20118
U2FsdGVkX19kZV96/Gt54hus72QTplaCAjtEHyIL6HkXkehjNCboSeOZCKcRhN7OHZcEN+n2euxEHvyDPVxLz9IVsDTC9r0QYkezDtszlKeJGNczozOI27AH/lDdUcRLiu/2B0EdZTjdQLpEuwOg4jMzleoMnh+DYSERR8P4Me6osnnO022Vm/mQAW81pTDpjVMUPgw8U4glmVXZozva5TB1UlpxIUVg+LjW6VDPntDKQAd9ChXKFaH1SYFqXUiluEydCWYj+XaERLsJUCcEuSpTA5qb25CN5JxjuN+MQT4OwJGVPqg9lOjj4Vl0MyUi4PBm7wokZ+dG53SVQSPgiu9q/JDh4cuYh3vyuTn76xXWrUgp7eXcs1Bgt+QyS3sAOGSWf52KRs8Ftrnvj25IiKgsK0Td+Tj5o7Pp9hscXd07iqT8ExNDM3I7KDn+VxmMuTkLc1aZLzVHYXSPGOgruMN/WTRMLwT2h8pcmUMd3D656Ap4ibrPLGe4rsJFVx8sYzvl4mlLi5p/NyOOcYunZuP2sDWIJBqOB8AMqCbtV4/dZtYFHGWB15/BhnqX1B3RDl0SLt9WceHkHLDzjpp3kiTGxW2hahP2POEIdVAJXl1ezqQwWe+1cr9+E+g+PPW8fIkyaaFnHy90vso6XSzGL3cVengbJyus6EHBRBlhzu6Z0x8w3uFbMYOx3x93bTiO6ztp2w9amgGpvJ1erWnSBvXK1pvoVIwRnHnyMxR3Rjm+LRUWAWWzzqidfhtepZUdipvx6rXhgOxKLU3jmlR/shDh/fSTd1FqQK9ZWI3DGNJFAX0R0otj5kUoUotXBHQMuVcZkDiEiB9sXSuuycjBDRrfy3qlNDhBTPauE4KXLwBn1hTP0c3pK/xf+4JminVUn6r+GE7LVGVyvCRA/9P92oll4ZRGEXQkm4XwpYVge1mNnm4XZMW5hltrIBd/B0MIjjqhl6HWHu2kd/EGagUxj9AvL0Yozekn7VRoj87aBGSIBq5jYb8pNgyUv1LT0blmRa1pfMCMZlRGV95NadjwKReg4YmwYiYwYbdd+XnN+e18bdYXNcn4NU9MswnxMBC7TgepgA851MvIzTTk2ldHwBcar6ZLjeaOIHHW3vScIR2sxTkxIW+vw89u/dDeT6S2fDjkb/n5+wJK2DgotDMav2m+NvfK4gwuLjqFZU546GW5KukRybQRIMjroln2Qc9cBXiDsYX8kFSQ8HyieuzrOACke/a0WnOirSVKHb2eJZyLWgNDDPz4PzBcJbyBZboAU9asqlcHrH1z2ormv8db7noP4NeajMlTqQYQyIwEUS1vmCkvWhcDtiJuqzLxlGC/UNhe2QmTwVnnkKKsr0i36fHE+JMmRBWzAicr7Mr6fVYVcshuWyYy63L3+KEYQIW5gOXHeHS7Zvlbm1Quef+a3EtlrmO97H5DY7KecktR/3KQ30SLLL6yvReEZftD6z+UD6+uR7Bvdt/GbGAHNjCmxubM2ARQg6o1HUqvqn4yg0TvxEqBlaQlIatMeuSVj1wyjrogpbmjvdpLTUMXGxfmB6XLdWd0M80zPra8m0DD2FGu5DeYb+/2g557IlwXZ3f3MsdpzIRWKyn0p+tLZZHAqFIk/IYXCWVp3cGWwWAFkUggq0g/KmEYqNbrZ2IJjSlQu61D1jRT8ZQ3LBHcfhY9lIA7644lCmNP/apvhZfrJRJTekjJubhJy+zS9OZHHg7qqMqSroUQAFyr1WOP9q89kczsNaMf3ivKAJXmITYC2pWFRe32RQxvvl9E32LgqAQIHGnJXap1mTUgbMA0ayS35ZYM3lxlHw46JJNs8lMurVtwOdYn40ZFOnn6TnRdpmHq5iKHHEegYG44dkFMLEYekVJ0NQ8tjYuxbfPWSQl8C/76NbqoSuXoTJCTgrozt+6FM85tPtlxvF3AVIIQkcnjgdl54Ypk3D4+qnXhOu2Lb5Xq4wzhdPTo28uM7WWRjg90zJP4ovrLg1d/rPiz93Wb1+0mE0pEfliIe16OAxXJMhvknuGn2flu8x47WuvJkcke7MeRYZiP9XRHZnJhelvu3hlR7NnoUTjEL9wu3DaYpdqlHMdKgXOlpHqZgj07cNo1IOk2F8ETDrrj4RGCWtHujnGzJdSL11pxNMNp+vt5nQUViBep53wWYOUzagO6pXSk4mGT2FMAlPTv5HOfpbW6TA2FDf8xDfUcejEDmaVTyWuOYvXfmHXPV+VNUWQd/Q6uS8mmkEDNT8YEpOPc92tUrZFG/7oBiJ6PGH5ucR2KAE9xuCG1pQz5Iilj5yIytHGNNVM02vHg879NHDda8FK2lifEshOlupUzcNgz5GIsWGR0f4xsR8wNHj/+7MCjg9Up1655GlPtY5AbWsts7RFiiA1Vkc3i70k1yusApzqg68vMOGOon5kxZg0r3h/2m//9CBUpYNuRJH2YCpot3tL/k9D7cTOUnSWhV8hmelmEgxjOfZ6yAt04MH+v9v6Qzp6+5CnVCm/RGptSd+qaf88CRq+K8+N+DbRN0DuaEujqoIlc6lbarACDoMQ65dD7w5XDwGmpQBNbM1/AEf3/KfxbKW3Is0ZqZWpZHhMupYpYaOotk5RHuAY+UkaeFqI2f0QcUDDhkAuHYyzAJSUqVdBH6bUvl88h39+Af4VhsyyH/SpIHI37bABUF5kFdXtPLE5RQBpoe09QVK1CaITnbs9ViUSEd3l6v3NVQLJukRk9qIb3dYkcKztIrQT0n4nz5prsrWbKfuQoon05BczDvQXk+fevkBq7v72nxbXL5jU3dDqSqSfXnJ1SehirnzeBM2rSoTlDld7b5U3/26bduKrET3b6Lnde/JPFVM7K8dN58EVATCPfSDuxJDn5aQfHA8E6dox5C5g3q3ty8VqksvtlGEu7ALqeEH8zagFJhpyyrdMIgXIMX92/9RmlSpBVdAtnz1lFBT8Tkg0mfUHq+YtGg2gYmXZmliOt0pNS1peTEMp9z9+njPbu3pX2TUeB5zhDVWPY7bH74T9pEjtXWbLpqENsPet7ujXKZRp7J7NOXHgCyOOuSaPB/8eYPHXgNTzio6lwERGO3CW3GYfSC09vhsmLyWePZ7WUeT0fOcu9PX53fkR64QflDM+TMxpLEVHG2aIvrHdimQW+3Vv1zVKM8ad8kJnW0i7t+9CbVKLLG5JbJh9xwOv/BnGsQbkuyd+bquQSBBzYHxaA5KiqYJICmlFv5TtwwscmR/X/NVEn8G8iLTPcuVVpBvwEny5/qep/DZF/fLK56HdxsOVUyUtaUmX5/ogltI+g9qvR44qXXZDHqAXUe6AL9WOauSdtvdAj/Nd5XvekBzEiR9PkWCrt/DewqFbQ+4lD3Y6w4YLL9W1XsBQUz7KCK+4x9wY5EEifeemG/MOMjzsU26Y5lF31z/Hbhm6VCWJCoVQr1GjT5DWP4Xbnpw9Bs3HgxOSEy7e2GpKbYY5FeInfi5YHw37OHRF+h826+GzTJGZENHZazhJjlRaO9vMs8zpi/0NrCNpF0ODHCqp5VlZPUbPj9Bxv1BJuT8vpeL9hsDbbJriEzgFTn6vgrQB/tvqV26Tp00+LTVnZG+3uYk2gCAYu+8TglLMUWSSwYaU09+twBD0HBPPEa2QuwTWq2CkIY12jIlCUI3jcHnIuiUADHTJzZxwGKDs0dS6jqmj9+HKySQ1DtLM5uNGHtgDRkvwLQ1XenYdWikHaR4wM9DTCHAsyE1+86cLhk7ei7rVA5vWH54bac6aQqche3gylxGWKEK4qDY/E0SxnyJS8eJWj44Opk4Clwl058mFeV9+yyzVFu7T05s1si15wF4MISqAlKJQL7nKzrGZ+wSYE4hMHvQDxJKppqhCckA33oZFCyixx0EOSp8JeokKKd65IyeSK/4XOHnv0jYyh8vjKoiOuDa5P1KsdPfJNgxW68S2xzDlwhfXOSB7qQi0Up8gw/xSZtkmhWTz5J6t7hatiNem3n9FP7OZPk0KaC2m+4WxhsJEUl6fpWj8pQroPqbZe7XpYWTiwgXIsoXe5JUCehme1/sodZj/Yrc62AOy2/by3yEqzOaxiaS6yKjgZUy5tXv150MYqL/ZEj3CzBGp0A3oyOixh1+lR/27WOZFTvzEzO3Ss8xxhU2I+q5HVZG0PqewrLA8AbqNaufDHEqAgQE8a28pOZ9mp2ZHxPPl/cVs4eyWdILU7liBipVbGpg40Y0ErL0B0QClIFeQDEyEsk3klXUGMkSTLPAPm/lKBCQWeqMHdU1xxBX1W3NRmDHeG2OJTaS7EwEYycsRbBUQDFP/Le71jlI47HJspFQYPJSk3sAGjc269NkW554vocZ3ZwoF4AvNgRtXlRpNcEOUnLosOZj4St9PogASGRLgOjILt48g4LmwXNLtAjo+aJnLBLdw97Qvsyp2MhdHj5tofSEssBTYw/9aI1nVYze/gO5c+ctx3O1FTSS2FnCNLGElxX1B9+qT6Y1yrHiZE33O4YvpaIEY3emVWIHu0QRMemsHUVRUmkyisNC9laQrLgHTlzVwHvctXq0d9+aFxtqS8Ssw2vt2YXho7vPtQn7Vm4abk9Rh7bttSe39ZG6bRxKNJ1ssfy5m2S6zp1H/HsUsTxnmwqWMV29PHx/m34ORW8ezefF5kl6mTQA5aO6Wi5DChIEQo8Ra8Ig3T8+ZZpHsDXymTOHWFzREbtHifvQWMNuc/8J/8NUv5frnunNoE7/HYgx+AEjggd6W6JIh4MvYRT6APYjJFDeYRi9qULPdtKBp6iQOq0g9tk2D72vUIDEYNLds+mzQJ6U17CfaDRksayIRxoSf/dSdGfyahJfALd/shs7jzuLhHM/7l33Yib/UNpWR+C5EkylDrd7+E9b/qbZTTbfyoJ+fFRdzNfgSc6MFRSgRIqdqMg7Vq5wUui7X9CphMThvWErrB7tvcqm3xY/idS+mb7AtGKNCCOyGQjBIsVUCiy6bO47o/SnYuIr+cztQILovz338BE+2YR0Qy+VE/KPKVlDidiIKBgmDs/F9COzeBRfV6u98jbCb830GsYMxAJZwaU8BK3euy434EQ8KSEJHdU65h0iEUgSK63ss5uw4g/mk+/fJDnoXdPoO97+f90U78dZfmB5cWqXuVWiomHSObTINJexJrgVeRcKOl+Vf93GFtrd05WJ+6HGsnpNGZVAo9oRpNXR9yvO6bth9ZJSdMxgY9B8VjhfpOhodJLPhawL9Ps80dRpk3WYPpuWEnjgBV6l1z+jOMPTJVAQZ0MZG+w94nE2ORLVhgfQu9FBRbcJKf98nXU1vtGBrkkFnvgW7757HxtaJcwU+k07wtDDMiNaQVrEM9vC7NThB+8GHmXOJyVhC43WUzgb9qh1brWaDsQ6w5pnRM954/0hQLC8yilA7xV8NX8HL5ZLYP9tCYj/q5Tjl0yl+lKhI7j4e3Gu1jgm2YPc6poTRTKAzNUik4AIxpAtmkhcSe8Bn4ObrR+TlPcNeZ4uX+9FhR5obdNkcTC+MSsrN98rB0BKd5PSHW3csbBHfNwZ2zFNFbyRe1c5wneAngDLvo3juNgZ2rPrnkva7gJehRK5g5VvCi9VwqD+E08xyTGs4eX9oPdvLUgS9ROtitnW6cKuBXXH7Rs2SsS5IVWIvDmcuZ22PJBBufMKmGXj5NmpNXTNbMnOB7SXnPmPoYZiyJyitd4IvdfJNpTliPrUDi3oUtHKRxT+Kux8HeyZdhuCGYVhVJSzssKeKoG0f6IZ7im3TzhTZRhfdFLHd+S9zniLDvac//cRmG8rHkLMY/3Q/tT/bpAYyGJ/QcjQl/U5D8JL6l7JSJeaH6dlyF9m8iFXiWY0p968yg1wgR/xppObNKQlIZ0GAVF+e7bvBhdPFrvybImUHOYtpBArVud3mjQ8hii/u53IgxPtaWquDx8HDy5NzbQRZ2NJx6Ym3p+2hIzxmc60Ij3i0Q0trGjLSnZWtTGSXAJu0+JO345VA8yRi4ojQBKXkYud0ADv/bnIlojKRQaXvMWCFWQEtGpKyNLfrOymVftjchu1q30okhZQNJlW7rVNaLkfq62F6w2kgldMMjf4EGcjy7wx0S6IrvNMsq/8agqGMdP7G+0tEPgbmG/tWVqsdzV30XbK4PRR7aleUd+9rYyIujRXwwjgWYYOdd+s3K1xRcycIBAOSudTFP76uWTmhlnb11Ry0rPxxnnC+la78e+sv0U99oTQjmeGCawkUFla0ufRtAdflwFdGTFz2GMpUl/89Qj/9bGViUE+TpMkvH1lGXMZV+P3XWFyNN39rViwQm8UEQe5kRYbalntJUrn/eTK5I9Gu2Y3GaaSa2NWe4rtz1yWHCD9H38nGhuFMl8fM1/hmDaWakM97/3Z4qCLN2Ns/gpMSQtCgtKfUfMYvCsw2Yu9Iy0ZaUSCBP1AQH0pFAFEHK/q3SneTDqQazvINs90qAWNpB46xbfOjv0uEdMLenctnn/TmKSGgAMd35/tzP48JiNvN71FChxonYio71nr8va+SbjucibciH6PV4QgC/TD+K5IT6TzHi+/g1+QcKbMWhq3JmDbyjGfcDfJQYwXUuXBKL3gabZ4Hda1pGbHJ5a5+V/LjeMsD72D3wsRMvhOIvOoc5Bf5Wt85oirtp3HFnLXjbaRDr4spc+4X1w2HA2hXis1Qer6awNWtxNOZPRNHMhP3HtqNPwq4vWJyn242MgAgF0hl0lF0aIxFhJudGVPWNvHuhOEUmRA50irq5TwjbwKiuiMhc6hA9Au/kRsgYz4oVK/G3uVJ+Tau28gH+ixqnWr1xXd2XB1y9C+BQqJXqQQKabmuwNFHTCZsgSUSDu2Cpej+10Im4awrZZLkymygyEAfyg4X/W5u3Nc5BMeXW29DSAoFoZSyDo0AZ4Z5VDttpwzK2+9lNr/DjMUnlgB0WWL0Cznt8N2HtCVmRMx8PDZB0krHF2uf9KRLrKsfN9NbZdxLF/iVXk8m4l/mU9BE1ubcW8yhdkNtvKQOKNa8L0UTopLi7sBe/cq5fNFTXXk93lV/026tHgPmkrEnTzYEkT++eOdKBV7CstGjCxxc1RFHaP+zaUNX9S5dawnO9kr849NCRuRCwi9KNGFFJNfVWEhzhMUFMfqZoB9ZAoSuLevZK2m4hegb+XVSXl+lTRRZ7L4Fgnpf8XghaIUyZ2OL8WxvAzXKE3XicaZmrapmlSG5QjMvzlGMrFxkmrp8iRBJdHGBWLOTyGOifmTfIwIInp7BQbBs+0s17k3nx2PnZxCAaSyNuU1QNY0rgXsu+yEqOLRc0PfcTnqUK4OnUGJedu+GMRBi3b3kug80xrLVtOd/qlMdlZw3w7FOsFzQ5aJOCDdq18bgLc7OO5SCYWbWQfbkn/L4mKbul5MgaVuBX8iQ4OLY3G8NDw97zSMzyvVoXuEWEX1dx9mUrJyZUhs2k6m1Xdga44GVDNUblQsg3hDj+VOee8rvsNRuCNTBbw98YjigS+QcJFCnKekWuCYC9tPsxBDYdLG+sZdZj7Ax8mcQoLffbBzXdOlz1YeW1iuRVdGAUYKhp1vgbrMV7DQLoFzylYxM0huELJnEO5vxG1XLuyTXU3o/f6Zq2FPIVkU3NWLmTZ4iQtGwgN8GQ2bJZAlJFNyREPQw/Z8tLAgrbohCSX+hN3TDHH6GpHm0kj1p1RYjWcs02u8iLS/gSMWFr61w27Y9rFkhD1utAsM6U2FKIjUH6mv4GUjsBkyUXxmo9/GSzbjqQAu1SoOlKmx3+jgb7W6qkeXsCq9RGIg78kZyzk84e2KjaDwe1mqHxUZNtgTKH0QaD9SvLrI5vL5VVvMtj/gMvSd30mYf5wN9ZaBwX+EV8QEMLFciRpjoZA6Kafs6arFUjj6WjStoeaK1ruVVZF/TumLaOCtVjBkr/6RfTvumSr7SihS65RUcJNPFIJVBpoi7ZX6lPsveHY7kixnaXX6yqDk9PAzRvK/0Z3cpDzE/+ei7TLaZCiWDJXSq6laubfzvpkGZGmsUAooqiw9a4ATOi/Bl4jI1HCOBfTATsBV5lOg+eTg2JfB4KPRp2EUVi562s+i0Sd15qCg/GTa6WyjPBzqIieAABdGd6zRlBdbvNhp6fDit/IpTO9j4sdBIPt1ml2AuXUk+2bpmnAXpHRh9LCxkkqPgkucQ3BuobFRTY6H1uZtTXZOvWr7EYDk2Hms7SiA6yWlm3smNpNPeqh545CZ+29MmjJ7zmv+sDIV5WLfA8qAA1Gq0CIFacMoa4gpeARMq22C/jxODMf8ND0gMRyG1QUh+uzReAsholAjTJEjmilO7S9eq+62NcbREmScKUG7ssVMfn3rv4p7mNd6rYDc/9Zx2HzDnsNoa8WXjta/hJ8H2MYfLTekh89fanPcXWWqG52OpZVUFGeOkwXZOEgMF9lCG1pwOhBSLQfyRkQpFhETTWdpcqF1Pl1mjelI7ScVC5eSxq1IMZ2dhbOuV2funx6eN0zj6rr5I5RVrz+EngHilkw7YGKzzHgXmYTp09ZuBoVdMcnVjS+EBs7v+FAiZypx9nYkKK0j3gSOx81katvvDEzs4wX8xVODuRwQo4pPgPz1Sr+JXw3IpOsRRb2gFJEF0jNyzMYMzIkO8HkFrea1a+MkiPUe/HBtEDDYgBEwCvnw5sqtOSP9wO4wZmRSmUysbH+B0jl7Ih+FgOgGiep6noVKK8JR+zB8F+2yD8+aBh07cIPoQx3UH4UBSU4qyAOVrWhArMYXA5cX9isqlPj+YnUVulbZ12fDl624SPq7g3LTt8dW+Fh0ylcNp6ok/J4Dir+M9PSB7bUzOkpO1IPp7ckFaCVWe62ZmiFtEB1cO+4KjagaxlkWoF0LOU6hrQ2YxhfZRbuScmHb8n834LZB2onJ9tMxFr8vo+bW6MfohUSTY1J7u6wrcJIB/yJQTFq0MwXNc9bMgpos59JaF+lR3I/HFdHRFzWeGA6E2wVp12RpMZvHcRxlRA9dV2xerrBNF1NlwUfDl09v6fYT6+EpqsoJhsTZsF9gmI5KnyEzJ0YWCJVx7uZdu0pUVNMJopJ6wWNgxpIRrUFAC+16Ti/7I7ueQPomznKdOU63MHbpvufCBKe3tRq8FGHieyN4O0edPBNxfBpLWfVtu8Yyh16sPg8XxY88m0d2xkuWr26Wwqg77JbS/3clftOjEdg2cDwK8ejbEREOVyiaVyrmwNnZJEwGyT2Ovs5d6GZF33sphzBQSsp3RqrVzEAUqwtRnB0qiYWo/KOL7PrpNXFncDw0p2opuaV9qVhsizgf+088OuVK299fqlYcRkWy6Ku0MH0iTmHVpwnbs0RjlqaUFSchvv+J6j9XTcvT1qjkIcnbxj3Ak4n+bd4ZN02u8Nkah9GgFZdTPexGNGqPWMo3tlJa/IcUbMSTJpGM+cMv9IOAqDaSCwrIfW1fOmbgXGxPYM+HQ758XHO5ho0Ta0ItNgU2cv5NeTnd1hnURYW83bd5jIIfoufrYo6Mff6/dn9fqBAdpZgAhwCK9o7A3RdLVlBVxTNwBDEM5dnLawAlMtylK271O5oe8UaFcJmsFyrgglRGof3mN5DTMiRwLMzdReMrK3B4yYzPcAjuxaOXbeNLg8QdVYz58dEW/AYWWSqb+lakMdanYTVnMJl5Mb1wStoj3C/2/LI45LztIMwniV00nhNTzputMnFQ+bPLrd8P019KULnX+BncKMf8H7DpAiyqeUtErxdg9NpXhZJLisE4SfdMpzsGyxF26s8KRIxWzdNf62o7OF5GiMj7krkry0nYQ0kR5GgU17o/DaO47USH5MZoSCbBuv7FxaP8QuPb2QtJvLYZqP3XmCgzh1Bsn2mrRL0/szIZbjl4ZhMpIpzitQ68f/FL96XSv2vSWUWjmCWuYIKLyAWmNs/Sr+4rDQ/PpmbnD7AVErsUk0IwsPPhViVKL0MSpiYUyQVMDFws1Cx/Vc9eGLjuzBndYet79vV7lth1mhzW/B8HvkOFcnOpSpxKJPC+QZbNe1QEsxXstuvSE2ejWCIIuBiEz2EVEdbSpY3byi0agpPx0hrUypdgOMBtF58ehi+0lWRJi6rsv1gj05SAMBkpz6/dFRpQwBeyfcIbtvvUMDw7GD+Bv8HIazD27fKieyvPc+poR3SlqygRH/XK+T0bMoafei1zv08CEWzL9twx2fh0FM3M6HeCN52Pi6AupJudMUCOeFWe3sfvs/g4bphIbyS3xcDRMeASHR3KH1K7dgBTdZ63fzVkh76iPc+y4k/2N6a53vfZ0mh8DCH8O8Is5l7a1O0lWB/zxm8m07wtF/D0hay5+Yj8anR3hlK4ac2SKGeY+GW9GaKL5O+XtQPjmnsnsdWJhIdSt0DD5LsoJ1+blHHNQs15Q9ZRRznEjWwylRob100k/eXznuxb1t29MzXocOY1h8VkmYVCjBLPkzhPhu9odaMst5sLakHbFefkJjw7/P1HGn1p/kHDNXRO59H6UAJVKdD8xZocxK4zhjTIYr1ZOWpR8KtfuHczgqA4d9JRD0JzHBOYhx1IA8fpDVy/pfrouzu8iIH01KSEYQls4xGkzryDdIb+WD7TKBDF6QzPib/GFz0AGFJMEvdsa7hIOM3zRF1d6qJ654RzduXnOYBj27wvOobCkegYMXc5KAn/6LVK5fwYeHOMh4DhjFMwJPzkdrBVUyp9CsVtk1JCkLJ5qNSZwt0HrWJmPrz3NwxdVKYPvOSaCcJ7sag2pkbpXz5Bm+iRFkCitjngxtwCKmIrJEYqRDeMm0J22El8demW+DPFESc7yfj71+WTAIALRKLdQwyLY4Gqcj9jS4KLsEzDsvHqE5ZkVOelJHgAf4MnhRWv8jL3A0NfnySeKfF2UaGWe/tPBm6xtUMStx4ng2oN6tJkSuIOeG/RGYISIxmlGdnmYIPIeaF1pCLKAcpurfYVaCnMt3KH4xLaL6aOZqwiNvynUV8StlRYbGMAdt2DP39r/LcDCm6KTjRYufiq404zPld27EHaBh86jCwf2QBnDTwcjRDMJwArP8H+gLy2KlxMsgbyrP9NmyO6cj6eTfFLIcq8+RyetspJ6fgL/ceD8MagIjdzettO5nCga7atUnjnjIhNPzIUhYkTmVU3TfSa2U6ZnrTZHS3nrMUo2435WDR392coA4GHNhxNdW9d8vvpgDAw8H4g+kECoHdz22DP9I1oJ2NnTU4aEy78Homg5NzppqhIh4u0MJm5KrfYPLVAh9T3vqPhtyL2n2sw178nDOWeMQyLtXc9rzqp+lo9QNeEUBCuvrBrdTvoJh1Bs19BkqJuYm+MPFEQv4cEjdNZcHeBc+0NUYd0wd2AChB3wpPbMWXu377RrNPhvJBrCqud5lsFuCm5vriEvyWk4oRDH8bW3iAOATXgzldDiKHuXLjykqTiGgrFYB9NmmVK9wtAyuikmbcs7IyBw+HpqJKOzwLqlmWQh1nqSR1b6T87uKaPMyPzwv7wCwnGKfYCfVmuxhkZ5KeWfApUpR6qHS8FFduOHysB4tulZztG5KdaZaBnAQ2zqe8cuozO6J8n5ChCqe49npR68fy9j+hEY2A5y5d4GOgG0pdnJpJdjb97CHLQdNP86a7FSRIbjZ1cC2bj+b+1rtXbf15BU+5uDs31pVj0b5pvg9Lzw1ZNbjGgSQTp9KO1421c2bBblbcOUkoPHxoFkslWC0CCjYaxQos4u+zFKd602XlxJeB4HDS7gdzU/cxLoGBsjmSHSfYPXROLdn6ZcX1gC/R/eWi0CuXj25EWYlaN/OIN7P8QVUtbgpygDMcZJ678d+zEYH5/XGaDY0/o1z3eAbiMrnwkKgJGn5T2WMIudfHwzo/gW/SPFsBQywKkZcxJBxfq2mNaDI/ku7Bfm+n4QO5omLamvdnxHma5PVHxJM1I+3XpiEdFIcw0AlLbJId7UYJQzgiRN5SVvevIxzi1aw7CF3DWhrstw78EsbZIRRoAnu+XkRT6tZut2nYSPytllpqDZDyQz1OnwBMAF7XNfqVppmct9rlFaYW25rmknUsuJE9JGteqLPjAqwcoJ6bre2+wNYC7k+U7ViR9loBZUySLic+CaZXAjx2nvbIlrbuHEboGcfWzmx6ip1G+ovPDsRveBTbA7UzMpFfU+kcKAymuUJ6vpN4lufLon6SAzo1ZLkvkGqG+wWfp78uen2wSmsJcQAVqlQDD5zR3G1V45pKfBCrF3zDW6rqQMbJ6t75t5gDUyilZ60TMZpMJHZxibhLpkvCEN4FUpwKAX6yQSOthNQjMaN0Xd4jIMIE/+uj9tqx7aOGedAExMql1DIPvI/GzV2DlOZPWR3uD3tC9KY+n2VqNAGCMS63zuktK0bh/FlX1ogeDAHsCgoFIgQIwkvT2VHsUFlr++y4DHdmz0GhUTB/K0MVcsoAzJCX8+rtWICACSB9iqDHPdRo4eGrnRDuWXfCwUiWnRlsbIpgdAsqW6NEp5zI6StxkjbFYTCKeshxPjXQE2Wa+PnlVHNW2DArsywpQwYAT+qfsXDpyGgDlGoWJvZPp3LkEOQzTbTQdiMRwA4E9Iq3KhBGEoGqxgU6rx7TD1JLWaV60on9wsI4v2ZJr0uEgZUinP5yD9BZmSWnZ8xNR0TJvDRg09VTgVfIXEv2MsCvrswzJqvOui0qmviWk1RpDMgaW57xY5pWOC++298i/5a165+4f6E/66n81yWYA4C15+Ck1ygIDA6eeGX5MRQ7bn3c9D3p2t8hMzKA5DMJw/kUOm9L3Kl2WHlyHMKj+gDgugBTlL3bYt+8OWzcptkqxiJ9bnWc4Tk/FQYLK6Oj7Ox1TZMjHj137ln9ivy27gAX//4IbbJXFXKwpoYMMKJRtD8CLwcRL4j3/k1KdO/Cyx3hRwXwZKv4CaStJ4AkTZzWwLcGDQSKl79va+jnwy826GV8MOPeLGr7E+g9OnK8Gea/K/WeI7+bJT2zuWL4FZphlLLgYGWzAO5GeLoL7PaJCuPa58PO19V/lOr7KMEB4AVKmjdHk9nnp037Rn5cbuWzMO1fHvjEzWWQP0giWIHAFcZwrb1f3xCVi24fkZFkI8E8Cj0KUz2nkbXTLcfHPU1oh8QCoE+CNUKnALHa4ZDtE2CVghI2Abu7GXBY7ZxA5hg1xCq7sbGRVGf013+xwdo8Hc2JDD0tlG35If5UvxkS3YsTQWLrt5xV11j6SohssJTsP3As7hs7Sd9nzY6OFKAjXyDzmhnpEtFUUv55JqwVaOKTN7AJ3QLGnQGov8idO29NH2Z+NY6RKHBNTLdqoAQ3vebWfKENjxbIAujd+kC4mran3JbwZgdB2baLAYf/XgK4fNovQVMwJYnhwbOnErmavm6HxjKr0KoyALItmCho8cmYVc7zV0bzg16Q+pdXsc8LMk90PJQcIdkAALRFFW3Bay827JDyKBKMj1jnt5Aakhp6fnJp7wWxeST1HdrCSaYpxoRfkSwquaNo3bI5vt85wWN4E7AAcESHWpcyWlK0nuYPYUsfrcC2lEA8ZXBMLs3QCtUOpfybf6ZJOAts7VuVQN1Xx/+TN28mRNlvR8cMyAYCWdRPb9+Zkvk77F4Q2UGiZ+Bxq6/d7bx9SHcQAD9XDO/mWJCbbv6s2ITuTQSoY3Ea51pdjjl21a3mc/8WTtQs26hU9cbvdISa+Rg2D73YxdVdIyl+c6aXnhHYcHI+4G5atBwhly4Wodg2+sfOwS4SSLpptnsQQvstPXjtby45hr/RqHouibsxtmf3+qQXo+WrdaHH0TK+6foK1svDvE6R/weMbOT3UIbg5i67GwpwQYl9oyz1Btv6NwwFwWzByJjb4D1vc6IAXWo+yoIJaGS8KiZdLTOWw3HK9R41CuZcUAvzlXOA9jY0QSQmKwNY1BCprcrsS0lsqlU1cdT5xMfVdnkOH8EfG3jswOyBtStMV+KcnzBHXHqvoVbayZPXqHk9a7vyZvGh+0N5V8ndgOW7HGN1gWnUmqo5viGqKEYgmSEVoP1SbsPPCIh9qBPo0aL/P4D37BuYzsLgtqyO6ipyizHRWt31wJbUDLWyAhsjXiV9HaZM+As4OPAdewcPE6+wp+hcaVjdu9ZRvZfG9T8QfwUDVlHj8UH+wc5L3u27FVpGw59H/GFwFciFzBIw6iRYuelQcQCg0CBlWPLlAXoVbUklKw2uKkhaHB5nqlIOQGyDHbAl8XECSB9S3/5W9JwnQrgrJsgBkQ/oee6lbjX/nO9byLrawtGN40YfptYvgIELrXJwX3qD05e57YAvBJg6GZc0KFPjfWbUHFhEPfk2dM/A2T11Tfc6gTCBexpv44rEo5O3IN4YRaxHjuQf87hggYsvCtgnd6jvAPrWCTHKG3bHPLysJhRUPQVpg0xN3uWpdKfmjKEF80EcXWRDI3JKvk1GMJQfHf1amya+IDMl5RZnzkTc3wEwAXiSNHbMHhTTj0K+U8mA5KycpCR6JmCkA3UGrG+XH9xgtrBwv6dRN4lQsh2K7qtcwpmbM+9RBVecIXaMwD/eLuTrRGAH8WU4Y1idAooTJF3PpzTYWI6QiFsLCMg/oS1CsXdVnshHADNOX5t4Q9WsQ01aXto35YujPSMIMntbVQyvLekWB3hpjdyC5CeK9VwsM9kH0sFsnPg2XLYL/qpyfoeDF/0mS206MPHpWKf1g/YvV76t1l2fGVWw6L1hbrpl5ENus7JKSA4TKzX8GyIYWdGQUEnGV5RTEFdvcFSYBZ/2P57H5CTL7JZCW/Ri8ni0AGlEo5vm+YVifBrlfNb1zDBiHCcLak8byM5Jq2E5XdoTOq4LtaArIP2mqt5Ik9HRlTLWLgV5+IOwbPVyhB+2UYbWpSGrp91ZBReY0UJrtSd9fcEQBdr2Pu3CTVNk0WMNBHSw36QD/rMRuJEvGUj8hy/8gbyS+JiidOV+EPUEWRcZV4LUiNwa2RbwO3YGux2tYJAZMam59i4NwetKSeWTZm2oI/d7GosefqOTR+J4SFHPiXeJ1B3qeztFYmatTgVj7N1euQq0mewsQccxbGpWm936jXQeHCUNiNnMxM5GvmsjjmtU7h7/DRThlRJheflRLb7xHHPA9uqth8GKHMqBBBQkJiu4NBz7aIP0P0DNtdC4jaLhCHrWhXy5LRupAlh/SS15Ak3zMVS+LV3KIxLYbOR4BwumgnYSKmMkr0j8opowy5Ha9m7/z8DIu45oRBgnl/0KbhgzrevlSYClvvf2E96k56caCh70bO/OSL5m+D2q/FVSvmFSOQQkPMC1Stgt+VvFjfSbFBPJE4C6SVANFnb7tOP/Frxe6UxkEMgOt3Gei76KUJSc2Gqgi+Q6RZbYBA4pdYoGstdTqN4o8itza4sFyIIlGO0XwQd+tU6TAOGd+MKXYZUXwwG0vZKIu1iFSHYq47snxPpFAwBw5KqMkwkwcCITFaqhOocFnaslX2aYFaUFEoMDrNqdSwApHssJqveOND8A5rUgtjZHX0KszKWunsAu4EcRUPZ1AVMo+JmOBuHIIOIEvtozomFqcIQ8tJCG+IGwG9+UHnLz4qxIkM5hXwAll77noOesRoVULt7rKl9F0zvK1kj6ggITbAYPnryrPtNvrRCApKaBw+TomUkAHvudC8PrYcRNMq6sm25EHWZKh1zlfGycuzLOPCTbWvasnlFqtYe8t8Xwhq5988uAK2rA3GZPSV17wpgZXi8omfYnI+yDGuhd4ZrMbJUlTjYDAgOsjIL+BFtHDz/crc5pveI+CnaG1VswyyxsNmYQIbWrQUM5g4X9D6403jrklxQNS2LPC3PZB7bIE1C7mbfRp5J4KmdVUOqyv+5jWyoJa2GB9+/0tPVRaONgsYMfOo3BMq8mJUy09RF8AvyN2L5B3j2leWbL0YajcCCJ6kRlFiODD13a/Wo0AJWf/nTDaFoEcLk/8GZ5YMGSZzDAJw9/QFyN9ajeV3KAGmogc1huj0UIvSGTIrUh1lIYadirA+9+NSnrQddbTVzWSRI1HUmm3qQPzpoAOU+ccBTmIrBCzO9uHI0HewJnlbzAkhFRPwEbhz5ZFIx8KBZJf7yOgT9sIFOR7tiivwZ0lK77T0ahkaf7KXCvJ7O830fzfaKA4QMIbdVreMnhlGkQleTMxTDP/Zj8fSMHSDO1E3Nu467n/1ybRJYOCclY1tnXvWhPDDP95JW9f2+XXHKFwnqV2MgzApaVk/a0gNObiPbRko2D5TNiooxpRekJc9GzRsOshk25DG9162GPQrjyiPgalv7qYBY7+TastZ7PwBEIrQFzNmPf8Z2uANrsnxk3yv2srZdSBl8rZcv3p0MO6ecJ+bY6nDb5aDTBpbv5Am7pegZGLknAMSOYl21xBY0YKFif7MXIfQEzp2o9xNJQzXJw7DQh2G3Z/3XfZVEgCO/f6TQEm6cCBDlSKX55wvYZlTdBvpakIpK/SzVJsgsPunQnX63vp276pm37XzOLAHGa05Rua05MTUkS9pxMGpQa55EfR2YKBcTY/yu5sfwLZmu0xXHXqPLy9dkvKe2hLRxslaKo4V8b2QRFnVKrPHyF+KRlVCGHFNsGlCL7HnyTzDFwQf4djdA49OC+UWoW5PoSdYq117bYDCDSgA2ZgMk/7+KolBfWvWihQis1zTguNVJZKoE90lFuhofzkEjnn65vGskkkiqwDqPOMfZetI55FNC723ZmpQp0gUAL+Y/9f0y5DbZkm3CwPAugdBSnccarWMZzWaXmMMtsKG3f/6Fb8GxKinCbH2h6ZeUyeIY2GJah1T0O+ea9BRqd312lpEzpFQUz9ew1AnjYiDBZQyBc+7ljkJNAkkHehfR5oZw80ptpfx/4t7ocEMCqaLBmi6rjxN7CeozCqxhWBkONve9JvmWvfWu0amH0tpEzTWsgHTo9SlohjsqfI36kJNRXJC/GhgvVqx3+JkH1WroekKDcj95yl2TBlQmrm2LaRI5+XAnvYabOA11hYMsyVjZCKGx/klsNa2iH4YC8ZUnVBTYLVrEGmho6MTgTSenFgTQJCw9TOxRPnO/JvjPGOKao4i2nqfPb9A5c7CmHQi8nYuHyF2lO63EHJa5s8G6hRbiObhehXbhkWLEDdY/nvzn2curg7gB5FPLsoobzbkTsF3Xf0E3t96+kmYXhxf8T9B5yz2BQ+Q7lj9fVckxKZSD2K/0btzO/+H905/FeCDHNBQJ1/heDXPOigdVl/6SBuUYCk9ZuQy59XEC9j9k7K9kKeDFyyCjkxeuD0YrlgqOcM612KIyi89BY8+PkpWiyYXb9dWoawNcOzt94McnS4mvNLJpxpDLNCGpGM2A78LeuumHZPChVl0jn07PxgLDmvy1OT+gJbQDpVXfgbMCEdoPfL2YUoexyGSixlEEtWZKMsRLI4HLsEHnZG9RZP4jJIcGMRD0oMcZbLLTorpvEIMJFOLT3z+MUmFl6hoT60jGSeMrqQOmZbCa/wlIFUUWVbVjVISIscafsHwVhuW2kWoHCQ2NdCu4hPVdwJloQtKABByHiPcDq5tGj4Vxiy+Wpjhpu5rw0uHgpEEa+bNV8vVb91UxEee1bLRQ/I0jtd5rZvL52MlUVnp6F0pvAXoTmNS76byoerhmPzMujSvsebgiRUPRGhIpQZzFva3R3cdabmt9tpvK+4ZVd5qRTJX4pLQSmxO7PYSefXk+ZtqUPCf7syQtwz/l5km8/CoN3KqDz0vRgm2aXfiU5lngLc7xVVIrE938ETKOZ7XX5/Ga3Df7xOJ1Y6DVpeWhBHlYnNKkpO5q6lffdqqlhcSwuKAhsnJcGCx0VQarHBSM0d1XEcb+JxpTLCH+LTzX3Z5bEiDVlfUR7/jZA+szF/VSk/GAQdDKSyXgAUV3bUY5e/LxBbEKP7hoMs7Mz1eX8AF2AYHVnbR58xz3QdPpUTaGM3QrlfxzDFMwbabcuZ7pUNvHfypMSaSJQoBRm1J7C4b33/Pos8F2M6LNFc6VuUrckGTsZvOqi0pyaC68kXB/ol6izoHhNUwcEPInCULdFFk/9Px+iLqMe3uZ4A6OPgzwIif6aSxaHRzB/2sTY7YwZ6kb6FlqN6mxH+fdwJHHrDJe/LXBz14meF0OdJtW/gttf/pmhSq3BwqRdw==
Variant 0
DifficultyLevel
552
Question
Which fraction has the same value as 253?
Worked Solution
|
|
253 |
= 510+53 |
|
= 513 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which fraction has the same value as $2\dfrac{3}{5}$? |
workedSolution |
| | |
| --------------------: | -------------- |
| $2 \dfrac{3}{5}$ | \= $\dfrac{10}{5} + \dfrac{3}{5}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+T813uzDsxVp3J1+vEaKP07uqd7U52YY5cT6yT2YE3BIZKQixFk3ZaFaTqFZISY38xyZ9Kznc+5kH5pjA0LEGU07h0XtP7Z+aEqSLB7/HwvgA4et4uwFDac4LkbVwFl+WY8pR7M4lbPmcupmx2BEudsw+Qt7nFz0UAo0Kp/t3z2UDE/Bg1V2jkeipcLrMgkR6cLGfibn4fsm9OPrpBEVL9zqWHGQWA94VhmXCLUXSdq7klKYWuu2UxanqIe80bKI8uAsthPC04TdZl90XhSuXQF7QfToErCAIa72T5Kjmfw8qSCX4Don90Cp1Op3kSM6Smex+qiZ2VV3q7vZjK5oa5ExA7u84TIS8T4mZcUZ9Au8bm151hfTm288adWwmpuWORnb3RE3EhZyeXYWk4cyO60yITjjMZmny7yT7mTqhSYcyQM91bMGse/T9PCF4jvv0ZwHZ/dlEokhD4PL7uPdo7KnVxPSt6/yb/DaXqBfNsQdddiQC3C1ACZpBnCRQzcNpVIungE1doddJh3RPdf8zmKzRXQVSGisACMy9g7teYvOIspQlF9BSPGwlK6mUJNgwoTr90FU27t3rWZNgxhr6ZKZBhG2cBN8SQ9dx5sMHF33ApGVl/fnmbgTY6gzPrt75avs2sZEcfipVIrT3ZK11sFWr1LXMmKMaNKxq7rrcogMyaBsPer/lap+Hid2PXUIVC/d6kH5F+K37KquQpsAJHsHPl/c+Hbn9pf3pWM+FjkUQXAJFzj7ra/qT94U+GQtbwWHq92E18Nng2vZ2EuEVyg+0uwHO22zGuiXCT/WJ4Mr8e0O5PWWFFZ+bxk6pWKyKUCzy/Op/tWgS26T3ZEabJoPa0O6T9wi8S9hup9BA4GOz+DynOuMRwzbbpXFN1CP9/JiID2W67a5v13J/O5lC1gAGf94wdWzjHAEPMEPFvo45mHoGpD5GgfIxeGNr/X96eVqpNN36F8uKAwGAAMe/dgtJheTiyGE8py+XIy86W5iTwzbdYxOl25QgArcCs9af/eQstTgHYkRfGYjPB3qVRaj3gegol4dhlxGtZhR0nEYwtbOswDJqWodGKhPbw5UZHgnNYCjltGwFsF/NW5Y8s/NNdTU2qbqXNO+8mYRxF8wsrWzWmN6byirMPFhWxKGrxKKqwqyeQs5pdlFRbEy+GlkoFpGJEekWtuim9L+a2lE0zhEighMvXpWraJkzyrhKW8vMZ3b54PnHnnj4DhRnhBSRm51Kdon1AsIBMQqqoto5I2HNITVDggEu+4FG2r0fhO6IwWy8w3zeaqeckcn3q/R1FiTvAOQ/4D2VBzLVIKZlHQllDfEu8nHPwtbAEahaiuPQdd5nq8ybQWkgEyqP73ykYpqVzfOQ6/uy3fDwr5MDBvLaFjy6LOt6GDlJ/W9zzNtKRZsjDw/kqq7KtdYG7sUQb0LdoUIWB1/L9X5XApNEs1Q+8uWjSPZ9so2R8Q7uXqqSspUKumzR0tR/dpWmWRtr4iGOwD46vmjClGpVvbObm7vWjYOLXERWmE2USBZqPmHq3eGJxp8Tzw9UlcxqYd23AtDB/akcTtLsgzYnyhaMsxXr2/PcQ1npyRGIc204QAU2xaOofZ/u6fEeATsTdskMbBTHofzYWjQRW4/Nsfk1hQu1IBC8OscnOTFn/LIn9haLyUjJ4cJ83TycPPJisAEI919M0oJLOafejhBaOxH1TWtkdCXWLgD7864C8l/4symfdOKDvLZdhKi6AX9S3iyWotiAY4xdJ2LXn2NU8n4rE9zH3DTL4OCZqcDqW2xUGYmM/gdb1Thzn3DjlLBRQJxDLWhrHGkw64UqN4fk1haMBza+MBwbYq0Guqc6mu7/kcc8sGJ51Tbzvr+Nyj4clin4CAITmVb2FJXwZFOsGSQn0bsJvnp942pmBFx3UGZZDWoGwuz1oFtxTloInazQhd08YElpiy1VqHUPRFDToYAE5vvB3nVi3wRzl6ZTNyxCSmhm6BnP3XVjswt9AOf5+9k5UsCBHh8HAdz5IQomdqZ0vXtXfQGVMM20omBTe93knxvtVn9H+Mwr0LHwaxCXnTEKvFXSLXS456oyzLTsVaaibnjr0YdPJhyZSnoyRzpTcJrILDfWFwXFVQFWO7H1p4OCNdbMSDN68piSUxWB/l7b4Q9ligXHuyHfEzN7K3YvM6/LeY1oKXW5rykm7NtXrLsQPMQ+lxsPb3mxPfRssmvf6UBSzSTnVgsZzdC776+jL1UUTiKBKUHQavicR1NsxZzdOs6itxNTFFOWtdl8MAOxRjjYeZL8sOobJPB6nStcw7XMi76/Bmxa02oLTj7op0LNzlLFmldqs5WRzq7sxA/JGCp41LjzdlmKsqMwEZaUswZkUvz/oAhzHr4avjCj9QEOqkjCuXKwqG2rwkQRQM/PFRvasQ8n6/qjn3VqOHHe6rnct3NTyuZahqnlkmm1g0c86YNS5viv70JsxUMfcP0afL3Up/FM3ayfDffao1y0ar1CWLBd7er0vzTgzleuH6UTZCo6ClvHrt91fMxEtBXeh9tKHIxbFFIcZ0YXfHZeu46/zm5dqol1GtT1zoflaURhUTTbY4g8WiMc7MnOEQvfslzX/lDi3WWOR18T3etJUk9h25n73+wDtUZYxtH6P1Nt5NZtZmQeif+fqhACliQbfPAq9dfQM7Q35cphrPlfYjajWagD0DezqGnmvnGIbEuU5ZEBRovqtQgidp2zu4mpelh5sv7ieiZdTzX1rcnAwiHbyj6HDZcY7PKg+7Ib4nhEBSDW3xQQ1xEiBiSzi1G5ZYjIsguiUChzXZOEvGqrsNWJJTrXkUnlss7IeOyk+wyVMLiwYkgvdU5WRaDQlGYOLeFYlk9z7lQ/yuiv1gqSAdFXD22tMMi5aDrpztp1g2zk3Bug905z2BvgtxrN7fUPQJXPozasBgC3liC4ddsVJ2glnn4F2A/HA1D7XFgSw7M4lGlWb22lOAAhSWH0aJhefAluV5E2G7bpmmhiZ+rah64p1e2/yPPqsTjMXkYDbMiLv6IJ1VpJ+9tLMvgAHTPlZSQTyZ5op8OqeBJncIiKEEqvQzgopwRqVjKYsrxl+Zf5+6vY87bee/795p5s/go0Eg5uYk72PI8T6a5byB+u0P62eGm3dk6TebYjG0bQU5v8GNpZ47tCyvrPrHXZWLerTXrpp82k6KcdokJWaS3yA8QURUzWH5Srh9qzUT9AzGZIUBdr+Ux8HRijWEEBXhrXGRusVusAA0fD1IyXtHBFHEWAFW1UMS814QPRp9wmis94sY/qVJnvCD8CoKOVhS1FC2cXVlKbNYBKBqtS1MlvjTZDH427Jm/pOMbXlhNrYCTS1wTCi5LRnB0DzZX+OtGKHouadnAayu1dq4uBpS+HNvG3vhZnhRmPeoDDTUjIXfJ6R+IQH9HmudfEL5d7E9lHUblnEmhPk0rUYwGLeuRY0AnP4MnkXmfVjDof8KU+eAz35QrDdN6MMrCixZSYwXNAsBXPAheA9PGP2TO52mTJEm3Al9JccsY74bYcTq8wvzOuh2ejEwtB98fmDQECkCa/Ll969Sn+PhxGYbNRKfkoL4RfCqWleHnJ1Um+Ldi70dC+G/HBAqVPKPiUVsv1nd5Xr8rA17zNwE/t574Kyb+PrZNLQok75o0BcN0rdmGLu7VVle0NnxoIS2HqYCrVz8WJ3+uUTPDHAWtwb+MfrT8TjZAeRacZMAOf72+Wh634j9p4Hc+RIP8v1aMQxrRCmrLKfAB9DaxPsfGh7dVlxdLtBexi1ErQ4Ozmz8mC7oLlr01+qJltiRHclmqoQ0Ph5Ckwu+WBDpWbGYBmsMEYdPDdzayJKYcET2Y78hmDlwgd+XwGms/G05EOOdo0/Jq+ey4bgfJR38FROwjQjEA8M6yTCaOjq9+qAJDkNYpTG5Emb3We1XwMyRQ+ZCmrf/vSfOD+tEHD8sdR+9bYraAH6TsGBHT/QlU057w214Pu52Y4b30dbBH3xkhFQmQ7mxIAr4ZNrjh5onDnODEXULKxhQvV5IJZax98DvoNyNQ78KxIh/AjZFDSf93Q7bE045ntB7NhbEmIugVmjHlJlTMjLQ99TMP+3FYmXKrIjd7F5r8D932jpo8nfrTpVA/6o5ihGd14c14QPHgZOoyoJIYoNmJCi5Hey5cCrLmQ6pRk/Ra0yYVPQbsrKS82BA4Pr08LD46xvCeYA02PMvwLvrj2VH4ild5dkWnJE3M82Fk+9fUUoch9RIg4TKTmhBjPdL1reXdkfnqrp6204OMUIYhMX/CUSrPSrAcea3/JBYPuv/rC8IO81Kp9foRotpRBK7grZXcs9J7R8W5pu0gP00j1zgjJ7MSQuHbfZJK+PjYT21A8af7csiAH7yswYVeblXsvGUXJCDkSqUm7ohbU6K8ePY17fdB2emr7O475a/v2kVlp0j6JlCqpKkR5viT/Qb5dLNHzOvfs1b3p/9cLGzQLJrcEqgQdpkgB95G5xYTFb0wACp2p2Ef/YiPsA2XHyBkKv+Jikn9utTIj0VLRzZDqAI/Ljzb9dMvr8llTX59Vh2BQpPqxsQibbRwFj9WYBjdyg0wL4oqPC2CatIZFzF5yCt6lLS8XNoMiRkEPfZ3s2GvZ1N4XTVtDrEQA+V5RnP+TfwY3920i2Cy873RvsYzWi6i9etjxjSZgcZEE80BcJ6jUjSY7YtsZtbrQMf3pMq3OZbGEBveVDj4fjHTWCRFSlG9XH2C6VD5EoTVZAn3hUChj0lgeIf6TzCgsALkRbreXm0g06vuNzevn41L8nbfiPE1c5E04dNpzsmpMVREguaeNVtYIngRm5LfPKlhhr47tpCyUh3lqZ9sYtws/zoPepWf37lUtQugg9QR3sa+RnKAVpKzmrDkpNU+ZM+Z2NS8ezS78J+2WYEoYNI4Nscio75RwxyZ/L52yxxy+vYThudE2FOLDSf2UA1/KHfN0mVE8cdFUuAY4sUP0YFA4eh3Pc9AAaHZNAgrVX9t9GxzCWB8tJuSDWWly/w3VhF5RuugmqbO0qCb5sZDrLHbH/1FiPhApunLADiByjW/B5xwxhJQh396+D7yBHqpbURt9/8SxeGoJac0+nuihw1M9aJ0k08HDymmbjTP7TbYAVmiKO7kv8yK2uKyWRKSmqtwAzdSdmgRIJQR2l6fJ6jvZoR1LK5va1zD+lYATd5SrzkCVPx4rJxdmOstGFzYu0PdjjkOeO7kY5aPdGKKjdPSu8WE3WT/rymiXgIk54rpIUULtu7Bp8aX+VKviyv12SJTFsOgqvCpsjZRpY1RqmTtSaVg+PuLqPUSsv4PDldzY4ErgP8mT5HYggArzCvDNe3XJyX68KFzkfHJTS9htuBBeDYC3/GF2aR2+ke1jud3Lj3xMJ5J+eDn66Xsd8Mb6xHzgfkPLKDsBAwdxtH9kOLzIxALTV8ErjrRVV86bdgqCsxF1TI9y6Lzv5RGZryIm1q0K90fyTHKsiWsCDmSsxnZUxWK1gfNBBrFHBWvlIuJbgPOjEdLA59lq+qRczJJ3OswKqm82Aq2jDchTPqEqvi2wxjFyhyslibv2s/paZb+7SQkezaKNeyJDQ6BKS3Oc0kJXH+DK7uTbxk409byCHyRX1jruqY7djU09W8Jm+rvnFAE13irZ8PscMkpB2SHYCEcohBUrF1hbAKme/VtwF7XH99YO1+UVlGZfbzhDT/idJrk3SInZwaWWrA8KEKuE2+a8oGgHCzNDpzO68lzlSTjNCz8xxAG3+6UbuvEHQLMriBSmzAkXZYkhZLbohuHaCJBZ8yVxbciNR23rDns4RBfC/lNx5uiRUK18Rytj/q0UhpKRfSgUY7PRtz11GwsvfPkHRAFHvzTjQIcMXGqB5N/PtJWKvyR7SAydZKySPKaUoobae9yrVUKFS4BE91NQPQE8rctsU2eqJnZNnsQGDZE4MI6K7L1fRmFBlSkhBt6gboHGGeOBZl3gIz5Y7sQb0Fm0Lazbv4ljicGVyS1MYYOk53Mq4orzF0uvCnsrb2Fb0gMDru970xggyoLQooV2rO6xyqhOrFvAj9jjlBzLUTWPMgKO0uVu1IFtN84f98dUViiiyMddR5YsLvqV1ENiP3XFzGi3b732rD/FD61MZtU7qiYyRAFnI8tFspKndt94N1odaCCf8iqgjNTBJPPM8vIq6zFFMqqczruqCbjuEr4r9BlKqNZuI/qy96KSOBv6y3qqu7SeNepstjThgetrrlFSqhjk8QrfxuuJJGHjWyj+HjDOUi0ZeWOhnxZHgdxScZtlHk6OggdzvhUrgG6J5iTp+lEatfq9dIXiO1dhEwmiIrxCKpas4CodRcUBAPTgA+CtPcmHFiO6E/5Mk0U91hbJM4Hro4H/43RQXzxTbjxdMwxJI7KwYlhuRaFgi5xsh2of1sCY3qu3bu8RLVfl4SfN3ez35j/HaIB+4GY1Kdk1kORq0FhXNeG0V4/wxezYDFBWf2hF+vmRjqcjz7HkOHwtdTQ0s8YRHzLjIlzARC/+d/O+LD1FnWvm4lv1IoghoqeHwYzzfDpKuxqCCh9DbOtfC6MPLJE+fub3WD10YXI+zZsp/myuolSGBBt8fpIAWBA62ct+w+CSbh2LoHE/486TWYu83S6RrsDKriFu9YsmXcfXK7Ae6cwxS/7zKptOcM50XmV5pmLtxBNSO7Fvr45xK1pbEvXHMsccrTPK6m+Uclij0/LQX46+qL5pQEn5EFk9V5AfmZxRhr2EPN67k+LptQm5Kwd8xEvMVpuleSO04c0qEpzYkiTXylGngMzi1p49M1KyF5VJZg8It49iffsp9myQKUT67UC23cZ+dagf38t3Ovrw1b7aAwxD62LoITxV6msNmi4J6g/yLRp6z7uvjbfzM5B+oLv3pFIOr95TeODNC7f4sSPK1mK+/jmGT2yje1++wVwM9aeeEPc2GTic1jCqPJUdx9JXPW3f1xfG/84aTRT1uRm3GSYD9KcLo4fbejtXPraax3+NPYcHoGTWzkV5Db37HDJNe6b87rNXJJ50MBzZQsZbK8ntab++mJhnJ/e9CMs/NolMFdHLFdSPIgSHWGecKr2CGv8QH8f4TwGgEHXvIDcUhugiXrehci7IGoeyfhvHQxybeyzfbdm0ZIRL0WSSq4czSzoEjhKEF18+Q5aEvKTroEUKrLm54NVIlsEQRm0EmWCvQ4TUeKwaic8ZNlgJI1IyE7/wCAXkEje86OqnfeHWoc8WyjYv8Kg8tlbqYMUe6B1DoaILXY4vlCuEMlvBArquYpC9uT1kQf8c3vYMxquJhM6pyaMdPCu/3ar31X0nHK/aryIBue+G+LmjYLLg0s5HfU+1pgp9sHBDqXzj9Nb3+a8AZv1BdEPbtueBGaMoYdrOUnVf3H5oQ06MOA+cFETaJ7sMwUmmcyiZ4vBEONkIN4mIZRz1pnXF3w4WwW6Z1ADXLckvrBJHQs50L7c6dDl8++lhjBmRvtP7ASJIFMHZZZKxIERH2cKuAGf7jnSesHY/dqlbeq899P3tVAJxWvcfHcs+v1QW48lWDWnvr+N5ousOH7cR3qztSxLV8JWZYYWsPVfyh+CQTCNJ7g15N3srqdPcpdDlKXVC9mhLq8MHVCMj5Q9fpjff/DYoAfUCk3wlZL9aPUD5/YbpQtXRmApSAGd70npHv0vgEvRVIecP0LXdtVoaYeQ758x4gwT7+sg39+1H5BeB2eMqCNVektOeNbot/5wN2q+9s/HYWqM30A4x6DFDw8PbpJkNoGQ/ogkS/v99qGherr9M+aguSl0TJj1GNBfIZCRsfbAzCF3ibM2RoDRqABB62i/Zjuoj3CKS2rseiPsnBDHizCXNbPJJ+Xm1v2gpyBkiM3Nv9y7+LJ2eHsGof5Z+k5E/WrpQGa45231z0gP/bAfDogy7SV5l5L1R3huIzImRyqF0R2IYaKY7kr4vHnxWyU7+lF3WaDQM6lVvtYLfGZ7Ciwn1bgtDTyidUMb0TFHvoXJ623/m7Cxacl4oPhAa7qVKU6WNsbx31KLzYALTM1o1VzxrQOhU3NxkpHfoj27PAGSPGxEjrwOrZnFZVsu5IWQK7jAVRk0Tuj83SX/PfYNZBLKWLGl9q3HgWWVw6y8dTrSiQxUNq++O5rJ6CLmlkaYep78HawaUzbXBv+JF1ncyQezMHAjnfiWmN7VRvStK1MmXhK5bAa2/qu5ZcnCdwe6TeiGaFalBk7e+U7Y+55624fjFu/O2EdgFUb99W42IkBFXewZZeWz5B1MK7rmsWzcubXjPqZUYHNyNqF1i9nmTGCAvXGdbGomcHDj48v1I22yKXsCQeR7+JDgPSyFDC/nQcbFgpilCchJTwA90yAoQt2HWkl6ZrRjbEdC6r34ZhtHWAfzLwh/SFy+KLIuHGnr01G9pkWb+b8YFFnQeGyLe8RZMZIzp02wOUwuxybmz+42nzXlQU+p5nvxvTFM1aecm/76umqmmP/5ELQQtw4Luy1aRITwX6oSVt6MGRQ5DGlQ+sbG0Cj+AyQl0wfr6hkdJJaw8OkyMqflLIAZpRuSIPTFjxGwugjG+QkDlwU1i3jFyOcQjRTKsTMpiQVsVBKQ5FhKpoPLPpATZNo7e2/LA5xTRopFH8uZ1AXyxjOWLOxBMH/VYClL92hvoc7vsLkRu16RABVPgprHVKUd78M0ZEzH3bl3Er+Ux6zh1wQOtk/Q+WrbjsEh/cjJoNN7JCX7lMraE3nlGBH96967jw6XtaIDg4yA1RkvuS9vo6M81omeTDpc7rQmNR/BIUl60mPEJj+BS5GR1KBk4ERthCayqzrAa8sak+GMWW4F4ijTCKLRP/YHglbGyDsOl6YS2euNdznbsOLcBw953V/RNQjLnCZT3iNB8YFhiPgyVlvCOaka85Ahka+hxYfM50mhW2yLt2txFEh5MO9+cDms3/ulZz2sD5X3EUrg7AiYk4moe9VG66A1I0yRDZhgGWWoNrGtGiszWPdcjif8MqjEdhNFgJVsk1Z7moox4aw8lGAUAdRpiWS4I+KSc9eOEXSGO3evzUJXz4KqLYIu3bmwCiHN5uxthkDPvg61EUDOkvuJM3Apm0tUpoC2oxZnpJhBYbq38ccBWtbwBhHXMHaYFtdk119Gy7tNCBcTZhX0H8rTcVqqY5yq0sudm5+EUv38gqlgHrWrFXjvYzoDtFuZi+ye2Maw/W7amnM+QpIi59+4dnj3bI7q5BBIh6Lza4DKmRtpLuLXtuDIh2bQyMQb3LnDgzBNVwo2MWdkSxOXPPoaSRNYFG31ptc1t5rWg0ckEG1+H8IlMPn7O2cIaM/Fnq8e4wjlwOLCWfTxgGRhHfIyTwyi85cVFvjCmVMDjL4BmTYiEgv8fYYT0Lauf1F41/1hbQF4quKcNpmTnPrOeGJOJAFKfI6ErVmtkYM8hqE0Y695Fc/9nI2RAo5tcIKrMQXv86sJnaMBvcNOdJf557Kfk9ZtAvJU6c+BEF2OxRi7Dxa49iG4CIbzQu5N0VuY+y0Qmh2X3aRhrtn97eQ338FrfvaL1ErKsRo0fgZU5o8bBk90xRFuKQ3SCwy/2IRKbZUJAFShKsMV3HNvKp8n+3gYmQy4VxqJ9K7iFhNE5DR+yzgqBL5Uhxd7luwPBkNmoCwokO3hGMsr/sywk4qpoTaONaHSL4asVvEeFY+WKNQNHeZ6EajxQ8CK/P6MpJnGwURcjyEbJndpDYyo6VINA46PsCkWktHQ2l6havbANBrGqnB5YWookbHc7DygbLTdkF9+KIRfZ9lkoxZZpkv7sIJPdf4+zDka6vcu0aWHFAenfuu2RuJ555zv53OyeFo/QddsZALw3hfQHpxJVRmG72WKPJCgEtRZoisOMvnAHX4lE8VzOoUGEOZuLjrcm+Z5+cEk+FNztOzyNgnzzJJQKgXoSC4OV9CNmSIYSPgtypzMwmpk5XvHjIUIj63x9kuGC6MburU5JoGZeEljXzrFvDWcpphUmgeMdrP48TRG40EXZnJ1JK6hc9uv99vXaHErlVV2LWOrLyqxMPP0XDt4gyCF59x//qXXawyCu5wLU54s2n61lHTJ8RrMzFAuCtV2eCjo/CByQuFR1gAZcn3NsumaJTeEW3PVhohlqUHUg9H98i1Zb7EY9e3xSJVHjAz8EN6Xp6QBeugaEHHGE1IPZqU6NSyaF6es1Yj05CqS7EnxCjh99q8Fm4NYdXRkiuaEXUKBdUEuMAApfvhN7IrV2ITBCK9ihEur1AHADm8J3SzzZCg8Cz+9OsK0G5uQz6I6WEnIpZAEXf8OSM78FTEKWaEIrYaQmJuaR0C71GrPuatM6g8r0VM/HiuvHHNaUoZRiDDA17IInpSypL1aPFhFAbNZsqlUvusnlOudC+19pAxTs38+k8aJePVe2z5G81Wj0JALaO7Qdag6BAs1xKH+ynSznzpFZMhXdGwkIIdnMWYw5WTW4wwQ8zDQlljsAaTZBi2LyVQmZ6lP5nnTIO5Clty3o8JLQLUFtATvEaGcU85klmovG+XdREwB0+Uw6Le+HoVEY/+CO4M2WXm5LYqBwMtrac0aTj27T6esktET7uCfVn62Dn+NFXPDdZEE/AcIqh86nYfUIBPVCZmFz1WAgdCS3BfgxOp4wN3t68VXvWB7C35shD05q1fuKGYGtZ3NQWTYwLsFWYS9jyTZ9dk2iqMyUDU8vTpdDqO3JG8begb51dAtIsSJo2wxhSClCyr4aNxwFtNFiZISy6ot1rSVIvS9PXLAmLdYBamqGTUiM3m0+Rj4b7kUbJkDWIzFMUOltDYkQAy9uwAC9xwF9GXnF8hKX63I9bsq6S7OskK/UXqGzSqMI1HYZgvtW2Js/V5tgzrsa4oIvASIMeDJ/2BPAfqhXlY/wWmQLmg45gwQUQw3ztuGl7mYMkOUTeU755H0dYtXGkLTxruuvqjxdXh2+HQOG3i/gBIVGK2reLXmn7gMTaKYxZaASXcbMy40dVG+/Hc2Sc8rRqIRhjVrha1rZBpiE9x8C0RVVNCNnsCFMb7Q9vtYFPWj64M+5W0nrKaxjUOfQil8aHb5I0juII2rjC4leTELZWnnnB1tnnhc3eZERYnAgCuAfh6vYayFNcAXI9K11VLmjOS6w6/Ts8it1yOkFUkUakepzTd3xXCuhFQoG8pCEqLt99eYEGS6feqcQQ4azzUlUznDTt8UIBVTJoSc+pkBkAW6Y5gcojJhsUYfs4MS4/XV7/tmTZ36nhOV71Xxl9DcLaU62yVZQO7mygqHKZxGIh2PUcIj0VMCK4LTUGQIS9mwGcAbKjBpnRexcsZl+NLkehs0GZWFq9SXQCm6urnbyYsUh+CqjLNTUk5UnzowwJSpnPx4w2T4IZIu4DWWVXDka4WDwcqr1btVGwYNzYSi5EbjCZDuzWfLVOxVzUS2shM8vshFT7ISsqFoAJgpGGfnBtX7D2WUQmVidFwIfDp3dABYBwRasZVHR6PoK/yVojnT8QUVilkF9TivsqR9ie/Ibp2GvDm+TlEQmHgCzvgY9I5Juycs/q09HmpZyHf+A4Vc8cMydtyCeVg+cwaxehZrRzUQ2wTksgoboAmyeSxYmzrPZsPr+xFmeQGbcDnZcNyb12MvjHGHgxqlLJcfEurnWmTdJLUKcrVtDAqFxPmh8zSYm4WfH9GPXNPIwtODePkkuu+3DpC1zmcNeKSIie5I904hZHL/oup0AyWbo8qRmKqtWqIkIFE4aeVx2tp2xaAowZkhgoUtaTXv1bxLiNobGfruNDh8OvEisMJlX5tF6ZmC8AtTVluT+WrlFv3AYbaeAvZEOtS+/BuuLJQbZOMytsKxc2i1lwut6h0J+T5Sf+miBuluD1j3M9rPqvJJsdecGFnsVQtypmUN9aeyd9Azg30PDNU9D89+Tk6992RguBF8X2jRFRpdZaTRJPjM7XiwoiJNXj2L4HQ0rp9mANxPQ8hyucQo75dZNw8ZpzwFpBUQQsK2mtonVZZ0kXKfxo0I6HFpZc0fCO4BuqjP5HsaxD6JpRz6A/YK0yHFmDXdl3KHm+/Z1KyyD8LCPVfZ34hCLfeM73CCFXb3WVBjDTYow99cm+Wk3+AzSJm0G5acdh9MUo8RhIYbiggSbDPFdSKTNuWAd17B3HcY8Cg+OMDEtcJmUwYEyHW8z/1zW7shSbilpl0oTzrCBwO8+Twce3qrLw1Rr2Or0YEC2yMwKFEHTD6YOdc5TAai1e75ygbn6ry/JXQA1GXZPZla7OVa9Id2Wqi2BmrcmLw2DL9GgM4eGOK8nfTXaxeT9bLgoIOICtQQGbM+8mTn4IeDIN0eu8v0nqycLnnoytPhe21YypwruVR+oTzBAYuPgZvMnQPd7MNe/M47BhajZoQiGY1KKn+tlLevRboAMOxDE3vnbl8WIZNk7HDNfja+WUIq3TTfeythSkuT4C6CPAxQj9do28H7SZl2d09YLlHC7zTw3jPxyYG/5DzlbkjK93sFyMkkQyx+ROvvo5g3aJbcjzM2qdodFHcG3Ad2bIL4AArlQ2kQlv/B2fjLjQ+Rd9J9bsrv03BVHss26K301ruPu6ucyIwliAG12DK1/ih+AJg6YbsPwtf7J5xi3cKQcX9wojH1g6Rfw7BTpz7h9cXtmV0sjj20ODL21i1CSDvodw1soRRGMgJRiA8jnVcPI+B/SUwEQzl6zo0+Q0yORlQADVtAVxREwkuJojCQAscLdETGfdu5CBwJvGmbrBGevqFDFvm3O8/YD0OlSV6twYz1JfsqQWU9jwO1y40RCpYra4NGKLeugG+kIsevc4GOiEJJHqwau89on7P6wiiKPE8wG6bLjVnJB+rtr6R68GyMdKZTYzUaPSELPNGm04Idk5UDh/oMwNhZc9sQtfiAe0hwBkJCs0UO2JDY00ywgjqlsYADMS/iixg7RMp5yh8i8VFx9XX0QjpXMubwomelPNQxhKzusKf4qWsmyapXDI4XHrlhdwONWu40q8cODvGtqsByzGs2pCUWiEyrB5/EgFPzkDwPZ68jiBuW2MbNsHPr/dVNAhOylHPwUg54OYsRd9RSn52xuy8kjTAZKr0/SCB++XEIdKeXGey3cQQL7nhp6qL+6Q+eWMigvnvfL/9ngREAK1Ptgbu8ghpDNYT3GW2VNmF1SUTWhhNH4maGJdpNBCFiNjibnMl5AaMLnhacX+ORwkJrMTajwK4AIt84W4gcze9Nd4sfLtBc2BJLxQKakXJkiAvAnDoX6nCifZ74oGjhctC2c7lFT/zKewYOhb9AJeBJ0kzNwhG2cx8G9cfvDu+LBuDeOyISN4PTbx66UFT1Y+PEl1u6j9HmoNh43CTSlBZvm4qVINY65X3ro0EW2RaOXPlxxDR9JP9eFDMLOjCLIUh8Jp0qRysXp/ENlWOcHz6zb2k+waWdji4uJfkMDTOn6Jo24ooAht3LUpRRlC4fIRfJjBQoolOJYi7HNx4F1T/fWYJKGryIHcvZcyvXNGG4DMFmxcZbw6Xpu6mlC4DmqrqxUA84Ya1KTdxF5n4a4uT/y8vnmUD4e9bf6a+16QTr15gPY9/MbJ3r67Sxe+AyqS78j32AV6i1LYg9Ii/apZEHN2Mc2eEqZaiEQ/u1/gbuwYEBoDt+yMQTkkOqyd9uZyjzkMjfP8PxcKVNleoNiBUBcejghpBO90cAhvdXkcMievR+hvLDJAcTqUHBPHEyR8Iisd/h8+03ONSvCHnfGsmSbAktIW0J7RXmPp9P9QGGblfGqH8a3uVWo6LCcva9MrRWFE4T3Ut8c5FrUMFVwi1/c5clQyA25AcVP0add9P7BpB4SxmgsOY2UYJO+CRFtsUJVs9PmapfQiF/tnaEC+j5VvJI0jLZpE+HF0V5EE6LY5SDoXgELJNMdyHzPd+tLaRHrEnEENSalE1PHAQN8wxzu8GJUu2lCa3gUyJTiW2EkrnWz1DtNKNeawUcoBNLs5CmSuBb0aRexduDAjb17vknFDRlK6sJoutRnpZSzOlWdnOLqGrVx5/8b2ox4yNEtJIOZ/8HIVjmAa/OlbAZt1kmr6F/VIwj2PAMXmrVRWjbsJ0LgES2Xvinj7lhMJtKDaWb6erSTjCJ+qNNst2gLALfZqjSsi/trxpKW0e7bDktVqB6l1gkfV5aNj/KlP9/gwYlmOveaVb2L95WkDTWzryYa+mqUsfQentxfgZXkKLoOaQ8GG6bRi8Ppff97oz505/kLo8FJizzZkkK22nK1crqayE0YoOHtilJqmzsveeQSA+AQbNnP+jvF8j7oOLQ7ped4lyAHCnoiPvdqZk742Jfh9tUjxJbk7SkDtROgqbsJIznZGxV+dhUMHnfB+zs9WWoBJFR6yYwdyl+B1NW5Ww0qbwSVjzPYyCfS8Mi6Jzb+NF04tp8GtwJfXNkVaSZE6sDZvX2Zn3O3uLfG/KKM7dRHoGi0yV+F1HNI2+TOiQevP0x7672QINFiAaNWguBtW76QssCprIemHcNahPWSW1HjCCCAm/PPwp4TOLQjgGBwHS4mDiJJ98J/AvJBfbzKuMHHHEJrxYS4hwnKrcOtNcHYj584fx/HsFyKltQnRTrHlCBPjhLiNHqC9DegkKVoYrSXrXObc1m86PcedocYWr4igLRaDeJnuT7xlSUZHmynZHApjkQ9NnOOpVi7Ku5zCK4n/WdOS+sqiX4Q+kLZQV1FY/cSUwuROc5m0BYmcm9RFjdX84y6j4DO3Hakj01l813mh7304dXQ5v7OXB4o4B4tZAmDH24kPQvFD/fSGpGB13f5mdo9Tj3rwd3xQoLwwz7eIThRe6gSVxcJlgobiC1a70ge7WJkVjo+eyJO1N9xSWfvkeprQdRrUl1VNY1YVIFy2cI35jNfLoZ7Ert5ypeA2I99Hnjc4AhuNXcw9dwUTqRJMEWLwsmXWNddmSRXWDilIve0rFvm98bdd3zuTuFrXCDolkSFuiv1fpQiRZNL088GMQxZwgqXnJdLiKcCwHeUV+4z+vUK8H/VK2f6Q8K10TeptrSZQ6FCSfevKL2euq4EKCSrBoKK7MY4UOhUBLwkB75T51q+CphbsTOGhvh73/hzvvtkExQYamgbYz0fDPtY8IBe0XNcjIfnsgRG3s//CBp9KIZ87IiTz7njVu2dh+12d1Zrh1uVAbHZ69y9Yyh5Br00x9koCJK/dJevq+DHB67DOTMFHNzjv6krlwsG/WyocPdaMeuqbe12eO9PdOI8kjH4h+EdeCneTm5sbyO3Xs+u3W0B2TVOEXMQQApIerMU81FeP+70/1vSJi1TS8Y7TPB1dRMe1qk4giMX98nqx0JeW2eRhp5uNkvF3+Uko9Vu4ZK6C5+S7efhulXzMJSHZpwgtXKRxjSJTjaXR9CAqBJ9s8tQHUvsWLqNWsoZCSPKtjhf/0nBIQ8Z6d9SFL/8dz1VBoWehtcxsDUMww/LOoq5VdCBOoBdIoo8YIyMxvhYD/5r52uTD00ym6Ix/rhTangHttLFO1q/PMZChy3FfopwqmKBcNbwqZNLqm/fJKqphiYmCsZdcAi6oovjsq+ak8tl4cKEjIMGS1YJZuU+GAnV/RuJ4vEQBtMpx/RZSGkWhnisv7wucY9EpcVnfVgafTepTV+dACJqbGZTBrQldB0JFxu3mXDs4de0e0E8eD3h3QJ5DrIYuLmM83wM253Cxf2mJn7qwkLB6KuLttvsAfhDIPcTg4cL2t59yHdSRNsS/tpf2BLpwTMhYLA+hb/MwuZFRNdb4T+2tv3Hm+vXzTr41SjG9X2k0e+UkFLRuOISd1bppLN+NZtezlKV2syyxOhp2kvmd2ce89dc0HxmwB37DMEubuLzblK3G+pz9MDG0HY+vVsShshx9KGY+swfXT66hEdsPcQKaAaBMG/VACDoL+vtq8kVBjGorPvGxL1UBl9oSBNgo84J28xT1G1TKHAWKl2yE8SawxUb3WRkqu1IzwVYzTobPHmyzLgTThJY1a/NQE24v/p1VaTJoCUaO7Z7hHAmtjSDGUxaFK2JunYv7ALAuu/Zk/2z/q6WimN0+G5a4HroxZD7uGFVIT/vp6KEUx3/ylLOou7peRqwtvMFUWxuoF9ENXBP/Rw1lRhW03H5YYvFQBqxG6Bp2WCJ03I3mJld7NuHK8Rggbb80IC4sTOnWzROh0caZtFTctVfSps1xSuC9Bv6SdBmuKG3nBCCH+6+F7DcJumkZgdD7kqVRfZrjZ3ldcBly9BKhcNAxqaQUWVa+FteKwTADU+NW5HZa7E93lU2fXeqf9aJdoc4+46JIAPf0M7AOvPQlRsV2ThgHsMtEDY/b4/Fz+PXfrkV8e/VjBaFQp9c1spOFMZX86jE334gCjTOe2hdTDfefwXRbJMmjSfblCvltxhTj1SOQ3Lg2sNmDmtO0mh8TLto6pyaCpL2AMWkNDlaVaB/2RLMcUo7aI4UlKf0SXwPCRZ+1RFQo58HKUN0CWgqM0D/S+152Y5+GU1NKuGGN0tfNBE5EOnvseXLRNHJS/1nq/HF6MEKagGpEU8kkmvd+x4xO73D9/p3SAzRcotnXJ6sMzYQokzGhkr9TZDnvNPmN4BQyvRhuiY2OKDHXpRUkkc17Y/CHUxBSmx2nlMLxx+zWUjGYrRsxH6NPwOJra9xHjEo8YBNOTjnAybWUmoIbAZwnqbA/v3nwpVCqM4Vg6boKCDcWcXVKo4HxIfMwHrT7LxQNX7yagVoVcM0AqwmMFS2R9EyhdGAO/GapWnJsWgh8VckTGbn3EO+Ne4VBWjKssm5eu1XgNUGrF597XeaBcG4MMTbxpnkiPF254/zJcxY5OLaW9JgHrnr0eo1zeMB40S5asfOCQqt2vA8sLhIdXufcfMrG3HGBh2/Pd4CFXy/TLJMFYGfDE90p06R62LnkD7yd8AiSTlUUSBQzZ9WVfJ8IvNtNSHM6LGROV9JwwM8v3Oip2IiHCmaXL6lF1bVpdciLZMIx+hNTTxhkQX4a38pfZ3aI0LoHrz8hNB9dZyclmT1bi6QumqFj6b5nHiFjxJobGXGnxVnKBOG6qHTyenHXu7PpPrhV9OJdyV0lt5DsDeAJr33m6/5cgsOOVq2stVUinauWGfjW/u0fXnRulL40NAhP7p2nBi4SNYY6wj/y0VZd4U7kgN+VMETC289rPknekr7IC4AdnSf9GYYfA6xuiYQtZdY90J4dqbl7BnRYDVZ+5t3s4h9l5ttApo9OcLxCssqzOpbhHcjdn5pZQIbwXiqzz0Uv0dOYKiHHBk0K8NkjuDYlXST/FuMf1+gFYrTYNFwrAAeDSwCPLeut9PrdNj3KBh146a12FeUlKKAJqHBLiV9nACP10UfgpIqdb8cvoieqTWXT9jRPgMjEWTDGqcQoPi0Lq/w4epdGCv39shZSDSHDGqYrlGZUv5RTSEUKKDoSFWEGIIAluXP6BoBdfMRDaoN5jzY/ZyKWFlHTozUqoxqhCavv0ypQbMPncfS63gjRTelwoxD9qnxRPIqEZDqf6fSgFA+OCdlKYrlP0Zh/LXWlCB02v9fpnWregvFrFeU1p7MA4IbdVZL4ldb0wa19GjVRNXBwcmlt678O69go1CwBeKfumE34u9wG3J5glS5gc3YG6tG6O9wG/Ow731xiAH1ohDo3scyvU9JpFH0wajCLFgKltXup/q69N7ZJVnBbHrjAGFsBRJNeKYlz/gHr1MVw4E8LHrwdSMV0mTBf6VIHXfmky92huCv1VsqsBsVFMGsNtf9t/jKRVnx4W7fXOM3XbYqpqkh1PYFDJTZuJNxUb1xDQTeFDz2VfpcHg+GbFder4U7mghfaC9nbTTahmJcxOjVpheYwtOHCpEVjcgnod5htB8Z8GDi7/Wjfj6lKU49wWaoi9Dk5EHADfhxGGKH0dNzU2MoNWnT90jhYo2Hpwg5cbQ6leA9bnWIEB8r/
Variant 1
DifficultyLevel
550
Question
Which fraction has the same value as 143?
Worked Solution
|
|
143 |
= 44+43 |
|
= 47 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which fraction has the same value as $1\dfrac{3}{4}$? |
workedSolution |
| | |
| --------------------: | -------------- |
| $1 \dfrac{3}{4}$ | \= $\dfrac{4}{4} + \dfrac{3}{4}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+QJWAqk1qr4riOVsZyctbsJHbUxaMgrHmkM4rWzobjI8xkEir1RtpCpovFa50ysYoMiPtmQoWzMDUbEgdLQzyypcsCIPMPjmKLc5aye4ICJJJpdKI0fZJCGLIt2NA/qbgNwEzXzCSx314gMkNArhOw+7hjNMto5RCEjgYwzayNuXBaZ7p50LDoX9E4bdJ3hpbMMfoJg58Nd4TUfoMcidbH3Q/6iCWaIRHHinEckrqXOJj65AoskgrSWvGeWjXSZM0iUp1QRh07CJTPnFinO0QvRxhi16O9hCJe6P96vFtooR15f8qWBhKcVmNGbVrQeIlnOmlGYqQ0oys9kYHMLyXCTaUlr8d2Q243NBVfkHbDAap75+c5+0H8hUMxn96oqqWbDEvnNLlAJ1yc7R1XEwFkH6pMpOViO6FCyKIGfzDLV59l0tKx8fkVRR8zJcVcna49CYiMyNOvQ00sJELx1anFSIg4oCD9Ulv/VOQSbqh7ueEboJ5llyf0sbhFJcWiOZBEtAbF4RD73VBULCFCCW3V5usaXS1O4jS5AYeW9Sg8ywNWPzBxp1gfxOIoYzZxDqrMt5YwgJOMXgjACleWQW4MN5BI0HiQSpItKpJqhZhG3Ez2NuUBuZpsoybqG+NHGwxES8rQVT48yALqhAzBGO0yEEQwM5Hot0FZGrf24HhDeGQgtOsyF98SwzEC/M3AirA0/jJx1wmUsHPZhw3HNHCMrJDKoCJYiitxherwWfXjvgoof6XDxmuNz9vvySK+smDPv0BsbNnLdxsDsBS7tD1YQ0bIgOXuYBp2r7akkwNu3CjKeqDDSiPN3J0HCXDx9UNI9sd+cfYRPs8H0+BxsnD3SjCRWDZ9ztlEoTjYNF10BSa5jJF1Qljtp/QNE0tT0ACOH9Nhi9BvMGMFa5buEkhpp7u0x9EYEruMDEAW5RZkYbmaQFEQ3ajkjDT4AaZWvptG46Nimg1EqH/5W/3lBnrlxp4lxhug/3dhNK8xYEDXF9Hmy4hQq9l2Eqa7tLsQF8BqUFDfOGwmTMmgzTGlYwMNoPH+5ime+aDmP/dvpLry1+QjCOelWhh3NdrjpK6hwAjmA3kdRyDsSztrVOhryjiSx4mE80agc6Lg+VkjBD8MVzk5M6srFqdPVQWUhhvjU+KVlg2kWeoCQ8Pln9x+vKFsmUH72zfZcRpfJGgtDARwA4J14mSKW9aMIJz+XkEE3q6JWgx7+t8jmYhAbyTIo/c7A0PSD4d0MKzV9/mdnSCQuiqrykYkxQFaERyCY59DEB7t28XGIMKiWDYrpQgIFs2zTYl5X3S1TFL83wRwU/kDBsC5q0smLjlugTscghXzzXJ3mt6Y1JiH9ntjnU/nE8WSSjPiA37/c8HGYdCWxmAHVMGK2k9oZkKuUME+Qehg/ywmnhzjSOtfVzaL1/o0iByKHRV/iYuuHgtzd95ON/98E1Ol7iRjGv/HJ0On3dP28uK9o5vUmYuCFmI9AOK+SEcvMTRkU4azTlMSj8jGMZ2acx3xX/5LZut4EawEmsTHFVTWl+dzaogWPAIK+ab8rMui7H5f4Up+dTr9dQ9lK28LczanVYPQQYtUeLVpiyRNb9VBINTSYri5SFGehxFmz5omMAe8DWwuUkg6csYp1+9JLTBmMT+Z5t/aTgXpRR9OHRyTOYzOxY8L1vvdVazdiiJHzm7Tc4gnAonXNrEtQT+ug5tutD8FqKhUH+RxBz110XIQO5X/g24mBrtN7yCMzZopGSZ0gIzK8Lvn6E4lVHI2phqj96onHF/nBBcqLxqYi8WjNGsl7wT11ZYQaIOlozlc1KqKD/ZuXAtUGnm+NpuyH4DgjgCq78kAV+tCr1y7nwj3fAHLMeEohsdxkUsUzWwysvmh/FPY3dz75mAf7sakHv06qH4ndszXeW0o7zlOxwW8CVUltQgLf4crqSTcqx+kDOUgraLujus40N8njh0/HJcv3F4NStBzXJl1LgXihxi50qJk3DZOcTbJ26eVc8s6ghMV5u6G94zbRhtx4syzCTAOGJ1BLfKzE5cCpxKq/0/0+JH/Z6mKq40nlkfyKbmZsjaEewi3zLIR42VJ9YA8MBbNBZA4AkFpUwKzuyW2IMQMY4i4YTalxqwVibowOpWAuw1bEGdds5gPu0B3ebY5GENrMl3WTV/pb69tg9lJWJTkl5IEHLf4LiBbvzYuUMsw82g8EOX+PFV+Ff+HHO4cQ4BppnMNDRHswTe2moAUOYkoct6BsENsnqsh0vd5nOSmWaZf04Dpylr3ZEyyZ8SlqiQtFRkyi50LYz+rA/+7YQsfOUCv5MO1H1LbHix2Auar1wbC0uZgx7z5hFNxXb2eSsoxR1RYnztGDfttW173orcFGmVea/xq7mYehW3sX75vKE/MsUEWTtlxiW5rTC9ASX8tCM5gfRhpcl9UY+xbVTwzOCfdBJxo3H8EzeIyDasetvGAkzPJhjZiOyintSaX8/KaJA7OpwbsDNluELKsMUKta3hmuNUUarPTG74BLh5eZpLtX865y3SLudH32PS9JxeZXRPRWgvgI4Mi3thpaBK5IOI9mgRMRoTmVkbnh9emZhRyV91e+sHgMQ29QdMuoPj9fY0cPgaHi03O2RY4A8DB3aP0Wg3bFzMhXqy0OmEfAxbzc3DDkHnxemOGyZxHf5wOj6YrqpUxIJwp0JqUD6svsoO8MuRkOJUkeXzisgI6YxwMmn5tXKYeKLmmUEgR6m97GnvjxSUea7gXkgIzIc80W3jkf6SfGlEDuoROD4EEVGw2mjQxc645Lfxx++/bPlO63JUFYQVGJS00JNR/RFlvdLBUK8lUJbitA6XkzOFRy+KW67OMZdQyQIG2rFZ5l/GP2QLTNf+MALqGxoYwK+2p8LczcGXwS0uwGN7PVjLGs3FuRwiAn33YgqHVHHHd86GRDKIPhzA9BIRT822bqr/+Bufeze6tnK9rlX/C7Tjve1kHZu/e4djBfUEBRcD/OtrrdUwyVNZOBLpObknTFLYc5NBpl5GDlNOez3fXVZ/l4R84AJJV9qhD0pvX9uikrjzAEN62VjimGZS8Cz+g4a8VfK3mgxzQIZTeuXNkcR+WWJf5+wWeikKvtV74g01vTbuihBACArbF9gsYLN0JlBSWYNfJNsdNr/8aWbz/xXoH0cwXSFPwYikkFVzSQ/9zleiuHQywN8827us4o5Lt8P0EjPs3BrJ1iSScNFc+OEa9sXmllbx9UJcrJhSlBYBpRZMvtMHVzZv1ZgwJAui/ZnDKm5qouBnuEMpV7f7OdEb4THrJRIdTm1X1m1huyYr7W+rhDPaPqXKpKdjKGCrxWWrkq1PoKOZzQaPyjG/wIXXPmW1zLMqauJgSlCy/SsiPl2R6+cxFJSb3sNPx929jZuMtuW5dnzstKLQBEgHTVbfrtyeLF9Y398NqjIi/3fTNrumYyyAO2M9aFC2smKKJ4oHdv4jNeS4MJvfkkFKIZjje8gcXPZXCHu0oO6LnoTMutmMcIJqmmtGMSlxM660+8X2F4xpB8/qPV1a0rZuX22hALflqDERLF/czFhrvOhLugXAlziDbNm/8gw+9ZyHjxKvbuVoI32Nqxu3CVPXZ1QR/yaUGICGXCrY191DgIKBt/ntTVpQ0IUrNztNs3k5Ggr8hhV+CHowJTL0CbOHEjnpa37jY/ac1FNyzGp2KgGLtGFl1g0Hl3KmARu4UCQLGM4RqE9rouHdM1U5ttLOBhBB3z/ldn5QXHbymCEjKIYUcowHGJAb9gRGWWzNl1nhZwH71ZPouMebCQYhMDBN5dBkZDG8SzKxb9vyFv3Ejayu2oUe6QbgenImw7NfKbN8SWPsC0/lV0BTy9WkpxMaDlekoYyiUS8X8fNsfkwAOQHb712AshdRGcAMrECu6G5Hx4L6+vUHAt43alNsmFKxWGImlCCwtBX52Ui9QjesR7mCiuSesmzQKCcyMa8JYILZd07sKuKo9vJCgd7WOkH7JhqeCe63S0seg5PcYKDVJxR4TigQmguXkcaQE5Ccx9Cq3B+9iqcQCjr9fgUuHLqVZRMRFioMVNrAV1wPeevvR5yDoCX9P2h5m2lvi+tls+4t1bn6IIXSijE8/6MC0WhUUR/FiGUX3Bw9evpemhcsRqGmsKqeiBVvOZUkrqbf87fn/mppyU8u1ybxaaBVqzkoNW3GvGXCkY2SxdVoTCXG/8S8buHl0qnAxx0GT0sznPgIYkbIT2qAqq26g472P3qJkwCrTUdb+8rtjClNnXsn96nx6Lk3fYR+l0dprJxMF0hNy5vvDmEdloiKm3tr/4NOV4pPGvGAbCkbz4wcmlnxwBo1uDXZ6ZiJLCyi3gQ/RBp+jAnTa7qoPaCSnSp7ecMLL3tYmbkobZjvAwwjCkUkUcGataSdSkCRJtlTlUGyvFeE2P23l6SR2wv5PNfIwntUD3c+7Ue+3wUUaE/Ij81N5BiUC/1JboieEOw8ZQUr3EI7o6kbOyE37/t57iW7TFFMDhCSO/7+dQDFl7VLIGhtDS/EtYBeRWyprxUQyX55kFBG8VnRgvoPnSmxBA9tMF6ZKVtsek362VwZBo+Jx+9PiR0cqB3lh1M1HbD64iJKjmmQZk7Z8/S17Gwuy+MoPAeDBl/U6xhOyn3uDouS+KVxuLrKHGMI2XBvu4H0r9PIUTXxMtoO6T6Nof22+50EsVeJZ8oGPg4FTy4/6kNpePx+YpSWqBA5Sanzw6HOLkVe6i36QGUrMtttXtlWnguJlF2RK27ZiFBar0F+yJJn31NV6Kx1WYPLRiHq4Jm4umbBaIDCAitr7a7FWRqam/XKof2DTI2j/qnYkYvteHv6VQOeni7xw1bQArgt3i38YJvpWHMv+FJuZGbKxyFlalHBI3b5OrAeOoRH7dYzgSQAuwcO5gLx79yH5IipxsjCUtgORiNojT1hTdmcFgiglubE/fhiWmJYqXe1y+R485XQhzvznE2zdhrPMJEMljOJrcCqAgAlO+1OA6mpLHzpOsMFPhKxDNVM4ETMUPNmVc/cDuNPvYf/P8X0U9y2l736fuE8R4qZXVYV9OGc6ciwoMmZfQ/QMMJIzX9Gz/BCVkja0jpfXKRZRAE9igF1TV855cHMSUHDz0k/qXTtCxrBF+2ozOnuGTi58Om2tsXvBXRWnzr1vY2EHCPfw8HcDTxFCYGfjWy8rgsVogsSHyX3SVN+yEW7Ye2EWhAXjqRl6avaAYgRRSnyvNKrearXjyjC33kVrZ/JuMzxuNyfWx82fo+3mwTEw1R1rLUYcqYp/PF6FuGmbgxiwiE9CpeOurDXIWwddvjQobWWbuzXmk1BEU29QkYjalIaPu3kE1GT8clBmHqPqE/M5WwyFFfclloca+Y2I1u9UoAir2FKOJ0kiOWcB4Jc3oYS4VW3u+RoCuodADQdi+fEnXMviMJVkcbMJryj62tJ68hWsxX11/J+R/NrkNww1Zc6Ig1EBppTn49B2xOhqUQdxgDVVfUkkMHq4zkpWXBat/5OPWc/ngO0lkxmZbfwHmjUMkzmiMAIPiNaeuLSDs9nH/6zWngnMKp+1oMWlAdI8OBGWrGk4SF2UMKwHaSevC2pltQcO5Yq8NUYVY4okKT8uCd7hpZuFID3fJ2BzeSJSqvt9rlGxYr3mlWvxDRVXL+1UHZkxPX3RiW1MiEt1gKGlwPxEW2OyS7XRgtU3NNqRh8ARabTuUuwxdAoEKFZjcgjTKUegNHDKmShtDs7uxoeJf0BdPbqoBGXFPKKslJ0QWLKntFMO0hSiEx0k8MO8zUyb+yBxkx44E5FGZM1nHHxQWDtzWfT8V1EBPg+l/rOkKH51gCQKm9DMwDOyN6MVyxxbTTpL/3178WRZJzV7Imon3ZWLFcbWF7O1CeCsO6pMSlFPb3ikIQ/FJLXSHgRSBw6ZBcXcxj0MRdvVMkQD8zgBp33Tl2ytXTOfRs4CYBpkilaMBmhxDXHU+ueelIln908RCwGzMf94LpDR24y2+eL/0qQiiY8drNMtRoQetmmHy6CXh/Q1n+ueIYizrVzEGaqjgwgaOYEBSh7NBJQN1nHcwTjhwSKRRaqWiwI9yNn+TFg8UdVmmyf+MNJEnPr2WjplRexiB+NmRpReKeYWhlHRFpN/S0g5AUjVEcysChwTI6IraAqIZtsb6PEGsNwd7VnZEG+7Y5OkgmwfEBgwlYRa7RExrbzMZN4EkqM6I1r3Dxe6Bm7pC6OhofZnRek/ZZQCsxWB/laT7rYT1rb0zMqAPTfL15XbYLKMSa41zBo3fyAybBrBcxrImGSBLPPn5RnBZDBqVoLnJwLI4g27sGNsVQjSq44rutboHSs/o23gvCuh6ObfsuzvVE2fmlZVbhs3TkL6KzRXfkDZY1DipnsoYyABgkOPcFsK6prYYXF7p9wz11jP+LK5sw/7QhNKDw4OQKfA9gc04jPttvtusG1+77FheX457vx4av2eqdujvePT7uXLpJIy5pERYIExvSYPsITNG0yVX0ktGPnGR5Hsvz6l+z8fBwAkgPIrHh7KiKA+Bm5KrA8T/HJ4fnweRzpy89e60adfzX59+VLCCANovR+q+Lx27oB4+6QB15jnCcad6QxHfbwU4NaiwMaWychzeyT1/uNF/GMrMewDYxFHmjETAjbY0CcLzb8CW5ogfQdoIJqIxxb08t7X9uAonShRdeDJWkWq+/y4xNTSuQOSpZWcSkOuN9sE2NizMmzjbe7QEfMfwpxUnOddQJrxm0nXyBkknWlt6fQcgve+8d1W6UUSXrrR4XuF7l/Mzne3lXmCyXrF3Dmn5Fy5VW0ISypVi149oEZ200FVY9UfTernHtfOZdQEbYS3IlAbcOzcBrfzE5WaXVYiKDlnRveNHulwjzG9GViJYEqb+o3nura79A3lro5CwSYvq9ndhCa7wLhVrAm7B+xf7JHZv2EZsAZWgbhubk9l3MZ0eAwEmVhiO4u46033ktbnJg7pvJqCV8QG8ppA+48d7W6DvJ0fH+rZL+xrXjnwGLk1y/avWtGW8ZfJrMvaaM+AaFnx3ypSecP6lVQXBFvAlnHWOTnbT2M/TsCdj+tHMJlESijexeJqaDghO+7Zvydx2RMIhPJTNHp8A+Fm/KCiyrax8g+xTplIeepNbnJzOe2Saq7wQpNZJYxBM7PgCwViVcm7iumeI2qVS7qc6hQgrTeRNm/rh5vioKsnFBTYn+h+ZSe8+22BwkserHZlb1qsabxPTBtSCdRL/fnUvf3x+8AqqGOyiW9/Gi09qIC8GbHMXGXTBRKed3xnQ1HK/WPA0YmReLWV6nPZNbN2i8SC2w1ZUUIqfgZK1hSFV62O7lzm1LwCFAmvMn/8lHbYtpEjAFdqe/ND8eTeWqOwPIcArmftOX0eq0uPwMOaFyG7DGJMt+RWgCa2mGo6UegAQg9YH5klaEbo2emWT7RFR8HETK9oRn69MKL7XUUOHcwj9ZreytWu1eGAVunzheliVw9IJzqFRRuOlO6+VdpHVvojIGon6WRmAh8mm97eNvBMSVnFD+zsfAHCkxKgVMU8AEW9B4FCck5yBmDyP1ib0+nKzGgllhXV8dRQ5lpBk8TqXfVbKTZqGhYCZ05rXsH/O52+fFYvcZ/CtzV+fUtmrYWbepq9WZJt42QmnXoPB4VckJZgLiZAT0xURTK8RF1JP5n7LOZ1lo0UlJTe/DVpG3KCD0cMt51yHQvM4poHm5mEsD/qRX/AfSwEz13tTDltuq1KJnDpc1XQ31i2yc+ym5WglGTuwVTvCrWAnXYtkAcfRBnDkcLJxi//wnL+g6MkQyL87Y4PGg0Xnfv5iOsyvHlWlXg3vQGEag4+9riE5BMxmFLOk7VuRTUv7gbSjdrvG6qJqrxvVqzINpEA8WsGxb35xvDQFILRk+WQ1dPrJvE32V4L6JmVhU6yjT5noSJtkey+ohv7THRyzM2m3vX61InoHumipped6s/J+iOlVG/gx9fk98n0kI/SlvqTYCxrW+z12DcxkOVVI8E5nOX01rZzv85SIYGSxUX2GuK/kinqRqM2VwGOovZ0jgeQcyW+4g+P2NCcYV/np/eM8oSVcCcQ5I1RTFQO8Bm2ZtmppAWFF7N3hx/044CKPV6USuCnN2mtL6P7qAWb62OGjxkuVCdy4wHu8vuc3NiFsdU98uLCAm1mMAW5CU5V9/XT+0FxFCc9TpJY9UJIgbMydCfhFzezSI+MkiAzgIU/LP6fFt446FXgiuzrbVr9dA5DGeD60WqwGXWEwDfp1GABT0mqciz5771j4YL0q7r/fLLU3fVddHJpyw5Xtt/4juGPfR7rXiTBjOhKg+IryKYojFy79ofKWsoRxycDENHwXPWt3G2eJ3YBbJYR+DX+RFvmwFeLhQmaxDtziySIlwoFJZOJA9dIZa9aKyxWxCllSwtTc8ukNwrA++dn4eBcjYnlshaG+n7DGIrKt7Hl651cxQO2goBg+nwLkCkHnM8XPfglWrzC4qDhYo6+LNQEc5f5c+JUyZG/iDXUOyvaF0XiAZpLID2j1II3RsU+U0OQyVRZJka1q3ckAUCHDLluRyxb7JtMjPQgJ0uvxWxRbYXOAKSLYmV+RNWqPZBKiTLenv+mtrcB3EvgSgdNGFej0LM20omyTKiA7WkpTDBHNzTxHrobO0usPU1SsZpLZBuf7wFlwl6CZpg6159EAr9nmW2p2ie33CXnniX1AEMDbnDEH8aJRnnq1h4NdnZM2CyDT0u7k+cvw/ojOh6r/KiWpHUdf3EIZjDZ44asizCEa+nqlayaKpjG/uNSLiSTsVNerTHYe/+csmOdHsXnlwf5mVQ/kLn9j1zHiyG571cm/tK/jtKuU4d+EAwrMdLhg0Z3u8l4ee9x1MMhjj9TNqiig1Ni8nBA/cAzM75f05Z8Rj/ydwM5qTTQl1w6CN/AjBZqS0Emvy+mAmRiW3S2VHKX+1RspDFMVO14/Nc9+GWOmmLL18ffwn73ZIqpfDWaNkQfCnv6ARYNpx/jOQS0lsxgF4sqh8pRX6i6rzr/sPknv7clmJe5zAgJVrn1aPK+L/HWEUmXf8V0acaTqYHjTcfDntWFkZeZ0MY5zFSvs10q8RymQBDB+FF7rlWRjLgKrdPYzUJTjxKM/Cx1lRx0Mrmu0MXk9PWQknS81wSqrV6ZIezdbpDTajxjIbtsT3p5YFHDaVl+YhuD7GtORaMQ/dV5MDXLQVF1OgH21+jNAGrtD4jgKdGD3JWYaeoC/RAx7hrd+nP+PwjSGWjH3iN5ZRboH5L7ydJNuDXiu/kmOxVe91C9gtI9e4mixZMzQ3hdzbrfw95vrr5Cb3SNWxM06QAyDPg1KgRzC/mpsHrDiCvy2KZkQChHX3MQ72eXtSR/6pDTLwMW4myTlWMLvEwfeNFitRFchVExkrT5l6rpbDdPL5t8n3d2/XWeVr9O2TOPvPMj4WEJ5lzIBryZtceDT6tYJCCnrkeU4byPrpLM+GUTdO/W7vfR+ImBLj5Miy8kH2JLr26oX38YId9p3vTpjYe3+aYiXtSRNPdUS2gPK3uHfJULhXYLTo94ixAGKxf7Swj8+De31dgKY4xcRV46ZVlrkSIm19ANStIUjohvUPH3tWbAkuNHYx+Brg+dNsOuCBGhCH32W1ZrjWm8BTRHUSTf3EI83mKUquljGQY+G2pctWvh/tYQZS5/O+2lRg2gBngZIIjo1TP3SwvZHYfI+k4oEW1fDFd4NUNlc8Lk4tzM3Yd8AS7AoU72rUq/1a3sXNsS3Nc4hQQM+Nqtfql5/MLKt8Vma0Bez7LoIgbtPC04iULRQtRoskqz9uPFzDJh9Y0dPVnoKoK/BVEt6B/wqV5rrNuC2oa37uGmF5qjAHhRRTJNDNxLmQRS+dmH3gf+I9Re7JjjC6zox7d0AAPnWlcU4ReZIfAQVLKvdkEptiqJGjvUOFacJY96Xg5Kr0P4mRLMtKkRiYrIDHB50WirTTXkfMQazNJLhF4/kd6d5cs/Kyo53972LJbdWT1z5v6w6PV41v3xqZjkXQcuyboEpp9cKlaZ2q6kKUhnOaZ20M6CNDkG331LqiyRKe4qdPGK3yJar229iKzKJOA1y8TedM3Mdgp7Qsi0cBZN4SpfjV2sZshhQUwI007XYzUXAWMT8R6Ry/uCXIU0kur+VkKWamXGfW/pApCKA+n/3Xo5QodvVpbUuIPwIOW/RlDRwvoM9Pv5oluHaxgCRnAP2/MxFCY7p8Z2ssw9qJDDvScmG4rRQB3qY3eTYyYGkTStipNFmN/Glh3RIDVg09PopPGdXTnJuN4ss0/LZ8MLXIQNXarqWYo8lOUPiRGABHl01dXypu9xpZOtpW60f1eCnAV4Q6fbCtHg/iz3+N8PbGk4evYEETZCmZywFYX/hzCVh5yc4va6E97Gn62FSVevOubie6zt51gxamdTT+Ph/7VEXZ+hKdZcmsspsp+31LbpO5CBNTJ8kXPYj1IHxke9SXkk0DhHA1FdIG3gUNyTGMhM6yg+PQPCRItiul1tmcik8Sx2N5whAtnurjVh+MfvT5ewo++aobP4l23Oz/MdrLVJ1ZKy/W7ZSQw7sAXBSETdfBKiTgXmeRgQhElqhh7ZHPPfCgTvT1EPAQI7DC0yV5yX/DMIEiNnjcYehjyoTAuJBWh5cW2MFR/yPtW55LbetQ4OonOM1XHy8gsFV7rglo9CuRGkXKoC3IeZ9UmfPdePhPDY+1qyqaOrmwq0Zf53gYRoNjqnygOCaXpDa/QYZLvaywn9lsK4OjGldMWdP/rN0xA5bPMCC3Udw1uezIQjWhEXtogxfgWbDOHJOGB867yV2tXfDtJXfEh46eOM0LXaQJFLC4Mnx3ciNbYbal/VqXqkfgDK95ZBGNllU7PsX+sAs8iHqNoU5igSrjj4KmnHFNkZ4OgkRkEZkRBJCAr4E6ow3/F9AD3LP96hQFd4LawwDq9fUVdSbC38gy4tiSH0pn6niRu3o4NxyGysrzPuRPl74H4DpJ25qfzZpdDs2UZ+XRGTABqNfXrAwv7Ja7Onc61IquKRRs1kBn6pyeSaVrvJPlXOn6ywtOqBfCRxAjmljTXlCfgGkRxeSVgW1P/3zmCdA3K11BIosy5k4DgTQRwLvOJP74bWBj989fcRvF/0FCxvPuoblAKAawbZKkWWqjNFuzzrNBeBTqOw3lHDFhdq/CBjaoHxRbHpoGG12eEj6gx8armC709jKszy8HB7l3PkeVG+1V8kPY2iphXkhUQj8YXb349sw48r+HwOhrGQRe5Efufsvmc/cJMU3nDlGbtMREc7ojv550OL1xBH+KvWF2zuzJsA4IBtRye9RXPVY9J1f8w8sCol31lbQsoImteFUtiDnchkW597h5sLg+MMvCYbjDamnZQqCMo0wRxzGqEhHQinB76jUurW4pN1LMksu13ivGiNfqjhnOyOPHP/n67lNOInNGkQSfSIgbNRAbFSqedWF0TMyCczTTNgGwAQr2mxk0tvYatU4Y9NKlvV5AI0v8jW5Bk89U1rvJI5qe1spaPo3BCZRfPxJ5I86fOp0qVTuEOT6+MDf5WQWTZOVPhLank6VmRRVnzbngPZMqWk4UYYVfp3YN8xNA4sqO9d9qAdCelwY/WkyC5v2GWx54ixK2alP3sRjjERKRbw8sBX6xSXr+GL13cUQJIOjyQunadGfsWA5m+AsKPkbRyxd67aWKk6Up+QDTmt+rOvVAwnNv7JUJNUf25tmyIJvVrvRrHDavsBT5cnhapD5b3aMW++fIJgojmlMv7cebjlEukwgwlUvYYLyaUzOlfP8Sm5Wx8T1OIXDXh9O0YF180GYxRDjiNtKjIAafBeq3WIqAILyQ0+wIpOk3l8fpt2F9yRui9T6SwrTXcGEBSpXqT4WpRZPdShXkvTlFIXbvgOoDWLHGhd2ZMsuH5N3RFuQbKQXOzle3R8z3swDHMfrdJNzE+jBzJjEBlmO12oBO2NEPXl/x0bxhqovYxH9xEg33AUupRnVzVHzx3KwvDgotNzLbEA6+UAfYdcnxuhXyPZgnQmDstTX4oiispndH9Yy0ZFBfpC+EMFnrZ0nYjhUpjKoQEdjZ8nDgA3dNlIbXgDHBRE6R94HPgoN7RMGhcAJi8cclhOxWaTzoJZpo8WDYo0+j8bE0BRelzfTVWzoimlDj75UNgUZ6aY7ULThXWRaCYclP/hFVa+kYhX6c5QNo6dmZEfptGxJlpTAErFhSJXvXSUFxDdbpe1mLHegRJm4M3bGCoC2BbQ/C/59fyu97JXJKaKgRSU6IFI+Jj7sjVS7aFEvpLxrmNuAL8/co21pnRImKKTj4DIdRQKe1tPWEGb1KuebmZmfcMwJqrQfUaKsnfS9SJdZFjeMgVBIZ2FGo4c6a0hGodciRHxVM7aJuisa6C5f6fy9y11fphpjU53Tm6vVpb2ozV39Kga9OPc6Sv5FBDVHAccSfsOp5aSjgQsn0HDwRTISds6GWFA+ArppmmGHCRZuUt9a013aTWns/4ZVZQgO7b960VRC+0Q1MKaZixEy8bqqN5iA+cIR/ABn+DWTY4DJbqiYfqyhfOjH9frGknk6kWJWAULfQ9pUoxF8Qp+EuxrR0kSM24XOi/4bNtvAzzXuaOIasm2Nt3wqvNvIpY1zvCfse896UjWT0TPEmK7OSn7/bn++Rpfv3BA5jQ4/LdWsUoF6kT5Y1NbgZZSglC0yhOJ0XfA9rqc8XJ0mABrEVzuK+LCUILE4L+YlsskwPT8q/sHn09PSgbEOeuV+u2SQHsrmkfzpU5m8oa5CLUUUOaYoRyEucaaw73uH0jmHMnKzx7H+wVGHGjOvnks+etodfwMdz/VoSLHHtul3gvITTs7Ob2ykPOhZzs3Bxto5kjU0jlhG2LNPFl1XDv3YVsDA2PonYx4ETwLCyvk7JD4kCvFkOa7B5Y4UODUBLfg65nPiSNIjfEq0sdqabs1CEpEhq4S77LM5nUTiXJdUVsEgQqMFxpEN7eXBt1/EUqRe398rLH67xjnPTv9ZzTho2/LmkHzy4k49y6GW0ADBhnaJIDjOkwaDtfwXLkg6zEeYBxuXyyMJbcGKsBsI0U6hBkZe0HdkB8BAWxIQPhwqWwmLWAQqVddH/0WN61goTa/U8Im+vuh6L03oNFtoPMbOtvoOvT3nW7YlgUZ0DHvC7COBWyKmpcxc0ZN8oyH5lzP8NNOwRe/LWiWQztfQpq8mDXEG72t9BgMgrDa5irfgdwEwnzjKFxkNrjfux7gPsjKc6tdshd+9MG0821YdP43RXBtaldxRV4+Hm3GJ1YbZPzuoZmfrezd4mfzvJMgVxg5+k9Yj66OflK21jQQZphrja+khAVxS1HLivGfkIUDHHkY09m0QTNx19Mr8T13kXKdV0sSUwNd4rL1yWhxQ3B2yiIEcb42aGSGC3LkFZMnPmkr5AdfFpMGCBT0WsAMIg9c+Kr9oqGK6gIG+X7lByDPq/B6vdKBRc9VjDmR5IOMifkI0OVXGhYp3l3G5MCFr1gGmGXSlBNxWNq6wm0nqGrBSBSZ1eg450oc5AdQseYg9/0DnOnDeS66loasBwBiNCVv4MO7mL8tEQTFj0izQv9AjoLrhD4gAilb30SeVq/WcRVuvYrBQaKOD/zBOcBwqmhaZq0bzYQwu0f48YSorgR26v2t2Hg5CQqVc5aHBUSGQX+VKbaU0OTil0ibht+HPgv8byhMIXC0XfCWvxeK34cRGKl/ooKRjIjRqoPxTttJxJp0wHamRaSnI8SPjG35S5S7jevy+EI3hDigiD8BY1xNsOcI0ljzQgrMM+oMizfNj8LJjYG0tvzQQTGG1gQgJevFwI++QXTt0dFH4Tq+uvTjX93vXJFmdDje4zDVdszsRxxqAHEgtkx+MZZ8ccQgBgujhNjX900BmkF0FmEMvFnmdpt8egAaK3snUvDknJOgj9KLVHgoClo19QmRzPCfP5O4oK7BZvrKvrbb2tIk2gSnv0BdZZfbPqjb56KmyLE0OJmUu61sf6I7De3BWiDh/IDJ/DrzhIrGUsekfAsbQw62bDys5DfIAjy5YiMM717fohRGqksk4bHgGfkInKoAFkQqUJJYyHu5ZwlGZIgAWu0FobkoLWdmRzObv7Q4OsscKNooaM1lNyad7apTbC2BttDHE7c6fZAw4NUVezJexUGEuLGmEZgvul2Xg1b+e/17xWatPc8oieYLvToFJzrKgyPtoir99CKcGAIQyfg3MovwsbewZxjTlPT42FlKcIqeEH8KIKv7f6n+HA3ekXHS3NnuLBsLY+Kb+TjgCAT5iuS88sGbURSTmLDczBxNnyD46PRsPCjGe3yzKdGIxafBnppQFny1SzILB3TV8S3z1qnSbazEwmRKawYucbDY+6kc2yaWqail8QpaVZQguKvFbztrwSSBUS23w3IHiL9pXSctJiug4hVk1MfX8Om6jNiIkxIttr1o7CSN5M7abJ83SuxHU1iewKGNICQsqIXcawPTH3knJZsQqzDB5f0by5N2TqQwKyV4ErjNrN7OVSwF+sRrbtdzt6gEKUoPyrlLKDk9DajdE79/DNwODv2oKyzZr/t47tX/eW8SuWQXu2hlpaxeQ2LQtDNGJA2vNWiTl810H4s2boFcqWJqplY6MmIAYWP6Mmh9rd1aVG/A3Bz4FOIBREe6fQV8EE+j5voVWdzO++EV/Vv52kXAESJ/IBbzGF/XmSlmaWc2Ojr8CgeQSF5eL7bT/KR4c63k775IP8NFlGBMVy3WoNpHv+29BWMMKfQvZ8UmRXfwylWfYjL6iJcGxNcHalOwhNCjbJvA2NRSVTYg0XqZQIot0LR1WagJhTSS51tyiuxFnfGUYZoVWCFG5U+HEWytsxM5dKQ/nhfvrz0E+ezhIWehEJsXcBj1T3XppB26RWAioW/6osGZk50/Z7l0LzC3ar90E/mHzk3McYWAmqsH2YmNT1Rw04MMExZj0flM2zscdUPUwVH8+lGUkug+VZc3dTAg6ShmbDjRyYU7jfqOY7A19uhQh/HhpPxc+WJj3oEmSZ7V27NaK2byxCqR33qFzQ8TKRhgBqa0n5Z6aks5sFE9/nSQOfOpLrmWpo54H0qmyghWy15ih7SJqCqmuX5trfJRZSXldyNzyesGfq90h1s8p6rMf+BCKbTYGFxr9w8/zlBQBV+3gFQf6VO0aBVxGwBq8q4xi/Wj9L/9+ZIhiPo+yDxwdmW2jnEz6lKAyhROCxsFrIS0649cMV5JmG4M4oyHGsJirVyihIqGoRx01t4M0kebVheSxiXpgzaDpK3/3Eg2FtyqCpsGRkxIN/Wp3CtOjF8i/pZ1y0qWcjHXSduJQubHCXHESMxKE+0vpkMLhfDD1gzGgWW9bLRqVbEhnZIKnWVBU005Zdfn9wSLIs5Qi1mho7QYLQ2+i3EipVVOhnJgSOuGA7jKsyBiR4m+5MxK8YsH2RFrKQb87HuUCtTn87LuHXNzXIlW2wm0VAnAevHo+09hy+AgUivxWSwL9q8zCfSPq81WWxfRg5Pd7xIavl5xgAQM8fdY1uMktoC+Kzmp5Uw+Y94NFlTOShvjd89Q6rFC8nS6CrwoMvEd42VhN1HDx66qR5UCsH0eMjex4ZeIdMnGkhsc4lBFtsJ8YT50BuAK0vTQmHdLDbK3UFKySDG7hlwu+ElxSxfpzE42w+Az1oIVNx9CtYJlXGs0Mjgr47L1Uxpm+IKPEvFeXk2EFqVppSZXe4PHGcCd0pT+QZFviXriFGv2uOQeEFSeh0d9n+MLoDV/OkRLSs+7femh0nJTre9alXfdNghrzNFy3r8C2K9X2pSInxHURR99F8KtxldWRlUVqxgwTML8ZfVH+fSLzgyberhhpBFEAPlh/lTf7tX79skgTxq+JyJ0b6cgDpkbJ2p+HFVSNRTwhfHqYMVXXYR9rtOMMQENhyPfwwrvvzVTbR8y83Ee+RCB2vxYEB15zt0+4/s8vOga2nYl7t0Tm+uB/vM0fKNB7J9+X7jq3fKXrL4D3GRv6VKWVP5rtAM/XttOaDDNmuHpOq043+huyXulpAEFTxlNUr8XpqwWmP7njVPTZBYru5a566NmPPwfPx+ZqBWNUwoAnJtxZgZL+N8fh4vipawVzaO2ttDIHzjnKu4ReMn7hUtykpqdEVcSVSlPnC4kj+L9IhCNiqZ5s3AuzhL618g+eDkYEINqqp9+77q8eq6sHboh8f1mXlOWrQ3QtACEURdajSh1/vgy2nS43vJEv8wimMFnWVaPHiJAcsabpIMrtKgN7yRSZ/XaTdUyy773hqIKp4YtBrUlGhtfOevDSiT9xzG4RbHULvtUIpGLyhowHj+UJDSfroly1L9pHIn4gbiPlJmnxW6geR19o18iCqdEnNZEnl/IolF8gNoijcAuKjpvUW6les4L2tj7VBp5u2TTek0TD3qrdg22lUY3q+rY438oOBtkUKPslX0AXK/yEh3f9ik6N6klxM6fSobipPgqNgw1Nyv2RSrK7Gs4MuqUO1r+8OYGkTNmsFeqaEo/VdbxNVvEfUo0NrCoNekrufTvfLMnw0c6ab1CAKYUgmgW3EV65/BGkcGnmjIdr4xLvRMXDdIuae1bKFyfcTRYx6iosJ4redkbg1sBlMAmvZRiXRZ8TJU+KcwVdD5Bm/71cMrU6B4iX3mxZuoWU7785FQ/BZ75ScqnhiMtzOrBQvSSxPpgjRb18PUZDhvO7kFYvSl9gZSLLqph+OGz3mlTiJcuvzlenUYnqqamIHTku9lalVgzGjt4F32IeSnx49PyF7gh6QkW3JIkuOF8OjSApbQ6M6c7ojdidkXzBgQT5uHFwPc5MRIfo9WzO0aRYeGRCQ+EdZKcfxzCmwvhGpW8KMokpb4C0Kk2rLGAVhkezSoDwRUz36D77tFDUOMgvUq7Tn1J3wgyY4x5zb503ltCclgHHdASZZGPnh746KPKNgO3c5hdjR6mQtzZrQqeeaFZM89sAgO+/4246ql2VylqwzYZGRsir/kT+Ka82D6+AfqnC5nl1veokotARP/zWuNZFWxVGh6jniTg3VGj4gUTn9kzGfZBkSq/12rZCZ+bKACtO4ghgnKoyPNQeQUWdaru0B3Vok+jjFV6C7vO68wGpRpuM6i3YEvUnkO91O9+cJSjIfWwiCFGoja9UKjn4eGEDsmtlR2vnLlI9BCOpUAq8G7S0dohOzMUqKNhSe1a0NH611u1QhdZ/O2fUg8GrZ2fL8E2hKbLDRsOkQ9enJ2OhqhVs8bXL5A7apUG2syPcQeOq5YNLdjkh4r5L2lR82bBaSKoo60fgAIFyIyH3GnjAyD495S/IENuNn+54IasAnZbmnAzoHPrM6vkdIjqXbNf1yY14ytuQvei3TOUJP/mnBupqCQtIXZvc+QKkfNgJlUS1RzXHkkq8qw9Z73dpQxPrNobdn+tpdWU8gHrLejxFb7wfE9KlLJbDlQmoj5FbdYcCA3fNCskEfdokZ4yoOs7XelQ5zAaqB4ayVjrLK90WKfmB/QMVgUEowIGiXb8r6snEJNyw8HaoCOROH469s9mNSzzudDphLcDTxhQF9rb/KYQQyZ+Bqi+LOq4kL3UqSvI4qnR285rgXLKri+mcxrtEUXlomB5j5xBYJtfiFPyXDzp18D7k8K+7O48Lo+wQspRwIpJrMjrU1IrmTzxhI8aXJy9TR0HUXyEIgJQ11FjukJByyOzwGFr0QI7LsTMNoFxZW8sQlC+pKqvn1jjaCElD4kxgrzQcfINCBfxINQeN2txA2nDkZxfSoxKZ5nVwFAFH4XO2SxLxu7dQNakUC7PV/HoyAq4M+kc2bVDGzODy6adkd/J9xrpIRuFFW32Vj6Qt71FR6FkJdl+SEpXYBeAkFztEnnje0jq08JanBqIiwSNAs+t/F9OQkLOkWafGZ2FiwcfAm7JuYeiVF1JZUTms6Gyg91Y6uj9HdF8vl4Ta4oSXqFCIQk9rD9Uu36Nw7f8m7ptUKfYyj/7pEV/lsWSJJXvMRkBSKwVqIOp76uKqZzGDIzDZBKWy0ByKfCVJghtAV/1ijU0RsOWltqsbaZqqKQddxI1BSmHQsBIAjII3w11/dRaS93Q6sRsuVWzrr5IIZJjJfM6
Variant 2
DifficultyLevel
557
Question
Which fraction has the same value as 352?
Worked Solution
|
|
352 |
= 515+52 |
|
= 517 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which fraction has the same value as $3\dfrac{2}{5}$? |
workedSolution |
| | |
| --------------------: | -------------- |
| $3 \dfrac{2}{5}$ | \= $\dfrac{15}{5} + \dfrac{2}{5}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/JomdEALkOUE+zmE2HqApGVmVYsmLEJ5xUTL82KIcg1zZkt6VvH7+1sUqYCooajE8YDaRmmqssryJj150Is14MtcEv9EGzdi5bFnGVTZqFjALA4UVW5Ym9DPVjeQ9KUJ7Z3pLg9W9hj3lepTbzU/9fMkFyElJzvjSkkmySQIWqGgECblYkiQyadf0/XzGpSuxd2q7VccWuA4TxazkbFes1XOQtFThKDXF45QOxuBxofwPBOhQB/SBBmJe2mUTM3w+ZCMtBFhofnLIBC0K9t2z/DMZTPiglpnRWgzghlBbECriFhTPuiwjG0scR8lPYDu1tAlpZm0DVyCj+YL4ySMjWpPw6zN5VUx8BqSr/gi8luS0spdv4mK+3yaIvi0vYKzRb+VkW9po2B1CmBNXdv+MvFb75uqGxNkkc7tfH3OGZ6gxzmNxQy79xc+d/Mz2AQLfiYC3uKalhqJvM3d70WxVatvKg+l715/wFqbLJlPjCWY3L+IisY/Bfia7+CZlYx2Nq9DBifFqGKYQ+BjTVy+JAfMTGxsGEs/vVPH7Kam1GAmHbHSFjMK0+FILomWSAhi6jf2XYHeUNLDpVNt9cmSZEh6hxVbFiDFaFv8dQUaTR+BXmCgQI+Y0dhmiXi0HKngls0OP9uvo0uE3N4GQqwR2tRZfh/hGAvBCtPdHEvJWAYmOpWzCNqippKUQdQeo532J1flVE4boOq+8OV64r2cWJ/6RsBIA8AokfX2l8dxzr+wIYudxTIXmKps+jT+dVlbTnolJwMK4xE+UoaxBwyrlxSDqhgeJRD+ulMv5xgAhQW31KkGdzj++mzQQrYQgCYM7rQOvPuPCU5o3rm4JBj3RkM4QT8bbkyEtXogi5pEqeUvG0Z3TtMVe9X3Wj9qBZJaWMfJp66tKJAzy/mkexTl3dYsKdmDBB11VQ/29lRwqiFYbUKmyXT+FN0eOcb0O0h+ma54UEu5C0Ya/sXMYTb2nfTlKJWzYUWtRrvjBCPsgmFz8DxDwTQoGqNUwJ6SIUO9fRvNhP+EkaAtDZdiE0aouHpzO/TQ00dJAgaG5rAHs3iMmht5cQTWpQuZPxDXhuQNNVMLa2DGJLAaowNLy2DHJSS9dqJJgkJIECa7iQ31l+GzJf0r5Ki0X8rcMaUuYyXt/eeo5Zd2BafYrYB34q0yqWNveu/Iw2Euqsr5eqJejM7sVr8gDzxR706MQ2q82MaO60yqmRnv+roI1hEnaGllLFgMN+eYz1W6xNU1DAO7/aHlZAOZRoPOeQ6kOl3wTtblQWnBqbgni3cXJ01b/7Floq7qWgQ2pomsyiL43N/hb8ruAJleGc7ZPl77OR91sdGUhJBsHanc2KbqBffLp9CpGQ9Jfmlsc4GyNiFAGSUb0gNtbryqytg5OPSGkjWSDy/3+3uThmZ3ohJW9MZetcqTOK72HRCT7Fn+0JLJj7M7qk0RZiWC3lY2mWDJYamohtHwFkIeYdgnOEaKzYx4M+SuYMSmKbao/eJeQdPn7jgWrszcPiMOYuQcDpVPMy4fEB4RxHKzfl7TdYxb6AglNOoOl4Gi0VDb2cSV/B9MbONBJPhy1Dv5cR492KncIkHeLwnd165tSovlkH049mtvTQKutZUl2irbPhlbaB0ls9u9ITijN2e7UmiE2gchvEdmMbIV0ZyAmTNTeKw003eLj89Z63zuLUMUzQhDldp0MFCy/RbmLM2O448z3YCYhlmyQttEHM9qVVzNPEL7NZwcFt4wlSkFoOciPCW+uPZSjdXKwGLyn/yD/v+BCC4o9CZNiD9OIuzAx6f6nNnbKVF/HgXePcT2/DpnRJTLSAa1Dxsg1OMP8Vi+tjoChfV8ek7GPPMLMrsN1sX/D7t2ThUN/ca7lMvQwSqx5IuOKHkhLVL13tS+JMm1gOSGP5b6akM5WKYk6ScWBCumPd9V1roVrujHYg2DwgvTsH4AEwZ6ofEW4BkR4bekxlCi2sihWyKUNsc9cP7V4BjT1vF5LLLLBRSXPwppQ1qn/daEWR7F66GTJ/csu5zMrFY2sNR7ecBuRJOQKxaw6bhVBr7Dqtu5W0aDEQ9Kg8lykHF2L2yDQpqLA8De8cccZijrHMmo5CdM9YqvMJnHWSaCQ6uIGYvS03HpPTXZoClhcBMz3nFjc3U+yegMGbd13j75Sph4TwNfkusE4vfwyyqwK2dAJiHwvK37hV6+CeHJtI9VoysF+Elz4MIpZblIUH2G/oVkaJyE60dLZnCB/QiJfHUoO921ExfcPWQGHK4sNWTX7UKdWSQH6oW4tkKMV6YDZ446r7+w3r83cnFUritsbaBHS4MeiwDzGJbhX5zf/0sdGjEvm5SUKjDXf2dxxyRYcMEm9+dK4bhkKY7pi5XWYY4T4hzIpl1QHS+o8GGBSMmBTj4XnVyVqmmq3iDOSFujzJZbxeZ+ZmQ1sdVR6r0d3JYANjCv/8y0X7z3UP3Yw2UMIH75DsjmTiN8f3fuDMqiDIhwAi1nrqujdiCqKOkcsNyA2rZ3km2BaSHn1F4eNEIX5nU55slWL6ZhV5UbNBvRaf8tguXTvheLCT+F1zZzqUrqmBRGPDmAZwrBgDIEaFzYynFFtwXueBA3Bexj+laS8DZY5eQva8KAJoPVsihO7yrK+2OTFxIpTACwhUOjxZpMf5fxddOVOygp/p0iHi+LM0JqcQyXqWBybDlZElsovj61KAG93aiiVqr1DypeX+B00n9SVY8N1j4/S/8qY7y+iaLdDUCot/rkEjUWoUmq+GA3hgx2tYbWP07rv4YwDeaG1JauupUr4q71GBnO0Q2zmw77iYgcJBzTwCD61KY2Yv12TU+VWevk4zTyfXeFQOSnAyKrVmYNXN70/vPLbCg9Mrmp3ViswGSm3aoCfdpanzB/veEQSH5C1y3mmcYTF0F0lqE4O72y4PWGK10CGDpE6Vi3+Re7ypFE0kRvpKrmKZ+crY8tEKRx51KWjmVa3Iqy5djQA7novi3NbwGvuHLvdLl3it0Uj47QOux7eMRwDsLHyr6EnoeVGJDAJjd0LCKC6LoeOxXJrQegpcpB1eaVzu8BAFKyCuSswL90ABlejgUpKgMHejjBOqYJE3ceAONvwfbgItqWJ2DXqIAnbwWP/6t6vp45tTf0j0wSyoLJvoFYtz3kOAByv3FsJOrT51wibJW64+f95jbwsXx5kAul361AxXt2BCSCBYEEHoynQ2dNElvjTL/0coSjC3rVLlSO64TH+XN03ONikFo/BmcJN76wFUlWnp7LGPEOocUuXsQtqO14LW9W/ifQS6+onb4HelKuwoeiGLul0kGnyiPIxycbTlrTyXoymm7NzaedTEmjnR282Udg7qf4m645/7Vd62q1TMXZFkhj0saZDJpMqPZN2iemGu5mFWiSVcbmJVCbHcpZ/k17t1hFiwNelvRer6XViwWOtQUkdodWzCuyS/G2la1ntRGDXoeTCGvSDq9/lc4KifB/hbXcLeZ30xslYhkZYPs46EZzbepLaKcrn2ZPgHepr/Ore3me84bLNzHeIG4NThnbOKwqceW8f+woyj65ynApvRgF9FiTPfXLkcWsexofr8xDHJXmnuAiLuQiyLR5K65jUBd0uzx+qSuuQib3GpdxJDEAPwtwNMaFX8vVvoxHG5lmIs5bkgWoeD5x3KTzSJv+n1ShpPaB1rTbuLqNvEnVGbbYZ6NY/q2i0JooYoxCyNc53WpxqHJbX5M2ltbBjrMnhpH1UaCJprrDBrfP1aun7HQWnrqH5dPG/cnMRyASDVAt4zYKsxrFO+K6SPTJgWEOjNgCrZjoJChwWPcIaQx3VP/9t9B2H7DyMLfmtc9mrNhZu2KcMjv3ObKg+nhw8/rTqTa+9ZMALI8g68jG77/Nx++Sik87XONdhXOM0Zo4Bc7yGMr34GEa8uBSzCen/tb0ZKi+PfYbFBN6SnYR0EUdNwYKAQfwUaQMa1zbjS1xBEHdBb2z4xvRIkhsvWAPnwOTGPhoLIuJKZ9WZcVUZaWLNAM7jhrkpjwR9DG7OcKLtjjrmO2tmOfBefdP8xtJJ56OF0u3p6+SDh3HZvdimVsJNExVjtzPK5eFD97Zti3WMXkAIRL+Zy8C2Myc4k4+W1sC+PR5Cnea9weK27kdhRGgOvhSmfvWkdlB4WJoSInKBkBlWjnJROV6LAnNUrDtl3ui0Wpi9tY3+I/kUSNNZXlgadosdg4Q4URzzcezewLEVKBs2P5sQoj0Fm9B8P5dLCexaHRir7xBGDPITe0q3rSJB8wUhKSznA6VjHVwllYQs5jQqmzDlgoWTaFobSHtQIRX5oy8/vNW72ymA/Jcuv0yj3PZRw9F2OC5HzPzaVSORPZWB6Ev/+kdMCEMSm3Xf+lSPMIi6aTzQhvdG1I2X48Nm2RpksCwJbvZT2nQbUfR6FZvqNEUGx0bHJmLrfNX7G6znp89c8p+2tkxWJcfFemvoSQp293JTXfaKVLTfMIH7WalcOjsbiMKms4he3w275bDyOeQ0jHFeI5IDYT+MSkKrsYqF0DAH07LEIH9f7QXkM7uwZQdloxsT4SDhtTI4wAddQIYt83yOm7IvD4yvcyjtH8J4VTvjQjGMe4kNVCiiQrTenpXPjBhGqaBjUSDrkJOmtl2mChe9Aq+L9li6j/PSY5G/fGrwjmdEYvsKHBgDnwtu8P4A1sf/mY0RSu+ILpk9c8BWy0IKEVi75gD4ebJAluV8+UTsLu332c1RPLKdcuHhB+9++6Sr2sNaHtebwafKGcjQcsqiwKY88QeJCYIKihNHaUbmPLQytbCxSB9h8FKoLwPAMUhP/hn+sWU/LhTWFZ2QTfjuuAW1OEZrTcS6xQxu7dtBkE7TGuBDq8e04DMrT5GmVMfTJpVhRSRGeRv/xdRnlgnOb2+jfeZpkSY2FLjoPfUtW42VOESzkbn3FEbU0xNIYSq2CVMzdkfBmRJyMuxrQpVK6Abmmgo5f2np7dYOeEKfTPdkUN6Ah6lVjLZWNpKXnB42Wir2aMzAIOgDa6XuG3icbZ8kDeZk0g5BY2dnMwMwsCEnDvE43fRmozqa0cE949bTj6MrK8P4EM8/jngTCckyJJt9cKUImFi282y95CDcsRAuZI3VMxl1uKx/WEdnGbejAJ/2Ov0zF6eG62peGExnuRtZLBSZY43thpGUS6UlycJ9PT6h2swqIsGty6rbd5iTHYzOApZ5eRek3EWjviN4LRHokuU9kwDVOKOVBmGC7oJmow4/p3AGaLPJp3bZFNIx+lrNHF3W6TcK5Jd6IxFwjCfx42+2FtpFC2+HURfKz8B7VlzUyYujZob44TSb2nJj4lTWZcTZX5FugLdRgfuZ18zEMx1whf4PLiU4EUY47LJbQ/l9TEm8QVGKHoHFuZ0iNAvoUbaVcCzvFm3lWleaGGF4bDAbQpaLJwPNAqGoiXMVWXJknW58tnzHqS7A37YWRgWbEp1iLYyEN078/MtHFqAlg8VzSbVNm0m9PEJT7hNUtF7C6gdc1KaJiZwMFbie9dXd5C+qwy/G/rfXiv14fshu8E5rmM0UCDMHEqaof/Ix4unbEfYIb8XYFfTQH5kgGEoIN1SeYj6KfCCLHKfiK+wPVqBJaG1zM2YA0BQjhhcVo61LJ2Y5d98+xNfQv8zP6cpeUQrl5XNXbl43onV//4iuSMn0G9alE4jjvv4u9vPK28NfJMkhRkQavPuKlmaqyyW5SXb6KenKeCYFkCqRRGl1XjCrDzatTlACRnB944FJNG7fREm5XhSoSHZeWfisrJrlu/duGlNcj8rGNPKF/8Nq1z9sN83AEKVSQn2xhesfmXIAzt9/kJM0vrolfOoXAK67/KLiVBKgMM2Kwuq3NKn7RC88UWzGmxMgzV/ELeYjnEhrEKv+nW8ld8VXxPfJPWsc8U+Zt6GImXbx0ASVE8ULTCKQBohnxM5a07r5v0nEvvbN/tEekEnCWNaNED8g44Vx1VSM5LzlAHa8EIK/RtM2lNWNMheT+HyHBlyzqVa1uf89Ml1UduNFUZ/URq8Dwj+4T6Pm6K+iwbIA8/I8GWS+TRTzHm74afIH8sSG/xCWMEsLxVJQlxZHsrq54XsiYWWzFsVclkjqLTggCC0iTNlS6RqnH0eIY/tWZN6C0xrn1GLC8UegsnR5AXY9BkKgokCaukfzJxPeFgEA6m0N80VHFqiFsfJL24+SHvMKr6dnbRyQ7fsHu1sLb5tyRwQVPuSV7IoPueE3Fz0G6UuUDtrtg+1kEarzw2tvXZa0YGUvKvMIDZ5UruDebyOMffzJQmDH/YP2T//QF/Z6pMKrafWH8MBbeyofYtWfXrQTdsj2lrFOvOg+paZDaNxYxHTBeGMyZvPyXHPOu/l+PXwt3vAo85zb/vLh8vbR8hjXKk1JN5mXdgkX4tJHHNvpWGSeDTx6w1MkuNMFpJ4jxaHb/zY+J6nekSruHKZyYqPbe+qDBLdDo/f7wIXHzzD94vsv5YcQrz3E6jgI7iJEFyggwjdz7EsnCQFk/TkBogLQ5YVIJFa8R1EregoV0SwTL6VrzAbaZG1+PIwS3OCLdhdA191qQhjcR5Xi/FpG+nWbpXek0uMQoYHKTQVnKSPsEl3gEJYhIbo+NE4deWI4S5lYqj5Bztu8w2F8wuTRDNbStMBldZHXKRYkBU9VF2FBSalXKhCmE5KrCINKtx0ds6yktI3vbahTWl6M2f2H4HHFtDHB4V3yR+dhy+8IBr0b/LVUfoHA+EfTsAx90BLuSbUCcWT7eYvI6dpkrLRPNByQ2ZOQmDOKX3n0Y0PrlvV5P1DDYRaODIkmDaKMaoEnTfOk+D5bjv58mpP+4dnA9XMVyrsnpvzV4sU2FD8vwNQ/ZRJEG6Hq+WlBRDvwk19TjdEAcOMvjZBBwHmxKMtuehYiZAx/ZMFs2/9cRQfz+0JOTBkOyiGsM3hRq8oMZ+DdySLihJ5r0ByemC+nqU9D9U3XfQyuc5gLxSQNExLj/ceFi9xjMr31KOn6y+9hqTYqjAMCvTvkeJNsztg3UPqqg+jcZgot+PAUHpQJQ+JpDDElAgKZtf0Er7YgbAN+ZQBssa9Vn9ZCuX6EmBK3jsVxTc7JyKmfUJJIhBz8sVLwtfSy5H6tB9Zsz5wTILoJg4PBT7rTezXQPNFIvxQaMKWy97A9MjfbJ3W7PJeLksdJdUH46EWNCLhNcEbWUhxt6uJxKSvRBZ3cehIidpkFzULhoIJB2QOR5jGCKCTUBeYdX/9NkK8dVKfWNOCZDbr4UCgnfRyMkJJBW07a9FXpgUJAfJ/1Vquqn9ceHvHbVRQdMBsvMdJZZ0WCMXSDkhtAPbyiVL2HkVMbEvEKYPiuMrAkDfj5RD1Fcmsn8qFHGL8MLKtHqEggDuOyCYke288aTJJrgZQqXJ2wfc4j0cHZ0eM8rZNzeVvA2lYe/LHRgD3/WjZifRoV54FdGmh98SZEJIV7J8cV0d1M3TyTKHS8pwQeCJeKcECUP4iRXBpZaiKvrzKTWmk9Bq/9WjO0ysTZU+A674BQQgl56o5MkXJQPAKWXiTyag9htimG8VmoixFZhfcSZZ0GOFtFPbFEjJ7F0kbUEiVDjR/e5ROW3gMxM9V5quyzTLnhGKKOsAMYKvH2zjaVkEbdFfON8J8RJYDWX0puI4EsVjVnX5rcJgTk7X78N/0/RkH4rabAG3TBqktghtmcc+XpefExys2kvvau4sQwXFVsh5Rx+HuQpVSmp45CBtC2JQIMnmkdNhK+2jxX78G5i8Uti7kUXmfei2xHmJgjhaE5971nBep+5Ne78kgvHsEuYa3VxH4PjsMuHjPk5fvfYDow2wtopmo+Zp10UaU/41vFnwRZFfFvYJx3rcavn7KgYvqTkBRLGWG4LKr2StSLIO3X+ezzi3IOy7pV722u+t3+uTCFoPQI1/EPIdQ2YIsc43+N21+an+4VzcVoU75fLghRG4lsRTa5lmEsdX3k3GXokTwqdnArZ+g8XZJEW20GCNpJB4lE9XgpqMhHs0qoqBflpHO46ipq9U2RLH7N7XE7Jm26mYUS/2OIZncVCVYy7qLMYNpbVBFiGGywnWfdHyJ0s8ZTOp2duW5arkPjQP9I+/NoseFVEGWrdMQqJGOTynGH6TsBC6JWxA1tanKZ2EBfHAzVGj6LAEn4WfdvPC3rN8CEKAIeUwE94Np6szKXN/OKua1xBpMzifGrOCE94iGXOC4vhQbDI+I8LP6sLeIlUSZOf3xa4CABTss75zwbjr6iqLXf7lITSNWQToqOof1KutQOX+tin0CIjcwMX2KZYlpsC/DhvBepkJDDcN591QOW2G41mqgtLe0t5wnrvfCg2BrizXRQ9h8/CyYgKjLqkTa8XZMZTUBRUnIjlEm1b9jkOLpNEqa6CKsBylOtqPa3EoiV3nIM+MCjEMJe2BUogdeWI5OehDSG/dPkt4RUtCHzWndBiKTC00MgSBww/tO/vyRXSynYgd1E5Q7z+S5DcR4awtwQq2hXX8lPMZVlDsMlY+4vl5QhH3VZmjDPR8UYLhn1qShBvNvTRTNQkRUuQs9QT5kJNomIipnGX6l1sxHI7Uq4507YU9Cua4KpQ1rjXOryIWxu5w9GmKms8iblS4sV99cbYFMgTrDUEAxrgZL9FmFC9aRXkI780AOXeeO+FXROKd2mCT7Yf9RY4B+cBr1OTQY/iL9igO7CIPjURtXmhQFnGjEOH+2+HmDA86tIVmVwX9lyLUsPs2BAG13w0z1lA7XthpLsJw+GoIvsj14OYtm4+S2rFygvlzTjLaySZGDkLzIKYhNNsi9DzjgjGc+vZLP6vRAoocgk9ax7j51wL9MhPliDjAZjgBWIQ1g2nsBun780Rgn9b5Gjezqc0H/vBJOdwsRK+y2ZVjUN0kYf3GRXYhTguA6gka9rI5TT/4MpVzc6YyQFFE7ELdiNbiD2WK7pLtIe/BG0iV4sa6QgWlRun9DUhi6Cx9p7PyYV25glAanCpPwTPkwyvq4inj2ndKILAIFyksFv0eiJ8+hDBsQnyQZJiz9ftoMfpv6kJTIu4KgUKvL6YwnJikR7Fho2WsrNg74xRjGNwUeyjo6Ac1JDqyB97IE7uA7aoDQi+C8czu26g/uHRcVcmL9WjgGY0NWRDio3e9tp2+iaJjoyxaQtjurDtaHXQoaesTTkhdeKZvby7Q3uYXqwzQIb1gyufFs0FBocKOHF3mvNd3RLYvzOlVFW86NwAs8HJ+Efnkcu5Ziktd8BfCO1cDjjsnES153l6NQlcqX84hQZ+X5flOYCfcBx7UpGxIkVgAvKyYDfSRJD36O5Q/LxG2LBOG1UzFF1cPRJEooOIECGUzww/UvF/7j2oEvQoabEkJlTBpvc4JEdqW5z6mCI59hc/vIRAcq0YP/NX3ua4C9IXQEjZYgd6bqnha160VR8a2dQN0fFiQ1bvSEDGtrHVKRz4IU7ERYgLB5CxJcolgWixE9YnRqbyJZnHoYOxQFgmDvO591+q4jSDrtKg+Iwd7sJCJUxQClfC4xeZ2BXsI9XQjkHkAXQ8GuUGfD0DnYhicr4SX0FpN2SV2zxtKRlMcUFwaegnetGAd1jls1CCeEBw/yL3HrYCKhwSZNI55gA7VDhwk3okzQhw0pRDvOpAqZLsQ1RZjZ+j1HGYoiAsX3Tdq0me9i7Zqfn+c5AlmqCyoS7L2SImP9wdhsx4GdO04ZUxEpmr8dVaockRoT1ZXKtNqGAl+sen4n/+HcfyGetW9CR72d4flwzEUoKQlb0qNtYQOZftqgop427fVF2oz7uhXBOEdjhqzXtiliTum2bGtIEoDYmp17/F13D+kabgHgUfbhrQARnLyzxSqLHyJpZZySa4qxGOAmC1HJQo66vIOE/eYCkLbu4bEjkmey+1DCDV3ZuT7BSKJPD2VBZqa5LVaOu2iZnlSiPZxRr2456gYUQNreogJQekrK2jEKAvVZ8DfYJpsOeTdAbmMo3laM8UoTujjcTjykA/IwRtsr6orGFf7JN9ag2Bi3yI6zJFn1o8GlGIP2QmB4R05hFecbICeBexOI7yYrhn7N73Rl7Ty2EqBuOWDIqZbBZy9U69axtsGo7XXSBZ2+pOszU98bUWOOQEFLqMi5Rz5jr6p3yaibX8kw2b71qKm5DWfsXqFonk8988Bx7h4hroc3HC7DmdBmRcmXcWBReBf6ygrm44BJqjBmqABo1z9B6UOUWBp0HEx9DlFY0C1FfgFUgCJ4gAan1XPryiPTM3gasaqR71SOAYB2PCi/sQ9CuHKosP9oJZFItmHXulDJ+dBzswPzR/TghnAnB0rwrXqvardEKBrvM/0tInPHTh1FDIwTige8jMjeiJYTEazRJhdYvGOgeqkwavvhHTsyO/D6dxadmALefvqBzjF6ac5X9cY5Yclkxeyk7PN04ORErKscFOCaA8Oio5ZcvCVj9Ngwuf9A+qBKxoQC1G/e/EXt80kGE3TQGJ1KvSyysCpks4ZCT/y1dDwQXf6O2wTDQiQhj5bLK9zjhsuStUh0gWemGLQHxGGfx9FU7gR7uxbocghoW9uKv3RqOrIgAYeBLTUZWtdQ0GLt8DXdQGkIVbYMohl4nigMwukj1HfSnVNHaK6AOsV51x8KsPzak0oESzS1w6W6ucRPc9BWFCTkezir9j34wlrJnXn6MoilVc5URgWRxW8iByL6AtMlC7BYQF8xXs5sORDO4ntN0EMror0mhARPZfpfXvPFYYFgI7MkREnpUHKVmE8KCBuEgC/hCOzstLXDyKtmAAztKF1vX24NNgTPDjFv4TnCqOMgmk7Rd/haVBbyJDXJ2N1RbiY8BE48Uinlmn5NU9UFIQQknAsd+haWt8bB31+Nl78fhE7zC5UGqZ5n1iZuv2qUPR3YvwVDOlS1snx1Xya2ky7ymZfGQHpqB7S8lWPWNdYRQSfAagTSL4vWhzDS6J2PBCXZ+BP7oLnqEalDmb2nwsd15xjWV+3EIL2+i02Z7UHI4VLjpa/aWMHwNcQij2WUe/ahFbx4tjsLTCSl+7EwtiKdeimmOUPJAdsVKd26Y4M4NETNrOsdptLs3Va4NzJ3JwFASWiDAZ1NN9ljv0Np3qpEHl0q936She6T+/3+m2h3grbU6pUowWV8rM6H/fQdnQLPr+AcvpqV9HZuLI6lZ04VY4RIQ+3kjvKvRpQgJRZWNZpbXHpZfQLnz2Ius4tb43teEj1Xiyv74NLw+pJ0PDyzqyl4gm7GnyoaONCE1wSE6gFYwc/k+zYCuGuv98CG6jy1qjad5Uo4ZK8Ckyr2MI87HeAbhRSMGsMm1glDT3NvEhXhbgRPcKhJ0xJX4uK6FFEsk4F/DLATwV14J3YJkS3gjKS3d2tuL/ikRz2CwCecNQFUB4/7SVkazeDwqYTYLtPQcwthffpk0tMWA6JvMuU1CrVIibBUaiVC0NHNvhf94+1+1O4HAUFLRshmfi0kFqzz1H9EUFmeoDpX0KzOW5rVeBbOGdABlnO3Y+7pGwwUC+wcEYYQmxoxXR+tXTs5DmgkEeWIYqJS7juhdIOKDRyDnaAfXOhtFXK091wIhPuj+uinXRH4vMcsexNlTkWywii6hpK9Et2Jz0UoVmWyxDaSfzR9GpTYfh2pAunkKmGOZKhvRe/RBMDG0xGKya1noemOUEi/NG9AfF+Ww/kkRvz3mmHkXB52LHXXZvM0Lmyw6SA1/F55hkQB4cV7lXTTM+s1XFIjcqlJzZr8zXTo/wIPoCZ8P8gXv2vGTI6cAASxRg1RvSNWorBKO9Fzi52CAZdCXbaf/fK71045U/RrLeVw9V/7cRoNepcY7ThoD2dt36hVKSm/KgkWIuq6BXzRYR/3qkAfCGx9BZ+ETyASY0XSuTQASQA4Q8pbxh8OR+8gpN72gCdLR78nnPgbEBxEss4wNE45MWoIoYhlWp1MlGd7uPowv1g2UDNGaGRcfAMLCABo/TbuA06IooCLGxRHlPOJEuA6NeHBDrV5kplRO1B/RmpyQ+tVzAr/XbZtXnyF4TtZUgCyzClJdPgCtn1LpfciOqcsUBKZoFcr+GAwScNskKEcNU6+0UIk3vSyfetbUQIbYCkHyuIzIzT5k1IODQomukGKdUhg4LNNErTTjv/NRoSNsK9w4NChLrI4ePrpPBFvCeCLKKShUqALtdriWJ8vI9xarksrc0kuaFHgevFnsaJPUt9peLyBDXBYAZyVxd/mPrL61GeBqSiLHoK9F6dCVYx7HW7vUCtqwDaDlgtZdX/Gq/EUGg5bxlHbQCjKOI+IXos5tkLl0VKnTFIxVSPWQkPBPNkA3GAwZDIg8Bz/y6sASwpex3z1r5Eg08B8YHM8OBcpuB3RV9WM5eMCL+rdEiCWil1uFm1IoBmJwV+tgvSV32by6DXkSkfNnFL4nz7ObH+gTwHFyiZ7JDtpYr1eZgKgIXwVV92cOTaVNL34tAgF1ZI34plqvlDFMNzr+jcrOag9lG5xWVwsq5PmE1Qtz4ua3+766+hcMPqTVoeQkn/Usbsr0s0XTdi+4IYy3d63GI1vIJYC/eMud+hvhLYhdAiUGPmqY3vQ0nbzVHI3oWtEBRbQGPJwn7svspywzQ2YnfAnAvVeAlk8RECI/582SyxT3vmjWJswLgSjJSN/cZp8j6FUqoljXt7TTBvD3YkqBvJN6Ce0cCVYv/IcdH1vYiag9TJtcqAySH0D7CpxRuH6UpJgi/l+ikppfOkmLttznew6juTfh9+9FEJwF/0blMtmOYXME+ucTWTbFGPp/PT92bffnb7m/4oC91qazrYSBJXbUou7G3sLjdc8zWKsyqPVBPt90kfpXnmYTBIHstoBog2U0y6RnHjjfPvT0bRmaKbb7FmOg6gVP+UYd0kyKN9Is4SICBHScMfNtsRWS45mTpG1BmRKuWU/pzc04Xd5iW8VY+uXuoWhH5nIULR8zqlm0Ba3jA+CKypGtflJ0bchXE6OjYZjNOYXzMQMfqsHH1OCuXhZRFcL7nQ8icv06bM0IaRqca6plge5h7gjsEOp+nQd2GU+FAbwaeJz5e34rG2AuxAFPOdTto+o1q1tJ8X/+vH6BNvkRBXnt2atS7x6gIyGIhg0KhCHk06DnGyWhB/iBSCcc7ysZXEYxf1XZ43/0ViPRaoTTStYSRCgXHq1aWLrD0Y7K71pHT4IPyZNIGFWAGvAVupZTPtMdcmrEqghRYS+/4uzJc1UGBM34hxnZcs/ZXzhipLDDHPgumA9a1TJ2x98lZiDPe8eC49EXuXc2QWdWvG5YEcdo+qVcn2Kg/aO/pYpPEJbguBLfRcoHtwgaMMxlXIoNpkslsG8hk2b3K+u8If16g7P3OdEd2jE3v2BsGmFM9GrvVUcwC9bycGGWn47JGPAuRYD7034c1ZWQ+MJ6ZY4DCeY+8bs0wwe8wIUXqLWH8CGcsEMPI6TvuPAzyxm6ylfI0JE1gU4BJOUHclR6eQT7yhhkxvk2QShec3Dw9asc5BF4Bk49kP3GRGqoXm0vDtS0u7aLs9zr5xzTIAH9JjR67hx8gdhttA+efRr2aFdTnEZTsipE5CAgpwEn1eqUeC70Baxx6gtw724sSGhtFtYMaUxGLUJJuilOP0pBBy+MkIH12zlk71Dme068vMt0wKOc1Gw0Gszb5xa5cXQ45Re/OtmzbW2GZyAf6XV+ag8jnPZyz6ymuvb3qRT08K5ooI0JX9oyeEkFBRhXKXn0h6X/eRBp+3Ok9vy+cnVvLw1856Gwv1RoAzhj5lhYcbcmstKJfls9+Pqy1zV54bDx1pS16oxY4cKNuIqEzRR41bC97dgZzb10Q+yfKE4NmooEWN90jPrwnXLatMQm36K7EuuLT1pxxDXW8Vl9Q8qti+S7N4Q4qqBddcxuUhTkmfE/rPn+uxqxwvlrUoLvgTgRiNUlH+ExZPRdxSlYK53YgWanDcvSZa9tY/e81fUFGspeCqj4OIICxtUOpxG4uoLhfDUu7EBze5j3T55ITFQ8zBQLLsxTQq0zdB9xKg7fYJfb7QuEgwBXQ4OTXdVkTvl+lFso2dk7hYTV7WEmcs8CjodETgEJmwRY4FNxgeFUzdV7sx1R56OP2DSvDDNVXZCN5kFDZe67sK754GknDJNN3IgwIJ877YjNSWTd3OYFmmwg/0ZtSDrHGS4tnHrAV2AqUyNyOHz6zW8dkF6sXet2Z3+6a2JfzGdTMWrmnCdRad7e0pUKdXFSUzgwNfSLDiqbwCJ+PwZWSm+I3NNsdXnJ8xRrZ50Plfuzf4yAZzF+/F6JDzEUPlRw7IBojdbhQp8cDbL+mOF255mnNOcrQjzuE110j0okJIIH4fxfG57AZGTBNj/c8Jy8F4Qy8DHB0CeKd355QvJt+65qnxZzyJZO5AXgph8ozMN9ZX3vaxujpDzLpyYxAV2S9J7iPVxuAQPwIuPqWTmERkDDo8jlwHNdqERW7PKp+MuuaG3fFnMuFeEWdHJcLUxo7Y8P6sevuv1UzTgPSShBdsGEEkK9GEtQyUREX1Ocz1Vo7kcjWFv2bP+JIX1dfl4SKt6Bo6ySHK4xffClF5zMwDigoASCknmb706hpL41XabE3oRr7eZDEjx1B7VX3o/dpox72WaIjkIC5ZfyjyMtfgMCooQ14WjcdhP+c5O/2Ix1oUCDnSXfBynVBjg77H4kuqUqgn7Oz6+pf29fmT6UzRwv+pnqnzk8LjA2kfGG/HD7EKMUftY1hhumc8ixk7ae8+52zt6O2OL8BMQPehIjSG4HnJCSzsvxvvyj8sSBqwrJyjJrERtVQbgw2rn56aHoVLk7SnHm3tgaQU43xvAIZ2YQNPMYKeV6JS9G5p1VCZ1OZlB5Kx8o1jco88czPJ7Y/l+WlDnhY8NTnl02PkQWWjbG2KlGiienXY63tsGqGIfy+KtYc8BwqOf56lD9VGZYyVJbzKpgLflweYoslhdpr/47mKxcfC+px+yVRgKoqXtiAavx/x0l3YMxBPZRKX7sGSUwghr2QoCuqmk0rhL7ykuJrqdOgiqQWvsWAIEkCqSArGqaZD91WSeALpeh5mI++GobA3EU6JWjFdEHP1EgSKBys+Yx6PYOBQwbcYGZwDyXEZLmy85dUCxEa7tFFRjE/0nMXZG5DJFaV3KMiYCl2wElWUvFY30cVL2plfgiFjVmzx2HXx0u2Vpul1BuRONMNlpsw4UfgSFLFlRLmDoazqLm3NuB7LalCT/w3ZpLznl43irDeesSzqreSqTTHmSjM0xBBgV5ekWdpz1r4kieo//WBOn7f4O6tR4PCf2LpiZJpjNNL/yBMT2josp88FYcwY++R0l0qig54BSlLeJV/tlcybbtEDm3u1iuWX8o0mo94F1wl62Af1EUaQOrM9/Aq6THcO4nXYA1MskAhtDUonOm5B1aVBcyZO/6CmciID1ZwhDQfqAtE0GmQJPo72n6sp8QnvMj12GEnNnEi4shVXpDDwbLq09+hRlsX2YDkxU/6PyT4oxg2cCQMCBTT2I8CwkceYjgPT0bk2ezd/xf5bOg8W2wb6A3hRgAAy6UNYwfpvnrrrYdor/2L9zAo0WXuQxTsmfHKYjopA0Qf91T7pHlLwtmvNfkY2wWeWoBAU6+PgGq1qZOCFqiWaRv1myRVGKqqHaOnID/E7jWEYDck51SepgCq6FxoPrD4b18bw3fAT3rzYc9JE9bBQNtd0GMDRqixjwZ5o1/CgQAVmoVzn7B8GuqVpLIjJr8BRXj+ohCU5eu1znDJ7qWnBOZmRw1sm/dij54C15Gvavk/GIJK1+UhumwLcP8Hnz95A5U+XPVvTRUrpMp69HjWTdcTd1nhBDR+i0I6Xf3TTi2bCroARwxslQQ87fR0o/cuD7O4ufT7MZMSWLKmGOb4otcYPH8nsZuAOs2+5zmFdt+0sOdSYDCia+apy2mGBpF+CifbjYOUbUX2b5FbpYQvP7Yh8FIAQtoXaIruus9gAkmS+lgMZRDn3jpDZgfKCinvP+BBTPNzbUhpVuQC+coG3DRl23ImXbMxATIPVNbBsIvzcpc6NJS2doCELoqI1zgvULupcjz3iM37ZBTTiX+n2YlswdaDEGoxfVhVlvjLNKY/QFOq+/EQ4w9CEw7pD+Qj6RRAF9I+gLjs8Efzc8O7ZiDt/QyhmC5bDO3vOPNXKRZy7KguEW9F2b7O3yglp4mQwNJl8ytnTyoU5jsPj2myDrh75d8X+V1IDHRGsYNQ07M9x+abCoyZrSZR74/JgrRR8VNqM/fHXHyxdLq0Iat/BjtfhoeQUeLBfixEQ1Obg7YgE9SpT2MKN36O1XY8j2cQCKmNS90HORY+70kwgxIG53VXogBRpVZpffdhv5gmjdd0vya9QyfyIuXCLTkscto/om5zqHlDk2XwYHjgYOl7JGwB2xPjPRWrQe3sZzBnuSrPUDHRfnNXdUsbtMb++5J597rK+SA5YKswgdpV/XiUgs4DO2adE3i35AK9wI0fun9hPib6zG2I4qlOVax73Am46hiyTczvvbojXPJkAQyvExUfSs8DQ6N3AHnRHbBhML8xI2SOkNjEX5uHar2OsmFnq2cHYZ3OmrAVraj5LXYnggHtIKJuxLBlE3scQfRF7dKqXbk6ltN1aztNabKZKe1npR7qf3HL+A1sujkohDYIn4dwZvY9ktAac2lxx032gf4lzUO9bpyobkeYP3txiyZvsA3YstcVEqAw92BOC61t8T6D6ItcewwgoZARFUQPi8IDp1Yb4K/v2eVL2duntRrZ9DyWF8051gtA6in50zIdpdfd18scsE5w0I+RmGk1Ob4K2Nzyc2oWpdUK17RV2Vhi2t7vvH3nk4z6jZLn5trhaOGfDOp+4Szt8Srf8C8NChVHkIomNSeaeAyayamSf7KlgUp+yc22zuwAFwtd1KSeUBspJz4Frs4sQOP54Z7Wgea7kIpMyxc72MEYvapGMCt+T6+uOrPxBnjp8cowCSWaapxs2pYD5GUXZhKtfXlXa8+LOBplUGf6RQBchEwbqeD8/PrkAnkCmCQy8tUPg9o5l8l77J+ZPjyKQNMpprCv63W6eiO9WjuqJdGxB9l7sIH6zDMCcdKg8YL8ipxwefLGlQ41EjK0WPV0T1YNQPPiwjgYD0xswy3uDV6XD0npIxp/C8pHazd03yzYZugFjqOO3/OeOdmPpqwbD25ShQ6I/EVBYyodO/FHFJZVOBwxJ7Z/mtq3SMtLGo4BJU3OEOSWF7d7YBxiocjdCUGR6tExMkqr3gaB65QEcKEovpnNK5l64d+XVAm5UTZBDUPgpVL/P8K4QUzKEJKFxpXZvgNFniJDwXnWkA1q8fYXmG7fxQViGovwRv0g/K3DmOKwQ4vLABsypKrj+1aUuBmritbFmpkY7TZir/Ec9AW7jTtGISdUEnecbDAP9b98l5Z2jGE+dUiqk/ikf5Z9x6I/u/Tx1VsJf19lOwCRDuJl3xsE7tGT1od2KtEkv5c+jM/DcY279BKRop5Tzvm3vTQ9Aq/E3bPd1X/Y3DzquGWnja9Rv1FzZRphJfoILLMVwP1xSsZ1VuTx4VZz7yjMNgkYuSaDVNUz3I61ZDkx9dezciinkpadW4dtPWEyDcojf8S4HC+rGgPFWZNHO9CXAK2qQ59bDk0vQ5cx7ZqUd8ToyicYCWD1yiLcOwbWZSVPjVw5iisDmfpd3xQ/gCUpZZak52N1Fm8bdGvpYXReWzGtRwQSueq+CYWyi5ZxmzYMEMffRt9bIIFu7q5H34vlo9RN4UTsu/ZaOqa5aRwEM0bT86okaHGVvOnbu1mqyHwCrOR18qQtgOVA/OiXNKcOChHVQ4icvVJfuP1l8MpQUQQ6QlY5VssQ+ZqFjVZpbYkbc0qeCWhFAKeN2BCJn46pvvMh0GHjIRsqv1p/bfP3QT2aIOhWqfA4ma5ib588H+OJ+/wdOrokG/OPkAmkvXRwzM7+8MJ/Q3cSxRy+QdVsDBZ9fCQAmJcdLgBREAA1SjfpbzWAMNvXaz/bTQOGoK4DHSEk22yKTSZmu1G2ceKqJYHWDZnJkVTX6EW9N52Se0oio6DdjziM4I1qoSRohn0aFUJTfHVs2xXiVA==
Variant 3
DifficultyLevel
555
Question
Which fraction has the same value as 274?
Worked Solution
|
|
274 |
= 714+74 |
|
= 718 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which fraction has the same value as $2\dfrac{4}{7}$? |
workedSolution |
| | |
| --------------------: | -------------- |
| $2 \dfrac{4}{7}$ | \= $\dfrac{14}{7} + \dfrac{4}{7}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers