMISuNY3gi1RSMtTbTG+Po8lc66vlxZU2p6IKI4cNEFDWF9GbB9C4avTrxLKXSNwy8VULXhmTpWj+8YDJjEhnoOspn8qeaevCRzaIQ4YSqU2j8X9agb6wvBUh5VOYQrwiS6C1TFpyvGsEXuVHAf9GGLUN/6IJMPsMQr6bwiYaSj8WWwOOtAdmreZ3Y1OHCruLVuLjMsABhE2E9a0lU3Ch8UGaU1uHrUe1sD0tEKPTtu+0V60VY3M/+r1Gyk5x774kTdNr7WDAxRoTzhdf6hQQ64HOnOlOZlwKLws5URfGgFNsNtu8gNjJbeLB1UT4mrc9a+f+lYT4170BvJ+XkMnL5Io8rH3VEh02MTkKY7KuH8b0tGFHTBT67gacwSTIlgjK6w7jb56iSCcZkkQgTqyJmsRufYcLpNf1KGKriJ24KkMj1E0fNHYs5BmEG6TM3LwSqViE3HCFpg4SKX2i4Cjcj7h/WE2uNZn2P4Zl8utKjffuN5Ej2wM1DyWKcUkqrNO6iyvrmhE36PgB55MNfMIgS/MCa6Jhfy7l0sFVjC8nHOVi9UzibwVZhuzf2Kc8XkB1hwi6SIhHQcgJEcDaKDXD2lIGhtnMfd8aPQPr5nVckNajXNy5qhzS4ew3emFzKTChsVUMZLqsPFwBRe3dTU/6LU3ebc+qCmEcMEdK7rhinSKGj0MCel91EoAAboujqV8ytUCW5m40qmAsr2NtInuItuXe8TBn+NIRKTHnP2V0SJUdL2ucBaE30V74GHUc37kmkq699nBLcHu45tOkztf3+INoDiwKGYrrAup8zQngzazY8a/2bZXGYOzlwMUpzp32WhlGj+0F71p0wRiuKEf94WiM1XzHoXZ7Smgk2588oaflakkJVL52cYnHLHlntfHYFc4y7hWCR1+mO7b1OH2MHMfUy9BSE53VlBJ0m2hFKbo0pJqOGeRx9+109kZoEuoOoFxHKiuW267wjS4WrfEHoo/gJKYadE8wT2kg/Y5iRuTAlvhTvmt+z+M6rmR4K+Q7GAvQijbclT93FDFEe/SfY8exg9qpnJTRUbPKqaB8y9kYl2S+hYIc7fFAcwskWEEE6tdVSezqt7NLyhnM/KRF1shJWYLdICSSQXaBOESU3nsjniZDmD4JB2h5WXKOiqioqLEm/1vx2NuH33HS59UunUbI8M68kfDq5W22MLJnbMnp/9LRJKo9LClwfp95xs9JJ543ZROFcEtiDeHEj7FX+cclDRj1AyCIUfh9y9XWeLo6/lC0dzIRyMXh42n0Kc7t5UKK46odapYNaBq0qY84SMPWwo4GJLSO/236GUVdLtwzj9WwDBqTEdd6Ehd8+u9cfotk+JSiuI08stN5tJBGN5IjtK1twV1Zw7WHZqBaXlq8W7ZJxy+SlN2ogoroC8mXD1gXN59SQmJaKsAC6ar3Yy2ZfweFTyFeUr1jiil4T5fHRTlKcFBtJGofD092y8avSB258QujaK0raIYIs5PReH1aE/G1IULxsYDjzP2mxMPCUhzsGUq2M/+Czb3uEvbwRgfv+LL3T9zUqkYO9jV4YkqBqETC//BLo59xc/wuRzJWLYFJnfqVqEj/7lxm5qUM+8VVYNHUkc15hBpEZdFvn8ugGM4x5A+6cnFq2clEoBcl/Bxyl+RFo5HYVc0jtOyBHHgDr47Hgc+fGC6xOEbFWb/zL/56lSLRcrgBlKcaFZ2bVBYjoWyG9bbMqV5hTiUbbcRbEVydDo0SvtzvkICeNRQIrfFIkuSgs3SGD8dKFqnSqUQGXdCn7MIblT1dxK/VQ23tvQ+k//tqkWLSinaO95HmUG0CChyLXy2CjyGTJHVGldJ2ZgjwKh6Ay3KPdKCjiNc34uzhszmutBYWXKdZWobAtSISdKb00YmoraUWrWXUjRFvVtkv94mSVoAKN63A89r/2RWPSSd9MTyI/7B7wzFFtF6PBJUiFpjonIrk5JDw+X+4znZaD8gsinsECViVI4dpdMgW1omtyyaoaFzZQ7xPjcjFsu6QPtX6L6CJbUGmFNQiDzkU6bGwUaU2AxybGjekOhY2EiKHyzEWW4ke1sud2c+oAoytu9YzWsk/iibOQX3TxA2OsWOacoMbV2uc5jf3eJWe4WtC2rrarEXV2Oo2hXlWu93+XlbvmWhvC5nItyx7AX2DBws3pUJF7S65wrOf8ibqvjD1RG9PoB20zm8ZD80+fh2v/l02r401TfzDq6dBaMaRGIW50UcWddf9XQjth2xq++b1ZQ7qcgeM/mm6jnd/79k4N/Q9YLAj+wE7UPLJeXU3jtu/z+tkDgh6kwlA/VKhV32uLtgWD5h4K/WN1HCctgIe+p4NO5yPFDAacqmnyrcgmDNeCc4RhFUjpcxyghYrWbc0QekF8gyK6V99AWFEVEpZlnjehKNLQ07dQinNznHdJvg9Ir7CvBxoTEviM7YfpqCCZdv+k2SAyz/x/+V25aLkwYX0Lgz0zJ++ammdsErApPzi2wriMd1jbX2bwwt7iFAOZvMD0NH2eDb8BNibFo8rPJbgjPRT5XVvPIbteeFWL/UybA/B4I7keSOoxMfGP3WCPxD0KDceL5phMzMkdNvyVkU7xXF03KFh7+yObtOrw/buX+HsbcG8dmPt2gZIj3wDq/h1XGlQ+eii7uTAYN1Fg/lZc/b4ytvVXSnWbSmCW3FcpU0gxadl6TrZR361K4/96AtmhEcXlMWqzp25r38audZSWAfOwmsB1jAZHGliGuYZ7SbX/sSmYbZKDkBgFdpas/UMuLdNB66if+47bibQsAv8ho9wW66RFzXOIcnGWC4yKFu3f2iEFBEWF4mepk/jYYjzlW/q2Z9cwkTFwSYbDQu35bd78KP2JuYxcvrsq1icFIBoSMcENhGmOJxExxBXtQw0Dv+/LCl+2BB1tuUdFzPl72ik4RL2+aCRpfNqiFnJ1bTgayBnP5vp9ZEf5qCGmqcKUZjrSGMbBui85peFqRpsRFDFb5h1MbQeKb70iryjR5DCzdxQkUYCHajdvzGE0hLTN1q5txI6KEBQTIJnFM3g7a0psnxrfCujiaezYQYJ5fUDH4r11V9LWtRDYnv/h7Hdufn3NldLILvga4z61/jTsNsc8qoQ2ntqLEZnndx1HgYF/fDfOQFu955MqcpoAFn9IzDZ/8qTEeRlP3ZG74l/K+LL3iEnlMk8LYKPCDkP6KYJNXbFhpDKLC2ARUxnX6BzXVc5m/7B4gXgRGoC1LKfsTWByVu7rc9jcYKdjMNORfpjdpcgDP6AAHWiBPwalI3Ywg2HwUn3BPJjQaEC65ImbiwEaf2Bd9MUGbpwYSaU+vcoRRCEd82Owj6jgNNm4bKWzHpFSVA6Y/rQH+4sPTCMPzqmEsp6f7AUwDJr3laTGTUAuDgqH6Aeut5h+A9FpGf1GgZ5MAeVJSmmqVwkj02+zzbU2b2u8dMDUYjLJRgWkEfF/1WRAV9HNuV0dugnygA6gK6D30Zn9DVuZlVoBVPU14aNYdkRdh+kWDkeMQCY7ajczOAl7Hca03liktixw0WiKSbxQjdvUE8GX3vyG8c4KcXj6p0KD2I8pGZOA2vgREzAMxS3HP9Oc7NGDHYA94vPONIP2xnYkG6EGJQg6vigDq2I+xMcAiLuWSyaAoy15osXRWvYkgsepw4cIABNAHRRtsFLwuM6RBPL/+BL/tVx4nZmWw2Jn+pvnNMtI+sFWnU2knagl5zsnwwFTcQ75pR7ywiS0njUN0ysT88Lu2O+uZ1WN7DrUchNlzCAsV07ibq2gYz/YuUlBfDyXNGfVkzsTEL9e4dyDGx3jEvKA8DDZqaeEBWRlhkqieEEMT6S/ugiF0cGhzMFRcE1xGLRAGdNgGbpuAVO7HmXPOVcltQDsXcp+NiCgQTx/Xv0+8G9NrIoJhFq7/ZuOXnIQUD11jTlE+piLiOP29q+eg3R5mV+VWZ/SDcQC0cqvZdoyXA1dUxxamF2N0SqlsKcEtTli1zsJPT1Es9kuGNX0KR73+GR14iKznQ1Qw73S+/nIPOwZVXuxjvpbv1ukPS5y6c8SeysVvfhPdsU3tasd9mlmGWKK1XuyJEaNC+CZyLGlxylL7UacWoMvO5h5b4PMeuMn+5TUdqS69Y6jHjAlN030rvHA0KeVJhuJKbehViovsP3yep3g/M8sBCvCf5dpTW/LnZuvTHd5+jADKIy3h2eJMqxMT3iEfWjQuA2NmSvwdszwspNUbO29BpXqtUqNYJo7EXmC/jDviXXZMZgXVJ6FC0u5wBhuMc+gGmNKJU7RLJZImt9JGy8RDyKpbixvK/xB34ylTKwId5OmXmnCHUVqp77QLBllCSFUHzhu+WdjfbnbuZInjtalw2m9WB8mXGbkt4KWOdxZE1ElsrgqZIg/4yS9J6eNHVKd3YWYNzAlWJ8zALe5/8P9AJmuzJfwH2hhx2fJAmvU/sjE339bTrGmu8j/BCHN5X+e8oVwjowQskyjd8bD6esQYTwhBf2PX1515tIEKX73J/g/E03SVYX7BGzCaaIgXcodV6CD1/6sfut9JePMxSgkYVGrddunNMQzywUVXfwKAYHoOhyTotor1a84Y9iHA/JBWFh2d9MuFZLL4BDaiv93gVJsHultozQhYFGXgRkKGy0gzS/shXuRMZ3OlYQhUPbCXi3H+BzHNYEPzxKRn2B/pCTtjAPk2xd3VrnNQdd5hrontMUzYy9XCQsyooh1irotb9ua1KRFo8QFnDni3onLxHSw4TYVCNW6k2n9Kj/FgFNomjN6Xu2N+GWI/jnzJNykeReKy33lXO5jaHtrhTY9rVHNcFZhx+oWn4Ev8bC6zLIMLV32uVJtoO5L9ohc6lkNa4uU0rn3+FPSjusV9Ov12SpJ4gcFIS/iR7me3tpAPPUlQwNLRLtJjt7AClY1TZPe6RZGjCWUpUom7EWiWpLz0xZ1zks97FYxdtOEkCmd9Ih+gr/AsTvVdaxdLgXRBLJE4+KHySdwYy8tTqRYSTpU7NWFU8epG0I7Z/7zeoX8Klt9b2YTMDse0LvYskPJSOEzjenps5IQzHQiZNVX2tKTA6fBWsGLq6KhP5I2CCCZFl6Nx5epinW1yqLiyRGFZf4y9IcUKxBf2Z6S12XHUg+idRgjvPyE4iTNungrceR07+QyQwjb9mt46xK9ljUo56gzO9pwxDh3st0xiGs/+jktyK18Ir6pegBL0GEZzBkV5jR2VLMJQr/52JeD5mYMaCXInZrj0dtZ1QpxlvA8I2qdRguq3vdd2iYOxEAUxpkXoAal/CD2JdIL4shJ1fc/qrnSYnh5Bb7pj3Ou/JV+i4WhVjJN8aVlMIyDMeGMQJgsUEg8YZBm5QZPsKGlA7EyQS03hS7ljMf4G7iYa+GmCm9d4+eiCGDnU2eZWT+mHuh/1nwRIL7PcvsC0NILFClhO0aVWTSKJKoONWpKTVPQuKoJhhazhhaLdaIrL3fk2cgLpQS2YC/k21Y2cI94yLjcIKyeKGWAjN6NSP0qWglg0EJ/rA6beoeXedfgY7Aur5sUDumAqxV4/2iKurp/iRrQYBev7L4WIM6xu6bjTph2LSscU1jCCbo0PejX3jbjLCH1jkff0e7XUL8/Xx4ptt5dNGKVsdGJNH8TeqBrqqugygXlh491ShodwsWAG3VMzJRfhG1ji3d8YE5fgwr6IN3Wh9NUiENQjnoEQg7SH8RCJ3rTtp9uEOud2PJOza4njcw+JHbWf6zieiycp0kvb/FvjNF1wHCD820G+8v8SUAqNw/pSHLOOUHjl+RrlCenmUoQg3gtf40wIA+5YGsntLmmrmaKS3Rb8rBgQAW73G1YdRIAcN5gOuz6uGrNDH3q8fiY49+gQitPY+4qK+QJBsPewHbKQL+suHyXtmpYpB7GwexkMj/ykTHZGLI3TaBZM4tdAUwATrYyTFZMQANRim6//UvK7KBOQuFB15ZB2Yz9+gJsfPqxik6y4nelnIXxFih30zJAekpdkH6vOWHPOSYlzASfU6m0DxA+ppTbtV9jVKy3lPhCbh/RM8y++2NqzYL5ZATFdlOWY1VkgJf5YKhtkCUsDmf5eejjzBDgS/m7taCODwedpipeA406XagRe3MoVxolNR/hxEaAXBlebSPTYSrSId3NL9sLYffjuYBu4wiSoXz7sE44V3D0z01wbbIlqT8pBxuY0Dp0sDcUnth4b5w05IDI2nx51xFWoYFRpKfftVWkQfA0MxT64DlHo+h9Ex4UEFEyZxW8Dum/zzGE37+MNaOE1Fdd/H5jWq2EZ7Q7+aHYxz1XGV3lh4JBabElFjG9UBxKWZHAZ4xDJQ1x7OklpksY5sqlFfO2aIbuJowrzZmo2Vnz9V8b8C2TAdFvGC+ZjuJLN9vO+AMTBdy/sGdm35I+9hawHxrR4/MyRVpMrSJjpuWyE4jhpDqcB4uupajGRPHo910e4/Q2E8b1Tbph0kBxWZSzVjygEKjTdDfyzK9Tda/ZlnUZHV0DDgrOmUUUOBHG2HMjF/BFMG/qOzkyiNx91LjxiEaubErEJlwM63DlcScBzABp3grl3j8j2V/OmS4hamR8FWIYt2eW/0+FfDqC8NTy0dIOKGtR1Lm2CvUjSy+Mjk4vzKKE6toLiw1BmbJOaPOw9aifKgImAFzvyrDFNg9k5Z5KEEeL0X/nck82MfAiFD4UNablbWxKugkbRkMSPloSSCtxKgHPI0xHWsnuE/pC4ahWer5NuhQl3jPAgFqPdITRWeOTJRsxYUDsClUNgOzXyn7BtGQCrieg3vHzEAfTbKwoIL1KW7jola2Hg3YSGj4yhxTRlM4tcDjyGCcPRqPE/fDjGzO10M0gFhpiI+DF81exQAmAulGNuq5LGFTiGgmbnX/ONHOFG9yqB/EOFkOx6xWdxGS/CYgCRGZeXv16r5yJ0Pwt5Adw3QmJR3iBCg+TjCehYsv7hzMzrzxe9FxjuX+vR8C8I3I3iPn4cFWQJf3dOgtf1kWzb/1ixmNPQNbnkJ7qDTRVepyrSEMVTjrQVU/RFE+hCsYs1U7BjrOW8sbkZ4g6GyMuZ0X+RsDoDCEH80RDF+WvxemVmNDKrZVAOBD3woxSUh3G14zhUt6XTn/tV5BtikPrB14Wqd+f58AbqIuGeX/KFXTk83W2ts289MXnhfyvlMgJxgHDl8W8g/uqkeRVKcxayJTsGmYsoA9PvovpElMZ4jqJeRvdXY6XmIF1rU83QG8wpP/0PHsdOMvTWz8gtylAL9SkwuHMialFC7LQ6Au0SYKzAMnJMNOmmd0xfEWdljJIgpFRwT9lp9T79QoWkJTcIDR9JeJY22irG+ZDLP1WAvG+kJitu9TOAplRzh7cEwQURpaehAfcYEl7KEv+89ccfRK4IvSXGCbJwVO1vcKd4N5kuTpKSShM9zajBfsYYFZcei3OM+ifo/AF20DysqmHJTzhJTkkPflP567NbbYNi6ofRrVvRiFWPbpOrhXuv2EduGYY7bxTaHGG1yLQbAnOaiXWgdrIicJa73NTmUVnMFb1vv6PhoYYaIBNShBAmcKcAdQVT6wtvCaAuiqM72Jwe45zkW2VSvKd6JpnTt+5jxc4dyb9kFlVsrUBBAXj8eJR8CUmVGEm0AP3ZnqVya21jRawhnxN+OQnao0F4NjhLut0rxPLsLEwM3GOqcOPMSB02MPnkwKHB+sw1zb5JTlcmsAJ45cM7R8dka/6P0duSWvnYX3PjXdvnr+2YAdDQQqyD/qnSNKFFfJgU+QkpgqZz4hMhnM9VmvT+Cfy2EgXf+H6q6bDoQlC8S6Xarcxy9cnjKY1iJOLZp+ieKxvMBQ1C0qFbyypoTI1d/yUe6Rp8hCVegt6BCGjTG2kvAiJCIrtmVdSAZetx208c282TVZLcw5LMTeQ2wRX44inz4anJ9p5a2KLxhqx/vDHN+M7/NlK+pQGL6J6sfO+fcXogboHra9uJ95laeuPmpsfZiNWoiZLUa8c0ZLL2f+tthbaRHTflfAwEFY5fAP/HgCVPSakf30Zb5D/Cb3XX2nIojRrKTikpLkg9S8M38l6iHEX+rLPJW0GMhW5q0TeZB4uY84i4ZV0twzRlhcwJPxK0r9CZ4XbBmOKK57yjGhD7+At5CEekwqjLko0hvGTgXMIScj8vpb9sb+fDQZ+RJdQx19mpn0BN+kEHk0mtfb8OVLGm/egViQhoSuZe+RMEoJS1PCux4VoqQHahaGYtZuTy8F3lb5ajTTpj5oZXCsdI9bopuJ6frp2nbD5byX6HCgvidLdNPoM7MYjSiQ0ylw5jwY08w17BJ00uAbfSpHRK1G0HEpOVghlnpjFpF8sT3tVv1xgcCzg1ZXm3Z7dGRIkee64HA0btw6xZ3KEFnbzI7ZNTwBEpdgbBSR4GjZ8Pp+jJl8mTzqr/gBnh3YFOGwbu7JYSLrfTqmbx6L5dex9YhiJ52vzQuFDUbf5L1//twN5Ft83NuvXkprBAAbDIssLWjFWNhDG3QXg4YrLqffzqd0Cm8a3LQquGjAu+Is7+gCaLYkVafbJktJXqjxV+hCPkaO3oAjUnhtsYBGlqfEIJ2hpWLKmvoQhvGmB5D/EV5wRiYH+EEBrsbwHnkmPJHz/9Cjb98WZhOTnErKppduq8pqfKPpqfNTUTKN3jx0HKvFTFsmzf3Vu5ys/ohIHYIJLmZN37I1xW1oDSr/HCyzg9q0XurK5JLCCv1tTzenqTqUnAHvRmPLeeUV37BA/hcflnq4egTLIbdskQQl1L1X9btmF43zrtm3itDYmjBoATvD+G1k7eduvYk95xBT1r1PNyuzCU3HvLAnioXgNiMtd4MyX9qKGgcPkJRcO6V/wZ++AboS8MAbXsG2NRl1mqbmpWywmBd/FNVbptC52U+9hxgcrjl5CCHaszakZWw2y8gxhhLN/41dTTNUrPCVQPLwxBB7+3YXEBeR6mBZDfQTnIaBwSRtf99f+RjmPRf4ZQ0G0xpREFmLhBX95tOFrN2vSY0xoqMrQQOYK3IWktuO8bEjjAdVG1xD5QuQ7j8L71FbpWwufGbOg84+8HI2SLxz92nX8HIWHl0pUJOLkiY69hOnYKJT37R3G2qRP+Q8L06wYw/iNzAwce3cxCCOJhBPt3QqyCLu+SU6ILTLEWax8ULW8HZETO2nIs9fgFd0QuMa1W3bsEBh7VIG/zjx7XPh6lDHGh+32eg2d5iwgMNLeTNgvp4yQG1NkftgJHXIha0FKeIKYy+/r8o4mjMRjCwzerkO+aoLBT4g+NOdmEaC2w17qgqysx0n7CUsHsPOkQu3LjSwZkdFuhoOBNo+/VhGdjq9SGtK6WzjGWhsx4X8pyas+LmGbr7igoELpDT95l/EoKaJW5VMoxj0WP+on4pxUY8gdiWDDykgmn0by60nux9DsJsiX1bbH5TSoaJf5o23A9xLLHYYDuxLDFhD34sZM3hpNUQvG/K65jJpWvVKpuBFHQ88MgA0jFoSwOCZOPM6/ALeH1lmLkI6Rgf+0D8crTb9Ue6iwk+yR/fXQf18JdWgUBcbynzrrt8GZoK382WEl6GAufr0LucuaMgU/ZQBWZCeIz8Ao0pT4+6R+qpdpu5N0m7KMNwTSHmuDxh7oJf2f6lIOLuaX/vYPNv/w/7EUuYbbNYIHrY7Mqy1RzAnL/RZ/eERklnVJPMTofXn0FKE5hsqysGUnisjt5XJcZgJ1ZLWI8lkJGuajmU88fWHqAi8YICb5rRdGqbnoeZmi35dUD4FKL6qH9dmfbZ8d6hWgJoNpS8ldxx31YZWoZx28KCBqsuIWyvemr19XIqe72tNTo6JkkOC2AKEJw+qkG5fakxC18mkOUbk5tF42/ErJyfKxI8u/tWI4OHmJDcF4NOcBOC+EDTkZNMwNQ05q9VPp2XQcKR9HsTO+TvE41FpduRw8Jnq1E3zIMbDaKUDMLm6ALyO268gCwTp2KPUbmNVDcHeudGEHMKPUv45uIjQ2ZH0XaIhoxCYpsJ1fkVAFi6LXOlD0zuMGIQDFMdivE2uoHISpc5OTjztM29hN9JOc1KSBYSI5DmH2pLcRdQVfLBxMpXkJvscHAXsxPJ2skR4OEvDLRIrMxB7hkatOvRtQPtUqk57T0hzOGee+Qz+FX82j49aPrtpGTFqGi5nuHn8neHwZTOjEmaOaetazH4C7lQJ5dkbjF2UwtMN/nl/8o/B62BTlNUGU5cocd9XcwennIRg/d9n5aBVu0J0/m0hG2HyoYdoEjRD6rnLRhykHNHJ68EwV8BOtcdJ6OB2851+dhApU3b/150NrtPx/piGO7fnOCIwegq9dp9tQbFUIev72c+BQ2DjpkyXSBIjFicvyHQzbQ8yIPQqANZlIIcs949kb6jvltjCDewRn+FmXslag9cq3uinW0us1xBinNQxc1e8oZkESgvYHGoUrY9Z70ftbOKZVr7XQZyidXe8sgh3ja9cqI054ey09xVpPhtZcbu8Mb7JP6kO2K8IX74dPeHIZLfFm3Nyw5/gYwaUXoYOSJbdWQqavTBVnkdmFLA2MuWiGubHhmDGPe3jS8kxK8mkipeLLuuP0fz15tAfTDvxGAgej4Wc39n6Km5tSbKUHcd5PyIhoWENWvYXwaXc9OQRa2Q+Yu1XcFKxmut6/bhCzAgCG
Variant 1
DifficultyLevel
530
Question
This table shows the fractions of total beach going tourists at some chosen Sydney beaches on the weekend.
Course |
Fraction of tourists |
Bondi |
81 |
Clovelly |
151 |
Coogee |
121 |
Narrabeen |
181 |
Which of these beaches has the least number of tourists?
Worked Solution
Smallest fraction = 181
∴ Least visitors are at Narrabeen
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This table shows the fractions of total beach going tourists at some chosen Sydney beaches on the weekend.
>>| Course | Fraction of tourists |
|:-:|:-:|
| Bondi| $\dfrac{1}{8}$|
| Clovelly| $\dfrac{1}{15}$|
| Coogee| $\dfrac{1}{12}$|
| Narrabeen| $\dfrac{1}{18}$|
Which of these beaches has the least number of tourists?
|
workedSolution | Smallest fraction = $\dfrac{1}{18}$
$\therefore$ Least visitors are at {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/Ug58kkFSys2NGS+bzafIKu2a18L7atjIkjAaZ06CbypHknV9pZ0tlYb1+0e3hcehnKBxseW9tovbz5chu5zSnaPFCVvqkzGILnWfk12xGr3QlNAo+lK+WDuNZ609yoqCXV2M09y9Fp9qqPvMHBNzOYmQaO9b2U6RPn2larqhcv0BPj9EbiqJPmT4x4068fFdHt2ijXpasd0ckyBVOV6VPDEP6ytqtAycb0dOYgvVaBUi0T3tr9xKZ0xDZWS5ne8l6cbm9jj8ZYVz4UT6yjkWqeTvLvbLgFWqeszJpfzLJXXAY70O6AdS2JDSfh9e7DKvzwHHwvI25tUpsFgDbujXTlwGkHvaH37pBDmHKcdOzwSsvWpBsnLJUIAnnWYbnNkVN2YrxI8Ip69l2o9F73FtlY9apfKa4z9eDj57Zm0/LuurBrzVYu7t1bMjFRH+Z7/NFkdTXVaVXPxVajMD/jruf2ddJx1iXq6yOkcQ0s4tqQs5HdOQD0G8Bp7yLB867DJrkJv65plxQ+SwkeTCGoOTUukWIEm0sku0b+LWaDMVZyhOUhVxGNNyqQMSASgY7XkZYkbywpCGrooGOhrUNQT4wgj4dmir4cQnvVf43UUnqd88YAryFCMhcqE7EHvfrw690HToBbDnxeg1sCWd8TB0uttYbLzdw43kjToKWa6ZhVwcLvAdTyDcyptdbu+WkQKP4Qi80xzrM5gf/7prqxVBVtaAi50Um95xSvc35l7OvebCs2Z1nkati+rY8BEUqQ7xjJgzuoyHZGHtvx0SBxjKR/bZquk91XVpoGGjICytvz6bNWPLYyrki7pF3huwLbEK7KFqIXsKGm5alX9HxcTkXxeUF4TLUCiLcmtj9AVFvl4CA9mm+ahBNehL2fRXM/qClg2+dSNVDUvZoey/WqP2SGpBjcLlK80fUFAT51q16BpEAOh1CLI/at/jwysCJtFSLNF1YOiLux5iqNVaspKLBdkVUhh1th0EBmKyCAzsqElOYzk8Y1rb6eSAMOx4DQ9U41xzDsst81QrLX6l5+iyhxMN+ly/GU4nuEW4vKpn+gvy4ZVix+BRQo+iIGxUHpbYt40o1RQKoXWno/dEmAmIAM8mSIeJE9vaiq/cU2sSkExp4TdFZ+AZzSl1UjZXYE9yTzMP8Y/HNr0YinenotfETczQ5l+qO8mqw2GfktAvBL/aih2zc9+psHNUcfmqMuTwfItQRBoC4eRl9HYFIyhuu+r2svDeVzd/zWdkj6hXO/n/HwZ8in6oxm9ELkiCi4/kDKxlbqG1ZyotrZRSnokmS4SZjHxV/nSnJETJzsB5a9y6zgBfMvR/uQLhGs8O43fZLWF6xHO4nhX0cb+gcMTCel7BLvlCXp/deARJwmK7/ETAq/onH0EXvkLrbF3ChpIXNmCAZwLsbH35iUtBsLEj2iSHp0SV+FZLUtKYO0kSSUgZ5Mq2bicQarzIRMi7pCGrEcVbvEN9eYVjIr926DxfOc9VTDBtHKu8+6a70vl0P9pLzJ1grYXhgRSCAfW0iUH137wto73cRe8+ZsRarHFjH0zQmDfgWExte1MtauWSL+H3SwEkz2yKRwxlHQGi9CBqISp7ZQKCFEv8jz8oN4lLa2L3WBPGCK5X5o5M+rw9G2RhaX9k+bFE/Qn0fjzT7/XV+qACee5nmisT1YJ6NgOEa486hRDVqRSJWPkwAMeP6n8jFsoGSMJpCnhtd8fsGkD/IrsjUP3tZE5TttOrQzK0ru6m0qTBSk0/qS9cghUbLXpK0ZCQQ9s4guBlem/Gb7F7ZatDq3OrfjiY1dh+1pdSdyZw0CoITN+FTQ09KeCb3BrinqDFE8hbj5G286trm7PNW2ackljuBVn18UAMVPVAjyfMrEdUOXh/leNG8IH7mDEtf5jUwmvo/hemj7NGy7R28r13XMycwI2A7xk6S7QP3IjAZgxTRyaIRTBb6yhGRnqjclbAXGK3aBevGrbZ/9ICU+hsbkz80PM7B+WeRMC//9Qi0KZ39zHdDAZFNi+GWQSNMlKRI/zV9uFGoj+cO9AQIEQPM+hSC3CJd1fjcsUfqUXKqy8OEayHwWcbFQRAMkctgtkCRIBdGu2I1+KWpnbeig03iLYZskMCNYVXVomHIqAWFZkLyZ3x+Er6psMggIYJRX1oBPFH1J0PhZTyPVTlGME/yo67v4+GMB/KnnersbBcJKZNPc2IjpANkr7zNhlPYKXpCHuPvCwWuAnjln8/OmsVLJFS2Ofzrgd99ERKAJvA3m/EwZK6yQPXObUqj5wc/IulmuOgWEghhmXz7Lbj5OFheiiYsH+YY3mtbDthiy4xH/10m/frNOQ50ILs3nasqAe8uQq+5DNo9tawdKPJpDRBUX6hMIK3yuyE+KwmEoDTtSsjZfmzn+qhFAN1/LfXcvLoSvgkTNlkypNx7ryTeyTI5yslh6p878lzu/NgUK3GJ0bIMVsgQSyCLmNzVAkUKW81PfULZUHPsml+naesmkZyicuoHNhreEvPjyPbNiEU6GSsDqViV0Khic/IzvkBBL5B1wfhKkJ8ozG3mTjgWrSK1lTEI1DANd1EXfLuPu8QjUxgeE7qRKuveUBN5GOxvfNpOdc6bH08fgR0Ysr6x58PNtrhvQJu7dcEcL+W2Y1uGfRjl+W+oUUTiB2gn3MAhpfRWio4+8A5daRhdZ3t8/QGlAJvvzvjuHkDPSQrcjvWet4iPqJ80VaLwHlJfUBHo0yn/Ks3zFoR3I+2EMIPP6tRypiGSTbZtZ6bJJLLvquUbl6Uhd8KU6eGPMVgbsG+fV/Z0Kl0jWe2EYc0R4FE3QFKLhUnt4j28dpbmUzsU7ho6p/6RtmCjzeUgx4oLZeuyTGF2QgBFrAd5YJe/r2Ea0sJa6Qv1f8CIj5cSSQpaUdTB56TJwTYEKYhCLo7HgWNKvFsLuxqk2nh+zs80QnnMXWgheqXRJeT5gyw+W72/YBrEU3EHvvDpoLO8ZiuQYYml4gVnZjEkphMQ7v+xM6nnkTkRwDd8GeICyBge7CryWUyixruWU8SFEe8tjbTbXio4RRzTI9AoOEAA/LvzjF4pKYpwqT1X0+oejM03Qai9/0Ai+G0i9KkdcC5OpSaKCIL7XtPtm7dxVqZCdxuWKE5I5mSua0V8xy/DHH8LfLRlj+4QVrOZfb0G7NpqdShL0gW4XocdxH+7amX3BVaHZzdnzMadIs0/LPw0ZzRvO0JgOln5YG2zil7zol0OI6xINVSDCPuMHmdsw5aWp1oOioSOGaav+qanMEYNVCwN1wHBl5mNyUxWQdN0NrHcrqcvl9b1y9bhn3Tvp4eitR5z1UNbQJgJLyGn7sunBwPCs4opeR+WfGS3tKUTdDh5SVdA1Und4m8IuGx7gFYbBoB63C0u+S9Ar9ejs97mGCvoBGKahjXEhgFZLXCFq9IKj8Of2ltOKVyLZiXs1hSUdh2Kt1c8+GbtglsPQpfaBqhIgkWfGlQX3LX84c8/EAwEXv0uqSud/sPp/VdfuyVqLmSb/xW4gKX7RrzRw2pITJr1BPRxIhe94zeUSsDj76wI+A2Pwc+GU/Y2S+YpdBk9qr6M/1Zi/UGBLlzCAb9FSBtZifIqZCj6XjMxzquBgWMZq4ERUfVa++u3HqW/OqDzs5t7YtbN1Smgg/EetoH4WXRK7jYTOBqjX83KMFdJkvMRa3oeJdqjorZg+/e/YMJGB/GabkxhUj7FAqatX9Ds5e1zK9O8z6kNykKbcIhIxSYxhjcvFwhW77sFvI4Yi9DjAHcUqeMfHfEsiDuWT/u1svYJ3onG6sZinmBm4159BW+vTlh+hivHnJsX+4M+QLcKAXyMmtYHkuo2dUTD4zLEdU+hLyOgwidCkNDt1aSkhHtZ34ydxyPeAM+y2vM4hfx3O9pi9U9HuPJQveKcoFLQqrd05pLwCF5K3khOBETME6wwW+qMA7bJiITbF3D/xtI3+lsoZpm7Ekr8hHxfON+IEbQN/xVmLFpgUGbO7GnE2i4mEeYqPVFbqrxIhpyEbATeWy2fzX4GmheKQZOrw/HN+kaY41sYdV/ASHRT199KUveezQ/RgbKWZ+ta5pApg77RYoR00wU2XHmN7lpeB8dbe2tQKgor/DyCf3q1PzcXK8iEKMn01k2/IoLRvFY8j8oE6qc0Hp6/E2ZIZRkAUgs4eEPnvNeoHbDBmmdRaMQhHdIhXnHKxLRtayBLoEPHl3i50K4rdWn7f/wVy4K50PsvC/axGeeD8wne+2IfZ18PUk5gHD7iJAkuEN/F4VMp5FFM+6FqcMilIy+h2gDxGFwxJlAD6dXyWWGMUhhfnZVPavLd4SCydczJ+F9jNmLZ1P73Q+3/Ggy0Kzi5D0DDo1H03AS2g2gZFd9HHpKtqqq0YwYvhSjfFwe1RlfYVR0rCSmqOFGJUOvi9JKoShWld9ftipSyZ9BBqvqxF2HNcteNqy9Yjp0Zb7pT+uX8iKGV+fKYYUsLa1LxcdIMrwUFKrXNwHqyhFsx/xte3uT92/FuZyEzsk3Oi0gn8Y87dWxoFwM1B/tsn7W6qFHIH/6tW8HJWMmIg1kK5XYz6FNcnVJUzJbqnAhkkL1bws4/2wcdXhWbNYKDVTiWpx2UAyno8f0eXzE87wYeYilgnx5nIb01vKI1Z7cDJ+aqN4GUEIawW35JI3va9DfSxXQUybd57qe12XHH6z2tzb2N04FrPrEeiZtiyMXq600XDkbpDEQkfRqm/r01xxiA7gL7Mcq0YZKMQQZ0bxfWY21YfpNBaOjpUocGf/EN8kbT6wvEJDvZ3VTzhCl9KypNBIxq9SzIRJFuGGKpchYRB6vgEVImCBydfYbRl6e1WEWuzNYGrdJBvIWdLH4nXZxRlNR/87N0uRS3NbEU0A3l/aX1AjL1kWotReAFhswnfwjoRz/0QUQ/eX5g1FRbUk8ODmB0ZXRX8chwxURKXx2Th0ug0hfaCPiYw7QShZfPpJuCNLUqjGX9HBQ2PkO5O8GPcr9IXmp0ZH46KZkkawi1DyE/qJmVDoNQtJkBl0XegoqLqv2WvFeSbOeyCtH2MBIfc8mdAbc1gvrr3RO98h6ug73kIrdDV3TaBWiYg2ZMGpLytIQ5DavxhvKfYSmYgesUohKH9tIdXqAHnnn7l3R94ySQIsqL/4MIXX7omljVXjXGHsVCrRF2KWXLQfvak0OBychnlPb4LkTkJ2/y9laGlpFBFLl9JE/PMfBaG4sWC1TVMlJeYUY9gjngGhMnvXgjgHabrdm42BQq+McgGKbNxJxLFy/2hmL0mVgzMXCKTvxQkv9XP2O41oLE5fn1Ql73bqAGFg4lxAh54iJQPZO8b1oO+VUrCbkfL006/ry7hNUkf/r+ErAAYBRIctxA5MHyRw2kyZ7Qug/7s8DWpQOJTvB2Eexy0Q5mPRnVaKkNPpIcvjTAcRFcYNLD9TsMrxQRTUh7s2BpSEHqnHgSNaJDzK7RiSOG8hYpDVaK1G2YH7iMN7GraTuaOcCVjt105gUZgQr/HYm9LrYQ5a1qNUnczffGR+ESGwochLZl/eGIgQ0ZfAEy9/rnLDmHaWjUBHsaEDY63e/OLu24KDZEZDVouU67RxmUaD7niCsmkK7rFvaARm62VUyvSKFMeFH1WN/Th19YYveO+prGmz9Lc04yk/QsfCZiyO07t5LX8f3EKYVC7Senb4Ug060XkqdADHIWT/3chR9KBPP1bLmpx5R/faFRpSYyvpCXGliq90tEjWrCp9jqWdHLgicMZTCXNT9bTH01UJfYIdBs2hTKGkEE+vjM3voNE8tz3V7Ob4FHg9QGHa1aOM1LxXJIP3bF+llmoYHy1lnMVb1aWJkoRFMlNMznBtqgv7GwuM+TvTKVJDrcBq7nh47pFx0X0xLozLtzvEoVyvbctCi6/Vs6J8oacb86TPNQcBTX3+LolVUt72MwT1Du4NW55ehBNU8XIITcf2fyzz71VcJdmK2mr3pmoX2sAtPAM1aEj1db4bQP2hYKL0QZ72t+YEXgmqpcOg1INRsAaLPEFBBIGjT5STR3kcQHqVgFfQd4pPWSP9+aQ59WqNLQhFavEKou242O5sxuR61ppCtuykxikNRQJbmidl54oGSvmP6Obl9bHoa99KChHLkolmAS4qhmLKZMWqI7LI/v846H5YUtbIPEET6ywECvkHmwoDzLCRpoiSNp8BF25bHxvjYEefhxQLQqXE9NfVXryU6BevUkdS0kYWF3atHXDOiyU/L0Gu73XB7DeILdOaA3A2U+NfDc9MBQurlzEH1TfxLGK8nTncMoJSC8LeT1kiS1gSciQLqVPLLA4d11j7oP5PC1BBBxwCpEhM3fF1ylQtbVkbyzxreQYbfE7JV41zFQSIwvZd0Q+sFreYdvzaTGc81k5bzwRHva1Zy6BYqSp2pCZ8LKmlSWLTEbfyfHpjGwl3o53fgcYcGwpVEgRyyoctBea2JgpTgPits4AatinqDoP/j3jsCJjT1aWSBjeZxfCn45oPatFvFz5X9HXpz0CZtSnt+GoAGPLfRO1e5weUveS1ruHweouBo7FfTcSFPLIstgQ5EGk1yrCMNfRG3kk8btbpjnxbvQq2az4Hx8E4NU/LZgDB4brAzpcUPo7MOM6zARVzqUi6eF+sMogm0T72H4CLesaCHynK9c/RvHASpmUtU3KT6OipRJGdRMEpjSW+Z0HuzDju9V2h4bSNqYRcO9W4p2WMd3m3m5Oefwthq2nBCEU25mYVIbI1s+b2KMcEQGM5nkmHjxSZtqxYYfEFJ7Q8Re67ZhV+g1fHVFB3JYYfyL1Uws0wlNUvjWEa62JViwJG3l0xYulJqEneP2Q59LFOUzkPoyAplsLrvTkP9iWB2oCAw68G3Xd3OmiCOwQWR3RfsMQmcq3mL87sGQKe90drhX/HEUPPVtFgUNu0mOCAbl7dtLUDCAA8S4nDC0AcD5clugqkJqKsZJZfFtHZdS8qqrBiDctVE4NV+zDgtdgvNFE71/CB374z5ZkTNSzx0m8S6/cLPfqqsqybJi6eOGOIC2YTaxJWL9CkPkr23CwbUeajtaMbrE5/ad6NRIsJV1Oz9be2uFs1TsXGLZe1VJNrhf2iOzx1pdEz5ZgCt+uyLHtoMf4JEjxwepLE/cABp+2TEiD4JpNOkR6UYmj313eBNHiQKRzoQsrO5zQOFGEo5mG5bDjJfv1z+T0HSB3Av6wS31xurMQwJ+WbHqLMBGaNavbGrOmcv3qfdVcV5cZ6sQxfQkg5OXOcs3UeLudV3MUWY9/h17XifgQfZ3P4gRiP9/cX2HDgB0ZM4j9PQrYq2fJXwG7f6aLTSKACiAKOVKDzkFTU3t9T5KGRVwJYMz5oSdPMjZ4f8NmJbmwJp2GILQCdDMKzBnNTUzPbuPsqBmbiSwyvT3eMWmVWDYUeJqoxCPxk/5Syc2QY4mb5+xztfFP/fkON21g0YhO5kA7s7U5GxVIsCeQLMyCwz7Lu0mEkJJCViaVW6AwZ9qqUNBnCrQmAAT16FR6KZJSV+v5weyiEZqTNZI2BgxS1bpNHPAhgsryw51VYvp2JxPSoIz21Rng1llQRTzvHzb01GKB7wj2/YCrM5nGS8fVcHwH5wgkyqONQQG/79cdBnoFLihDKm6+d3I9TjxnXsuMzbBv1V/ehMqoJ++KXalIlvWTyGMkoT5Ir8aRNYu+FLe2h5jXCUtR5I9OxIOkw7oHLAPbPCdRnME7/YHyvEO0hfVP1FivMgLs4uCanhV+J0vJh1kLQKUBf+liHCtC4Whs/3NG9PnHiGqdozAeGwp9Vl2HR+wPo4uTRmAFOHRXmIhVv9T9i+eKW1DIjqOy2Np8qQRF5oaOOvAxCF5qWvPWirveAnNFvNYjXMdaen/uY/muC8b7CEv/1Q2TmyzN8OcC9ayRL6kux1TiqrRuQWEoOu5ofpQNwvAxZ5FwmgHk6VD0azOtXADowqufo62hg80m5oKe1bbtIs5wGRYrpqkX/ngrRwpFF9lwLSdECqleu+7Cb+wARVdZ+6bM96DJ2+rN68QnsQGSrVaRTJ2Lfh0k98IcHCVmDtm9qcHLsgoR5C8nu9S9zhNN5MccKFF32PlmXE56HE5maKK/UHmhlyI22mXTK1rtRsDA5nhYm7CM8w2dRcc+HqaCJFlYVLh+sfKL9QY55A8iFqbx0GeZokDZFYn5h05bWSSUS2keemXaD6/dJqnDJKKuBLUFKyuEHn8i7+5enwbVrSrgck2cllODMFYTeOYcRgntWuAJtr4sVpDO8gVsxMcN8O0cOGVLUtHF3jK4w+P7vQNIe+rMFkGjCAo4fO9QB6vNHSHdpGNzVSThozTffbJfNbEp9nLQXC8p5q6eINhnySXM+WjXDXIGD4rioEjWYnDZR+Cji9z4rPc/fQDS4CVu+oI7wATr0IGIabj4PBBTnSRG1kFmk015KDYKOKXK+Lu/vNaYBXpxFPC1jkKJFfBCG2KdjJ1qBWoHxOuKwEoPM3r2QeTjyWb8VkBKKf9FUx5VqbKEwK8BMXPQjr0V3Fwyx4/rpMST89yiViWd9clNzycCR8u7EFT9UgMSb4y2Ohb0aNqs41nmQ+Ni6BsmuYdKSzPlaUlGSBZ7zH9SRb+z8le9XorCNRBE2nyav3a9eTVWMcXQrMsbO0I5ZUGWUhczavjjciGVCnX1g2FILC3VwNdtWhqwbSvcLYPCLHvWjRI2mm+ODSZkukJP5ozjD8s1MipBlPVLWbrmToX0MMne/fGF11pPMAlIabGTc0LlMlhQlBnR2kMMCSceODzM/8lzuZJjBUWPKlfII3T5+wwhFYSuSK8wxi795JJAR1I5n4UgPJvtjj7DUfO/WWPb9apkOZGxLuVW+RpIVVjSY33xXGSxlh6Pv7KakKzHyEPvjaru/VlEt528t55/iKRJWhiwNxKOz60n57qN+vKsEd05l+OPuwtofmLUlJAr/TTKpte9LJc9pk8h7vFxu+wkq6ABO651Uu3AZYhDs7SDlOJgUTIEel/vwd9pylLZw1WH0uxwUgYiPTBZHMd6G6Ily6EcrtdgklyWUfNjvq7938s0aH1tYaC+dsTc/zgujZXlFZ/pHv1nu/Ugo8DLmaeL2Ep5c6z11lkIc3etGExRVsbV5RJRRqpjfjFFnSSc0wiuzGh95pJ14abbXxjh5/Fh3JGcFsQWvMNSvwSLw7xvdVgTqfhazPUoefmqfsIK5Q3rUBXcP7DRc/e2rvO82Psnzdopxw+9o+FGVaeurbgQMUgcCjcsWZN5jj4vSAl7PqYCCl/y1N+tM0jhHDEJT7gyJaK2OzYpod2nrsMuywHkCzvpV87flyLHGx0RF0kmai1yXplkp8lTHHUYUVrEzHlSHCkzv5J0oin8KtEaej30PeJjkQ+HNuZoTKHe3IK250aVJkzBP1v7acLJgIoZHRD4FUGvGDUoAtQz6SMDPXfpijyAFvNCVZVcrJJPln/DNEz82sDgVkP2imbip9HdphwlPsXDzMbI9yHWru0qRBG5X/ivB/N/Bq9k3PbuwYOAtcdfLfoYE7dzye8Bj/FBU3oB7XkpCVJX+OMIAW0kKnOPdzuL8XJSSaegW7Mcv8eZCi6CdttATouCrOa7eBRbh4BcVWmUAzHIHKBsqnvQkjjF3gCeGphF23sb5RO+4q1JoFfbRYWqyxgv7udqDWcHxNCSoxbqgq8ldBgGx1BCCRAzSozvUg6+fhJFXkY9aZ7AwOt6/XI+nCTkLb968mKv/g2+W8COnr7G7pBh3u2ho0OT2wo5CuICWQ6pzfbkla5YullJY4C0p84HkvcXJJKQ8bmu68IdiwDvKrlGlwVWl/jJFLMprNFWDuo0YJHzWzBgx33jQmd+dzTHfiB0wmMMQ65ZUY821l2FhtEwdS2BTIsa9cCFT0i2A2KXA+FdRxqavto8Rb7+qpvpYBOpqQ8NP2b+zVI5RzOunNtsqbBJhkqZHnUACW4fAN/vpsf2gemyGGZsEcUkH9AVV3Uw8AYGnAoM7O3Y1pqws9Us2HasUof4jFwRy2xFDxsOu8VOvQl805gAFte5He8rMMreTgRD3oQrynP1Bixt0qhkJEZLYmscq15eARlIMUNMJA7fB/tZKv+zHYuJDihlaKJbCalK0zVHHePa/P+hFLUmSBLzBOEp0sI4d59qgXRGamMZqPlD4R6B5RdigCAFHqyYmG33mQ5OYGvnYUmKLAJx+s4yUaXKAZzZpiLM/1gNtxHCCnOvGIEClXPt3JnXVscIFs4f0XurQPaOU9v9WVk5t8w0sGkKywIiUE54IOFJAtXsgA1InnT5o6qTkVQ51Ecl6yhmk3494IR/LIyaPzHIaky567KBpC1YDiZ2kzkVctKZFKXqe0Kf4rRlnKW8zLCHaYp7emyMf87zfp0vzSy81ESUrSXaQXCxELwlU/CmMVEtjYq5M9smOXPiwBy/TlGAdTdfjPNx/wuIKn5marQmN25ZExEPyXQhUutJdBFV2Q7QmBgEgeMcHHRnlUizAdjZMhUBLXTEtKRg5vijRjp8P8UZJSxdYwLI6hC3miDxI6iblwht+x5FLPmf3jCpAh2B4XX9RfqRMwT2y2RNymkHNWPND5XCfx5UQq958xsQyyu19OxHxa9RLxaqQLWkAlN7iqpGL2HdkYGevwBmuDDmXkQkMmMNtAfvUccruU8tuB3DF5GHaVWBI8dwYkgjxhxZg62+EgDCNjp7R4Qw8lpG8sKOKbaOkJYmzOO5w/yKGBINGpnCSU8euYHRhjt6Awiog0AfSI+G2x4qY/BC0wxApa7QF4mFoZDgmUjuTSMksGG57xA1TGhWY3InuOB5DF2AT4JXADXUCEKkaZt0z/+1yY4ftVxPnBN8j/+IXQCRKqX/8XQI3BB4m05z9TEsEjNlvDmYpq6tSy094w7nEe3aLGWnzbrQHCedQ11qcTP9hrHqpEAgUmIg0C6EOMrYInqwVSQ/ZRhtTbwt81ZgOh/baCUajQYP67R9Zlsq+GiWwtXAFC+js6pJxw4F9hTova/d8j4BV2FgYEvdFCbSp/57hf2eeeLc8eYyCfSY0xMN25G0Y5DHrK1htQ9sLqrBoJFof4DYCfWMhfc65TE96xzTQK5KZxjqgIr8Zrx1nEjkN0kh0KGH/yhLqH5gKrp1IDWelnC3VsvekIvB+cryXoEZhlq4btgazlkS3K/Vcwa7wFT2o3nufueXg8ppQfuqpi+r8bZEp4vINXUJm2QJM8HzTx1kyoqNMU+zqxRE7e0W9cH7ZLVWkiJRXUfhwlbQUvSfWIkTIndoH+TCJJjZoXoEoJc/HS4xWq0f4XwtgwT5B4x5hwb4JxXeWajkSBbgWllGA8h5V43JkfGMruLXqNYomvA7C4sVzy1pAmwvjoA9lxgFeQJNjy3IRYkiGbQgAu//j+1yUC3G7+9X89Vd1uBHRKwkM0LxrOM9K1z6oMR2iH5NnSKefQGfxO1VAVa+VzunZce2XB1q/1zNPZAjciCMctRyp1YEf1t9v7y02nrzVdBIfSBe7OW4Ezl2WRb2PG7VBW7tY+P6lg1KdqCPfGBfYiEnFS9UzVVgHl6HG4Z217ohJlf8k9xv2HNqwZy1OSoxvioWLCQUgsbSJ8stAzvfCmN6JCPQRr8fCjfZqyA//b0M4JPqGjwiH3qBLhzn///CV+QHgxyUsDWdOVT2dCZ7p1eDhI2lYSzlXk39ULwMLZSkzRqiJZo5S+QhkZTXvi1kMBPTFnWzc/RZIyOuF9BlUH8ahugo1KRomP4E2QVero14YXzUlC8Pu4vaiFmaVYzOpyW+Lzo5xvo+zVo/vlgPDWqG+VXVUJp9eWhwIp9LntALDdXC7A5njbXlHO0KuW+J2ZqBuGvs/+jCZcsMqXg5kxilY2OJ1g1Fm2ykU5XSNMEKfxYJN58vKli5GlgzrJTM8XeNu+XmHK3Rrm6mfmo/pqoTaGKFn7Ogmz6pPTAPp5W6bu4UR1GUjt2FtqE2GBpv23lTBPO7gYArmIGX65yb+9FrztSWI2RUZGgTwpFS0gFW6pGkyalBTke1p46kOcWmiFPmzh8sRkP0+rFl+cOXkWUuT2vdzs6y0jVOWurVSbuLxQ5Dw7L4xfBGI+5rkGR/F/dxW9OecBkqiz6bXsFDFDqf7sXF/87IceqsZuwiig2H9VAAg6qUGdQbmj5vKwSWQNOsvLPl6hlP+O0HuhQJxpgOmRomZckafQeoVnEsdg/wKQnkySr10zsINsWAgZgGHTI42dzbEeob5RUOsFLJhFfGdu6Ewn9H1XGsLNcAibIZncIpv2Rw1KXDSUvrgjBoWuJU7+AnoQAoTCgaG2fmHPKGh/DnU46J8Wz671PLDP/IKwxn8EM7uOihELu8kL8e0wjbnwrav+Cz9NcnDXNnFSqPs9Eq5ww7eAqG6GkeJ8uWncbP8TfVig2Q+JIE6BZz5YUlINMVWBkwHR7IjhhtBwhL4SZegJQ4phGDdHKGhhFMA6WpkJJ2yPldnNKjoyNQ46TjnXTIFRePJhhB/f9bOJcjbr1pFI=
Variant 2
DifficultyLevel
532
Question
This table shows the fractions of Year 8 students choosing technology subjects.
Course |
Fraction of students |
Food Technology |
71 |
Design and Technology |
81 |
Information Technology |
101 |
Timber Technology |
61 |
Which of these subjects has the least number of students?
Worked Solution
Smallest fraction = 101
∴ Least students are choosing Information Technology
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This table shows the fractions of Year 8 students choosing technology subjects.
>>| Course | Fraction of students |
|:-:|:-:|
| Food Technology| $\dfrac{1}{7}$|
| Design and Technology| $\dfrac{1}{8}$|
| Information Technology| $\dfrac{1}{10}$|
| Timber Technology| $\dfrac{1}{6}$|
Which of these subjects has the least number of students?
|
workedSolution | Smallest fraction = $\dfrac{1}{10}$
$\therefore$ Least students are choosing {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19llGgVxSUCxz0aE9rrAKa5xCsrRfQrGVKU3XocvaoSPsHxLEkbhBCyxvfKi43Qis0kXCvHs2xFypFl43VqNKoB8vIaYn4z3L4SS2utbODZZ2ugUqTVZOMnwTu1r63VzBXxtOHzCRXLLDh3dl5rE/a9G7cftqx08xvJhVbITnMGNwCpqiBgQznzs92ky+Iqun/wkUfG5GJhwgVdckxiBilOgz9qSdSE6GB8YtlpDYphUZljvQWYeT4RBKl7M3wB5+HREiTv32o5tnDo2laaucuNJ5dBbSV1gxVIow2leyuFf0hnDp9rqDwbRW0bD+nPiGuEejdBJfY3a3FBiDtwfzSifwqTQBnKnXp34jr4e4HkX6dt8vwJSXaruqR8qieFg58mVC9VqzSMIcQBWeZvwqI/Wx3hE4F5PpY4RbhpIc6iDZXy0L2ZMZOsjfVicnHQhXbPq+HYS4OG0aBW2KyVdR8eW+XkgvSBlq+/PJliHggyEzJpOAvndWjsoYCq8IEnkvDM4P7zTmncqQJRzApY1kL2ffQ5596ID2glJmI0pv2ts2NYwoYF2PQ6ACMbP6h2kNvS8q83P020QJhHUkhXIM1ys68Emazm2ecMxIUdmL5TNDgzjEv+Ba2VgpYPjAIDogkv0J6W7zAUwIi/jSp76NhHtIes6n/GASA7TqH8Q1JmKOhb2ptn2skxqyGIDkAwR/RDVevU6jI6s08UJwsII69GqogRff5IlzLg27bFFMRtvBZkmDJNIvz/LN5HXzx8IKVAszw5TOOW23s6JaHvlOrDWVIk/x9rbQqIapLTDUoFEcPKhQrZdvghIpfeuq2ittXve450yNlHk4nYPR1pM/QbR0ZHhSaJY19hIyYBvLMS5QRCD2hsNiDaddPrg+PW4mIeDZ7kErZsrIWLkOa/BYx/NJrRUJPdu9u0mqPQmz7lQlS3vP9qEp6KslpmcbhrFNd9/DvHn+VnoZIKq54IlkofpIlgsLQxLbzriHzWCWjciBERtE5gzSp6sMSNpH+y2XiQl3Vlcby83Dcd4CQovK7WD39Xp/m8LMAmrzAS98LDPngIFDtnoPHhac8HvrazOSsR0gZ+dVIcNVGNSKer1+PsLNO6Ar86gFeS5iFmnjXSXB/YG/fi1XgEJ70Mxu3Yr4h26md7kTmPFQC75zpHXQu4IQ3PtU7k00c7lUJJ9WC6Kl+4JQsZQx2K+pybEsYCLnzq6l2GSGN96dCjV5Mm4fqNgpsc6OYeX+W7UC2uzMNKdPC9N/bQNBoUF4tRcb/Ik6PCVsSut0UiPMEIiSsXhBRlyYSXWZYgKhTTgN/Tv10RFlxonJ+Wx2on9wI/vpQSCJy2mli83qc8e1vagbMToJyqEqomlIfUB8JeuMPxy+EfRzbBxBLiThPpSUJSaYxHO8px5wiHuhjYUoI24dpzfQxMGtFuhIBop8arQNU1sEBSaC0E484V0Q1HLpa+2tg8IcdbhnskjJPtcBapqBJX2B5U/eRG0hOjrbm3wBcnBDkIf7FgV6Yi8Q4O+m1d9bwnuSjzsm5tJCIQLR7ZZ5Al6Zj89h2QeJioQn8b1XE0IEnISjmUd/7e/zvVK2h+EjjFK+cXn7awP+dKTtlL9No1JQcYy0A0db8dfVtu3IHLSqBHSPsGS2nufM0PTdaqaODJG+xhlGSkgaO2uEpa34fNaLcFa/zMUZqCjq5Gdv6IKT7EmvzOvRFpQ/3HXdubC/u6sREbAbjWcGUriOWUoQlJfvEi3WeuVXvXdr+PWs8uxTfboiPK+I5UwsqVPfCItx16NGZSLlPUVHNSErnsx7oBbB5b2G6bPxQ9bTOKWgvAWtC+8mg0rzA8QREPF1cz7M4njjWyAuEcDXYEis2CUFeRIppbJLD2/sg1tZyoA9eyC+Bhy0EZfmjWT9Q8G4MQVCRg+FlYdf4mWqSf9fghMUzpJOte5ODbqvD50XZAcivST947tHoznDCHGVB8yEIwJOJn7lL0ZpZtatbvh7HZhDE6flpauMUfhBPqF6oICv1T/L8W3OjlzXMi4eTH3Q+HfnCEdROs1SHsfkZs/P3QKOII+xeYDFbqDa/s19izHSb/VrDZqG2v0HGTa/RfJWTiIQFKY1ggKy6dr5cPltBS/uHErnKUephQurYtAQh0VPpqsZlEfnU72aAQkxCbJgBasF5LPXIZgNOPNdAlLD/noeb7x12U2tR1rKE3pLCuUW1o3L2KEIbXn/vF6QaJRJOLf7WLh5Ox5UN/XP3rKN1GZIaj30lNJ/ptYZW7jbomOq5K3F/nfUe8lDbZcbP5WXKawXP0nAWAXj9KoBXMwR51kPN06Uh6ougI7uHzTt07VJf35eibgKpItA0tRKgWIKKwWVq3X0HqoTi6uyM7cmIxcwm3nLUFyFhh+8rXAzcE1KgbNhiLn0fpoQzbrAmMJ49t09JZiaNPVzYeu27QXbM6sywk6KAwDBWyDUabKTo12U1mZox6H1wTraU4WL6Uy/zychNUvwmR2uw8anrBXXGPLU3BKZd8GKnXoV10nAYJqiakl+Ec0WyX80tBBJSkyR+XJgyJOIznv4o6E1pXerJ4y7QAOheikxsgCwM8wPG58bLlZ+nKHAziNI4w1q/WsX9NnRmScIDeNhzZNnYTrLrDCWO0nsMBs8r08991QISC9nGteXuQ8reyT66f6YmdMQv6kLYHT36Y0dOfOEaOHABU07pkUdQ+iZNsiF+AJHVOTm6jvFjwdoKFrsqrsuHK5E5hUYJSIiLHXhzP8FeyMmMZNY+DOKv377b/Q9tYRYunZb6DrLJMNp50JPiKSzk+AcOfzSZ051CV2gaOio6lHhMro6bUkeWIg82ggG45YMSzcKOA+Y01DwW1CzU+703wfV2vMXPosHPDRZScypc9pEDOhI7Er7sMkylhhEDQhlB9UAggQZLoAMPCQmYbqbOYzH6NQ8XXr0Dx1M6GbK31RRCb5bKLUFls0uZYEGXvX8auQmgtd5hEf6G2/hc+fLD94+tetELrEmVLkEA0UExxf0tz3ms/MVZG6SqqQgJRHsnX04dc1cuuFUGuR9dgvAgj2SKoqLUGAa3cwDIeit1zwuqUg/cQS/1P0/Dz3Zh1fxApG7Vbzis1Hvb/AhvfHRuPw9AEKoRoU0LGwi41bgyKAfh3jlbWOFF68bnFr79nR1enFLocHDoUynQ0iwkteKYy+Y25hQnatZuRh6kktoJ74zPGOXOrhf911AEiZAWtyKutkGwLPvQkTFk9lj2x8yHN33TcM1rd/nOrRYQkyKiReR70jhoa2xgZsbpvB+7+b+g4Hri2WIDIpCemmK6ppbshVxvFrdLkzcAYdLXKSZgPe3teOZ/3BWDSUvF2buQIzYN9IK/sw2yQi4BNB9B3n2iS2NYxatl0499BfqV/RMcQ5ubUJHzX1mjwS2Q+0BJ51cCFucOs8pUbTdaUjbIQT7Yk8hXYnKIimNznaHEYnxt7zROLvvPQPVgZDl+yLV5xffTqNWlYqXYJdLpXEv9iVaFviNsE9R2N0mofk7cJp4/x4XaOWQ0ZlOSt6lXhipVLffld744HnW/1FhHP9nPdOU50P2VVe2kxBncM18YKIbhMWYOTXG/d1KPIdK3nrQ80D9uy29W2QR9HwHW+/mQUW3JVEqoDnqj1I0/+TWWtBZkVpUl12GDyCBE6H0xF4CeIISFIUZJsLahb6mPWShczgV08CNJbl/pbvMgMV4RQ20q0ZSisdbCB1DP9TbOQ6Y1yZb/0gJbbSEjGDQXnXmomhOiG3KY3qZfSg5FAmJEg2S0K1ivGVddx+W+32IF73HGeRSnkMp5hohdqSoU+Xo1bbJY2SQPSzbsZBBQ0hbJWAmPZNXS4EMiuaczsq4TCbbX+o+Km+xUr0kO3gJ3gaLZeKvkfhygaoH49ErcJfyWTv+1Zj3K5KmlfO1ZboiaMyUVKUh8AJV4vsWX+3bkVBD/Ryqvcg+7RTbjvTrIvbPz300hKxTUBDMdvsa6FQmuCRKGIZZ8G15Q9Hlh5R1ceYBwgePLXG1aHLhL7rYEWHU4eBt5uALc3mJoZMSBlocjmELMRJnjw7r3WQ1r+beNIH+LnDeM2uNEsMvf8QcFBXGd1iBcVKFKyTNFTXTyZh8Zyya0HCDdUKnXjJdJ/Pwm5b5SC/WxbUmrQLtJAov9+tPkIB4g/gKLk8KUzUROx556t3Er/VM9Yr0o/r5JIoGb2TFvZknI8FJwPdUm1oLglmaMAZQlYIiIjRTYm/uM0F4duGIjLMESWXkgqqTknUtiqaJim/QJsCb+w1KiSRYFTV/5QuZ528D1HgrLXJDnFB75rRyC2rYZzm0uqIFB7QJCvr0jVcXKKjKP7G6EuJKmc4MfQ2u2gYlHc74CKt4T+QUso+qox0icpmMkdQjB+ZJJVCL2v47HKQtE+0o9jmEuIGCIuZB9uZzKsbxlGvdSaoeLejWLiXmApV4QWy6r5XXwmD4cd9hxECVa2tsfjgqrONwcm6Y0GYKaG9jFi6pVIzOwEpbC9atYn0beuVO3YSsFjw+bTxUg2HyzzRil7zQRMj/y/8IK+xfYdCuYy5cK1vp+MIFOll2gMntpmvCdFMKfeUjXnpu2CksfanKGPCrnxuff+ws4wiAAJrkXZ9QZKC/dF3shxlSVzQWhplhl/wju4TUVf77w3g8HvjT/5LrPdBmy1GwBOPIbZeXZfn77ayz67ri2Rer+xqOhIdQsyHGUtlED2AJgqPBtd7iDniKe3BAhmArLkCRVmIEGTp3SxWRP8m/BCs27N9OcSLouNpUQugtl8LbrnH6l9dkmtmD4oqNKjDJRD/BRnpKJW+eiCY+HODdkDpXJNYKqb2lHm+ZO03XrHzL1Cb6HVsXYRE+UbPLwUHl7MK0PJfHeOYqJ1QGYeJGgusDlPHmINtcsZmo1UrIITrwDIBhR8VKDq/VzFmAf9wfDbjRO8zgQ11LRmJrtj5O2pPBQqIeZdR7SSFkBMit2uzP6m3n+XuImPw65XcBjfkjlqy2r4HwNEWR3y9osX1GtASvfQK5GenTwG56bKNW1ZyNqCPgJ2SYt+YcHLRR1xLz9BwJ1xENLPFTH5kFF6HTzsKdlhL0YAC0cWIO+zQ1PIwbm/g68wdEMSNTxJh5HMotStiqLthc3mElY2JUx6lUCYy4ZMidRh7wYvoQhTzHsEsO8V6NLVYWNPKaTWJRTTZZtDaKHePpGXjdsLgQQgAfis4L2jb+I3A7hOtI2uks5ExYuTUXJD5PN7Lnavw9VvBPjh9nglOOI3GaqcpMRlgfSh40kIsJyNrgz6SynFBUHRX7kjZZ9oBp2VDUacKtQxo6UuJgmJYAaLSSJP97nizIUrf2YjtNypAi/TykOyym+XSChFgQV1gLHl5VvKyI82vEDu+5VIbl/ZFGWkd3q4OSlZoCaWrYlSh/WY8rBA0E/4c7biMqjJ0wwfQbPqoS6fqku5QF8iN2QU+jlzLJjjandGD6fCEao5+0aL33Se0nCWqBY1p9W7u331DwjyfG7DYsIa2qb0EXlhh1eXFDvaOHmsNrOxXS9sHu0yu7ONzVAnV5texVMnO6R8aSfgFM5eSM4RAzxlS/BPvNbm0Qb5im/7XvWvaWNQohAshlL+UOX9h6HOhpRa7BfH2X9rA9lPeYyMivuRPYp5lVJbKchP9lt8wNbTbNAyNIgUOayu/tStF+Wq9ZwSsxDaQhEtScoIO4XqHrihB5h2W0KmMUEhvvwc4meUzNPstGZ/GJwEQtPAEOspxRodxX5+H37zid6s/UzAdiRnrjwMQfYVOxFV9H4ViFo7ATIFxllEVp6eTbIr3VUx7u7zEqqAkLAV7s0d2eHArK/iKhpMJO5js+D7gg5NsVt+9rN/+/QjCk6/x6SDYjwN5igCVxUgKY0XDWaLQ79ozW1sDpAsr2G/T/WZuEW95ujoO63tS6wqY0xaXysvlJG2OveOeHnq7YmZf9+v2sdrrRvBbJzifEI6kYVWJv2ubpfInjqnBcStMsSfMVFIrZrm5sEfRd37bxIrTxTg8a2ijemvgulrwxTXP5USuc3qNgBHI4wkMGVPysKUX/obijU/YW1aY3e8HPhJeTciGvx2VxosBwY3T/YQpGj/+plCPC6TJ/fbr0RtIWDeLvl+CRWvcTQ9p6pRvFVHx4ojRJ970v1lfisEgOcLa9DQISwoK4LdnKrSSIdFH+B/eKlg0gqjzZRvscAYpYOnd+9TMEt/i/iRjdIW6cfGtILt79KP/bl1wtg/mui0nLPOxV49f0u21Zs8EM4PBoMGls5JsaKoSmrwmfsvhSqH0cfevGQCQOkKoLGPCIktresfPqfg40zhCJ+cg7w3AdNwB7FD/0CkGbRmSKkoQtJJ1jf5z4Xpx1ryT/llV5A7fJBgbr3gv9tZxzoy/Mb33s/IOjn2VJ1gy0+8JH64YPGGC/TmEyQ+B4uJ7giGzvFSulSQnQ7+vsnnL7uwtWBJzOXh97HnPP1oC+DpNtXzllmes1lxvjh14Q96pZEncQxqyJCBsvPXVY1lNNVVEGbfxDZ4wI9Y0wRDqNEvQ6NYJQ+gHoOUEfXRuU22Q1858/qk8c85EwQ0ZDjb7tKanM2t6RFLtJGklWpSbxMNwi23s03SqOYDdmgUfMnozlGWtP1HKJmhI4kzChrJUP/euYk/qgvJYpUmOj2uH70mB0V/zGxcG7K1rGIuEoGlsGHupa0yry6wf1WJfb8pKl4WpJoGK8rtHnG9LT69p053MsforMM8pKEQaLNXZlyGNRFoYQgolWobcyphlv4bO/6463wvHHYs0vPszpWLI4H5DgVkNRwKHkyM8mmLrKy0VBy0pU6q0N8hsPQZDGaLYAM169mSnskEmji5CAmPJ9SAyRaTW+fNbgrhQRWOxtXLsbYHDChyuWGxhMT7UThi6T9NyBB1bDtxFh72DXVBncNmK0B14jds9tU9adlLKyKmnotsRce00JSI7m/rtm6Y3KhWSyZ81C0rI2WFQR5TBNUlivY8PHPg/JrfKjuTOskJaaj3TvntDCxa1TUd3xL4JgRErZZlI+toQBT0DGvqEEiJ3ED/E+uOKkHgYdFHjckpGhFE+AB0nDfM3HXEnBETCL2JZIwKL8mn12u7wA3M7Vn/S8F208T/9KNh93DW5gnasuq4YJuLP98cOQXB4qBlIJFevuOM70hA5inU71YYQarc7J3t0v7uzrGTj6SJE6+bJ4bAtbbPReYBaHwBa7N/7y5sdbypz+eOZDPrxb3Zwnn7zl2Igl0SWa8GWrwG5+YbhAAt+ff7goU/SM5n00CmHv3pbdxpsPTWtoU26DeT+kprStD1/ZK0Vl162csdmowFmonHi91hqO2xWyQGvf1OE853nvOjKqIf0JGyUaI6j4SHutDCaQtwn7sKS08zLvtXIQR/He+LNeqnream+BM8WYqzxTXXelgeGxnoIfLBxBw4rRKrzMtMElKHBomiCwj10+PrrqTB5+iaoC30+61WNFLqF5t5NZnYJGs82tUCPIn1cWdo8Ofaqd/CXQrCSne6GR+16Rm3gELPwE8OPCe6aUJVxmkhcrAJpnA0D7KfzQVUrWPpQWKOeX1LVx9HydtRVz++rvzu4163JJYNqg7n5XqCnT8ZonyE3jXdedd4OYj/cx9t+YrgRNt+ex/we4/f6q46CV1EhtgN1N8TOn6CjAEg3d5NAYOVsB65OTTQWPOR+I824RwHylBuiX/x5x4PVGFMkH+0T+RIRsc6ZGJqHiVrOqoa7UoBNvHryCMyJV1V0lWXWPu7cRh3e2yClfmPVW2wLg7lDUC9b0WuuteTJDU5xTJVs2vm9ZnV4BlBMYgCY+f/NlExqXnu/t52e1fifCxrlIFUW0i3MC+S8l006FEVxvZv0ofVL/0RGyWywfjhlR3uibczaDSlMMXLv+XsKiqwGOt4gWrBdA6Ma4V4Ja3chrXiCZLNqz6OHTnvBJ1wkukaPE5eIAOADF827fpkGuuTSDPnfQUadw3w502BGW/Lt3fsdmZNBBcDtzv5I9EQzZKgE7Wn4/Sg4JwlkrM1pW602GckzoLbJ6m9VgqmbprcUIF9gpoE0yB+xKV3gKLg8rYIyg5k7MJjr+vGcjcmbRDTOZju0QuFuVKmjBBYrbuBRNTLIZa8drSCOrvaBSczUF+Awm9KVbdE+fMKDh3M6Z2A/OrqKA1CHZ1F+M52ipyiswEIpxC2V7Qm3kH+cMilxViWz27J9Px/8N7gD5mfGUkUsc8EXJwSdvXAiiflmryo4jR34mR2TZdmWw3P4V837lnREz/epFCfjEHRIWZZBj1935YhqkNkoiR9WpcoS/mnosghcRcCBhyFnetiOZRwRUctwmzaAGV9I+YVkX8w2w1hNxe+/HWTbVAFU2BrkXZ2HN8P2Z7jGvKIbFLBA81hoB5pBlrQfkJg301KQwlG7zhjkKx19RgI3IEbhgTdXHzHFV9T/fMsZRolG7MOBluXQSjs6Eec8r1gLiwNhPJyrp1cBLyEW27a4JaaiFHtrPLNBN29uJPpMWUKdZlgK88aCCzUDXNXp8QHvrqY/8buuZEDYEzBgAe6Z0+b3s91XazD7umgsTrACHdKwVbIaLfjQ0Ms/8ODBNE8ptV7GRo7HwYH7E7VAH9LaVN5OrdiAzmAaI/rwUgzuC/rgUDmHkjhkqDYVWW6UcpDgmk0aXz9Q5XkgUgmDjLnoseJcoskytBzmRQ7clWwYQajScqse3wVEjvZZPUrGK8z4anlnn3Tovbfdx3uU5EdiB1S+0KBONnMDyIfEV3mwUHiyYiLh6nIrKrO1Wp2l+u5sK8DmDrJ78SRoRLsaYbVTEWpf0sXvmzgylMPiXWJu+PPDAUrm9V2lys/Xrky1fjsf1zobh/kLEl+raRKKF9oXuTGCUQeDkNCx4Xf2CXyPytqocYPC4Hm56mKnULn9PWApYEXcClh1LIZqCeooC8YQZT0HGpswsUuWDHT01orK38lEiN9bnXMToQm7alhv6M+BKc3D9LVLFs4Hy9/R9Wue/yfV5OcBE89KjN3wFCoFOY/cp1CWytst5iZAgiCi31iNR7BpKaVLiALomg0W4aYaZdxNA5gGujKJ3xtSFJmUvRRDLWFWVjNxBQFKVcZ3h53LHaAFGIWBp1/9sZdm1H07wdYsgp6QSsq1Arf5EQUVpwLwihCl5XdR7JhPQunOimsBLT+7JhR5eyyaYzE4WM3YWqWHVo662w+aByfvxrbj5pnap6ASfuoyaoA1+S7Bv1j82yI98QLLxnV0YlUQdWAkDtRwjr2ukRBJpocnF/Zt02EqcoOay/Pm5DHxUmfcXs8IYgzFEQcowGYeyItTp3sMJLl4Otxs/QQB0MIbkGDmxFsCCO6jZumOto7FaRmULQ9mkCHmdC9TKoM1f0UtQ4SYQVZLpjKrHGAWrD8CFqDzRsM+HaW6QwZ/nNsOTXliCG9U8yVAtK4+VdnluhnBKB6gtHE7nSt/seoVBYZCOuiAbi/4fXGcUky8vuAG9bAyRkDAfyT0G6gqjKc0XSjZfEsIXoyqZeVme8eltmIOe/e5OAaXy1dyiKJPR8nLVtkTyc82+nnZqpdiURqCIgHoidsnIaJZ1OeOxF3S4qTEGovft4ViqiiulmKYJAvrl0vIzCM73R3fn4X2h7QgQA+ZogDs4pTG0CJVknXfksbdrQonw+plGfQUJLVV7USJfk38xem/Z8jlAMSiEW0amX7woLXwc4nNCK6oMov6hS6iR0O426ynIoVHBH4OGqy3GvuIp8kp/HNm6ujc3FNXqeJSReoShPkxdPDLryp/7dmeFMDRN2boq5vwCl6gm35Bnsd6rdNuBXI4lgpI/3vxkCezghv50xFhQVZUjXUqAfzpyH4kmKRFaqc/TPtZQcRC7NPNIs0xAQkzTW3QH+O7Q433Dt7EpO+mIbx5SZigx9LOKgEIH1eZHFzDioCjaniT1agDHfUI+uTQ7YaDr7ilyhaL0tiRhTMmg9yjgs5+Ws2emMsNNA2mh6f3+mgPXnLsnBGFO0B+jv8WRtoObaxsdnV6VU5ATrJJ6cqLUbaYgCH1/QbPoWM8qj31oIsrwc+BX6TlVEzig0xWJSMfMlDEOaeHcSY6629e9IbnH6ioNTlx8SNmPUsCiTOgt4/mQne+TqFf6/B/QOgHIyDuv5Cu3H4XTAi4HNLCvUZiD1gQH5FaEL38gGiiA9ccxxqHqIrteFFZqWaS0NLa1PrWL4N/iDcfOc10Iez7vMaHfWdGzm2fSwG7l8Z+Kn9qfYJh+zcSa08TwnQQN9iuYuZapj/45tzmlhuUEFqGb6zUmbOW4cTGicSidPLKwnMzCMJd9r6btg6B/TsRF55WjgTRit0INY5anr7SrYYdCcHHyUGclTHhi8x2n1dzQuWBJpt9vxe2QV4iZAAutfYzwbB+scP/N8MIW4qNCyIAEFjnMvG1VHiCzwqdYXlFOArhgOTwipP4UYl/4nmEcPiIESDOTRnKZ7YqrQQzNVuBBCzT7MGTL+w9MOLFSz5qTH7UElQepYf71rgG0CPdRnRQWjjptPmm440WlJkB26XcNiQLQPCHkj1jyIW53mMVxB9fEEeKM+2FvufAMXAz1zv5bNJDU+80qDQ6csvCAeInDEWkIayR9/BpZYiLf/SDtsZCgEWeOfyNCOhcf60u9Ogo9dGxqk4O8BTVz3AbcMBc4cRC3Fk3pdTZ47PsJmrAvIqgvN0JvXLf8C6niD2IjBH0dF6Xqqmm3DUZIFP3jxsNf1uqrIP44B6koNXG6UuBd9zXdxvnZ3xtDMp/Wd0n1CWqtVW47kJVXFDHILw7Pmd0D4PaoqbZJHfi0IiuKS0hjke8+bkSsnsPW+QzUuFxsmDfR9S1WfDpoQwJpH2VSagvv5x73vu/IzKMwfLDehUcp607MDOb+Zb/iRWQZjvh5V19NfWOZrAAuptvRM7V/F8PStQ9SJWRUmmiIBMBu+n8h5+8OtUiqPbe+KTo+LzE7rj/t3G5/Kq0+ID7aGwTlMiaTzDX5g375l3ETBouoSDnEwpAuDTyCfDpMmDG5Bhu07+KMC/Mhb3PoF3VcLacu6fX+rlyU+szKlRgg+imd/Yfcak7bdMdk6ePCL9JKtGNjKgncdPFuDBlAkU+1f/tsCywm/s4vr+75Lcex47g2Uks/bIQzSfgEJ9tP3hhlqmhkS+48+B3p4dW+OnRXodwMWRwT/ytgRU/k+he7vS1LTDr7JY22XP8bXlaBi9fQi3HOlcjPV0NYbENufgIefBU1sgkXP+We/S3W4HW0+2OdatWsLGG34uPYiA9l6cgkUJoVcAd06ftzacyvHZKlQfAbu72yLO7hTSP8l/6JRY5lQjMyLC4NT+rQTPq5ZtvBfcAZizesVcdQcLACTFJHQGyhsWhq/fL5fVswUh5FguSApzSjriCx+BlPTF7JbQ0PzNo/5CYsFegGF9dq+YfOxTCPf12kVCmkVmw4ynhG0XuskQPrI7RJq4daDb6/cd/Nn621oTPtuvJwU8HuO90PapFu4JORG/KCDtk+RvbHDZB41j/SCgwyAPaMUti6IjbXjQ7Wapuk2fo7yRIJhj8FDf3mFeq+eVkVn2QuVB5WweprV6/ZT9iTx9A26Lb4ji5/Npij8yTLYwITlyuUWUyCvcsUXMW39jtGb02QzkvyRNkLBvqRGvLcLdVuxumMTMNPK+rBIrn1jv+7FjXtANL/yfAV0wohfDdKkJWXS6sHZQVH3RkmaG4CZibUeMEBLz9p1803JINCMNXrJTK8gRdyju2UyV3JH3PuusXVt8MrJCooNFDL0pcea++yv24kZ6fYrDYKZa9je3C5+3w2P9DEwOISSJNqCKRFD6YXog69KxL59u4K979pwlwDkpk6vRnwezpEQE7DTDnT2FncN5wVJ3uu/l7UYritcsF8tltB/lXb/eQMwKbPNsAfGtz7NBjbvPS0rlC9MGDUh23IZWmRGK89VCynXo6+pxmhPxD4KU/23RRReE3PSjV3K0cdQlqOPU1bT9EqRIzj06yTUiuDB9fe5KSQKFckI/j9bLhW2TBQS75AZPWaTblM0WA7Zgl/3C+Dj5BfnH2vUc9N7oNFSzOAo1+clAZQkU1vj/9L1MSmrB5FlZ+X6hWu+exEB47+GLN1ph18xMtuJ3ZomGC32hMMtHQLVlOcnm0evimDDMnG2QwGn/er2iNrnPrarPpljfF68ITUcF3L0IZFcOn8QyuJp/JsBGGMujYCemwhsOJCieleZpV9kLCdg4UuhAB3hbKeWAKlnJI6NGUcqOrdJTtKdVIc53ZIhe7EUKuZKwkyGuaEDEEwsFdhaYygkbz8Hk4wO08/6IwRZXXM93LgQazlaJ4RPkptaHvsWOgbRC4Lq5A8hLFzHU4M7pHuKEk8GqFQzuQa2QRQVYVh69k8EJ8+3zdwabCD8aR8EVfofEnWBTdO6208hRv4ITWV5F2ve4aoEbM54=
Variant 3
DifficultyLevel
534
Question
This table shows the fractions of the Year 7 students in some language courses.
Course |
Fraction of students |
Japanese |
251 |
French |
201 |
Spanish |
131 |
German |
51 |
Which of these courses has the least number of students?
Worked Solution
Smallest fraction = 251
∴ Least students are studying Japanese
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This table shows the fractions of the Year 7 students in some language courses.
>>| Course | Fraction of students |
|:-:|:-:|
| Japanese| $\dfrac{1}{25}$|
| French| $\dfrac{1}{20}$|
| Spanish| $\dfrac{1}{13}$|
| German| $\dfrac{1}{5}$|
Which of these courses has the least number of students?
|
workedSolution | Smallest fraction = $\dfrac{1}{25}$
$\therefore$ Least students are studying {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19Nat6faKwcLOGDCBWgsazmJZhgAt+LUlRpOKNf68KSCaTRKBZBM6FrOJM6PMcs43peYZQJXe8KjB99t8wIahXPvXMhQs2IwL70THBL5HWZ72Ye6JtbFBgUJHp3rHwwJQxNCD0IrLW8S2/rhnuiYsZYx5ZIm6ULjCkXw5LEGc3gt1U6xfk4F6zHN78Zovv+CtZw2DK5mhHg62VeUo5bE6l5Ac+fB0kAgtfTtj95IAQt+FISSPjwdyqdnqFQNuXkfTpdEb+tNG0IZGk0237fO5Z2qPhZXj7zZiuNp8gvzLiKe1Im43fYuDY0mVxFYRr1+vgzR78D3gN1hemqUODXRMCUOMkfZ+WYJBOAs4OsGM+AqBdBLCJ6hHRf7zsXzgXohhYVbOVfN5vuxXKDQfy3s6e0VhgWSUMXtyLwor+gXh7EwL862TmgWA+Q9CRFdFiwjslcKyVcYfJf/EFcBrV6DD4z36VKtUvsyHpiCAw9P17kEk/5sBZTwSdEOggoFcyI16WpXAAG/hbgmP3NK9n1QT+pzFnb4emTPkFxHOE/38LF70RZQjbku5YhoIlKTEwvCNO+lQXwM/M/FEad9RAtZ3aq7D88Wib8b9Oi2hNIjKHn5WpO/QoPRy8h/8l81JasdAekKrzimAazgDVC+Ixo3OMYvpiAgy8/yEiVWQtg+PUlD7fwN6HyDEeNlfiSaEsgSeW7irFdJGEnosds9W+5J+CRjfOguX2M1Z7IAoffepxqddptxpMxsivJR3MR0JzAOVn00ldPBfDRnCaTb1OoV+YD7dlfKE+2obQYXNdLrY7zl4nl9aH+eBsvim6iq2iIa5nOaSalRWlip1z/PJBILW719qYwBLOqci8fboPiS2xx4aSsUEQhjDpn3q2knrosbmMOUBIDIKCfkcbIJEOysDwwo1BNLd49R3hZt/ioHiZ7YcjhG3Op2FFij2yKjx1+bF9dl6x0tPO98pE7tkx+AFckcRxvTTAlzTqZUZH4pjSx2pDVXSmPeMZuoo3RJ/njdc0Qayg7CN+XRmhhyqB3Rni2Rrj/eAWLuHGgNgAaEHJeuzR9jTuolzzJbBNmZZH/TFxujDzgYjJaTOmdlvR3cIFk+5IQqC1n4/EofIiOF7xxs/0xqZRO8YNxUMlexDj++czUY1afqTEsa3RM7/+YVxuF8UWohNKJM1x5d8ELxSk/m8NQrAFmTZWR0SIcKc8ZNGRklEDKsBC7MuYsIL5Lh/hudrtnfJ+WF7ziO1ICRHnCz0EU1qUYNwgZn2k86IlofJqIt8BdwFNxUxvQa9tuwoewQTZgcYAS7s0SrZrjK7O/AIqIc4IhaP8ABPg+MUOQol0GgCo55BpOtOXO1fuVUWioS66DMYDjrfVEKAXlxFCehWelZc4xwSwNQFFT1RKKwX+u+FemGjRDUrnMA70ElS9SDCFBoqLwb/gy/p38o6VYFIpPbQN+KvvYAUgKe8nlA9IX0tDb0JLOsHoUVKLLEsFCBlxDl17gn1kY0Xx+l2whciH5krqnPmKflgWA3Oabs4YZneJgCtj4QBqT24Du2i8E3+UqbfOEi1u52UcfRe/c2X8YMKusSHTbQ5uuC55u7Fml+vqZoZ+YIxfrnMmO5SU5ytBKW2CknLGfpCzEozPWbyUddDfLpdTQEKxgacfjEWBZIT3uQcVQ2Gs7VmR6HOsEK+ob7rG5RgRqoROOE6Pjc/6DHd0E26YJeZ4EvIOBE5hMUhoO4sNIpmkDSIH3EOTVZN6QWW8dYLlyuJPEDr9sUK3VDw4OoMgRxwPVaBKQOq0f2F5TVEe78GgGf/gY+PbL4MAMj7q1gDvzEdJTiqsrzVbvV6/wD/iMWXC8ox66fKDUZHZ6xhuxtWGc289pugWlMzeb9AkYRHkdAGdKZTd84rb8uDF3GVsIuAyt3FSd7Y+HH3tVAyW/umPHLgfEFdoNjHnOuIA/j960tYlxBQvhuPvoMclLutMIC5/9NTFt2R+b8mJ7I73ytTKIdZGxjIYtOUbuTpcIalaKH2Ng6jBrM861hxggww81tiWMjbyxpjHZ/iccHA3+mICH4MctujgKLDzA1ys5B0tXuATUCT29d0bB7TZFk4LF6Ba76K1LtP7Mrm8WUhP4yieH/D50IQ1Xj2IApvjZDmkow/9cS4SdMDSW4uvP9QDoP37uq1AT4ZTSlq+expBhZ9SAEpVkOqJ4hVrriL96esRmPgLArDwvoKlYQXXZiaRyENEfvuvEpleI2+sFaFNEtH1EYs8qIzCIaziB17Ax3xjFnQz0PgSbB9A8Hod/bNjFT2VlrdPRj8wRPXWWjZNGiuzUKdqD7s9C20+QGPNYtBvx0hOmfnk28JutGKNMCh6CA4G+AhO9AfYl6yl+R8HLJB2HkEUD1yHdnSimLm38LWl7oE3FMSVKcQZ42N28JLMqJzMNEG9HfaY+VhzUk9FE+y6+jmQvTQlt1nGB4cg1NPmXvUAqZHxIBR+PAmfdlSfpc+O2Xo8jtVXURXhNYDnhkKwAzoHyLchXLT0VLJAtMH+UlaUacHtgN4fEkxynw2A6aK6IexIpxVcLXzvm5V3DxZO7iNvsUZHJm81/TpGsIouMF0l4JxmsBbopgEjko/DaibJjzYiSAUwCrCi0YLjR8GiFD/7kifpkPg79uZOaihlWdvjWhksEdVEyEeLF4fQO7K+z0kEC6q6PCx+OPPl2W/NJ/RDSynT/Z+M7rN8xcSaovmnmr78ZDruFhqprvSbwBj/T2kDQrqcy//WdnkBv4v5BilKFS6RPvYzdGV1uZRW9mMuMIbrXUXUaygxGpg4pot0GOUSC+DcSGxEloScRsK7qbP+jSVXcUKdaoTQr8lq2SrhY8mr3/HpYgn8DdxS7FiYBjgnzcHX70KaUuESo9MunAFf01Ta3Iq2xkTqSgf3jlkyIc8bG7+8c9Rnzlt1Cpry2eydz44LdtevoQtG47bxUVui/vnlaiEdBIkj9oFn2FxBxigDIpzF35IzRlVtZABfM2o02l7PFNx5SiS48bCkOLPF04Lt2c0K3DU5AS7jA9KdjS+yLdY1TqC9wWakogL3J8S7Gluv+Hdrqnejzh6SNoBzanIdcSeQIb8BjKwGk1RbXKTFgh6UHJ9oM8cLIhLMOaPCP6hNb7QrcPbDzHOlY5DMOsn3Fe/5FG8c2JfdBZvJX6jrWpWeVRyNmDZSAiI0fJAPbl4B/eZqGoVn3Z70zWQo0QqYRn4HNpmB7CUnsGHZRN6Te4ADni7w6tWikQ29g5Io8Xd6OXmoOh5dP7HG7nkqP/cKc6K0SjfGTiR6DH+agDavLgS6cTX+AioEsGumwY2u1XlTbAzqSmLZPByp+MbGzKa3M5qX1EJhfDIlxwSHMQEuEfoHiSRa8SXK5a3if9wr8ZsDw+E8hFbT0eg8mSQQywgi2XSl1SALBTAKYwegjPJnMdsJBalFt+xvxePFJ+uNcTLWNo96Fy/hhB45vam/XebPbQRzHdPVBeJtkTvLAWKH00VjaaB/WcqyvcPHKSOENAvpEM/14N0aCwQpzf4igfwSbyPLDksQxZgCqHS7E9Fa5yThH8SvkwyNMIgUV+MUr9a9U5gFXhEEaZTstK02YyVmw0Ub5RxbEWIrTBlpcx0293t0AYLjdyporjOVgHfliWTv0QzOSiMq+9EdRRTRAICVFrWwTBE61ToSo9UN27BpG/xAbJbGUl+iU4hZuab1LtaavSrXTHVHeq4UYN6Hp05/zSTy/kOwSAN7V2TJ791+ueuEca4N5ulggT23DvVRMr/XhCkSykttPnc1SSEaRbMRohZz7QN18tNHK4+usY1BBnWf5U1keDa/tgiN53g75//2FVaNPIFAO4QC3Er5OGuvGdyjb1gUDLphEplWSn15xRVjwySKGtn8bmZmwfcGc9vAvNm+mUovI4344Hi/jV+UTE8tJxc5FR5YX/AoNp3RbvHqZMST2n5no0sgVE90RNlAKTVcbaGtWTvDFRmsLo+8/yHIkSbclBXkZ1Bcs0wI5oIQUHaRdXKDlpE4ZD+ZWMijQFsTd6PLWKtjEsU8oroyQSMOvXa56vq27o+Qq0/tr9tAfhXHMwkBAmGDpiHOEvqhkFjcTdrHcNwt2+MR4YKyKzMuGWDYcRk2kztKeXaD0j6N0n+rUuiiVKyzIpxRvWXuehVJxJEqTWOEflqCamdaDTfDybveZkvT7woNgWFH1wPtTti7R8LBDJKc4K6EUmQggSVNSK08QZlZVqiR7NKI3br2RygEUghMsQMEygyhKWawtTKmmnXpHftoCxChzEPeypxCSS0oPthIsg+Qf2WBO1V7Mhu50CTx3WSG14T1ArAspeJLgBY0j/BIiwL1QPBEUe8DGuBOegDQFEkYSgxwl/PhWKZbRJZyf70Mg84j/J347tNbEZcZ2+e8pATYmd8Nhw3slRn1HjVznPRCfnqUYmQ84BZug53NG0/0TnVe592dhf3i5uav8JxtUZ7c5X5wY7PZLjyze+us7hsMamcP1agVYyZIbU5e2kPFEkF7E8kIDnvkn2VP6Ya+oB/43/s73MuqzmOi2E2SuYKYcS6O0ooSjnFbhUZy9df1z46KorXOTBRlW0Vsh3UenDpDwSutkJAkCp2BhmOZetQKPYfQClUBqIrBkzwT6BnApIEOnkEaBI1SEUnwE1w5Cungg52ECWW/qL1NyMRG+3HMWwuOQwUDE5GSywWBb0Jx/dDNGQwJk7MWUChSPzi4JXwvqQpQq19teMOP1xcuZ58PINGwJY0yep9p58dv+fBj89dohz3rkvNj3rT1zMJIQpbeOE4t67GVgxHeSIEOfPgQWtm1P9PkbfTQXH5hIH9f0C75sASt/e9Xjnv9/PU7pSfgDgIEELJiq0RcP5u1irmLasP0594KswYE/WcpOxS7gXSkig1H2g999inNWwABICeZLfOkFj4J0xN4soyBDQx9Xssy5W7TtJObkgG+LNWcNzS8BxgBocOHvdMSvVcPG+eHZTgVcqOXDLwGIXcrNegPsGwvyZccrJ1KhagwdKQE9qX1nHXRWNzAARohMyADNaiU428DquCRKr1KtWclcAJ7DIg2DGLoZTv3KrnUMeNSRNKnqgNWdNAqwIhQJcSCKJG53bsCdK5+4yDsK5By4WrPq4cV3sfzs5bs+AcPJvcqWgK2sa2ocvWau3IRIO82FBHq98W9VV+ak4ZJfm0vuRWH8c5EYoGF7aHFYd/bLH77Y436d/cJRQIu0RL4O1FRJU28hwuuqCW7wU3H50wMBnO1mGgsKLZEYof3k1MSUBbPiNjyDNlF8Xfg0GA2Mh6itSf3ry58NiAnvuFn8AsgbDaDLX4T5mBPM0yyIylBoxChJ0prx0Zgifh2UV+qTp/hXYJPZ2ANNAwVVBG0iXWnQ4pZj983vHyLyNk1nwpv1iQygDSHXUPUAwmJ+4mOn8VFAdDKf4Js0Flvqe9hyBM9T1PEbtmrmwzsaQ3Ja9ktY5VVnVUgWhu1YNZI1tFc2hpV4cw9s7k83ho9Q/HS5x39P5FeiX2ggEFoli1mwon0f9OAdfOOhhHl1FAEfksQPrhgc8tve5xds+R+W3ahFprK+7UlzYIBSdjI0OTN3q9A5TE1d2Fv9w5/z4TxWt1J4C6sVCq3bDgnG+OMPI1pX7qQF+Q76y8gwwczSvf+jHpcdFPLF5qkQKYIn9+saBVY8xNaLIkP+aIOr4gLboR/ShlFnGlJZMXcONkVZ3iqjuvrpcTqSQyKrPPA1BCT5xPKKl60dAooMp3vCrAAWanQudqgs/S+fvQvbYF11DY+/cLhRmlHE/Kn49Fesd097LkTLsmE0Qh4CbZj/zNkGKyMArMMEpIb8mKtnmjCYtS7Nr8bc5D9ZKZ1T2K98ZrPNy/tv6/n+74IvqoUbzsDB13vzGcADxpTi9GDkyZ5IA7xPClNWohjsDTZtr2UIToORbKx8Oq+s7X2FjjUl1w6HOIVKRwxhPAHKshdPqU5SuVW3V7Au2OxSF7SwWZSFZUHQK3LOeOKArVwscWCRIYzSmlQoZNUADkJz+SYkBfwqkBdf+gkLCv1NvKqATlu6FMBgTlDFx3Zz5wRGyDR3ognBkdxDCQD3yq8U4Rr3EYstYJWAySmaDlbLvrXLgxKxmafRrVgSS9jWFFY/DJ89EB0JCalo9KBttLMk0PJwt8O98CQQDdAI3C0yS+SvUUqkbURCiJIwq96MTLvj2PKUfPGjnBOCvKhnaCqkdvj9C/TlKMp9ej8kPJ7OV3EQ5zNxxD8BRDjEXKeqkPq3ZAbGodrCcxqI+HB2d4jSorO6YOUWm4EkZTaDEkZKlUxgnJeQ7FM0svi4poFM7yoIXyl3ZSRu8qVYumDDaJ6Q4DUjxdD6Jpywl6Gz38uU1mJfFV0byaOovRIP1aHe1/1WfTkF6e2XIfKw3cpaQ7dNSd/QpCAQ3CKX+bKBPOhEo6NNq2CnAl9k0Wv011gJfJr8CnIG/l1sQPyZew3Dl1EpLWxHnpPak+TgOPFSyfhrNodKavOcG6hd6wDvCCE5o6cjRRmKxbDDspEIhe+sTSFTHhfNre5DQiT5MwHViJFS5W6CD1wugzhs7RBruaoWC6BjQRNA4K9SRWXTmqrH/h8jirWmVj9di0udH0XebGzb1lL4d/bccbMl6UXbxwHI0AZx9IgXpDgP+UDjDDZQLPbTVza9przIV4OI4UXAAWP5IDEH1vN4hr17ixcoIXjLV5E39AZYpOGCj9PHvXy/YFeb2wv0Jhqvu2H4/V5CZsWhWLxOlzC98edTAvpnjl1nABTK77/QwrnPISkCx+uJxmUg8nixHL37RQz9goEOuEyFqqlwC0utEImrlhOfltie7mqWF2nuw7ULdsw24pAjMWlNjLkaLkrM1MRHaYDmSXCkecb7A3hIqXpnF0m0B1w/fnhg2qziOuk0Zs/wBeSTKJLqjJeO9fCbaFAP7WnsU3yhxSiTnSaLipZvY+ywmsJfpixSfC331fuSDW1nusJGiEmME5Z359lkY1EG51iDYXbrq3JviWF0eAm4d+KCxdGD3WDem9jIY4LOApmF8w0ZYCxFR2sBW+j1tkgBOtJKFDFbladKCMUKEWGT6IYYmyd7Sjzj8sMHVFHLHom7nk38tRJ1baH6H7WI++MOmzCtTFyk1gIlX/6FFheg1Jk8ezM4jfKgu7cwh+i9WiROcF+XPKfGkXzoMWTHwwxoXAU9CclOCai7/gNpzdN5Bf26nemG+eKDx+8MaDRuT5GgCY369svNH2v/+2waLZ42GeNGUVu4FPtfnpbVO13PgwEHsWMZOSraUCtj4jTeakA/SHTvK4R3IIfAJLPzcgqzcHrmDmJ/GfnxCSV5+Dq4lcFtNddlzLa0pJb3U/ycFkPm6p8A6ZQRTnm7CWhE1OLGGc58mG3J30N7F/mOZ+BnTKRmB5YvnfU31sphNXE/tcd/f5jYbwo5LrUhEZB7wTg/ZQBf9L0E5IHQcvC6kLYLDtALiUPXK7cKVgfAJrIZJErf7yRRmCUz1AtR/SIObMUA8y/Hqp+wgbFqm+ORjlbjuQrA5pt8i1Z7mnnFhMPtJZH3be+JlU9BwIq/7rXF8gvOyOBbqUe/Lj596i/TSBnoXYO6CEsQAWCEBtMKR86Wr8IZbLxWqjGJ5Eh+XHruqZ8hiX+a1OLZt6yxGk4vJ0lvfoyYQw9sop9Nyq+g1zWnZRDjViu6WN2lqIfjk7mBa7HkpkeI1W5mzhaRxAitWoFEymDFZFi9TEUcEbHYGU1RRgFNdgkcdO9jlHTA5xz6zv0UFfv7GxNN7OCWz2gtVIl1xEHgh9PrvKRyK/cB4eqvN6KwWE3GorcTfoWwLVmxRs6OseuaNcqnXLw580rzRcbAEP16+CUe0kIhuKZGtt76yvZltl7N7gCWVJz5cjdHUlGWzoDRePuS+YQJc3V/+Y1zW02A48Vearc0n1EP9nOxc3EcERlTUTQPeRgruTV3fvVay097M75HT1UCmRhDH4PbmjuRkyzI+yaK8gHOmXvcTu1LB2clI0joAda908GhloTkKc71ByHhEXCc0dtq9JU7/BFSVO4Mayx6yeWzxh1bDCEtsvHC4QAGUH5Y1h+1xGbKelqe9qIBxdo0r2sgTz+eK8ALgx5+LSHaOWGPzXH626w+4Kr/3RlCzcO2X4P63QqZ8ZEumh/rhbVnkBVugz7TZRWHQRJ4KiQ5otb3jt0gm5t488mFqXVTgRqyVpIooiZfyJ0O1tOmB2MvNt0Up1K1jXiXM480Bc2079TkYmoIsEg5T1vlFSzmmmAW12kZgYDZcLN6uop+dzxhrYj9QDNBnySXqgl1J+/4L/oSC2GWfBxriNxST2bGZMrlYJvyZHLJv+pjrAyMvod80kKKWf+oPOGjqy7sttTaA8VNgSlxzjhIJfTFqsHuP4VcImk5oibi6AzlAbVO9F3SJq4XvStyMRcVMcHjTGPykScKTxjr7XSHbiypr8p7n3K1TeLr7vKVSeAgQ9bENeEIaCJ2+RfBa3XVx95GpA1ZcDSxWh55sDYL1B4txxcDYUcWGtRqw3E727O3hp4oTvDlBL9LdgfK28Sr15QIhltTDXcCwFj5+1oUaLLQm9/7S+44RhOLpUAuhky7NXB7vYk7YFN6KvjY4MYDA5+KWSgvWi9fI+T0O55UOojcg/ki6T8QhhTtBXyP7d5RJbgMt6bKBeBZSxdL+h4HcDMSXCwlLFDCg8s0NjLAJkr542SAKYvDQwRuZ1Vts+XLDVcyNObQp+qD2CCxter82/uhdyW325DJ5geJYehFamb5ZWsh+DFv6qdiUV8kMIX4otwG89C1Bz8M0ARPf4e/dN7UFQ/mz1K2q77B/grzWjlClayYXmu3LhvRmHW1eGt6y9apManKRyoSfzL1+lKJ1CiG5LYjhT7Qh39750VGcJdOFp/k4AQnwHSvf3yCm0u0VSqCOcIgw40ZwBJuOKY8zsrDhLtIUsHPCiTyhB7flse5d1c3a+PAAKgq0mxc6HBgw05JpE85NsDT8mxdQvHBOnqxXq/qR3mr0wkdLQVFtAdeCbPlkUEGOea2tdNZe+1KEf4XvJnhm7IgczW2PodsrnZo001VKKsccIFeUXS2X8iJUgGRy8CuBPmxJkhLxDMzbX/BWM/buUcSSkB6mXULajiOB7Amt+wBPxkB6831t1l/w66kx7fWR3QSMI9SsLGSoLeGF/cqa6DjnqffpP8a0n63LZHbq4yXgTYxyvt8+DqRyuPE74npduH1bdAP/nfVvuNSVY66eaEBQR1wfkDCBM5ycNS21j7Z855zLJjZ1BA8mFmtFAK3QG4fQnhbbuKy3UMwPcz+9TALeHLoHyg0h6QdNhqAZqdH/InFCZmK2JQ7eSid6uV+R016099P3MLdBEX1triJFt7YIV6yvSHbp8qAt4p90Z5anVR3ydWV9BD6EyYWYZKUIX7HZwqvnVbKnMGZphY5cX2AchxRRg7iHP802dbUlhxIpOClpqnhVSNJnuQa0UXo1dGV0Tz0QFfsgVYH9hL/8ILZyYxQ8Bu+qEvY0pSK3Bz8+HJDFYQT500VHzkFZ0f5sGKdpfVopjQZ/bddbDSw5Qe6N15f7+/51z2epb1BKIyug0IB+SNgrKXXoIg8wkEnoF0wtVD+HZzbJK6+NMJ039FcjIP9aQjrG73pVXOeeOlAmThgJpTo1xviTworbBicr0MicwJ0kOxHVG9uzt8nny/DyCB/5zN2etKwRw5nyWfj+t9SxvcdzcWXEV+ht2xEgBeWxDhnWXWByXSa981hJPWZUWUAz2jDmt3x4eNSgfw7ZM4mJgYgGvRkmuGSyAoFrvLZXdP/lQ+H8qU8kfSlKKJixZuj+oiaTMTbL67zAPheSItBEYQEeu1x/CLBQZuL6K+u9oBP3ABUKYzejjmSUhyM5kGS8RZbGrvL+0wp9tLTqKeMpvFqqGQmzMoHZKpt/piUl62SkqyYkXri27JsjCZth8FGjQ1tB5gL4U1OeUz7/rlk4eLJaWNS/ebYEOjsk2y7YZKw5C/Mf1/THFPoqaUM1E4xV3Qq379jqGob6zuMbaRj9e+frE4Wi+ryY8ectKcpQy/4B1keXSdKCO4Ip5Hp1p+xePMBHJWlgpGmwYNaMhkCWGVM5E4cnZnRC9gC3uv0h/X+SIv5jbHVkP7HKl5Uk6mw281jqNSEZFnzW3jP4h/aRJMtXY5xgRGxQVkyrh0oo+8z0ccegLLumjYB/lSl3ZoI4xtKND+/BWIZiiAc2p4AMyxLx+i1W5MZMpXISNqCwxmc4H5GNshPY3kkp1YbzX5w2y0KpRYeIcl9mpSwAUarlSqMqAmFm1gWRcefSQAeieXHBEaclK089TcOuLNEXeO4pbvHqJ9EiC7SZwhDAqNrvnuMTMS6K6BozIuUOLZ3y3sZQ2dhwmGnPKK5nH2JrUlQ8HvOI+0qamnccg2xwtZrJvPBBC6I0dodadV+DpLBAlvicEMrNb4QiBicvl+MKGii2RxpZNfTMG/kzcgnhqKNEfczEIUBXWmAzS0A6ZWwsyK1cbhq/o60AAub+mwFO3knUtJb3+3LXCPLiXxQ1dGX/+TQw/BVxQAvclDoUoJzPiTvwJ4pV9J9UGtQ/Rvv8gTd+OHeJyAA9VURXVHtLcRqIVmQvMlVkIGwsHWsY/EJowLBuysdebNVP0BmD4y3JfsYAtduKmuYubsolVWPIZxm6uVBr5sigSfmnZdID9JHdeb6eHFM7z3b0S9oAzItDPHDxzugiCrTcz6TtgK8vmbAHrvDSme817qLEbhJ9Ec9efrK47O7A6bGeTb8UDnGmT6BAHuGWiUGZIsVKxIM8zv+d8N3HvtSrh1gKuBWL8coktv8YP1Kp1jR4LO48AgITMOsOLEf1yk6D6bA2Q27Pp7eTr9T7Qo1DUkzRl3Zzt7jiIvMe8Qq9+63yuxUefQYLlkCgW2KUZTk3Is1TciouJhhU1P/jooO3t+/fNL95Pr/6ymVKT3NfUmdUayQCMGYbF2NISFvepbX6Tt9RE6dBRxAckup8oDh6kAWVMyAJU4RQEw5ME5epirL8FEKFQxvMe4DbWB5Y9GAIC9WZcCY1GAT7Y+zXKghVjArFGQljq3vJDdnsqsf9Qbzt7O3Ic3Edg73EAALfrYeBHa1Tsh24bVcpWW+yV09AmQmR6OzB6BsjXFX5rB4zzzlIN7a5UYipO+qPxBncxi1wtz7+n6u9InIQx2aHRozSAICakHKG+slJ9pRDSxa3pZJnl/GdwRoQ2A8h91n/wwECngtUBDCReepTa6SPE1Pf61P+6QxKq57vQNRHn42ehhVNSQOMwjg7fhfSOhYmXEi9ho8SXz9IjZ/nCeRhx205lRL7PK2FtgfTJ5VMyBfK0ZwNjH0Of0sQYZVBhrTOAWIXtRbq3MdVn+/nKoUvI2Giz+KlxI+AUxCqJnzaUrXFdWCB/2ljsAfD4c2yEVY/8itHUcVTxFWj64uMuCY7u438Ai6W06bv0gEfqxKZ0Q4uZGpXOe5Fi+L/GdpMekPdcPlIfR0m7Snh/fvUCRS8b42hQrPRXHLokgPX8apgnl3KUN4azaybodoFouz2WqJLnjOoimQlO/YvEBhSE05H/YFVJl4g+ekSgo3JhSRW/NrYZirwub+uDWTzH16AKX5L+YCjdmww+aQDzDhYDouPlkGtz2psqfs4P+Xt4gjt/1mXuescbw0qeTkQ0WPsZhBZ/JBA9uzdn7uSSD+wEi4EBlHJewe6Os6TlXAYY2v0bZGkme5U/e+BMFK63jDxUTohD1t9YeF/7jvWkKwRioR9RYgDulNziqeQbhfasSuHTpW8h+qIS5/1oSt8/yc+uzTYLqgIsbaqG0ITuKDmLMunHKZqGEpBM+SDa091sbhGK4Ds3bMkvHazYQppY/86cQ6p6lttM6aeDMoJcRCsaaejAoOAAEks3NsjtY9+QjoXvI22niqToSmt/uQFRy/lMhDXXUA2Avyx7LgoCVeZf9R62m7YmY+Nnk6rjdlG7eK+b3PJLfkYU338Uk1aaUnGF6u04k4OGhIh43Q8SS/Toq/K2ZQT4z6slEdMsRa/dpE14AHZgEQGUa4TaQ4bxzKLWdQQTkgxGxAgBnH5Yd36qWfau0GG5qVzU96/iGpFFk22WoYY3kNwoVrPc9GSvwbHldjHszmJmM9McABrC18XMcTBjXSFkjHojaXnLSkjvkyw0Uxmy+k9fu0xVSRyjx2yXYxAmKpgeIm4exOHNEGsGYllkl1fOU5Jcvu0w7nyt10ROHFxd+2uZszT7jlm75aLVWshAZVbncLEsMlediPCcxMxKdCcAlJyDbWbqJRieFRncLtfQNWk55roaaoyLrGqJhfiWa+2m0SfBcC7pRUVRITJUGiazxCvoJisNPz5MUqxt8V70xShE2YOyW2r90Zic6pL4sMP28lbAjGd27s/TXEjJTpjfp6r8IVwScv1+PoDf/IkrMAhW/uwS7LSCHHljjE
Variant 4
DifficultyLevel
536
Question
This table shows the fractions of a company's total employees in some departments.
Course |
Fraction of employees |
Accounting |
131 |
Health and Safety |
141 |
Sales |
41 |
Management |
51 |
Which of these departments has the least number of employees?
Worked Solution
Smallest fraction = 141
∴ Least employees are in Health and Safety
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This table shows the fractions of a company's total employees in some departments.
>>| Course | Fraction of employees|
|:-:|:-:|
| Accounting| $\dfrac{1}{13}$|
| Health and Safety| $\dfrac{1}{14}$|
| Sales| $\dfrac{1}{4}$|
| Management| $\dfrac{1}{5}$|
Which of these departments has the least number of employees?
|
workedSolution | Smallest fraction = $\dfrac{1}{14}$
$\therefore$ Least employees are in {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19hvWQ65PlHQ+EnrTfAyDqlA/m28ku9Fm29nKoLhv8PtsZ6rGiODuhFMA1l3m0HhyxxSpiGzGmER2oID1X3D0a5ItdFgwqvrD9E0PkPHdB8/I5uQ/j+BL442TIDTHSengL1E7HnjCgTFQB9pjd7jrpvxMl/UAFcsiH2rEscWmeTbQT7Tz3qtgT+c6Kc9nHXR8u2pNfoTj3yGdAzS+6DR4w+87FsPPHaBxIisz+Zvq9vZ5cZCtC1vurTY+M3I7sStAwlSmXADmFj8AqqDZLetWK76cMJh2TekcIpRkEaO/2dQH+8sW4N7ZyWbqIohLpPeY0Uxt3LqFplaAPi80nNks4m4Z89aLebHgz8Qhm+Ic9UKBjqh+xM8rEciZ5YLE6masR6C//rNWh5jYV/HJFM5SnjRythFG0cqQTI/LMLhf0444DjVD7SL+ACAFMXytn3mI7jl+Jxffrt6rA+L0RWvdf1hnnLKxCvxK4H+IZYLsH02lO/5dECmvj5a44GR9n+O332xdD2VYQIQoXFzD5DgUqU8xPoJgHhym+coEoAY2EY7JLDTkIklmE8T3Sp4Wdnu5AuC0E0eQWYOXPHAsRRb7e33DOgmQvYyIirVJaU9n7N6uIXbjqSmCRAIzUJXpzxsyBbzPMwtYNP8moIwL6Sn/MfCYI44oImAFnLijoEc0HZShwhpdGmfIQdo4XsvaJ+o0AOR0Vdw7BwMIh5Blh80/CLS9TtMEindlG9RwNhoGf2H34VlwLW4YsHe6RuyqjqQzqfBzI3sbKMv3QUVBtFDlIUD8dmJS2YQf5AalYU2jpLdoJQTpV3paGEnuc9zUojch8jXh8+19a/Z8R1M9TQ5N2coXBYQioJJAgLy4JsPjwZVVjlPDjYZNr3AUxju0rzQ2gULuqsFI79P29vnmTROjnoxkHlQ00EYQEZPr+ZwY84Qx5w0+zglqXr3U8Ho8HR1YuwHD9JPyX9tPbe8rLDba1Hay5IhLAVbWTbqF1kMdqtOCNnDR91IyHdZgkPeOZ2iup2eDjp5XZoBzKQOBa5G4QfdlBH3V397Oga7ry4G60cehFMJlGdIjcnkLBZk9m/TkfFX8MNIUq1/tO3mfZXpAyG+7800buZzDDkSxNLsKC2RUv+Y/+F1W27pL6hxwcwPHixMLDTII0JGqL2gvEdZ+4QPmMOh84PiM3Z4K/qZExvTVC6QuH2l1MmHh2YPTE8K16DzjkG92tZxIH8QEZiqF6G/J+6gJzLF0QqofDfzhW68UD8NFMRg1yKqcXfrJUO8QIDSYN0v5DRR3aZh9AOPD86N5RipeyDolOEHYC8OVJOTTsHoqEGugHreiI1n/zednGLPqVDobJezt3Rz2h4/GfzANV/hDzdp2jvzhBnWwFjmgimqV3f77Fd4gS8ElHr4gYrhAq4kAixsGVXXkvMN+i+mYiVsLJjWtstPwWpxKODHlHp22NJBvLOlLyihCKOiqmVDVVAG0nJwvN1eW77q6LY+Aeydt5pjbsYpsGvZawRPpV/NAld+voUv9yMMxV76+Ym1Wi9Bxnw8tJfxr7t696Izs3qnZLY32N+H3htOjoUiCqoDMEXmXT1p2VBVWvhDkVihe+SRLmCt/faDGGVh8Y0F1MzLBxj3dMLLINRR1FuYgDXIgEn9bYF8evE418O4eMxXYW9WfieOpI8AGXvxgG3oIlmOEgk//D/JZ3n5XC0nVOEjPKnC6drk7KnAFbHMUOlh4WYGJKdlUk++r+ajjOZpWB/8ftWupp3wt4gUMVK2U+vzpfZydmVuICvzb65zz4gUQaKAQJlbiTwbDysyrvWSHWOCX6w0JBJA0j14DH6mBT88ACAy54wG78br+INIR9/+4UYQWB2k1VTiE94l0uj8gz+qVSqKAm3x7UeLLD+EP4/RTwSPMvE4iUeKKBAl5cW+N/bchdDY3t1rPV1YGkWKe0EPqICl2FiUfgO/rSdTdi6kC/lEVA6yItHuPvULybMuX2wYuB67ynLtcJ0K1o75CLD4D2tCyEOCcLKVf5OY2/4PaIz226t7kUN3xVaZCmUXMhAuuWXQf/TB/hX1C2/PHp03kZ5v8LQnw0urZ5EbImi7KodNEl3MbjKP+5tnZqvtbJt+tfBoTda6n+mipDeMDd4xoDYh5EhI7hkVTbDcHKJK1w811+rXIp/yFSfTvfMiQFktV/FW3eCamYT4zf6bARMvB2oJiRyDV7xahnZhFqEaufODqfJzfXcNTi3RM0/7mrTYylEnY9R2US9/8D9ePslCw4QbrByOIO71Z12b852vh5GxgYlBkzegmgZ+af+B0FamOC7Sv+TcFSiheOADKNhKQzIs6GXbi7SLu/lGx4B0JboQ/cT5jYVNRjdWDYmC+b4oByNQErWarM+BDQ6PndOAyEDffBgMXMtC7kIctiHpApm/2c/5OfwWpXoAA1NBWlVnPunGLoCpXx2QqK5GFzIQpRRS6DlJlLP62nhzKZof0/SWyJL11eaKTJ5xptCzhHVypH4/15I3mjpXJb7EQQyRn2zGWYysZjMUtSOfYBbMKJYBOTbbWX59O0uZDtpH3vNR+HhvCWPAHQWK/xlz7MT1mJ299NYbkfmNIgWHYVuydYX/gg+vRbpGsMJMOI8YWwLQRJp8OsMC/OowituSPjq1ePuMGtTqfdeDwFCmGQ5LP9ftK2ECsRw9mVn7nardp6CqWr5KVUqPBMQoIZ4Tu94DGVw+tblFaUNY7sz5PGDOzHaOEDyVT3qfwGjdAVJ/ThoOv/jnP6NwgSghzycwAVwdZdniA32wGX29ogzPwe63PyfjJ6B+fQfxvqd5yHYfYsWKt9q49a7VlX3FBGuo59LJJpi71FKbuXEkQx4DZDJQRabCT8t3yEf8hH0yz+SjMzkhdFPe73d1j7k0RjIiCBPFqOgzVCqsWVOT5tf6YqN1Uy0PG9i2FIp2L3bWY7syN7U2z5wFhjdX42nRgOksF6fGlNBkmm56Z8IJpYMZnB66KPT4lc/Sxmit3KNdTekGNy/RP01tiUTvg0QwHRkgCuE9u+qAobH4tywt9sRDbUbSIFRrOqm1SEAMvJ1cGkcxV9GVwyf8LExNX7Nx0TMlxc3FvXulaHXwHOI6Orsr19qQUrftPHtLuPdOxq3IDkOCL41Q2Fux5yM8/CluzyqSdHBLaPshEv8bSncmhNNrrrvmID0JAoSToVPHBe0uT9jboS/ByHcE7mROW8hrZkg3tC352FFRnzpVjT7YhEnzQnblSM96JBOcewxDFqK4ppNU9ZM65Djm33z/RczZQigADEZl73rLA7IqcljI3ltkT8Fnzr/iqkNyKvO3uBiyHkt+2DNd0a8QecmbaXG3WIbrNZ4NFd6HqLaDjm18acJmqwAF97o+BQXsI+iMN6Hp9wlat9e6K7rgJBE86W2NI2FyyHjfszBgfpH3bFAC9qwqfs0kSQr5THcTD0jxUjLG0MSZ+J0YvP8XshUyShFrzkn+wp0b/wXnZEjpSp21GZiKBsq29IXqcOvlLcwuBNP8CSVRz48/0jOrVjr8NzP12XCjSDcqnMJngXno4YzcwKX1d/UdCmsI5tD0oVGHBLNcMb0/2yWUn/AVw0FV4QHeKYX+q5xefGL7qGYGnxqddjqNR5Mw1cLuneGnSqp/XGYouBp3ubq173OURj/RsMfCLUuH9dWD/fzigY4eGskl8Y3DFFX4PsBBIY7DgA7zc0uErjfCp6ov6LYQZOZxhSTg1aEVFCj2zNK7SMOTK8FnRPHq5WPjKUFzYk8fvFxvEBaVDYCNaPJ+nVbkFWfQDg51EpY1A8e/ayHnw1osKAm6PrrFhJCCRj/0xXvkXaW+GbAuYqE8tywVnYGg5hSgA3JtA0U3eGUy3QsFRvHm8sY2JTJohY2+y6pKDboGNQBmwjjXDeLbUF2Ju+NcYuAGyw2DXfpriGiHJadYubcKN5JawPQRtsjkYG7kiGAl0vjOQnvERNVzkpJ+2KLa2YRGHsVXCLoYfJGFyc3ByinZqdkvo/jaDjQAn2fzGP6ZLD+L/xk2aEh4TPcUbRlL+wr8PV196LoaCdzw1hvsCW0CLnvY1OaJqn9zPh6OsMYbAFAkq3stJ9zWm6eXa2tfdp18sE4EGlpYcfr7rfnlv7bD6zukSoGocIZvAnXQPTBsLkha11A2QqFFGEcvaiFaQ+7pYqvj8Lm6i4OCgqlU/HdSRcC5ScMts6K/Ly4Ajru95hD7NLIInEA14K1VYUO41W+TU7y0ji5DSccNvdmUBbwAAndr+ZnyhRVXfgcSVZ3tsHjkwV7woeTEN65wd0T5nOPFaTrqO4hCSTb7ICU4RyovGL01pjXyqaaAgz8ajX/wx4I5NY+OKy9lFPTlUuvzGtO0Oe1+35JIO2DmtovkAh38ZylKVG2Dxlb1uK8JWxveo7101rl0Wk1oT/bmJ/yXyeimNjcPRV3F++VX1FRe7HXNM77RBdKUZAAtlubjvhpvQ0GL4hVq7Yah6TG0Wk7O/w2+e83LBkX782YBls60W3NJk4AX69lwiiLXWmayRD2/JFJVJr3GKYpCQmLFxN8R4s8wUV+rXByTTsNLmnPgp3SPIl5HLBT9znwS0ryOdItttSZPOM1h4lN9aOrsyZxoZdVFX3NDsgjzGyYl5v4U8fQgHAf82veHKysGZ15/lsMkmGvv+Sxp2EAmphhVJYzLf4K/0Z1ivx10cNBFT5uevE6WKFWGhSZCNtP2tq9l9kClwughpCOaHi78lj54yLm2hFTa8UeBo/Dyy7qaxRIqgut9e4zoBp/S9ANz9e8Ndwg7SEMztsM3m0PUNGyYB+pSJPT2RdtYQ6PVvjmeoNlyzEsahrzQ9WW+3jbaTrXxB73BSkj4vIDBVLSK8jROoioK/gYSPbcaNKWy9lh6aagDeCCb0z1wHSikM0B+9zCBAElEKOCROZ1eCV8avof7FagSCexrQfRVpAJ+xdkFVGpCMYC3WnsP9tclRtwgSKHrhbSS5yAjOd/Q1HrAwUWXrlfn5ndNZlLlwWgg508q3uj/IfUMNejkQRStxCOIrzewotxdd8AP6TXtfIeJJt8wQ0gWgInrDADm5Kbm1ccePxTPkXxUrJdvvZL39027T0A715c5zKMapsxK4YVE4PwSSZLjOf41eSBvr4jdLNXp7NgtfKyBw7nt/jZZoUG4C4BPUuZ1232iaeAKiKoFudZe8kIofeGp+sOb44NIC/Nddxy9PRHfJgJvhW1QWQTFxQ5G/JIU/1DPxcWoSiXZvZWTx6KTfwjHBo+rORqt0oMh7oBknC6MyAl6oUk5+TXRRjk0osJ/PI3i1SXRD0+aAr3c5ah7UvG1efbD5QVhmEVaAHZ36QmRXuwnE6XalmFDBgWk+iHiChI9nRxVk7tIasFPQwWg+RlVpxbfjDNtijAfEaqIqjj3JpkFNZT5pWiP7qBtUm4/QaKtD9Fhh1PlILvwFlEYKg6hHmfGjpQC17bFgHAEBV0jeFCruBAeNf30P1f9JEqrvDcFSMP3KjnCOMtvtnZGyM2Zr5tUiOlIEG8+x63vSE+nHWbQbARXV4CC21WCeuBjdWDo0Tv4TWKH5NCrGO7K/zNXn3Pytm67hGJ9o7Ng/wtqr6PMrupzWpC0lqRuD2iSEq8djWT1jcvAtbRtDhrGhHYSwfgl72TR+C6jwguRgJWpisBfOJLxjllpy2DCiutBzI4O1kOVudEJMqYQBoeAk6SQ8zczh+7THZMb84z4T4HFH+MJQ3yoySC0CDmqvR7kEl81FxdW1dkGFkGFXCQUcyiwwnznAdZ2r3h5deciVnExZJX7LTvGqPqTwQgecOqpxT1VQH5OkLoWQYjYYTsLB2zJ/qy30BssGaTVVAB5dBDStO8x6U6E7mxheGtQyyGhpapUyZVyHvzbiBhWsaC1kJhEc5uREwqiPNI4LVP33uoCOOJKOmJtwc9B46P28EI0myW1v5nwGyBtUv5yY5TUhVgkoWJsFg+c7bUeW/GZPwZXqV1iq7bWMRTQpFkr8GQoLlGDX1d5tZcjY3sc4UDT5TBkqH8AJB/VYKDVYBgiiqORLbc4/Dw4avnHPQYTOZcQ6QqXVeZK9woPEUuc2HEPUDW4lDzLTReV0XcQ2sHv+gqJ+S7xqCFflDqUn6mv1I3/VZnZ3+vqxpGnWhvsSh2viKDkflkTEYt1nklunfBVwCgiiL8hM6P76YayG2rCkpBL08b/10ABBiuk6cemUswX+luEkW9ahCAti4BSYh4xDuxQggOKvHwptWXnWO1S0/X0Ga7q38OTKhYZY7QFGPwZ9odzX7BOZMc7ZWjS8ryacIe8FmgjEdK3MGSlUh03G/bk1vtBEWV6a1KdrQQB4ed6blRrda+JHxb+NjMYicmW9PXEaeAGQc+/nDXxVZEnKVkN8Gt7Bvpb/KvfCnIH8y928UkrZ+4BJHsMiugvtaraQ+EJBxjiW/CknT9DbS+FZ4tDB7PJVBorMHxeQLuPGZL9H/40c7b6fDiqynhi3FsLNHeJg/SR2Z+j0AnTGepaKYXK8mhvIWY6e9tn0IAOepH4hQdBH8eGUYZaTkc80+sUoRFgKojrMlRjiSFB7gNnQcyXlDJ62eH/LRakCmezEdsCjZ3CPQ4ZxtxFIP4eejSJGi6rd4EQmfDXoWP/hHGL/pz0zFheTiOI77TDkZMPgP/+yZQNxVqh5o0mbaKyicCymiK5libWHkZbNX63Wz1d6gRcgRg3SHhCxaI7j5X2GXZQGgnM1sgZqslHDy1CUia5hZqYqAfz6CliMWMXjglVczk+3UK3vRnA9YVt4QvzT1NPftXVF46RHxJ1OxdPkdCR9WMMZLuRotIN1M5hnWSHUaWr3RV8z+e2pmcC//4gCIlymRdmDcsyjFbgYHGMYi+ZNJrI3FyBhpYYqGHkYrFAtrjwXP7lVWgb/5rfoOaGcicNszgC4nBdWKa1ZbSEtFRAs2smymkeYyyLcZDqDPArsknH2sgJzWBDf+ccUChZWK8DS/VoSmpcHy+D9bQU3mCj6LXqv3/YjZ73OUfWeFMd356Jq7QPbXVBBRsuT28YRQ/T/qwdvEi9hXghNGS39ApniIgY3K9hGhrLbOo0jCaaYxbgd/4sAciSeA5g37wwC8ILnPgDHMNnlCGUlM+RixZ8dBFFPgFbeVX+vqXXgc0fWqDaq521ZW/B55uaJ6iwf93cSDNSO8u8sjQwHF14Dw1fUvUtbv+4kPQnDzXWAdaVcsAPq6U3nJnGScfJKOFZdLG+bvYe6OWmKkexmfei0p+FLaOycxpAsqmHUkoPeGLek/bYXhai0mfPjvmf5HtYxprZjdPuZzT/SYnmTooZ9UbD+UJw6vMd3Fpfo5JQ4vuqv0UVhCUlbfvbkqXjOzoQ82gI3UDhR/jNiqeuTVmvymLvq0bS0UTFBx5q/CJqXMZastwU0nZPTrjpkuHek6N1i1F4x6rHJhWaNmdZlXkSYX9Lxip2lpaSqLRcXqyZL6G2jE9AjW2GWZ0Vyh/OvDBFa9DrOxZRKX4sBMl3a4n1lGCM6CWFD6ea8jnu1ZvVjRD8dge6hb16LPV4Vt9LU5FFdWv6carKB3G7/AV/D82sjabcH7Foi8dGMngnUDGEFD8WIPFh10DEp0WDxcj/gz83mb/FImkBBzbd9233uVy7s6XSHor78KI/Jy7nW+7FEKOBxqiJUNUFKk3x/exWjgW1Al9g6UJQBOgigZAmveHOEA+/rZBzTKPOcmtwpYWGMgkD/5OobrC8pWrkewz/U6Vrf+rw4dO3x5CVaBbz7t0CqaT5QGVFfu5qQWg3CgetP/ggMZlnDnGOlRfOBXHsa7orVxQhgE68uh+AJ/ZrchiTs7hcwIWfG1VP6uh/lR1ktz5fHcLbHH58UA+x458cig3qx7O/9BUC1BInshhpGkfn6M6m54Dr0fSshKKXQJHsV1Py1uXvjbMMmXafgoyO3HWEZySWbb08c1N8VWGsw9Dt4bfPORbL1+3q4YRMbujr0g4aXXLkyTnulAuJiywIf2zt5yfCxR4WDnUzY2u6m9A+U8FxJI3JHTY/9xNjc1qesPnYKKb2ai5GOeM0NOI5efdHH+1NcC0YD905mRYrKyw0ekXe8rJbZsXYaBozpfRIZSpOKrJmkOmM07HCamzfSnO/ZXgenPNdiyPqwb80+qRwe6bNaMyFSEq+Tk3b+zagy06vWUe7wm2dBdRGeT+IeU0pX5viTEtWMJwp/3MKG8wbFteksnAk2wH9XZNN4zyoFZK3GSg3501R9/sl6LlWXqFrHfBhs8qMUe43cH062A2w0+g3cYqRHPDOedFRaqndxqndJnydC4EkKQ/o3noIr8nt/CzX3tArviVMMvAnD0TkDJEuaxnYBsg8W2vBkML+EMSe2gxQHHPINyQU5d8NY7sK8mkCZ+Zg8hEjq2psmcXEH57y8mqB6G8cMDqFo1vtVlB5BmUpAGFNdNX3SHTO0LmESnP2wWK97BwWG6NoEMWBiqTW0K37ADo+ixOAU/ONIONQCLaRcrd4BDjZZOWUJQZC/s9atusLshXccUBqakAVFSUfRV/UFCu2svZtsOIYW374xiEpim0tuoHobWCiYNa2WjbBLyMeICO/w7c6JQXlAsFhG+vEQZ3vGdrHQWcnim++dFOQN1qDCtzYmELma7ReL1CxC4i8QT/xWywLFbLi7z4SgHdERX4km+eOzY13ygAQJpcF+v+XiPxv73cdvkpkdqoRwNS+0XrOEJqsdAWFOABshxn1twTQrLea0sU6cnUpiGrvOdEnQ5F8pOYzCoSbBLEYbbrpWxX+f/PLsYdgfYISyoD1cm/Y/xZUGXwUgWmMxRulfGDKWvJYHiDIP3TAZvv9ECkmbQcROiUmMXoTejgmryjz4H8KmMXQ5jq+xGigiMds4KWNoHFsCGo3bS5pXHuVqSie+F1TXVEL545uQoUBa6IJ5dTtEmkqmFA+6Ejkojj3sl/Oxpx+w7kgCqoj9T5M9HFZnoLmi4Of5ARg0RsO5okV3/YguOMcU1CQgj5ckyhkPFlJKbzWWY6aop949asLF9l+3ewSxTMYMZZU+70ev76P6kHgqmRFN9DNfBY41JBSSojHL7OITRA8H+oh78HXSBAFNRSaCDy8fIH05TK3PVFgv2A2nvoRwPpKrUCg0SnXCYN+192IdYDJMF2KiXMJ7WJX/CHQ8Ou57YU4LygZeWI6gUVy4MdcyETgBgDOEh2PP8heZvETZ68qypfBqJd8rq/wbhaOQa/GcH//mmUNxjeu8+66/8P2zqOJXJtlz6GOP4kisl9WpaHlWHYlp7QrvQFbKaocECnRkY8hnhy2frtMQf+FIXSx+az1bxzDKJ+jMicoSFlRVpMkZQWO4fJ2w+K2W+1SDnu9gK4CTNb6NXlUI4wISNefhqhnZAseyNz2iEgAGRwbZPxSZdS9fdpU4Dwi+sNVDV3vM3s0go0SyXF0D231ZgAFYp3d47Td9LDP4NcjZjbxNqIyCuI0+Go0l81G0BGtacy7QIE8xfV0achoT2WF+gFLnOzsgPHisEWtzADOujfGT4R6WWH1CMIi8bKxWg4vAv+ttCkq5C6JI/+fpzECAqrA+ewKUaQ9wEkRsYyAmcAwAmlykXTusxGte9k2rXFq9A2iFHRRiJyg/HCIqWd9LZ0l80NG0IZyJEVLBMZI0BwdVj4IBexxmO6hil78wRacXXuoichb+8Z33o5l7k6p2kHBk9eiPHf8ahx3RLtxIDlbaP3y/JBV6TaJBWiR+XSSH6y1WH8zeeOf4/tqP9T/IcJufQ+1OgiEoUbP7H9McFFEsn7v0a5gSN84xG8PFRet/dvNXLdPyQyppFNoMowL35SjGP77Ja2rTdkUm+8FkatCP2ywQNlHmuXuH6eFjf/SFiyswzHP4nu1IxvKPzVuDJY6EqwYurB2ncesIjRarYtuS1rMYTAXX50r1awPLpTo6372zAvIqECu+tHb+FpMYrqA8UOMLUeGvCf3pXjr66nfgwcatLPgvoohvPNZU1b0lkB5L7bUpk0bQHtQXexequDTBT37q3iKyITVq/ACtp/9y581H+2dG2nMv1fbncx7hA8oZdITpUMLHdCq0aa6g2ST0jJzFn5pTT55SMFUoQZL5spRJccsqzV69tifJyUoj3rqTvMvzhG4A5yoCgowq3z3EthnnS6d9WfJR+fN0UmSggrk9aOG8e39sH4b+nnEOpY4rcf5fthyVR8PIE1gPMtfyJFTgy4SrVfG1gDc8xYPjJVPgSXmvite9OJCrv8f2JTtjUO32nSyAP7Zj3Su7b+kfR8bOioYPE6WUp4wbu5msz811vIY2d+wxHYBolbwFt2b1/rsTAJp80BNvuPT30KYuZe87GTWG5+SzNKW/7jnkKIoSu0Xqv5zE777DaUPbdGdhh/bezhGcQ6fWlX0KQ7k7UY89KSXoYbWW2XhEHTYAvVm7H4G36fgS6jsJUr3bg7ZK6OpFI70JWHH0wpPpObHtl32b5tkYpttdl0yV7I830fXrpouhTtiLhpnWJUmEy/XZfAZ74Or0lWZJJFW4EP5ssYMUuKAwyIW7f4CjXrh5WRslq3cZUM1NjSjdj03gtiI2hOs6jIEj1lx5Z0eNzCJS0bUKGxaggSSAnj+WNoFq5rTYbqeC2RWPa0VQUNZcFvMdKWDpmYn872vtKo8vSc6VrIqvEVA0OCXxbUL9prpKG+EIhB7qKiBrROplWRqm14vHmghQ1pSeSqqGmlJUrhVZdyMJ3LCbMA9lD4IWRWa6O1akP2KOKMyIClDTovL5fVEIwvXoox1JK0hcODnsqden0CvRrauewoBIdP7M0eWB07SJn98W6BGZL2Q7iI1ZWweGu01x0xu1lT8u5SStJAyh9//415S6fOiZkQvkyhT7LhO+7K7i4vPItH7zOwALsEHstivVN/dLlZq5+vvLsjuXdsenVOZmROt/80L4bZo3MwPCXMDLI5XIygdWPckaBhVLlFA1uwMKtO44Rr8mD9OG5xcvdEx5Hn8b9MJwyOhPR7yuCAYoPwWFaln9nQ/fNtlqD3SzEI7RHA6jlWIto+tKxIiU0dpiKPYWBa8SNinDuNAAqWkbFk40wTSgOYDa/atjSBTdQ+53SWiJY0XRJQtoswC9ze9Ux90p/bLL4rKoS18nVmYQANM8UZtXkms+KL5kSPS5IQ7A8+WxD32gEos5VYYB7oxJiZOfK58z8Vx/zeesl9k5wmCSmrB+Xhx3ajPN4eldGF7y4MB4LO43EbalJ2LikGyHbBLt6NUFZjG/38pLX+s9h9UVR99LmWl9z4fDsN5wZjYJIuOXUPy34jNtgWO6PVnShb3SuHDqNVw+jK5WP4KIIUOyeE92NXb+Qhm1Z2kRIkRRjNGRlNtO7aoUaa0Gta0c2Vlbxv/QhTsX79GeF9fOXAEW/htY8i7I+fv5q3jTlzU2E0IEfHxgpJmW4wpnPlTSFlr7TDKMinHWY9r20kLlPLRN7ZuHnIRa2YkRHxpiMNw8ejnNBIxQS6IggKql9rxWorUBO3RkKXKekncmfxWDy031NT3cfi+MeAEcqKvn/kQ3UAEtmcuDmZHkOeiU9mo/igU2MP754CUxRoY3RTjFD4APyavLKeZKashSpLRUa6Cf7Lz0JtYx5wJkYOfWNXDzS0TRDvBq9qzTt7yea3xjgJ7sRYxI++peMkbD458Ags/vovVxPPOL4R1WIMZfl5hgmPVHnt/0RZVUAhNsDQJRlyWbmDUNMdrqX35RxstI5bfhj2bQ8/9iJsUSXkqkXFnj/s37FuFYWzNyAgU90ak4uQSGAQHE+u8W0sVW/ibu/PJh1KTYdSzpUaesTVtYdOY3DOZZvXoNtcpGDpUu64qbBJGbPwxyQxOixinn8sh1gPIxlyHxVmi0m+JdM5DyBRNf2ShmXseBhqdxL8uAPHvJdWSY1ZZSkYz3EMD7I/xrDHUp+FsC/LJVeSDsbw8ilYAFp8ldhgwxhZA0YauwfjQw7ldT21BsvPjxNENYSOXK77rqRIKS7U/MWo7Yofehp0/FMTR74944mH9TM5iZUzvd2uGKHPctol1eaOITgYy1p9dZ55t3jnlOSDoUIHY4mHhrLJxqlvKVl0Lv5hNTuA5Qlj/slJ76+s/7Py1tdJmdbNYEEWyhwQDlMny87xZYpuwJ77ISGJtMH6FZjX3iM1xB50GT1UwcwxdJQESv7w8i2BJ1VHNBYanOK2XSkmKkw3nChY1BbZJ0k6o/ptBX9VdkVmy3K3Ix+WqylmDRPenhjQEdZAEx9JW1F+nrneLZdJc0uzrNz7AmiqibmRnNqXhRlBCFghKlrjN4akabW9D89zDDGiaNTJFo479DKqksdoWcVnAi2eU7dE+lEOQomLXmPY82iR13uxJ9HlpTi//SH67PlhBuHnwvnwgzprNOdcfOutkmlnUQLZC+I5GUzwRG5jxw==
Variant 5
DifficultyLevel
538
Question
This table shows the fractions of the students in a school who do some organised sport outside of school.
Sport |
Fraction of students |
Soccer |
31 |
Netball |
41 |
Rugby League |
121 |
Tenpin Bowling |
61 |
Which of these sports has the least number of students?
Worked Solution
Smallest fraction = 121
∴ Least students are playing Rugby league
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This table shows the fractions of the students in a school who do some organised sport outside of school.
>>| Sport| Fraction of students |
|:-:|:-:|
| Soccer| $\dfrac{1}{3}$|
| Netball| $\dfrac{1}{4}$|
| Rugby League| $\dfrac{1}{12}$|
| Tenpin Bowling| $\dfrac{1}{6}$|
Which of these sports has the least number of students? |
workedSolution | Smallest fraction = $\dfrac{1}{12}$
$\therefore$ Least students are playing {{{correctAnswer}}} |
correctAnswer | |
Answers