Statistics and Probability, NAPX-H3-CA05
U2FsdGVkX19z8jaL2a/CnwBWWzr3aPJdmwIavZq4/wn9nB0CWcNnVF0ur7ayTMgt7B93lUveptZAS+XvLcMaLoKmCtaKOQje1dTJ0kt8Q2eqEvkevPZBJihQGSGeTgaKbD0KaOqx1aeqTO5Lk0oyq4ynaYcv7UYi5ROP8zn8kLIkQ3vS3qOc7kOIf499vFfN2T+btsX3svSnEK2SSczqeD7EMZUYyJf5pxBsQCJiZcY5Pmi9TBPledYFuWdt9zhtpoi8DOdusxjXLY1x1fSMV521gLZ8mGkbEDFHcNyFVZS4TFYza5qIlGIRp9zphy3r4cN6yB9Uxumv2XJwvdfljhxhFCDc5cLUnMw82biFGw3m689UsrFWQRWfmXxXiIolGFYL6CjoiDKnMEyxA0pj4SheIwpYKduLMoNXYbOpMneZdeU5kJam6A3J1VGEsiQ2VIXaCw0ViF5PU4qB9LsYgZITugyxJ4E0v1bTupEtsMQRKUwo2O9n5y3frhqwgR9RJKCMus2FIKyy+SfbAMteHXNgemEJjFUw6E8fr98qJklXvraN6nGtWCR9w93z+mnLJj6HvXwP5vo3ZrqnrTbwIxEDh++tqIjfcxDQhR4zAZZDBKDVzEVwDpXncGM2rf0RvFgZMLGEzgYkkBd5qH4YGtIvMLIPjyegtSudTpn8L6+50AyZhWemw8z9Qw+9TngiaSZ1xCGMD7vJ3nz5fEN/2glfm/CCRErhuw7pln9vq95UOXmkCcxpoHCCvnDdMWCs5MtkLUN/1GsoSMLLcpVb1CH4M0qOHrhJjdeGY04gxCBjc22yXZQE7cFaYRwztCF87wzvMB0I1moYN9bDXAxzjJkGZ76o2i34INBLHQclCW9ou+s7Zqk+1dU79gPIO3x1Odh2IoK83RMSNjMfXsNkdNEjHYTnB4/1kDGd9o0S6RvJCN6RNIXqVnz4mIUTtJlLdpJ7bEDh7JUuDYOZuX7gD6HRRUSDgrB2hthYjPurb0dQWpJ842NogvXJvhrqvaI2WTzLY8ZNrKcuuoQ7ITbWExgAL7f7MXCnevP7PPbkIVf6V/n8avP+grta4s0OyX8rW8qew/eL9CS5leStgf1b3zG5QYWUnFKjTOymab6qSMAJtVdZ9T68bmUSPseI7LjYUd5sHXIcq5qGI4dHbQa1vfZ5hfw4WL2Y6mkEmX7GKoJ2qsClTMU3LHxCzpWMpNEoB0i3+qWFyD+He3ThOJPeMQvsJnLuOPYruDOsjFu3OKuqcYPFJXqGfCtit35NE3wEtHFna1zMHj3c8JjPGZLc/lL9boIpfIblsKGbVQAOO7CpMIQF3yxGPMhDw4ndaylJ6nwiJFRgxYICCLd6bJX+K3JFJnhrYwhDvJoBL0YBGEtKQyYi++pxn+bN0s01WypN1UW7hoKLCeL4ZOPqyAuaj9yGB7qlv1ztYMKlpVXQ/eyytgimuyOJL6qpMP/RULi88vHrnfvn+D7G5OOhg/p61q6PbIdj66CTO+03yC9mtuW6LjSTzWyo4B/s3SFXQoJu3QKJshqSZwZN5SjH4TMC/xUMYSxPI+AZNXUSR9qdLxroTzIZTOttKdVtWuN8YcyQJsPqlc6K5l9bpKNloBySPMcTNxKsQnPSgJkT8aqnh1pI80RZ4yxIpcIK5pJlFI0e9e9AN3v9sEqrQ2G/e/dbx/+FoKsusQf2VgXnRhee8D3rvnMtwtSrWY54EUnu0L7UcOCm9eKwAFx1tArZ34pv0GxAHaAxpwWfkHqqTb3qi8ed5bwtmbBE94alJcj82/sU/6XAtVjCmY9U8R+7/jZEQ1T2qaJwLpkPlu15nqj0knGBvfupPgDDF5M5T/B+HO0FsqQDeAnYz8yd5BlpioKy9hzkeADJge9iScFUE3D1HfyoRGhNsF4ZenlGgLq0cWbwusR8+NJ7YB2CkKn4C76WfWTdvAIdRPdrsEq43EicXtucnglIa2l9JMkJcPi0vSJaUPm7qFT8gEcSp4+8OJBEI9Tv9+AXYtVwZxVX3ZQKcYF6ZcQAdNDnZQMlVNdghd7GmhkZxK20F3oa6GDp1dMFoozIWPs16RPwjwaY5/3G5Yq83BFHfy+naPZT3hz9+4CgDBNB9svPDto7Or2Z5ZuvAhNJahbFn8YSfQQaDjcg1sqVW/xQUZMNnhwanRoKKdecNirxIUy9g4l6u1/YZcBZNrLCtffNqCr/GlEDfyJzBp98rAWUCuiF0O7qD3h8YrV58Un24bcxbUMGTW7Px35ZZMerjqDSrrMSCktLd1LMm0tDjZu9TOK9TfEJuUm9c1RC+IurrZVOt457ekQbjFrTtKNEmKNdbMu3gbzhGB2ZGvpcUi2jMJejlniZ5x1hBK/Uq1/KW9ZBva/oYxvrVzEBZndXHeUXyTUE+x+GHy1TKusFgjIKJR6ZMVN3RmfCMTWcbHcKpWE1m8WVwmge984TgLoiFoibibAv7GPRLtkxxgLp9vOBQYUpRnaaUKDdfufd+WO5YQPmmiXjJulM8D0op0b735ZnyZ1ume2tBbJZaJClHUTyx53ZZ2K26253unLqzWw1veK+mLWqgQRaTFVBxm4AzS/F4nDEciXlunGr8PvJAzuO3m113lXcDc6PtXoStF6B3Jho45N3MCU4fU8sMRLsmLMI/Cv4SyFcyi8ccbCG7Lri3kJvUkzn/hjYsqzgiVCqWBGjt4yE1ovYMxm7a+3AvctvLhjVNMmIKzulxELksBlvIzVqjmR24ZLSVBsAQH5ictYdt7tr8lU+igx3PXonuTw0lteDImlEl5Ko8leFeomdlQ8hAnNgIXl+hUTTZPesKFaVJVnS/LTypnGPPERy1oHYl8u9a59QWEnrIZ9rMvKGpmX+v4JV+G5u4kHN2ZwyJXY2nHJ7nsn0LLSg/7cGpKhjDKSN1qC36u3tPL5cCcefxsE9Z4w1l17f6epSO9NOHjqgH7dqdmHOuzjs2TUzXv48tMwxpabUjRvTbjhWjreIeSydif4Ajf8U80hd4DsO44dzjE4td+HHYxyh6Poc2oKem7ImFeNr5QIelmRWE8pe18EG92szmvu/B3cFmOfh5gw+bROIlnRkogXQbOFFIuDbm9oJ8xojVh/ZWXEJ/hplq1a6sk6zdA0ah9ohYez4lRj9wYZkzfOJqKaV2/zrmIGlGDf+edHNTXMcK0gA1Q9RTFli7gZ5Re7hM8wRWwIm2zsUJcwWilG8ZSCmlBHxy3BnV1sW6GrRjbIzve1nLi2NzYVtGU7nDeGkjK+nGpksE0CFKLtBtYHzYtYVRFQjq0MGcYR2m55cfuupnTmXmwtcHkydZH/qyquWeSksXKW4sm6ZzhsVVCBOfcfe4TLqpyzUw3VV673CLm9qA/FNTpgOtLt4r9eDL0eZTcZ5LNloO/o4jkcFG5bbAOYobO4yOTXac0DULdnSmHOr2UPsQOqCUkqGhXATyNxlddDMYDzSIUeGGpFZAfM4Po0BhD7mhPFN26IB6ze5975zP6G23Jsfiibm11bF9PX+iec3wZuFUqLmR0feBjdO+E+jjWE+VNZCQiQX6sip6Sscpwzmc+52QneeZOYG7O562YUtwfMe85YBz/M/dRGyjWsd3pn1wUI4V5hgEiGTlK1iSn8bjKHCVSpGyWleIVZ6XEgs8K0pwtOn9RKdQKZtQCVHOdRpRPji5a7FoiNtB8kynvrEJ1KUEfe4UxrlMw8BSyuQGgxVffTq9VMY/rnTux4FDXOo9KMXPd9aBEbLpr845WPwWXiyXcfs7JB/C4O5LL/a4m6O/0XH7kB1AVMlA7rgHmU27gWQMcZDKLEFr/PdSvQL4bynFe2eRi8Yt+Lr7yEAneIbGoeZ+dhX4ukCKyLlGKxNdIqjIwJItiRFrc1A3bRmUKVH1P9r+LVEdJ7E6LA0Ojqq4zyljnXYWOQELOp0I1E5z9FU05xeTvMERjNIDI3f5NceNiwj1T4PLr7jn+x+MSgGi3a8sh8BWF4qwXxdRsVPQ18xaVh3UyjHx8BcQbKKDuVPVIYhglO6u/ekPzwZ5mPkiIkz10EMhHAQ+ixYb7PYJnVUQmyTdVadCrfr7mfKoFWz+w5jl0ZAeJ8ZXBVAMSI4IxOrdreI5h/4xKil+KAz3nJmVIjVzPNNtyvgjTSMV63SNQJJ0HDq05V3ybaWAxL/lOD/vF8okO1W0jzJivgzF+Km4yOXAvp3hi716XEJWj0XyXWSyo/iJnAFGKyOVE5GZUVuPYzzuIcUyWRXKaaHXmTTabGbkSqUNuSd7IUIkeZgxsVFO61ptbjPRDvR+AQziHLQOFGqD/6DfSFZPGwie7I2KsX25f3y94xSE+yGaXrdvIErC9UWbD/wun00j0c9i15z8ECr7SL2QFmjkrHxuwtu2eUlVuXfq9kt6rzULwXx38STzt4To5KaMpagvZ2OY4AJZtuvL6TIFLtiFJg2zQJKGFvpAaFKfVDG6HJmOHrIDXRxeEYyZtIjmT9+NK0M2C82YR6nEy5KAwAu1y11MwRLis1XQy8ZBJ7w9zwFMtsYK0cK44kONLMtPe8EHI4TCXoMgTdBxhvnDBCKhmky7fvrOUfTiiBxEOZ7qwelohxFuLKEmAQdvtRJWEk6N6Xo5HV/aPfqJ+Y+Z5AeOs0ZOME7Xp3gHSYh1xd/nCaOeYOb3U5UGw1CKXK9com7fIvHoGtl3jrmBeQtEVWHn+8+ylH9eSuj1UV+bmLbWnwHLAqjZPV3wlwFk1bdf952HRdLwBhq4K7WOWAXChjCOLtZ+qxj1JxNh7csaxfyVBgrMwQ1Aw2c/MiYNEmlZmtKtdpTCOz3LK1EOVLPNyIy1oOuI07ETzTVmwlPX0HGGK9tapg3hRcjLrqMfs2cDpE/aZUNamPk4Ht/T5/QBcmLLt/kBaUpHcSnWwFbcBq7ClkO8f84ED8QaOqy46cdN1qwh7/RTOYmCKtMrox7iOALRxf7ORmSGBBHgtUDGQVMpH/wZwJZ8J+Yvnf5v3YJoZMRnFlV44Ahnex38cN/KkAPP3U0bfE//KCfhwfnmw1Oj5Gy6GWwSw8qaH6h3T3l9rQpWooEjwcVc+e3Qr1AKxZGJwNe81q28BIIhoO1wvMM7VbyC49jEoJFldJKmMwN+PgB1KLGjFMnEnZt4ZL2Lg0e720K9APpEBXSuA1VNUMjgh4RTZtaW5qG2nFYG8Hh3T6x1s6UGR7u9U1BiEocDXZRAhF2NNxDq26hHwUMGkOxs5FbTqZX9NbKkYDrH3yHoZKag3lcL5pMbsigPwuUyCQJHvbHsLw1RIUhk8BmzM9Zd9PBYUtbKwHNo40yoxuWIf8RZakirmnNQRf0g3yG1yxT9mWGUL096Ju/gnjfsEOzsUEROHvYHM+tqnkGSekXbdAtg/IR92YytBhECuNwSHEW+4oaRTlDaVlgTeFte1kf8wPfllVuQKWmRMgjdTpmbrCeSbGCxJLhqNI2gGx2T66SYnO1HWy/dCnh2t1k+ljV1ff5rjLjUUWAuSJKKt9GRXvUDz+P9YjuOBubfntNHyTedt6ecw97KGckFGAh8zeFBifR4svq+jBpvZ58wF36z9/wZzN8ozdri8XjZf16RDosuBbFpcNVouE5qjdxNPzf6GrHTI46a8aMA28MyrMOR9VzYxwlON63UCxfr3JXXLPn3zBRj8+L+NgFT5U4BNBr2NkWMUDCc5zvAIPmUWanbKKjcUEuNLHK2e81U9RXNUDQ+PpQxGgj2WyF2UwlIz51T2lboFFCIfOkEaChG5d57PmI0SgSRjxgN+PbWiEsFXs3xCEuUDx68a7nF3o0gsi9MP+k4p2EA8nhJ/9P/Pqylh9PL82JwvrJrJj24Os3DOAT8DowieNCwchtkYkLmLT2i9DL8hDz05jkSEus8UVAdlnWXOewI/qz/CEzmckwFGLSY74QQcHXCAzR8jU56cZu759UcZCckuugLDuZBsUSnbNEgh/NjpfR2DvIiDFuRtPCxopVoKDIuSCu90G2wfIpr+aiI0Jymr4WZv7ByznNSVcpndi+fnorwetn8rkJXiqMG2cZwUICy3BdjHOuVWDM1+Bi3aziS7x9qJrBQyqqMGUFr2qAmZVr2cCFBRW03/llUGbUZwSWWd+jk6embq2Mic64qS9iPZpynIE8PmBSCtR5Y7QaPKm07rpKtW9VhtWfdQDm0vpAjyr6pkGhC7ArHx4jetuLYxmUySEJLviEskRlh0ghoeFzM2s3OvkMMiyT0lnxl1LXrNIX+HX0QxSpJYE2+r51vK7GuvvGukyRFylo/B5UBsENk/z25rc0C6BoDvv2N44O2VPE7pz5BOVNLsdYAePn4Ge78urUrXxzcfYyRsVSBgoIS5Y88JfHmO7/AT80X4q+kstJMBB6GYw5NH3XpNK26uGc6shcPYHoPJ9tOLk1owp25QQMT6Riu1gQdJp4XPBFOnlE+RA9vqBsqDR4lKqVbvmr4NaMBDECVaVm/tAtTy3D3a4hjM4jDZe6TITnaO2wOUVtPq4o2yyFo8MQL3VfmOdZ8mfGUkUyBtjTmoiSGLgpenkopTSichCk6BVw1Et4L15E7rf5C+kRY308kRSSSWT3iQlPC7YXB6qpHDmUgYc+lEweUU0bJruypAUyqyIAMYgsF0L1NuExpAtF/Ew/p4wTxr0ci8TVtCGCGOEsW0ODH9H5jv/d080q3RT0YGwWWEKNModFcXmyOLVXidYr7nANiix3tZupiEkBKv1mVsM+P0V+3nRQMGnkHklqVPFHTpL1Oe2Fid2hXOZXa/7YslB5uUvNQvhs9oprOUd+BOnqq0N+NxVFwkuIbdhJjOsoLF9YBEqYfgbvWsjEQap7R6zHWV7OdmSkb04n6PF22h+EZcFuYSzEAflxiSwfECcTIt0mULzylPW45gYvTFl6eHHYYsekd+VzWCWF7sNjNPrX7H3+egtfgkSu2ypxoD8NFHnzoVvvAVrPEwAa3cxlO8zW5oSArILEK+x2/46aq5HjtjQrpSXeY6Szg8EWs6VeEcnzprKdbThE6b26K2jYMk4Csc2RrYj/2ppG9K05eKt995bJ9/nEEZ3bDxjra94Xd7aBBbO4l9rWSIBoYIBNPvBG5cnCAXNJU4lIg0wfOa2nkwSePOpa3Gkc2nwDBPsa7UjzhU0OoNWVujF0VaqEkfKrEKibzNOThRSbmdksHfsPL6AJZDHYpv530YbNxzrHH0U4CJT6iGu94bDMqa2A1idfaIN/Q2VHtqNZdINX7gkY3CRqKEQ/6cEeQlSD4LZgiq1/WKaDmJAzVdYglzpvkoD/7ijScAgstEd/dzZ3ZdvnBRayEb6OCldPoBkiC7x2fZmzbGyktqrXUUfevr07nfJgtP9bhZXXeIGdZHMxKVgmemh2FZJ7SZBynzL/2yP0klEGDfyWg4QdvHVUmQ8CAiEpnuNc2qAUT9qghHSFo2wRoJ4vkbPW5LGPTvkDgQ449atN50kEtlBbbbAeGnp+S7AfmrM5bfDiptmP09fUHpP71q9874PpuhNl84uZ8emEAqF4/6v+2PRFuN0svGHG9hB0EN8qr5ahveOmChZ/tjuQgVof/mo4MWnFlUZ8JXyBI18i615IqCm0ZezAVdDobBh9H3ruIUVADJKg6+X41RC0bqEFidDDHmi7IjhCZW8GUiOZRTafBNrwrGkyYSC3eQFAjmSR6hsqsrqj/JbMTjBQhzVkdJX//o9EAD/EBVCXsQUhrwW1pP1u8qoIOzaErmDaIZ53tl1luuU9vlsVGaFc4ilmimULMVwkprXi4/AgA9e+2j3SXz20RJbZSUmVms9A40fcDiCl06i3zF+ymNoae5eNXGGao3T4bljtOThJqD7odeHy9eMXDID5VVI1vBqmK8cd+rFhEg0KqzoVg46iNEQFlo155/aOHoP35Vnfmk3P0kwks7fkB2A2JP+YhjeFESqWN0lQHq/RK9YdtEBDcvLUr4AlK01CrZOQszBoUudCwCzKBBs6WhMAJLz1STWMZJ4N3NYpCG7LSPFxnXtQkz5iXQXo5FyKvn/JJdUVcOaQS7TCo0lYfEwgAslYllDe06OkQw9e3ZumBtzUE6Zm/1CnNuLF1F//D81Qns6owTUFNEwy5Qhrrag0UGWmdufJlVvcGAeVzZcoo4r2x1DEHeRLgFe5o7qES3krw6aAOXSR4ITJKx+DtwEzPn/9p4Im7rIUWiu41ZTlLdx0obHc8QCaspIhKZ8stuxVlZcTFH0u64GpSS6AJBuTXrDDWz0nIzyfIuWK2tTER1kYepNHCqnm1TQWLtVnqB4GnCKVi1yi8Mc0I8ij4cnVd7ha2DCBWq3BWVK9v5r9vA3v7F4P83S9LhFTj8op7VfbCy2+lTYOPz6UjcK7e5v2wzOh7gSq1/1VVvTTNQUDpaYr1q6+UCI/XLWJUZziZ0iqZEWIhVvUc/IliFqRngOW/r4OhcxKHweJGNitK8gYlhBOWXfwXgeui0zwLuIr6EstugUSga2F8yYbMrbMoKCjQNdCe1lafn3tchLiXyjisHILciSMUhGtDpFS4c3vzsgcJMlM9x7crLr4Y27aToAapvqLlWw3xpn+ZMOlQ6F4EJDILNOpQowKAPRs2tM9LVS8j2yINZfbp+oUPrOvTdnAC9uE1S7+6WpW3DZnNdk9T7WV4AtM0clx+wTp1ouwE0OJ6uig6MszCbzbjdQWrt+bcqF9MlWg+wwDelmvue5v2xfWtlMwc/m57G4hHv5ZAoVwpjSzU4f0Sca/7XHV4fEqMNuRwO5FmpX/GvmXVCxusDWfY+wh3DPk0f6ya2L9X9ZMBbh+2NCIBedXLeKQG8U3oHOXTBc3vlGtoIC1WhqoBpON2FJToDWSP0yp10Swkti3dHYS29nX1FQMePIAgMLn3SS9VM79fLtCybvqgolfAE4rc7X7wUJuv6Kn/cjWtk8xOWhRz/MydDm4FR435qK4u3QFptqbDtenOw4FKorO9dNaulkOXjaNnApP3peSGTWM1z7IVszcZOIpe0cCBfzzXmijWvSIYN2ZGwH9C/erggSvCByHQBbUmSEJZ/deBfM4NgOJWOGdJR5fMZ/yyscfoup5A+Y1dkTx/uD8CICdjwTNlbHbLLffVN0grlNo8h/9FdSR1vOvAQGuDx/1zntvwpPgK7UeLTSzrm4WkqvG+C9dFVoWHQtZeYliZZlD9ZxW7w1tNtfr5z5/txmX/wdNMfqMKjDZYwGZHbVe33KJqyXtztEJadXQ1XMVM6KzpfjG4WCCx6JDKMw1wK/NVE6/lnJ9ZCjfYX42rJWvDvNeodeqmyNfz37UH+uWj88bPokXKWqx84e+uOUZKfCRu1wIqHwTuUMReC0VHADhgnpbUCuc37pUtbGxcHeYHR678j42g4vCY/cBgFXJtNY0oefUkutI3bJG6vajX+m6XZ0iQEEjUQTT7rmjFFv+ShY53TZZtMvt6v0F7J9aAFjRswTuKFrdaOlWMQ8NsfEIjGH9GeK9vvR02XePolfuBKBTWlxaxTVnZW78zb+P2iH5yGzRRVgvx4RM64+EWN7V4qRA18/ptqo5ah7u/EZeSgMR4Dl2Jd2GLUhZdlZninOQ+vNiebsM507+Pz7jAB7ZZhr4HZH0DMw9sj0PtTcEtjzmvhOpFkOesRO2UCJcW4KPzg9za2LdCw8pnXUMPwYNtNRDo710fKE2hefJOhIsvhv8YDrrTQUEMgM37Mo0UdjhVPndWgeWb8/ehWW8492IG+rr3dRxxgaNL9pOMU8FyjIIAfJ7KBDTn4S/EEoyhpoD6HhDsFnrmqO+e80LztZ5y70kKa0/mROSFPDErBXtJ5FHY823FnKxlx9jXavF1dfyzbuKuQ3qqiRNHwy5efNTac1fwmnJvdKBRhy1WT5uUt62ag4L0F4PsWwInnVlFoG53WDy4T4z8yKGeOez7KcxiaIV/YuG79aqmO7z6DFQ4QrCXsRGgc3dBh4B1HDYpvBJhL5Kw6sNxdR6m/3Z5wlX3H6EhcXtvXNkz8bIgDxoublKoRqptTuKYGjIkC5orJ6JhOWbrFzfl1Gn3uSvOrSZBleRza37GKCJj+wldgq2acmvpVu4P0xti49eHumrMYN3VJ63tfxF0MKu6CAvZjV4GNfseM6hP0oU+pbOCEzUsFki74opbncAAmMWpcdgfLKqJ9SoVdRZ0JKD7Ch8tmvVpnbMaa7x1R1ncXqK+HBU3B54Rycld+N9FNhh/i7K03GD8ngGATs1w6WYJCsMaxZIrhJwoWpGskqZ6jiKJXVc6tKZn9qInySHhDA/vsnWX7T970G3bUJ27m+VHA55BJqMxLl2qIufh+VbksWnhanvDEp+Bv/N2ueSz0MCvyu2IUnMbF1R+l639pMi0SQykM4V/+zlqEVkaiFwvmDOaZ0k9ji/0KwBOHBsGVia/rej3sREyJ71JGd9qU+o64VmKKT1yEnLwZDN9CyIA3yR9jA7XVatBc/zKW4qTeZW+isRHGb3WC0KWLg3bSPrj4JgY9gdQjGEH09qpofRshYz7vd5F2g/b2guwzmSm/ArXNBaRsUS/hJxP1fvEbEUVZJmBrnoZWnF7z0KBclbN6R8BXcjgbCYbgC0Frsmk4ir/Rc2aYc8N+ZV0QihKWVqCHQZ142dvmzLxSRubnX32vzPYYpF6VUglxGfZ/vpFtcKL1oZB4pxojxWKRDEr/6MITWQztdeX9yfgWB2cGZ87Xbpl0zthSilQkjlu6SL96BYKwooKkJ9kzm9SB+bGGeLZJjgcI6O8okMA2ib1NJd+NLdYBkteG3ISg4pzu7uzLYzeHO/MP+piDgcyTZeu+CyTC+W3ovTCdfJ52i/n4moNKdDHccug1Cx23PG1DOZ/Oaib/ayg0bJSVi3s6/l+mvDa+35j5jCNopbHcrhz+ZLRlmx3iJ9NM05BHttm+nx1XRhStOND6pbpo7BzHcrTyFZwISdNkm7s8RGZrbkGUPFD8wsequCiUqVAvjKLslui3u7y6jD3QsnNkLY8UvX9ReMzkeBEnVUHOZcuGoyBlEOvfrPbLr+046/rFXyxAv0jtovRtrUQD7vOy+C3HJ8pEaCD+ncxq+5WpPg8OxVeHU56y31tdzJqzt/HXDwd+n1+ojzWhYEJN1+S/uOKTLioX1dIwuBijq3XDbeI66bJptljvk/rZhi4lG+53J/x0555ycmFVw7QI4YzgHZo8tUw0yB7ekYFsTIyIDg0EtfgHA0Hpj09kosSlRnEn8ESY+N8FHRZw65fkR7u4g7He3sXpsrJrq8mcadbglx3RPfqBs8Vz/Hz4iQsoo8EXDISzT9ROgOyWQmig4OHm4NeFID6XcY8P+2As2kXLXwc61TanHmX4qojAYhJpvzTAg9xoxtDub89CYW/ye6DqZF5em/xCnvZuZCCWX8AVBsyi4/RGmGwTnQGOKAmtl2s+OTTJ8bC4+fAEJcVzqlhPi9+yGxD/YRI+R121a5x8zjUFEHoErvOAVk1aOT7H1KH/Zpwf1t8r1nhLU1QV1TL5SP+xH9nPENgmnnkXP62slXxWuf1eV1EXdDgpg3eZ5FalorgzreMoo0kKPmu8XURG+qDIXa/lAlJuagRpfl/C3QqF+LVuF/laKZflKuY3gr9eanrawPqBZc2q3k2XTzf6qDT5uqLcuU+X7MZjmesC2lTMExWEWIN1t77nNtpA7fUTsDqs7aLaKNEuCgP5TlI1u3PZLnACssCymB5dvgZJ6wjHbgCKDArhos0uIjk/uabe1bkautDPyUQYgQdbXAsbQ6+pPidhkto72EKMdjvN5Lm1jyp0oPdnL7z49y4GoZBc0Z+c/j5yVKSlLY4+R+LDadNzAPIR5AXWnm8FzTXrKp1QdGxDA0peVLfGEsyUQR9k3wZ7TMoLYoPT1bdsmz0fDlVJ5pFwBO393EL6UTM35BJRsMtbnvbdlXk4oXXZwzeqHbiXa6qBNO6RxuG6F9R/F4z8gR1Z50fx9f2UZqoMSnxih/NzXGnPKyDqY3sJok8ZQcoyB6szRhJtpNoIOvg8ZXL2qCtY+fzCZZAGJiJcJMjKrDzksfLrcC9MqPA3vIzqqi7dBdOASim9FgPV6ogGSTLDi/wjhhB/P8+x5QHHkVeC19DbyIMnpLM/b4lB3uFRnxbaYZiioRAQ65obcEsQ/OpvsTa5Mkw6cZ0jx8VO7RvL15gDo9MiefqQBV437yg3uOSQJSaPG8K5m8U/2oqSN0nitkwcKcXXxz2p50Ph2IEcaaydPYDNwX4zidOruMuU9o2y/Q4HCE/SGh78uQrldVDQ1OWRBKTziAe2VvCY9VpqcZcW2DUYW0xeHA/WaEz4MpD0LTO2IQnOyf0O7smGq6osFgWo2LqNXQuaUnIphq54GqogNUs0ppTIDZwK9n5Tqb2lrJeVi/Nf116oidfQ6i75i4nPEXMRRkW7mX8Iu31Doe9vX+t5Gi12Nx8z3LJ3qYkv9/P8k6/Fx6Wj9kZGWBPE4tTYjizWt6kOlgrhGOkNxgglJm9wGg2B4MnvrYqXMMN22rm2m7wsRZpCQ5xhdqLk9LzNxGHO3Kxs9YApGUCB4hOIEUfixSNfDcXdzbxy4Fqam8tth/i8h1QPxUCgMYy7pY3X/yh/8cM3sIwROb0bC04gjODA1HvwBcWMl9bfoc3QAvpElmMdOgIQQELTQb3yK01BDrV2Y2nB5rT587bIA8HJzipGxVFJ5+0aIxp67nuWetXAmh2vxeDFR6iGCSN1q8CQx+ZPFsDMlcryWMfnmNx1GDiusAHh51tQmbrLtYQPIlTMmOg41JEqKYIwThTkUeTlJSuwFGABZbwEyb1REifX42i8EA2Wux9HAWZOrNYkomkju3aCGIUjyrLrmbzlnPy5YrglVU1R0tgIa0Ksiwxm+SABuCc5SEQM8S+8ckhePhn19b8JzIpdfhzW0t4w/srzGin+Rq7oiviiU+S4algRgX7hUxGqs0E9eBMJfLf5kEC0jLINstHgp5J/w4aHP9SeROsppZ+8bpOmgDtSPQ/BzP99lZiPeVIvnjZV4IdV+vuj6xJ9QwDLY125y6ow6XxWM3j5c58xdSMW1wo87dgFWG/rMf4LIiDiQKxMlqH3MU7eFT82XfiKpeFfXu2bqPBpEwy9QYaQmj59nWtsE9pDoS5OlTHJeRueBPIq+EUOs/Y4MM/1X0slQdBb6U97AYvm5HJDo1+3neqQJFwqkAnPCfuHqte29tOJTr9s1etFDxjcBBSzES2r50f3fnRYqSFt5hPvEA+1irPyZIcadBptSyw2TosrEJ+QNYvQ2r05kNYr1lOwqtJxdgi3xwsRsGplEWwvSoPGeMVD92qdmDVkqDswA2MixsZsJ+TtvhNDkeYteZGfisg/85W7Srgei7PTimUOLh7oPjkXky0IAmlSjDUJv/Z8rW5B+ekYwwlXdSQ7X7flRYKRJiA3g+9CxSzOLX9owVZkjiYAejNZ4dNxvhhUy0SPCNcS2jH9zj460wMvu367fqzmc+vxdxgyqJUNobqFjDe8U6LfATgJuw3ZbIqped9CcMbvjg445XKw//LqJnXlhblKq2i36r24SqV4x6y6vaZVISep+PxFvjSfUkpmWgmgu5c78oFSN3TgerxGsl941cyO5/UoDOX4cEt2L+soDYC8duuZ1Mhw/25YGKjAmUwc5Io7+RwkTQ1FoMd3fVeYHtoRogeWbIHqn3A0W72lGqqkXyE/MjfH0IxxRRTLHe+jvJyjiN1FbuJ18KGUz8AAoX6QYJUYUs9Z5Qgogtzb7Iz7nIfFGvYJNTdB6e6rz9OfKlGL9pqQ==
Variant 0
DifficultyLevel
484
Question
Steph randomly picks one disk from a group of white and coloured disks, pictured below.
What is the probability Steph chooses a coloured disk?
Worked Solution
|
|
P(Coloured disk) |
= Total disksNumber of coloured disks |
|
= 218 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Steph randomly picks one disk from a group of white and coloured disks, pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-H3-CA05.svg 300 indent3 vpad
What is the probability Steph chooses a coloured disk? |
workedSolution |
| | |
| ------------- | ---------- |
| $P$(Coloured disk) | \= $\dfrac{\text{Number of coloured disks}}{\text{Total disks}}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+09HL8W7RqSmWk36p7RMmZA6Al8Wyav9/oJYFZa3uYHmgKkjbyeCyh8HrgHzO5TjJKwb/EOV4IRO0uHu/OHxaUDJka7t237kSLTPKxyyTMt3A6B1nqLhGpFScjEFHE+bbcg26jDBk/Gd9ChGECoudeedHl900oIiPBbjmawP1d9PQaHCkRSynZEy79+peZqTSLf5FZZ6mz39MNcjx9NQy3ox/Mj1X1saJgnHR4wnNyIbK4OvJZnjBORxFqSHiz3Q7cLWyh7xTsJXsc33xT97aNP0We1e0XHPoqKqYv+8jeW/SnypVe/rZjoCOJbKtodfQdXugjzP8OcOu6ICiSo7YtQ+7FUJbtCaFWEp1jt7NAVzz2nEFetmYWwFw/oNGy14wEOkR/CX6TRjmPbcmHrw0IjlSFWd6TyKCayMMR2HqVRTiaXkjbAtNrd5kkhK9xcEZUJVSki1qCnjc1dd6Is/X5i9GC4jRHxT7bsWvtSzTjKeTX4oDZS0QpGxkLJ3UxJVjCX0SXhAd73h7ufl8yHpKXEQCpu1+8nwdhR4qtYF/BNbmL0qrda9x3IXOk/dypGct8z5dFewHVZC7Gu8hf8ZRuMKRX9TEuJSD9bSVJDbsDN+4DbKEwf+4MFT4E3aM0QgZZ/wqyOhtvZjo8dc3lvYpxKhp7Gl8AsmZlDomElOPl5Mxg9hrhrr47Q2maSQgtGRMEFw6arb275HpNxmlO6sW6tYYk/seZp+rWTiaGPvuTF6g6XgsymUVLf1yRTwgAHPFO4vhqxbEOhPXPa0/wsi/aVvu561v8dMYwOCWecg5bkw8x8jdxyTyKiq6L9CuPvQocb+1N+xeZfZK81NgzN9LTEtNqbESpKezmTRLGVfMrwn3Wsw86Z8HSY8HLXGvD0J7d3qDwY3k/5WfThyB58nSVY95SAxhA5DM8PrAT/6zu1iEI/K7POYiikKfcmi5LXBet4xKzm1cf5sOhqGt5Dzv/K2wRabgX5OKFGT8rqmKXFI8g75sVNnyJAo9vKg5skU0vSxKarGsVji3g8IgTruNxsnMuAOVSlbG2VBu74WL79iY/5Lul1hs5N+zYttwTdovtmsk3nuNnXxLD1wWnupsS1Wtaw6GcjtWkaByCl5Bw7dEk2+UK6icjGuTzXzRF67ApovYCUEHrmg5RRzzDq8Alzt+vVvJggTw3LFrc4n4OSXQEPyf9bSqAyKgBWsr/T5vO86Fp9SiFpU7Gm/LpB2P7lbFERfHnf0PwSyx4lnNS50hW7c3Qqeng5z2Vg8zwB4VjGErVDPg+argOrXiFQh8L+gQShL54u7cs2IpJ0vHySpTQHGuDWzkUlWYJuIYxYV/8C1VuiYEBs7W6SjxHBetvg9xEtZnosA48KjvIqk0l/P6XIGjbCNvKIhGJbv1PQBs8KFHz7CuP82Z19rZFfxEfuQe0NnIs/TgF4zGHEu3/fC0VMqC8mI1H4qYrBoVUAVxKzNmWtgMfeC+wmvXwFOQFV29KNKxmHgjw4GmTCf399IqyecEDysWXzrXxceV5Uv52rCY9SkJNLnFdVeBSf/4LRG0f7GgqBWVZ6XRFhedZqYSzZ2I3pWgDQlZFJB6ABIUbwEFZtTYR2lZtChq7IRtHo6XoR2AekhHgPJVIX8R/94nYS0zZPo5Lh5xCBKcGk3jfFHsAwcFPVi/TMzSG4UqrOGChrth3g+jWNszHCB7oSivpPxGuhl5MrVonkLvMoZlKVPLIbxwdYLGJmuDzO8IbE3+Ze0IbYU8GKIDyxSDz4yJMOHj6R9q40w4ecgu7nSiR6NI+9xI2FCWWi+hpMhG9M8bo16MIyQOO5vMTx5gKwvM26oWNq3nXoNeLRm49mVagAyKWwLGJE1DHzAITmQRc+3kQlTNSTnF53+c82WYtTt9Q+2qUWwYKAOIH5XU2VBBN6U+RARTeOaAPBpWxGt4BdpHCTnoVplqz3zwJLUNBU+Giah8D0OPhi3b80TJGnMoU+3dyXJm5q1dCIy1OyVL24iT9d6QxYaRmj4MP7+a3s9Ise9NLJG0UEkPezlVhPDOWpovyzAHf+DU3o8VGPUYI3yPoZHvOwKKNj5E3uZqEaO7UhKMvzc86lPEXT6JMv7j++ZYUACsT/VzLt7AvPPKONd1mRQ0vqyZC17wlSqBahA4LT3ClvnrNHMWLSL+5xJvw8HmI/3mNEZdXswAXsCw5BCKPOD3mVUAev2W9IDecUD4SPxSqbcv3U3uYX0iFJ1++feZS3Op9fdp1CYbYddNe/oaW/1ayls6iWo0MJEHbPexJUmmPezksFLUoO2tHqYTOHeVjnOM6G4Q0tvHqt3RGm9kAR1Dl78oRQs8+EVGrj2jVY6z3rWMFEUHKjmCk0yXG0xG2RK5YQU7Y/ZgfmWgPhBQmdRuyHft4WIamiM8uw8pAT4I380mhykqOB7/GFFwG3Fta1nc38fX3iHOYR6wkldm1X/DcJJYodrsgX4WAXIGgUhuvfi3sgjjcQme/vivqeqQiO6Yy8FlMvEtm6WNzHNSutf04Fh4XC8XU/iaGr0jb+VPY0uCqCJsyIJX7bexjiHMucsm+0WPFCNjgtO1WMwO3tWMFDLSb5aQInEnGbTC7Lx5+zLQ4BbWdkzbRA0/UoCa3dlYI4iXy+LkXZl2DeZJVgKlsYmLundIUaJQ0OvX9T05noOi0yfZm0/yOi45PyV5+Kph1GPE7/jpbY3qSXTQ1RlKuETLDlttz2HaAyMX+4EJPGDtyPv0xBX+bHDuF3YPGuYIyr3mMW54DjiYmJE8TP60CMRDh8k9A7Gt1CXNKcvnFx5jug5oxtmed0SQKU9YLWFRlb5i4k4ferTD6Xht1ERU90AwczxaSZzfsQICxynF+pTpHyGcJIZyCP2sCDGVw9IDFbBs/MYsXVs3yqbAAbajO/aQ61aaK1gdQ7z0F6fjBKTgM34B+iJ5ki6BqYcijbs4KNIM9Hn2ue3hpo9/OQ9pf86jvSeFs7xoj7gtzqv6aj56nJ6DF7wC39FK4kYuluHx3rfiXi9EGmiETERGNYDRSaknmRPdGKZbQyNSAtdGucAzsMoQm8VDVz7gpLTVPlGActLOQ62X1WMmGuz256zu3ROZJXKhU0btBmS/Nw0F85xzY98S48GWAIpbD+n5V8bNoVoZsnMIE0GjpbStT2sZpQtugLimI7s4/xDRJjblk/FJ1PaVymMfibuXbqUK4FxeMmmJm2/PXjAncdOFvhxXLf1LPzIfJ3dVdXdXQdjICNJh8qIh3d2s6+sY1gmc5YyvseCqiwYFjoN7jK68bhaH6qa1AZSzzQ2Rj0s508f5kCG0V25QZOfurJzImIfjcqsJdqdCNTmB1fgkEJWvNQ2GSQfEW8jRkTZCDE4GKsk7Do2wJmvZSYIRMmI2+H9cC2IV1IsAMYPiRbqzw9232WOXwZbD1xfkovOoTpv2fD3V3U9Mh3vb6fWuanu0pHuowX3o7afZmtrgly+LzUI8qL1CQ+KFGcwMx+u6QCmsDhfa9QkLFkDUXYq/V8TKh4XRMMEV1YKPl2Y2osy88wTwhzQJaKxXm9TFbxuHzcwov8dGgWRYGVtmFyZAA1EryCsnwDIdYkfU+7nYzbjGkfpN4wdlXpe90zIJKBoIamcBpBhR/vdaFYppaMq+gHHotM2FIwbIt9PwDi3iipy0znbIcV55gf4Lqzbewu9QjFBBmOZCh/K6Rukj0VPUM7181nkkky5JXeEjHUgbyJXIWJpBXNIs7rXmi6/EeZZysvRf7HR015SgUmT7XRIgCMoH5nltXo+mkLgn+a0OTBF7P+uxH92MtMVMzGN0dj04runfDzhUYkxsQyIrcfcv/0/TAvAx6v02OYnYcR2+SAwWLa6n6+wtr7Hz0agjEiKGDryBAGn74ET+kLNugJIBOAdEAX1meGYDxXosvXRRrBv7U205mpzpRoDxV7NOkk+WD7aIXXKdhJiGCyt+Rd/3t3HEt7H86UTIruEGHHhwKPg1IX5aLJHP5ztSE6swShmglSEGrmey62ncSvZMTL10nXkVJFXCZaEL8lBnc0h6XMDbRj5dWoGKmTRSzb+HDrnFmBwo3+s8rjQr2dP9xlPrb8qAblE8D47gT6BxlHcKTuSUt4/T9Ke57g++0shAKCV3Mpt5c+uOh2qX6qvddYf1tYEExqVOUJuslUhTXvA4sS2oA+6Te+Cey/s7UWzjvZMNhDRiIrKEb8X/3fXuN2zB7k32z2gsB1gy27hxHwm5dtj+p60P9J4Ul0WwC26ROV9OewQ+I5WuYOZTJCuLD6DJJN6eywKMK6plWPXDx0bYysbn3ZpUaLaWgujOKE8LhJmvzIH/Eb53ur2P0rlwWsoGErpEObDOAj5IVPsmgGrOnSUXHZo6XtKjqr/uUU7p0wBdBUpBeAKgYCqrH8E313wfG8ZhGg2Kz07NtBJ9UKkd3UZeFnNQXu181L++h+olJeLqPdzmSama+rRBJrPz7/sR5sv1gQBFu6dyfEpkHSAjGx2pMF8QI7JSMWmrckpk+UskVKRpqPUvgZGu8TnlJjH5a5geYoUkkDt2GWU+xKmqiedIoiro1U5LWaPEUeiGpXZNytDSC8af/HRBXtkjtQeFqLb8xjmwJQDaYyCHMQUBYY70aGAoIf4v8+dQ/f4hxuE4Y54D8typgTJhXeXxegHUp0VsnoC5j1IthhL5mNiFwSukd9wBwOh8kMQ9pQZrv0Bytx5TytljNS+uPTRmL5Ab+98wqZhIN6NZTJo2RbiAKKW39wrp2K/uKBT4vbeNFGTgDsaSIWlS4Rpwc2k0yDjZ9+ZflgOhv76MHYrrTIo9E56qOGmfm612xoxVkaJrzI26sDvXyu/ukedqYyAhro1BDA41GdCtW6lHPTjP9IxSB3qk0oRgfF19Hj3HJIjbh/h6868LxD12ulzXUOK+k3EmUfYgXQ75Knyinqw0ZHnQIHccYbGtW0Qk8KzjFH1dIzk7xVVchLl2aIkcZ972EYHoKLMl7IZK2LsB16zT6RMbuQdjpFnNwzL5Dvln5cL62/rcthavtYE5JBwF6+k/5UP09Spce/CcNmHyk+0RODn0H6k7ESr5PUF+TYQLIVSYPSSNCFfKWxbBY+8prx/XVXe163x9BsNFlACMLg7c1JQzzg7IORnl0w+Lg2ixSt/PIlEE5UCgXWo8UDDKcv3h+e0vQpy8D+F2kdsCWZFVz9x/UgH8pSZmrlPDvG9omhyUwMIwTuEwKEroJIKliky7Bj/LcsuuATfAsRurGpOGBUSl1IyJOg26TeVjcfsKYsbTG7ZJwh5EviV2zTLiCgQzwRdxJCAjpus0CiGAefo+/mz+hMGxLa+mxk+tESe07cxCvQoDfY8fSsNmxa7GIAvP3TMmZabyWS+qH/nE3rqYTgqPdR01Z/okWQ7irLgv81ofW6U60llZo5bU1NnCaLKEtHX4WEA2REcfryFm7f/CYY9gx0I6bej1PIEhIlRzNZzjYD2hTm9gsEWa5ZpCKn6v9EY65WZr2VnHQYRwnCPU36I42YJYrFxevBjtzctjn3yLA0mhKZ4fr3THHVpk9naxAm2r4J3/PIhk2AIe1HUvabumT54L4Ja/YdehZi+0aeIUFM1IG9c2sUgFgIajmOvm9rGtMWAkGemd5xG7G/ibTIoREj0WzRE7cmkXDnKZk+Dd/oJnMKlbupWBwhc7qFHahvr5f6HtrEudfNvKD11vgb02hTGOo647h99M9bn9WblDtckTygyV5KSsxkH5pfz2TrwaYkCamV84Ldi7VpUQBsEEQOatqtM3MP2Z6IaWWUUGPLJlpNRMl4u3z+Y2paK9/ZjwHD0kSPBNNlSMKXaovuioha3+5WZkBb8OY8nLfILKqkogBCzy0xWXhuYj7iGyT67/yuqkHw2Lash9/oz0+o9mQUfmODFbQKxCZo+gZyTZV6wYW5s0OBtjZMY4J/51+/q4HMCCZGiKGa6C5+fuQp+YB6A9bI0aKtzKla3S+kzktp98QLd0pKAA/I+CSg+G+8+KJtGX4dxZG2RbNt6QJtvgcKqa/AcCFA9PhmF2Yx4E4+ad2WJoMpL/7urnE7LB0gJ+03xZO24G9QDiNf1Xhs10ernlZtRXd8Kvi5M1/fTV/kaPRS9PnGl+lA6cvwd0gVYu7J/uGbSRCYCbDr+CRVnwntEiBY/f9WBkvV+LcOeb8gu3tDcgSjmD4PNYj2ZFuysy7XwuQjWg/a5nSAczEmgHxpG24paLkrHHwqzoFoeGeNzmQsN+Jd0VxCq9QHBPFKQbQzsQ+on1yjUl6B5jrHiWBkcaZA2P4JvWDAq6pb3wf3ihpr1NV6V+PMAL4d+9PI+3fnIW43rLpTAyw/czDy4EjXetGzNt/rB+eedl5xk1xTbrxEbPVre2y2yF33j3sKAUhetbBIqu8f3TH3+rW4DOrHF6o+9mkKZ9XYAUs1ZCmRk02+55jd1Y88KAHzerMixO4yTgH8L567LR4OnLQ3JLBTr4TVE4dGsiyPis6kv3N3ClDV1TD5L5nY8lT564Qmr+dKF2cKrnZtIU/JYQq3KIvvONtmGeNj3JqG4/Ais1/axRbuof6rX/eMZ3uA2qopHL+iNDep4ORQW7p953heAPkLn3ehhwLtuJsag3yr3N2SVlkNGHN1Gak+WcmXRrb2QjuTp1HBRY5HVh3WvRKbGS0HlQ9wEX5Ly645hOC5anBbVN5f4q+xSv2pGrBKjeMnX0v7RiPO5g/N3K7tbPz1NfK7yVtuuwE37nb6+f6RIDdt3Pp9v0m9V3olY7KKF8pnvmT90GDmn9Ew8dy85CZK1oebFfPoC2Bj2ypYjrq2fSn/m0BEQUh8mK8fgVacTvMy700tUbdr0DUkrw2UTb//Ev6e4UCRPTt2cHp7bayZaiqzQHiQkCyRqlWwXo7Jkr6xWZhBwiQ3u7rqCWieopskRMNLxg3cCuObqgkTM43Qi5ATDu//JVKLM1qkmAlbSJge0gaGOuIhlhwefHS7yaUu68XyqUcDVkphbMZWgvm+ePw/YeqqK/9zjJ5eElrl8Uu1XcEjbyJU6H2j5688IBDAOpGBhd0fWDUO0YLsDqteFyuDfvKINKmBb+ZjUq2dx97nyJf6HA+JQQkFO22wdW7QYxTNA5wy9RvQ5KN0asBX9ErGMOOjs315mWqHFGQoQ9+gGo8jxVik2fAaSA3aAu9GjHCuBc14PURy/qkKFf+b2VKitPbqiOWInGJaO/pUtj5L4rZxC/I3cdJ3DCV4aV+cPnC4L9v9SWmxCplBqYLG+6DIVk5dDlA4ZFamD7WzfGOiRHdGr3FVJctlARwc6lAYN3nxjypFoDxkUJK1IzN1H8/6fkgB4mGyamjELOAyjgaqnLnpW2xPzIr0RIS0VhXdBrdihXV2x3ItbUDSRGT0Ut+krtzn/ZHwHA4Ocgrp97wKlaITc5qeRdJ8fS/50oR5vxwYvnYaV500gp1ZD2j6vtZ9Wzn1ttXPWpbK52LkuoUdVWhHWcxEqmJavVAo9+44t9ZxEFSGBu6TMJfmg8Ibd8JaWmccWOkCiD5LQojhBQZDnUj+nbNQNsHZGHQc5KIBjRWt9DOXL1Yq9TrhiIk5VfGmLvamkOVg5dWo0eZ2Uh65wxOQFCeVY1OMorXlbJlVgFE2nOPUlUvle4rmi/wlOz0yeVGBCZ5tcvYI4YIqIRT2+1uYt+0K4OODGz+/4emONes+bnV5fKAETPKWpgqiscRXmPijKiJkxS+/0OU4KtzW0sN+7OXdf86UJ6+JJoTZ1b3pTsjd2ohaboDIaskBgbqzJWTJY6pC2W9v+uyX6bs0P4EqgoofZYH2iktcF4dQir36hh6N7oJ0yyaNtyor8NZbvLrxTycorulzcZW5TPzMk8quP/SqsI19E4JNKN0n8FLz5zdswFEj9Xn+DMqF4cbwAV0O40SEwgC9VgimYeSjW1bVY/joAAaByNWwf7FGy8KIqnJ0/wqkI2iWgBjEm/f8+jWzmuz4aJ9JdBLtbUPsMjzEPzgSkcrlIJ6KWREGR0vivuW9UqPoiSUdMmdWdMxQux10PaLOeBEVIqeyGhEOb5ljlvNHVORdu0hDU29xY6vW5ermKY3BOLN40b6rC+45zFJmfpEkTqoPRFHuUn3jz022zOn8VT1y0mAsL5vfyip+KpCqTt9HrC4o6aP2d2TEUu22XhXnxa1cgBumExyaoQuLiXLrsxQeYvG5O47qPssCVVVIiYjF2htHGKoge2Zm082nZD/pSRfH9s8fx2s92Vm3C5mjKEK0Hj5WuUuyrPE72zv6G20EM6j2a0z6PXF/JUWcI8uPDCyQM7/PnGyA/ev4eENHp+rwCUl1emZtSkldfvacbdY390OAIvIUUodXWELemaEoZhqbplfJtQJBEHgEdg1g1ftxDt6FAwoHISzLQL8IMNNuWnAIRJONqvtGmqC4FzFOoYRRRhsl6wUjLqR/m3DC0FWBzzh2pB9vXsybwus1bFM45tJFLwMYoRympEaLYn/y63+FZLF6kUn6qz6Mx1rLB4tBGV0gXxDahUsVjJIqD5kzlds+UL28tq9g2c7yY/qhczchwZwq6VBRH7FI6TW6wgwuHSiEDQZe9MFqFIkOqm7RZDsrWGCJp4Slz4v35NGkSycM2XN2MHUA0Nxd6XpgiuAHyKuzVkEvIw8KsBdWuLXJlxB0TR1wMZzFYIXusuDeUWIQyc3oYgP0ikl5GydTJ4rODVAxOOjYJt6ZKVxqVHZ77T2uVpBlvQWKFfWXMFc7wcPmxNgVufWcRVHGhVuqgOsPQx7BZHLiduuHk4QvpcQi6asLfAspjqBaGQbMkiJVAw8uqUjdcbazAGF6Ykzwa/FHJZdr7umyul0+ul3HRX+mjCZHMdyIVpkwqU2hLNw6tnx35BIhHJD/OFgq4IuuRquUzbJHrYPms6KgNmWriMfUB4R6hNLE7lqgb9wemjbSNq3hREHXrvhaJHFIrMd4bVPUsEjLPmS6VBaCowuGUaVwr08wtI6uF1gK9s4ShH0nTuWKIgk3SsOusTfDt7AlaWkloziX2xMBeCxJvfysU8wvk8LCB4/dW/SRrbMgbXka51MoZycN33lYlKpyHiMB8GRL9sx0b4Pd9H3/waZpJ4T0A/ATLM94bCFUhcWyDacsxhv90Jc1VtFDdnkjAfEXAt3SmU13iaO+mH1/BOp6L2ZjM3pqUKhcma8NiT1ol0RgC3f1DTO40N8T38E3OiFPNH2SSQnC6dI4a4cz3KiI7nDDQkXZ8IeAH84vSIqdHKYP7psvTk7LMLN9lL0glOE9QS8f+MPX6YICH9WKFyKWkUxoUMgGUhGPkPQei23fCPfH9mByGRJXY6C7ur7DBGavORGHM7L9s+1vMEnW7ug0FSEXl7Z4M+sbmo0Tu4pLcb5YRfR8aaxnqcc9O+TDz8M4RQfGCJ9i3M7PwEP4V5b3+oUevBPoJftw8gv/fPNHbemsBwdFti00Ci+0klDaZUr0DyZTpYLobUtCi9i/GARsdBVUuSP9VVBxp97dl0uxJlF5m48GTgVmRLSunEetBAeMwP59ooYEMPYEyfwEElh4S58tpbf8q/vcIIbBJwskZdJqxHtTTNmybyHfGyG1DY2W479Ov9jf/5k1jzsjSdoXXzEWSCGHLTrAEF51X32o8n9LDEQP4CnyIHA0m61rpqlqKdni96cTBsYzEG2FBNjvN4Jl+1W5wlqk0QL4mLjxdjp7waZ8r4cFv78SVEKHb70wsysXAH+ty4IlEmbmJvwK3SAjCHb3Mb1C3ldZP8FgTIhFUHi1RWBs7fSkpER84Zh7zRa61r1WC6xrKKExpVoFebwsu43N0+zzsG8mt+tlKtNfF3fSbm9PPTgKXlCvpJJs93Saod2vxcOTzgRId85cbr/riKiO8FD/LBee/UE3Nv26pnO54Bi0RL+o5YA3PfEuIBcqxW8rEMP/3NtR/tbxRS4QXealb1a4wGLSpHHLJWpvKATN/JeP2LihkVvvLiiXwwPvRmlMppMvMvxaPXYwhQBpP89Zzu1enqpzeCOogWTmsJGUSv01nIk7BbMUQr/5ymUTt142187wAlU/aWTKczE1vfPkpU+C5kFCAuft9Pwk7wWxr0+MgDKCrRSJlIoB4xu0+1pgcKrOU7dmI61LApdUmPuMDOAniA/jIosGiUUP7nxVw0iZdDjTSgJJclc4PVzX2PsUAMxM888AQ9cjlHvucP0nQDNoeDICZtHjO9WUwF7A6f62fepH6+0iitZPZDFk180SGgez0CPzvE8y3ll5Me8xP0xs0h41/RRuBbtXz5k91ee9uZ9N5u6TsuFWVgOuHX5dil08ZTR7cdXQkaRf/+Js8xNSdYirXC9LZxEZEWtUgjpTXjAHnLwCDXyFgTaSLtzbxE+aYhdMbOrXji/YBb3afCt3lxsoIJAOwNKkvmO1Ybtnt/UTJfR8/M/cq+KhLRiXnxJQ3SqSMzJvBvKbvLqblNcgOOK5BqXIpaQIG9Sq0mRXpwBo2mpK9ICZToho9asJ20gYmdgkn0T74RuTmoCPKczyA55kaNjcpVu4lSYSy6hwjJ3xcbTkJOncmQvA7IlqM0R8ym1eCRrbE1dVDo/zi4PqFbyw/uUwnAX2YfcQmH41qjnjHcVsd8vi6P8eFOeM5eIxwvzSjNWB8qCulpgOBcHaWfJRWVLE5kNlsX0yYlcNSKrCm3Y+uQfJtgv0I198MTEp2nFb4gcWMCgJy3ggccxwquVtb7h3qJAc1QmH7Yk8Vkl6UXKa7mvCoDYqiuc96vM0QWReETBSBj8VcKIFGARRZSwwjmMn+nFQ/0dYmVuY6pL/b3i1hlfPxE4rnAoJhzRjl9k9xNVU39PmEZUaX2ykCrFAOKMltkmJ7VQgM0dMaLFgtnzGli6juyMym78WB41StoQJxHqLABtsBh8xxz5j8kuRGspEyZ+KQgwoz4jVd9Q83oYuJ/g0ZokKbky9bA84X3LUBOXmhNPpMvtGMnmQHVGCZgYEE3WjMjV7Vg2R/gK8OPN7nc+OseJftAP9csT8gXvhu+CLDaUVCRkJzMqvuSwCR5JZo1qEbZfPnzFvCgleWmfEpEgPb6l2EU2va7e7zUraKkY1ioCDW9HhqtMCC1+PRqHTIfp+cYKvmH4zNJfOFa0i9ObbelEov3EVZR/AQF6pNp+Izs587E0jgThBKOY4To7R+zLHwWhJwVFNWeira7tH3D6coqtpu8A7p9KY/ijpkR2sFvpZlT8GJLd7pEZ8tbcq+/SQ9CWAg7Yd9hRL0WjMiEFp2uZ8dGw8ebQI7WFzl+XXsutuOuCwsdMIX0zO4NSzPt64o7v4DOvmQY6ChAnI1hKNgOeCeWBDo5GL+c5pavtrbkJjX46j3IWlNlIWrlsy+bWbHP+FPe5rhcBamCF4gsgYbcIofUEu4JuP2T7Yq4/yFGHVbcvNcEURwnZ40hlEh49/kQ3VRmyBnpl3yLEtgwD5IZ5H9ISiWLj57GIeoWMX/PxaiDGElYXLp+3VV2/E09ZG5PdUa8j01VjSP0LJ/iMepHrh3rj77RRgh4ThJb2HOk6h/RHIERDzpcD0Qvjk9pykqFBSWFf8jfVqEZpj7KrMSmMOEzgpQMvggki6aLMOFDg+HYGBK5jmwFFfxe0v41vgnwUqJN87gPNMCRDBJMBHmxrV0Wpyjuq403oGC0OoruFO7X4omxM12bH2XDL03N2JWpDAGEcN5tK9VLlyYrEvSt8cgVXwu57OqgpXus8lJi5DHPsYA+oDtbt/+D22HJjgt/hBbHWajFV/7PE8HEOUmnWr8XZQwaD6LPOiOpYXc+y4velPRE4OXees2Bd36iHFcCfCFlvOu0tC9IHHMUShwhmtHWnuoYLURuF1LgSVJZOjGZ5Rxjx2Z6NzEp0NU00HlE7TuJHIgKz/ZuxuM5Bf6sYREdFsyzVHDCeY73/yRmiMExLyyhtd9swiMOl4rJVUdns7do/nNMqExIlmx2zPELjs6kp1gu8MSBex/jqKFrpQICaiQd9Dzs1aJRS81bLC1XtFAKfUpXov7R4J73f7IdinOFMyzi6uMTqh0QfkuyWwN2wTSAsO+FxNV3j1fjFsIAkH1l4uQ8HhTujphwEeSTQMhTvhz52BnLYPM+ZDxnj2CB+rQT5cmLagyBdzrpjp4rv82DV+UF9VExCJwff6HSZ/P58GjalfR/L4aZ96Mzu+OyTz77YJNxaQp1B5S4xykzf9H9pyurtVfHmZPzmIUfkmC5YODGfzSfamIKCNUifoyKZxoHsDisEi4hXga7/a2EDRVTRbkm7KggGSi5c29XZKnLjXPzV3PHALpYllhHFi5mQ41M5bZVjtoZ8Bv2RsRcgCyn1vS309v58X2cNyHARwvtTPFHEYAMYF8Ew0kBqdI7BG8X6pwI9omStpxMbG7e7YNjJL7i+7+aJKPCvEN5+ta+U/mjYE9as8SeEmdCRBRC3w81RJQYbFT38khEnTy58rl/EuXx+sSerrlX1ztSTWCxFYSQpKVXhRcIeFB3EaG0O+yuZaRHlJXQPUQCjJcdp/0woJGeK1gzab87p1m3yabxdZqMqTOyKvzLN8TqoQ9jtJ5RkqWJk40+pKaxIhj1ZtY3BHSKvu5mmVTL+xDgkmXiAvOSHzQVLk9YZOYxgoA74HmjyTIbnyJByAb5LcHu/9u7qhi91LzIwdVezQ/0npf8KRKyOTQQd9IADvi4dGdGqghn9n3B3M3ss5U7b7d9ou77nizx+y5qMQufuEtthbrXk8PBiN3Y9934wyT4qBU0qnPXLNDJFGaxD0xctoNBKESeO1LdBlyEIJ+xbAzHkvQPpLgNTZfJHnYnAeNmLQh2rOZJVs8anM03POrWcsWFqoSAAfwllyCjoklVeOnB9S66zL7GxnWRysjSgVi+5FVWXFgAiJYxmERuNzWYqah5yBkVUYcb1Cx4GSp67o9OWmUCus4/DpUI8OmtoSl3MupSDZJuuAQ6eGsgw7lMFu1hQAIikOfNFsKI9XO7G44299roNY7FWT8FBv9r7+kMTJgP+k5C3bFHcAFNWhhacy3mSEdsxIVe8m1VNiB9HIO376CPnMtWlS3Nj5hIU6mU0800Coj9orHVYlDWedrLRFy/2lUAh4F2TAvL+ULcYOq/9tgKmSiej3L06RsRSf7AWAVuRFlqiTe8Zi8udOSJGmSOkxRoOnbUZXXRvDwGSZYJBXUAb6GxhHI/+2cBu76cIZXs3/gygQFJQKr2QCOcg8ccRRPDjQkhEI0Ts5FTBTaNAYQna/hSly6Ry+3tNMxv/Qxg9qAwl1D7Xtwaj5uB8MPa7rowyW88M4EX/O6SJOhc+dpRxpW/QFOYFApOSXoJMf0GAwkO/vXlw/3L+79IH7/kX07N+u0vQJcwnH2yXUUM0CqRjS99uLEe6uSYpNORaLwzPNv0/pHzCBNjIAi18H5b9KxdNJiEKsDuaIYDh4jZg4s7VTrnYpCeM8kdZNseiXJ8PGAuI25XSek8qDmBZmFxXL/16IMP9fiWcPSkn3DAc2xtT2ccNIItJb0PRsx83yolxOFG6YCYyKOj8jfwRzJpOMBmP8OWcO2zgG/4FZAUS34dUjs2Jhc9xBTLJBOjX1oTkuNtqEfEFrTNJrYVyB/cMk8VB7pugIKlZ4TgXPVwZvkSyl5ljYwxTaPPYKcNl+b8KCKdaq0SfiIbXwNXPUA1Hz1Hk2wXN7tGvupsqA97nqR2HOrRzv8F9ZyRJIutSc14uA9pS9iByViGh1k4LfmYftxgCywt6xBB13CV0C7794smYPG5xt9a0S9LEfGSsub1dmWDDHZnzTjQV/2wfsoXqWnUasftWeLeg3hgramvUfRujKoIjZpTLu8zG7ISpdVRGBnU=
Variant 1
DifficultyLevel
485
Question
Clare randomly picks one disk from a group of white and coloured disks, pictured below.
What is the probability Clare chooses a white disk?
Worked Solution
|
|
P(White disk) |
= Total disksNumber of white disks |
|
= 2113 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Clare randomly picks one disk from a group of white and coloured disks, pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-H3-CA05.svg 300 indent3 vpad
What is the probability Clare chooses a white disk? |
workedSolution |
| | |
| ------------- | ---------- |
| $P$(White disk) | \= $\dfrac{\text{Number of white disks}}{\text{Total disks}}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers