Measurement, NAPX-F4-NC32 SA
Question
Triangles ABC and ADE are similar.
What is the distance from A to D?
Worked Solution
Triangles ABC and ADE are similar.
Since corresponding sides are in the same ratio:
--------: |
|
AEAD |
= ACAB |
|
|
6AD |
= 912 |
|
|
∴AD |
= 912×6 |
|
= {{{correctAnswer0}}} {{{suffix0}}} |
U2FsdGVkX1+k8BP7CK4ZMDNFG7SsbsrAMQmhF2DB50OuFl2hSWaJvDSvV6AidoRmluuYK3lcJrjiPxxY0yaykbF7Wowr6k3vUXrD6o4NiVrL4CzabzVZkfp0Awh92U3zsyhk9j5CYfzWsm2fSsfL1iCDfsgSQNe7Fi8pjnNaWDzLsQ1fB9sfuFfcF4R3XUO4Elx+9ZkKbB8iBXkDaJJc4iQP0QD7a+zUad6XL/CHHmYbdyT999K2ZfkLGZhJlWsSt+vRpwGz5TPALVYtvcL8dn321qkHBD5RlS83yRSq7AsKniwtd4vegAptJTuGGldnlM/CTx+dS3MPW66dpH0/kG2f5yqCbEQv+IpoT/LIz7tZCOyh+EJL4DLYkR1SglTGJZ20B1U3Y5I2G2fzC7cddCcsEdxrNUk4xGJVvyf4o3du7lH+cBpozxt3QFHFN8nK5t3ekTiNWdl4D7zhbUMqJ0oxVLSbsVNXKyWMLrROaD0up25Wp9mh2kZ8tGMmZjNDfXSpycUlbCzGWy69pORbIWOS+COE3t+UleOIiwJfazEZuRC4cgPvZXr6X22DzhN2vzzN/A0RPUIgraF1g2bFlrJ985H7aCCjXkBTHunS1oYtfmMPc53EJzKFF1IcpZEtQOiCVpUtZmo0wv1KJpz0HWODTiG9PxeCnouxZsBmwNMEzkzPG3XUN5+85aOYwV6YCBwNt07GQAVw8UmoI5suprFwUA9WhHb+Z8Jhj+WZ6qM1qzDyBeiZe8OK+LjXS4iGqz0weOINWIDcKiyYx2YXSxKXTDxzjJXLnNDtcwDYQvxZMCQaGyXgIo2OKKNtMjWS6hGuvmtAB3ox5mt7+C4hNdzV0qzby2bfjXtzAR1oFUoU07nCzrfhEkva/nN8X0ccVWEFkpjoTpPmuyLzyI5NKGnfJj/Mrik6yz7UZL0eDo6PBQ/kGW1oDIdp4kwpLxw7lH8Rs6AUAdYXLyNHThvffgW7tpF4YAZJLdL45S+hE1cyvjqRxxZ+/I95MDvcNRDAEkxOv0yOhZhe5CJYwcMzf6KpRkjWq/goZK5Q/WTpNkjuHb7D8Kfp+anwcm82PS7qkUyiGoJxJC9cMBNEqaXzYhfDnhP6PZCqYhcYer+8PBeqBayhR6TM+hR0/NXdoRn9JSGPP7pNmqllOZbEgzZ76eCUdFqEn5TS0lhhZQ/pIUpvz0dGat+QrfiNIUEFG954+oL73vPNkFxmapIsLWsWBejzNYJ3GqP+3ZicjNlJZ5+1pXtx2xUNTtyzZLtOrc2c2UL5343dB46artSUQLurJPhZ3Qu0GdpRxWD4dDf2YFMTo4wLrhm5IxxBTM7q+b07K1f9DtMYYxgMAP5twNpvtbyiv9pl9K4BehZxU50RNvAx0LOSNJzoAcnXRj3MWy8dirHGAjfNqKQZoWzN5X8D9yxo8gWsQXLfNXBg14yqiI42PQ6g0ay9nAcJw8XsG5JlH348Nn8pIiZmLy3BIToLtZ0qwT34I/tRiOLDmfMybGljkefk9qYmSi+j/jgJLd/+j43td8MYY86ZmGTBAhY1DE6sLc1rmhDepIyWovGNXu/QgVloVqIOJlOT0cy+dEMNq184bXEm5IFwXXQoBthh9vuybK/2eNRYGo/rbrixmAbM4bNFdf+WdHLAyNycRGTAJjk40ajkb5aHRgACQCAK8ucIY+NdiHDib8j9KtX/xT0tfh7Z7H6xF96Ks29v/lbc7rAPvgdzI/haxmVP2CT6jtPFQSYrzrmuNVbsK0etl4tDTbHWX6sYepIRDU/pfTCO/Fy+WWmXtFQC0NDJxhTKNXKuAYGXAqfdgy8pVbrARK0qz77EeZRfpfE79XyacHkGTsgLY4E0a+pJDwpdyvsUkzogK+L8yqffziF3rBBmkp3YgK8fGDl8Ofh/p+cgAAZ6JqCe6mXI2zQG1OQpupyKEouqdR6yz8KbGNgakh88br/vWKvLUsGx+Oqb3fwkpn99fam63yvd3FFB7dy4PAoWB61ro+3YP20fmjANukbmAUl5PK5dWKDsBIaqzLSASQ6LdzwQLQ8szaPkZYljkuDe/w/YHDTiTXXCI3GFXprMvMERdrMc2KTvhWFeXk5QjTxzixgMfq64HTxfFsmkea3SaFMMundBtnFQVNf3E9iSdR1aRP4DpPuLWjpDpUbYjvtwapnDCxIwfQa+aOohX3qK5mbe65ZOVHGVXMN5SQ2PKNqk1dKrWGdDU7oolPKLJdSqWqvLOifCYkrNFm3plHwQPBzngmMZQTNzOnBDV6mHkC8dBl2lLo9M2bKtgMJOK0GcnTiOjcu2QHvo/f30CmEYjrakGNJzN1Yc0FGIFyjfvUESE3fZgobinv1dJhVTtPeQBZr4J4R26yuYMLuNCf6b1WXIVJJEm9gPdQEsWtqoyFVj3NKVWBO4irOMTHEQxVSYnTvWRJRhWN/DcYeDmUgNibyUawsbS61MwcS6rGTAdn7muXp7pgcaIwpk70w2/Gp/l54EENY7Pt745eKrz+gWSvKp3KK8szS51nBC7mr7Kpl0kKrE62l0LrIaIZ02Tlqi76yHMHBlf3ZHblt2d4fO0Hoz4RuE3sew056YjO2iA3LZZ2dTZQzbDGX+65YsM1CVk7iHPzmo/GuB4iwpUS7lyUSFGxrx3XaXB3jEaCv7ZKMBKqvWpCqm3UOEt+/RTBJTASOYos+hio1Ts/ho8FhxLVU6dFvDuUc7zB5MC9Rcz/X6Gjwz7VVIOnv54oySnpsd+Xvazp/80kHQXbqMXyNCcChdWVLTr/yH8VmcTjQRz4RgcuOJW8CgAV/CspUFEsHNALN4PGJO2kd1XIiqNda2uOo/AIEK9ZnKqwJC14tUttua6Dr8Z+01X2w+l8Ii72r2v/DmOpzzJkxeFe6wFMNIr/L7SqBFWVvBwo1MnZ+/eBJBvts8DEsovhFI6HSRbxdOqnlzfydHtEJDCaKTOXRkGPyXQgwiB9slqtTbS0sGfkfAxEKn/yNInMfehJdMRTfivJnH7QTTZO5aaPtypwP5eXN+JpumXzVQ0e4ZFEYDlnesjl3NNyHvyvRaCnvjQ/OAb4DSLC8xcOvnhBLlE2yzDh61Kv6H+M1A/X3FLihcjBUo/fQwwJMfZGseMXYOn3OU7lJgV5M22R1VbAQn75HP7GMrxuuQrqoyXK/7umNZmzWT31OZ8XHpylv7mF1CciEQZnMZ/mYaPSRBGX1KYkbPti+Hw6fzFopDzN6uA6939HR9jtAIq94Za8L7rhm9hY7ArVG/bZKb78Cy+dX2TpqmcrZdggyoyrm1GrWUj8pNFYxXJ394w0itfUXLTah6UbdSZTksCsNZnWBAeGIf0LagRf3NNZOqy2Ob47BKXttXBiBbJlygqZ/Z/ud+SaS9kKat5HtirIzd47A36a68h+Ekg1thLF204yYK9SsPNsOHyH4Bfa7oWmFAgtwreZekL6HPUS1vI6APbHZcZlTloKrcndgTu5t2jpgm8Uyxlb1lGP5zTLCPiHXzF3q9aLQTBk9ptosemdtULkMWqrNBP0nlA/cL0KRVS3c7Cyht23H9tyKTLODJmkoRRq9VMj7MclECfytPcZ3a0cUZgllTFO6R1zp42F+lVGY/jTDyitLH37Kt2M47DVFZD1rcHABW2bxJdVw+Wm/scTePgS9r2wjJt24rl0qQgxD08KtTsg0BIFROFFrbtQz5gbLmts37GMcpiu6tq/lNRyGvn3Tc9b+Z9Yv8PmH6dNVTFbyiqtsjF40fFokqoLhgz7Lb5UbBEaouARV5ldZRL4q2UGNYTXAufDH+WU+6/Ci3ec1ppeYh+tM0aPBcSXVcOKAIqW70TSFmMRoR3a6mer/0bHckZJyNdVl/RVLzSdZxRKiy13yqVTH73QBJ1nacPq3QvMI4nWYk/gIrU4JBZfFrQdxsK92bHalpQir5/jugClo839RNlV/LWEfyWYt/8d9QVaJh9nolPw8J0DxGwzyhZEaMwlGtbfdAUF0yStV53in7Hg203zQhMMwPQSsQZUzzbqu0SCfUSidnah43EhIayibZiVjF3nZcSje9+w276tbPd2dEHfbFk0mUkJsC7aP5g3jwtSOgIW8B2pxqKPWr+FsLpuhBHubH9umhlhPIbYQaKXSx0YTbb735zd6t5G/HHekzfxoh91KQFtlBIGJ/cJcpBhaZo/LQhWDR0ZwTdySwmzuUcV36OVwtnVMYp9VztuOBeefy1FIf2NlSv7eYP8nddnrXlM8KUkBe4EeA/llGw0AD6umUdDVOZtbYwoTbX/NipJlIXecrMTbEso1Rv+Qm7QaBxau5muWEO8Fz4rs/T+yDAkj2ScvjlTAR1fxcwiWtOfENxHRakdpy5JXIBNo5Dsjg2Y3eFtWpWJq8956Mh5Pomd8icdYH/ZigtqyZsJtHa0AH+BrJW2Lc34Oz9jDJ9aW7KB+6bpbhaNQfPjMw3wqDafbnq03q4rVtzcL/NU1QVwd1/O7JToIx1LxE8NZayaFqiZKO6SSUpFChvXXmvQrRqm/Qvl9WkdByqOs/5FDW02z1ayGzSjOEPG12A4MWpSZ+okWInF6wRgbkG9MBI+e+drhMYLrVrYhOZDZsL73AttSvicBKhwly/xNq5nAMsxB/KVgzcc5GTBBO7kQuntoKfoph1yCC1qpPi9/amDwWi2Enht57fXt+CgCdeQQxRsvaegeGV2jlb9HEG6IyaW1UFoyKvoppkvXkJoExizL7Qm5DfkTG1HeKcxoGFiDjkZkswkPi/Oh18BWt2JP3IzZtsaLutnbgsfbtYr+z5EcKXDJGvZAHMLjfI0bctQWfm9LdaZtnONacHvWkEdlmNXUYFJg2MWPXjaTs4nOpWMVg3TiUibH/duWjugebMfleqljJ82iCAP0FHkq+rG+W3lee1potCEnfv+Gy3gD42er4yltVvoKGtMNlvrPlGC+dQZaDz83JLzk0e39RMeHuV5HurJ7B4l73orIvJtYT7Q5zDjokN2KarEkNUrcOSKAXr3MPEd8U/xmPEpuha+eI/t3JzeDr6kPzW0ddfEA7E/UxAZO1xyZkXaB7PdM4tOWDrbxW8yOsaDEfIJTrqUl3WyVSaSGAALCZvh0cw/9qQYl6l3ZB5rRy+EF6tlSLC8Z5ezGEE/dEELOko6qvaPbZEY9DmvEKfaujz5W6onp92NhPl2m+6eOHkfqxQufbish+hOhnBnfwwosbucRMWOM0HmSIHFYN1ht+IUunhBuGJmIGip+z8gwc8NhLkKZBDWq0B2Bu0ukCTlKStUKCJmA0O6Hj06qkXcWF6gJ5him9YJqcfABNYKJoChrFc2rvFdTN/eqTMHEsVLbxm7fC26b97R3ZEC3IPusagb3+U9sO8ZRflkfIIuq3UPtOKn0EWOzVA8BLZQchcrpLJyEvESb47c2C2jdf7VTL/F00mWy/UJ4fK5fQnKlFLPacscAycBfIIkkDLNTGq31Ttpcf+21+oVhRazI1hdowefwYm03OgU+y2e8B31F0zjzN/gdZLXKFRykih86Rnu8yNebFigHEKiwrOJNbdmKKKVouRRxCzOKbZqT9SQKRqB6HtThPwI+pPfdhbmgFK8aQSrQZWfipeUi5Hqcrom4F/0FmlyjbM8LZSE15iuh3ENKwN0cH9lE4zoK+QR+WeeRV4EskI3LWbCpTgHWsCqMdX1Dj9bcZLc93QMhd49hCjC+voSMF+avvZi3wKctn8J0n94B5JGleODCKsOf6uS5goYpWFEsUzKrpkvtTAKfHW8uugeobMbQT5dGSTZhODsxAsOvg9Z8H50rk+igAnhuh7LvtosabDjEXCvUbeul1+JcqEElLiESIrD9MD/YI4UnyodWY9XX/Xq01HmFDkelMGG45ZlPzeT8w1T6ChOSj6AzJxrdeYhI1CiJ0BoeznpGivrTmBnGbyvl3hWqSy57yd99aRNytfoHBracjjbo4N08f+Imuq7udtSEhqpDZDYrNcZc99LTebbWWv53I29rfew+pYYOZPxylHnhofIhExKpLzcaOHWk/ewT9XAR5N5QcZPCPBBfsqw/vYNvqv0m174gAj0VjiYCj8OdA8+xVWGT5NmdfCxtA08ss+BxZUkOB6xESyBBjZHKJ9ermBwxr96UKfgjxuHUs8FJCfw/QfMdq3Jgu7O5JFfYioDJ7Vw2G3JqD2XxHAAhm9sieG6JOPds9+BEYtuJq9U/7w+w7t18CEbGBM+SjfD8KAzTOT0rvRA+TL3znEx1zdGxtlR6rjEUlgffyVHTASR1U7FZQleh6XSHaOr9/Np7gxYANcDbBJQNdHaqs6weB/O6Nl9sfZ1GxS25sZzILoT/Xn1SXZUcJHKSMxY+gyXoDyDxNThMPBtFNgSkKVrMVxHmKKWn/tx0k6XcUXy7E82iT78j3nbXMnsR4X+pjIWWkVLV1tTLNHE8M6X2ifvEppVoTgrdlfsXny0kDD+CkxNNKnPsnMH9O2gVT8P+x53GidnqAtZBDVm6ZlkyORyo9E72rdCKcheVKxw9sFeLJTg6fY1mZQCDcUg+lQ2kelkq5eKV53b5tEoWhL1jOhnZ+vl2/LlFraZ+AgUVXMwMoT5/047ruEciQKSfQECl/uEDxuV8Wo5LeQeKZME6NzAi4lz6bMj6qb9SnyplQQAgNhshVstlRZuHm5YyaZOnuE9ns1iJedQpQapLh/awV/3o1gxy0WmchawtePzYUn3Lz19c6oxWerScR/JlF8eoItPozib3xSuwEEINv2Y+wyHtH6r2JPOFPcKcF+Bb9s3qCbNF3KfyrTJEHqh5Q04ugbIcKIJIFJGUwXGIZjMTtPyxBdeX0lhDF/FifmJ+RQVVhf8KBsil0c4Bn5920fCOg/2bW66ufZ6lMGACeyfXaX4l70Fs0BXzjkY+8LnW6pl3XK91iTrEcpBX53cRWeDQ7W80Oi2NhoR5A/XB9aP1TdqOOj9Qvr++4M4k1wSzPVxuJqIULeoDLUUErf2bq5rYLm5DLa3Igz2srg+jc5cYg/UPdpQz/XN4G6ANikxEgqoeinhQqukZdCNRdsIAFHR3lo6BNBXRedPVjwwjL+mdgL+hzdW1k2xjoLsZQY6vlNZwT6ZGj/oaIJMz7GUNhBSY0JWm6e9Alg/hl109nPghxhkBGM+4BnXByDa9Oqi7cmhl8ZDRcuTC4f2VK1fi7oZMo8Kg3HuFrlLhKKRYvGCIlWq7yC/WnZlIUVbHITn9OWGhQw+qt+TU8v5vRqXtlMjLWkOdWd8Sq1YruIsSvoaNDRksWKyT4JNVGy6EjnRRJllXYZt4oJ+TWWsi4BUh6pD0jggVTMrOg+WUkfnDXPjmp0Nvc0p7BBtmt+cmizHnejwl0/tDiHlj5+0EBYLH+IGuX2uP0jz+SdEwTYtz0URmLUGIcEHaaPMdTnx9k55wbisXCJRmHAgeugkrAcT2Apbn30drBmtHm0OlHJ9Ooqwc7cuu19jQ1z+OKogc1Wts+Jx9Yt4PMo9UuYou9YUk4NNvkhbZLcUrA9h5Gr2hFRJh8ZknnrAIIMu/GMdsveLTRbgL4e9T8+BwKouCiRBwtO5l44L0eqlmmV+wcl18qW0JWwKw0e6Ea391UmIvaV0rldiqhuii6PRN5nckmuyngyTjWhWqCG7KSc/8UhDdWpZYi9QM7hw8mq6DsVqZZQEVJj6Ve6uTZBsUd/weKmE2cNfElxjH14c09OcKj14Ch4xC03wfhz6K6co7gx7hSMOHFy4piLWMnoRtm02qwOZ3IEoEIj81VJ/6/aOiGxEKop9R2PmsbrsFim6g7yjninie7RP+BCRdype/Jwl+8rQsDsEBwBaTez+qm9pESJTEIMlnnSHFcvJ8MfXAoo53L7pjrKdHCYWMwUlQHzJWhD2F7cLQdiSm7l2sJmQonKWe9a9eeVaT/ju61QBPHhvAkyXkd0v+owc1saPBp72HWxYewY+zzFHWINgtApD9Lg/JK2zg3l42KAvLm1NHO86OQD2H+n/6styj+ejNPFMYSjKlTA7liwoCALklay9tFzMYAw3ceKdauhr4ylt5vyELPCgrML4zji1ap0VWb3+Tis1VKy3cVttLUUyzeOr2U/DOJwtzTv3BepRKwgy5QxYLN3F/VY+CCmu6+Ff7weH6a0ME6n1iBirEFKrtA6/2akT43vaPOxQpnD/Tru2a1VZPjK4ij6vzW+CUsYJwsYiDJp90BPVnv+UZwt5ys4mCyG148GxtXz5T+fg1PECintEt7KpF2LBFMCRNOk97IPrMVDrm15ZAE2Srg9LwTygejfn24xCZlxBVIvTwqMNOJ1rmCyMLriXwEJQQQWA+YGs2oWttZqJtFqxNCGvUxIcbK8mm/wARBuKo3a3Hfu+8DDYP39KFRVJqKIsN3C1rKMh550PGP9x35Fw3Bqpr0Tr1bvv4cNoyq3uCB886AK71K456MV0YiUoeo/oDGapSJISogA2Hg7y6GL4XrJx5hZWaBTdfMDiF1JsRp6T9KVDHcIxnX9MQKUqhvrQJ26wZl3zaTDX3cZ3hBT4TKjGMPTNlTgxeJn2UTx5l16Il9MR5jxUnPwJTcwE8g0WbuffbkBZmAfdfhj/SU3i6LcdQ97txWV0WWL5fuzEKvhZdpmua52Dv5bedYMeK5wwuqzt/5bAtHQ4XYvztdk7J38hBOB0+SnrlYuATLEeJoyKhFDAVi9QWR2KZIwMT0bqK+vxp3gZKpD5gwFyl5hWCA9uvqueLEOgU4TrSj5tjVi/Occ41UVhGCWEO1LHsmX8+oaLf1rdAop6y8mJ0gEdm2rriH1MGnmT39uhRNM8ohPMIdQTMiqx2fTHtN5z0lOApttsA0OsL+gJ4j4YODBPiQGah2qRgJL3h1nqZ0bM0sUNzGIIyIVWHeHbwoiZnZZ9u/I2xfo2gR+0xBAv60YHySk4R3knojN7lUCCDA7kRgj09vW4YDrZqV1IICnxtjoAMXJuDlRAHbAFYx0FUmkQX2K8uBLCRIV/wskjyHN8+eZ0NVU0g0Zp/HDd6A+L11tGGWaJ27PV5v9lsmoxOlgrOadOCOCfTi+yiEKMGrV1dy2Dpf2VKEsrdOu5tTmLCc6kuvjJe1/vSqALkMPiroUxcJLRMG5gPzzwMvtk9rME04CppzrbSsiXrrhW4RSJX5XLKhZ6F04NeGQArybAi6w3F87CHgRYuP1Ry60kiNHUE8OlgA827KAGh8xL12lnvV+6TLlHh2csO2nO1KPoP9c96guJH1b66O31EvUk9bDx/ZNDXbrf6vFvdatnYfnHYhu3jXtNbs3C4GT7NHR29REdSYSPpC5E4WeR+W9uSYMQoXajTdGgLe4Yn2QG6QxpiOH0CiFfmLtPZfa6nkB9+xzU3/559wmniSmoH3yn1nhd+dvuAhxCoiDLBIQjwZ+EbGp6Yg9SD7GSl6P8xNHUyemu2IUl6F2BrTwbzsvUgA4W/LQxzbn1koU8GhePhDp2fOewrlHJM8OyX0WnGARQdylkDEfjCgI+yzkbMXdKnMY2GH9BaL9RoNvhKYYGyn3wFmyfP2QLX1KYTCb4ExDcfuRNnQ/NzLsr/Xw0L8xW9cg+pX/Dk6kZtz8ZjbtsSe8ddAAi9sKxnb/fHjINeUl911+NEh9RarsP4tpUXHItcuoL3u7GCswoEB/wubXMn6nVz6INf2+3Iqeo133kHQrsP3SyQjbSeJn/hkRNWrRixSmaJZeKt++W4Ns69Fgwsaw6nvfEtDl/+9BhUPXsjKJbEEKosMTHElQGLaXVYyPWafAZgZDr/5wmSDEOm7WZHGOIR9YhADrreUtfD4BGjXxtH+6sA7snf8NVLp5FQ5Pcyitn9GM6pwUVpehX/mcCbrbNKqym8d4Q84CJBQpTEjTuY2UtOT5bb9fLL8DzLJ1r5yfnopXE0suEYa0Btm+ufxA3eYkjxH+/c/4QuAlSyB8s0pUm+cXQqK4g4vsN3brLsj/n2WulEUblBi+XzWUgiJTgoBKt2bsMhStszRQzja21UQhVZBotfe/aLIm/JCucOOJpjWxW3FnsTvBkT2orwZXU0dOp/UuiidQ7VfWoxoKNAbdDYlqGosDQdvscZ0eXJALxk7Xs1UbgQgqtg8D+aTeETo38hVL+xnAu2jUigpsAi6cI3D6RVcE4/y36CbZxZx89xdbNnHfjZbAijQhzM1ZcTYrfBbS9T9BSm6NkKkxLyBSoUG++76xJnE/9JMd4OPjjE2PzUhNZKVrWZ2Za1tp786tbnC3PfqiSXcVvCwREj8ovsStR3czcy7KDgURNYLkfRrQ4+KwLZTfp/JhAcGNtPHUXqk+yyO92t3P9t6TTW//wT3ww4gRK3OMqD0d/5Q8K2zazxLyNZoO0drljR8Nfl6B/6k2+8FlbXLSgQWheDMAelpCf4BOc8QR8ECgiYry8d7sLxZZ+P2QRr0/oTDqc8SHslnzeUAKmOVZlZzxWvxgLAuTKGGUpRLnGOEr3I+yNEdjPlUfBOjstrDeiFZiOj2Oi4Fcx2eRXs6SekvOw6rwA6E5EXJR2JWw2/P8rDgks/L7ZHmWWgILs1uj7y+85f6Myc5RK5ojy0ZeXU6WFEJefIvW7SIffD8WC9Vkcm+Su4TwMx4pQIYowRnIPFTgdprpSP4Fkaep7rPrNcIF+qXrqjeczI5U3MA956ASiPfu14McsKtqR24srZQ23Th3mboR43/Vr7OU0RkVpw7SqqPItn1GnBvHsnB0PLRnHo4KRs+M4pZUvTsLK5ZxZhIP0CNABnuYU4rBOm+p4hlegcNrTIR6t9hDeVgN0Rvnyw4cO7ENsRqQRGsfl44nF035VZH70iUa9X2Wea8lUhTLObsxPIxoB36kAclusyb8LZx7rtmoZLGv/G5i2KlHnnJOXa5V618UmP6YhpVgYsjoJk6M5iaKHqmSKptjxZP226oVN+ZdSrC15DWn7sJjaC/1xPflyIqaBnC6AqL8IPpE6GQKPCXB9dRvdmRnh3TBDACm/w0CbcCRQJws8QSAs2pKZApX2wNEzYgxb64jvX1rs9CRdHfYSRnU0Tg2sVI8PPHG86RgE5B2s1hfkNNO2kxFPiGnnV46+38vDCOcBd5KRhPCyQrBRm23MYUdBsCjVzOH118Mp8zfxo1+oADnrboffJvvueBr6b3IXD2EQynN1oTb/Gdq4jipoBJAVLlAtSqZ6pyDNu6BPiQD3nnaVfL2iCKqXZJ7FvA8kbBO+R1cKHLO4PjBImoyUX0ddI7bmJKpqTFyGFPWvxlnHI9xC4IzMH8c39upmBFh84vVu1wz3LyHTL6ohc851Dwv/n4C8EB18EUzlzww+QjYQF8pciEpNdytpdif62JC3mnywu7RQSXQafBaLfJtnxj/2QIxJfPI/u7219W1RSBR6kbKu7iw1q+yHZNttOJpw5n9k2wRKaK1F5jsKmbiwxn7YYGM0tXq93GKUEIULCrKYS/dDPNdG8l/8i5c3MMpI/aOHH8jS5707F4K/4Vrw6mse98OyaLheATsy2/+OJ6NgUIMQoG237xksyFhjBtLqfC3ZHRtoWRrTqJPpmng52hldwkcE1Vyjp1k8jODew90QSheo6ubfZxzdEgQUKN5gMQgYGHL1IFkaZG5AT1s3HJufQcTeKIS52MQB5QO7zEx46pazum/EftWiDh4P4kFg2bXx1Y3ddlFB8BuPmXNmAOjFRr1ssqWbh9Yk/+8kteyEMo2MB9Taci2Y7sd0mwNb33R2z5D42p7tnaGEcBmj8cHtQmLEnoZZnY/ovjxSVHwz8bKymYYKiAwp7XagLE1po60xnfRcGR0xF56QjzPfHYGAV2H58+Njn1vWq79m/CSt7X4Y4724ixJHhOH64dJriItbdBivHsYg/izXHUbAEnk+BhCaew0PbOrMYMwYLiKknp61+43KDf1DhPzstkC/Q17IvP+IzqGFs1UqhCP5z8sDdnfolwbmF98M9i8GN0xw88UZFxWaRY4jy4CS4VRtnFhTxxXloZpfbV6Kou2NDsFPBgkTcLfWIjCRn9uTAO3Bww9GxYVepcqKg6yOUHIb+emgLYpuoG1graCb44YBCJDjNBgEeYGYlO1m32W9sxi6opNLdHVlWhbzSMP/07pJQhO4vXFii6NN6M8i7cPiHe/qG9mLlzFqyHStDMWI1my0J8LtutSr+Az4sp1WxzPCOjfJzcCpSB0GfAcXBOvmmCz1QmEjbDLV6y33vyvVXfJ3LaQcb6YL0aPiYT0AUF3DB0OrctDWxMKJXy8wG3ac++WSFuA0myg87/wU9N862Yajkvlra+WVnVptjivfpitGXz1mO6mqwXcyBeFQpERtuW3ztAfRX12u8HibVQ/oEQMP+Eu6aU4bdnRzVkuXyBt81d04iFaSJ3VjeLWFklO98GvglWNJxA4D74LBYhuyoSnTAv6MACz0Nf0S6Z7lMBs2lOH+B6MuuP/+9yB96eHUwUFQpWSAs+rOxCUspJlra9wcXZKxL8OftUAwWllU8+92UiBzL6prsFNKrcZ8F2Uij4QiRGf2LBxy+Wm1CpEWs4IAXtwGRM0bJT2M1yysNlJJ2tvrvF7o1v9R6dQW3FfhOt5NGhP4A0hHp7eYFzulZrw0fxQ0TQNgGq2dZtjpl4P4jsWMGhJQqLDHmtrboZ4+rA+8Fp26GvIBU0qpO4vNLb6NUa+nAwYoPpX42ZrDhBDo3eCrBwBw3U2SZpQay7pVVOzFNhUW3AAO4SlYWn7PlDr1WmYaxcewhtmJEI+jl7VUo7zjEegw/blzUAg2z7V1j/SHrqeyDXOyWPDICdTE/YJzQ+T6N6eZUikOYT6wxQTuivS8HBriAJqNYQocoNHfDIe3hauiuKjwcPBCd4zurlOSp/WTNWdu2hGjkLwEA/dYjQKMmmQSVlYxzc27xwV8WokLIFwSkCL0QGJlz0gdl3/LdpPt7YE0J7zArJ0rEsJbGGvgytU1R61Z9j1xC/TMY844NgUsmG54snlruaRBDkIc5CT9Fb+ddYu7DmmR8lvXMlo3NrItW3Wf/fFE6uDNlAtdCZMxFhNKBGKaqtT9fltUdBqmX+PRqrChDE6ID0ie3fwsNHKmhhcGvCIwIdzmwvz1SZWinSTJn2CrCFEp4XIMo7qBMdTYQr/JUtUmq7qQjNat6SDofh3tdr5mH7lHh1l10d1Y45ddgpqT5OHE+Eip2DQSpt9pZXD0b3V1+1qglDiIfehRdl9jAprkmlZOw0ULqc69CAOXpXyaPj6xsZQj5apsx4OtzbxnEqddI9mb9XpToz3vEHfO8rjcrZbk/YK7/S3LRjMYAUAHo6GRbtKQt4FbsLIis8QCCYOlpmfk079Z9txDgSoMpxGKhnXQx9DgZkAFBMXawwV8tSc5bs58yV7JsKadEBJXQ7zpwsGeeo1aFHJ0zwXrSkZitEJvhN/8BJLz8EnrT432DAP1pM2EQ/uZK/E+W+h6c8uxmPfrmN/juOd/45Td5o9Ky7Rg6gDhyJnOtnAyN9K1vt7a/cxpv50VCn9YVXfAspggpDvq8YHV84jP3P2kt5Y4JRYfoaHWQIamB5gjr1kcpi5iilk/RQu/770kAAgh5+WJEWhFyREzVF4RNfxITWzSNumeiIXvIlD0XSiliYAbeEvsrfqgjf+M5d2dtZzGjxp/O+qWR9Ngx2AqvONNHxdMKSfMf4EHI6culJIjG9Pv70+KqmuVY4ea5t8vwoYRtSBIAXHRihxGz12WkFgg05PO5WE01Xne2cb43GDPdC619trumX+Vfg5bNKjXrjPDQHDNQppEUHl+lwOabFvei/aFt4/P23JlvH8ZMW5nZ0ZwDdUaUsMeXH8SLk1x+aN1+pL+P0BikEwZGrOnl2HnyBcdpYX/sYZkBbpPa7KWvGzw1X3ERpcFj101Ruw93H/afHSRYWnFNAesDf3v/PHJjrZKsSC3r07jsNz0jsTqesAvB5uWy2y9vlm2QTE/lcNpozRBbVl97WsmhmI3dmoCTT0c8zfRj/s1unzTbGohyjSWavX28k1EeVGJObRhpzTqljhwDfaQywLddh8zJKaiFe+OAv4asywu7ObKuF6WsPU7APFiAM1gU1MsYNp6u7Fk0iwTQp2wptPZmvctHMcJdcpj4Z0fTq5LGyhc8ZKidhqxp6CtcudP80Pm11HYVu0muWAW/LQSS6er1K/mE9i4+o5Q64T4kuf5DvGDTcVmOpihzF7joSEwnzIrGWRrL/S373Im1NBRnN1gJrtnVCGfUFOL1JMBPbk1gJco8bq/Gb2RIkuAhz67JlJk3uLSWC1pPBObGny24q+zhDTul2SEccghXU/0OKZSPRCbG5irMqNB/0HMx9jo/7bBfBlm9qIcXZwqK1D8zkG8Tb/5rUD8f3dHUJ5VgREOgobGLUaIRJ6nxTUbK07bbd6OKLA9dAe1TZv18m418V7geYKe/n/DhZMra0TzifzTc2RtUvTzniIYivb8uOW12EzaOT9627Nf+PEoPFglBOp8TV3/ph1QDHUzDg1GPqCNB8pHJXb4FOmCywzIBa+uvG9lU1zpKwryHxzSKRwm7CGterYGi+L4bF7P/k+8kyVCOHRslAVVzhTjCC+T/flm0E1g3pgupd+JvfvMXeE3GGRBKLibbL4fISlXo9x+V5UtM7DoQimp4xKHU1wvpf1Rm/dBp8PFTa9hAe1lMkvFlKydFO/z++Eio9AKAClDZqT77Q4Dku3m3MPvVVdSj/lGJeJ6Dv4R0um6h6R9ECKSyutp2wftJoepNp2qpIiK6AqtiGL74W5VMRb7E6ATdGXrnHqLwfiEdnZ4QxfK/VCYX0yUAo3l0jSJlbz9y+PyH/ZRT9k1dYv/K6QZJM6m/bXWVdpKT3BgdaKVASvKtCdGc1wZQ2OQw9wwlYTDZkLOfSc5XOlOZMI8LWSXn2zhFzSc0HqjaC2LP0soXejS8uiINNnK1r3MTincnZ2yVre9CC8z1EmBit6yvvcrUflbOpPMxFaNFc2QTxYwLYpYmNQ1Avl1mKj6xznzvmbr9sL6FHswtj99WzGpRID1NSAft8B1D1nCvQJhlfgu7iImu9eOrnpap7HYrHZsg1q0MF098zQ7Noh7fp9el2A/DwVv5EXgiIE2sjvMw4/PWCZxfU8QxR0U3C3jYHg9mU0vAlWV5QsabSOPBERMuQ4DrdoWg1qzMosqMylCn1cAeLNpir4Pms3uduMRliU3vBErj3xthNK0S2UisoBcEpAtRyMddeazZJfm86VriXgHjU6sZqk/Ro+5VZ+GAv7y0IPiPpecxaZMHJSuR13YqMQ0vZeB05/9gDBkWFFwrik07sxhCwfO4lE780++of2A5upTnQ4VEo+srXccWtmkX0JEpZC93vb04fo41b72g1E1gBPyMFPg0994cbxeUiYkuTdwBERQGsE8/rsgbajb0VWyH0S1UpU6ns3HCZUGEY5GtTlxpWSC22uBd5eRsqqrMF8OLY1Um/aqNNKHqyW5OpAmrhyEMXrY2oelSTrn139kkW1vVgCsRCEGMPzgK3EK6+IS/4NQhL+Sjak3riGGvBN4Z/fy/92EfKCSP4zsfU+8s7fLqX2DlGETnK+kx+GY3zxM2JE6lRSEftkApCHaCQe9Kx3LHS1nnrNl44nq9ByDYOzPJy0mZ7nkm7K+X7BqgP1z0UUmz7NhXb0Y9r2Eetn6eSHBsI5MxEMjuGIZmpZ79RNNa23O16DBs8311kUtFdu1XXO7MGF7oZcF1fZBcJZIgXIa0mAq0J0YpZnob+RC0Prcr2Wbk5R1NlNUO+s7yI/FD8hUbR2FPi6gs7HoFpq0s0E4gMfBixcSTNfBtiz4KewD4prLE+5NQhMSowwT4PMr0h1TSk/6nknjo5kkZQqaiRxWHlKBWkD7XP43/kKKjl7XZr44nmMRH+TAdliAnNH0hJXyzkmROZITofvYaqetcnhQon571Ur0v/Pyn2GKVC1tNnik5/ZDmTYh06+U/Q83I9EJKQd63wyWa7Bt88FdylPwesI2JPlIISFoFpZ1TGO9d9f81L6AR8rCvk2gD+mpHVWIslH6GkV7quxa+CZRgc0tzD1UAgw32H8X08L78HPSuwppPN/DdKUoOd1gAG3nrBf5csYYCfwxkHvkfvGiMkKMiLqi48o/9JtUPkULyWikGpQO2c4C7kwozU3SQ4UsZguod9arpJc0pj4zOrTkhfapPF2jRkYjQN/RS6xC05ZRA/rePOh9pUA1sp1rqhOX7MrClAuz67IbO9NpXtbOnJx2f6Lo7D8u3FABng6gH35DA8kmwKDS8gMcblML5DxW7kpyH66Zb+kNYnNCw2JFSfBjc/gNOXHs70WJ4XWhKXAKxrkKJ7ANzOpCiIuyRDajbDgUbWRasiNFFOqT182VPEpTD0QMkHPBIIbdRoI8oTwCrYXdwfbxz4zLxlJhjnt/GSe6X3wDIa+sDlCpTT3f/f4uURNTvFiHuH/3HC1IFqbIyjNIZ4sPdYMg6j/1V9Gcak/VafWH4Mt2Xepyw2JWnyXGGYgJ4YL7v8ys0XxnqteQ2CVQ1cmOWQTJl/ZHx8OK1Ae90io8AlE6Iw1V6ljFA3pJDrVTLrPa+yEEVk0X7D0mxydVsJBItLUe5FApyXxC3LPBJ/+p1InRFxZnGnoMih/dvPNgGZrMnQhvW53Mlw6FPXOotDZOeKYXa0QgxFJWt/q59q43FabmXBea4zN0YniNvC7Zagbf8lP2k2bWwVvqPwEy9ReplVVRWQ70VSB+c0WXAOqk0CpRO/zWtG7UZTIiqg5R962Q8/NQbTrOZtV+qCyCuO/udcwqBto5DhF8fzB3ktOFhkO3xH3d9T5M2aKFjsFanYPs1GzXFtDT6mu/+hEi0h6O/5M+PdwghUQPjP/WGcfoT+saDrlZeCkB/x4hWDAfrfeYvoyKYYRz1a2eVOFM3sD02PwLT1rf1QOxexn2IbsUAjGJk0O3phxWuNO9Tjt0U+eElSVV0gXcmiaZS3VvBpPxFLtoWvsD70fzwgQXQ9HYEJasY3bZzhxtG3Z8zoKqiA79qly2A9X0DDIgxCHSC9JPTmFuoAvXgbvH2rloFDxSlHuC85evUvoa9a+yNMjs7wvtMdSHpkB3DiMXi9B7zxf4zQApRrCRjFj2AvQMkvBvum2ra2QLaFF30++3PAkPvEFiV0J2P10/l75Wzrtsd1KdKrQvRVB2Q6Kwnkyx0H0SFl7pcoNeQnckqVnQGVMBYapYeb1fFadbCwB7W01FcFjg5EyFeYdQnrKsU3nCu3dUhkAjKrGlfpjvDzIwgd1CepxGP1iuCQxJEFFQux1IWQ2qQwp+Lof+zo4owKilJQ44wuxhoXjbDtNaS/mUtncH0kkeu2etsX85CcoiYGFhHDEFDUmsxJLlzO9kfpU82lJY84tlfataqO+mi9QAmE+Okyi3SlP+gUSbMFn8DOO+S9EzZc28VRgEHeL+gFztoR+G1UXbUKlwT2mJEBVmIM0Yk8d+fAyHhzZSV7OBuneGxSEAlQh/u8G5+C9IQK/6cclOQKmNwBiFTBXyTf6zsTtwoqTlqSuygMAgLiES6tkm919b+ZZrg3e9IAgHmZ2wyBewwdAOlPXF1mndQ12YRTXMUXsyLhaOCdehEXqs69PoyaO6ol95MsOjfuedXGPWkZWX0in3hX3FYvwaNNG7j5JIKpbVdYbiu4e1uD2LhV31hCGJXxUwqv4Oue3Q==
Variant 0
DifficultyLevel
780
Question
Triangles ABC and ADE are similar.
What is the distance from A to D?
Worked Solution
Triangles ABC and ADE are similar.
Since corresponding sides are in the same ratio:
--------: |
|
AEAD |
= ACAB |
|
|
6AD |
= 912 |
|
|
∴AD |
= 912×6 |
|
= 8 metres |
Question Type
Answer Box
Variables
Variable name | Variable value |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 8 | |