Algebra, NAP_70031
U2FsdGVkX1+AF4P8CIRTqMb90tXMzMoUgzUjiY5UIerWgzkKMzSPzlAuW5dkZF1eVnPZEWpGK/4odGf10oVq4mRojR20rB4QwUdam/1qUkZAr7NthtQZM2ybiyMcjxFKI9wBu+S6yBHUZvFlpCdBe3gP9cvpqQ+ZQkEvAdJsmOcljsliQv8i79y3sXhDkU3yg7Z4zUSksZGkectIT2yvPxEftjEyll8BGlj2L4iqh7c2JDCKtZ92n4vGatyb0S97s11RR2M6h4/IzsSqmedYmt/RK9bHWwsfpP6yHEeOSRzV14eF4CLZ0XQaQFkgAOV3sn9LEFxkbRouTdSs9HJhIsZGtJ6pcuvdh7R0gdhjyIttP+9f9pccYOD/r2Nmj0ojYPIDtDXKr4NZ9ZZfYlsOtNOg3VRIcq5HPw3NUteRUngDPuwjspppj8C4UNDHYlGK5M6yVrgxF2x3bcCqPE5q5r4MrM+YNIrOfyiwXIIANbHCTTNEPeZZtiovd9QWn9zytCA57imLEOZ9cYzZ1akK7aAOETxRVs5crQlboM29KGrDhflnpsTl/kHGKPs7l2dfRkV5lvo07dBNWsUr5Wc5ujmTEEG0rngtKyTceEcYh7WbtPna739j6eYqs6HHutnSY7YVlvFwor+sX/B1n9SOEvlS5BO87AjqCXCgwZMwrXkPA8NXaFUXVE6Hc6om5NORVqUI/loxylIIHUkC8EIZLUT9pXn5EtcPxjV4TWqjVSS41cPtLjXVKfAbiU/QRPLbFizgFZsDHGBnVadj2NVOJu0CfVDjqVa3A0nOQfrHOeuqJO22xGFiM1DzbsPmE3V1IqHPOdpU/l8pujGJDy2Irxsuum4Yvd1SFT4vOvZdJQue0tdj5apD7/9A6aMPHKHB+38HTD3t60VdU59BNiGa08BFElfXJmlGcbzYoAG3I0l9TP7oZbBp1ZFL/do4E5yKP79uC95FxgeMllpkEhNEjwhhSB9YwP5NXV2x09sR3V19ppZBCO6W6PsRX4efa/v2WFmrqRuH/u92s/YTqaN2gH8GcDWDlDZcbVXAIV46hj3gH/VW1eBOafeM6WX/reU3C6K2h0lyoauCnuY29bbiAqlYkx3mI6i3GztQzHUI42hw8vItHfV7b8udxCeGq3iZhFyEYh2Ur6VKKBYKwje6LTvNFaTA7kzRzHBtuMyIBkXC2KmRl657y7sn0Jns2/gBOMo/OjFzkcQgIQDgdymK5bDnepkvsZQRS5HpYlGXaXuGu0hizVBTLUSS3oyGSk/85qAQwjfz6swe7tfthRxCvA2wGEU/R3em1Zk/BkIxRmCGRF3r6WdUr5dl+CZ/UZfM7yIicGGjITSNSt4J4f+ADz2+sU8R3yxgPXeUlkHwEurACkdDlTdFawRNGC2PHBD+FHPsrG+g2tmBXMqCklHQWLh/B4qvCGum6cVc2q5VE5wPvRVKdC8qZrxlFVgsxjYDbPFLcov2KsUoRWxCdsnvhJflz+mSxFiiTcLlUNh2UYCj/ZigX4yK+3PeVR2az3BuZAvnyAR9ukgcI/8JApe2JTKlzKrt0RmhlAmQUIBaCx57II0sEV8UQnp1XsMP5nW4YpyYV6b18LPbZ9wK+tFDClFY0993sKHOLdVTrUlksDiYCFjb63C85xnAo6Oh1XumxEFzxv9NKYCjyZmUMq+FRmpV0Xuh8GPdQ5YDhUO9hhp2t4UWfZD0pSFrqPWR3GFsxrTF5CcFjMPtjzxwCR2FRwIVnh2CUmJf7c6bBIFe+EDNXchhoiC5BCHOwj/W552hwcvYgkp/pnuy4wAflPO1ovIVAdT4pbFqPLFIPal6WvwKAEydAA2AQrbEkvE3C3LLjIXhmU1yV6IMUx3aqjN7nHYM3jEfPV83/UJvV1yRm51MJDDiFfmw4Ww2aF7HlrTCcNCCM5200Mx9fT7XVWmHTo92CPtsRmM24+a7R8gwk7CQugz3a4VIF/VDhgoQvUlIjUqUsPoQBLdABq9Kb8e5tq3cj7cdoeZ28KlNvIseXKTtRPCZspE0IUAzMcnVR7zb0NBvYT4XtuR2YeR/1X3IAexa/nwpVB81YetwJh1baKsEj9160WYoC73GlFysYGOgm5TLtSCgzCSVZfTw9W+j1avru6JCNsBjQk5qVRgaBgyAnX0HxYdbsEVo6BgdDJc3WAB5Ttqwq4H9DclGrqLbhwVKAg1j3nIpjCAyFmT7Jn755T1pA6TmK44xFD1Efj6C7V6jIwheFx/NWNz2NbqOXmKDIAfhRbRm3LmF+HNwYAX8qzM7YQbpxj13rOsu1xvI4YK5EhiAWC3k1apc7n29LmLWEZZ+wbXrMfDXrf1XUln8Bnv7xZlg6WWMlsIfdgmhHyeLa/Gt8Gvnq6n1ZhwtR3738SSfMCVLqf6QUeSjuiIY2fwiTX7VzCJhMGBw2+OdrDkHveHx8EpDjaoB3BL0puvU2R8BUFoNee4iPLle9Qk9iMPoo1QAVBMOzbnf3QH+1Yxq2SSX3oXay0nwNMQAtUlTHNTOzGq5kwCRGpOK2PMr4u7rGBEsrIO/ijBSVgvzjzvY7fkPcVZlTCNnENOKRWhK2VTIT3SIrWffshrwhxFL0+7CQgTamy5V1g9sOxbm7XK076qJAhwv/S6KNKFDN0/0ouADcuGmVHG8HpSYJVTbjRk+8dtqarFieEOd25UqWgReX+e1UGTXOYNUUIgphX3si/qNVbbdq/f/Rayz0TU3GGHJ0Exblr93ltzd2XJO96PXiLwy2ncE9+viA24dllOioCRjop4wwjyvfIHNn1wTRBnqS+1E3uqhT1gC3NXqHlyvhZG6i5WRtHrvYLKK4KLx5DOJLtkmPjjVHhJq3RMbeL/UfVXuy7E/hAkl7K9UZiyEzm6h7+F77jLchmW4F3ZcAEAOwIEHn7YPk+Q19RdXrGQ+NnofN7HylWHK6DWHBRHjjIMGmUoE5HoEUEVVNm+4WMk5w0+tOHi53dwNN8Ae+lOV/563DlBbWAoWsauovAeVRW7i/dZwoBOQvBvDp6jaSCgk7c29xPLCifzbGsRKmVrvvIJqFakrG/K72YwA713ZCr0U07GmGaqaqAkqnw7pPexQ9Q0GmbqI3bCrZSOO5TG4UA0sPTnVb5k3o/emAoubUMpSEtSXAC1zH5lZyJ9fkqJTM7gMD9Xm+HJ8GhS0PzT+VVsKarRzyzxxc2XDtbRPkqup3vpPITuDSgPw+mK/hCMEsHCL69n6sT4lBkkG39SZO8t8piZDibUTiZp+fzQg9cT7hfHk1Da0tiF6Cd2yf3o20VNqAb3duLXCjRmi1RgM6/x2uh30FWaw8649axgiqmluBKlW5UaVN4FQUtyFv84FnAxWT5X4zxZSiJ7cfuegki2KLvArTh8AODy4SvGmmYDm5ipyxzfbtOJranRw53Jk+7NtGWEx4IqIYairaWTqDmeNabrlBTxn8R2ESPvh7BJMecu9IlVYD4t0j+pBP5xDIuUDglePOq6kojjCPo296ciy6Ei+/+Fwf+T1EBRPaZvMKsfabZwlet9JAwSYyZ7xwJSvtx8QdFOuxTkubP3jVlX9J/Y4iMODvv73HGzKBT6sc/o2nbqOr+8n0urQvAE5w+J94DR+MOUP+hJP1zCJ82NTOjxe5N+PxrYX0G5bo2qJlfgZPKOP+v6WICmPgfXaco3lR3cwJL7Qc+6NbNLwUssPUz4s9PDU9R91a4jZgeIE5ipNh8rZTPmbgtq5xl8L04glrkh3qRc9oOOMER90iQ3Px/Gsry5kwxNoCq1peKbqsjyXYqftHJ78k436lCfgg7KFlynFRLSXN6T5dz8aJx3qXiM8fyX0lPj53C3/HWDL341FlrMSexmdrikX4sKbzvo/voISK0611wK/nI7Sq2wL9Y62uXZWlPTLxcpbLNfh9+0vz3gJb4sXD8MESfeYkkmf68KrO7IlOUZtVWtkmeekQK6nLYsGpg71t+HFzdlVRmAEj5n/lKuat4lsCeRS4pqeiVEN9MHQY/lB+9p72x2nU5XZVUKP/+u0q1EdwIEI5dCg1fd64WZJtPtP7r5+eoUJmzpqwPR8RbpZT3ZJd5mgKSUg64Dr4AxzhKWf1tLyeXYnwSbALRWydWDn+8HpJLF/WuJrtA88G1h8NxSMi245MmaaXIHFi8xqzuywB4i92Iau7u2UIVhuUmQ3LejfELWoicVjBOOz6nvhBdwJyU+o1QfI1aY8rPf00IZU9r0i+dQRo52bZGenuFPphmV48I//ThODR6/SW1FsErmzoPtce1fP4g2a/+512O9WIMx+hV9YLtBtxLjnRFqaiZAu2CfgrkJ04niM4wYIysrBzNgYc4ngRqrra6Iwpf3ya1xxYW50XHVFyk5djWPIGK2LcWhp/salj7cSdQhnMRPdzaGj80uzWTMFtg97d4MQi7wTZ9zWOC919YAzZbh+zf2kvWMpHn5dq+BMB7HsBEZ3lFnbCH6zls+j+r9zD+znHQXYErct8k7ahkBN7Y9zs+eLjfcKBdnrovRN5xa+Of7oOr/GTWl6mLTeS3bQXPIG5POOd1uioa3pnPLqZBtOGs5LqarOaIqepGbRaj93NTXjHYOOPblz9UPinhVj1eH+bD920m7FLiNBSAH7iW9KF1KgUFTrpzVkHkkgd6l28tSMcMuYdFIpeD6ddBHhJ5NKVQAkgA0hKVGizflHtj1HVXtoUsItrVwAsBI2lEhZ0x08Pi2GIKWWotEyb8KjVDux/DIFwc9+O9S9skPie6QM/0BAmi6d+W2tM5TQAPhiTFGagkTSLa0/SH28V+mqFH1mWkByqRxQInUj0oivjYIhvANwvcL9UpGY8dQ5jPo99bc+4byHP+tvAwdO50pxFGrlifJX4DQAt7CFl6s+nWok4EjVUi3CfgPG2izOINvVQu/WBqPsm4U+ZJ+PUo0hTSxJy4d6zKGEzD30Glasfm13kg/24MbwNHRfnapwiTTwIx3jr5xvtbuX0orQ9c7pKAXfqtt1dFb8EySKKqQKaK3CwmAQI4ZUY1himSTvfWL0SMEU8oiCk/Bjs8UheLVvuRnWjpS1q1o4bUr56tUz2Q8DL3RIjq3xLc5CtHAZOdg0qQNupoInLqyGYB9RsvP3uuw9pQ5pOP1EHe2fqFdK7NLswu+yuytRVU1HsNxd2TwVZXdj3YMuC5IIh9TuoF+31ishlV76gjGCDvz0H4elGZl/sQbrqzMSCo9FHsoUjqzl2GO1ilDACWGVf7fWvSs1JDehMWaTos7GT8/hcj4k/Jtsg1o4Cx7Is06a4aTY1hH2w9NmZbOFRLhP2qiwvseRNbEC5Z8uTMLYlhnzzKLscJjwX3Srh5qyJoioLLNDoyDXs1LKMgmTRupVuD9gD5LUT64HrhbG5Fl0EFRY3JmlAtlLADL51MXEEJgX5bSoA84oLOFqKk9eibXeahkz0C7wVhGlkU0EKAwfiKppYV9pY8gNjivAaepr09SqIxWnpiCJL2WOJJPnl9tH+i3FeQT3oW9Znhm0bchALYjUSv1EULZpBe/05TUerKnxOrWU1e/O3DaIkqr3f6IthpXYmeK37Ih9Wd5CPjhJWFbtABLIJYC2sxXwLD/SRkiGggWFEWnDyV2XjqDvc9pjZC5WjWauUYl7vgbPmXhgRUm5dzo6e680cm6RXrw+Lkqksvb3oKkxW5Lir26y9jI38nxDr60MYS3JYfkSZqHMw1h45Ze4lDbJFnPUEGvOcS3JFTdeJSlpjMkKgHcoQCO60ZB4tGX5jKyOEh0AxiqaDsN75fE/44qcjUsQXo3uKZV2c+oOjynjmULrGoToC/SRmOMK87iCs4mU2/B/c5+W2Q15YB2mAb4t5GcZF2ozAtomcFNMkpuZohSe/IL9vK50/izmIxC7pDV32X55GCBozhjPysK7i7Wq1AgbFFCNKq4cszeqO2X2N4hDLa9Aw0Vpgd5xIRTXKpApKZtrZ5dTsM9vu1pU3Er3pnGOZ1fEDNjs5LH7TlporMlCaMRRRexAsFB6p3zkVtJ3CdUwxh+6qKV67Avmf+amSny3FEEDsbVSSkcwEirm7KHehOokJqI0a7B22yd71nULhWOagJCujLybOyYhAwf3MhFUiBf8uEupF78Oluu9qry8QaUSdQvkqaHD5+OR+7EMp3jrm7OoByzpdJlVXgzTZq+eqLbwbosxVWCE07Bd3XUaWjbMydriI8feyhbdfCua3ruoQJRJsBxfFrpuZGNKmFPTAuwGDkpKiwMYPa/zmnwGb1G1GOsFHHt2NZFSXnGNzOUAEkhuVLFhRAj1sl1qEvdFkLEuFka9zTeFzkZLKkDnyh7FioQOYSI/hRi1uAK+3HhwyjqlxdibXQcWF+hpT9a1sw8QVDMTQytIy6L63T4LwzyyoTBKmSrYh3kskP0L1r8jKzbMfAkdQnzgH2lJor96UFURniC4sMEQrUpzrRcFiBdMFinDxPDpLs6jHZPuf2d3IbfVkY0tZIfvy87tHgekAHM+oZiOVtfJmMtfIRyndY4RU1qg/FGJ8WQ7AyLqOnXI/ujd3AgZpHZKM8uBGpRoGKCA0yKZEaZ4T3paQTIXRcaVXziM3kFqQTTa0Wx2LKxuu3zRsT6vw0JcmvL0rgNhZvrZbFGGO8Myv01MGVrg7aPZB+Nr9dd3rGciC7qi+CKXl687QJnEJCZrUiFqMBKJ/HO/Px7JcGcHRajzi57hk/5V83OWfwWWlUbxR75/h0XkThXUBYQKdHDpa0MPNNTx8T9M1MVsBoLNcUWfcBrAdTSHmTtnCrZsaDwvMc8A8i94SvksZw1Jl4V+iLwKZ0ZQ7BMCp4q2EZAM+i8KmKn110vKZ0E/txCw9Cx1jLA0ADv6i2xHaOYYkCeII4FvDAGSO7XxeuaXya1VRhN4mZs0+JQTJYQMuBKxWw/D6eWU8BBtpiX1zUhrxWAlcDvpMiaKy1G/fLa7sEartLfesOAbG7nYp5MI+zsyq9D4G0tnAerPORAspNLC7UwFhYQQcjdh9DKNTYOgc9adqpRv5QaGrP11OohoJQ2rXZnI6e56OZVVvkAMbKpZDS955gqHsT0y6RNIJceqNwPNi+kb9JR3Lm/vMMdl+pHgXZoyteJdnImdUK7yrEey7A3FONimsSgow7+rdoIy22063X33ROXymFvwo6k/NqBYeoTn9Upie2doA28tBqmy4xIQFuOzd+OyyrkuRU3uCHh0D8SD5tmF+BywzArLeHXuqqEPa6pEfjhtvzdErBy2aOHVsupvTau16zvx21ikqOyknL79m9BD28kxiqE49FMQwUebvVi/9W9tupKTZXfNVoC+aPNat4+NWVRvi8TIoiaVgkPt0+hpnfetX4CPud+4azrT4ckqNeB0YJ/BcR2yD9K8FUPRebQaS6etQsTDqByEUDS9iRMjaxkve3EmjpecH7D5AOHtdVuil0tfhInvwQ9Xpp3bFDjJ0i+gFPDIE8Fg0DkHQHC6zS16N1tEne5eqcbB1yo5sY0xtcBm4vHkyWnYS8bAgwrQNxcc5/o4gTlpxBc0IxNcysfsQqm/uQ+3k9s8QI0k2F96ro8zwQWltQMrV1muWBfL4Q2F0Ef1Uji6sd3xGiiRuc+fuVsuNOhptsLk4kdBFesehZVmOpLmkJKztI2y7BNRo2o1xcFnBXAAn8FadikoPzclgajcvrHCgowNcKbkcnc6S/TQY1vpjQJ0sx7fZAO7FqTehYux/MazQL7k6Ld4RdTIPZmhLvhtxZAKQGSkLkrSI3PXBa62RTHiGtS1FhWrOPVXrLKcszf8l9ZwTO7XiIGIs6XMQk8hXEJPvOjI8JtFef2HhGw/pjww+AWHvlBJFZebGJf0Sx4DjHKWeFUIMB7TMSBad2Ha0ytNUvPk6lI2o0G24oIXTjKTz+9tRPB2x2qTf+wFWwDEPXbCBkTZ9zNfIosu3ky78YD/vHvK///bK1oi7+JD3WJ4VvQH61uI1fbQSMJONHqSfrd3ByqDAj23F1JQQWGr7SOwhSjw1y4R+QKjUHtl6AJzS2t9zt76+IOzf8onjgswma+Ul4fEJpLvUz/gdfnMP+NWEQERCZxfTfIc5guZuEbSBB9M30R5D14rpadDWjeMrAZHWip95o9O1/e8WBebOz8ZkQsyGiIr8Gy2Dmy+zSzmk8WLOf7J4Yz1UeNbJqONcHX6O3o9/6tLs3+sikd8RPVaybNXWRDKLnDXXH93CFZQy5YNQbIFWSM6lj/8r1JnH254Dcme8ZK2/ZX6uEWc2zP1OMaGZ7KDsnjvPGK6bwJnTPdGXP7rmxKq9tRg/fSsVGrzxtuXv6om3QJnSPvz/YMZlwPij3FC/QtQbqMIkmKAco9NT/T/z8MmvDlL4GV2WwJFbrSOeB8DT2dEU5QSN54r2c4YzDChHyT2Z1auUmJjFwOUO8dVrJaddBvlhUPMUqIWmWCxxRJWjTiPIpLspw/RV1beUnLI6yZn0jQLr4SxV1+ZxFsIFIdU2t41bwRaDXRFyQwylzp7jnkVM+MGnVOStDUSWWhNMLxrLCE0HM+a8ggYm28HINPOQRAaGSKxTg/xVubi0No9kau/D0gPZCOvP3OVAYldScQk1CrD2uAqZVWmmNjHAyarrdhlRZP/+sn5VxsiUOGPyt9mc9VCaLWcAhD/zodMeXE18KKnEs8p1Abayo/Ke/k9HCHo2oatrQs41INqY51vs+bLC9ZJz0gjqEdeoa6ML3Q7zz2g6f1LS+Xd+GIlml/HqPcmPS25dpUw9RgqOivw6mHDillBJgm8/rBfYQ6NIuN3haTcas0GJVG34e5yW1F8WAkyZtUPOU2wjvmTzmztJA/RiLQDId/Zh6rM24CEKcTO1BnXRspKk8/xb6+dBmcRLDZs9ajhzsa3NZ4PqI9vuCSFMG/9hJKApRVCbsHgFbr0Z8raifLQ6sJ5IuLxlCtSvy+orU0pyXMxFscJ6PkdDVX5F9uYUKAz9+wi0swLBE5psrGi/B38hNv8t6sstUtSaS0gxb544/RRpy9J50KikUcl6vMzdC8WA2JPuD3F+8uBy0b9fEcuz9RjqhIBGcsJZqd/de0zNttyGeD/4HeK9dwGUgrjYBC8yQrTpSMMyQTckRYpkntHq3zVMlRXoB96pXUvbFVNqf1lGu1UlvIBNk5xkMkv8Th3ohgrmeo/moEIC14TDwWxz/y860l6gRUEVyC3+OKvXCV71Jyd88fui6XJR0MZUb0hJ4hUiPUIz+qOhXtaf+ibqJtiEb/l1xH/6WrwbOMgdV/aClQTH+Cv/SJ9LRvvI6TQOwMDcCe6eny4PNZylaDiG9lHVIIts1Dc1GQCU0P5cLVuCY/VhqEwisaHHF64JIirBzI1OJIayofBFLj3AItr1K7pxuGU+3733z81yEVdp9XDMfxu/ghvXVqwCTc9k018Sx7yoJpvB6j1qOagg61XRPucWv2tUEL/rylYEqHYIZsFLKHAAk3+ROt2QTJdlCOhLXfB1nxtIoM82qqlf2+5p1xFYw6X7GGW6Uw6h56v8Whcm9Z+X9F+LTcDBiDWTaB+tHGdVN8P1BK8ugJ9jThe156o+x3Kcc+xqTh8Tw/znMZKzUVQKaK11TOhCp9GbG3+fdIB+f9yJoZc8OCYDn5FauldBkAPaZ3IlS0KZe7m55KEY1T2kMgs6FcTfSqCP1EERp5xxlFblhhjxLlYnGASCn6nUbYHIrxl5bNXGw3vnIPns5z8eEM/egEJ9wU7HAYDhlKx/4AL2TGFb4PKWkdYarkymV4tzUdBM01NMuDsItiNDt/UkCPF9ZRQYv2wgkTL9eNESUNGUQBRchAQQBl5dgfYM0zL+LEvzSo9UtoECWECsvQufCUBetUDSoc3xv+LrrYCgJNgiZ+Tk7rPa2lG7w==
Variant 0
DifficultyLevel
520
Question
If the average of 15, 22, 39 and y is 27, then 15 + 22 + 39 + y = ?
Worked Solution
If the average of 15, 22, 39 and y is 27 then
|
|
415+22+39+y |
= 27 |
15 + 22 + 39 + y |
= 27 × 4 |
∴ 15 + 22 + 39 + y = 108
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 15, 22, 39 and $\large y$ is 27, then 15 + 22 + 39 + $\large y$ = ? |
workedSolution | If the average of 15, 22, 39 and $\large y$ is 27 then
>|||
|-|-|
|$\dfrac{15 + 22 + 39 + \large y }{4}$|= 27|
|15 + 22 + 39 + $\large y$| = 27 $\times$ 4|
>>$\therefore$ 15 + 22 + 39 + $\large y$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX192JdhBx8E6iq9eaGFvBDePmOhbYX4bgRtJtRKNzcdi4HuB/dDS8NUBP746YchmGdIzLlXDteJkxCN69SzOWBUQl1qzT2Ce0tWfcCDzsFUPtDgngQHCx8nutTXmQaY3B6v9jKwVl9F/4tEZyX49xJFbfSGXr/9F7ocsov6SpkIHCGb51uk3zc/t62z+k9CYkWAMsNW6yLl1uy/ywvFc7rahwvklw1Aj/W+DFnDnDR1YxF5DIZWQC/AFZWdgcQFFSMcwwVbsZjzgGpVDzuNL6YWxWf8llSXmK+Zv1RCFX5Lnwi3JwDZ9gK1QdJFLUtXbnBuYdchgIJ9EwgNReZlkWGwHJ2AvVZXokUlnMpZrKLDq7zXsAgenpgMwDPSyFqXS0nC2GSVkr1u+iZpasse1FRSyrwA75sI4rXCz00bUJjjQagizPZlf8xzEnnc5dR2FLTJHgdrsaNOxi2saOhJ5wRK/rFMG2kER4vQCAKcXL0TWgCwd3KBnMvcWGPRviqdSoJSwNiVTlaPPY0JnbNR7PnU+d89tI4pI9bRNUpTMEZ/l4ZxYG7AkcLCGzw53m0X3maU4JppZdHCEA0VAa0F+5/O0y4Q449TC0Lk4q2NRRsGzm8y+zoQoiDTG3X+CVNeni6KkL29iM2H01Y6DsawVaEY6lRO2VCDzeYt6bkx3RNUN56WdIIUrmOVgpVusaRogwzGAjJkDbVm+ERhdEkeI1Pz904p7xXosKE695hK4CvIx5ot9uUzV6cuiedYisLTph5sEzlsb7QBrYSckQ3eZdsrHq/EM3bx5aBuIz3KwVVjc55I8YDdQHP8kxOR14wMrgH732/HspdIgV613RIP6vMQVIh51bke253pStD7TZxpQFa4WdSFG9lJuFvlbfw9Y73karhlDJ9US+ifqCvE/HZ24hQqBXsempdOGmw9oE2JRiwYPeP7FNMseLhrOefv1g6E3oxeSZUyK30m3cgUIPlXAeIA3UGEFVTcYnB/zcMONjnq6DFOpfVnyPKPJrf3zNrSUG1+P8N9ptzjxMDJjUA5gH4EpmhtCAOePdzXbKjDJ7HBZA+9EpGG1v40GEwXJip80GF3f1pQkNeX8JKetsG/YSYb7wDk3I2JCPs5X3gEtr2DFjiurHlNmdyhNGJNBt7taVxXgNt9OwXgB5VfqEGaKK2+Ane8jIH8aXIqcT6kTn7mCS9kp3hY4y1HxwWBHheOYEQm6nuJko/7VyLrr8++++F1qe5erWiBqnNTO2Vh6P80DFgncfNXgZzYhlm3kZJcOK9mR7XeSw/4DX0kuP/30I5UWqZH6G6qGKrPYtemopuGYlYVgcv97j6IV/ga32Eu3QJaMaQjIUDgX1UEr9H1AvF2JRGHFeS+jvc4uHfy+SbbuIpYTLvAQ1UUfNbuRWeq44vbsSDwRFyCTaxwNiEkVVHPddHMe5O29xj6Zs/Ssw1FjMlCX1BEOOBdPD8dAA97GVcMr3Zms7VTRdniuUByhAfJzPZm1r4VecfqSbj/KAhteN7V45tLtljWVwKmgZcM60jcLWUGH7vlY0AvxTImE1mEaj+VeqC4swQmXpfm+QpkOaL5/Vc4/jIjWfTM06t5E1KcO7knJ0v3U/36YTdUakC45EJVDWXqZ7TSk7GpbhKUc6UBNzD27i9JvUzJp3N2wvIOaaQBn+K72Qe3M/aqGovhklKuLlHGzqD3j7Ut9KLSbrW89uMKyxrHxuvqRorJSWQgjVqZeYYjsef7GXOH16z21VqFRE1n6NqtYAF9x84ehGlW4d8Haa79BwUrSroQ3InBYr7jxA6ma3lvbeisOoYksiTZFHdrnhQ6jk1vsWmSG1oc4nHBnKzay2NFLIgJUZ/nPBk9TOFwe7cWsIGgxgauKUgpZUEQW/Dyfcr7MmEeWE6tI2u31PGKYAF9+jZ7TqVEBS4n5xjJ0L0U3pRFzFocHJwMURYQiP3xYsDPULZl+VrxFiWVtgKHRHVcf/YOwo0oZoSvlpkpnKwN67444Y9kMGBpCszhxX98ReotioTPS9xyeCxn8cxqO6kBd2SEL5XQ3wdVpF66s0ul1tSsI0Ipl3VvPxGl+xpOMx5K2C+SlXVDNFEZNXB+Nd/LRQ1y6bd7yfylpP1V/ueIPlsI1JJ5sBCLQDSm/TnlkhivwQIKB9T8RHz+rKfhAScZ7j98a5uqCkjVoR/XRsjizS9SUUqL9kGd77j+NciMbWvtle2pXbgXHlc/rMsPovz77Qi67jghpgg/zf79LitgK2MM6008m/Pu+AKJOUa6US1VTCaUIz3M5YGc3DD0hoAp4S3D0i5GfQ1Cf5+JVv3LuyrjG1anvEF8nmelXyeb/gA77E8ZSdxbqIXOhl/vEewAraL0E1vsSYmIh2XD9l2SxNJSgXwBcxtDffOms3mVhy/O9/4Yj/KjcfklUSr6EBq5A06kWUTMoLe4CYCdlPKfp7b0wwcVpYv2dpXq/V3YdPAG5NvRLp1BJgcC6JkZ1QM3ZhTn8Wem2eNREvSnqBz/Q4JkSRtxQzTmNJGXBsGtya0dv/MTmR6WJhF+XvDcUnHEzE00yDLtfyvjfLUJVb9TsUSGxmUzZGiHIUem3AmhSOOGfDbCz7yyUHwa0MWOlOETpB5wFM2cjN8bMAlhSbylLv7lxEuTTDqh4PtlMGvIMNm3l1xUcs2IldwNtxhydtjTNfvZZS2VCAwSA+nfPHyheDONUU6NXgZ2hHXq1ZV1LZ8C7bqXblqD/i2YGCAae7Tpm+ihP/dR8v/vDpp8Rf0Vrtr9a6zQOlVdVlGYIBGWQNn9REt2uPEdrtPeKoULUHTvuk7LK6UJZSPp2KdwzRlimndk/s+fkKQ93vRJe7G/ow8lq3dfzdR7etHAysmhzOUfoBgshyyzb49gXFmEsqFMXb7DSX6RUlbWu2bRvLM79h8N1ctuB6NoCQMGM9SLXG/OOlnv2mtALsSGSLDoiAf8+mLiKo0+vNJEc1Y/XYwA6lA+FOoPx9OMrx27aZp4xQ1IwOKZz1ImuwbbMJiprbaFhVZAAImEJHqBZCGP+ju5bK4fV3TvByR95SMI/vINs7rmC7+dCs6FTyW5uJ7vvfhhoiD4FRUrhzp1H0PNmZbFUZbTTY7IlLT9X9gLRi79vvNyIMZSzqYHcrIGDKMa0+B3e7UEx/eKMLhUk7LzQIRbjP6nIbwCwF+JOy6oQwP7J8lPpmOqSzjqIkyT3GqO8Epfl/j+kuShbFk4oaoFfQhOOS11acaBygPJsnmG1REIhNfb0bDK8lJjswgp/H9TsV2+vmNnvcUiGRbte5QZlX7gBQ8jfG7tB9udFq7ZqkFp+3yHna62ajLWzJNs43kcY11aOgknWnr3sLOQUfm19r4S3Ve0Ph9DuzbUHgDTdUA//4YD1+TgMxYt3QJF6bj71QyBI+dCSji2CVveclthT5YZ0xwFy6DqiW44oej2jC/jf7a9Ax/ggd7gECMsZA4hD3rcvzth1AZR4LiFKQDoXIYmeF/rpuP3159X9j9HcmbXke/N5G4ctSXwSs8fchRFzv7t8qPrO40BuvmPALowSpQfhrrvO0cXGwLG2VAjcaHCsfRV4ppZT4BTMkRjJZh0alb1KXHNMqGUeTu95kbHIWiKK6qPOCz2SbmLIBmw136UKYcbzGIOIgOyG7V+bPBrxDQNYN5O/ZVpn7AFVa2mVMNweJVi6504L6AjxWgmftbXZ4lf6gn6Yd9g6LGkLG5NcO6B8Bw2n4+MQBfxradVgxnEn1KSdCxOD5mTNX4nHJTxF3Ba6A6AugYpqbejtpQO0AthtOilSSzFH4Wl3tzij39qxcwLzsKjZZqBAQUZBkGujdztdMZz/d5mcUuU89QYTfF9oQQ/7BOAF2lPR5/QziQuPeQEUXndufuEZJFR4D7dgfYau6W/WXz+hjVoPiAMt7aAq/VqfqTjHdtLOQndmErz4CCOZn2gcqptOo3BWzWuOv02LbWiIebyUneujvT5qf33SRIiM4WIls6Wx5imiWAnxZfGYvEQX1HRRQ+Wcyb5s6Ke/3mZlFH9mVK3qEW5VNgShJ9ZUNUpSMpVes5EQ6IotBDaZrurBgZH26faSrsfXJO6w5lsKMa0om0MXTFhpqXf9zyfH2qktZXR4SDvCu/w/QyrWxxjlMUR5eJbnWo722z/RAvIE2FkbO2fHMt8uM4P957ORqdq+1/vEBCu06Sah8DmjbzUNztUm0aV+x70Ie5FR95A5iOD0xWGZdjeleAna1H32R8Ak570PWYC0WeTgDpqRkrYze2Sth+NqOhmV3chWqykUzvyvEbAWugfMg/p/wJeHlcSy0bYAyAm+IfYVI4jYPIs8JeNMBwDLCJdCwGnWtGAPjg1EEF9vxJswoArunDvAxVHCc55rkYaOdSwmh6BwlMLYZkNc/LiFOcbs4taeV34XqI4TxXTCGfS2O/GaCRmj2h+lqzkCWqmAkDYgL8Xim+HTUjBk4fDlsMzQIg4DOlhadGW0prbvbuhTq9HUEgMbR89qZFp37bDgcfKzmtKwtaUGhblU5nLddNytK3ri2KmC4hlEB24660NAJtnH6XdU1gWxV8Cz8URhb/TohhgOagV1a+u3vOpxmhn/NMi4g99I6wI5ve2Tbq61z/h88CWi+yoeRICd83s1VklYKENM40u9bvfk0XL8ZwdE7F2Hy3DhRKRjoOX9mRbwQ5SUlO4aC1wEaEfZtToG/tH30lQ7x7b2jibEl5kZtIKzNiWJmXx2XLu2p4m0ZH+eSO1k5kIaJa8+irUR2nG6bqvNH7ae7fIoOPBObEIhpdPiIKtMR31xJBr5SgcTpxsZ9pPlBqrKBOu8GoDmEc8bAlLJqoS4LSSV3JWitOlHU+oZ4avuROutwu9aH0pnEVA9VxCvq7HyThp1SO5w0J9dZXQlyLZpOASqEREW/BsJZoeg8dY1C1tc4mSdDDNo631s+HV+fe/vzpm+oz2R/5rm/zhWCqAHIIzAu+YQBbRZSW0oans9YKe5GBF6z90kmOigcv2di/ly9RhxZwvxYG9tyr/fx0Zsi/EmT/orsVZMLOqBZLdPHiIols0p2fYdJ5VvwhesoQ42aqBCbVrN+SmErTa4QS16P6g5sDBxy9/CJK3g6KKvpsidJ+WqNzArvLCvFLTkZAcr1FB0rV/QJff3OlqTrXRHCzUMtAZABYdYkg2JnB7UlO/wc8l8m+sBL4OW721G0xNU0YZV+I08gZ+1mXlMCU+Yyzbk/lc4hlrhJs2byzh+jk2NVZjhQ+O10zxZBDxZ4F/lV4GmFyq6ap8Z/sYs2iOZY8AcVFgGuVvtSh8WPlMjRSXI+Zkd+44C5MmcKzIZsXrc47w2dmz+HOobWuAuvXJFv9A/56ik5lxPEgOlmRvx5DOac80pJd4WhLAxKSJXE2VqbtpG0N6Jc0sOpfeBpw74SNadP6G+PeC0BnpThb/bKBVlslGXvixdbu5EVq6OZ0t8/TMIudKoMtzLkbyzRxZ9dYfCWsJn8TqXk+tOn7sxoHVIjhsQOAQpBv0f9tgwV08h8wjzQKq3R7dOyAGtYcW7IgTmBtRujqfjRe5alaQNw4UpbPFPu2tSLM1o4PjAmJXP5Z7iVmOebZYCJhmCYcAqXvH8bDTzu+YqTU61lWR+d6BqIqlOPx3XfH/uus0pK8rjVlwSusxi1ggMhnutS6u4AaircQQhulPmKVhe/DR1oIekaJ0etl2GUXfKSJWKWogykctoKqr9q3h9v2/lJxpgUJ4NMDbTMPKJdvtZyJSrieBJIG5BbXKRXq93rCCK93sw/pkwSIHsFyI9wbDEG8tazCKvT7OA4p4jY73pXnwiDmTfAkD3X97erPGIQWjWtUut9ngBPzf3aTfudnXTS0lYeLSqerwE4v63XEnYtvDuoQtLzBdW5zcwW+CKVY/HUk3CmNp3HE35MWdc4hHm3Mu3Vba9zjb7oUGo2dLWJ3QaiPXHBwABOzhDTPCWdU4m/3HuwzmbnEmsclYNrciEBCF16WTcVDp0Cq8L8twR2yxo+Y0g+NO9E6cS97sfzbxYHBVt3KCB8YuQz+MLdbyV9leVAVtjUoo7empHW2AYuKDTwpC2Nk5Ivc/VG2qvefiFkgQmQP+c/dIZ2m0eBPAZaQkYLXH90A2ItnvdixbxK9OBM+95D2rgdDJtMJPWLsSOutnXiJ5sr5YdO5oTY07d8GtAYGNemHeM0W9TUQ7z5m1x1De5pfbyeIFpKgBd/Hp47KXwAa49OxxMFTlcwl5sZ0G3aexj7OdrODRbmOY010TukyEipqYum4Fyb9DeFW0TTsEURD+LFPSLBVHyB6J5UoY8KtimBs4dmPAFOoq9HRrpHIDXZEer8jkEHO0cp9CCG1qsiDj0rGBeWLjWbTDU5VgTHYkaj+CWYiOS1MO+9nkpSXKLOrKtzLFK46QIYVms8Q/bEvq9FGVaVMUz16XonuFLgqRTniQVyU4OASeSOco4OSpCATSRZFRgUZP5W+M8RAwn06onDQJMRsuE4ZhMSsAOAHwEw8k/BUwf41yCFUiHiztJOQ3qFNtiKVmTdWIEfCs36hE0W6M8lyH+IgAhB2dk4NrMvCuDoPoYOxipYfO1FNT0Lw9crTwyqVvFOgA1RmMYNv36YZrr7/x+ywm4qUE3INZBrzqYqlxMGftAEPQT1kEGu/POEYpNBKbypZjI3mtlvjGYIB7sgumscOyJI0GUHMOhhcLWDZnbD74cWmQtXnAU20dAo17ooPRUTc2Aj/slI1xh5gZsqM4wZ4KriZbGFBKngdbo3TKVKS70jA10sdlBLCvoAt7MQxoXVHaO38BwedmkBXmjoGoSZypuKHDGxD/3e9XOU7Bc1kofZCGAWFkQ6MQ+EvhkpwU9S7gsQh2+6074T6BR6bub6U7k4xCPNJQzr8dAJwyGaq7HwsrGpkw4dtzte3XqM43bh/R7az+uuNU9XQIBb56YV0LPh/lTY+CIIkJQpMQlzuo+UWIx3gXODkTdWO32woGrPzSchVcbcVduvPa/OHQhZd1brmQMclpqd9F3TehWgDZjQaQYNT6lfy+j2/X3vxOyt0A1jScLobOw2OZm0W94xkhrIjFWD2/Xn8KWgPgTGft/OFdIxU4ewpZYqHcPR4f/24i9jhhAFE3nL8CMHq3KUxpNVl8ZvoCq9NZIvUeuN6dSx4UwjdDFUm1fmcQtWEtGv6Bq3rtAd8ZbYntBQekll+ywRQFKkWvyrMGo1ch0XnSF8+uY5W0dZI+9czyetRvbaLKtKrM6FG3sqzxSVptU3TrWVpv/herFHpQoJtMeKE+RCuqNZ+RM0f0HIsIR/+ktwShXC2nHDrc4ZGqJ7Jj5kwuZ+O05UJ+9o7cDkTaG1Twgwk27pCEmcv9IJrEmVFO0BPlDNip3kuYRVH9A1/rJjEewyXwZG2RGW1dvYdcHCHM7WaABEIx882X3aw99jPLqYKPC3rXjAjDiu/OifDqAK8Ph8XmH82UylV/vCnvhlUyPEL+CW7NgYgpQEQg/lqAR0UzfdzxPXp/JCG+RUwcnf5PNvNK4AiopY6b8T3s5WUTqXsgpX999oQOfDN3MKFaXNSwLekf9hsf7BA1JQBQwK9qPvCxkyfbLmNTVENNFp6RXly3BhoY5khmqbI6vOP4R07cu9zP+l7y/+EE8807kKh4Vet8+e4D+5vGQoLmfDWzZXZFgQaS6E8h6ZhhDM4qKgzHWMn1rSv/aoThkvnvGWq4k0Hryvhq9k9pUstpWr44KC6yf1wNlr+LQ/dmiWH9ercFilVrjXYVSbQ79b+eW4DyAaDgaf72NqhzWfzOJohDDa0Nw2ZKpPkx1o3NV20jN6sX9LvBm39cTo9oLkLBqN+lMLuQMeaurm++Dg3WSV2TzoJBBPitGn2dWcTFKQw9cTvGpqsFJyNEI9cE9eQy9lDge9/syzzVQDuxTUPNPaFdSBI+ACEJyL7l7KQyoSj5gzIDyLCR5RaoHftYDfAixyonHmiIJT4+ZxOOdUKn4kn1pF3zX6ZzoVn/ncCMo/+upuaU+OIs0khpvc1JOVA/YwWLNrjKZO9d/nyWlwr53B02dnVdqG3Nhwp6GM/1hh/xBEfEtDGL2HCkQb/dniukCt1+VU2s+SpcxEAgRhopf9K3HfcInW1XYrmF+lw8SWEIXZmtt9b7u2+Ql4S4mNr2VIkBRBpL3D86iamcFZkacRIMVX9ZRizWCtyB5cjP0dEM3yGhW0emF6YpRI2DDXonbtQKOxwHQ6yd7G1qTOm2wx6z+LkfIJMQ+SNyP3fY74s68ggrRiJlE7/TXF30kP2D9d3UQtEhcInaaBcJbBFKZC0xltFhmQif8o4S6JWN45G9WUhNyHxYEuIb1BZbv/hMj71EjRh3AknWF+7D/HcQT9ueO6qnnaB2uHWZ9isyI+M+RoOtmKreTIO/r3Z9sKF7ZALIi7MzmGqHbD8ZgLDEavpbQ4VsLLoWhdxmZYXoq14B1sFA7etzySaxMPUnfkVkxZXlUpAp9lGBPjU73FZTVzroyri51P3+KiANW51to7GRjYOEqiXeanmtu1AAw1IGx7H71B8++1ndY4jk4Bvz4l3YvBL52rfxxChKFo4PPYa88QIKdCHoqMQWaBhYkKMz/oBsAG5hpeMalTudUh20FM6Lto3skDhvvuAp8uEwUb3TDtBnnWC1i2qeMQXVy+7q/wfRfqzAVM1EcEjerRXjTVVnW48dtqrnQNhb4r1A+JATem3M4yNJ1U5s4R99D6SY2odQfC/7mAX2iw8T/LulGJ7oc2gB1rH/B8Iocf6m+jI1wVwOq3caNn6GP8QezujIeCJEsbkc4tEwW9uxxfs9jnwiNQsdyeoB5WMqi+fnGHHux7yJ89v4vSetZEZm6LypNSsrIag3eBHjYsYiYRo5a4QLYawXZX1tuiYd3TWL4M0Xg9uOeOeDhMKa2CLObAiyaUcOmoFp56Hc/njbylI1kpBglvzPOFdJhFLjEeSCB2IQGtnb5p6NaxvQSajzUmiTWQYaPsQ9IBNSu1NASpK9BMDVjdaEjrX1jkw5rVkl+ygx/LDCOXA62ki63/I1y1kjh2AxwOXpyx6ilWg+B2ZCmG8Pt3yd+GmqBIF9BtDjqMWWNAH3vENjDYqiHZPfj3Z2q0wwnNisEi+mGlzdaGfcOolteJ39CFVXMLAbPo5tt/IG1ZGL/BLxBJvYsUXI4w7IaBzNrrs/vq5NID8qVSQABMj58reucDGnjQffHqQEs0whn3JuBv+XVimZwlaIpQf3zgX2DPeXWM11OSxGuVhk1Xf+5OWFMSxBJzKmBthYETceA9iLh+KpSM+phtGLGVH2eP6zW4Q6f95xDV5CrOq0ddpGgM8QDm6wmpCRshH3MuT6QuH6d1V+AsaVBfS7CRbI2wCu8g3hbuRu1vAHlXwE8xF+07mwkkQtJZum0E2YewJFYaRtDaMJhM+ZybJQFdZkQ9TG+gikhrT+7feagmwnAFkqghvs/zv1Dcr/PXmKmfDYThXE+wgsJjefX/x5z3vg=
Variant 1
DifficultyLevel
522
Question
If the average of 11, 14, 17 and t is 15, then 11 + 14 + 17 + t = ?
Worked Solution
If the average of 11, 14, 17 and t is 15 then
|
|
411+14+17+t |
= 15 |
11 + 14 + 17 + t |
= 15 × 4 |
∴ 11 + 14 + 17 + t = 60
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 11, 14, 17 and $\large t$ is 15, then 11 + 14 + 17 + $\large t$ = ? |
workedSolution | If the average of 11, 14, 17 and $\large t$ is 15 then
>|||
|-|-|
|$\dfrac{11 + 14 + 17 + \large t }{4}$|= 15|
|11 + 14 + 17 + $\large t$| = 15 $\times$ 4|
>>$\therefore$ 11 + 14 + 17 + $\large t$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/yCgXAAfXxpvqSfPh56zR6NRPX3EgQs0Ih0EbtN2yrvIPi/pyqLO9Na7wZk5q6lbG8zCGBGExklUbq9Tz8OtcuJwn/xmp2f2FOTuzxjo8ks2IO12toxs9YhcPGG+FtAsy0xJI0wFpvwGwKu4jD1Z2UiiSQmxPIeu27OfOnAQRmnAV/4YZbcRCMhtGYAmYbl/1UFrZHG4mnehFCi+KTfCYE3S3CB+FI8KgBc4DPt5OKrKbvpRUvj88iIE0NYOelrvrjVP6q06R8kdwiTrF4psGHnY1cICG1pWn2vlk2bDcgawRiU+0Oll5ELMw6Mhtyqb86MuZd6P1MYcGQkVqP3iJwRaU4O8tN3qr01FpyMlI8P0tRCyubBwR7vvClLbnxznTB8jPuhdw2CLYBCde3sga8u5BloHXDMLL2dVPyu2vCvb2KEXOmkB7hilu7QYCZPQfF6PE1mdDCsRplmFr+zZOcL70DX5Pbblb+JE4eCIswRmTxc+NzpAWEEEy3jSekZoqW+QurMUWV3Gomeg71Exvo+kwsZSqIGjmeSDMbdV+/78zQOKGRJ5PLXnLzKLdmZXieMTGnDYe7xa05x3liCxKH/VPPOTVO52E8aAhNxOVkp1tB8x9mcJqhPfWILxCILvn2MJqvMSpa6gICrQ9291lBphfXmumzR4oaXJXt1hIuTDD1OiJMVzIWkZkTfdu3a3LsBX1tQbBZgdT2JYTa5HJRNx1zIf2DM7SPsR6b07G9nZ1OsF/LILzUe2E6yiNosw2ciGZJf7HkIy5uSuadiIx/PCLln3CRWrrnDTcgEUCDyhvqQRBJNW373xSfHnwGApyTzPqGYiHl3mKSAGmMBNAIesG3O6HxYWa+3g/FIsrqw3jdahgl6A1X2YzFlABtwHT2pBV47mAswyHwxGyz+S/P2QBVKJsBD2c8Mp4nMlUs3ATioOScPZi1gdodLd26mmq5CwnIqPE+Zn2C+YtfuO7RYM4u4cqKHc1kF+ObHWAKuvOxUQpUFfWPI9sRPAG2INZmuuQCX4A/nzW3VF4ye1WIhcv/rFmPACjN58NfK86gWTW2rerW21Hq/jFUq/vwqFm2mZU20az3xxBY9iGTJhgGHPPML8d3SlSsjuShfjr2clcJtMzwJaY/jkJB6p8h9I9dhQKc4+ofk0TYyqx5fYkNXB7uSvaoqGYrsCMAYiBGp0xIplOvpMV+oCnhlml1uXbqsB4lonK/DUgkpAmfdNpy30nIGFCqijpsUMytM5JaP5zlc0AzKSNCQhjE44I54kXOf9T2Pm//r0ObdvLkoZzpEH9s/STgQjJVYVg2MKM3yaoFAQlxUWQYoITmHVQARu+XZOysoaPX8bl+GikDoUWq9pw3dppPnT8eq+2CC1iwasjnezm+KVTnknPt8IOwmNUo+WaWhvao3p2HYfusKRBdXiy8ens/W1Iya7MTeYanfVY06SQP2JDNM5qqp/mkvV1pd5deOTXhpuDZgAxu5824uuh7Q0lUKLxVvVKJpo1O6xX5EIJ8jyzND8f7eZE8OCRvAJ1l9e6uU5ulR0PW7IFnZJTyf7P9o+NWF86y9+3LIFsnXBxpAU0iInkOFbenGY+O2TPBUnbKQ/eP1Np2Eo45x0wkHF88yxcxnAYafkwqaUf+GgdLofHzp+qyE/zcUbe1fyUatUAyTwoSCqPn8R5y/UHfteNBvxvaTF4eKyNl6tK1J5ZKk4OODrhE6cdI5396OR4+bIusiV1InMUGrP85AhaEpiNYx4P/MapV9mOmTwU02MUjyCGqGoILmikyJv1oJs0wU3oRKsFyNbIYtsHFsqIo/e+I4deuS9/K+/1GOR9ri1anKbV/DaZK/Ed9lRcydkexUr9kTvXHXeHySOv2OQ00wso8f7Uh4f59ZrBV0vHIxNBxVfgA1rPGGAgocoHqVEkJ+RF9Uf9QvGsgoHJvJm5PpJ+L219jVi+Qrz1i5J3sW2mJmWMEYYNw43/TcdG/9CEYbhrsL7a8SmeN3aNjRxlf/kugPwA7Rtp0s9HWnJ6WC1KIVRcHiBrdcFw6wiEGQhJ9gZ98JXS65IXjOlWnzQeHmwZvUAcLRVKO+12hJyBwOoEW4Smo3YQt/VFGWJ0Uw7XIWvp0whWAL8RrorN7zCwh9nWOlhYmKUQuTCfzZGQJz+JaA6J2NVqpCKylaufNOntEhB3fqrEHzm7CPGba1cOKYSrHKHrAMsB7fAYiyuE1vGDzKsMb7acBFRxoTHDGN8xd7zuglile5zA82VSYUInD1aSudk4OYFOxlG5ovNM1Ie/unI00jkwnWFUkWOhzh64ZFTffvm0LEyqi/qBqStlefO3wFqQXUWTDunJxhBF80lEseKkDSrcFUYjZNFX9Vj/hVqTL5i5lOzTL14oGdcgcXKfz2TV2OMWklKVn/FWc4k3PSEbKkW2E3qJP6rfZdJ5BiH2FJxB4XCFZKXeUM0emm0D7QzSvs7CW9pXLKfCuSNDIw1B5N51mIB2Q07f66r3cPcZ8qJPPUBn1rt2Ptbn8uK7piRc6SIoqjWUYF+wLSB3vX/hT+k/Ytgk/Zks6uQAIvNjH3UuIWZV95x4S3Ke8QYQhKTXAHaBe3+/QHbnQVxdGkGIZmbo7EXvriZ1w95T1WG109R0Ttb2idjCZsSgYAQ04WMOLBCF14uVUuVPIt/kCV87cbNAfzbjypOaU8A+q53/WMByIvchK4mvfBGrrLFa82wNJ/+7mq7Ox5a35z429dkY/WCa383yzxZiRR7o9vXu194sI8SH1t1+TDHqyIOucPU9Y6C8FOuk9wn5KsyWMQ1FcLeJRSf4+v89ZDGrmoa0JM1X23H8RsUmJ+/QyJzqGQUVyrGlvyu7Yw+mNDw9MYjvTezaQlEAyBEMNuBkbszANircyhLJ4PDJoa+00WfJxiw4gCt97odh73u/iJ4b/x94xzPWOurJMPrNPSk/PnFsmSThmADHAqcANLlzj3Bufi8J2CqWYZYIGTmfWXhc/BIdVk2/HjQ6IttxVCqbEBlIaMAWa6A7/agVnOV/kgMFslzZ1Bih374F16YMxkyohsyL51ytMmfFoxmUmnkXCNSZ3PlaF8+cEsydVudPnAsECJKR+5AaW8q8RBe4q6E9C5kfpjBpSIi4nu08v3OBkWGhjx1wIBwI1rYVAEb2luBUZYxYfL0YQ6o8UCCxYYaQy5Ivfl9QwE9GhMUJzxzKbTTBduaQHz+j1KTRHRplwO+N4+KUnhD2oalIOW5UslFxPKEdj31n0mL4vQPxbiRmMa+dhEZMRoMFqHvD4QGNeaQhBWMz1CqkLzNDsSxutK2chxNwsLNParvs6MvkEpapG90R4uvCao/J3V0tqSW+UuGeMNK9iZw9AVUxr4ivuNXTkLCiJbxjSo1l/+rNCGyVYs5ozTjddC+PSEvpJPGB0XAuvKsob+mbcBJRCzL4PAvNn4FHVOLmfK3TIAUNN8d/f3/5UsF8pZMIzsTM1OnUcOSbpTf/i1niKBOYLH0ZZgtmZjct0haetv4p7Xndq4ZxvubORItFecZs8yvRH50ZNbwYZfVvmtebdf8lhwptcsIzGEzGtkRcFvP58qwkB9K6L47MHOu8dTbSBMVzu/fBd51D72OWaSPkjwr04L9z240pPDOFuEiY4sqfyW52fB5QOcz4IBc+dDbZsEs6JNFPL4M9YKoPmt5B3NyOvHGJfajN97ONNFwwqSUnytMw6UhQ5pZGYSMxr29IfF6m69Ek6u3abZc3xxoo8Ccs7nSNc0RSeBZiCnz56eCGeUSeAgm4Q0wGfPxPrJVm7cQF5XMR6pM6WLfiHlf/JAf+9mUfYFhSPiOjzC+DAGRLFDE98p62lPUGfYHluD3Jgb16TmNMI0Jp+Ffqmh0jad0kg2yfmRDvBA+SteI+AZGhxQp86TuA/USb7L2vF4ir2ZKnfU131wwawJLR2FGEtuD42BRm8w8ChgbMkkEMBBFNQJTQ+QuH6okLYNJdIPT4q08Xpbv9R9u9Igq3N4nx7Zt7JM+vur0Zicdq19lJsyds5RCSBcze5mUp7HJBdBrx2M99uz27xgTFn3QKEn+x0Rh1znA3s8L1Ur/g01R39PWaq87fTs1W5Bq4Tv5SH/7TQMmZ2eejHK5yYlp+p+i8Gg6nwmlxxNQRlZ6Z2nQqsGAqkjGSrSEUlwbxwFEUmIV2bBKbjj/uenK7O6kVwRbKTb6N/8mGdOP+29azeqZJCBZnpuesmQ/JUqHkhaTZQMmQ5KVRDGfKwVKtKR7L3mtEbb5DEvX+xjMyUdc1l4lmtWU7g9Fn0+YYF8HS9PrId2+2Qh+xdfMQgN8S5EX8CrqjNciqDwA4/dFxbU7GhgIfi0gNfSArlF1MFidadSPlWrOap5r8sMJUl6Jm9YOrIQJkizFZjhjsANZ68z76W9PVhDIFhJiCB0u514iJX4Cij4rQnGDanImO7YMxbXRbnYoMm/ccHG441adpw58QmGIjY7xwnSheV0jH2L2nDaGRMoOgzW+M410e48Qz/o0iwK8tCpgtGCkzzdK1rNozjYNfQ9EGuOxENu0s1+bttxMQEdiD+reX0vzIwvsubXaMSUiSu+genGilaITZepci/JPUbWP4t3N34e8xKt5ZT8rH6EwikR6631u6BuE2R4EOos9x/zQqmOq6SkqaXVbUs3DY/S7ZwiWDWecvXcasMGcg1OwDG/C+aW9LuR/mwCkmBe/uVloTOCsyhecmHBHH9B6pbiA9Xv89XoSct0x4ChTyjDfI5Z5JH+z37Xp2hkTc/hPqYikOgarWiR9D33OhZyxMF1S5IDugVCE+aTe73duB7b5osp3IKGgYOH63/A407HGGvLlQNu/nU+3mxN1GTqyUKg6e1t62cRQNdRuOQLfWPUVgTmvJEOOWvv+KfjgnFKA1n0feBVowABX9lYQGrH0qXBixhlCUzRp+quu1Xs7KWg8r7mHzUDwY68h4BcSq8KOPQ8NNPnQrSOTJ9jIZig5AKvlrgefVQJzc0IR28aeOqGTtqIUGNdKXbIQ29esfSVmsz4cR+h/GyUtg3KFb37nVauSP10PktwWWD4hEyM2ZxRaoHnFSMBrZUwHPgAbVxf32a/+lLZITumXdhS7BZ6kCkVVos9HESdZpkEMT+y1OQOqw1Xk7FwAf1uCvrtFUPfKx/+rlQDjTsKaCkjFq1Q8xutA/gYNy/espWapGjArZ1eDFxy4BPLsKwSoOUrrBkrnyjKsTZ5zf4a0r6L1Q564QuloIKW6ptdBMme5xKakIWwjLgoq0L7JH1Ph6wJ05EnmSOCZ6gXD4J3VxgWkaVte73wLXaaUANtXm/My9XqtZqSZ88Ig3RV5Vs1kx2MnHNXmxy4dAw/FxDFC7Xj/90Q0XNf1fAnjbECURWjsGvQI9xPfIPhK8ypZDGTyEDQ0lJagwMKKwBR2xOWeEMzAbnBPn2GwpGTs6z3PyPcrSwybo4uemqwHKl1isrmuR0fWCte+mYQ1D2vBKrC1bDHZYgWpMi7bWosGU+2DE3S+8dUgglCMUarvn2md4rNbEBkXM49fvzUskg2osEkIoG7RzsSP6B/B0yESy4LFDz3qQ7FFRBQfdQVmlpnIUzweIicIQdf7YIAWeEa0HJEJB8CxbB7GD+6ubHCy/frY2BZ47uf0LxY49JFzbDs2OSx7kqYq8q4ntbddgYqYHAV8LRW9C+or3XVTI9ygVSrdA6yxXgXg+/Kpyb3r4x1TLz87Rie4A9W6TApU3ODj92yo/jVZ5z6ykveAQ+R2ypTcPzfNxOwSYE7JCC/92oNenLX6RIK3WFV+4RH2lxa0Pe3LHvJuTsBch6fXMf7ZsqrxyNqOw6elGS7zJOoyd2dr/5W+OdJCEgk3dLuX+yiJCmd7iwik17lF7Que5X/WRlPqJvj3Y9mUY/r5W0kyQksy5Ai0PSTQeN1tJIZ9hubZpMfS4DzWfek3TjOC3JHSZa+TIaGYqO0MFW2AMRApFtv5GBVXvvQQ+AMGwsOhdnbi+HjutfTj6g0IYx7yXZqNdaFGCTNeFcWZi/1ShtcinqW+Y7IdBZueVwUN8XvqkvUDrOS8XB/Misg0H1DVtQt5uRW/qB3KcallRGacN52lgCkpeyIYv3gImeeeTPYmL0oqyqwbLh/XlSHFkC2oYJrNyMiGAKHeIabYOLFUC0AjsolHQpbzhWshl93yvE1eyzDi2SUBvZRBkcrV6jcp7wEdotJ3RF2chkHzCJLa6YG3DjCoxwpzM5nbSlPKHxcIVrwRzA4suHrCFX5pHuQlcvILE9UHbSHMLeWhzvIubRMgGpYY30BM9KJoySUxtKLwYsB8ORWxOo39pDWO8wWrGfVQpFB+u8BsFDvaFxnoYlL0ROYTwOt/JmV8qCLhEJ6ksDNyRl4mJ7NbVybS4YiD8wUbmMlz4RTLGlu8lVfyGNH0gAlXhcaBBwO8FaotnMdUpdG0Oz3uIitKCgSyb3X7XlTMhFz5o9hregSsTN+mHuHLcrys7G5OyapE7/Rj/N2wZsvbcASoNSFw5IEBXOVmCFpVQL+kDVA0XqRKDxwVqawMP8oRiPWAcLHlbCUro4eZSxMpmg2AyOToFjiSV89JbNidXHGC0EO/JG6jm7eo0AYdeEATsmqbcquFsoghYm9u9OGQHfR+cGD+NzxNa2o/5Z9IadZc0NODmrESIlAhsZuxhQQoM04ncGz5rwUexn+zLK9xp4wOsLmJtvnWZz8fvMr3XXFfGlUSDUp0pAeJ24Q4S6ZftHlNl+wfLp8QuH60pc+UvffGi4TxwpSO1Hlr3aMoaeKrAOuc3oLgL0V4hFlmywEkw0byzXpSg3mSe7AvwLoCRosqDnjUmd6jSqtLHJ7Vx6QxRIvi5c+xBtZEx7HWIk3ttDwbS7twP4t6OxEIRx0Eeeyfa5li6BlONDctCtHoB1RWcEJMRv4uWf06mx3OwOh6ioYWkWqNCvaKMTMazcLZN4zPVR43UlSsZK4NsZHNUUieD10F7zRp7OvxcIziXbo26vA3h5qkXVZdFLOQgC6gU2Ls3Kn5r0zuxJX4477IIvQbqkQjDLDdtPzirw24uX60XlJ2FNbHKqdPyXlTXOu3LyPWxrPAFNZbh5ENxHq62h2i0QTLVKItbUBb8wrWhBgzwHjGDbFqCXITcBIgpRxiUY1KzYEqiDBys3E1L7fwlKZhEINmIJZyRDCa7wqb53BHvmKxgn2JkAcIJfbNKsTSdelCrkKQEnNcxvJc5RlzUCggj+omqAIc37xtIykSEav8+r+6xNvnX0nXxCl/1Wznkr2s45ca6/Tqbo9p7dxsqZYALEJdjf+E2xX3DUggB4Rgu9gsscritqTh6jRGCT4c1fJnwa/LeIrNZQKhumbYzi07RN0zYCOpSFa5zVLTxer8LJX66DJYWYACq9qDo2u80jcLe//iJnyTKV2439Xci6v1u+QpjbwmuWAdZj05kCGxmk2eKQFpIrqkIuRSHGi9nMw+dyAyqMll4GM1pr5dR/YRyZ8SyFZb2dzF5cks1hlLIrmTSEE3ibe788vnikTpaHiXZ87dnGqUI3iypP2CS3zojHDg9aDjIEdy/rwl4EJkFq8bP7twaeza+ROe9xr3/DeD7rY1gr+39l7TXqumNyvNyWthcdG7PC0aTB+KyblqGQtLzYJq88dXXIVBdF8K5YvjoLe9kN4qU50A9kIF6znIylb8oZlxirIXVH7BwIT/v9/kIKVVz1wfq70+kBiNqfWBeCY9XcGgMLqAxZ1pUvxRs8rIJyeiIfIjUcpTIA4CD3+2yUOLMKY4BuTI1M44PijrsiVBkcPutOa9W8N1/s+5gWnNdDJ0tRn3vzpOqtkgKMCnTKXs+dC+V5I4PJibJEv3CHz+ojLz1qE9JwlS7t6LycbVF49cA7ZL4/WOIGF2r3fBF2OK6MasES218Kn9OQGFOayamheO5TtLm4xj4I3rv1x2DRnMOS2Nh1mZD3hrx32XQ2xDYWRkGGs0qNtfnF9YTIQmyJ/pEdC35/3xc72taEC05XsDdSGkEozysKAc1DTq4XTQFL1+PnTS0YGOadB1vZ+Qic0uqt+sYWtrLWpzO+Kbz786+GII1qTHByEPQS8hI3MF73vB2kgIQR25c/MoWs+xtwRYccMc8ucbe1cQquUTIhPLcYGgU0ZAjUNUAAiy9NOMR9hClRj1UxQzH3M+7sOuJR+ZCGh55WA3jZdAUXiw/7PLJ0qer/2hV7KmRcPMaQVTY5XSduuTVXYiJIaYXrIHjoP5C06W97Di5jjRqrxG4w3sYmzDyav3+Yv/sQipNMmxMAEy5BziQ15X2mM2OfokT0Oj7R7VOT7ra0Jyiqd6rDezfs1OhsIcQzYsfztL3IqvPFl7qIzgHa+SeGjq38eTjZcSMPQYglwiVGAwBU+rOhF+DoG2HOXOXBnLEHI0TVb8cOlbgIxwCBgENwEJ4Sfqhd0Qv5OJeG8EjcQuHWyeOvQwWmk4tDQ7Hr7D41yKywX/6Z8+E/SHjpqA4SX+c7t+dEkh5Dst+c6EQiiXhRq8CEFyj69JRHftqf7qGSVx4dwIDixUhiZSUHKL5ddVyBrxgGTziADuevhvZ8ZYJnMZHI4CoOhrldTQdbE664CD19/5sD0tNAze+0v99u5/jlPsIKksCptDusyLgZsGiZ7p/TCJ9TZ6HVKfWAkHh8mUKu7HwqENkBhQTOps6FZnZqgXhPsX612Z0br8xJRoKnbTHIsrLqZuvpX27UUYJHkWiV7U12K0SdM1upA4y7CHTWgv6T+ypvo9rvJb5lIY3gBReSXNgGADiZEpwib9I/Ha+JAiQRruaf+Si5cV/d3nxhJ44OOEeG08oStyIkuWHaGzbSwbtAB/XGJhGPWHSKHgbOojkST0N8KMk67MFg7Uhjq5phB9zKtiUNK8afT/qhRJdS60G0bUjDjQxK6i2M/Sbj/gHs9THJKGuqHh3QfsoX1VYS6l3daH466YpqkUS0Hs2jmgI3oERyTL1mWxXaGB9jkYTZe4tSATU+LhqkHYjwW/12XC0e9ZVOXevMfNkzu8yvaoXB4IV4dUOfeKWjB90nJx+6LdSZY17wY1HIp1iq9sY+xHPlj9qmaRdYHxE1h4Ub+odgEqUjZZV5dbdY39lSqZyziWsj0m1bi36iOBWjloRjC8o/lZDGZpLtvbhanBc/KqhehuJLh6QmAUC+D5jtvxmapPetd1fv1VOV3Oc69GRzlvNGn0Tov1tLlshvRyoIT6GrAoBLMASZF3zCeD//kqdaF4YsFsN8m6t7p63MqSyJgzYfRd0gQ4H/UGeTryFMEHHmKiNxx7s+PYANZ7tW3tGuYf0/70HhcJq1crcqR1KVm9U9m25IQwediZwMbmXKsr2qG3Upg2wXUh82m3WlyZ4EKOL190xS734TgT49B9f5PSuS+mdf0uiJOhQlxlNS7lN6gb1OTjLAHwlji+kt/xEdApl9QWTbX1jvLq9UJA80ZkjXfURCXDfiobL7fneNWQ==
Variant 2
DifficultyLevel
524
Question
If the average of 21, 24, 31 and m is 25, then 21 + 24 + 31 + m = ?
Worked Solution
If the average of 21, 24, 31 and m is 25 then
|
|
421+24+31+m |
= 25 |
21 + 24 + 31 + m |
= 25 × 4 |
∴ 21 + 24 + 31 + m = 100
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 21, 24, 31 and $\large m$ is 25, then 21 + 24 + 31 + $\large m$ = ? |
workedSolution | If the average of 21, 24, 31 and $\large m$ is 25 then
>|||
|-|-|
|$\dfrac{21 + 24 + 31 + \large m }{4}$|= 25|
|21 + 24 + 31 + $\large m$| = 25 $\times$ 4|
>>$\therefore$ 21 + 24 + 31 + $\large m$ = {{{correctAnswer}}} |
correctAnswer | |
Answers