Number, NAPX-p115611v04 SA
U2FsdGVkX19RY8iiZ0iLR8PlKj6Eq9vkCRdU4+gfOS8lcOcC1nPMz++FZuv+gYNLwcnz7kDf1Y2TSMZIV1R1ipC3A5dCJvKiBqam9mlG0QK4pJq87cMG6h0ZdSabtoGafxsvNhR0tjoSAx5rymIp6BqIlmJcM7tKz2rbNxprfvU1mHA2Ab1hwUetsD6B6JhdrwJznwwHOxyZpAGAssJ18Ip+F9b9PHaePcj6NHbyvNdIa/oX+HziKDbnFanvNCHLaVWz+bKu3csuLs96mjQRjIzc+AqtwM+sLWPg7F2wcqbDgtC1lYNyyuoG2wNDi88yomqMb4tOhDTIS3O15vbLnoJqIN45XSroUVOieCDzF9EI2D0apRGHb+WoZfhU1lOeTR01zHeJ4Sf2Ned1/GqQK8+PDwA8N5iZALnlYS5fKIMyVDvBvZ/XH72e6X9Nx/lh5COo3rn70ckYPge41MVKfYuT3JTp7stLVIYQaSqSJAXGU5VYYtp3OzmOmiFjmiZq/c/JDwUVd1RMVqb8oTtnfQdUMQoTM+qDwcqRXUk6FFJd+SjtFP0vbOoLcvqluG7BxL1maZSkZNfD/WcI5NCcsPhGH6smsp/YqjUG/AEML3wTGfUteMkHwfFP0LYpYnZ7NVWvYV05bDBt47WinJpdFPC35A0YWlYyCJ6QDOM3/DesOuy3MJY0g0KgJE/4v0BgSmkZLCyNZQyaXUmCK98Yl6zZJjdHE1DDfhADlTrQdgG7oPPDvvf32XnY5r5tqaZ6hcGGoSWjt9FURV0VW4xdbvRGsE24hVnrs6asAih7jWIoPxqyvPZPGMfAIWXKHIO9pVIXHQnNOevf2QL7xqBCvsnAI9DcKvVwDsvYLfoAgstPB+9nyG6XGDd8AhbZAzuZD/xsE1P9QBZqCsVUNE2+LFTQiYzbih0Ig46cDOMO7VotpybTwdmHBoBSyB5kDBYF8brLvTq7qtxahaGTbNqz/QAXXkEjz83LqoX6eCXVpIvZCUiFDoofPCqGwoBx6W36xg7COdw7BthWey5jrb+t9FSfcLSVSe/ArOTc/JLjvNJINh6D4kmV9ZoTCrtaTy4KVYgPy+64WAMz4y9rUXWwg5sCvm4Zvqn+7anCCgzOIt/WK6WmrCRmTJrLT5bjSJ4rVj9q0huK6spiVd5nP2acYHyqu4zPSwsYIsJuNc5XYDiTeIzKhekA/Z9+2RQ2d28i7Uwn3OmJjN+v0MSk7Kjtx2RXcZyX49W5UJnBjn02ddayv9kVGuALAVIza/RrM2WEy7pHJ1ohtEOMlG1k6OOt3y26EVfQqpgsJErHmMC6iIC+KovLG2/6njU5QwgZkZ1rmnGTs4njw4NDLFNHtJEynOZhvC7NLvThlzsiIxcYrLw83nyXOsArsYtAjrEL0j1FeCkFkbjSPBoNAgzr6zs+3U0gWtVkpm+3884mKUWkYTu5QmbM9IghkUMVNoQuJ0gn9/POekNUg3q7A+FG2pUwXgP3Kd11KtA/n59dhhdB9UhduVE4c3hKp61eN3TSSAQozsjt8oAcYpdy/kLPhcpF7hZ3MT2f0jjFYYORqjJ8BT9VTfynUJ89wk+t1Upmw8TrPOkXnND1Zz7MymXAuI5pfp3+wOesea0b6dVqd0PJkRIFpQ10ftMOR2SKsFvhhTxdRdhLK2JiD+/L2m+m8JCotmUPiB91ug8Uld1wbAizu37YGTyXNQhxLtqTAoC7+HKwaD9T4ayaDF8h3XNqyOPaItVj63REpU1bDV7B00SAVH/SGpmcHsr+2YcATP66UU2XGxHZauKZIgt5g0YPo1BTRK+Dt3RKhEoQPe1HA0FbY2Jv4/WY7HdD7r4XyYFnyEeNBtf27k0CmrytB1D68eBV7NkaHtcO4DIGyS4K+wSargk38RXE8sd67YVzgkV3is2r2T+D1uo3IsQva4dKDItR9rClozd3No7QOZRBXajrwOQy1jpS8dqwKX8dUkt0WxUXTlP+VdIn2pDCBw0xzsBLHnsmcpDiRnLcQb8ZbU+ldFeXlluhrKTCqVDNG8C8eGGqcIPX6CUA03qGU3x7SRlXhVW5MBRcfp4g3d09tZQ4cB6XwknJHgocYFIe/Hy1kZPvCaKVohnaTYLlzMdXwJJPqb9EeVRW8nRFCCGshYSVcHjdTgkK4q1oRCCA0vrWq1fgOIfr3nMcWo3drlsPygpGXLrQvmfO7nkRQyw9nfAqlNd181BSMIYzpEvu7po9vuQxX16Qic3tYQXNU+B9cAi0TbIwdwLk4ZfRPNmH7KRi9s8qtEogk/W3UsOrr+yBx6nr/ZrkgLP78Kkv4PmMP4H7LPyha0RTi4ESTgVbVKoW1yJikyl8p28Hp/4Dp5un4I4lMvGmLdw+crnENygMEOzj1OLwwF7UQDosAoVh80EaoTn693qTqVRGb3sNpXjE8LIMDMalMl/UXXjM5GSfHXL92eepZWT8G+ulsP9TN3QBUHYsq0UVunzdEHervSx3eyqTa5YUgn/+7XpHsQaV+VlFdzUBIz1DtL2t8TBToa7xZo6nilu5vQuHKaS02kO0kQRh4Lnxl7kXySzj0flgaDkq+pKMuQ6DccKeC+J1wtkMHJFPOywpf8vC4DVXuqZvgTwC+jBgs/+cKY3Ey5VQZIPvWdnLMtUcFGyxHSd9mB86/rJSoFok655imtfezXdJs7tjTOYhBQhDpjziQg21kuAqG6PEVb7EI31oyLctIZkn+jQmHcEFpxYRj/35EIje0V+jJJjic3vxX1bM10AIi2aij08u4My45BOmCttzz7ChxlfKKeSHDuT4JGLa5FyDCByXfd+a1ZTwTPcVo9ej2btKbwOskOOQnvVvG44FU+ROoUMGbUu02G7MUK2yQOiOfLzQBRl7thGuXt19XetotXnmnYVzT9edRJB51lfxrXoDljwluc0VJ3eo4+C0qUKvNZSNYhdo31xmEGPxqPSKT0PZCa7d/4X5/RWdg6A1JwAouZcx9fuFbk469tVeyu8cZZ97aSXpMmp5ErjM5tCCb5XEBi9nLlm6Gr4C10cijyAXX2TgM97rPd6gN/CVPt/KV4Uw8Kd8LhUpxmjv2sPWI+gVaVzKqmL7b8xZZREtpZnTQjwwf0IIJQ74LVWZaWkrTDXpvnGYRPenXQwXp9kIy6g+C+wcyEoqFhPZuIsdkkOXhdfiQoV1SLhC6+cjdwEpxqwNAfRFNvLd6L5VKCcbqKDEvDBY1p2KvL98fwcl2OVzjANkDgvM4UffsVJwXQjP0iUp9jcnl6NQl6+7D3goWiWgDjJdDLonJbmAMbZ2f5EvO44DMVRhKVjah7+BJzovUHBb9ID9LgibSdCZFRRiFwihBw62DmUSYULqZMv3UgHhoNmxrA280bIrLB+BGeUnR/Fk2vMUG8PboMY10TWymAzdF7IWSfVsYJG1EgSR16bUhMx8nBPPqkaiDlDtt9Ttp/q3hiV17NTgRtcV1g7z8GmEIxzggSrPGTGzyPxKxP2y8JWfDs91a+KUlzP6Bk41OgwEDvOw9aI4x5wHqsCe+UXdUVzVSKSr+GphNtMx0sABaWO+8nl/am/fdtQ9i20mMOGr6t9PalI/c5r/ZHc78XEPv9J4WVEN9akOxUY/p/aum/pMdKw+raCR8uJEBM3iMsFFu3llrgTi5tFbgf2aDQEwbtfgYNV44tlo7so+6a6+DOr+dlIgaQXVop6M1uqlTtNVr+rK6v5jY2CUZ2ytjoxI8HhPpLTl10dxbrKMafQqkGRm23dRMekpRf9wJ1d4gquqwjFFOx7ZFQKY3vm+wXRIxACOeMuT5VPop7mwQtBTitJ5v4UaZGmpOp/9uPxY4DMzuSMaJXoAcuCxC8qGrYv9Og2oXdAT+5KV56aK5b3XpJzrZVpb969n06Y9fTXby37O40kR/HF9p57zYfnDNphIDfXkvg4NQwN4+4MQrtn/E9LEktjpIAop7geuQMbGO4qFnZQ5jiC8dV2v6WQ74KAw7jLn6zteZwwrlEp7O9H+SG95xajVGVrRuo0GM6JDm5dx5+K9fOyHk91toHz8uUvzcDqgqHOb8XAj7GudeCeLSSuTykXoCozGxMyLsfm01+00vn5WcXoyTt3O5xZL//67HldNMLhUnUEBoPpet28FcOw1nZTysRa1R+BQwAXk0Ie8MhOkIj2I8nWvR4Aq8uAjoL/xzSO9d77M4Zkn60wg+kKH1PWFVLUFxfUA1/mVKl7DxuhLmKkqon4dXx7RuBJN0Fv9TGHmp/26dRXzZu1V1YAa70VqHtplpwA/mR5DTsZupAL2JydC4/s9VOhYvKSsgfUQspXepZZn4L+swrbaYOCgo9QqOIV+fm8A676nO+wRwHdhRN7eB0w1/cHbaIr9UbsVEgh1Sa9D2NIHz40H0Hg5nHK4OwlPKcQoRttBMsMZ1Iz18Bxs8jEjtdZmRzPGWAaU2QhQShPm5SeGxyaJhOvcipkCo0f1IYP+YGQ/KZJIk1CHXKPoAdiNiLur6/J9pRN7RBwDBmTaMNC3jZumg3dOew1lIPhUPb9ezKQ4nTeAnJ2NuMBQiIdJnrtS4ystujLpJAdw+FDfiDntDc1qBJ6LBal75PkxkpajwzkjQ669W2hZdSNATpsSVNTMvW4d9s8BxGiV1QPV0DBiDzKXBBfR60ipVAgueBX9WB0QvMf7RFha/1AQWs1yaf/cpYuIyir6CvwhSeyVUERhcS9ywo8AOcAgVms4OQx64zn2Z6tTml95asJlgyxV4jV8cgQ3S6zIqDOWV8J9THuqpEGvfueUl5P7WZEtJLm6+Jqg4AwnUXHsrp93qqWVZQwlXDgqvvZN3vw+xNPVrM7fVVRaxN8Z2VBGdPr4Jo1VcqKZyA+Uz7AYvpsqkI7mZox+EVx/Btxf6BYmFboDLdsLa3fyBZxDWOs1qUMJJnFsPig6JsOMcIA36Ou6t8lQkX4xhQU7oVQUEV8FEKeu6RPrAqpklfzD1fjIjEWpVGQCC+qg6SEC6MI0eZ7Mp5EATP2TUeplz/SwHBBqLkvUdGpJprwoSEmt1wpeNlH9PbOt83l+xlGoIWqORGKlsmNxRBYFNBZpxQ+LJFDHuoY4fp4gb8ZFqjpQqU2NsnoR3IEdXTDKjp8bI1wS6H5k9oRPnTg+hDgAEfzNwpEKkg0jQwgLeoP7J7vdnQH+hgYXZ3jxpPw/BzxArHHIuaUAgHiV2z6Gl/JxU6aWk+0vbUSMqb79JaZTQqLXhXrCeet5wrbPZ9St5xl1AOarGV0lVTtXs2FkgQ0WA3gdUFso5ynxDcERWbOWmFqfANEA1mgN+wHrdQtOkXMkXkOnpuqGlpkeHO3dH7mmxcO/0t2DwHzDOwtTE+df6bVZFb+6ikT93wzz/siYiH+tSfyeZPculvu/olght8uZ3izokvVz+p/vv2gSXla/IzWKBxL56ietQzRCI9JHUzqCIoVMtvwHQDISwPCkk7Lys+QGU2yWqUiQpDOF2qwsTVLA0bgXRKvdPNaofFtp6hvxuunZtP5i8yoITzz5SK/+J7XXdGQXJeSyz3IzRcxRIh6B0bN6r+Ll2l1llbysoiol+nx51C200BXXqMnn69iyZ0YmCKZ7KNOgCGUDKIt6yqsDqMI89vCTbW48MXwkl1Cw0NYoM1P2MVPTWGtmpgr47vlqsb1hyTwENSQqjWqmCJS5WWuCkmp14ouYE59dKNt9YiE3BDjUG85/vFj2j1jgJ6IquVi+m6NXozzMKCHDywgC6zJoYpV67czoHbNGFKfNeIK1x4Vl8I+UCxpdazkg91Mbt8oyRZSgd0m33jBBs/f0CWElfRboT0FsShDv1kRwrkc0F4FsZ0qM1SVnX2TU7iVD4xaJdd/D6SF8WdfnzOmW//tMMlBWfZVLU7DGY6Oz8KuEc5c8vGSdU+4oiOJ8BqMEkuRfU8sSTQhv79gE9TcljtHwPSD1kGUBOqzT+WZJhQRQrPBp8eTf2pFFQVvMs3n57U7vVr6/LMnjfXWRYUMqKc9vXulSPOu/nehe/lyWw8Sx1A4ORov8QgX+KZYcaNzArrA4gS4ZmTDErUDLxAyXMYcxK7kBM44S9TteNQRycNSFDm83Vxrum6SY3CIpebEsXqsuqz1jKF3wmi5S7AQLZEWklwnyOCz3jXsE0b+R9NPvNjoBOVVde0ZTmMufzVkknEZh96zFphXRUt5+ZxmkXo+4sSdhfE8bGdi3XLgvV9DxnoaXFVjpUvAQxPm1b2wmQopyCG8xSuwITIySMkn0f84t6SpLYOfS2dIllk+dkJHBo2vPhq95hWLPwjZjd1GSCSriJnS86St4fluLV1hOyqZ9tLs6zCzlIX+IBCRpiJGMJv96m3+JTu7mWdnQS3ryrjA7fkeysE9AfXFFFGa8fU8jNXlZhZwHyXdjqNFNE78i709HrW4DpKHbhpXP06mAuRbgXiIbGT2wKAm3Bx/gJjlR4nxWC3M0u2sKeq6qu0nMe0LMRyeROD+fQfiT1mlnBUJtGmgbT6f1CkNAETvwKMox9ebtNtuTGRzoJiDFJ2VyD4DhNG5pum938NnaHIv/xtWterFMFUCXTe9xxX7WpTQImP54AEsj/xsC+bHUKP0iGKRXqS6Hu4jf7DH4oH+8iPzyaXZ38IcaX4I2L6MaxvxfS5XhAoLvxy8QnMTN+r86Ybz2rbXGihta1pYsQ5QlJuMYdaYlObV7uxicgO8de7KlEj7r+qZpvNQIqbcj6121VEnRhSfUJlvUp+ZvgaRvbBCPi4YBIqyMnw3tCgKH+U9msDGLJHWli8A5iSuz+63dtYUiKUOA/E2J+HttEkVHCsXgYQmvlfWaNpOHkDekMrRKldSJkjqS6KQ1kSh98pzTZNKbdKj80ZlGgKR5WeHwRBZqEpdr2ZaJW9SzXElgZSbW8luhc0vgc3POuysomwzjkkQsDbJ0gCwAaGVfQVrY0wgf0NXz0BA9Eqr39ItjfD6eF5YOOR6J1VlDYhHBKr6p58fMS16FW1NBOYVsb+gJ8N2u+dmnbdOiGUbR/RZXMGpPZgF2EoW5SnYHr3QkyRLZ8bjndUBlijfksrqMKRYDDIBnLX49o1daB6Wy3c3tu/tYGLqGyCp7J1mR6izf8t20NnGLfeRmP7+obgG/4W4YQ4nrVkXN7eKJfQ/MyvgU6WyRFYdA3NNVkskIieoR6TWiE4ty8iQF8hoGWP4OF/mgf1tNEnM5fmuOeSkndfR+54QmjhLCOkGItELQqSySH243V0G9kOvrm2L2FJPUZUoLgPamnhqzPcOjB6YqQfLTxrcERPKDPfD3PGOG1i+gEaqouH1iR3b2dakQNQkDF3ZRW7NnjWHgzG2PUhihBxZ3Ed9ujZKHZ70pddJOHhJgS6p5m1yy1fpSzYf4rVhI9QqFZyLyyuaJHBvidUazF05X1vr6SnkRsI2G7JvjFov2kKLoj+RNZHLJGgHpfOrKKDVmUUJp7YKDtJcMWMKLpUjCu3bnRy6jXBZ+mx6hFOPd05B0dijN/wqkErwjgiTgfmS7RYFmt1UQLQFZhMFjAon0ww5xALS0l/k9XNTW6kd4Yyx0bT7GLd47iEYohux5WYYUiN+fgkk7f7wkDpb1XPLFfDZr+icjywJLIGVv5Y6GJZBq59tA1X2vJHx/hVOktiOeNHGOxeHPa/sFsguguRci36uT1GsZ0xNs/mYa2jbKJX6iB6QD9M0lA+pDTwQSdsLyMk0qaUaSrQg22k6ODfeN9t1Vf3BgEh4w8FM/LIqXQFT3eSUe5Mm9JQnKrEUDTEN55ziBcXGmxJHDOMpW7jxlool9CWeEH85xcePor7J5E/hkq+bLv362vVE5avBV7asdN2n/0t1VwMbWNLqsr3OEdX2jBl6tOEliWrli/B00SnM9JnrTPv99CK9sMOoznwqxWujFLhjJ338IQEf7sGsU2uIQwRzToISVl8Qm7MdvT/PRUE3Km1mmoCSHAEaun7mUfw10T7T5hO59+HBLYxkCGVheXu4xWisRFQQFlzxmafmVsO4WQw/+nsYmEYMeSgS4ge+2THcr+X8bqkRKddV35VuMMKqDbA2B4fUpgOdwrz86aFJAx0irb4NYVOVKvPpu/eRlOni/vImNBz57JRy43yBIVEXp+tG4baxiFlXvc/uHYdxTldDYQoUpYUL95PIrUUq2ScHh31QRSf9iD88jCk8cXuZ91nHQLNhu+wy3GbXawd+yU3Gc2xNVuIBHC6RnirbGTeWMxF0jt9iMgTnAheQor38H38q8m9xup/B1dcOOaCIuN0Uf+VQ12OgHqFuwO/i2hGo+ARswfGgqZSBjFgwlHr6+JBkt1nKyL7FGX/zS24BwafI+zMeJRouZKJ2Rfe0FEnBP9PnpCIrvZyskaypsWm2KCAxBpmBINOpj2ofR45mayg38vFIpNX0wyNG3XdxHL+khXjqnLw45/i0Krs67hwz8j4LjN6+gJCuw0c/P5NA9s271HiSlrWD/UD5uO/TPD10hfJ5zWrVfxQ4R54SHCcHyVVVcbPLsXN3MUC2HOFEyLp8pCtaP2WKkIhXoQ4UJIhGc5GxktjPXu+YyJeQKJjSe7/i2nnjAQGOpe1ZGYUFt5KQHQpueovuX8g5MQdMf8J96xt6lAuhfu4pkAlCuQizkAlkmhecyBeJd0H8fGS04uDYbfA9288M/BfVqLUGs1Mm3Z6rznRyNeliMvsylHp6UHh/szAjWsMIrh30R3DAZKZ67iE4T13eCngIxF5ycn2E0RIWZD85XW92sxiqYo6JbvjthjFWk0Ku7zwq9nDqNBX+v10Qy4PeIV6UuZC5jgclicfZRTsAMQZ4Rox8YmLXvyIun13hCrZGujtIzE0jI5tO6wus1Jj3ru7A8bLRbWFpEzdorbDxym5ZHfbZ01XWOotCRC6o5p+oTVQRw6OPIs40vklL1Ffpe5CWUB8TOVNpejngfMIH1RQISKVxwCLFjCb6wKqLpqYwoDGnyghVbgj95CIswmzKQcHmZbgnAiyrQ3p8gKpKnUq+BVFGELj5HrFfFIL7c629B6z6XSVDYCLXMyYIcUekBQB4aKK8IbIkSejWbvavA1H3GBMkznJqONOESauvat88cVxcR3FQlCm12iP5w2MF+ZG7j3moDUWlRlqzaEbfqy4hLadIuLGONvcpkxfMufLwdj4m/n5kYlVGv7USurOPoqB6QdgBP+LQZjQi3aBmpoT3BN0skOPmIy5GzqScp7KStnExBo9i/lPrwFYiYV5tF4NvKg2q/XeW1NRv63hyHRxgvR+JNhzNJORBUbxDQ6jeOyPm7LaieMAyQT3qa/DsuKUIXyiqNubYDAHYqSAv7Vm8w1RbKtSytdE4tDMrTJUf3BO9BpQHdFQpD8wriVHFXe8p2oBnUdf1WB29K+G9anAtDPp/3SudbsYHMq//PNDo07jd1as6YbHdH4D+3P/KDvvaKbUDa2pmSpTb68VNBU79mWMN+EAb0SE4jNh6uFIMTz5nTnF6iKeaheg/o9TtJloo1H/YTpzCgMRHUKOqszmfu7xLCLh81TDWzYiCVClZaSgDbaeI7Z18oFUzEcl6gHZ2gmPWf6LQhMnSVvCZqPd9eLG3MZtPJa5xRMTXdM7BrDaC/5YXEoHCxJ87JgdB9nr5wblgVxX85Xbx5L/8R6FJAbaA11Qo2WDe77zH2RpuUY/u+dxvCjbb1zDfufRiSsjdL6eAh9ywTX1Lrt0Ui+BdPRQ4A4pCn/Urx6sJ1P/KC9d9Ghv59VBdrX+/Wt372+f+zYnMyeWlgKFtuj+EGhZb7bas+pJO3RoIOHjIke1LoVt3EwmLXIHdQL6F0gW/e3BPgv7lg0mGcwZfSLUfS26FREyRg6PnTHwcxof4JJSIzMOTnUMjreP2sWrZJU6RMtFGfkaBVWgtoynZlfXzT6Oj4C81/oBeJPKZ16ZefsgabVpdO+APpmoBxMRtBdxsqA96aQap5ZEbRV9KT+ikJBSs+q5QAohtMeTDBnYLoB+oQMf0waTFKUZf6pSUZzFrEkVxI5XRymD8EuCe4ezD7aWfYM3dYdyS8ISh2nO6pndLMDX+3D2ZIUcTh5IbXOtoKJGqFyVjZSKtwG4ItiGLpcC+BFsqQf/djo1RK8gnTNRynSLSt1SItb9bf7Epnuan9CxqSKWpds/rr+iGlz2NlKo0GcPWyqUoU8qyolyaJxjOjG8VsU1Qti6XToebm1jNrbIGh0EBV7fl9WyFoZILOuMh38F1RkN+Y+JcxIKXMQX8y0Tx14r8eSsHEJ7JA8IJxYENi8RveIsm4zInZ02tbPlFgYDw/rD+DXwoLjEap/QcLVsLiKh5/+cu2hZuI4ibCy7VsT1KyRUaLAwIHabqsPKQqS5rlpp/8hELxw0nZJTya4B40WP+oRq2J0H4rknn8Tn7U0MYKPIqHdoRkKMZYuf6SES9EQO8zEzBzv/wc9Qk2HX8Crb2UoRcw9V/RGqyu2Htn5UuJMTBcpD829McdAt7FEj0Nq2GJMvAvGvVqwpRNPitmt9rEPd/URrZ6yMWUm68tUBKQWJlq/rNWI9ctx2itXAcinZH3HomRfVRc5U2D42Tj5JPx5ZQMt6rwz562iMiHLXootuC0y1i3/2Jl5gWQ9uUmv0/wrflJOrhTtqgkphexBsNL7RDgpwE9I9hfOL2y3f10oMlIL8nyQXFPzOvOLIDtsVhPe1v052LgodlMyafqqeRdnU7o9mhPD2cUm4SGasUbRCpQpRKdwc/wq0SV89EffGA+a7nahOeOXJ4vMeccRJfHIFG6ddGp4YF4y2ucfWN6ih3q8xCsP4B0mQxxcTHX55nzN9lZoxy3CfXgy+wS1BiPRVEufmKGFD98b2nKE+XMfEafEmdRgPHVNb6S+Qj04RjialtCfeN10Xu6D24AOYGi1nNwx16ZmWvDu3CsU4DrkdscKSXd5Pr4QTsMoVQGkkW9IDCq/vmDLRol
Variant 0
DifficultyLevel
688
Question
A 5-cent coin has a mass of 3.1 grams.
A 20-cent coin has a mass of 5.3 grams.
Jonathan has 198.4 grams of 5-cent coins.
Kevin has 964.6 grams of 20-cent coins.
How much more worth of coins does Kevin have than Jonathan?
Worked Solution
|
|
Jonathan's total |
= mass of 1 coinTotal mass of coins× 5 cents |
|
|
|
= 3.1198.4×5 |
|
= 64 × 5 |
|
= 320 cents |
|
|
Kevin's total |
= = 5.3964.6×20 |
|
= 182 × 20 |
|
= 3640 cents |
|
|
∴ Difference |
= 3640 − 320 |
|
= 3320 cents |
|
= $33.20 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A 5-cent coin has a mass of 3.1 grams.
A 20-cent coin has a mass of 5.3 grams.
Jonathan has 198.4 grams of 5-cent coins.
Kevin has 964.6 grams of 20-cent coins.
How much more worth of coins does Kevin have than Jonathan? |
workedSolution |
|||
|-|-|
|Jonathan's total|= $\dfrac{\text{Total mass of coins}}{\text{mass of 1 coin}} \times$ 5 cents|
| | |
||= $\dfrac{198.4}{3.1} \times 5$|
||= 64 × 5|
||= 320 cents|
|||
|-|-|
|Kevin's total|= = $\dfrac{964.6}{5.3} \times 20$|
||= 182 × 20|
||= 3640 cents|
|||
|-|-|
|$\therefore$ Difference|= 3640 $-$ 320|
||= 3320 cents|
||= {{{prefix0}}}{{{correctAnswer0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 33.20 | |
U2FsdGVkX18nyGfTX5EUuuWyiQJRUL+LP/jvQG+E/MffuoCBLnj9H5Cqio1mlhAnzybrftdeXWiiq98DBQ1/91BWtUnNLtnW1z1I4xYXX6kCPUvjQS20PYHdFsztuUBhH8+CG3zJUHYtUHlN4UXBAdqHVPl2ZYfHTGovNaMyQNjeCoLOI5fnCZEcVnTcH93yjFyxO3AU0JkSf7l0t4cKHiU9roaNKX4+K5+t78xMfOIwZQ9zhhJVJSPzZpRlS+M3f0H/RCD0oof+b+whRvZZO1NJcnPJFVi3+vZC9kbhNjy+yaSUaecKxg6NJbSw9pMoyfi+SpgxA5ky405OsbX0spdcA5R0q0eDPmiA2TY2SKrh0A9v2/bFAZJXjpIGALyaUdqCtPKEwrRxvAJDOkAmIG2OBf/zhNQize5VkajuOuZmjqaa/NkvKhXvlCGU3W+pwXpoxiJu5fAfnsBnAKjm9unQwOHNC2VZD4WSbpXWfdIPDX4thAV9XllmfGteYvTJ9FB9+hqTUZ34uW+GQpGs/VqGJJSLVVWpOktU5tWKdt3M6RdNeUXEMrZbRYUGQjj7wYIdIBaJ9UBudzwFMhkYm0kBYDJ2cCFi7MFYPxx0OX+FqiU8zFuNqvB8qwmBdrmkLbE3jB34tDVvXEmbymbDBS+6FLJn1jRQh5qcVUfDtihLR6S6L6VY9MTn0Y8r8QTFfMjnusu6UXKQyf6v2yfAwZa9CNz4rPU8k2n9bKeUx3sbNUnA0iZ4x6YL24VFTTmjFx7UIQ8OkCe8oW0TlxG9VNpusWEEQpcxzRNVFnv7FOYCoHthfvOMB1OfXOg3i1KuilMOtGneYQaNvM/JoSwZ4HkLexaKYBi9nScm1bldN8dVtttmFZTLNCIlIsrCXdgqmQTI66e3o9hIhtknijAD9nJ+HioKoQhIyTPXq0/m2vNMlydfEaymUhVzXoO8jrvFU1MFC1UhHNhXEj3LXiY00c+sxLXK40ZTZltkLm0l5DPE0R2pyot/O/93drVgUYMtElP42CS7nTs2Rbq/cpFKi6Ll82oWgDkAjBkB7E+qc94K/vLD3LjoyV0k2AuRTHhckp5sBWmNlKlNKYNmrCZF32hSl+5kbJRSJOi/WVAyOn7ewagUnhqJP81DAsBenPCCga4JyzTlqEIG84ucKOnYnIS9zgsjkxDIOdOJmANYL+AvkYZzynIMdjB27EHzze2jrDtpaLirWWTswA8Vf8oFObLipVtBmVCex9Jb8crHCaL6JiXtJ4wkCaoCyLWfLu8jb5X1ysh50z0cE8wLOjLS4M/F59uHNgB3m57h8DfdRFTKVpCkwGPEaZB4BqSY9W4P/23O60+kiz6FCaIv6MjrB0PD3PXjGdH8kZ2shfvFfBNA5i5TyQgKNXMm4aTSXwbFYYlfqOVxLRVjyRhOEUD0LAML6WgiBsvcjaRg6mIb9ZUK72fZw5QfiWLB7+92/SP9Cas79QFZOsA37ClEKFxTPPh+a+1StXKtRiFAczCBQbqnDbGQa97o95KWl75JnnqNCSPDv+Y5g4J84ILFdkWXkTFBqLsnEr+Qy2MMYQ+pZpisWmzrFRj8UyLI7dUkXuVOZXkyCvQ2lzICxagD95NjBRgwi0/1npeZ2mKwyH4WLMIaLjGu/MFgNzOmlEpptUiravrM6YPhlDSoe2+/cgHRpCNJEAuYg+O1TpzJwuSUXHdBOumr/xjVrUK/kM5a/gMCgwG/Kfs6cAJ7Ly3x50to575EEPON2PUS0sc5ZxIpyHTW7pjXclBOINRi4iwc3VYnLMEHTVvmmrTkzNWq0mfkKDY1xKhW2Mtwewb/uRE7k5KbbFFXTJYdRG7DjSjijqsma3xH+3Z+LplzodDfbUGxip+sTjq1AMN3HFW9p8lHX0TciFmgTegZV5kcfWX/zyiRrwBIoampIG2Xa+lAHr+lF8QF+Zu6g1ffondkMtuW/fQ3uezbcK73q9KhKYRUbqw+QVmYxQjzMKqAU7CoKy8MSska3OOThaJtPGrQSJO7RjOUT/pqy8PCDadiEgnFsfc1EI02miVAQqAC2pU4NWy10684vJM6IYBsXgT+dVCNVqqL0nbODWPBB8RQkJzbunQ3WAXrQyatE1oGAfI1x9LiDPrPYysvr4syweTaiHPrCbUBz9XftiBQfzS0NmHlALH0/rPg//KZRDgQ5WNDlKiBt5ojnPkQkC8ioYcCvRAfF4jqqe878h75TC62qt2EbIbVaEsAG/Q/AWpk7XItns00xX9HSZ59OiHJhDROpXEI5IaXrdoV7YlqcYHUYFKL6u//s8QvqEcPtJQzpfxJjrNKhKbHM6ADSuTsPNkUUTANdqKmDTDbWAJB5B4JE0/Eub2Px5409twmY9fwtbpwH+kANvdDtPvYWIHJ1mUEMFWtaXcigXmbCNvSxarzEAavVeavrlXPWpVpTnwS2FYA7o5q1CDj15AjKqHTErUlExNQAg8uacDAGOxsPLYv1ba/w4rbTT28lprdc6DmfZqq2vN5n4t8WoXpwoTllFQANhVhQvLq9KkVAn/j9i9TT9S4rRUyRat0B2gQBWj+/m9R0B2e57bH/Nh3u6CbdDPIkok2cXc80AR49XFsvYaEkPCzdLS0DzLXo/N1vMOza313N5G2dnGt/1fgx/CESrSCA9bCNDeqQaXNweJKxdhhEikJBZXuCLUPb5AAGiKaLkOm70EcU6hCCvf9j0Qqxe2hbDvrXROpAMbWwjOW2mXjUgV7Nu1DstlzSd1kv9YsWeDSscUHLbc17XFQJ2+7jGejxdahZh7HBSgEOS0UMrG+dCryqepnVlqvblUhofWqFaEPgYfy/hk5Nme6gUYmBPys8dCIwVSoRycgWf3DvZoh04RXT4IFWITR4YR2LcnjVN8cmZxaZpl3eNLzpYQpv8mnYfFI20N0FbRCFYCLZhczIegLem1tKSmIkRrhAkH5Sq/9U3KrYphkF5h7NP00WarNwStL7SvSefEWDwVlIPS8N9PtMXBbvoA3HbG+DBiXtr1zZpQxEFqNwrb4qQjdjqpCYqgs0dtJa0Ztu8vTIUl4pZ38UAe/0QgbsuppaJo9jzMsOiwFy9dixGRonJFCKKUbN2QY74BZ7dlvIm9kHRjVrXqeLzayNS9hxdHUiQyPTAh5FtksaaI2CkLJylJ6ImgC5ASlKycpIoEBTwZRzr4IUzbDfaJVfQPjfvXeiJE7a0pFR20tPG1BG0oO5SN9HXIwryMnK0d3UR2D0zzdERv81KbhoVwo650TY1FJ3z12/i2N71s2s0IeMPGiq0+TldYqa+D8HDZsa5ThRLs52PKZwL2k2L7jGhyH9miDWJeAgX3O6gUF4LG2dVcM9OelEQzomaQn8bbjSjng17LhLBflmPiuNYRwqewXyqLYv5cQgwd9Pyyq1iVz35K7IE027/aKa4Nz20+thQJujD79QZ8YqIIbyJT98TVHTu5EqEV/32LX1vUT41vyOhgsRPrLMUuGlPDImAYuMfz6vadj0R3JAPVR37uGSiqPkAjPQlq57zIMx7ieUiPnD1MezNGd3oEyJJm8p/OqSyUOln2WcJDec2k+krAZlpq+U8NTPhM2dRDY8nxoNyiK20ZlQOrUvk/2ccVP1iMpfNAY8+SSRJxDYM5RZvAYh8vddxN6WGwjnc5Y3OOV475pVbzjBx9iQMWUgQ0pxbR4b1HPU5EAlTGW2JCksakB6/HpGkwTbkoXwMD3XOwq6kGDjwZYA71oR7S5NbNzTVeemfZsAdbbJ09LIBxae4Z6QXINI3tVZiALO7DW1tuGcHQgZm+MAtC2pZlwvyOaINkmlXEne5E/Tg9VH8wMqD5Zzq0AAASRwoYKoe2P3kaavq8Rn+Zsua3gEIm82ZwLNjQONI7jWhjjRCFI4NcdyhRo9kYFyTyx/dI6R9B+ZNbLUYu6N1WlNO40Pl4aO9lPsZxFxCt330jCgAKbgcSE0EfCcPhIxqgCpjREwzprCptyys0qYlybm+H3H4nlC5orAxb4MYk9suWNravIieyzuHJ5HSJ/PXpc2F0LfuQccI+51MOZbiwFPwnyiUf51hIOrfkha4d/VTDB2w4eE0z0KCvn8izHaral+L0on55oFpcp8K/sTWyFL9AjuESHk19Cx7jJY6+wojPsaxBS2Bj+pUOTH5sGAPWGi/GOQLaeBE69Bybubc7svTzXvxrQXk2qtg2bfAGU/7LE2z+D/35HiH9Eup7VbUWMA0Nx8zRQS/wPx4tJ/66tl7BY4uCquR9rEpT0H/Fe0Lh8sjmWYSEnb71nnlqZVbDFbAhDm25fvVt8d3u5muFxRg60cfHPrwV14OTewRJJ8lJq8yfqo850M/Cb2D3aWTuRwX7OOvtkcym7tcGLdPbVxo1upYfJB1VSBeslDsIL6iFzf8pgXACMdcD5Ixjph8CGwyBqBOydDaByqoocj1RG7JTjEOoAoMWM2jVi6Bp9T6REqXmNlBLWS2b8n26cPv/rwds3OJil5wFNWnCUpGxq8EBJQhhTbkczhe5GFalmp2DenLFZZsSy8vVgCVZ7mfO08NgPn48D3/2BMUbwBuTlTJkTxv6TRQ21bltmsdDZ6V8N5vCOv3Jf93bqdMdQKb/QRQvf9VwyZ9776VHt7Rcw5gmfWv/QY7WlQR9gMnNiYY87FIUAreYmSDEtvjnNWHlOkj8yJajmrSnE4FXz/brqIZK4p7/xrKBy/2izDbC0q5xFJUSfpFsN0+79k1JzeJfE3xbD8Ntv9Xc6R8QhSQ8nlGPggdddty1H1msQeHLdZ2hpMg26PGSoQ0bsrPn/g0MiwiqizwivHP6YqOM7byRThj9lseDg7zvGfTw8bU23w/M8rdmA7U2PKdTOSLPvWBeaQRLJbdKydC5HbTJ6zZ6BMFHeFm2Fe78ajdGzRPeoMtPh1TsZHAUVRfvpqRI+6Ec2vwWsKIYSGYYgN/otJp7xtPEwOV8jDS96zJD4Ihk9DGf34YAtqDTkW0KA3D3v34R01QehIvwUA7ue/JwOo/cXsRQvRmpy1S3xUbrnt7tB32+DjA+HQ/pK5kKA8JU0MD/yKSQ9ctKyw9pvwQCCwZUsyHB7oHp4c7X/DonjOOeCVFsGs+7dsNaDOmAPy5arRmiGOudQzwqbu+Cc4w5A6Ktj0B8Loxj4i/BBtUtKx0zzbCMcYQLpAbTZ1dY0Vv1lO029E0Par/gRTQvQqCho3cW5q8qa0mWxpJwncdpCavrSNcdyEkvtPgnSIRliiywnZt+H83zSyvIqfgnT4oC6A0ZbnMOjBi89JUn26DMOrNneBQPOTCRMHEZ/fqhUK9hfHVHRQb/aWVD7cx4VFohvjeMA86HA9wkjzorfKc4Exa2Do8ALgVUblHtOYFyaX1kir27vR05HoH+STf+6ifahgLo4YY8R3siZQ2fTzVN72Q3+4KDXbeAxLcOXv2EGGaw0KFILSVZ5QvFH812YjcQT7ZR6JW2Wgiuir4XWcv8LWdqqrjPqynrxioF3R/5J2BOHg/EC4kevLZVx17JqgFZXG5nasLFuezWa56m11sWR3TcHs4Qzn2+Y2Gyp5rxVikV9LQv0GzU8xF3nTJDOiqhDiJHCwGTVTEBJ+IYGk9bw8qlqsGUu8I63D2eFbc0m7FhE3UcWpF1aYtb0vvA1CTin5d7COrQ+ribQUKW1/pGXKBimgt8yoB1xYK27Bsyl88bs3RiD6VqcfHwWHzsOUH0hGqfxSI21fGAs3pOCrOHzxNuMdz8uyc/oRqzFISTqdtRBXOcbde/420pj6HL3QHqky7RjBC3daCmn0gdjzJej+O9vNmlP0jhsTptZnX8cQOSNtZcOJQscWxF35YOWKJxXGK3K1x+mj3knLabhTDmaNeSHc2R3mgavSm2cYj0nbSNICBPwRf5rpzqcD2dkA4TRRu/cTfk/2EUVEQZzlrRZlWbQdNWPnzIhG4i8Qkik3h4LqJ1bN8UzUgeWn35h2TcNDU4mMJzk7DXlOkwdgrkmwQ7u9Mc3LVlBycvzzIYW/UZWk4C9kPrQElJxIXKehIxeuQGjUVp6k0884ZOWAIJzYWKPUhJmp8EhVCRn5bEbKb56g2/i9ZbH5ozPOWci5R73JbSEqTBRp8U8+IOSZGIcbjtlFPxWqppa8xpaAimoS5XsbgFhMV0W/VJ2mJqdjqtLXhE0C8JIfE6SpldwhkPBuvytg1ucd+gSvQbFe2uPOedUE6IDheTJPdSnp8rUBdMtc3D/F9sehZ6tFWH8rlcvZJelrqwDLrw2vHcZP4SAhUNxqYr9VsIgUYPphRgDHG5MLXu4SFrTa6UCVaGb3yOOOeolP/Bxkk1a+vu5mkOxfTjhoDSZyQV73z739m1W7nGVCfGcnzN4aADrtfAuprZfKTMoMR7m0GAnBLYPuAU9X3pOqNDgU5qSdlQkURq4dKZ/oaGZxDLBYLy37yTpCeZaHAZM9c5KW7OgqA+E7eqRHbekrcRWMKMnnX0clMif31sibXXG5gp4EatCN7hQY9NruIftebNOUDqRQWT7PsiJ9eRhOzEiHSMpjpGrsPfrbuLacyPjA1qyiRhgPPZMk0V/Ls+YGCx/bkFh9gWnSvdNPp1AtXS9K4xWjwk5buB+30vAa26t/vODx/ks8xgQn+zBEEa5mJkwCafZOCoJnVErVN7NKgDNQIxYE9SujP+TYjE0ikYrIHruvnuxpERwckScOYXCpAmN8Rt78JgjshGsiOvzUGUxTsxv59EZgjAm0Ew+gQVpCuPVsHAmcX/YIaqSUk3XOal4iZk7+TyDy3pF+oML2UGtSjI5Y6WDfud18IE4LtwV+pePVBkYUxq0ZZXWDEVhmXrZqxIXLIXFgiEnAOfSPaihiXnyrAwHl5XhH+DD4u1TUj8kMUZ7m622CEDU3oPFURUktgAJ1hEQevOKWi7+phVAw7WjVaxfM22f2xzB6CCpNV/W3tdLO4Vd2q2mJVEUc5qSHqWPyo8KDkIUESkklrPICR/ayfQHRASrcSUnPtj0lQ8izXFfM3wzEka7ixj8RFkyUhE9im2nQTOV1lQmkDDpyfc8ZiqX38UPKtpqUVsGHcBqHoJllvniacgY9QNLG6VR3dEv27Pq9cqUV/xK36vCR3he3Xefse1Zl2mD69MQ0ZuyXPPWhP1wx/lG+3aB9OIe2FYfDs7+8ZuMnmEAIZ8Uey+u9JuDB0LKP8JWi18ltnOgWUfbCG2hbEZnLTs1cxHLwQV1Yy9KU1NnPMP8Dp8lJsQyTJmsG4yrHXB0EayW9wzDmePPO9jfQCWxHw9ynZHaEl7mTdymViDXfNhxG5JASBpO4Da7GKPRGwwFgQanXZK7DyK2+Ltc1DUCOVM+4n6KPViYHowcdHn6mDX+7YaS8AKEicsb+HjH9JPh5MkAL/jlvVc6P5eMzIEmqFLkquwzcpT6UVgYeUWk0pwmRUqOs1jxpYDM0lXOr0tuu4kT1XTW8hGt+ZHZGQowZ0utd9B3gp3np6++MaDoGn3nQ1+ywlYCb4X0Nzs8L9uWij5LHJZ49WzTHLLRfT32huIgwaEajtFHYIgLAV7ItRo2664i0XMR/WFO0vWCagfX4KcTD1F/Zz6NEMvxobzHGxLINjoCdOWNbHcKjPPqmoNpy3mZ8Cpmc8rhSW4uk4nn/JyekVVeIrycP/DwznQ+KI2YW5vlq+JtQcz9eigMX2f92pJeteiyHaEw5Ec4oLjIh8rfha7ZdP3ZH3dufhF+QsyB+VvI2Lb6IvpcEzju009TEsAlBWpb9dXOLWpeUJ0zJNpQ13+FYTXqsftUOZbfME5M68Mo3aowYsjJHslaNxHM1COiJf8LSJPfDKpYkfNAlXbxoyTL82umBZ2jFlvYL8SfbByBFlvxKakpujBR9xoPI4zRji4HdFq00NZRCVomh2zNb8giLeqLPrbrWOid225tTQRQk5DERfScXCRl52HxGsKGcZ9AXfxbP9J1FJhbo0sFBT6PIeC3luhxoUk6Wg/vnhBJscWpdrKYEs7fxMOS6wKD6hc0HQEBFwyf612f/9fUfU0+l3mrZ+2eQiVNrscYwuY0G4QuFDy5IdO1hbQcZpsWGHg2Pj1lJN+QECweL1TGKjDsoG9lhY+Dvfvvn3KX3/Euyu3xzTDOxKFsmedDDEg3k5N5kQlebeql8xXuGXRlF2n2LR+vrPxKVuzzb8hR76pOSZp06Qv0xqKX2J+g073n9kPG/VQi6374Pa9VmemmUP/kwD3lzsTDatdhNP+ExdFA+rEytaVHpQyNpX5QWH6Tck1Rq8wEM3hTyR7vZFE3qK0cnytoojGfgFSdxWO0Jl+OrjlECkbFcdsHplm7lANTl4toFOM4HW4Wp6Jo8OP3OJoC0DQ0QxdZBrclFOUUmoTiipELH294foEJskHi3mHDP82YjFF/D0XUmd0ZoEtHp8stLcdMUuF5u3BA8oIYEnMWRn0ye6gbWR6W7Zi5iSyFynSkwNvcAs1jyr6UjEWaQ2G3eMwnw4b0SyrxcdCP9+YUqrWnZLoZFHR+M5feaXFVe3M6ZZFVJ8G3qtZNemn0LaJEYz1/ueQTPWWpnPdozLfQ28LGhB76dARA8dROKbSzZ7HVo7Hd7Doo43EX7GdM8DodYzc8EYbYEaRAShr8c1Tf2A3mnnYyM9mIVd04HzIe0wiPiEEFb+KnauBVNZZCgObxrAKCnjnEOjWzYFcPUlLPo7MuVDkgD6lwL99Es1mwLQtNYLyFk8ogyZB3aVSmgNMRpEdna8PNweyaKak7okW7iqjfFnTiXbZXGyY7eT4bwt/MRj5FvG7+jf/vOhvJ9jpqdjMjto6SkIBsiYrgjqGzKsHCT00rQYnQfMOJ27FlI0fKF944P43l4uD+vVoB0vPzpHPVzImlYCBxETyF26hfm6/KnAL3a6Xkn1Uacdr1UvlnfqQ/HrkQO0+CfbRg4ftxbOMkc7e/Uu03Jaq720QMxKqapsM1ohAjDpw7mOG+RYwA0EaeNx9iDiW7c+a0nXrtGHOIkVw8k84uS6w1ZbPGHh2x7JNkNtRlcfwKdOHL0UdvloUnafxLJzFJLPkUvvU3/Kelw7Ti4TQL3drExgKEoY1WEjBmDfCrhIWiqYo75KMJ2Sa4qPb8bBCQXf47YJKWce6dJB9VX/1aj+ViXBKV/DHxVdM27mJ1HLVnue438RriEy4xMWcuc1PETmzGfjyKjg7sixFsA+ztKbXl60Epc0ukriIt7S42lLq/KzDgjMHfQw6ufgXE+BBI0tWfEu6Lzj2+dxsr7uCeJ6mIic0RECA+3RWd/9Wfc6b5qaksZLZZRyeKK7Mhl39kH90gwBWnbps9DayaT7W6CYzwpW2rOD1I3PL6qnbd8VI40XXzO2bxNSLMPir98nbv1NdmwH2sfY1wZjDsvZTzjP9bgSRwFrp+1lC0WW/8HsIZCdxP5CDcrW3nl2NZhAkZKXAw0C2/+UJ4swGPPcAEJnh82/02qj007QuwFuj5M5UpZpv0jluujgpAt+ua5PuMUQ2EfVp6Njje5KXD749+Z54/YryXYOHBYX8Z22cHEdTk+CINixzPos9YU7JAdYMcbFClytyM4krUCItNE3d5ECZfkZlLXaqBS3xSGCjIGxtVwBkYh1IgKjJumzD4e1jvAi62jPifYZmLXVt1dvqrgM8/FG/F4fJ8YFEOhX5XvdQvG9F7vt6FNs1fE0LEKIv/tw6fQCFZ24Ym6p3o7d6vovUlIr8NTTSSD+7uGz/DOU4M2w0sloecVHhyZJotnuCODYEeyF+cdcJZhHeTURTzHRdE1eD1/uLvjRnb1/ZjA/GZA3+gO5eIheFFEHyaodGeG0SAGTVDcxln8fenhH/8Cgn81tMpP3VcmA8Wphz1xsQEfBRjINoWVzhejNM4nJdJAHKTLsFPP/84RaCJoB+SX/X7weWjtwPNIYD1yA6eYlmOIY2a2BUUmsODghkrDnNZA+uffHQ4GiLptz/CysnqYVlqV+oG4yEu+aM37AlgK4J+XUOQ9Kp03Y1H6gXvkJKVS/9zn7YqkMhXfsV2ExDjZD5gkehhbi9kSAMfYTA2lPYWDoNw+oI371lRmjJUnaCFF+3xUdSgOkpJYPSyjuSe/mP0eVm2SGpwA6rmpKFTUu5/UccDm/B7NUaynQbzCE+W5nr3aTS0OTpPChtG9K4T/fK8xlZJAuDFzpYDljXgZVlin1Zb8nuvYzIKDJyNTql9ULti6/0DKV9augSi6BLgGwt8J5kRV4XIjBek2/wBeVra8Ae8fepHDJIMbtQ9sYaX/iRRE82n28Fg7jzhaaUWbBr7n23XBzlR7Qhtx2lviXhC488QPzqr/hgFdiEJ3f9XExCowtAJNchrjMUsv+sHEpeO0mbwPET8RzFHF4FFojIiFrA2K4dtz6nI2HhLWuJFrtMB18b3UYq2Pdd0VNvn5z5AaevwoQNtDJeVPIpZG8tWRjlKeAhhhG4KtBv66FWse2tw2slodBSQcs0NjgTextrQAWWM85oYW9JYBjQ0YyyuLid/Umnp41yy+r/6jLbJE8YIH8q39uvwTGS4wxN7FeiggIrHaqGSkAJIeleFSfpmn3TGmjvk9fLNoWRkgwpgwCUCWbbNmuDKJCLPrtFy5IZkUBAMI/WVLFQJCTHrhGOhMdkf4iXJnypxzY9DkDa26yfCzAmyWow9Jno+2rv0Dt6N1KSucycTI/ZItXtdj3OIaBJrS05z8ntRWgzYVLLpL6zM+4Rojkd+D5dHHgNkOaxQY/uv9VoT/XueVGG3HdX5uc+DIgrPbtK6ghiHvu57vh6Boyl+SlkjcPSfcg70NFCpou6cfQ4WwFxGA9K6xevtcfExyryDnBGaiuJ5V2KvEF1MrnFqBelmlMAebRC/Mpd/7i3tFj8BfmaMINRIexaDqgEMBdFls8zFuhBi1Q==
Variant 1
DifficultyLevel
686
Question
A 10-cent coin has a mass of 6.2 grams.
A 5-cent coin has a mass of 2.9 grams.
Rico has 347.2 grams of 10-cent coins.
Jester has 301.6 grams of 5-cent coins.
How much more worth of coins does Rico have than Jester, in cents?
Worked Solution
|
|
Rico's total |
= mass of 1 coinTotal mass of coins× 10 cents |
|
|
|
= 6.2347.2×10 |
|
= 56 × 10 |
|
= 560 cents |
|
|
Jester's total |
= 2.9301.6×5 |
|
= 104 × 5 |
|
= 520 cents |
|
|
∴ Difference |
= 560 − 520 |
|
= 40 cents |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A 10-cent coin has a mass of 6.2 grams.
A 5-cent coin has a mass of 2.9 grams.
Rico has 347.2 grams of 10-cent coins.
Jester has 301.6 grams of 5-cent coins.
How much more worth of coins does Rico have than Jester, in cents?
|
workedSolution |
|||
|-|-|
|Rico's total|= $\dfrac{\text{Total mass of coins}}{\text{mass of 1 coin}} \times$ 10 cents|
| | |
||= $\dfrac{347.2}{6.2} \times 10$|
||= 56 × 10|
||= 560 cents|
|||
|-|-|
|Jester's total|= $\dfrac{301.6}{2.9} \times 5$|
||= 104 × 5|
||= 520 cents|
|||
|-|-|
|$\therefore$ Difference|= 560 $-$ 520|
||= 40 cents|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |
U2FsdGVkX1/6XXj19cWbraE6XBHmmNztVo5Bjyam5+8M9hBPFtct7HHKf49K1CwiSExXNV1lVKRzv42H6et8TN8qYj3QGFc3nK9HaLOK7DmG724AFB5YKrwh92COWhq+pt4z7YIh/c+R22bvWYTPZjv8+vT1AMN53esJJfLS3tPHiX30ttZ0Z4XNTEB57CTdTxzSSaWdI2qJotVEcUZ+2wyfCVC70BelR5KvdTY0CUKrYMEFEfOionxYTUQ4hxVSW687vbErdz4s2D8gjD41knBtldV6iVfggAvthwfEhdT4M3lvId0LZjH4HXpTnBj26FaokmzZp46tIww/xCeFbuplHvzk0pWclxV67aty+2SurSPXK+ZyYrM2cCNjjtweLivWEQ30u1Oryf7j9xgbjzwg6FafYTZtvzNH6Cm9e0+Lqf2xpK+PB4JTlWN1afIsF8AF14mq09UcdeH4CHYscaF5Idp1brqGx/Yo1XtrKnVNbOmkNNjogzFXvD5oukzTjdOrZveu0OGt2Sdzi8QBZHE4ZIaiZamBi9pT8JCYChMxTqeatFGN3ZaIQ64LOuq3tAgWDrWS0+CHnvLIocqCi8waEwUGjJl/V4VDeD9HBDk/uxbhFnFMT4wJSq5/B7UQDVfzlEHRXfnjMEwpoXupSo93AscEQVlzw0nJWdRM+zbeZg1B6liG0rV9P6vXqOr/gQHUYtyTlvN91wjK8v5EA3McRLOwSkD6wxSQjFeiHFK+nPFPJO5nfmstyQKIp/48/LS02hratMV3cSijsnHFR3kpAOSaJAdshuI+kNJmu80FITQtFcnF4KDlMmipu37Zh95koj3+4q6rhsq+W9g89SxT9xEZ61O3tD7c5hcoKK1hxqYTVRRAqEaUxpi2vcez/bcftqwcYkvzOZs+l/VPUeYj9tb6lAOaXkdaC9Oa/PQXSXdrU6Sn/A7rPkPgdhr6ylDHrzu8VD3zLw4XkzqbVvhs3vDkKSR1OmmmV6+evX7TMfb+Y0WKqFsBU/IZoHa3m4ciVwfthcUcawhG0LngMpF7XwI8qz+MbIU1ZHUrEOqJmY/r+ml4JpP3FlJLnrlila/2HnezfOxalDD8x1LT3cjlkDKpdPA7Qwbnpjhh+Ta1R1M0O522lDqPPgPruqQDWVTZTtQOn650yxh87WJH80ZTeZzra5sVQtM2s1WuV0F4G02xR7a5XZE+eeCnol3ALox0es2J6bH+LPIkJjdWizhR8jWnWX7TeGCbb12cFj/F+r6puqCXe6ksSNSjpps+mQknEJMjaaDc7UcIhgo2TPiMaxP5wgEDTdf7uPmT1RkB7RMid+oLv0GTsnjuFCjgYdQ/cOxqSnhVDGjHUylhnZ7Rx3YDM4I90dbmBpBNQRouS1pKS+9DJgdqazOapQROEt/Z/nFe8YqXsnV2km5tP7OMBrHjZn9Wu6LWjSbpSU+0e9Wl2Ta9v+ba3iFWiYUAHrSU5YErzK6cTn32uL2B6Ywk7g9u1wP3oAJwEOcWQlyGR+VwKqJg8ogK/q9n0cWdWuq4/ddgSHTLM3NgoQMOoYqxAq46FVR+drF+pD2HHMzXG/iUUB1C4tIcbmCYDhWo9eGBcgjAs8xuwWl4ANtHDbapfxf3yw2EX8Yk7wUcNiOFd22qXqguzzJPWXlq87d3Pu3n69Drd2fErINWuEykEeBIdtiJbY5HFZldpyKnAOwjJ+LW2ylrUwLihY3ZV/Vszn0t5kEeP5gIaY43ZpAunvZt2nT+kItB7bsuXlp2DwG2xjYt3umny3RoiIsIKk7cFKe4nkciOIMNBIN19scwuT0dVDMAzTyWXlSVyEMUTpzUVO96dp9XErYl6IM/dNsrOt9uyNynx3nXhsu47yb0gp3rXFvc08+oyhL5xas4ah1BR6zugt1L6qhXKBvFOfppOMk1/fsZMlqustRWLkcOBFlEZfO95gQCrihqpjVlgOTL9m8WalEKGQZajPU6GiEy8933YLp1DAnpbF1hQ1IDbuu1Pz89TgW7ltlB0cahrqmiKU1CZ8R6fCv0zTCk7WzaRaZ0L6JLt+BfpIgKzdGh6gkZCIPGDkbufhh5L2WOikDqGWXoeTdOchxP1rK34HRR7eo72MYsHedrK8teMiILZ0v1vJqpgw56rf+G7cZMXRwyidV8ZvOeXk3fXH8x6i8/wHN/rIZaR4BN/CXHjMZvojv42wrdDdpmjNGmVpsymwuBxU8wEnfBFGIRjUk+Dl73h6xwuUm6Q01dOsllDum5C9c02MzxeX06OEO7rVvRb1EHBTWzoCaquMAQ1aoyMAxPuRfnU84rOb4i6PzBOrKHCZYESkE8scBpO1DrVbaG6qgRxncN9oAQf+wUPHmlwnN5qo++xFbwxgVc60pdEj7PULurZvaNNGBGwsNHbJi0lVraCMZgljaCmPgMv+JQN3tUEChajkHcm3eoQaKGGAMWgFYh7rz056GxWZ8fBMj00RhrcGRjXqtuQ6uhloi2iX08xrZmatZsC1NRBfKxBlPk7RqiuWe8COmZCTVz6vxKt14mwhby+l7R6/1K/XDXBeVQwyink/y4VsYm3ZAnXmrSuaV/53ykG9OKhGaalToro+Zg8iKnw+Rm08+0V+djI4oAN1BDwhxWNIvU+FHbESDontTG7HYugHfCW8EtyphStpi4jR39N9vs8rzUJT9w38ssefU/JbUAAVsgrnKhmABgxCmCf8dTsJoAPaUWoGiKUPRfm0fvqBV2rvsC06rG5cWhq4C/vmBKzxH/aRlZS+8acfN5kbpnzJNSDnVO2F4UI6UH9oeCWUMm3rCu7Viz157GdXDDu7p+3Zw3Yck4JLIe0ZuWf7z49X7jryRr5H8RoWdHqoEFFuJOttpQhohoxArWnjD3VSAk9/9PmrkbvCIs9GN4PcHPDrBdG+WAnZIEFJJjydzX7dtqL4Jf1tsxXKcp9q48e1u1/E/5tOySZU1Ots0Ak8d5BYcpEafWtErDMf9BRtpLyb1HYSKpThmRvwHRSx6TVkN4MdmSQuJ/rg5GvFiACI2MR94i49t2bVnWXW/wAfqO8xE4tcOaVenEvK9N4rqj/xGDmfPp6FA1JNgqjl3p1iTLWTiZl7vxIFNb3HJKp5PGM50xMJBk8oyJTzr7zqzgaIAmsULbv06JRfn2rfqh8VA5/NtMAQs1YjX8o5FHEb3YDyalKZm/unZmapmwH9LDJntqWcc6Y3af8X7NMvZ9ku0Xm90OaO10uL2Pv4UgxQIMsZWWTflCYl60MRztNE+wLyZXpL1jpu4be++Nds4GaU+WffclwcOBQDloK8xYpj10SIk/kNC7cym0kIC8N1LRhghw1zdNvk5TUVL96s52tMnHRixG98kAKpjYF7A8nPsI+7reIP+Em+HeLmLtnIxAYt3ooagBiTFtF2MzKsSQw1iYgNWjgZyPxAtNYb/ybgEPPoq6IhnMCSNiztHjRvIBNXUIykdlQaBh95P0wDTImOwQw/pNtp97XQKqNGoozAH4mwzC6WXl5CRJFEmidrCC3KvvzewRaFZNJiRKFNruETTZDnuNSS+uKpXxABEdbWPGe21JxUC1VVSNU+MYMtjqS++BpOUkeHAREojpPrXd6pdEY1zColNZwXU20PJMurfi9uGnTfQpgO3Lkr/dqjXil89dH2uYqCoXnksl8nqyDOVSclwnzZyoe2vPQoOjvvG0bN/LGTQYXTEZcqhfndEi6bKt65XNAkyWnV2W90SjDO99V1AZVjrL5jjwJz97JOfYCDDdFtG3TKJLZ0gfmFAZ+fvGNnZsVgBLyIJjbLrAImcuIqNIQnwv5p/tTKknQxUA3zlFFHK1V/2DD2HxzDlbsBA4mMiR8j8wP4xRt3qDnnop/bA+GGqgEQR5/b/FIbmhgLvIIq8ePjjtNsIxiydV2aowTlfcKnE1V4y65Suqf7jJoCIX1+QfHRYtiPPI0qp1MDvJBI3DU3XUfK0KA0NCuIUIyPJzKgx63NCqysj5l8qBqAUEZv/QB3Unfsk5D5ez15fNBFwkmuEh9gENnwJIlzYqGOMHFdGjX4vjz6noq0kj/3IG+GeWWWIKQ7/ZzAs/3WSiW0ZhS6JxPN3SvMqIB5ls5j8uydnsG0FpoKhM1ZqboHkNJ8uUs6UEBhm21KB/kbn3j7qR5d/am+aVBL5Wuh0FVgWs0YVTiZ7IZfrrrFLEtjo9my1FxpIXNRJywMptStZ5PLEGXcrePf++5jVl700x7PEKhmAFokKVfte55xAhaW+wO7r00AqXNDz2upEfiNeqIcg0dQE5VzxapYxEv+ov9EphwwtMgjKhmsMnCeNlhW6D6I6kFSBOgNGjQBWw6FwtPYmDY8ihOGY5oI9/BwD/L197hbISHS3r4B2fWV2yZcvvduMjeTDbLxk4srdOqH0KmFd69iWsZ+aa/8x0lb3s2mWldFiJ/TfSKO4se54hmIWOKK5bNi2TuJxeZNcT0U9lzb/U+QBZwnTglfbG6XvkCzQMyHfvK5hQxv4kaR9qMf2fGWEPcujqYW3ajTUsbImTho4JoFAZLQzC2DoPJwGyUjUfD8ayMuvWIHpcbRsJg2JGCj1nTuCpvDLuXKumoO3KZ6lZ5dXqloEv3QVEnyIoFGXTzg3G8KuwYj7jq+ogI/MvzA4/FPG1jfQaZEHTKE2oMO/KV18r25o7T+n8powRUImJ76XavBZ7T09lAkWzjXU2iaV8yGrye34tNCipPCoHsw2CZSha7GK0gxObx4L8AJT6IzJ+42K3Ur3f1tfDaXmfomcG0Ai8mkvrSjpqy4sDgqpLUD+U7Y5JOFMkfKNG84/I84gvSbKrYtSGECAOfS34FvLgDtemiRctE0cRN1oh+AFpIIuoAHTRFJa4w2Ppudd7uQAMAOsZllUNGXzQfwVHN+fsuqZeyQ9BpjthjpSoOjzmk+t5HFWiMuSzaVOk+Yq9Db2PDeK1ArD15SeqxjPtGY1+sZKn3+Qu1jTkE39t7HgiQiavcRN+FPrF9PzluIgzAFaF728uTOMJHyynE5bX7Basuf1CxjxjV08R62GUZLngeR/s6krRNerm9pXF9fU10BNHp8eerT9M6zsK+lcsWRHROesPm5g6hntwa7kiA0JtrVdMeQydeD6pXQaG9cDhDwl1SH5eem3R3ycwdQ0Xxah9t2HGOv0yQO+7t0jR/KWcVZJ6j+fxIl9T43iU+oWAjO7KN/C5csIFI1QJ0EYZPodvt7aQtb9D/+jNVRK59/3qeX8MxyFDEnJjtujFuzACBl1T60gwn1dcm/JRDyOcT/o1gVqGuWsq7YwwSiSSfs/3tpkFEnFT2AFrwrHa4MUiZ9TRjXEjiRoRnQ95OHdeuK3JLl0B/V4XUdiZ3XjLFgBa6gYjMwKvRAp8Cjx1puOF0G9oaNzkUx2vvl/SUcfY0z295wJ2QE8l642IkOO4sFg2kwJoqBPfWBycBClEoVIqf6p3nxfICtvFoE1SMtcl+rUpnlI14pDwdEF1wQvQ3ioL3mdrJyu2lPvg0HIER4p9hofPLs5yqrC37kJ7ZyDC07H9bw9IleT9eslp6ACdLz/I3E3MeLO73P9gyeOvQdaLsQTxSoUBF6/vr0DzSzZakfsfhIDEg6HPpiJii+OCv0HS97oJCRSLVf4v/FubltJm+MFtGOpE1sbqkBad//XfIhRUNMWRJ5pxAQlEJrUXwjO2OKaiSGk5F0EH832Ou173hDI/0HN0yrTrJsIn/4Y2bz7C3iGnvXHnJWJ1oplWrp9JTikuGCoojxorzIDGW03/DUWDLWlEu0Iz2N7+tN0y300IoLZQ8bg17AxDYFAlTsqUaAVs7oMp7nbdPpX62l+QDlO3MjNZ4EPjTeA1nhRHKsk3r+F6oVkx1Cae+lIlccsHnWn0sU1v2Lv9wLh9AzC5PzEB+me32Q56bXViiL7Rdh0khGGKZfG5GsaZxvnbeTaE+xFY0/PR8bUQYsZAvGvYu77gNn5x7mBXHGs1dZqKuyEhttKCF+tSPVnSYKRzD6QWLJeNW4GXdty847pcHIjs9hW8AOvuWG51qvY0MCi8FoMkYNX4oClEun1dd/FNPbw5RFGReHOAPWw6Gj6isx1JpQkoniOUazQiS40+Rn4ItlkvmZXgrU3tdJUxcEKTh4YEuV55GrqJWjx+RFieNEm4qxRfgNfddhEn7N3xjMaDB+euY1egEB1/N81ArGtYsWhdTfd/EoJVM7L7MuDYcKxB6dQJ9zt4vNTqzMoTSyB7VYKt778dR5FOqomV6YyjiRhjKtLQ5KuzzUBDIDbySttMRToJhHwGrQN7HfSTX3SC6zszaSyZ9h50dqv9SMjlAJKaQc7JUTLtVsI42zB4uC2JJGPK71IqbALZ5hCbcoDpwodeUCLeWKYWB/C8dv45MpJ5yWwpuPs6KJLbxQluvK69WYZduMcLwMf6bqrIkRYrA/szkQQoMLtxVoyLPnLRDiwL0swF8qOlccp4VQTFUrsuJbn6P9aulJwDDiEHLyKBXMyGy2mDyANDeDHVHKRfXo+BIWJOHjLB0prbfBe6k9K+XPPQHo1eeOc6tRUp6sr9HX5DDSdZQx0kcdwGYTRjpnzD6IQWWapMwXfjRYQjLSo/7tGX6l/1VvPX4My89hBUTIyHDNjTBwc1IgGiq1io6pu9nAMeRE6502g4kIY1Jr6nwht1wnZaXoIOVMX3wZwVjYtmbNdSxBjLxeQk0ZbiTu5iw4ihFccIHw9bXZwFMY6IPnBP1aEK6aks+LgsIsFhJFxFq1L0psiWEx3ThDDlyk2E30a+iIy7T9ahAt6Tq5TjqSWFJQHJWZljVcjuoarzEIvV1rfb695JH7OfZNknVNaFnfSreHn7D1Mo7/xFjIQXi59k1+o2swiHZhvXdCz0+x71zPzrjkR3aLSCcXpPit3Igg/lkz4lGn8jWxzyd1DzCbDC9ohdR9f6Z/bSYgKDZWp3wPohHR9ku3AbL3s3kPswgCJotuURzl/5kaiG7E64ay4Zv8hw+FMgz+I6w+YZCT3iKvOIVpDvA/EcHI05uJhfhPN7jLiYq83dfRJcrXWVFKgtR4elMuZe1H0YUoSZlmybTPetft6SwmrlHsJrEdCYwd5hjZKrqdl4zQiYNiLT7ODXPDTOTE5E/fUupvrNv3aivXdUW8dCxjj+fPugHfMLBkwrliv3/PkVc5V0brI1CR1zLHpLgYw172dzs5ossPPPPzBucSAY2jirT5vP2h7FKp/nJrkU1VrO7ow4qEBQ8gAGaFylgh+z9VA4ToW4cnGtVHL1FUsNMxWUvRMDjOQjvASiegAufd1/B/VyWBegdeq4xbUQKxfudvG+Q8XwYdylhooBfJ3nOKK6IxdAT9RYDHlfwmbuGlEkouTFqXVM/5KLr3qgzCWj+14GTJcLqnafyPD8uV9qgMuyYX7dIQlOR9dVqFxeG12W9OZn08OvqiYKtsI+7u+AsJeFlM5sHHRQDZbqzeTalxGqLUzUcPYPv6k3TqE2/0Z72KzV810PyhNWB0QddY/XUWy0WGAxXBGQ39CTDI3+vn28C21t9gEwVVMc9YhNVDseCRnMqQwtCysDnMhg5runrmm2eygtRwW7/ZhAqvKDq4vwdE0iJHLOMzVTeRukZqoCdMCz0bKk2PvLQsF04a1U3muAmyLl0isTTQdwQYilII/p3wjCZ7oCyyhsVmtjdlv0E/0nhgDM8DMmycVxVlPQqhkMyGVWd5UU290pH7HcRgp9bwef9jJ66gA68+W8R/9hGksQl3nzTbWFv/DBc8BFGdiU9W/BSE+d3oT79W9ahiUP0GUtHiRUY+kGeSnZ7y8ME7LBWIzcI8DpJP0Jh4GKx4zI5Q4GW3W1GoSYYBOweaT+p58BBit07M5mT89L+jXdLLfGA6GsJ79QKYgRcTCTaELpNxFfi70AavismubMpszXtRmM2sBYG7w6n9Snzev2aZDU9R90VgZmO1OA+VwlLnk5jEkUeMgbUcg1QxVkIkQ4cF7Kt3UI5J0h2NGxvAInB1JfOZlqQNu7g6xgeADdm//+KFMWUMYhCExDvE8DalA9TPV7NCB/m7+niIR352sKA9qMI7CkjOBs8xtp2cVzRwb/KyrPAU5Oxe9rRvZOop2jrB1xYEe54WjpNfkPQPIbM/zY0aIx9Q8PPwzq8Le4uSskzPq7uVB0NFUFKS4LzJoYdjy/ORvg+hYYNdEhVlK+4hj66tz1O/2zqvpKuX67M1EG3yPjExnk/VgHabyZpdPy6ZdO0Or/U+oJ4ibOXZbLrKN4Tm5xnZU4cFJgFk+EosY0Pr/R1lDyADzNUZxte8Uwk1L8oHNwQ0bBYGILNCheSxZ878z/pxGmbCTrQwkvUS83gZvBnu5cLkjqFbGkfXEB7tlvnB4aUaZAswtDAPaREx5/E/zgwaESbaATYzwR/DpwGZxGjvQ5/Sy1Y6L7OWa2QU6UVRLqJVGdQ0bnGvPQUCp/3Jt+vjSP5KlZ+YCaxK42GkjMZ+dKK75nmSCtje22qI58cYT/lPYkLKgRmsBc8OhAzGs6vtXZ7YozvKV9FBwHRCwdRgMZBqjHXHDwtc6J73DXx8yQEtAK/ljvq0bsYnBxzGasIpXAevHbAYtMMzNAYNFpJ0iyIgXTS/TZAlEwwMk6+wijJLrc8mjqurjPFva0vcCCNqF1jaRqvzNnJ4JhKry3khpECE+C6gyqrpEgwIxpmv3JOSzKfRe4fc02h3pbQVZMiJ7N3FwepPf54bPI2VS09dRGlr9lDi/2JLNaSsjPB+RsZJtHBRRE5UdjXr2RDgapp0o853LLJ0q77A4Uq/joVhcb4o2Pvnfh72PZiuXNRqGDUCp/cF/En4BXza1Ak6dH97NOXpmxi3BvFGyD0xeB8oVkDbJB+Su1/f/cIP7W3CUKoRJO4qWc7zltaka2VoRLnNFXHd9Dw7nZXrL8f2qjJAbwNFGJdarm8utsfkhlw//k7p7zQl6V4lb1FrIVgmNQYp1FrXSgfJQrEZd7/3u5l6s5GNsxZIjbjY0OYbCjeFC3zMUSNr8jrrDcn344hOPW1IIDuzWfsNx7WEO2xIfaaXR4hKUaKZFbfcTPRGd2qtNngUb6RZyd+91jrLrTxouZScgsHDTQybzsy88N7zBxCDCA1b3oelkYPXH0tv0Ok5zpZUXyIhT/3Vj0O64kIcJkASUdJkYEuS4a/A9G5MqXrGHO7R8dY5veB9OatDMEP4CC3kHdKie/vPKeJT6Il6fPAoLUwZiLxCxI6ocvyKyl7sMmYfSbHhKFeaoAPZQkdPMQIKlDz5zTkbyzntHPMo+J6aMBRhgY+zj84PJnqQg7vqLTfXDtLiigDyQth/P2Y3GDZ0R2/edF0D1yDGMcrgVRm/6/lF5lhOr9C3MPSD8E6EV4ByLrOhAC9z9OPTW0zEljjm8fzPoOl4ILhX/035kYYp03/NvWVyIXRBFL48uya7sCsEC8TXjVDQLoQ04JQ1EzkTDBHf/+lPbTdu0BBKdAGL3pxNWE89w/A3bdLAkg1+cjNNZo6CQZAoSLMFsseIzKb9S/Hfh8umaVIO5EgQF8cyxOgAMifaGoYMgaropH6FAyNzD2Z1ivb32J0zYpR16dCrOAs+FGvRzMuEGHAw7I77Fi6zlxILmUeoATfLA92kdggU2FxgnyCNTVR13rzvEpd7VhC6G6CiORwFva4RhoJyB5WNRPvQAL87Q4Eis+YR1dvLZgPxgEYF3k8Mn7JDcReystipr4121qntYNL1f6DAJcM70BoUgi2M2DppzJ3bKbqEF4fQkEybIqu4YC4LpNsEzvMyXzSuXyL+TOTmG37u1IhLSjd1sTtvSJg82nPsdLtQ9ANL0ntm3Nua2KboaQbHSVc8KQNPkTh3pC21xv93TKLcIz7lBr1K3ssnhGqKDYuUu5NZph4s2kTsu+AXwP9gWyeSYyE4Q4/s25wPpTDb7KLwd7cbIOv+rSxpJlb+3qZH0qiNIZU3ECYHYNxhH8aXJmI8IvC62bZUzevBVc74/SlJ/efj6gTGOxlP3QJ8C3CqTRCjIt82X//ChMD8XHeGYW04Gy0QJI9Z1UvevlGxp3UiE1sHsy8RB3hqcEVfrSVODga2iG2cqug4UpBK7XbTa+yJRN95GtkQsEJWWR98+5ObpKJEOL5GQ30DY2rW/LvRJXJTIDfxx3paAgu4YTcu9XQdtRqOAvgcwqCRh1ZWUtiryNdOFR+S3tWjjZR8RHjsBIpnLz6EeaG/FO+Vckon7b+Vq+g1w9P44RNmdwGg2o1C4pVETJTbcrTAgE4lMIBicP+43Jg9ILYCSDziyXbjkjDVjEfT7t4ziBknAfCfw97Tus+emjAsvYjUhip1hFjDi4G1kEb2pBisvirPWguKC8Mcxqv5rZeOmXswkYtKchOYVrREn0t/gpPVmuAnk/8tja3ml6dsFiEG+0SLI9d40YNO9S05GGzBtYYT6VUrMPU5NBS5fv8oyIEPyLHGk0RrHM9i2BRfxLlYOvgc7fr6raIynVaxe/ilTFJXAqgCaArAMJjJCoMJf9ehqrEWBTnAKMOZ+y6aHCdyzGnbVzq6wfHLWgeYWAHC5by3wrzuGxm/IDgzcpSghVkOx+KBIHBAzBEioetcHD0YQf+t8j7UJt58hAp+TYsnlUtvX27PTbwxv58n8DL39+g3fqbaLw+3i1zqAkLCpoJU72JRaexKEarWIb8ZWxgZxi2+6yT3y4+ST51zh4OeNU45TwHzwGudbVgX4Aiqqw08qPQzCEwcWARjdn5Yu94GMs+8CkaCwLpyCuKfz+vqUeiarWJrX6S0dyO2AsyG+o13Oi2Sn+x+Vuf7m1yEWiTpj2BWfUdBAJPq0sCigO6q5jvpRUmPzVECqNMB3ElSSzkft0lAfxA4OYBWs+
Variant 2
DifficultyLevel
687
Question
A 20-cent coin has a mass of 12.5 grams.
A 5-cent coin has a mass of 2.9 grams.
Harold has 487.5 grams of 20-cent coins.
Rick has 179.8 grams of 5-cent coins.
How much more worth of coins does Harold have than Rick, in cents?
Worked Solution
|
|
Harold's total |
= mass 1 coinTotal mass× 20 cents |
|
|
|
= 12.5487.5×20 |
|
= 39 × 20 |
|
= 780 cents |
|
|
Rick's total |
= 2.9179.8×5 |
|
= 62 × 5 |
|
= 310 cents |
|
|
∴ Extra money |
= 780 − 310 |
|
= 470 cents |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A 20-cent coin has a mass of 12.5 grams.
A 5-cent coin has a mass of 2.9 grams.
Harold has 487.5 grams of 20-cent coins.
Rick has 179.8 grams of 5-cent coins.
How much more worth of coins does Harold have than Rick, in cents?
|
workedSolution |
|||
|-|-|
Harold's total|= $\dfrac{\text{Total mass}}{\text{mass 1 coin}} \times$ 20 cents|
| | |
||= $\dfrac{487.5}{12.5} \times 20$|
||= 39 × 20|
||= 780 cents|
|||
|-|-|
|Rick's total|= $\dfrac{179.8}{2.9} \times 5$|
||= 62 × 5|
||= 310 cents|
|||
|-|-|
|$\therefore$ Extra money|= 780 $-$ 310|
||= 470 cents|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 470 | |