50077
Question
A large birdcage contains 8 canaries and 13 parakeets.
About what percentage of the birds are canaries?
Worked Solution
Percentage of birds that are canaries
|
= total number of birdsnumber of canaries |
= 8+138 |
= 218 |
≈ {{{correctAnswer}}} |
U2FsdGVkX1+HwCnZqqAfb+AkC+VKugnGSA25pCTLtAGmo9e6ctdiyk/Nveek1Sbi/x30JlG7Sv+Df9TazSskr1ujdSWXOsCVo161YiAHNlYBYawCv0LNkV3vNXhFR74RwD2VnYpSYfyCnP0y1Bfa06k0dAB7s9JGLArem8KbjGJfWPfVMLzmdknKw38wy6w6uHSnACFZDwdyHPkT404GNrkczrWTe3THCQMAQIEoeHvmjvIx7H1X35JIabYmVkP5xulaOf7RVjeXlllLIFyipgyx0IQ0FYss7KKuaF/5T/mcMDt/dU/Eu/6TmfV4pmejmwYT+eSFV9/csZI7r5oezN4lDNMFxqAn4mMU4RwD5Hti31IyUFG1Bl7IzLgbejh0VVxQXQYNf91h/pOSavMhfkLH9eeVqhjW+UalUwtWWLcGPbO3P0CFNHfl19vVK85VtQn4q7Jn9ZGFhMwdclGTqVUDr8sakxxnPalVd0QO5+jVntVPvErT4K2CTKStb5J/qhp1tM7rJ7M5AjWdpWXmZ/qO1RugmFW4elDb/U35gUGfJ4VYpdJnkkO4YEYnuYdHm73whKXxMP3VNPvzaNT1Bd4Hp3Tu+Kk/veM6HcZZITQ1+yQVAzUzTuaepL/18fnSAjJO50ltknBlaT3Cfs31W3xoL4kbaJ/fy7NmZMvKgd2NYR7YYAEbkXqKEXjSFBOGjKh2AHxeFAHn+0um3t0AHeaOOdFigVSGOMtam6LVtx84G6PhiOkEElY+6WIEBrrXoj7h1yd10+6Uhw8dNmUYNfQ4V4vkQi6NPdDFpB9OqX0aZ6nfuLApen5gp7nvg2kGqipcrtihWKNUu0RlKnB2wBcemDaOZeGpYfR30sAx5f8nfq4VsoEq2bgF0POU5tnThuaJyXfyymfrhOXTkmcW+Vynk9mlWyOHfd0Pb3w50s3zkBQgswe0k1XNIleFDpZNt8Vt1u3BbrBt8x1H3kwxn1vjyRsJKjdMuU+t+VTbDZZPd3JTtmSrJ4c2Cd399SfjJJASrd2w64hMdAXBXj7GV+eMlBvwIVMOYaMIaMeCcWGocwKR4t2yLgU9PFUS+pPfS5+WlDyrXR0F67zcjEPIBnI9Pa1+TlToz1jh6we/aPldrchhfLfJDO2X39QTsUKvKipaTL3n4TNzbP7Pcfo93AVmtbbBW1zirGSfguXbU80+EiDPx4V+DjtvKTeJ5soVQNXTZ/7XthujD8shTL1OIOK4EvLz9q4lUXME2lR4qGTYnmmiFA8fZfLYOyNjOur2NkiqFlQCVhbiQqlqBkP55BY5Ah6nOGGOqRVG3fG+AkjyExbhSWAEa/uGfoKyf76vetwrfE13g1CEU7nSXBu3soK83NMEx67N9Ect235UNhmJ8WkHHVnut5wioV7hqgXSun0OhQxQYf7Ca/NgzvMAL9rTBC/BDvUEgCGzgM8Rhdo++6edpN942Ro4qrPDKBAHUpKayTt3M2CfJKpMQorSNQc8hNSBRJ8R28vN2MR4dB+cvm009eiT5VyHHOm6mJAvjuAkinriqI4O0mIgBAiqDAbiSZaavY3yoILubkvh4upzs9IDnRAPkAraGL66DFPk3h8HNIhCSbXtlOgF/rnMxamV6t9L9xX9XgVqPWuCOB45QCqALsm+ui0tGOex3t5SaCe1kOpnqFn3FTWskeubFbZ78321fSytiJbOxNvMwhSNuQnbOF5l4AXQM0NRtCXYtyRoj9h9oJSNiaej5TWfJHqc8axMMgTbrWndxl2vQm79LL4iayro70PoZojCClIO8BDC/ovkXxtkzPZomSCbmheNMwqmSxPqret1w51A/vSt9T5Xgg39BeFnRvzLQoPjjhzHW5++hX0hKBHtVTiuPm/aKOSfvTC7DWXHutSIVJph+Yh1EZ7ymcDuErA2lhDG9qwsGyofpMHwvsoVbdOMETUH7H1HEZw+Xo0cVdjEcFuLhwmNi4wfQCseovojPyJlUACr/VDrNdYiv1HAdun7B7dB0v2XB4FfNCALpq7mLq8xBsjHj9Fy90FydiugFvx0AhBh93zdVacvqOb6Doid5R1QdTLSSbkeQ/S3C9Hg2aSV5uUYcXKd1R3438EJesqpVdnNlvdrEKucYDKVH2PHFATZG44jgVPdH2CM5Lme3UQQt+2xXV9CSIzBsJC3F3dl/CGPjRgVDxr2BtdxjZNAVdT5eGe2nMK8IlSQoGshV4+4T8BD/gmxZOqhE6pAq5OHKJLidsNhngMDgjdr0cpxCzss2OqddILotjCZd3vftm74r2tZd5Pit6Ul/UEnzU5QVpbQ9QrEKXFXqXvI2oBGHjuP1ID68odfiNA1DFB5KSvEqmMFmtxeTeUI6PcBQstf3fRBUGAs61VxkB8OsJNRrPZMPS3EqQyqlZTnNL8TpcwsYhC2XwRHNyosvbyx5eCfYBYgsvKaoPLimIKzU1KXrHycBQMpEXatgFUgOOtfB8QdDTSaNubyNQJo/NV+sPnnihrNSUpJPa0GlJQeNs2C5wSOqJoqtTuPE5OJNx0ujYon4w7V4pOg7trzlMKYkxBOwQQBjAl/icd0A5JKDayJdVqZuCEiCa+4XEQBw/Zb2CsWyoqA8qhCbakypqZimk6KPpRG7x2xNn1x6irrnASWl5zkyw+JF7Z6zsTP9MqKalUAHrmhm/XtQahqZt5uy7HyubhQn++7B/2b3EAa5PTjTL3oxKg0zzK2pTGo0L2V2flm8qOUb35uzTpQhSysSqEgLvucRl28AI947e3V+Ie58Su1Z0sNQ6sQaC/xYoFxZampru1mCDRuKSLtJQpJWTbrQiPKYThI/F8LC/txyriiHTawyGu6e4KTmcfwailvZLMwGsNIP9bbQmBJ7zrieTJ5EOMjx/UuO9peA1weA1TGAeJqhEb/X1kmrXbip+bLu9wZlqkHj+cJuweNk+at61FqlOKHZeU2aYxDOWX1jscLiohPaI2tAgJGaWoA1lyJhV8aiq6ANv1tCQIYZt1249Be9rN5xmmTl/WVare9R6cf9dvbFCpuWFOtQ8Tp9NsSK3arGr/aeeg/fDXP/UEsCLjbKDhOUq+/sDrkf7rEPwM8wlD4OwxBkA7kI5uqHu5D2GsJO7AOG39TZsWW06OneTQPt4rPKlcd8Tu5cZx3WtUTaM7vag4rGqyeW7A9FtosCO7/57gkysJdQGTJv1pRWq60+0a/ySny9A+sJH9dfYEM4zzEoF8wBWDegv3hqWcW2gekcDX3it/Pjz4GyL+U2Q5d7haDMJGLrQENVlsJgPPuZGZe61ouaa+t+o/JKMthKQ6A4azMU3y4t8xW3b3e/SYBhzunV3QBpPMEZGkXS2BAaK8YRbADjJH7mfKTX4drTYcZHZxc3IMAXKeUGJW+MU1V/wYR+zEkyArBc/07u4l0KTpA8k85og2E1vLxSASPcivdui9YCAypVtsJx67V6gMOsvSIOPXQ2hSpI3kbQSNWGZTeWFW/2EydCldRVnUEhbfF8rGkxKU/jZDUThES2bKweux+h0H4tpGsXnXm30PUvzYEcfYiIOE3RZJpJTzfbu3hSqQ6Xp29VQk/QyGRZyBLEBdd8Sn/Z2qmZoXcSnL3+tA78HMUcpf9+zw7TGbTY5ZI3KBFpcVQCYvOMwLFqWll1d4p+Hd4jf5zTAw0rB4XuPU6gVgCOygopRwSYYX3Iz7nelEkNhKJ3qKQ5PWQTp7F4+azwDhw9rceWzDEdYxFc7RaIDFFWOYdirA+4ec0aJEFflxfbesZmg8WM7dkwGEgFhyxc0v6nKeViHHjoccGWdHDCTzwjJCt5nrZZCLYJEv22Av6OyO/VxZJFkHtjRzmg6zbJzYkGHH7Lg03KyL2urBjg96JDIuefQTtpfAbYcdIwsKmbW98pbS8E6v9b0RLhyb25Y3w7WtfGQT6gYcIfNvkZjwnM1WQn/FNBV1EKnGAqhhJOr+nh0yJ/z6ivrBUaXWQa0YsDL6G2G8JvXOd3rDzEWuAMTj/yflZsowg659CifRnouM+eSSxJn9dREYq0rqyDErAGN9uz/B1H/jZN6Ue3X/kVa59RPi3Sbg/3VGGLhM+2t0yuew71f0ct8AXmyCjiFX0ZWDjs1nsxBADXJcsRKTOzTeS+SoweRYlx7er57AruJ1lMc6nFNd02zxjWz+vyUc6Ux2qDL+Pa3wIT1Ce8gaMtt4A5f4Vg4wgvNo2KuXM7MckEfqnVnPhcSGzm7TA1EGRIiPefOZDPeNGOhm3Iu+h8Ln0iKmwmKb3JN22r/HbBBq9eisNNUADip58wm8z5Yoe9w6fAyDNZR4IEnAg79Vpz0WHMFWgpY4GZVaESVU80734QrZTP8tQf/RGmnQ65BYZ067Tx523aVcvn1DRxrmrwZspzhjXr4A80jURaMedVc7SStjJqTFZnRjTOjN2wY0aDcO/DbN/EfeUy2gNJgaPqFKY1cneHoCog3xF5imvD0K0fizhM+lyiAT+wXCaXN0rVRAlj1neIMCKLEdCSoPrAlNPrWJf7EIxqWx9VewXmj+HP0xilxak2x+I8QszEQJHOVQlPelP8ieGC3haqaEQb9dgHwH4dwCn2JUYI8Whn05asp4veklBMPe8vEIh0+EZU9A1X88KFpTYotyI44Ey2zPF0wmkEr9Iseo4iWJgP3GFrUlE4+4tp/UDDmhkBxY/i1nhQ39788zkEuzzPqTU0Zx5gHonZlNBXmoE3i8bKhU3gFxh2HdjbZ9SfTbgOUBpruJJdlRGHe9tja0/3ZUDHcywSbfHXbVP9jC+37K2H1CA7cAnEMjB4LtQCWGBp8y0CNSPWwQPr+2i3H7LVzKNogJny3Cf6kOVQtlMBtPmNJxAC4EiMxE57zX0/vouJ66anQa4fY0k9V2J/ysJN02mhhyxS9+7OdfVCgcyOYpucf/pfOE4wnXBfHM95NuwLOPl+Zz9DaMUaGyfAZfeZdLUw4N9eeC/wZdsSq7+grmFWZhm2niiE+34fozmV8i7BKHUXNK3HMAOs0WZdJjCEaVjUc7UQVHICDXtMx1Hir9VRvEOU+Sv1U3lp6q9thofwB9/jMQesPEiVyKYiQDTKZMo2qOkVm29QJccgA7OcexqhxM0wSwp6X+HQMIkdkbu9jvpESwdbnG+mPEDwBmKPyxAS/b568QYHij5NlRNotDhmhNhOpm7bBa385FJYNXBIgha5ctfZg32CubXeofcjoetfcezu3V5Ski2yXriqyxPqMblvFIz9+Hgije6VuCMe95okszdPXqUTJS6Zq1L5BeD3GRMPBntJJO0uj5oLjb1ivk6/YJj3AaJGAUPG4+K+331VwxGM4fFyeVNlZKOAM9owrFKD0so79y5KTwXBw2f8iszdJ2oVlc5A288ceTzmbi1c3f1xoYT/vw6Bu84tQlmL7q4pWvPvNcpn3HWRTLQJOicQjr13O3xujTO3vEb0wJzxk/gcPV0GQLz6HrnZeVo6vsxQ7UAt+JJ1gZBsMhwtEzUcp8YnS5QB+J0MwgExjepOoca+h3q6NIDiocgaHwnmzYGAoSzW6dshwjakIJJZ2vhGqEYYDij7YIzsYMAS73n0FmoVcgGGghinWd28cDN/brM/0qlHb7Uf3fM+LuTpfxt6LoTI3kRNZB+koR131xrDxZ0C4a32q0bnpDz14b8dPqcEujncMuPg9VyYc2qhjQQAZSFg9v4pBRMlqLpzQhqrjM0soZwIdk2afwOY4PgvuHxJElXSB01W8/RH52HAs2xz1xZ+EXotUXZHD9dQ7p+QJGRWt+QIJ7p8ockHwLZbFHaLn/F0Y5PMg2m47/npdOlKtQeZ6v3ncrz7ZoFBV6vJ2z4iytRokiDDnP3Vl3T2SpoCjfiLahfezfrk5enmONIZvBJnGv9jxrVzk47OViV4UHPMAdPP0LvnlRR0dp56B8KHxvFiTeHj4/oKKVw324MLRqRYpFFMJvfhEzaIFjQQGIhfWurS8uQ4fVu2OoJbLDe0ppBmZ5srMylw291tOZCfRTaNB51rfJ1Y0ruZ8s1KWeYfa1J5k2S8FAuNLqbE8+NkEHl6EQ3BgI9EZRzQS+U8du5e9dsqJXLvsebJb7l/bcYr4BbMu/dB0lsPfnlc51SBy+OzoOh39MJYfa7boKqKTu2Z6yciLCP6eOO8gkujf2ODY8PSwRo53FnqNHcrScg09o4k98dAajOH5ywiccr7SprFudhjn4jBi5SZBsTfl9WcTvUuKHu2m+tslYvDyg+b3KicIdTU0Z65Xrn+rJGvPxF5sQyMW/tey9vdotXn7GSL11n38NN67fpsDFzfjcAc+/iF4pEGizr00HN2FWY3HDZ2mi/rYi83GuMNiqpCMK/PZyEc4BV94JzUx022JCQPf0nVwEoOdLDhAolwz4tCjB9Mo9AhtBPVYTQMrxBTdv/2THLP24IlgxqNqV1crhnvT28ax1w8NNf7kTgdXGo1jc48f1aA9P0DIrasIrxcOie64s271Nc3IqhKb+0PU7hz8P8X/nIjqV7dZ4JSO911/4cd72YDOaBo3NWVO1IFIC12FLbfvZJ8oYw1JLgri2w6rR90oz59rIppSRJ/klMMg0xuS2AnJuhW6QA8w9lDI5/mEfxOxmNMPP44LNYZYN5fgPqGs6KtG16cMYUf+O0NeJ2LFAORP/TAJ9JKIQFPjd07VJzwLRz51FqvNDDGXUkbcdQRZFs5hDDfAxQYkYuNs1tj+QN1uLYVLfb0l+mjxGBY+Gw4ovSXsl0OquGsRHJ3vpJbs6h96tBHhIrlrMZfX//BqWsKTt1ML57FpYyunaPAAN95qnVMyEW6h56a89e+xn5N1w/+qltzd6X8wnRxePVvwwKvdfo2gNivvC2Ammi/tffWU6FgtCxdPASt0m1KgP7EmsgbGOd/cP88yO//oukz2+Y7x8WVcJgQfcuIg7Sx9KX1kEeLfmpMK3gwCAS8zqwYrEAMdRPniuRREiv5Czqg+RZ3aUkwTrdgsFbnXrJlDX+ldX8WYys7Fhv+mdgCIVt1X2zKYm15q6uzDFwJChAvOkNSaEUWOo+ufnCTMoja2Waa4xVhAZx+/dfvZbwZCVC5nSaKfpB/O5bX+GKLuzIm+WoHd4EnNAvbBch+tYZmI5Wjd/O9eSGxKH6ToHnW/9Li00mtYIYtsxhNFECXlhbAMZS0LOkk0VyZ0SIpwyq+OExD80OB3crRO/c4Mdx8gxvZ1FrqEG0O7Dd7l/km/mTCEtBqoLEcEwB4TB3m7ad4sjH1LmiiXaoVWjALPgTU9J8pF0YZgwT6BWIwgPbBVKir7JWoogMO3aDblcbQiwmb7vS0dAXJxoXN3IevHBBsuIDBe1Md7Q3Mj3ZY6V7BquyuNrNIt3rW3srkmgobuCZkfgynbII1whr9AGlq8JJLguF16UIddxqqzQFQzEWAR7laeBO+locWQ3CJf6GtI+6b0abWlatXQYK0jY49QxitY8DYkNwIYPtjz+A5Wuv920eUk1M8kzZF60ALVvupJcDgAeLscQGCJRs/DNKBfOa/tYC+Xw/vHxGJe4xTHWtQNNLIKt1DVshe6jECOs5y7jirYZv+BtoOpGtZxcB3b9qsj0eM5TZL5qoeyzVxMBGWFiq+2kTcV2jHKglSXRrB4xRj9NdzZlsDxNrjGmeaTAe30IXdVBd7kbhQ7nTfDSkByMiPQN2Bro4/ecupW1CYXn+oxWllMW3WBr5im42+6jJ+INFJBQplpNVs3AgqVYLxJzhnug0n3NU/AZRDX+8Dq/mdofMAjBaYjLI+zYRVMgqwvdX883tis/hqPoWoW87jbmzrfEzkHLve5GvmjKE2avuXFgNDFnaTRAulKKiujmRNLzxWQ3ARMQA9lJWfCQqfz1IQQRbRQ/ufw4twj2+/BglYU9gOXCooZvDuqpwGxpC5LaxBILoK8jqlhLpLPgUOPYrlUum366Qt6w4euQnbGW6+d7l5UA4TQYRmg7Ye5XXdMqlfSeSpWFiyMVYth5TK+rjDlU66mEbJrKC85LrAJ6UtU7wOFq1PbFniV7Ba4ra1S6q4v0gADNYtXtLYRzmASGsqCszMwedMwkYkv6D4E+uqaRbANorDSAotzokSUJd0TiWAJ2L5KX9bywfHfN0Rs1ETajzyKNREsMeNspsKQ3oDO0P8gvjTuzvJXHp2D+9d4Iy349agTABj4rQFW+PhPkBS5tQ1nSP9joOu3nj683YW0yYWqLqXsuBix3w/xzPKKhXN1jk+U3YPzqALo0fVAU4P442FfSZ9u7CmUGgwzvWFYVGbOtFWQ==
Variant 0
DifficultyLevel
551
Question
A large birdcage contains 8 canaries and 13 parakeets.
About what percentage of the birds are canaries?
Worked Solution
Percentage of birds that are canaries
|
= total number of birdsnumber of canaries |
= 8+138 |
= 218 |
≈ 38% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers