Number, NAPX-I4-CA02
U2FsdGVkX1/MOtN7eSwPGN24sT6DV+8E9hZISSGsXQ2WcbyPuw0+AVPlntmAEQ7IqxUTz0Ga+b3YBU3o3GYRn8urqtAeaCahod9Duyw/my/jV35eYDHy0iprTArojMtEruhSLa946qeVLBLeYK6Er9AFgTHeD+ZWWgFc9Wlk6oO+4/LwjOWFx7AISHbP0jvdTyqrdGCO+O4yl9gIO3zW9wieHHX2QDixqu4hBAvzr07jqA68U/RC103u8kt87utEjcTZdmeg9tKfy/ffIQwCLusqR6Seiqd07RkiIvA6+UPeGriQAcYP0AjAl15sqFd9vT9hloL2lxNzqTck2dBSM6JKVwZ+tsG1Id3UBx2uqZ1v8ghCaymINYUKS79mnC00SXjbc89P+3JaC93bLwF9RBjgH62CuLKBSpw+2QJndavlfx2OV6Q3i7346qgrX+mEowhIDTgUw9za8G/4uWhJTmqUO0OYJbvR4DY4xeQj+1tOAGNi8IVkxEsT8yPnO1uQHV5RhSJlrWP2W+kqSuLZbU5+OVwWmMmqEzPbCpt2KHsuS1SzFPyBNDpw0Fi16lk6DdV2R9OtU6+7JFFSSzcs4qlZqit8YIP7JtwWSurlzTITtvfV8PKJi9FyciiaRT+YrYv2oc2nkAtLVdC31cHvpgoOnfx1lIE0MZ8BVgbpLFBvGNRBRjiJ+UYKsYKdp5rkl6/1gOJJSjj7x7r/GnEpCVlGWO4tssv6yANThuY+f8myhyzyYEhPSgVSMhbBwwKBRdfATsYT3keDT0DhsxXXOfV3ToYGhJWTz53QoLc6bSVmEVzuMf/CafIHHm1i27GBMXn16G7cfQQ4Ev49vCRsIcIjDsGSradamHYfjk0htmaUUMdFue08M9BAKj895x/6sLt6nZ2PlC+FlHQA3+pvZDSutGnrnPG2RkbDXAQDFgXaoCY8kjDovESlnElXPDV1+9VAl6C+gRrddwjKg40J9OQoJVBw/5ToTJZCdMz+Z4CQpTgXIOOghoxDD9cGJ7t1qfnCKr2bA0M59QummyiszdbVo1O+GEfV0Z+F7qsF2z08g3dOSqXOBSzPNruPO6GwA5k6X2pbwqakg4QjQTjcux+xnGNKsR+n3C4FXIGZBjkiNsssR9Hr90PlXBmMuGSSuIe4JsmVQlYMaeWpwMrH9iEmiEk4VKVqI3LybOmY/hRrdfzO47RJQwyUeX6EhUgizG1MgrJonfVRdNqaPJIewNCV77wUmIdexn/WnEGV2tehTKry3ncyN4jieukDTtBCTdegmGGI8g/naG9lABMDCYOXvh5ASLz46CpprHxuOaePotvTG3I/8+RDpir/r+oKSY1srJYzM0Ygeeaz9PqveBudUzGvXEemUWKH7PvJALXQ5GoThG4KhOVsYTW4Tg/Jw5+Csp62Rexoam8qwlqB7zpdh2qQcKf4WHYeGqeSsJMVS05MtroNxDjoBvTES09zrbxJU6ntHPs/SW0bWJhjf7amJOxSfoOYZQUSTcFuxgEW6YhPDAr1ah3l6t035miQyHWjsxBZZpSrtJYXrZgD1qfqU+DFXRddDzdHlGf7LB42KAJOXF6muDgLeS1RsOsC5hHY9ehjqiPEoBnEHvB4GOjeg7DDuBGckzuNEQ7Ad5ZGR/Xt1WzblBlHd5IMsrVaKf77PTuw6LDJ6TYVEMmjh/VBY5Sh8qulM0AVh58qhSlIdu+Rl1V7QR2eBRVMLL048fFxW3x/rUdmHwH41K5/qhxE0U4nd/wizj7Y2mlyBJBw0gioMVFh/93SCFuO53k/kvaCgaLOI2KfKdYAQHKnwdcGOj+GKNc5gkyKQmy82+wgNaPqZIBZy6tN1yN//eMBusSpezNKoM47TY7/vFFUbQuA1f4lQK7UbZMknaVM4LHNcqJnh/ko7yEVPrCr+3nYbJ9jcSMnavq35VFb5K/VDwLP0B/+6kfF2He7nJAON/DtRQKxhTd6Ey3oyAMLPcZDKD00aKWiXNz0PZrx2g/nttBKzop8jtLQ4vLigyQuXKtydLAiytfdF3vl7w49thmGrkk4X3CBzvxPq8jyJlC+uMjitGiH+5aV+JMUBlpapgtWo3V5xE7TLpDeB+TdiJGNMwk84vCeStFD2DSv5h3lHeUWgZJjYvNFKj0IPuMWxrBPfnTVVnuq6UoD9dH9vBkjgtf3NNaRny0sdD93AuWxj8IwJUivup3Fa0semfgxdDFu/evjrBcDpF7M5vfkF2rSZqe7fd7ObvzGpgko34mGCguloC7PziIIDm5twEe9thvK9yopVq5Ed7YaAYoCMhD9Z4bTFhAKWIfTIfDHPLpmdcIv3xm+5GMzUccr8U/y7E7fN+b39GzOXS+6X2653VvmmbBbbFwBzNZhCe2Zq2o1xMRMrK0AekofEI9ftcE8udRY17+nS/aEOa9HKsYQigPiE0cewWvGuxCptanV2wQ1Om1gZhVu/uzUvjn8YBZjmp42OyJE3u+SXUopmUIjc7eX+H+ZrF4QSZRru1RapOoGBwEVusvypTE0XZNUPkXcenUNH/ILUODLr+mIB4dziD4aXHu1QfSsHV+IdE9iWY8mA1hYn5fyw0lFCi9kxOkluKOgd4YumqcLcjh9TBVtzwpjphlxdwdYdSpQt4tiRFlQgwFtnSYg5YVOLUALIc/Jzj0vI0p7kEyps4RDy07aHmxdgw0tAsdr5FvmvaDHgZkP5c0CrQU5F/2nmWosDPUqUtSScgLqMTrSkrw63XkD7IGCRff7DbZ6b8soaQ1OZVdU0YWpXOIJYdlfoHxR/B1fjEYus+tuuIVQl0427eTNUCeuZKdx/SS/PowbIOaekzurwquGnwZznvtZX6te3m4M+2lxLJ27LtA858Yvf8imRO4BGlHkV6NE0Aaq6434NKyYbFVFL7uFFx2PIzOd8W3oAdyn8czvdo8VIdAo32ajP4ujQ/+/RjidABpZrjvH94GcDEZ8QfBpdhZsekS6kZBmpdzTVnyluiN0cqPCV4hjstnIKoOz7QAyMOHysLyRaKC0wy7XJKFbnaptvaPZB8i97hoJOF30aaxcFdzog96P34sod1RWHUBP6hk0tsdpaAu6T6DT/w2B+9UIFaoqZZMz2GwhXRu9QJGPlAel9JcTeJGT4GZYLRbvX+xAsdK9EPW3L5ZaPwQaoB0O+Ri1nbJVjf3k1X3VlGUup+fqNeeWUvaM57r0TLEaREuyfMu6yb3sGsz4yEARGVLsMOv8z/kOu7gIL9Jwhvk8Z/ols2adHATRnEEfTcvvewZ0/NHSuqr82uj4rc2GEnniSgMwDOYQuXf1yJcE8s7dTFdhrQrjHLokaXa6W6qhekRfFT5DGvdfcgzm566owZFKB2jrPERm57LcuwoikYF1mXD4R/1y5U0Lt1WrXQwJRfSmhOzZzAaUCPBsCbtojTX3BrYVJY+gJdtCbJR8EG0cYlLkmA8lo4bdzjZ761PyAbTnsoUD2U7OfWrhuN/pVZC99kHSd0zvJTyHY8Zl5OJPLToCKZfgsVyiXMllGR5dl/4t4O5OxIBMZbLjRK4mEXAUePQt+QMznAXr5bJvOpimfKUQmwfKfEggmvpk6smogK9P2baEqC9Lkn1w90rrnSISql3UmHXEEWhHm50UMGB7apZ888n6+n1zz5OOl5EG+GGJwA3KT1ooZE7F9JM7jNvxeh3R/Nk7jpUBzs3bAuxLlF6fMbHyj0RgdCKfA80L02TBDLzjkkQixWA0MvH1LjZOw5wZxfbYYpLBqDJ3RmFVhtbX/cjVBYXTzDCbEXK3T8LeN8Yzul+tg7RRgo2Pcxq/r7eW8moa+IZThy1vgPcEoShTA1RliVWYlOqWm5/7tIa3X4mHSOQmiLnn+ZNrQuWuC2jfgJnMv90tHHo5aAjzyjMsK1CtuOoZtyLBNJTohQGpZvi30Ur1bQJdYIsryQgUdlsCJeY3Y3LaELSUEcetystA48kWJ4OMdNuCeEVhW0DlkccW7kRfhhPmwTaa6jNtpcatq369Uh7Iov168Ovk6YslSQMTTUD/yMID+gfSz/k5sfiJaxEa6Ou21jP4tqAKIQNDfNi3XQ3HKaLQgxhwNT5dVDtQ8PWx8KcFDGmZ9TJj4DwQnz1vqzfDpUs+1SnKRXxyHCFkBIFeI4z9ux8cW74Sz6hh6uYxZMQ7WFotThPXEzPqljREzJv3wPfpHnPg0v+7DdgDa+3GG/5YLjduEmcISZxpxItd7J8eUjYWWCUHqdeP7wzEDK1KmgbqoGr4dGZSh9FyGNmCBZicwTwHA5cS9LnomGJHRApsKsOGp2Hm4wwzDGdIeqTxPAtZmzc0YOU7QDTlpDeQM4GohOvn66dbGiKKlMsNQ2kp6puUE14W+4xOQ2KdXtjY6Sj94K0BpvdEzEYb0K1nFgiDLD9w2a0/54icZ7BcI8Hh94yuNBBx3mAUWOWScNeoOIXmnZU9DEmuN5sy1otLcxhIKimEwjHfwnGwZIQ5VEnoVyfyIo+cFff1p/I/Idtoj8iAbvz2tmF6UTtIVeP4qnnK1n1f+UQx3YQZvKpMPqT85wbYT1doTosoHE2GrMhbOlXo53H8Mn1wFp7dkAFSfQb0FLnLNXaDzA3Oj990qebWv/2Ju3bvU4V0bqPgRqYNjhhieCCiO+xsrUtAoIn+hBerbwJHCmeiuJ9B+ttPZ9jJXM1rF2oEIiQ9BwLrM6XjK8/9vb3x2VK4Z+TZFvdyoUrJieu99Qxsg4qpirQABUgYOBr0timlBr0aiVPl8r/BRDmhJovyCOzvSNKrpZzuVE/Lrqsyq2DXyqgr2cs9xahL/QigCXFPiWFpbGgbbH4tGDlLQlQEtNh1WKU0DM2ONQ/t4n1w37vq7bKXKeUlqIGkvoKhWz3pHBbhZ7I23mVahedeDykE7eTXg6KzNAd6P1mIcn2Brey1qF49+A54ZF8Ytb96AbsmCeew7IUJmS4sxtjjMskIAbodfRzMtVpSVB1AwxGCpLXJgf6QcMJ+QkKXl60uao9pbbqrtj4PixnRS2Npi+B3XjitXK9GPz3CscpSojXqD291cR2OQkLyoqdRENiGg/B3XMFaiQI2N6OFrLQalDqycj51zMfQ+vkELAuFcZFAxsvWj2uUFmdscQnbQUAa3dWJwe8gYchvcgSMOn8AafMQg2neLphF7UwGtW405n7pD76vvZ7cUtKa7F3eI2Uwx7ao/yarfSS+ClxLVXkPsgSAC+n/6OsIrv8cvFOjHAS1/u1t6WGch27f200bzpEGUi+5AgLQ61AI/WTBshNyQ5b1jby03iKmObSCD8J/0oEGivSLxuDL1gyU/WbgFhi3o4t7qE1vHSZcPK3+GMWB1LrHCwsg2XZ5RnEIy/zBmJyvdRHxwOgeushD7mO+Xoz0Cz5+BOwrXgdoBxAuupp6X2WfbOmx2QM7CufKiKvVs5Xi+zfBKWhMUi0DgbiYE434/5qKHIHh8zScV3cMKaHKQNekYscDUIFYn/RO/WOxmoU1qBBUODdRN1+zUKKj8l/M6tE5kRx8zRnNRTBoE0a0uSoRjPC/ew+DO0KnFH90Uypb5dzHX3iDOAKLoIOUROXaGUbRv+CENT5berptD11zpOLCM2uF1wg3Slbu4Ml9FC8wxUEQgxJ4chweZ6bcN/z0DwVjurDg0RBlZgxt/u0G6g8XZbTWsGkAN+NIdafBDEZ2zQ0N8zqrmc8A/iMoOQN576kYs4qR8h4kSnGdAN5lonTSxhUuhiHCMBklvc7sswGXuBBjS+OueaLYgD7wbXkklsVSpZi+ovAmfJlorExcZxD3NxfFHPEJ+fkbL++7RvqM9eYUxwzzZto8g2cWlG0B793G19cozmAJEdL3cP1Gq9L38anImqfvV3uhxK/Unfc3QrPNPF+lXJgNWZ4/j6D4NcM6exxYFdw3MjnpKWDZ7pW0zaA3CIYjwuEpZSPApFcPp6rD46F/0gdNXXs4bKSvydI/IRMwYrdgka3PcXVRHnsKqpg9nhSaCaPsoau6iGIBK2Kr1adpDcTvv0YnyivETUjhyCy5T6gZZJjMq58YtXXbQF9xaCBujCihlnW3TOtHB/cfeYB7u010zcbN4XaaISjXMZwzmF4z930CHoCUT1KiD4aAYpxAATr6PLDBoBeTvotwTOPFVGPFjWuBsFDCSyOYHcfrfjgXInMd32n/ZXZ0BsjbyngFu6rPjDN4mEmojyrl+IlrKcG2x6PK8y8ncr9qGuqShjhe0uJVTGIeUr1bOYvYKNJhCYDxUmwZZJERVoUI4aSlvz9Ed9cu2RTy0P2/O5EjaJDBSQYnEkVwHhVOu95hQWf7JGAjoB+BOEk0ckJxmsSeQYS9tWNHaFkjSiW0orLjbtThMHiX/O7HDJ5peziUBwDhXCvCUFiXEYV/3Bgc3DkcKWyRZ1bR1CJgruYUrV/NYqJuZ/60wVCK2y2kRPWFUuP/mA50/R0b28iq0aY3ethu6sh1c8/hWu5pMNqBCR3rrbQEkWb/aNPu/dY4CJxA3GzfRcDzu8LvcqQZs+bBwa8ChMhI9L2KWOVTFnu2M/pjCkffdW+0N5kuz46+VoSox0gQpNMSGWo6XJ3ZhpC7y2RkqUoTXxWo/c5heA9bdJF1cu7HUett32nprOZmWmmKCKhMJzjXPpADNMLjxRmZpSf1fJ52DPGTjTtuUCzEh39KyCYy80chwUY4swb7D0NQntHfMA4QBZkVw3kRDQTRd4s+WMDQ+DjDjIbyGzHZWTWGevTJWXCEwBCYgpGdqrMviegDh0XYsE7+BQOcQXgxp23rAsMgaPaKw+6UXlEK7xS5SuVgBZi12h60uguO0PstQajA/NYvsjE5t3NMSyvrYWtAaWXjwG8Dgb7wmcB8o6QzGOIfWYG3yhXbOT7SezmV3VlOl98EphitN00afI1/18SOzc//dsUKgn7XUFl9I0NOAvvinUUPhoI3+JtEy5/Zd37hbFL2+asv2SxVKFVbnjg4mXnpT1SCverWI/kOtYLk2psUclQ787y0+nhk2PF1u+oyaofjYcmuISlN4RsKRRuLN8oEThjhGQn7dXYYwrdau5Qg8vCDs2KS4+8xNe/SiZGpeQfi42P7rkBdw3gaJPkALCHd0RDlpqkS+2qKuNK08ZGUyXVuumnOX1lt4nehlU2YpyErWuGmorEGj8BKItu/SOKpVftYLHAx3vVxz4ko2qvwJXO0jN0P9sJXUk5f0OlKkf81AE7owNU/AdrEbAaoEPiQKFtO1FKH+RwdjY2o9NfJGiyNvl7NbbKz156l611uiygypFKig1sPIpnhvhe3pXDJ1895e0vs3ZNol/epYN+ibMKRbWKMuybl0QevuAIkO58H602GjLoRyd3j6GrKluyQjtbxklssh5NdiUfpd37TRzrwLcMseXKcW9Um0QKNyXPDH2ZHUqiEFFt3GsuIak/VtRlF4BilYhsuPsBEdFti52Ythw/UUTb8haj2BFrpixM/7fIBWE6nLhTriQP4LV1Bsl003lavSgaUGTQYH7GbRtomJad9S6kF0dMqxXTRFBYpu74I4BYn6xLfoJMuWcHPrKEPvC5gQvLi7Pa+b8Mc3uvZAfTf9QaVeLfHwkhGwUCLYAZL8qO0eT+Itk9DA6yKsIq3Vbekbv/CcQ/WiC01APr6CiM6a9K6W7GHLwASrGQBLXOJw6aTKpl7MfFKwN4AwyNPwRsz9TjDUpsN4x97iVNWuf8XLHP2pSBZzbQv+7KJzCjNfugtw2Hw1QbJ9KDXr+ZsQxEVoVYqLnqCTYUTAotR7GGguZaQlJKdrNtihniLE19uPEiB0rGSqxPPAkJbxwSee4DjVnpRKxK9atPAqQr7dxigFU2m50IdoImYIrhV9ZCWJCZz9NjSydIWbx+GRCgFDmmFy/mBuPCjX5P/37ZIy7npy1+33R35592aq9d6SNojzanKeXb6p4xwhsOl3oM/3O/FI0LBOxAeT9KEXn8fTizsmrhNImvrSgF8Stz4qTda0K0ouftuELdZSE5wtXczntnaVFF/maIUl6oAOd79jKOrACSm5kbTvr6Z6528AN1vJ7zGMvDtqxl74gGO8DIs9I3AflcR3Om/qeTyRkCliAa2ACGmpN3j+Tqb3KHNnAY/Xsn7ueLkHtyuM2Zg81f2IszZrvotwf7YwjU4zwwQ+gKva0xwW7Kka2XL1jLiWwgEVrPROUOfq9h3Jr4uXGRJP7qwC+ZOdwDI8KBnrXHbgHBj5k+Ov2KZn9YUSV77nuj3JNCJ7UHwluykboEg7g8OrG8M4+PbO/RpdpbeScX+GJ5VhpdTKvuxMLHbuBm1skFXdqxIYEBZ1CJPm9UqSQQKXpTNJ9SyTpZJLfhSKyIoL8QaJmJSgUEr4g0Lk6s2yEkRmB74L/g2f/8uBuD3Xl4ZsfWNDDBeFiVqwmgyP1+NdbOAN0xjKhA34Czg3gv1E7imasOBT9K8B06ExBIS/qWNyM9/ySm0RCJ76nr+8ECg9BWy7b1QsmLA9xZ4LWAeliamB5SC4yLH0WQI20ftFo8w7HXmItse0veODAVSHwAAFjKI0jxhIYBp6ve00XuHgeyxoqsayiX2JmU+MOMNFdSdB7g7ytp8v5ZfCfJdCCgLhf2VEOS2Q7HOHfdQRPfu9hNMU6OFhchTD+IeVri1gBP2Nrj4gSFAp/13k2kv/ptqbJ+OXkvmM8fRDN86+pB18+nKi/xN0253sAjVUaexOO5npdVSQgEw2H1lJsF8N+7Q8w73nbhpi7xljsYJzk/YfZG2jSCXhhKW6Fp87yT++2GwfnBDzTthncvUMAvGxlhB9EUi0yvsISL4hgLAVMA3w88jno/v+j2P+Gfuv7W0PVjLCnnz4jvZuH3FiVYo0oDyC7ABRXERFdOTRn16R+7Dz6cUz2AT4ey1Wkp4VBu5GhHG3A13H4/l1I/R4zfpbF3HA1Z2o/13ZDCDwCDRtqGhTmeApNY7xgtNE2UHLZHfoyhe6QjNZou7hu+b6GfnQL0pjtZdCYL028KdgSZky76/0Ygv8+KjLQhsjhyXIeqy0qPbZO5T4Orv+TBJtt02Y1rtK6ns/CTSGNJVkGa88b/wRM1jcQ1nbg67xbYNM6wkRrUkbHKSnohzpVa92gw9cQ/xX4In21IFttc9Oa+GSHtp1A3ChhcVtCzKQVXBRY0gsdYrQre0NkURqzUfJzedoBXc6zt7dgjk9o0eJ3avUvq1Z7/o8pNDrjqiaFqqry3JrCLIF0bLfU/cunA8KnkMXUs0HF528cJ2wBy8b6BzYMAQYopJDY/O82QKr7yj+Jpr9l9hGbLB8ufI+dJh5EqJdm/3MaWd8/hhiRmANbr/rC7Tiyd4FWAIJbvtGhp+3Kc6Jh9v0BjMtWWvomTecyRRrumDth1EDieMr9aGPg8bTqKogZN3zshrEdfYpYXTWYMTDqkvMkhh5DlamFl3TXegQdCoJYtTFs/IY1nQS9HxxTYRPLxdASUbEr11cJgqYUUKTMmBWFpaTGK+dqwEprHJgzfb4Ljg5wwRv2aJYPT9iXH4+H0g4j01m6TV5wV7MxPe/5aqtMM/ghI4txqBXfUk9MVk+FlhqXqRCJULP9fsRT0yWLs2RotA+a6sVvA/v+f0g5typbyRo74bg+SuIkSuJvrl7YA3o/NVbMxikMfdY2Zv2cBz4pWAuZo4gtWlUxCcJbTmQJdDzsJnQZDy9B5fZ18dZfJ9qtqn/YfCc5xP89R1d+BipLgSfsZrZSr9K3RePFJuFv6reo8Zle9GHt8QGEwSutJp+U85ios1L09Yngvs53rBsChUcUDsBJ1Mi7pJLfpTMq07TLt+TNiUIqvyeHDmpSxx0fF8qyA/UpxoosI3BWVP16WjsJfQor/F5ekBzPG2haKilzKmWOK/8VAzHdyp/S9W7A2IZ6QMy+pj0pg/Fjth4J6RxYzr03tal+KuOQzl1tdSvGAdNNJyaTtMKahz1Euogz9Ggx6XAoPGtuxXpLx7gaMrDpjysVKjiJXGaULNu4sfw3rqhK1yajP+zZS+nu9ANKNzcYHr1S1Wr8W2mSoSWvyPx4ZsGCul6cWVtYPbhUWzcMTGqfO0+h9yx4ikvmDvBYqANg7oWg615xfeKg6AvLh/LuoQSFJRs4m3D6GRIfu4WvsfQNrv5xQ4xKa/kIGSbymu/NHurC6M9oAO4lRoiWeCGG1dqDGD1pwn2yJvd45dK37u0VwFxaVS0CzNb/eLDHh9zuEx17o1u/k1UH6LHd5Ovi3pOuRz4JJxdgqxSZ3utzfK6734jz8rV3bdcemF7gzetPime/RQ5EHkqUAOGBj4bSQYyKSUYXpCMjJOeoB/xHQgDK6RrgbkvoPZwghDQpSqTmykNGQaIFJ3k20daIk76+vWDoGOapDIgVIJjLs0HA/yAYz6i+s8qg8XjSYSueW9jfmE9G5vuZouESL/nHUkwrMjKOieBT48toO7FxusUw38GSmuwXL65MhXHOVHSM5+m69nZBjDFKtqJe0APvmNB2ya/2dt8OXEl8m6O2qzzN+A2QUPsq9/qCUd35i4l5sbDTqR713h5vRZ1dpFCorKSYWfvfNxfmif2L2tizxJp2lAKhr0ZB9VSsfLLVpm1OCbWJ3ces+pfjPM/8pHc3VxDOBlEyoXnQcZSPI5ZsgvAJHhrnq+Wx2NdHsFhaVzxac5MHR3jpk9tOKaiDVUKJ+rjSzRlWLTAMIu0/AuKanOtuunIPR1l37Z3zk0NJNEZvD7NkjcZDae48NnAB9v/B5eycRmf3WmLf/Yxt7JLOyhHQEEdtmJ3k2o0nAMs5zV9KYL04sX46AcehHQ0cexbhkVikF0I6QgevMeMQebyNCJXiKQmi5F2+RcmvMHWQYhISO/Du2RciUuJ8Y0DEsSj+W/0OVnCmPBHoqnFSXT+TzvgSL+AsMTGdKIhSFLPA/BvOuLK5U0mT0R6wDO//HE3eIErY149V2w8s/SZKJq3ezAPavEnB1B5eFSqOQg6uBOTEoeGRjov8pxtNpNO8uMArZZOhyvGt0eTC54vibOiQakkKKl84CFKSZfxD/5AYn+ZdNAsQdGDvcgs/2i/CNPxPxGPxb3HnWymv5mP2oVOLBrBWnxmSdu7HS7fLFuhigWqRofYk1yz0dM3jZXj8M4mbRnZV7EYg3DiFxHZ3V+RaE+iDRaYxCudnF3ZEGpboBL/Lw26I5K757F0NT1cRTTwBjiU/R3/bScRMpUCyPIXTyhrjWThHveprjY1qizqY0Z8sirObwJpTnti5v8yesZ7DiOFefegepu/Yc8TBL2KHpz2kzYsNhhqYQZQp5OdghNTZKRFd2wyzPd2N/IpFsFVeVslJKV0mYCOdTOxxmBpM+DFd3W2pjtRxnZZuILk79otsJEGrpVM0P4rafVYGg0SQhc1ci1oEWt0NxAmmgTyj60fxE9jGKDGTP0GLMrDrtk3v9pps3DIIb8omR7epOJXi245QzIgzboRFm031jw0UgEIhcIouhsbcPPpicEnh88GUzRe7Vsllb7BT225YJHIr0+yLhk0AtKbc6BU99t2wJByOJL+CQ90sDS5+eY7obb+OF9mCPToQdUGe4mRGqy59Y9bzl3fWShZwjjwRJ/+kzH+JmKdy751NfQZGDJ7taAmF5P1UDsltKxkgQkc+ZiI0dRGXfdPq2uAh4dq/laHzEFIoY6vHcP4T6s9JG+uvvAwPPIg04lQEvj4yvXQhrwCze0VwHjmNjVhBAGgncj0hRlI/oNDmKu2kgHQ+MwPGp3/sRB+rR2r2cCJVyN5bNPE9/Mdo9dOfyQ3Uar+4mxQwVSfQE7vswx+hCQElZ4i9tcrTeXcY1ds/FGwcZgVkmAbqOXUXqJmHGT8XLMHlfk5UTFZjA1i7S21LK3wefkjhJS8mrRcJioQsi8llOofdVVun5W6hC+Dka/vqzuF0/RJoolZHFIRU02OdprrXouDTxLTp6mK+FV/+dmFXz9ao4BNiG2jdpd+/1E9jq2pw4Khx29f83YnxoLy9qwdCUyc9h6Tq5EacBmKPirw/Cx7evF632V4kJFNIKPieuLdHNMMw8gPyHtg9EijVhoyeS+3/6S41qWTcs5Q+nQ7a5Iau06QOZtC9O2/ZAJBJwC+pV2OkCV8Qn1/2K0PRVTnaxBIKn9+CM1XvXn+M/fvfbZ/VoQmbkTcmHrtk8wjd1UeMaHs99DuNyWeKSrNxvyzjs0Vxet/sYDx4UOtQ+6IsX0d4RUmv/KB8JLSq/E9Ptc9OazVdchhSVrmPPpqqSLFutqBDTbidIRzgUg96ycCbt+pz/Byqa6z83laYuNEUBw4+DRqyQ6aJcXwTlxp77DcXuw3Rp8WMJByJxzjGd4lGr2LLJIG6GaK3ZWSmW+lTvE0aGombXNhiBOmJ9VL2pCm/O1eU7VvLVYn2AiTpnCCI/c9HNaEnzXRHtjeHgLZPV1lcKn5RtrCjKMTjodojzU0NV3ZQZE16NCTu/aRkbc3gz8MT9pd2EwuIpqoiqPMgqrl6EYaCFzAUDcNXk0FGMYLP7cNHwaeDb1WAEJEFYOWS52f5D7nuP5sQlDXEyQTMI1jtLi/CghVkC0vOYkhymHC2mHgt/ULQ1lJ5inid7FzcOSoTHtrmyhwAMcWsiA+pUV9QUILExi9Ric30i/2SW9rWWFswj5htO3h+GpeND6NiiuS4bZdzdztQNLjLo5+0VYSzJxmHrwQ8SKLxSXX9Cs32Q/yXDXuPXEyG40GmJqrTj9sO+xg69Uq9be//lFK5XwsDpmn3r0ba+ZPU8B6C5nG8UkuypXDTNdyqWGINGynP/nraBq3svCBvMQXDSY9I/mHDYr2gJBpiO+wxdmEjZYWdgO38vAr/nQiMMV56k0vHh6qGg/TU/QEJ1BTuoQs+Us5efuFZUri1BoXgSfUOe8fvWRS7hmzlVo+BnUHfLdCpy/WArskH1E4thIRP8YPPEdML7W93JhjFALx7zVNLFgTOxq7wKlNp8p9nBeLC7+6o9G5L1eJ/j/DdNAUqhZWlgukw0xl7qEQw5AnVKTbM+uvN79a+3tFatwE/CdLsuccDRJKUCpv+q9TCS3fp0OP/s6/O3MkHeCRyzxgP2lz0qC+WuMtD8uXEctXBYHRWJPgVNQph/XJr2C9Jl/PeDkhE90KqFGBSNSSI67m5CRTqxHngylokAiigW7jefgLskGeduGYQnniZLNynnkgu+Kvw1V+Ej888v9zh+0KM1srrD7XgW6px7LG0tjRbPPVL0/QpV8mF4S84kd5/ZSngwi8Fg7pBmPzJ1/mYZbH6HaVqBjgBmN8/0kg+ZznG3Pi7hyp+/KpgZhgEYmKPqsLwCzhcFeckm0v0/dss/fq6B/LjR1NKc4JJgZ1cCYbGCUbOmwLA8Rffrtzbi1LeCoHWE8VuUk8I+K+dfMif4uStSa+rHplHl50p++W9bYjN+B+fA/aMTPUn8PjmoSIeoTLLlAn4ViWCGATy7PvjBLkM7VFoJY5PPEGHEN1sAwQ5lljpWjXGVHC8734c+k622PQOFQ6GGcs9ugbjYToXseJ+f8xPfn9xvP2dQ1D5SiDNT4Nc7t2r0sHe8rKWfI1cEt1G25bil9Tvl8n3LUnde3ojwSWUAB27NEEN9ttzZDg3QV1zz9e3+2vOUd4eRTx/MFEEBCNWp+YJauytSecYINOclMXFaK10kvYxOrRWNrKXhzJ/B4Tam9kBwdzf6wtkbhr1yXMJWn0WXiPl2zyv1WmPC9DpJigmiVLZ34eLO4LASM1s0eEJKk31wF06extPBjzAcI9GX4td177qXSXAbZbEnhoCsc5QkPYCfiwTxuFbA/JZN3DjThDNSXntIclwK5FtQlmMQ8xcB2uYiF166I0LMLXZ32e8f9sE1WFSgLMhVGemFOju+aLw5L+Hgjsgi2RU1UNNyrAPq3eujBf82KA74XvyZXUEjMMjJji+uLtSuhcnY8bpbxAKUUL4qtm/TfTJqz/CI0uxDJ/IaMKTotwszzrttf0L3rbRR1cZc38GFdi+6/tzGlipUGA8FuArWKbsNbAYSmJZJKyLRkhKAd7Duo+nHle+5rbawRZ2kHtQ+qbS1KYjLyaT7VpePAwRl2KFYwINdLGgJQ89rcuClcXRx05nQc+IyerG8vtu0jEJh9S20qYm9RAJUsUsY0QALxfjSZGZi5R48Jw3TNTY1jG8Wv1mtrylG1YTwrQYlpMx/oL/gOdVGcRVlU0LrUAujtKtW+kTErOLTGeoIybL5kgfy62OW+M+WYF5vxO61Sa6jbfF86mpdX1ihnPPJx7OqA6/m2z1wz1fTdxD7JWXbe2fbv4OPBL/5Lj91DacDGL5YqX2RbO0JBWJkvVt/0QXssfSJMYO4tXWjgnCgaARp4EOG7eY2S9eC72xgiIlGq8iIRKEJtwYmtkv02Sa7rVRYp1o7RYHjPMUk5pGA9sXRUU3/Zd2CCBC1Yd50+okZ/voTZNWQmoPOI8b3RhWDYXQqQFWg3J/nRtq+FIA3hjfDDvO4OGeIlyI+eItQIbWN3+h94XIboDCD9D8r++ZbTXuoIGU//hMSow9CiDEHXero0v1oQ33GzFUulqULyMx0idAgLvo7v8KSYR8pOUNDBKV6Fpo72TBn1YI8MeeNFBB5Qzr94DT5RCuTFAXoeJY89G8oFt7j9DHAtyit+tHXTn2ZPNLCJOOVUcJr/Nely0Ib1J57qq8hBB3mJ3ejmkiRPLIJYxE1+Y7/uThF5N7+JVKQvJvXoaYr7f1lXIXXS4NUS6bfL1RKCJf2uMgPq/gEE0TL0jWrV9AtRRVhEduhh6CHjMwqTWF2ufhyL8tEKBa4//nOPfW6rWFkdSmdnB/bh7GLybOIoAbFN8WGIkhQCTlcew7wXYMP3OrEXFEeIj4P+IvkXJKo6/SThYpGj5YuitWborK47xkgVkl4ok9KbUh27Z8RJxCnLiNPHBk7ms477Hmp7xz78h7z3hr6mj/Z3s/GeCql5EZW0ZN2PoIYRzjSVVxgBtVeBno3sCp3riV86MMCKMyMW6rzawC/y4FJ8WDwuq4AyMBOg64zIj9zKYZstnDuQSu++eKbTCzx+RuT91WWd2j/bpEEl0mKKVbCnYfFGuO+suDihqZrwWn8j8ne5zRfqy0EEENRRYItz+WqNjB3FMMZMquD9ClJBbxl7BYQVCUlsDSicibt0xB5zIJufLKga60qSn6W/2EGMVYMTViXWqQjjCMTCZxv4VJH47Rn3RfUGLuXr/dhsCs08xU0OKslKe6UX2LfZYzWmdstK62TSffjGzITEoRlHm1iUCGN7ISMVXVjVTu7eCWRwjCskUfDdHANxuA0U1+Ggn4lDnIjFztmYFzUhvBtxf2mqcDxCnUqhmSI65YmxITnnUxnkxWCfz/Bx8/IXYkUxOzmC651VdMsMJNYv+kVX9po2GTUwjoI84SsSEnVG/c2zkCzo34xmIAP8Av51/lVjMg+WJWeHtKZZIsQnbzj5maN79pfkt28SpEwr5cWQ0Sp0Q8RjkovqWVG73C5Y0rmF3lw1sdfYhaWNLprrWtOG0V2izmk4bDC2qB73OvJ19aKlz8aWvdRONyfgkNRUS5XCwj6cs5vCRFUjFwJrB9adzLZn+2TcgEGRLYGdBFr9P1fCuDkb92FtdiT09xv4QAB1UvOgq6kGb8XLtcMwyg3RfIzJYP9Auzi8Yo6XSzaCPrL4wtF5VT5vhJQ+C/Lc1yG5+Y6wbMRqthiyCyh7h4eLDtAqh1DX/q4QA+YqVhLuIrj1UODoPA9YNNd+KIS3fFc0GY2OCrkzS1EIJf/soLD0m58AvvP6FpBPG2+Xc6jWgnmcBgFGMV9VwBeogpMwUp5ki7f5gKOJUPXVndLKCJLCAJpS7Siq2iQyqCFHHqDUu4Te8sNsCPnnvHAM6skm/It+MHefcWCYk+w7OkLlN3BtyWoMWZ9PruOLXry86hakB3gjPthnIGrzmP8cLBnV/bCDhnE4t7RL4CElYNL+uSvuTwT0dbfQmYTWO1mxbb5aCdixprXwiAjFuwJbp12Y9lMeETjRRGjWFL50pk951VE0TvXjVcpHe1nOVF7ORBotEtr9in+bTz4+ztHOuYaqDAkz+di1utL+Y0fAP/3Q1U8JsySjXSwvbOvtiHqzYhoL2NIK1k8VqMqoHuUrgwDBnFpnppsRK46CVB4Ht0gS2q2j1NYsPYOVsCmmCQtcD0WTSgAhC36fAs7SffWb30wsZ7diNIyiUKzxFpee6msarxtZM8CYhU7TR6s4NUG5OjAm1TT3Z7HGPwvzo3MlFz+1D/asbvIbc1iUWpZcrHRH4Asp7y2NCbUs8eI83x2ZoJlG6Lhi5n+YtNUuZt9L7JuOvSozZoMk+A8ZvkLOaob+NBfWEq3WBd7b29nGYZvWUvV7Otc1x4+enrsDOHYu8Y8VYv8CyKRT9zAfYISfsoB+jM26aVM6Kp4RBgxX9abdULaXfwRkTfbso5ElzV8wxzx6+jLQeouDQXnpZWFFi0u+w36VCFhaDTt57VcSGlo/zFBCcKsF3M4WUg0mDuOdpcgOvlLuqGDzAkmQvbG/rW61KRJMtfLaHQDqqrToxZ+nDqqBGseB8uvYKcAQCTan1d0Vsj1e8amqj5ojzuk0sezPuoFEQfnEQe1WbL92shhNDTOYm+pjCsMYUgY2guSV71ZPMXavgr/4dRO2P/msqXg9PVUFYx23ZX8e0itfKjsk20DgJhVcC7/mOfjfjf3jt7XWZBWs8+knBZkFb+mE4MuXF+3xSm92+zeVsZXtEsBBiPKCwsumNp8qBo4OkardYx25W7K0OPDdWnvJKJyUtQ==
Variant 0
DifficultyLevel
465
Question
Which of the following is equal to 48?
Worked Solution
|
|
24+25 |
= (2×2×2×2)+(2×2×2×2×2) |
|
= 16 + 32 |
|
= 48 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is equal to 48? |
workedSolution |
>| | |
| ----------- :| -------------------------------------- |
| $2^4 + 2^5$| \= ($2 \times 2\times 2\times 2) + (2 \times 2\times 2\times 2\times 2)$|
| | = 16 + 32|
| | = 48 |
|
correctAnswer | |
Answers
U2FsdGVkX19Kvu6zKvVc9Wf8jpf3F0HOUKAZ3HiO3E7fs4Lm/krhwc4CjpxVuuPznh2Cj6vYuliwnCFJyVABW5RjaaQyG/OwRQNmkeAXjpWiHXR1R25Irjc+awkOPRmMSPfgTodQ8ydeWrRbeyaZjaeghdf3iHQVAQ+kQxyu2wSH7jIwZ/+9GRiKoDSSQs2Q13FEDwoM7XjwV4l/mbl1pu/5gPCdvcc+8/z/vtO5FILcvGE2zAO5SQ/hGSLzEfDy162B9D2sC+ksDyJsRj7EkvEdrJAXB29i+dbV6hpoH0um5xQawtLwKmeLMCt7QgE4xNOSSqlnRVKCGOlKj1da6d8O/l7fOXX3DL765ptoB7RquPUpLaonkZWcrSEs8BmvJQ1/FHgT1Ts46jSPIny3J+p6OZ6wuheUxRc8XpHXDlq34X10H6GGQ+9BXVuZ3ehaG9OP/oTfLpXcG8jEHwUDhJjeXCIFsUw+3HQ3mJYFYWPmsXG89gv2BE4oFvC5HilXNDkBe1Go54yqxCBT5xveBXQ373tCOYQMbPMn3AAibKTJ+q70/7MpzPs2Qq9vj7N3cI61GMp2udJ4n4CNpSpbJIfURXnuZ9LekaV6JilmfDMuxf3/fL2aBKyFFTkZIg5pNA/zqy4mC9OFfA4g2KKIxHXuJyDUqlD2Ue3bA/cWp00FyF+PvM3Yyg7K5wBuuYvE6xYG5i5lapnvyY6Rqzq5mxRFyeoxz8CIHcUoqbBxJ1AWzYMIpX5JIJ03LxNyQDH4XNSH0jcvRS4aSVktiBKVf9kCpWQrYb063P0caIlG4/i4S33w0BjLEc70+3tMp2JVq7s6wDXIbT8wF6/u/Wz2pimmqZS4j6Ku69vhjC/yipjJdCk4h0IXfq3BWaixSkog3/OnWnn0WsPWUs9mp2Ecct9vurgJjthnUW9pcr79kJxuX1nO1NSyM0jNmxamNPjgYfXlBvodrtzgSGS8f5OYP8DWISgNHRmNHqgByFtkda4imb61tYdV0Q1Nb7F1bFZG00JDbGtYAhJ/Z0pGwq3FN/SF/GrlzcxEW8WcG2Dab5UicvGx+BSodGi0j5izthgLW5J5+cZm9nU05hPWQq5TRGyNc79WzUqr0wWqFuiUYhj0YGuA5ITNEiDtjLia9gP8sT2jnIrYcGGYpzm4nO9k2hCHawRWk6fstAZUfHm9sowSzr3/lsGQ1DBW9+P1KsmdblZ+rW/2qHAerqgbP0RNfphdRkJ3TJ7QOk9TDwyyfD06QZ8Opt31LfibX/xFeGlefmde9zRyCzqSBPv53xSljPH5B1jASsnHj+pgm9VKgPf0NYGUk/93AvVBOrugh4r0+coUrWbhgBAvjyqGNU8oxfmmn1pW8ngOtWmgxW+DFa0NgiVxy7jsPtTrVm0kxVRY9yctr0quDg2p61M5W14v0A3rU1yj7g5VQG4f9WDnq+EwmjWVCQcat+WLmuWRxNyAC7rlhF6P3mi3iAViSspSMUrx5Jhnw20clztN28AGP4jMuHe898VqkTL1+E+MjfVMiB/nzQD5brda+reI+Ny7eyc+8wEITxGKg72AW8o9bC0NIfzk3eAbvoAt5n3eE6798SeI6BBAwTMqBITnQzbbg5Bj3bRpOC5Okz42QJqUlrf3krctjfMtKTElSGRiAMDjHagywo33tP7gMO+x/wMhMF//Z/ZNJ5uIbAHuGWq6YWlTwn0LJ0Vfy4yduVjrHwACGDJrdV0q5M66aj6R6oRgM0pFRJTybNVm9sYLVANROVv60DS0TG6a/EYO90tUC+RU+5X1deHCG8hyYk0CRCdn+nQ9qOUSy5pU/gZwHp9/eOthWINcoYL7AO1sOaYYEX3xcGGFw/sCLiRUF+VzHZdtpxGuQdECmS9B/jixHY3nhHrkdeQrBAlmJr5E74jWrWCsUUNOUATmvmL9JdWCH5h1vR1UJCVrDRfln+h8NAJjnUx0LU/YzMqqNRCxg7GAGvxjC8pTjpWu200kC4Oh/hRtBRUVKvsDMeDYTYgJCjxLaa/oC1EvjyK5m3f5woMfW8oVVOGBiFp/PI7L+ayv7nZrIW50LbLuo6J0ENRMzxdnUxBLJHL8Un2X5/nDwb5gd/BedrMniZtfZDrkL16rYQh+F6guOWLhfdTCPuNDe6RglQV09dBp7ORYPUm6y0GNPiQBWDuRCKMBTfIJlo1H9V77GS4J5/Bnk8JYACJZ8y9XXgsYVVIHwLgQ1DLfOfHJ7XToqiqvzeKlch/As9F9WHplNRFkDdIiipVAk938QpPm3Y4UW0OrAdV5xgYKH31DIACpwdooJObEfZWSsXEoNXZ9l9/8jwmMFDyND8itY+KSo6iLlgdwC631JXUWUA4yVnqKy9uMJobI31tuQn8DLw/U43RJ2cUfsal6XCY2eloa5jx7LIaKG1F7kYXJgMCnEO+pMAhvB8SRQdWdjj4yyni3NAqmz36Y+VKf6YM7XGvxk6+jXI4n36CYshsPSLT3gsu0HhhA0IbFHd3drs9d/4DEugOs6BU7kPeEA0TbM7Dm2EdWl+JuQqC+XlrZszhyCgfD6fI3LL7CHlvfY3MPB3KOoEon5SpgYTJe5rTD8ogsJg/ZNAadubXqDtd6coJy/xKMynwmrOWvSHEhDb7Bn4NOYYHns8fRj3S21DojLhjeIR5CodsDjE2onQtOK7tbzyTkI90jgS8Ul0XpAO7svNJoYEMCSZrsLML7FnnZujQ8Lloc0FGmlmKriHuXV0n74iAba9A0cnJg91sZHZzpZollTJ8kXk76R8mwyLEQO0VYAF6gitBneB3u3RnAh4SKV72D8xtBgmEPHLhUJtseZ2f1JE2fBqNSE6LFUz1e6kjKMBukv9xZs/4RBLEaacSgwsF2A0WDIYcBj3mpZZkURXTtRyHM+R4shaPCtjt+CeaCGHhnBd9Gc6+IyUlRJWkEgVmmncALmzxr7P6lyr9kQ18lFhQk4bMMHAiQ/YRNACywxi2t4DPc3qUQKSUvGT+CstlVvzbsR80GIHCZlBMAiDrCBujKuB9eewWuCa3dPb3YqkjlVRiI3Pfa5iQnW2KjX8GcyulrfSzdbVBb7Iyv6pG8XPyVvuUJ5FUO8reagEnj7SVweXitgKXZaO8BWEuiU3SXXodHh2HDTlFenKwRlKyXJc23mY28pnQglCXYaM+hfGcAQ+hJ8WikRCXRZ+QntwRshe0HG/Eq5hL4w7LtBQM/7gYPPWmlmUTGwH16t0NgKPiDq6+6x9DkxzqLHNpNfBuIJFSHQUjC+ZU9Yslxnb4rR8i/04v1dDaXnXFeLl0pb9e3/fbg9eWDEtLeYpZWFMNO5ImUqEKiAvKzdbNdq4EdbNZhRlYt3xZuwq3VXVG3uZ/blKW7sRimX4J/ckvGh/QO2E7yBEUNNMvVCWNrUzHZnLpRUVF+364e76/k4VNXq7W7FUjlVf4iubAyptTEaXoFKcKZw7UgaduoLKZDyE0llPI9RRcBsCTiSJ3DChjmB5MSH2gizLaTLu1GKlFLiceMDOdV3qoL7lcEkzgzb+ZC4CKGwSapIZnmGr89x3Py1eXxGxtUPompuFkJDkxQxrNyR8dl3AGROGsYdruJ3AJ5M8quAg7lkXkkI/eEULt8PhJA74+RtB+/a06R7aoFPVBIKT0SAJQHwVlcNYGeS6MwoCLAW3x5hzae8VwZ7vvB89fk8yx0UpVwVrsZojeOwTIh7MeBR4CqjxW1zTw3JWfc33K88AE/0Z19r0iQH8YqTYrqZMOB30Pi0Vjf5F7YGhI57tovSCsUTIHzwdPtzsJXOmzBaEuFuMEbGoV5TOeT806ac28wA/MhdGf4WCnvLTNrOCPpq8NYjXDoMXp5ESbuhof0OMlIF9R9Xs1LgFXnQphc4tFlMjFgKqW6LADWY4Q3i4goCd0V/Rb7Q0kzlnp1RfBxdeVAsNDCRni5zc4eionpPG/74DEZk0Yv0lH7hNO8CZBTn8szKzGc6ziel2zK8cyuymOnTaVITI7xBuPyyx/N8TAG2yXNv7Yymlw73wi530l1ryFEq4jyps1Maj0AxPo9hBS1/wJ3ZiziQkt1PHXMeQizAnOzi5HXayiiFqQpIBMeXJFHdq8/xr4wrqbrfqQTefFivvZSg0KWTyXOWGUJE0yqtKVb2kUyowpz+LLGXaAVqe2jZkeoDwAJlJn4YBXQ4apEIoykdvpO/jDsgkSAAXoqwxT6dqMTxow7ng1h+MVwQsZaRFmtFWTOygQ/EYsOObPaSUvUdxMAXYXcQC9L4pga7VxSsWCjna1cSUvXWH6pI2fn3lEMHhLozYEYYTmz/AmRHY++Ta2DvCEalrO7beSnMD6gVr75Hev95hyzsUdS1hiSd/RAmGpD+UlmJJH+lKndUxMU7+dLMNHgrpauE7I2hpLMzFZYUCTpujgn3s7ZNE/LkK2vZXoF6vxmRIUOWwtyjCluAa0UHQKS/4OtlBXFJb8roI6FX86CuFB8TPByVh/8ANTVDxt/mB5JVYLgLtjoPPX9x+ewq7BWG6HBui1mtDhpcRlMsv3M0DQfVfxIDS3+wZGPzomCFFsts0hKSbPZhnUxCvW9+smnEbuNYeTLNeiC1dy1sYzUlmhaVUgZTkPi4/7Jn/uVWH+lVdpQRRNZOx+hkIt+wJJr8Z6YLS4Ue/aBRIeClaglsPfXm6pH1JJtL9jzhKYNt986PQ6Uq6IHb3FNtbmGTGBnXdTybRMDeFOTd8NcBw/R6uqN83BntD04IxQxuYSXGXVzjB0+/C6NR99HK5LZ002ocDZ6v4htet7RKJXzV9CGiHwkoA7Xh0L6TTbIFTLcvtBQytfBDCzC+WRk2/VnppNz/nq0XwPkY3wN9CuAsGL+hH45MuCtAm86zZ4i1dII4DeJmarJw50ywT6Wv3+5NyWgcbVUdk2ADd9IM+WVYxqmspSy14fNPSKSiidcmfCEDgIkG6Yp8fZrd0qDmGVLK0PD7k+hLy0loZXPFrA9ZtchJatVZVcbW6RafASqiqAMLVjuT3aqVpQQH+y1Z8ZKgKGe00qr1w92ATn/m9cvKVgwTQYTuz2VGROBnkRklLRRSznRfNIGK6RPedZQVjZUkDNl3//9aN9EnE9gK2XWpPiWPHl91Ok0NGLVIkW2tkTcpS6m01Oa8sOhxSkpPEShk5vAZxyRStxoDvzUKdF65ybRxHgO1VIlVmDOrpg9Hh0o7Mmj44Duxw4WMVFCFB2AJYweNlhQ4TEd6P8J+WBeeqYgidSvoEiBlIHBm3oNUPa6NMAbdT/yPtIBS9gjouQaAO3fjQFGGsRDd7wepcD9cT3W0pXC6aC8R6V7o7WW5uZDZiLUFuhiNlTbrazc8m5Vd8eXZm99P+Pn3OCDShZeXENXiugmc7Lg7s+3RawvnV2UoeXXEDqFLlxYpXeCDaCWcJqXz4atURtjNNh27GF5v5fhpL0oghZq/nBBuulawaErKVanpO2u2txwtrtic+IbhQIvYaejuBE2hDbzJNmCIV4kvXlE7+l/7NjIYV/M9MRgI7viTEm4Xkv5dnI0sQyIEniL31mEkuG2cvWxrftdxtLprVrPCC4yOLbGpC4XmPe4RscvR22mqQ3eoNdIKKTQN11UH8dxSLAbbmEEQj+huerOPcAzqu3pji5/1SAntm73GiQE8Z906tlYtRuUSfs0WZMikb9KVwTn2xfW2pPrxAD+RHOEVztQ1zzclxqgR5ppR7Vt2mNnAeQOM3suuvl8Q5Kx/juO9iHXEpZ2vmP5hW23bfC5KUMJUs/p+eUZA1N770xNzrp0BO5gU0HSE3982l2AZd14hF+F5Ot8WeB9vw+feK9rmH+8OjlWhmhFHn2RiP3oFzcWtLw9S5iKL9RwasxOUFkFhRGYDsyQvMP/LgSKTCx8FoEmfS9lgvekxo94FqUjcEGfGbeFKYZZoGJ6PJBf9dySisW5l5eWy97g1GxT3QZh72isaW9LhqUrn53XdzAaqNTidS3PH2R0PUvrQppPcXfAWATEQIiuLNILCYr17m/iKnu3eFTuJgz8kIhSUBiDUxda/nzu5+Ay8q5sGy1XQ+ysoPD0CJqkpLRI2TzURl8Vqtxkv4Xi3vGXj517j7ObABdbZMIOawSXp7HlZ4Qeke6su0UyfGtz94wr2ceXFwpvzpjgAVCy4VZ8dAC1AnYIwghVeYjJu6pHU1gdu/x4Mjix/b4poTiOW+v7CIgC6M11nIrSOxp75ly0nAA1WToQ9wXHDyxEi0yCeyPt+n1H3Pd5WhuGx+sbgB0bClRzJcUjhIeNV0M8bLDxf15lELWSVNFkyUaIbSKTmNWcXSkvU3v45xvTv+Wfjv9LW7O+hNNusfH4uCsIPlgQ1OqjyVUstCtthwxsNUuvA7M2SrHYWGF3j6/XaMnQH5IBds+/e/Rk5dZ5f6NIqskHoICe6bIKOS0UeGfbdNqMxcNU4GXACV3RF03Y13ESxs9gPBB/JueDa85sRPD5sRL8xGU1AqW9//I9ZkNNxjs7xOGKm7QHdxwhAQPhJaf9rP0KllbklSf7RembiIkdZXbxmiGNmJcfPaSdMwFsExfQXIa2uEqTiIn4yfYyG5eWPgxdI+FyvNOYQV4baqz4dTYhoqxBm1BqISKiCGTkbS6vFY+6USJQIWGU1khZ6QBqceElVZxX9UwUsSCMSvJjPtDJ5DJ4cLLFfUwAMd3ywiEucSMWb0oke9weWL8GQaISYRpd3EbxFV2H7j7LHOT1nQlVa9LIqUE7NO/V9gEL9Rt1MJ8/rcv8zABo2SFJ5OP+3g0BuaUIIYqWXGyVoeAnE1PKs145UhkdwKVpxmcpIO1mZTfA1f4alf+z3dFXYp8BvqZTNtY+QrGOgzp2Yb71/6QSIOYjIWK0hqbz/F566/oMLEQGW9G842iWBMmbVr6SDhukpzJi4cVyavuZkaE/NVQSBGZqSW8Kc4FGMEHGnWxWHscSioEp1qXMiiiI2W7cr98EZ0uTjtsON1aXzDbB26hVkHRjdmitaVIHXhEDxe8pdmiI8Kb0DCw2jSWcz/fvqftUI//fHhjbpbeASJwtzVUMNU2MUJ8+S/6mcsVC69Mxv7BcYyhPOOQiQitNkB0Pkk5yTDnJ6FzBY0j34WduKjfLE8SFiKKdu88g5mvHTWJ2ur6Kv3Y5JHTYCAvHRweol/xSSR1+K0C7CJQf+M89lrpzWMg+ZrnEAqnrS3A7/HSSMDJngFDP2g76H03tCXkp2qO7myQXIVMJaZX7ibjjrsU4faOPeeL96v4vraAIkv80qdnr6j/UKc6CPkEXHIiuo6bc17i+o8aGCwAnkCJqAYR0IPWQ4+qYZm4XXpQUadJY3VUw6gV598DDoaOuodMuSx5S9d0Pzg7b7MOdcte0wygyTdZtq351/JZ/YHQM1X5eKZXu08gRllL43BlZsZa3X1oRq+9vcS6WzohHD9KCNBdDNGXZq8gRViFIDgfK5kBJrSsB0Xc3eNXMvM3hnzqlvyEBp3fVIkNZYrYdYDN9aRXH4q3or2RRllYMKoB2yY2TqaAZCPgRvYqm3iKtmJ5Y3G4+w35gYWU9c8A6L9rrgkzNZ30GLNp942GcAjqh5E37cF7gHpaVZYk9DvyIPXvByWYAtB9VF3JZpIDAYp22u4pFgCZHa5ZKGBTEhXa8FRx+0+6cRV7dXXXKeFBTapItkvTnPEQJB07yF7Xr1vFVi714S7tPFB1jXqabW66vPxbtWhY+r5MH8RyOxhkm7PoyYJ26OE2oFwLYYxLczSjlSJH8GybYFuOUCKI5NKvIzpnzYOYHf0m9C4yhSaaxyhE9MR8wdSBi7lvCI+AEpu8wVjByTngeSyTEaknTYYfTwV1s4IxVcG/zxuxWfuf8QyD0ZI3XeUXmMFP2/IQBR9L3L5rIwWgWXJZijpodWyMMr6w3U1CQnGHunT8YxPp4a98tilveK0dSrX2IRtGLv23IR8JNZ7WInu8fwn2NHVuU3/8Oun87Ap2CT8FxTRPgZOX/2HbiXo3H3D804xT9dbGOSVCR90BQakigMfON3p1ZqrqDSGIa1mC4NYZ5tiuJDo3G11FpUO9C8PvUUADwhkEBBZH+AtxE28LuZcRCBDVlOroOR2JE8cXYyn+0gs7vScC7KnbiLOwjPXw9O0qBwqqTpgMAro2nIUM5skanE2x+D9MRBnxQ7ci6CxWbHfCFPfDtO9L6QZk0s7dF2AB9WBtcuxsWk/coBruU2W1QNE42CJium2gODh/mGbS2Rav8zSnWMkaFVS3ZSTWjE0m+EwktYWG0MA6TTF7WiqwxiKEvaS0FRAUE2K9SR0MFS/OqtUZ89IqWQZckKXSIK0hbuyEvwtOYr5GfAs2lR8WtbprjndvjNLtBn5ZGDnjB9KkYKYuGEB1yt29JizFSwpexyLazftN2+Hz0gaIGM04mWBd715758IRENDwkQDjCEvgE/OlWXQrBacjYSbr8abwPsHdlevMnCaxwerDXCg9Bz6UYUxOA3ou/y5FJb5Wihq4uiiDTTkWvvZqcfuG2NbtaVy1jBhZ7HMwdMKBn3A31Xdyz3o51D2HDfzGVpFcRM1QDDveCZIpHd2o5fcCR2EhKmQaGLj4/UPcvNXBhL4AGikOoeilOtkPfHsaL2k256q/F7/a3vi5+S0XtWBpnV3bygstEqZxrWMAPdgjMT5WWuuUJkUiNhktDsrq5QOeCEVajlSyiHTSbnm+lw22VH+i0KMHbJSs7mdE03aeO+lJpteU73WLKTccUyc1giSd9uTWNs6nptbZPJegFOJG8/byobDIlTMSXwuT/gB+Rq+pTsLle2VHm8FjY8SuUzslY4MpNi1fuyuJv9YqGrreHbneJGqRlWBVbedZ0upW+LF1f56TLZAx0i2Le6KqKA87H75AGot2UpGDmSXYWqBuH87NdA9XSyRPDDc6xTXPs3n7lt41iyb1Xl0ywQ677wr5UE1FSgmIyy8t09d+ANSKHqML5UHgstIt1QBRmWtVQukbpvDGx6TM/nz/jJYy1GTY5JSv7HXzmCD9cnzkIQUi/7LVFDLxwzaA4PeQ/EehwXs0X4kauDyWqlxxEGx/ISAdwwJljAPO8yL+ikUpJUWTBQ2OzyhUpJ2i6zMEXB6fFX/zWkjms4xT2GC+nviRmsev19YpEh4WQSyvXRTxxtBBYmUkMzldtR4IoegoXAT4QPdShnBrghI9NgvtV6PdqyrIJum2V+MQ1APGChLFfrNwdS/EVmJRmBpHzDTURJi3JDIUS7FbS8AlhksZtbfUn9JCpVWbFrz5XD+ZAEO7MysTgJ0LyIPNviL+P1hJu4GIc9gH/qJY6J/nqktXGxXuWyOlAPgYXRXb1IOCAj428F5oF3eon6fcxJ+CmBd8bham6BhZYj0FT1FSeFsePlSQHR3QplMJDebAaWTtfLHloubvckQO+yor0Spu2YhVMXaMjpAc8fB4qQEIFmo6HrsnteXqZ7fHD+7/xKN2RaLWojut+e/jWN8cOAv/8P2k/6Bf8BF2rXuua+1rWif0FIuU9kdQPv4WT/VespgDoAwUkkHUfO63m4zhok2V+lJ/J+aTtWiJ4DwtlTHY6yQSD4OUQj4Y/KWT7WlaBjGvJxP4f/a5/1oOiZzLhgbJaOSs5bOz4JNV2zA2HaqMQFXb/hQeWRJzPSSVADTExesTVeOrFSyVWFUcpPd2dJtUhtez/1kDMTERXf4eTK29LEUjT8Z4bKM9ITugGvZZe7Sv9BepNNU/6kyScsQXspyhq8F2b3tixI9MA0Wt+W7bZ/ibO5ndpi9ZQCteSImlSlBdimObKgZhxUWmdbTEk8s5Nfng6ITQ0iEqbKQS/qlc37BNM41hysegoXx6UoAvVpLztSZ8WrwLlEkXEC23Q7+PeNkXBwU5aKj3ODuaKoazt8P4qG3YWg0MyU87ELpM/YuupNRmygafxEC1RDg6KIUS5ax8aKC66YL96hSOtleF54aaMpVEHeKiw0OczeXCqLmYJNPk0pSeG4M83mAiTp4298+gzp/5Y+7tEajTA5UOleqGed1HiDqCUy9sSk1tOSqk8sEaMWnzFSKKToAlSBDBHGYoNLhfVNQEmatqogYmliHVyhNdDipT6MQh9ILphoNteL8aE6/J6PNomnUJqJWQkppGGjAOwj0t2EsOWDWpKLj7JHWaoxe0JTULLunYRiqZDEKdh3aRijqdorEk8RZS4nY/u4pfKwYQ5UHjeuX5yjmQZL3+7H/NXuIDA3Mn2Q5nFE/BCjcrKfIMoIyMEabpLIH5zqDcgpp77NK5gU6t2zMTAU3ZFZiHxU/aAtJe45OQw3tlLR8YRSg7vAYIMiJEqMxh2AcwCvMLFXsjNE4WO6+jbStOwTnibkn2G0Lr+hvxeZI5uVAhXF+NJoWAxuoD1zz7yVc0q1QD56wfQSzd36OtZvODyzSj13K1AVZkOwgWr5yHL5YuLLYj4ES0HGMKFncU3D8Lda1sUvtifRfwuu9NhJEsM38ocdJpVjxT2Tx085JsLSvJRCtNe+m+nRshhIq4zAcQ0RgL/nKmiK86vusuXm3mwGm76Ztoje1UDP72VMhzsslS3qwmduccax9GRL6A7l44YlT84m55RWplFdUFLxqSOajYUFeo+ks8Tz/sgwWxOcLuzNzjJlXPXr0fUEU+n3hRtQcD+387d70vZsZiHIZF5DY0LTTQWeJwHYQooEsV95ZEap+1Iq1YiHpkrftj3k+tIZAsLxt4SDiOGzJuxGOCq1N3vdh9KHM76r6UitcLZEl3g6Bvdk9mQ/H/e7QrfzZyBdOo6Nomdzhod+E+R05JGJOQizpYqJyCAbqmgmQA0ngiw8/LMAFudB6h4Uzn8uP7Ee9he2hFb26VhyRXZx3GVK644rzV6yVtTVLkdDng7OTvebXzc8Mm5hcTgvzoibGE+5rDOXmSW0oyS+xkwNT1L7mOKH0Dq8WUprLP3XMq+WLv9HpwGlqn8pIE/tr5vaqaEwC76rE51D3Uj6TzfTBAYKjw+q2N6vfNUy8wqEwhdthMwA9R0T5HgNYvootDaifYwP9kkf5Z+D6jXbPi2rfpFietriMWZFFIYyT7/EdK1B4n/HeFFbkN5DRG3Cuo9Fr/7sOFq2kFVlgMEU/ih2GZ12z/dsDf1KaClo3mgfeLJcjp9rcyvJWXXnvSI5NuS7rVMNWVZRQu8aiitdA9yLVbPDzoVUmmvULmv8PBVewdzKgW3rOMCjY9Kw88ZbZrlYQa62lntUSXAMzyYnImDRh36GklDYEpqR1ua4XFpoSExBPJjnhumGnL2Pm8h8KK21pHDxW3MvXIwM0O8B32akp32iIgDyXRIifiopxrkK4hF2AVp4CSjrb67coSDrvae4qp3PhIQrhxdhtIKdaxBOA2321On8JIy0/BTkyxpqmxFTgqqk8ribgQJT3UytLoCwiR+BDqeczoL7vkvOEbEFI93aD5ohxCZA2ETvXpsKvK9LN6cgQlvggQvO3jb4Tw6Qq2spjRMUHrfl6XMBfBUPhFQ4WLLmFPDAh2m8IkgKB8NdFr+DCdXqcFWC8kOwZUrCNNVEpYDgFulLIOp1C0/JJEtv+J3JyoaWgsQ8QW+S2i8kYsc8MK1hUNHp+L2DhDohSs1fHgZuZCI/uaHGRlO2ECPDqcairmiCIypxCScfekPHAONVtM3uwl7+N75UZWHlE0kLOtSub80ncTmGFJALJwRsqLzjlRN2X8xp5JNiK8fXSQvpTnzbXBBPrhPxH8+yZ/bg+xDxVlgWPsDlSBz2I1SL0OtSa60YjMFISOsH98Mucjt93ZvpX2KYQZ8kbfX6fdSbhbU3eTx02IJOhVwR+P2J1u6j3xyK3rqwGWAOAzNnlg4tEkxWAeJRyRQKc54K96i+EjWtUxyk2wwCxMTAQGpRm+xprhf8OwxJytuipVl4sVpf/DR+izkLShxWKMPssDrOFLOtd2dTHxC9nLUgFYhk4OeT8ERQbaDMaPqz7lyLCI/lOw3FjKR4F1382SH8LAk8DyENAQaOvjHkl8O5QkOeISwy5jP6rx0fFZmpr5iPrzxogl5ocZzSMWSQe7+YKJ/YyQ4rMFL98fS7ThyT7YY2acCcZl9nTyITsoKWCDPnUrXTXh3vKZ2MQ0N+lSW+o1ntJVk+vWLNFwEhVQtc+eVZlbw9/rGI2iOnrVQpLectuBMQVOqjBydAe8ZR/Zu/YUkrz4wq27vi1QmITrlrIJOyQQRkByddNoUD/BcGXRdESNJsW9pCKIaGq+0KjR0N6kj2X2z3jD7QNehZ6DZflYhtzRD9uRiRNueu2i5D1e6W/nyr0pnwi77V34spFzC9bKec9MA9VVgRQtSicnbZreMZMnnnQ6zr9PFlUF+RvlqscVf244Y100f13aqjFOKaeZwHcfBiD31k0YzR5a1wIoOdnHnaysmjcR2heDYe0jiN0iNgJ1posSGtcpxPdHkXPfvu7ArXZsrCcWkWEMhijm64SfdoCno2YI2f4qe1tif2hl7DmV+9uH/+nqs9x1OaJQStiSya9Ooj2i+3DCoQFce9qnntpzirxQlFkZpacGNh5j4GWbJXxoM2IbdsRhB1BylLvtaiHlQG5wlORwtlrSrEIaHCPENtVyMxH+61z9ECyE4UC7/oVurJ7H1+VfzMXco6Rba7NucwsBpZxI43+LcS9OMDXBQadP5QONIpURpm2PpbmmT4usuFMzYJ+DCYtA4szGakAtAvEgdM3knUe8NyzhS2jrAVW9+CxYQs73xjI7vh09/iKhSvNND0lj2rYcbQ4tGgoGggtDzZsjaTbBAEjqKm9TldGsrY9yYp2rOfMvuze80MmEHmVnx6guR0Gz7J3cqj7e8ihkjdukf5ZwwKdey7jkWk/N/Rf6U076WAe/THagWULIeIKwm8CIDCjGl8C8r7S7V+NsAFLKiqvL07a6ftS5x2+C9NvmfzBE22mPKIvwwujMxwo9MmeGVc6XKn/jSy25L8TsIAywD+u+pUhwiwwOMbYrXjfnonoSDqFy0Gpe2lzhmOShuJ9Xw9l6ahaUfzryWHtjM/J988R3zUAl5Y7F7rdLZ7gkiDUIdKyIiftM2eh8oeKNc7ONnlPVBIHDT6z19eFEAk6tRMcgwR6p/XrXSjXJogGa9OBe27o05e6Q+Ydcj/O0jUIkZSLuSnV5R7eRNKL/dGLX5XTPuzYn+OEmmGvC7bH3yQOHWyreAZOF7x2MFAETBnB8QxD8jZbvscMFG56Flyaa30l9XMJ9U+JxNhu9YluS9CpZ9ozNihODWFsKMgctSPHgfPsN66RptG9OazY5VuZMW6orLcv1J0RKVu41oWI67YEwQqrfTPqgqOPpL+rO+NS5t8zGANUz9JADC4prmveVcMzQGwfhlyY9Db8zDoYvWKKev3QKQueQCtpLvdmtEQfpVTMNLJm2FsDLkoQTEaFjxm4iA3CD0vZQM6E6NKm0MthUFvEFSYwglVW2jTPI0dQ+QEP/BnK2I70vqzKRR5E7mYJ0vbJQ6QpCThgqKZ+v3OceMzFNS9aRFuTr/ZN0UrIO6prR7kgVUfKuiB2TFbNY+edGrhAiXasJXWL6xbzezO1cIHCC+sIUmIk5LN6V5EATGolEJpn5NoMg6MJVaJ3SMH8TodB5V78P2hSqDYdd0p1GSeEnzO4HTBvA19MeGu71UtJqS7Geftkt2s1B9EcYTcQW1QSQst1MJbqUQaUMPhfMmB0cuqxKss3zVsxTMM8/XQTj/pZFYpgOsAkiDpE8mmVcVhBhmGrA3zxswZa8/+TZUB0lmk7HbhSG5on8CdzafLlndpKnCyqY/8BVZLdQ1v4E5JOGF/pQMIZocWyFl0BqzWvyZcZbwRDlLOBYgjCbWSgEDyAi2LjBs3QVUqBA33O4UY7EtKPTSwUVRNwspNwiQXf9FM4E50om36Wy81ay0fZqkseFkUAFzXeNXn73s1mjGmhODlkOp/aN5BKJynAxYkUfbs+SiSNmS1Zwa9R6FHrBcz6tj0GvA9L4Bx5QykvXOrYrwng+6DUfYSnGhRdYyk3QUemYZQq+BeoyK3KYhZNyxs3vySa0/xvx5oe+42Fzp2FN3P9pCK4IU7YTplqfo2ALg2YEEDnOSn7nrNNvFhD7q/a0utnY8yeQ/xSba95Aumxo8VswE9IEV2Gis562tXwGo2H8ufdts0ZUtZxVwqPxFdvwStz80LcnH0ZBJd3H2QudvifBLW8AQRmwVV4n2pN1KQEDHtd1hT69ovB2798mg0Ks248w/2JZCzEl/taC/C/GCSndmgpYtXtIsjfNwlfoHAMF+YdYg96vWfkqEaaZSTjfgAOOkeCq4FjSFI7ZnERbq5kL8E8w2c2jnYj6DRXMaeALmFIMsJJP7GD/LLXbIlzFhUWctcIyTip48piN7mgaw6zAdkmp0thLQeygdY4+pGVgVQspfm9eKq2sbpwgbx62aUGiUrDI//GeonIGE9sxQ5T6yFZX/N6eTd5ku0YSzfgnMlJlbtelnVmcDq/a1hlLTfNfMQAddykAS+1voi82y4V3N3idWS5Eqym9FC1Tj+1fxRlioqVgoGnj5eAFHxhbE5xPvgG4ljeF3ayOADZKaTfIB5iPO/2Mc1O9yCJyRKJqpdi7G7EsvRWCYPisdA2EhcIc+r3oVnX/wFLLVxOezms82oGsHXwrHFraQD9/9D7/6Z+KSWBvwSAAroZXF4SXJGGLQRgkNXtTgm58qdLbILiUBO+WE0RSjYvtrV3AMOt4QdYhslkyNF7Wyhpl7j2pKkUuky4Biw4BkJUg+INl4NrcGqOGCri2d8gaT98PE/ArgAUqTFNW4CM3VuAug28XNtulmY8XiM3Fc3Pagbk486XQxSESzfgeZiqNlHomTMpKDn2VbrU7eSPrQSXyIHk+HrIKNlqgKuveRcYJqrhfUp5AlvW4jH6DjIzEnDRrC8qQBdX3oJzx79WyLI7VD29S4OVn/QE6CKciGxdZzmFd1uZbMqw0RCtcUVhih+5u4ib/uq853DLNHMmNkTpfr6s2rRtwjnYI/4eDmoEG9qyy7ctYyY8RFrw8fsVHeph+L1WhgAM3rs3rKRLoSrDkcCFLa/o3ANrWmH5tCgRnldGetRYKYOcZvqtLNr0CTt1u9+9fasC3NfN/cZqqkbOR1NpUjEWZihaFhnrwvw+dIEJpkRfFO4i6ZbzmxYePW1rIPuaeueXtfxdW0HoPS7XEGGf3d9AT0QyV2XUru0KeFFImnveLcKva9l5QIJAeZJ1ESj2CdtGCUBpNkVais2Xkhs6q0pWoCqR9ZypAzBp9npWu1uXPCCmxamZwc2VaYWuv9Lw9TioghRQpFSCI+vpuk9wLr3dpQ9NcnrjqnHOFuD2Ay5LMHY6bCeDMzltHiZtYHglYkxfpHqq7wirvfSZZNkERHEvHz7lIzzsGqLeACUfLrTby91u81qrdYmQnDKyDj2GMgpAWaUGAeyOcEDN7UqS70du7eLYgb1kseRXm5ZJd0KTANjIIXNTGuwVWD76mtpr0YSdG2VAhkjz2PPpBwtLFsk6Py4SpEwZIxX6o2HR2I6GAHb9un1rMUsA8iTyy/Rxzs7W1xB9yTzX3MhtDHLLluhCWb+bl6si9wd6ITexRymI0bDWZOkdfhb+pJtUYGE7d8sT8+EWiniEooxApZn8+3MUXrPb0Sym4oQn8r1X7M68b2qXgfvOD0jKsf1C6o87fFfVsOrg6tN8XY3kHiPtcNxEvO9aMKxvahcaRDHrUvSJ+nq94TZiF5gpBezg3MNqZ/bOLmboEtnHpzXV+0bfsr/2FgjKlvxoYjzoonB2hsCwpr4QiKSCBKH4xtnOahkHEPnp/txTSCpKUURKzykDqYRXqqCEHFyxCfYMV+ku8=
Variant 1
DifficultyLevel
466
Question
Which of the following is equal to 108?
Worked Solution
|
|
33+34 |
= (3×3×3)+(3×3×3×3) |
|
= 27 + 81 |
|
= 108 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is equal to 108? |
workedSolution |
>| | |
| ----------- :| -------------------------------------- |
| $3^3 + 3^4$| \= ($3 \times 3\times 3) + (3 \times 3\times 3\times 3)$|
| | = 27 + 81|
| | = 108 |
|
correctAnswer | |
Answers
U2FsdGVkX1+cqFYVGfDgPvHXiLO1TKFI3SyMp8s2TXuZMdnHaQ1b4I0rKvyrJl8KiTLPZggT4b5/ExhTIOYro2zLJGr1tgzkyuilqbpsR/z/PpzafNcDTPf1Yz3Fe9+BqCPwNzfBLdLC4eOZbJW9vROI7naN62Eo7TWAuX2ReA2Nkj3Pgk1QnvHI8EFE9VNyy0Y+ecF8GzQwSv0WsRpgaJ2bWx1aXLiPtFbcKGNmiNwjAq85kLVhcud47MlTgdtqABck69ffTJsx+Laa3LRyliCFsF5wBqoWeQQllnFjZrIUY6I0lEF0lth9O/2/1hPk0NGr5TY7WQ5G0CzojMqIiOIZE5c4TxiZB59GrrEcu8jodjxXqKefhCeJ1zRUHgWJ+c7CSbNNjWkyScTi+wGm0QFUYCoBEINaBnq3zKa2kPGHwzEZneBvB8jQxujiM9MTzAGMpB8cmxk8WNPcZO+OClXVAadckW6eRH2YbFbs/lrV3EYTNnHzHSCtW1HQb4J6tuJVQ3IX0s7E4rAuM8LfEIvrjJnoueYigwmeMA6VqPiH7k+l2xpocDE43E/x1PqPVcGEMLUnvwPHbhjLe96DwCgVyW2sUeYDo7XQgqqVn8kHmsWGs+cebQEVJpukrrPYz9i4CFT5YVOHRYZcE9oHYUE6hsASqOh58uGL5bGB37W2DMaIhDoLi2xDspuW5fh+rJ1iRU6S+ycYRa2lyPRSc65v9xbj4gQsiWfoe0Sy0WXnU2b0RrCppkAiCmZdfICCEhIwCTn1ai6mNgjFjV/IQmt9RgZ6yZsJZfbF//cYrq23+Jlt+FNc4+jVFmtBJaA+bVT9pwbFy3o0nuOq4CDDmZ6S0XfG3WwKcTsz8DaMu8CNxEPrrOdsDNxQtRYYleLJlBYeBzBPh16D/E6PjWJtae6CMrEEL2JkzU2AVjvjiSUI4+I9gmXLEoo5cgwThGlhCgHjNc6c7ECbWsw0RqozypQF88Rb/VBkynZXl3SePCHaH+oRyQkoeN+cVULEGD+YKw8qrDpuuTSRi1hUUmeYIGvRRogmJMuQnm0cpGdvSyDoa5wr4w18jgXl4JhoJ0EpqpouVc2pg+vVZ6cGLOst0PY6Czd+uZEdG69s82gSIi2jL3OlQrZHj6hMbc+OmfWCLgXZ5S01B9CD4gQ3qrOIeptlJAU8SoifOt3zyMWUDBYkTc/5lQxQpKUEIC9Dku4rU0qqC8U3E1k2+oRHNkkQEPF94MauhL4y5E4rtQhIWjywzSr6ogULk91tgZCZkzW3EmXfR9e+cORZbytJRt9ipiZCoWUm8QnGjSaO7n2Zhq3VgygXpdHOXulfoQcG6peQffkt+lGEPY88CIWF79mw6rAnvs6G8vPa34paezgt0UFn/UX1pIbyhDBR4HeeJx/ygIXmTN0OR1qT/puAQY1IIVD4P0DHiJKHKCZZQYDc6nyUGQTPmiclMGk7z59zje5uGHArJ0XDRqapQkiO/wxhhn7RPyC1KuhgzQloMN+6fJBEHfEaiwA7qv7K/4WkKqwfn+1dN5w1n5zBj9VWu40SORXTq2NmZOz/AkBzrVEQ8ZJFRVhxu/gqHR3+nK9LZz+3RJ+wSqb4bjnJm9lti7KL/7zrE2w73WE4w1oQWNLUnI1XKxY5hdCK4f1MrPRoUaGspKuiIcam76VOEdOynHk1IR3O5VUgCKoF1temkQ5gU8XJ5gjnGywj5wb4dZoPCQiqURGWDMy9HYu6U00Wsl3rvDBu9euYb7L5fZUtHF504zpkYtm/ppcbcQEBKkJ3SPa/019BS2hjwWb515ClSHXmG3ALefF8LbKj12tBaXzUU9/v7qJ4JBnfQakBgRsGq/G0Z3FTz20MtuHUCPaJxEbWMvFozf8I3JMU9FzQummC1hKpzje3E/sOR+MlcJUk3+wMjzc40yVxvVLgGXEtW73LO698xskrkvQTgruS41DXBolOKrmmRr44SZWyF1Muqw+zPOcHRByk+P5NHKguxH6UtfLUyO0QfLpurNZYWzgzb8UHj8pLGB4RjjZx9WTBuMYP50lJ1R1KN5/WW30AAX6RSu5z2xghEYzRyqiYxrxcNFUbArop4rnZHxiZIv+vklDxJQXZFDJJNeuR7cXsploVD4R87Z7JTmVx+xzSjKaZHIIlaMJ0p7M0P+TU7bbYPIhCNTtQqpYNsr1MA+QLsX6HHU6p0hB66nboQ2b3LHjKjlros/XqT/J/9YNjZoj+hYdRaClXqjnR6ozkmJXEQfNXlMEyGnc4zTOQHRWtgfJJqSPBdeGx5XDtBpScGWkP73EQB+pjyZCnDmUKyOvDHRilgdMpvksP+VEcyiEoKCDhiZ2YBSYlpQIdM/1xz/wFt83OPqYKzBmf8RV2o1coHQFgR6HUhWhFJsWIer4X5VSgdF9421EVMXAwVInwUY0XbtpRbOtL+U3M/nRvMCccs30Yitf75G+MqORqyruOyUNtKCddMrwC2aenisbNTkw8o/ZCGnQoKBAln7hoz8jTTYgAiapDmoj4D+qnLWQxIIo3RKAzvoUeyqIq9y3CuxVM/mlkRx0UTWrrxRhMUYoJLddXzTC7wSb/TTI1MZldF73xkq4Pacu6nxyuwAaUn4JKv31mc7g11TFs7bOMWEVxPd93HbkF/c4rM09WJIGs4ayg9znyJ7TIPWRwNInnb9cF0NF9JoEJBjh4viGdwpFjwJiOtNtGgk3xGSSOKPekolHQ8mhTn6jPSXsJzjsQlJvC/xw1o1k94hArx8F9L049JNPYz85wrVd72hCBx0fs7IRkBN4hEzK5ic+9+nzSAc7ayiDmWixwo8QK4Ui/oFIFLUDIlOXLiHacNs43cXJRGGQF1PuVJBvJH5kb6zDLND+3dRxXtqBxnJcfkftppo7UKI/7js4U+06VMMBB8GdWS/XDdIeOIJMmoR18H3rSJP1kfRGYdiu6Hxb7nI2+xTVb3ky3mxKAdjLg+NxWaVCmccHD61FohlQpxLauuXRH2znz+r9fWpUzZfeBIMgxn/tK0mAPJrGgTqhSaVFmlNgdTBvgYuH0w2yIbqxRM16HYxjwhYDE+je5rfWqGu5yFrj7RzbCYO7NHUWkGLX90aj5Q/VdM5oTNDOA+w2zk1odIIqKJXq/PASAQZVwSXeoVQGmZEbPnfIN/upQio87N6sS5nfEQ1sQ6103LP0SqZGZqYZDWBSZeggKrG/jGSc9h0ZX8zSQEd4TY8L+Z/mJxUi5MBEShsB9acMN34GwaurCC9l6hvWLAcfyY+U/kUNMWR1r0dANLoyYHbMqSga7xNkAXugHt2F/9AAIXoxHFgZc6eUna6FqHGeRQ190Hk7/Ol9Uhwxct1C4oa2h4HFhpAH0OtcizNZkEooVZ1sYDEq3VwmcqzlG1qhz1wR/R5iYHQ2up4k/GEykhqpgbMVrbwGS5hyykvW3ZQiz97BH9EmmRJwaRKowLou4vzDW65PTNPaT4yvv0iVt4WPQH+XJpVapQBDnQTEgmbqHiEHW7PLCqYx6OqNjwHuvT+sOi94qELTa1vkDygHt/WYkUY5h74l5UKcIXEZU/ArZG4W/EKHIMfPoFd64nhD5JB6H7uAprtQyTQiTg1NtPRmNItm4K8RZ1K9E4udR5fhMKB5ksAERoRN/U10/cWqVZPH0Wdf+RJz65yDtSi+nj6cJnBz3135PTCuc3pM1kzJFlQRPMkegLbjT+nnlxc7AyAlqotTayyrhej9IEnggsxijArc68TtB4sFSISIHZQf3JQ8ho2rU6jLcXs5EfOQw7s0Yw0z5R7HJu+quZ/5u66GxGSBDVL+NoyLRjjWIGwcGKY8HBh74s/6nksT9h+qhj7S9YUgGF8HI2jfb2Elxc5fcLVDpL1USOiA5ioEcHaOpgseHWvJqtTFYmgHTLErMVX6ffYqYjxBAhL5ofK64MtgzKiYgGPhjT/o8DvPKN/GBGWCQBrGNh4K827NPPiT7uMIJHjUAm8Oq47e5XHaPkz9ROjExDs0R7B4L0ibEr+gafCwAeTPz+iLmKft1hZciUaBrCAatjhD1cIcTRYyhHNCyQjRd9dZgDOfAnjoTNLww35D7sF8Cqy1Ts2h7Aa1gEe8JPCJi/2Rk1mbqiy8WVoHbXyRouD6D2Yk/MWDNGNp5G1WumdnSoC1rrMaxDqFjITRjvhjZ7Yq8v2DRha+NqE5KbyWa2cRk1VWnPCHE494yX+Zbk6cIW5VQYaeb+tzmyK+lVSOX8Fl8qfx6p9xtB6Bd9QeVPuCcleiVsNoLXlj5BRb1nxlrB/VPvU9dd/+fS8Kwg74d1EF+Mh581RIXj96zDQkKQr46PHMGpTRp+1fATMaz4S4MFujWcZ8tzyUmFUVmj7f7wyoCfExkj371C3gyH74HZLRJDNRn2lvKtu6zPvt5uEFnd2SLt0QBJA+kx9m4epbt+Fn/2S6vdfVnJSWvkhND3Hw65hrSQ6ZFeiar2ad45iLtnv28L8oltN7iE5Jj3DCodLAVtxvI9eHIV4VVxd2zoHsZUq4NeD2HL3OH34xAzMHhoi8mieeRIG+z2Ouq1RBfICKzUlWeuAsYR2oehKNtJqyf+8hTO6pVJoYGYE+RD92DaYKZ+xDrR/3KQMKFpydva0ssMldORJlX90715O5umobbWFokN8rAPjOJHk79bUzHXdK9ucwNzzS8RRb2gT5xyRCi4pYtNhYQ5Rn+qbSlXvbvcMI3ellK7ihs5Nfes4ZPfGDOcXbAB+GERCp0jUbIKDt79vbWqLc44w9md2hNM04QSp3SYUfIp+6uUw63+cqLqU7Gl+178jZQMzubRV7isFWHEc5ExraaI3e48PWDfwubzFlnTHVsAJiRYuasPGMEKFprvP4ESPZY59ZF+0BA/gl+m76fqjdmrYQ7OHdFTjAMc6UFM2k0ElMfoxb3qxtFhcK+rZ6SJkOmRzgNf54ji6YK8sZdfhlUH/HFjWBaauttxtxtgUOLSEjcz8Tk1TMAC1oZfVTnCZ5q+AvTJXesMnDLB44X4pUSjdneKZXfn7j0vvTWPjTbsmKt+fOn9mLXteL/UY9TRLjOYrcFVmRkFHBUMMskDJCw87A9ELhMLBNKsI098bFxzI32yJ3Za6fGrxFgYmrZqC6to/3AGasvROFvRmo5yfjqZcrhfind88xiVnHPf1OMTHzQZdxIc/hPMhhbk5evzk8ZvjSrRx1SK6e3AeHK6dYknjVwedfoVWw/pAD1gl44dfVk6k9ScCnIvh42GeMBxEHa++7QwzKCUsDbfW4UmM/EWzNUhdKbqB0E98rn+2ir99XsgZMjH6GjaywhG7ESwJnyA6s3wfJYKSH985iStd/O1OJTcbXOMG3SWPey1l4rQ8FQ2/i/OMtqr3puGALrQK75mc5SdT6hBMhe9GpRbLD2bunwYHc/xcWq0QHPX1bwUIn/v5DKK4mCf4p5O0sgs8FeB8BYjPmmo9eHVYJqjV+M3LnZiOGZp0mT53BfJzL/bnAXI9v773b+0FBjda048Q2CS6FcKyI1/mN07jad9gA0VwWldFgAieRzGirrZNUz/rxjw0TSYGyao9eDokONDRNnYrHpCHZSw/HDUzTCUcJ/Arnq/DcDXyvQQCkbINmxRM8/+D63Dc65dI+4vdtLh6WAFO/RYfN+cTzG/qE2Nnk9IdMT61UpXRcof8RJpLd1xVyewI6atFnFslrjH0ni9icLGx7xZ81xY5dxkV2FSyzoAP+41VANV/2A735yZoNN2hl9F8l3zkWqjWbO7XtaMaVgRqbAUrbuU4XF1ULuWBiBH1BWUxUukbtgCYzLjdqcmBGEQjRcaL+/NwdeJ2aTAf3uYAQS50vjiLwqyzwCEPpbrpARKxLQLYf1GnG83iNcVCzAXfx1wEt+jB1JS2ygBbZpqXXan3uZrYG+ZLJL8bNaqqFfpDiCyO9ZVLgk4LwdZ1Z8TsaQ+n90IJ7yUohqVuD/3LlwjscCYXUD7QLKvInBmxSXaedmg+1HLvQ+K7X+kJCmkILPvvkNoaxpH6EwYLp/HUNbLfg23fVVN4apJHVXNCXsM3/t3jhhiUbNj2PGhzQJEw0SkIyc9t/y/CDlpl0+YeKiTmay3O37pYp+Bkpnvm34F5dnVjBf5rnPDAiAJ1zSLa/jxcmx7QIXPp9reZvKzcQ8Y5o5sbaWQlBD91wzy2wFXmQYwfEv9lRcTtuiq1hrUbSWXQkzNNdz0O9IiGwRQ0S4+7bXLD/gz/pbCiHul3F9aw74anpGtXOAyOtA0u0WmXG5VWRcdZgezHXrq+N/Qdbe891u30mRdZ4hx2pTxK/apK0uSIlYbc6yJquHu2pTeVYxRRAI/xo/k4x7U4WvwleuY7IA+yQDgU+pwTt8AJpEZKu/pltKzLe1mjsVsPG5Sdo+b/1sw6YqF2uQ8xvw+nLUInuzG/B8SovEHSkTcwNbY08vTExOhC61kdgr/UtMRs5kbi8N4a2BLK0fFXC1DMRmSdN5G4KBNDyGSTXR3Tvsr/vxXvAYeQga4WXiL4pH8fkE+mfmWXAU5DiTYE5gydOgpo6h/Imc695orF/aVXBArCyzPanccWDMdrJ7qBXv6iL6kI6TpCgut5CaNM60qo+Oscze+o5Hldaw9p0bT6swVJFkCtzzkCwIt/wRTm8zOm94Gb32R7LmBImpo2wvXYrk59FGozoU/BYu4NoYn6SYziroQTajYMOuhS5Nd4M3tH5QzEeSE21fNPSd9xebeaWx5YCADqRaebUKlY+HPGQy1xMgEXtk5qzh4la4zvT2glbp/wkGQ7P7oc9eobbhUAc4av2GEYqd4Oe1x8F30KwX8+NZMhgdHL7J/Q5eb2tnPwXZMNezl4xEjQjhKt16ctTp9LH31QXOGRJIWLak4Uyr1yC5tHrn6dNm4Rls5/mfs+tVbBBGcvDyZWPwxjCac+iuDKxm6qXnquhtM/Iz39pFA5LAzHLGPvRJXad5vaJHvcv6XLGPD7pJp14bBlaJOEd3MPgFPCdi/wNzuF6hwfjTFIGhzSoTIqeE7ycKDL2qSx/w9/v3HzL1jn3WHZtSeQiX+9k+VBEyxhH0UrslAY7+/Eb4rpLOFSqHfbJFY4iVyrm+ORB0XKGIRuBeua2QlhODkfwj8luijnTb+Ae/AUORkgJypCA51F5Nsknu8E/dk2q7f+pjwPbAeY/lSSNS4qOzzdEcOuUNU4+XhAfyapr+RFkrySJ2/9anMJmTQamUwsbAJ41nb3Z0hnnkyFonjbMD7X1YpjqDIBc3IuoadD0L8vSKnAh9axRtS0n9rRzdUAfq9SHTkEEwovdccHT+TgcDLcVynAVCnDFBJrWoVXnj2dkzp+71HBBAp6UynOIAwtnSusVkAADnLID44gDMDI3DBLEfGpVIS0Ipk0BfyDsZ9jGb3T2Ssj7lxzLjutd3ldq3WIz+xy4+GSdkMS1kjsG4lgjEur3vm/AB+s8LgmsXXQCkLukDZUgkxz7sy2ULgTEV1wXMZhkt7mGSQ6gY+kvcvSWiBKUc/VZV6bMJ82EOYxQLfyQlxvQgDQif/yZAZt9+3E8n5GHquEHmvyc7WMPcQVZD65A4sgpjaBTmhiEuTfWv9U3i5cUCsA/dGkSJivriVTrVSfQmIDTfUZ3KA4LOybM4m/Cn375R2Vxc4NxJ76MD7p+NCKZyYjncdG9TpjuEcNN8gQC10uJtmQhG+sUkXXaztRUpP+CfegFtixEIzqXk/YY3y2CtBCfEVe5hljuSHLU97TglwdyB9KpEtIbqGxVrIsADmS6IMTSgmhfYKg1mqBooYEs3RvMJzIsJl8G11gotEBXaDEzVyRVAoznxKdCdtOjt5xjb6x7ZDgb+QLIL/4Avfwjbudh7aONMkh49goNnz6MoySp0CzQFerR7E7i2wdQmgSLDFmE66p8FHKOBiOXK4GrNF6FIp/Hvz7b6tghJ4xRjWRLmtZKeyAYrAnyYpk8N3NAwxSElHKpkOL2O+RMXcE4i7r5BG4uMGiq45oMuYO8hyUiGq9Q41Brn0avQukh268ecydgKMnsO/xj539s9OPVqRDiDDOwZqED6sK+JIEa5YSAWIStnb4msyFgBc9vGttlI7oqCH1cbt46/8HlQmBx7eYfXUltWxHt1N1vgJ7X6d2fvb5rewJWMJKWMo9gOmheD19fmtS3+2K4KJon7+NnH79nCUofJQ/R06yMNbbLO9aV58qH0w0oLZT2tPIApvnITga+34VREKERn9iEMakfuT9kCX4NDQiWzkkbtzQOYQXUIf+6rujvfpAi+y6ZsV/+oQu/t2USZsHBJaCoMp1fmwxknUqwO1hud/1mafc4c46UpLScuXhG6AqW0DoRC+1kEWvXKrNWZ4mSHsKLjaezGTCU40fbAOJNd4FoOccxezRDR9oa2ztCQT/ItnHmolu2jnA0FnK/cQyXs5f7XHf5YkGUQ6ppgClaPg18mY9MwzXMa8IZbK05nP+dFL2TSzHJqz538iqiCw7nfMwVSQUDzeLganAghGbvxmU14hqxoNobE3PGj3FPLv3+NoeSSjQZpVmprTdmzVJSpkkefdvQXnm+5lteDRnxjxxRUhL3gDh3IiLKvLdqDBJ2jYhV3+m+1Dh2985r4LUB6+78YfASusx/swVkSrjEaa6Dj0cwx7FTtnkdv5lIl9YtS1XJpSJYsRhOUT2QRWSmdU29aoswfkdSPzrikk5mtXMW5Z/qebMaIsmkhN8zH63ExAP6u6fajNEdj1uPbK1TT4AnjjyimExeJQh8i93RzyhkirGyvmhXpathYpgsVmTuidK1EGN54ESwgSMYYkW0xb+LlPwnVvwzPP+SemJJSQgWf7fZkqF7N4SanYAyKIofuic0QR0DozpfUr5JdMGeavSPLOrHbz5MAFqwerXnBDTZ7a/3vrD7GbGFZXHwKn8cFPGRxAh9HX3hvS8/LzRKLpUUjXQa5BBKKb6Y1fGFMf5vstjPv/5yPemlj/2HlGeszMEavPUCK6IDtI8T+tOR6WhIN3ckKbqUy0P6ycnmJStN6l6/nuXEpVWkY2O1fXLuinmCTKZ/SIel3C4Wm19sjx/fPM1Ds3W9Tfnhi5818oQHOb473lCbM8U/0jFxrF1CLOcwF/zLmc1S0tqHw49eO+bk/C9+2QEpzUHvtQ+k7GXkcqTU59+oNO8unwBSS+cS0e4wjVTBBNA2hLt1cbVNejtHJAIPSAxnx37CV8OiNM3hO14uHHlC6573k7nH261Bjptl3nyVtV6EHDC+E0g7ud/PPT6p7eerwQGHAuxc+Jq1bXxhigYPaoXJrR1ONZWDi76CUoQcBWm44mxcGiW3UlWCtolrDaWcTY7KzfoEhPsu9jups7uVYZawXGNhJZpoP8PSpQ9S/qiL+Tdknb3vLz2O2zm3/ozWl+myL2vLdAl5w6sj/XXjXplNEp2GRovd7ygG46YgPrFFJ8w4pkcVMIH6HrAw/U02SsIFG997VZ9RF53Bnq6N24XUdlS5Fg/dfecN1JZ3k1arFbMT+Oy80PGrlxQ81papjjCvCYUJNH+xr2tlnlX3gvJmRw36RrYqVRRaPW3ajji/qmH9wjonrI9RL4ZVQJq/msYrvtM1gzQzwjeL5SkvYrZxd4FeGEqbEfAIC3P27HdXjqyPAWFWUfj294rIrJTeaUT5NlLpVFhxAou7fmvhLNf468OhfHQeEbpdB55jFZg46+ZSFnyNXGjGw1N0YBLb1JbRLRTIJWTxFYRMe6Um1fubaozqjNqvbEo9hYe0KCNe6oV9X1SdHU3PCQvitHbSXYP8/r6IsH5dgJpFceubySHRcNg0zNA5558fq3kI7e6qVAQgtjuML7UN7QlrvTkTT4b0KKa7+6iHKhSFYgKD1tzdBLqo+UniOXEYuMu8tOpgcrKXYmeFCg7wrw2dUcX7fQdskeOauBAUk+pYsRBq9W7IK87KPQFeVyBKOWUvqmg872zL+tf7ycavoxO4UuaBAtKzOxb/ppsly3nf4Ty3ilnJ4gsvw6VHqhE/thlQKV0jrVgzaqG5kxkqjy/6cxBZHkELzomLMlzG30tT1Da8lV5fPzovSFMPiZ8F3repqPD/Iixq8jBX8tCXF7CwRUH/0hlQw6t3vRzn/zD5u194k7v4HwbUNdks7K6gzlGd8aYJj1umHEQVKtzFnB+0h8rgvRHNbxdSn35GFvjxiw7t8I4G40wRwgF1TL+H36VibeW+ObwlK4+k1dyU6tIee0pigmNbuqCqM2WAD1h4cjY76/427YLqDAYte8VsfDvJuGA3OYt+Q3+VzMgGkvNe8IRfBVHuSORRj4+nt1uJckHGqX3dS1xp/cbS/bz7CCe87l1q0ixvkYCTaongOf7qzdJ4EYu27oPh8Ma0DQkw/ssvntog87DDut5tNd4Go9sgOppfPgP6IVJ/sT504AB+dZf0FRSyr9Cy6goBLuMFCE3xKvxJvTJjwpuAOYlOAlN5cobyYKh1lfA6QyPtcE1jMTkGW/O0d1z8Iarq+NxYelz4V1yeGyz/aHTA+5h3xRiNaCE7rGEwA32KtXWA3ZdI1mXSMirOGtnwZ8sFsA2Fb1+vf9Fe6hFJd/ngRm9k0H/nNcGmAqr5hKypyHwCwXPGHIYeRk4c8gC1ty2DAmueLqvGa/IUZjLA7VUlvPZzXXyP67XRtUYqgzOivgh0tYWqjfUGwkp5ly0gz3xtMJOhrHq+lNHCaKVVYe4qvGu4iaxXi9+99hZSmoAogoZuZUJ7uxklTufukQfifeEsG4yrTGfuhTKvwzACrhjhhlMjXJ5bVZ21KRXGWZ3huL686Ef7zJvjCPUoqQqK3xDLjc1zaBtUB2rowYt7gpTcMzYycgMmGlbCkJ/+k72UZ0YiqgX3k/gnx4iNAP8SCnBBY0SV4bZttXKNIrB9fBhVUX9ZQYPz4mJlIFz7khNVMGwBCjWVxISxyTlaf5XRLzPYdQZHXqjp/YkvTIAjyGI2yNxYEua5MQfEv9r8Xh3RgC1oUydK/JXdWw08gN5MLnCDmtPcY0YvhJZ4FpdNAzcJ0jDdxIk9jWmAvSQPgXlcukuuGtLKLvC7R9KzbwTlYvdR5igDeaNItVsJpCoQhYmA1gch6LGasMEOXhW+K9s0oPE1k7fMg0xES84pMDx6lEdhYR5ZjKV6apchKg11OdHQUOLgEzx2Wvgq1p5ACXyB7cgVFO4F5+1erEzUnxwPNU796NAkCY8DrYu8KDbLK+yBy8S86J6ROMVFJj3Pt7NacPTNLsBeA4GcUpT3Sc6CW5aZ1Ay0OiFqYQEl0uy5yJBycDn6YzU0SwTDywGYZrrWnVfYchozur7Ub9HTeeE6te+7/obkaj0sGQfWov3p+TBehhe/inoujIZTXKzhcwB8J+mXRVngwLUhdnobhHhyErHhltJVTXyUi16CSLq8FT49sw8BJNb5yqWbPmOwGs4VJWhSgRe8yXNjFQ8yjFZZG6lZenFcBHmAZ+Zy65XsAXKbSCU5w/Qp8K5EPiluKnm4XxZOQfGi6wTHG/vH5JHMRiXvHnyWWFVAs4LQwG90a94y1uj5tQnEM++257wB6KtiJQoPIucL3Ns34oIALjUyd4ewzJavcbbbnf1NDwxYFAoaIAZCMZzPWX8UnIt3yMzy1o846ttPtzXlbdg/MH01B9oUL9lmi2WVBLYRlZroqxRyjQbhSizsddlwrUSfVPaaqh8vmDLECegudo6vWyKefPFFTDoVzsMg7sM5GeNmU5YhhahsP0mq0AGu8fspozMlXO5InwLDe4DnCjY5Ga/3a9ecTmgPZUeXv3dH9M709mcbuYqfuMMESAAHMh9TrQSjHftUaK9lOkM71jsJ/2yf9AL2gIN7Dct3IjFqefzzqy9QjsA69KJkCIdmZiJaJp49ekg8oBpEOvjtGanrvPgLdRz7e5D7IZNtUTou3Zwr2Y5In4HkSbEFe4zrvTw/1LEtL0mFxHB5jpq7/vNK+CwHswE/BMPuzoRM0yT7FV0B1Br6svrmv0sM1PbFYoSzT8NetZLkH8Zd6Bym2GTnEU9OqXF4WWfX7/wTR7LVkBlmH4Xke0HqTu9sb/To0m2f5FpGhvgYKAh8XQ2/9VbVU68OeAuvZoeYB+8Q3PfCqbvicRPu0qBKlQr81oahm0aNVJjaUt2/7nHK72bKDCFE4mwVqApjIyApyRCq0H8UWsUw4qDVIomeT9qlpXgYU20M8NKZnTqLusQrYHZ9BDQYEkGMGBw8XDH/UhBNFv9W+ooU8pRz2026eeegFPdT3HY1lUTqIgkxK1gLKkySR9tcDJ6LYKsv8l79RmdFu/qPjc71GZ3WK0GJjs2rbUWNM3xKdWXbM+NfbjCYn65TJSAqpK9ri1zksTY4RTkdDgd965vjWRQHU9JuILWpils3Ae78GXvVM0sL6LnAKJX8IzytyoCXBdJxsl9nHZ2aaEylb+cxCvjU8Rc3Wxw4thTSIaF2UtF6DU0hG2rrX0MEn/dZiVsM+1bx0Z2k2LxtWufH5XOnG+Oi4exYdszPHsrJzfDtGx5X7XsdugtxTRx6Pboqz2t4NUJUdMfiTCB88b2HBB0cl+AqE6Hl47jy64t2AtbNNaa6CXdu33gvDRxIyGT7PtrwMFhf0n8LWBlSRYLrBBy225W4q7tuOrq+kGBbmNE71qn9lZ5iD0QIrn44ZHZagvfvACtokVE+ENWBYoRSjMCSgabrRyOljrvrC6J4D6Rc6onnnNH+uj0wSTcwurVo7aeD4b08Uk2LHk8rjdQlgdr92ntVJUkCDY9/PmMh52Vs1KBRdBJYIZ1cvYeJ8/MhnTl4e4ERBYwp3/Klfw8WCkaQNROi/73C8u5OheWgJG3LONiTYDjdIM2fYS6pNB9JHUfzSh16gpw5dfhCdcqUBZpPpiUgU4U/+JvNIVSo8hbjMa1hpbqqYXUsy+TXzlePKge3Ltb/6Y3vzU24mSbSkhtsPJRXMzBLvYJazonAUmGvzIlf6Rbl57xK/bRSq9cm0cqG4iZ5PJ32phi3sTXvE/n5MVfMLKpoUwzdCHPFIgSzakVN1j9uCsMyqiMTQGXzmCCkmMxKNdgHxC2LMwDoCd6C4/MA5SXqPHUTu708w9TAmGgBIAwz8CwGw7okxInkVAXGUcPjg5juWRUME5EwrSTNBTlcsrySn8U81yPMxQUEVEbhw9wS1R67x78ABYpb2TqzOI0MpoPKBUPV8nYiCDdQwpbqEgfWndXl2xnCnjAmE8cvCK5wBoHp6x39d3kzVTxdB0JiPQXM4mA5gCTlO7PaokkhauhvQBl69vRU+nyWWZ89IOAdqNsNXHEdGV9rzt+7G/ugsifAJNDxTKMXVePJ7NmD10ZZZWz4275oOlTdZANjlRWRrzQOQ1/EO12Rq+V1LReCxxZ7FKwENPqNnfGcGEZ3MH5P8QEU6bKo1KMIDwFb64QYyDmdYlWF9ppWVI2KrEKnn5m4MP2UDnRHAs6PvjlVl0Co8V8HmeWT9G5EwVEpbAgKSi3RgPPhtXkR5n0mg1VDq051hzLlNAYMwHvbt0BeRLGA/zOr5O7zOMrB+dnbyatyBukb+GD/1Uqnha/j4M6ZnhIF4t2KJQ+0z22puiUBkqlBPIdoTWMnIB+jVrxwZynXmk4m3AZ7SS2GPkOxC8VmuPAXtUbDcJtFRxdCvh1gyYFptpDXuiFgZGmWCqmmR1ouea9xyXmmrFAazfRjpjCJnekgANb6SgxCDecm/wOv6m29Nz66rUnRj2xMp/Kpf3eBxuJhV5hhfdlmYYGYqAYTYH3jO7lTjcjFAlIYty1zoey1K6LSzgjtZK16I6Xp1kZ1qLMBkN6l4gXSoXoqiaIO+yPfsbi1sKAaFbS6S2t5AwTLNUtiqlOCPBAputgqCFBwbcDv388FZFHTWsvJSk4xLxIVEvjCLbBzFMLYWAR4fqRVDvZ3P9AVxMgMZTF5OXan8wERDTHNGRjNZka95GEWl+0s6v7c2P/RmKqX6SEyaBU25alVJL33Jtg8IIkujlFZ5pwfOmn9xrWHLZDymiz65MOaWYtxB04oLE5C9ScXPSX4SE8iipOLjTPZr1VCj14hb3JhkS9IJObx1lMP8s7xpIXBRdg+AsLamtQYcgIDpFVhngSrXL7lDtPs714HwLqzl8ok2jMhYk2G2K+vk94WYJ+rIhATYL5AFcDTO83rimhA4pbK1BfWRHyvt9niG8uRVsrfO//f511ES22NCvHAZX8qH/mSgAvqQkotn/dUKcvLltFETBlGKNct/Tq9r7/UU/sRb0PCleajZaTiJt/T4yIKCzX0z3pJxunGnbuk984m8T7HRNn1JlwayJt3UnQgviWd6p3rXZb0U+QMhGIgRxCYKOlE+PW/s0WH+8/XGGN9E7nCP4PQmOYL2rUKjqR4Z7GBupxyE6/3ijkTZ1uYaEeJIbrC0
Variant 2
DifficultyLevel
465
Question
Which of the following is equal to 80?
Worked Solution
|
|
43+42 |
= (4×4×4)+(4×4) |
|
= 64 + 16 |
|
= 80 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is equal to 80? |
workedSolution |
>| | |
| ----------- :| -------------------------------------- |
| $4^3 + 4^2$| \= ($4 \times 4\times 4) + (4 \times 4)$|
| | = 64 + 16|
| | = 80 |
|
correctAnswer | |
Answers
U2FsdGVkX189eLk5FtjfATOnYOcYIjYcnl832IJPtr7KsXeROC66EzJ1AYCJBWPLePKT1fuqYYqnGyYhhM0x1aEDEnxINgDs/yR8wt2dryr1iUHbZeu8+SSFlnWqlIMxtBXqQkA8Cr5TmI7vqMlheHBlYSLdfnQoKf1lhF7qnMTjKx+5TdAiBcqO7MsOaiDtYJwdDeDU5oZaOFuianfyC84hWeRadCS74JjBhyVp/g0lQhnAGqsyKCPRDY05rMnm5Px1XY828PJlkGMpGgiolqn6OnLFpXzeWFSDdcV/DU0BImmw4KwNxYP/7m22D4DN6yvt4eDk87FOJ4OFRBF1dYMR/Gv29jyeOamHOyrJVnEpTFfMTz8I36qt++5d7tjGn1Nlz6UpK2NdwigLSUydmiz3WfCYBatsmOCtiYefk8OFlnAift/WfLBn6BJTw2Jg8RjULS4XbcxaUe0VcCYBeiEGYKu6QReJEOBYzw55RqdWCYagvGZqHSCv9zCb25eR9hhSKmEBGex4GZw8yFzezOZpwjtLHMRhljKwb2eCNlnnbx9/XuZBDmCwvHEokG5+OMZtbkaquJrv8Qb85cqjebon5+dwdRxxqdwTI6WB1D0HhIntssw2XXpEBSUAfYQ6p+C3aK2ypDblXOZ80zPPm3sXWBjuwL4kGjO6MvdIZ4XFFbGli1/F26IlYbPVfgqxtU3DOKAzhRmSGmkUCcw/Qoee/T1e3aS/VNAXpTYOPzzqK+BTWLPK/rDUhmR6IbGZ8dUsd6tVMLNABi1q77ElQI3ErHUpLwa8/E/5RtJCaabMH6Q11C7z1LnkqQdgRL6C1cd3cRLN7V/w6gQW5etsyJgZpOp5u6UMWgRwkCPk4+EhhmHddShMzKzBPe5fZssrHNg7WnZYWe0CLwXx3/iL1V7zUK6SBuLfkdbKgAVXT5KUNLopBiE8rlbW5kB9xRXE42ZKMjOsa9M4yWx5WsmEIgfDJkMTKBsUgAPvmyYxJ8fx5CNvQd6TxWYL8CxuR9AGzbd4mFQvtVKIFRuK8fZ9F6GnZNa9Fi79w99v08QPGsUqMZd1wD3S/LxltBxEO3xEo5HVN4ye91MrjbOjxa0DsWZN/g0/0PIr+1fw5+m2I33hkgHOd6KGnsBK2hbDzRkfJTHpqIbgJb39A3vrwnlywQBCZ8ObzlWQhOUlMw6M78bM0kdmdNewPZUaf11wXBcHdFxhlMn2CyutasdJAv8Co380oTDOxhRv5CY5DpKn7zhSv9PBa3ZnoQbApMY8VMKN4UVCxc8ITdaVTCNc4PUT2Ax14RRMW3EEjVbh0p1kwtEoJt2ZnJ+0JiCtDtQXqKZ3y/L/VTujeUFFEpVp7ZC6YYZkokPIOEd67Z4IZY1/qkrHHZ9MKDP9hEBFjiSBkETPtqbr7Jf7o0V96B6rkiE7Zzn5HP/dW19ICsY/2BytRc7Jhdf6S65ZRYaIRgUfCyF7ZD1T8nuqJbXlbdraOJBTLoc+s4Np0WKmZtdQG2iiLAdmhqsIEI7wpDAgfgdqyToSZKSWUzvxRQLazLIxYwRWz2FpIj97XyAtr+xWq+Z/mmmVLoZm8AJnf9+7KXgVsn4byry1ooNI5D7Pi0uSPBEhY8Jm1KIgMfvY0PJ61efMSDO+FebT9dEaA/o7QE4WE3NCEW278Zlr8KJGsEmTQN7ibKutsPzMHOwJzrjNG8yqWMlNQYKVaN+CHp3BU65vRykRKu3tUTTyOTmzaMucHtBQPwoM63qr5CYkI0h+jl/tVnIPl2TTfi+qVZdK8K4Gg7SUvMHpv2h7HRR3bj8qS+O/GJgJpMxsnY+XioYSscV7pLEstWaT+2f+7kSAwuxYPexxA8ejvSRfyuFCJBqqaDjhaEpm1b9wN6Wc+qUBfE3Ndz1RbCMujuvijWsFVrKs9yXwnE9g/ZdHcx/GJ/89LwLdkCs9VFrT/nxuMYmtHCT1Yoc8g3QcOuqIi7864XU4cCXP78T6Ctyhnz/tj3cBPHFyDlr+mpzXjP2xlyhm0LhoEP4ncyTNsALRk2l/1MSAdnvi3thnHaD2H6uCLU4LTT2g7zYBkwarFrGqf9/dw/z7gmFCbgC8uvZsBjlK5saIFbRqaCzBmNUEXjM6XSZG9spZj2/MEFl794PdgQuhDmhGkZnBXedF9fLn8NOhBXBU1LSIirhvD1qVGWO/JrY4ySYUvH708ic1/05lNYSekJWs6sJhyNQennccKML4pm2BA7mHFybH8la3/yCFFoIZyLwLWsI1kkt8p43ggKu3pK7fijNW57ZrKkhRZrLMU9TtZiF9+H7h0IMo/2CIsbPTAnJsvunIX8ZThyWTOq4kDGuaoZYR4Fc3Yx1AO9YTD+c/NBvsF+Pt1WostB8Z645ZSiY0rwCeAx9gnOAysEiE7mpOoE0au03/MbQlmYezcBB9+xRRykFwEERZ0/pdJ2720/HX+EJxNC4PzcdE6vTOKqf6BpqVfIREMI8O1eUHjD8oJc3KRzTszC3BoG5e5j8ppqFS8/MDM4J6gjK/O20OnPtTkkFbjZ+Tgw0og2uBT44qqzzKkft4L17boQvdtcdR7QTwRmbI54JYpA1M+ek5QwKI0xFRfSDsr7+He/Wy3zgoLVq3UgCGqfhv54G5grX8yo8XQmVqdmybXDM/I7CXd1roF4/NW+QWF6VyawZklAxMo28Zlitx92Cyw+KTieWk97Y2TaOMjiHNMPUVQCd6l4DvDvCST3m+aPGLEsdcoo0zU3LDIdjUt7ms1Jwf+83o3u7M4H7ADnEOzBgp/0uC67/xDqtoeFJ/I8wRgvhCRziXCY91KL4XcQLVb6n3mKe+MTFtvfoE0wDjHlnQxHUYzD4Gsfmx42D0IulGwEOP0IyfNZ8FSVXpXNh611TOCxLtHZDaBlDS7DoaKKMWaOAdN+z/H6bUdYjVb/wE/WDJ0cRlB8W6u/f7JND2SdogJ0y3W1WSw6UCCTvXzbbCtJRbABonfvgLvNHuSvv7rkicoZRMa2Fa3OVdQzVO8es8IHRZYkEmsJW2szzhjC42nAeNU8jx4H4JX6iF1EDCxqBQIEERDUuyk5ZmxFyKOI9jxPoT9EpkuFvV6KN7Zo/xgrf0HfMkxWeOigERtOFR+jtiKjrjqpMDf81KAtmx1d2Vr0oYjH6qjvchjRf0zRtfp35YtT+5pDeyxbAi5ba9NtiDPHCbP0a5QmfFwhurEGdRauAVNDuaxppFyaGM0wcR6gPRAQMG6mtUnTNDCkBTD0cF+TeEb8iWTPSU3u6K7/Bz8NJoOeLqOKHjNq8LdB/jazP+vyOtmC8I3G4Qteslr5pEKHgiF3Z9EAsoONIygYB1rkSNWxhdm97iXk2PTyz7Q+p3fr5THMHNcGOX4gheTrwFBO6PgeeesGHDzgZK4uumPh7dDSfrzrTDl4p5tUi7+1RtqRDS2n+duOdB1Mb78BOTUAzr3a/sX52KznFi5Vx9qQVxZnxsP9HYB5523ciOZvBex00k81FozffLlX9Bm2k15FFu3IBzpJRX94YleyUOF3Rflqyh08+mpIDN1w6zg8d3JnZuhiZC4YEZvRq6lMdYgerRRJ1RvOAMg4S/+d/DAb8QZ6A4NAkSaEQmnZLIAJi76q6TWZZs/EzLDPpclBeIZGy6eLweEu+20RrI2AbtWPzNF2UbMiGuCbFYLdEs0NNA3LiOSo2nNVD7I7qZlmx1AGTuNiSxNh2wgbhdkjZ3CsrXNcVsFHDbw73WQVZV24KkbIYLkfYpX5HLay+Xs7BmpZsheswm0TnGy/z+t56gGzbQoASFDXZQ5j6vZt6daXRdBpqxV686UTfIeFhjLPPMMy0iAXDOFCrJ5Xu9pRaVRKaH3XDCjL5X5XxhqJVU+mZXhsg0d9j3zCNf6G40tjX262ZECSgMcthpDP9xgNq7SFMcFaP2hcjALZfrcyg+MEMk/N7QeWww897jaNBbXjZBQeIfl1YjAS6OWKQnrVTLtcX45RRsUzbKeyRc2Gd5bkTrvQuKd2/OA4EUa/eN5ZgOB5o3vz3rWDDXzTd4icLpbapZEdRXtXuyf2wI+GQpGCgabnvlEtdxaVyHQ9Kj6FSyohMvmVnbmaEb6lAvs/SN+A1CdvFk1eKFUOvGfI/4DjZJHe5ksrmK6usHgAZbA+RmRiIf/ujqMvAqhw2bLG4Yd1mZK664we0se3PwqjeMMFX3aI7nMB8yRi86Vp4ANdHwG3C0Z4niOhuJo9Eq1IGXelyCWAnPkr0xsPwGrTQO3K0GzNDSFVtG65j94VwC3Zwz9jzjrHTycBRjYp3S7tG21XPIAECAyn3+eMgcGpDjIGBiXZR25gwR81MWIiwJCMEwN31BcN1n5K+Jtq28UZyrpKlK+GaKMyX5cJl2Lu4pwFYkAaGE1/xBsQmtyknSfTx54e8ZCKOI7BuhKCkpII+R/Tkseo/Uc8McZOKAkGjFkdibSl45CUe6/gTIKyP3xIAsSEQoE25+MN75Rvv1OPKwH/DwAgTLi64QQjZ+fpMIUcoojV4NMsvlIp4SUu9hSv4kJYfYgeGTVpTfeKckI8L1xggG9qvQHsocVtOi95rU9AGIKGf+hNNXR7IG1YnSvkET7nb9G84OBi4VPWVgd5+5SozBg6iwPSnyN9o2fNiVAbf0IDcqXd/0pbph3esaGRP5xUr6WQ5yV0yYQ9UoVBp67SXOv4PdVhNclMn0uQLvIJ3XCRiD+wIQuXf7+LtqHo70yDy5c+MIZ8KuT1NjRCaHicBHveTHXPbS3PC8twn3IseiIykn45GAWn/WKypUjKijJsVWGVUlgIZqAT83MV/iuEK9srYty5hBiDwRAPabzkX4JfVxU4ArauT/YuSgVmB51QxA20TO7FWfpBu1C7lyxUenXBpx8tn3HJAQkiiYH5PuvdZWkGz0Umie1Zgar5eeeBulppOmJFcBFM39TY7qtuCTJnVwtA6liX6oCQFclq6iNO9Aa+tuc4Bdu+0JUEOI8TKnYKcLKreEH7L6Is5gii6pdtcy1DFJ9Q7JCFboQ2IoaOzt9QnhCOqMbZOYJP+jD8vxUKLJiNFME2DesvRgn/iRbj8oF5lP4GM89hSpHb1ibrmkcEF3+6EECgMgc+tdQ2yOsqCSJ0qkekHbbiPoI1jPIHkYe1/7OghLqw+2T0la/QSeV+4hIWFd6u7tHwF3b9B6nsviYlNQbr0wXDayLWbr70xG483q69UyrlTSmMnhVx/XsrpWTX4VUU3qdEn0cRTEoYxwMMugZYfih6GXsXCVtncl8vHSgDIK7lQalLWWl3qdEI6WrQ9GJMBFN0DGtAvtpiLR5W8hMNFomB4i9m28sFDQdKXZewydkvZV7eZj08PjXFY4VVdqEHc2/3iZdfYbZ68cdDPL1jseDcvJEyQLvpmM7u4yKLhxJGujvI5JJOpdAirrVgxGu7qhV06piKvbFzD8bXshiOTSDkoBsD1q3V6Dfrf2XIXXs/oWec75EvlVboolePCfUW9DeTdhfeEoITwgb6/qm1HPdI1c0J1qtzBYddVfV/qX8ZmbPLjwxHaLLf/thGh5Ci/g/0b8i3Gib/ACtrGtDtzua3d6hU0QUrAW+LbqV35jDMe5R4NEnMLLprFxnLbwm31R5wVUS5Fi5Vxo0FbUaxL/C0PCSLVjtj5dapJXqRHrTWwPRkvd58rxYosJ8XewbigvxJR1fvasVL66RSVzCkZxEvJbwItXtCFjbqfzdUQWYaA6e6xP7XLcVpwKpgbvdS3h3y2mrNf/kcEEcEzJXF1PYLn/BiEWlqoItjjw3VoFui6bJ27KFGIAVL9+qwErqvLJEUIU+LParivh91hpEQhP/6od4x6CKDfnPZolgEnECzm4iEqH52O7VGyV1wYePtdNUoYV8kMLENnPeiIuac0CKQslhq/92kVzqbkDAeKuSnsDyGdUpoN75h21Xk6HRbhMlH5JPMZ6sMKfmaVPgPsx1esFV1tb9l8f6i0e4TSEfr3MI5UIFFC0zcSeSZtGMZLr1UwWhjQ8iJmWWLX7vFkwplopJCaMYHvBC/AXEZaX8hGKs6sqmm4ZnvhPCuh3ZC34vir8NgKwnmdz2T2XRZyjnEEdwwgD1eYwfo0wgrKlPNHJbX/rZyTUJWPGYAycgobgm/ttQZUuUyIDbx3srwMmFCsn8bV61IHvyAhb69ulq5usnjbpsHG+pYWD8GLIevbWJru+eJORZrpOyRKdyLyj5+6nrfHvv4k23d0+0WH2eVKpZZSI1iUTfb7WzVgXspTSlNJ44tWMGJ/W+66e9J9eTRiEy3UJ7ckO7rcSJnVYgIPFQWzADis7KlfVZu9NVzEzX9LEo1EKHeYjAIuui8/EslvEtqe0V+VNZ0UHp9VCI/Mz/eKva+Zhcn227kJZ7FRkgMpJqHaAcw6opJyQK+jt/TVH5oLcrHucx0zek0Az0Po6ijLKGbOearL9qxmQPB/Bo9kZOqonSRqwjn8RqjccOX4SHf0yUY7fuZ4IPxIfi+JANwGFPZtGcuBSOrKJL8dRC49/xzOiNcRQPFUfxufPtgt/cl3/S99sBrLQ54heEaMZjdzckU8JnW88L8iBOOpgWas6svBsdZ2+B/fFemyoJhlJ2iCiMAj+6EAJQJ0in524itetgWAqFWfTEfz7tZtsmUINic7YNnMKU+SN9z1lsQbwMtYiGMEdt8zvc1jjlGITV55+2UyKx7gA7D8rtPOgFH203L4OIzNQqBSQhYPnR4CRyaQ/eJoDc9dDnSxQeh7Y6sYF3KG7f1LF+tk72Snqx4AOSWQzaBYSn9Xd+BS0YYcKHNUcef+y1beOCfQvTRmCPPnExISu6Jmr5oznv6RDulZUCTbPwYJqyBeKBBTg4jtpmFMu3YiDSwnxzIQUMKPRy8DI//9LC2YSEjprOV2c+LUXKaBFz2OztXfveQK+oYKMAL7LUhIbbw6j5hCpJnFNWOvAhXs5HIIT2snjQJOGkU4EeI0uXHpEQwh8WzInz5+ISoOwtNHfY55AZ3E1lhdL2QtHzV+E8tALHQ/Y3H6QXkwtnKZygdVFQQCeLSMDK7lVFgPINhvaqTlwA6FDtN1hvgIqpuRWtufDVaTlhmQVYqaCr488XWoQTYNMKmJVj6SjRXQWYDbIcgS70Fn6qk+cexO+iCvvNyDhSDKpmtw/GNC9BCc9rFKRB5MAvSadCe+QK11/dTYMWyQQoAuAErXPTInb8hrZxU1/XirHA0DV7jAR1CIoyqkY0pVqht1Is/2sfB29uytdWZ9Q72fIbDNJjLuJYuOKqN8FVjkOGP9l0BdtBWMsBeM8rLPL2FgIVIKfLVwTxQPTQ6KeWRdu72gHuEBkQQZoECwjOhLpxglFNLj2QjyiHzCgNjU3h8sMovgN2NuhSlEmBr9CkO8kj44lsvAu/kuVytwecjqbyj78Vum0H0fe7yl4xKiFxLKF1a5LblsGCw4cpuj+EufK6/BID6+KlfM/qFMJs66L+xcppMCE0EIH1yI64V9PbucF7GuW9HaazEGjmGnksWNs7QQtS3F42g8VdRhbA5KWnA5EbN70lGVUAEIgFnBNKbWr0rmp6VHeAa3Rp7tjj5yWnWtTBXNYHYF6zV1imJ1/Jo7nX5qk0SerEeGOgMjjaFt8F/aAsnUJV88bWNDoVvAi2ABzGhlJMGpm9Uzah7RbkhM/FR7krFpGrz/0tRPJW+uOl4pCDVCvUDQj0gbuBzVLSynjL+AesQLtqA24cBT3FDk7MDloj7r3o31OdOIcxUL1lyIIqXsZICur3or2Vs4xHbZ0L1kwdTGrBgu/i27K2RNmwuv+PF4gll4MAoArylvnlvWPorjFBiWo/ztitbH7J9ExkZwpM+ORLO2M72DHq5LqtPJeWBRT64uhpzH957ouXhfT1fC6mEqD/aj4g4Y1relPi0s5c73ciWKWTnDpa0b1oc6fdu9mUcTkNXz3d5+8HjwBCKfy6PR0bwWw30/metOC+Ec1ADqkApDknO52kUI9AbEXOWdveARixlvV+M9vxQd5oQ0JmNtA4Ia6A3ZTULzFwrp+xMzRUmrAmEDf3Bp8ZFI5dg7BjpE6dEVl4P8JLGKPEraXeT2XZkZWlrmA4B4xgQlITgMKapHqaAHUQAzL+kuW5Uk//ODGN16m0CcJsg6QATi8rvAvGKbzKg8lQGlfVZDy3HhSqpDLCrDtNQwxkgzZRrAb83LkkEgyf2JM2ldWDQxeR8XR777ul03FasNZ5hzv6nq2pwDIXEOOXdrA0Pyvm/suxx2B3fSKuMSRI6lsPngH6HJMYDjLd7qqkL4/gVotkXq8voUtR94fWwc04WpH7V/y33cy4G1AAvIpeBLIfif31x4DIbM8PNETAfB59uO1Iy8WzgK7hKEhrWYIocaApEWxblFG5qvhGB4ixi45CsTVPTqr8en/nGY1ebB7WWBGzAg5+hgVW6m9KLqGuZv3svHwXH/Q+ZufFdmUfRqvOIy7Z4RIeGBpzxjVlLRWgbt1TkfKQ9yKVaOlqKTeIZgQenTQkQa1BAl75A/jGcIM/fR4FMDPTx+qDyJvnQmBVdakqmSz/zy+pb+LPjdAxHvCDT22+nljI8Sc3qUTBwslaTKfU8gsLSikq16YN9nWajwBnVbQoHhXzm3eNTFWhTQNsdfGtXmYsAMYN0IvrYU4Qki8+xDDarPpba2fTw+gKGh4IU0A/c6WzyYunEYmd6H593UNmUqVJkcrVZo0+yn/UI6jQXNVD1DIuYaq647ohS+iqYWDuWdlDHLZQP0QvHx4TAzQJWuDV4FjN5pzozYg7ySPeyJfmjS2fc/DNhcWL3V+TmMfSvu9UwsQFjuKzuTLcasN0wj3qwtzc2sktRTUxOUJGDKSWIB59v3we4/socHd40grfa44T7yoiBqo7yFFMB4CI6BoZH8vKepYXeyAXA9zcW/bUE6q2Cpy93U621JQPRcIsOx9rojYlFHvhKo5HAmhFe4L2IY+St66tZfj4cimXqxFPCgzjsx1JitYIgUb2xAQVB+Pv+bVkWGFCWK9prZfJn+/GbJBGd1RZJb58cMgQr3KRKdC7l8HgFohQFNyycwOow+c0Q+Kg4dLOBwq4TNy7ShxPh0CcdIxNgUbY4zbi0qSlJ6XU2ZfygrEQICF+ICLdyn7YxG0a+nw9va0EyarIoyJxXedWtLhJfLAdad4nY0qq56BVY3tqjBIEqvcjzFKNWx3Vg15oVkKtAstjrAZkpw2MRN5hlBx8sjvlb8MB4dNdnmXT/eA74Uar/gNxpaxNb3+O6R1bMtIxEmNx9IoCJbyUNoDWU0uE7MOJ8Fa7zf8sspDPCm9dh69IOf/M/yhn3c9ZVk6nieT88iy+EqhpmBupJTohWvBwouy/s89Itnlol3KoJp8SwwlezSaEyNwLXtjut8/YVbczxXx0bPlIrx0AD1oP7r1rdH7d/kZ4cLx1ZtkVbHObz6CGM4EmCh0VT2vfhZwmeMQlXZDo4nKG37n7M/CD8XGsJ7TqXUGWeWCgpWZx05d/Jj7cmrWz1urI5hI5Tz1CoVTJwm0Vz8DUHiIvNCqkzMZrcB197eIZEu+vSjYu5RwJy1fRJWqkDMQs83i4Jt4vsMVG+j/Uip1c3/SaiVrdBWiRAKxSDt8RlH+vx5lgpyJPaytdVjBI/djQULm+g/z0iM94/EPD0KbFgNYcamvYvm+Sp8QQ6HoyQbD0jDLRstcuR4djdq0GfAI8TWdS7v2p654WaIi6lA3F55krYvyqmqMgeqFaGjTh3lA6bXCk0nraTFPCe+Y1DDc02Kp0mTyjA9FMzSZrDK97BDCeRn0FzmImjwQp7ETDRwQNFssJaCL+yZVvAO7O6YpYds3u0mk1dw8VskBxNgNQZJbAcX7pz0GTEa/Qovc3P3/TtVDSeWp0Nd617dyk3oQWr7oqX2EtO3h6tE6nh2H1ACeDmSRCv45hh30oPeh3lsBnorkddXDmA9tn8rPyugmjlpts7zrdTOV5nKTLY2OGOxPMKtppjZVBT+pLCRKCYSDah+4QRiY+S1oG+ugK94d74SzO6xljRSA1atSVVCWtDO6Z+3rVbfVolqPlVPEUZz0ibHYJFg0bDg6d7hdoMJ2lGdgrSYTp/w+x7umrVE003Ka8wALyDHyb4eFt6lsrGhezaCG9BlTUqD5DnyIs1ZyUTa8NQz7uAHVYgpYFcdCg+Z8jU8DlPKrSH91HUS2Bq04ci0w5UQFCj61nG52ugX9famOPVckwe0QFAeNLQq7AHnyoENA3+gVDhh7b0UjgACgWMMP0fk6PomPFK/p9lGQtA2JBOzN/4MZ4uCbeE4ETl8iLFGg4cUQu6fHWSojYN77Xh7E4ISVmV+b722pmRGcs9wbwOfoJDNXwITjyP0/jfU4zKyzcmVLA9va3Sh24HDEkp65Igt89cuV2eXvVRL5W0AxvWNXDW9RreKzUvw5+7QVXwgWwHcB6avE04Tm4KK4tfoNP/o+29iAfRcSY2aA0YaVVv7/CgexB0On9VmCWERQoEUyOhJD1Gx2vS1d2UN4t/v9xkyseBCqtxfg6fGNQumnY0uDCJnYIzJKIpgUpXxmfwaydHu5VAIrLeVdiuokCOJY4fMklRleGsea7+Mklbnlg/w2dagi6HDd3qLB2/fA9m+hjBP2QZ0n7HvYz6my8q+ZVUn9gHofTRTpThvf6PqF2sUGyDF5iM74Suwz65RPSNCkj4ILeLUZwZgO5IpaSZSS645Gyp5Yu1ZwbwLnyby/NdNaRs9ssTXuPSa9gud/Q6aBjXriEH96kKLTyZ3rRZ23gGbmLtuvWuoAKOeniuoEP49qLElIyRPaLxMghzUwuL+tH2I4s4fjSjUn4vmd3hvXljvZ1JTFT5rEHnxJFvipCEA1gu4j5J6gmxdCt5ym8LwgM5Y9N2wLs7vtmW3cg5WrQ6Nt/h9uUD4Q4Gv+5sOZ0TIEg9PM3WoS59DMXbJn474r7BB6V0FrOvum+4EG6P9arr8jp3T3zPJB4VKASbgy1Z2gyx8wbb0/T5S0Vn4iE1kExL2sqzQ02h+FJmcJ/E8kkgUQXp+piI1i9xfjCn4Qbj033FuBNTt8K7LiMCXTRNnsiR40RH9R7oh6uEZW0vdJEbnQGx/vsXF8Xad565NBP6qudaMht3SyRxQhn/xAvkwBhct/Ol17oCLICZpodmkKi3gNAjAaK5IQonYAbMYtDv9CwnMlsYvNSReQG6+VTuEeBR9BOuDZwFW686r8Ev0zq47ka7R4zsCYUruNQT42JpJfJHJDMPNNgOlV7IM5sYKTAiXcIvNvHLNVR4mwDTwppB23UpOBWo9RHb34twzlAXkRiw27iybyt80h4iRcTalOYgKjazgynHS+TVLeGXsSvyDm+LXG87LPckuA7VHAx3FzgUmDVxOkIxJk6y3ZO6BmOwvG9MDGDXjyOVyC6ruwo8EeHFP+khow112b/dGdtPzefPWMNcSaS04tv51VdWRittVbNk7ySMClI3UQ6wgboeudZPFGUaXPQ+AoxUeUpV6Hh5/VAK9d1KBhH3GLOEwUcw8N30rYY7+qGK+AbWL53utETIbXDuLMFMY/Zt3aK7A8Z6Q24jc70+n4JYG81xXQIxLURsp6lYOU2XBxpgYawWu9YTpb1eeOxQ1h6KUbei2f1KJ+a2Bi+I9XkROcP0DICN4yjFI/7imHtR2ndPJmuH20aG2/y8eQDxVhoGWfi3VEQVgilnMFZYwecyGxkPaKhBr+6atxD0HKkrq+UNanpbDPxGYJHdo5duuZ4832AopV9ETHQc5+tRuf1A+EYWB2SI5fMSa7iMKAkxn40bH4W5N6FKHOtAVOMLv/VcRA/8qdQsP5t8Yqgv+/+JQF/5xToexl1xjc3QOjITodNFSUZFFcOkHeKL1A+oGGmpPjzCMN9h9FrvHu2NyEz2IrV4E4FP9vqPw19/Ou0/N2mCqd8DVmJEmskPkHFobNEVl3+SyZWxPJB4z33FEZIydRGlfchybyEFe7OkeWCVSENDVPQfDpv4kFKMwMwvvOmHBv+9sILXcE5oa632PktsIBrE5pobCfB0gb9CpfiBLJosN5P3xul4hG8yL0Bq9dQKxm1gIL2VNMycFX8PYp52mFkvM4LuGGkkgI20gz/gL6SMpgyyWONOZgoXFWijyZos4qP6vLQyf5k1UeLeL8JSzqAKAidL9YXKsPTjkXpfiyI6zeUmaokJe0EkZdRP0BmVdLIclfWDlpDhOiU5NsCjQML3wDUR/0n4qWrK1lFbU6IbKZx7V8v12mTYFnvQvr2qsa4rI1IDh+1j+Xdfllm4bR/fPddiFProwxe+yQb8tctVaxs6YJnZRfKVmHmvFMzizDE1cUcaQEyQU3fFOveg79NjFIlfHxwDoXTj5wCnsNnqt1UNrGYsC3bO5mWXIeWF397D/1qVxMqfdjAMfwxcKcHx4FiRzgX+4+65/qBOYMPHZSvA/g+rLmVKl3we37OFZahTvaIothVe/zvyEoqrDlnQ56szaJhqAA8UpqXtyvt0CGB2HCax36vbKo5Ar2iNuxENYCWVzT1GPT5iKCKp3qDa0EfnUjQR1J04MWh/+Q1Bt9t9d7uBQbwDTzRKK0l58jYvTDgZDKkczyTwFo4YfcfbNhpdu/9dOpm3I6zWCc0QqTNqpVOwGLcpB/pUq/cZ1COWgQU4pLiNRmZB2E77uTIm+cozXHL3ZxDxMerT93sY0b+CkaGucqKBm+WxvUK1tBUdKn4vW+h0bwiN7qDwaI3UWKsQbhQvJCPkxzmBvCEypRrcnUKvVZo+Dt9MHtxDs3jNCZGBSIkwrIt7pn4n4TkYdJ2O9lEAb92IAlGKdWTHLHRuNB0UyaSgbC/XC3LO6k6LqWAeE7B+CqWUxYXi5zXdmdiVVZ68nZ7yDySlgt4HSeUDpeBjIcPBzoydUJZGIjwzqead4sYH/oKO2o8GoPRciooJpqSAJMKDdSpABuBoMQvZGnwiArPss2jBwVPsGJcMX9NGToNM0zCusBQypYCr4ZGFUGZNflAhHWlw/lYo6myh5nzvet46NZAovY+7LhxnBSRVsbfxAsE5PWNijjafZMIR5mWda82rw4250fnLz4NUAoKfDVWH5GsAoPsv+v0mUFaD79IuXU/D+kAcwCgsqty8IWwTjluzoO3hB8FuyPkcB6lZ/o+yttcrvFwyP5RLOK8Q01jHKG6zQ3b96i09h3PIWmnE5LKyH3y1y5F5ltTQhNK5ESFOvwJKpb7G163JZt5Qt2ptRGyjoOKXLmnHtG9ZYWTEwIgAhlv7LPp1fgz3s2E+gJShanzNiBG2dHBH+ilBgL5W8ILoH9gjsh8hNfWu8EKDsZJaSrWzoJ5Fxr025id+gkMRJ5+As7krVZSm3mMAvDnf2HIBo9w43xyaRN+C94+48rD9NLgQ19X5WhHTe/PjbtHfaWD2dBnrgHEneK2tGMNEDpDp4PrM3bhTEN4Fi6kpfClXuYWFvWNqmzbu5JmNi2TkevMMPx/cCi79YP4IoKvwdCAfbMqCMZt9mYvSDahZCAONIEu3UgZULnTeCC/kq9OSqMSZXvpUqBJr4tztaKnybzsWRfLpqHOeDLyBZLK1gaRUYRtE6OeOQjQGQR2m/rDwqzFBgnL/N/d1maa2IhcKvodzpLxGEaUAYhj1GGd7HISz0x+8oUNTMpb3qnLrBkdJVJGfDJObZ2zbiabGGU0W6AYvRiKOR9ORpUf36JFMZvClZSwkuCiUyVONRdeiD5oogPBAZJH0xySNGPknVlAPWtW1Yzs9zb+ACbuVhQ7FzI67EHx/ItfdRENjti/M8slCJ7gXt5hDaNZzwDjqMEyZAg2YTHwv9hCBiFyTEfHiVA2Hwin/nEe3fOS1AjbTq+6wFR5W5MdOwt2HuBvk9sRyxOytkff/JaFtDEoDcW9Qelchf9dhNdTjcZ/MAYYHWFXvzdTUL92bNxBx7sQpyh+ePDPVL/1wcwHR76CwJGC+BEb8BUUg2o2BBs1pYMrtXeeDjSqLQR5k63VsGpZF/rok5yosHnzUZT+bHGSedpCPKZgsMlJnMxey6NkQ1PSbObfRduTJvkF37r1EXEFHwLbvxPyCZ8ArjGi1y5DENdQnfcukZcdgt7Y4fJoCaQ5uHMbSVB1fsbopagQuthwzSl5M+VzlJt/WMKychBK8aG13ghLi0BTm5I5jb8koda2tIGicxTiJNzSg0KdzWKwisYTgtcGmNpoopGhEU8AucUFwwXI2shZoGYm2N8JiXkT8crrhwMnuM63KrnyvCV9AbaDT9DhnbH+9JFYotXR9ygRuDDVQHu+svsm9qCbBIbKSjbRpO+HyhK2oQr/tL2IYFR6805WL/gaYCt3oJIKPvWRrCNqU3leYtSy2Uz0P6fSg9D0Tbadr5uRPMepcYXpVQjbxhG7BiD+81hSG6KP/BjFeRts6a01UVsrIA6n5kGsDC4XgwEm5aIiYYXWPVIBdAYvGgcEDUbPJE7sTsE5O4EQO8rYET6DtbC7P9r4V6MUBwC0KuuKiVi/jbZKlNc8eiIJsIScoXiMA9nLm6q2TItu7l0JxXNnwMv5srlCSr/K8TlzhDXS9ebE1R/btt2oubRIEkqXbHXSVNSVvff+YlmOayfETevEqq8q6qWC0ckuKGAnUhjaY/40Dkg0Kz6tuTSvlpnWRV/Rv6qXXnGrP71hQ8ly9LSJoXO6QzdXBkNb3kF46eZVEMGQlu6t3VWHyWrgXkixhNvCKxucOs3D3jsE4Nsr+P/eYx/oQGlZPriwUArYu3Rkoa/BweVHKnF4NIxGAhklvJdJFDzokvVXu7tZ/JWabIJVHsG/eZ4XplLHkjatzeEacoGPnTPwS+b3k+N11qjhV68kgPpC3E1ZJx1NdQBjj1y117a4ntHOZeXfyyXVxC3vQPIWAnNocdukRJj1QSvZ2Exq5GSyZoluetJURXrYTc7UFTSW9gycaJ7UM+tgS0894jFKAzsVAYbokhhHBwSwZscpF9jFFRFEd7GEIzWIGaFXqy2ZyEeRt+IG+G6XeWnUE+jzGtdvBZFnK1XjaEgKUNEGRfNShnSakXpKnDLt7HvDnRi5+7RO0r6RrAPGCkIyk7ohSI5pnAEtBj7VmCaZ7vhKs7UUavbWdIPdzMIt6O5xZIygBbkfS0Q5vRwQMm+pyEfYtpmdGA+6o6lI9eI7SBRtXWc2r0/7U49SMgAx6YnlXMQlNi7cVJYB4OExFaOaQJZ+LBP2/ZHSq44NnrzxKcxflDC1sy3p26KY+xq0PoX0m2Scup2j86ADhFGRWmeMj4ROVi7t/rPCwkwnX5HOeuq0rmph0lbp33QaZ4MMCtc6CYWCE3NMi2SdoAKLIwm+mLIkGWQ3pN9JK4WdIeigk82fIWKGPWyF/+SKiuaAm9yLKHqjBSLRwK8UxlN2XC/mYjbAdM1DAZzKU4JcVUVStYAUdONGeNi/FE3F6N/RXquIH0ZD1mbXK2Ygqg78pxnys7y7seFRFHFRhJw03ekhLD37QUqIFiwOLaZ4JNoJVhKJI2Z9MQ/L7nIljvx4xoHZe/3PAFUmGhZB4oAxZqtO0nb7CMm7emwagI+RuI/vRZzaVEuleff3uR5Op6DaZ+X7Tl3Pm/xkULpAkYilFuRJSe2a6ofkMoM+te8wC8uv/g9kZgs12jHDrVN/TeuHQUEKBYGHqqwgGCzHOnhS39eNNidVxHj86I8Jt7s19CQw6Na5MqU8IS2gzfnVT7/v729P7LBAKoCvIqnhASc9Wea3dRfyd8Bj5oJHmPQFmyLDiYHDLXo8Cm2R9JqOik0imWQ9mvR5QcwPOCcaSjJernOa7j8vfp0T+TZCSKfi+yKyBF84/BfjHHIdEg40vReDPztQP388yJlbJLOEeSnntIhfreoKrwRoJp9VZCYOPyAvG+t/V+VrHg1rvndlS5N1BwTRBixR7+bFCh+vpMbGXK1M7jnmuUnJVkWIQo1GeI3hW+SwB6deFfMi7AeNpTpNYxIdqPqmSTdUoDtpzU9i+djeNSXyZrclV+fZXLhKoW5NEDzCTeCH8isN6F73uN5s9sVGppOldmWphsnNbxAPZ7QKMfhZVIdUZtdeMHToTLz51dvyCU/ZWIdx7LIbpiH8c2HexaTZ6TleHFIrIT4dQEvmN7b5FFKoBCF3Et46V2p+UiXfICqmeMTFo8LHdvyXKSLfvMl64GIPHRSo4sYjVvd/LwUx0YRpK84cMUy9OQnv4HVteXgTkN6wHXzHeiF0DSVrthibq0F/RlhySPnmdOVc+eNqnK20lRH2KRX1mXjaW4zxx30ZEDx3ZgtKyhmblIqKaWNo2AAMt67sabkIB8hnx1cO6BmT25VmNuB8PEtl8tjm0cb7EwAtJulV7O0gio9fwEXJruFXsMjpfJBDGBGUVsGCnIMYcC4es0WTjdLuOFX+ZHS/y5tQr1ETjEf8T0k9WN6/d+JqDiGnaizOXGvPO5E7RluMMo4qP3cTTeeoBDJoo+Xz301XNj+LstQpQE8pmILxMX4kgKcck1WOgUJWZKwLVo+KoQEx+5wN+4NrgZGg2jJPONFgiPEZUnzg08V/fyhF3q0CIIX6yVWQ9M5vP0Oe203NrVAWbgY/iCpl2lIFxAtyCewz/4bRhvfslLjrraUlJUpFBF44D1yR1iKo6BRe8LP4bZjMeV2Ews0Tiv+YR8lfTyEBjPBQdr4xv4ToFE9wEon+maSB9SlWL7zpkUthyCI4vw/LC/0nJ/WJqAisNGmxECUKuQuuT1sPjQ+VbSW19FvJhWIc0BSddpxwcXTWTgW1NBT7rSIYFSk5BJRJDFQGmk7Ap8FaCgfoqqGIHZz3oHv6WgXCAhZpmiOOI+j+vEExuLqsRh8vO33LvGq6AVQsMD1X0IuuPACSHA2tnxnWR5OCxUtYKhBuA78Nojqc1j0zqSjzm5rcWSvC5Hv5CzvKJ2mjm8o4XblvnDGzGZAXDaeMAsOsFbtkcA3aj8WDdDRU1DWiA+pYgt9yQbgtNvFAo7DiZyW0YgcvDjDf8naQt1dvJ57MI0DHMUra57we8RR2s7iy/z0qn6kSPGhhcf4mksSBqGxtLHycQo83viFOfff2eM6zs5XviMBUTVNIbJHtztwgxPptdWctzEohJ0vbDApD2Bo7I11aF608PoBbAfbvGoOQjOeJBFla8B+xgNyEP+1/8qYoeUcRFdsIh6C57TJjzUKBnQLy+o2zxUQZTqOEe+qoVywuOVtryAB1+3ZJJLpHGl1TDWcpNJ4TmXG7O9kC3LX/IYpHYzKx0Cc4GDvvVzT/P5dxMgDveXSms6v9AAL+AI96bx3ATwnB/KggU2yxhXc51+ocyVQj79IWr6mZFVBx/62CysYD5KDpGfpQzGo4eRBtpRKzfLbzkK/ixZ2HrQF93uDur5Xlo9pyCsTtotfKWN/PGzyBQJQ+hU0ssk2hv/IrbQXUFZJ8LetYayNzg6d7GrvA7FVJqDRe57tcE4DYfFkpSnbkvguW/UFm4pDBfkM3+MHnOqVpwH2YxWHEQjLUsDAj3PKcXJGRylNe/uebrFBX01LHfZXSNUwxLeFwpxvs1IyZX2jwL2ryqmziHU6L6VN/GmQuTRJdpZPWAy3ATwriWr/68aptJj3sedH7Vn/5kTo1C36lRh8/8KMZSV4GNbjsd57ccGnwafe7jftQwKtxU4enYaI9if2B8y1iWX/kQ/201BkM5vomWDkhOaVh+Y048UP+naHRerG410qXc16968CL8A+XWbVuuqwRZ8yhVnkzfWHKIP/Y0hIHvSxWxHri1gml4fgueKzXy/367uEtTycj8lU727XOj35jfkFa9UScpsrzZpcZTth6ddLb2pgCH5gZAmKpT+eOF8LGiVbExRGHVyb5Ehta+AKZ6Cy562xg+TzWIMewjfjw/0xx3rcH58oeDp+wPsH+QeDnd6Cehls7j4JeG02zBMy9+b3zQ69JK5pnh5t2oDEyR991wDRnQ94eVK1J5o78bndHrj7vXDEAOCSwIMAZtUN1jCw9hF7VLzTGk69ZqLU99Iu6AQKgJYZXdqc6FRhIq/nT0ONz6jl344QDnRDoMKpJOGFi3I9LcOsSaIOh1iiKNgTT+u6aF/43JuWKL+pK1Lr+TJbI0vI5CoX2gS8lyweF+qrq9ZFJCpRbs48MRqzLonXOItGMUGHPMoaDS6WhlKjvzRgkfm366PPboQrMF6DHuggdlQvdWcR/BITxaOaRuYamwT6XkfNxC1gTLA+p6Bt0F7WmWqYmZQTTS1hITsl0MjsdGHlOQ7+CpBKV29VibJG3o7tuhzibB0+nR4=
Variant 3
DifficultyLevel
464
Question
Which of the following is equal to 500?
Worked Solution
|
|
54 − 53 |
= (5×5×5×5) − (5×5×5) |
|
= 625 − 125 |
|
= 500 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is equal to 500? |
workedSolution |
>| | |
| ----------- :| -------------------------------------- |
| $5^4 \ -\ 5^3$| \= ($5 \times 5\times 5\times 5) \ - \ (5 \times 5\times 5)$|
| | = $625 \ - \ 125$|
| | = 500 |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | 54 − 53 |
x | 52+53×5 |
x | 53 − 252 |
U2FsdGVkX1+7X9Mq5L7IpOxmlKL83MhNwvg1eIBSMthou2lB4ax34gssvb6jkNRh6nndC+r55UfXWWlIPCpsF57wImBLH/u8Aru/xBZierxuWYdsN+0WUkNLDbpSs/867i54yRsQuPQfTZoO0k+lermwATd4EuIXIBYPQQSFLqlqG2V9f7BLqdPKSs/s8FieYa4yDH5qMGWkOly5qNMutsYemTJTxjTNd0mNbN/EwQVEOBM4qkNlrUl/PUscFfK7Id6DkwMkWSyUMrYbeu+3dIs1lmWOrjZCsjgnJODAr3iAoNTHO3KsfT/G885Y798PwMh1tIg95kswu1++s91/JaqvU6B9b1JvlMODf4rIzOmLy+FH4cEOnriWjMj0veW+U2AXXhFv/mfLkmIqld+klZv/zF0STddufhCif4+FOvcmE88vl2i0npEv61DBgeGaIcqr4Gs3AO5pajDgEGVnL3g80ZdnwOcbrXk5JBBi8iS4kh8w05iLMmMTPUXslDHb5WTh/RDeYHyUeVPjd7QorZpa8cXYp1vkl/sdKO+3xzUbh6a57db5SghAmxzWyz67H56Q6QKTo0s4mtYkn2RSLlkwQm+NcG4+ZZk/7FcEZE3jv2mtfCzVGYwYQWQqkpc/CDU7y4NlNGPxpz7/txJ6fw+I1/nmC0JOIzUC4MgxUxelBKmaefbZNhx4CjNam/VC8qZHYsMLgGzSl7QZ53c1yeM6FuMQxOhQV2hNj5wwnjUpINkrMwdn6cUfzbrMhNt2QA8InDK2CbZGBKh2RQ0iL/JmRy0b21zxnTyOfMMJuQFqMql1LmkMz7jTOEB3f0Wl+li1PNHzD3mkkrX+tRP4OCXEFFMZPhuAAkRUFxX5wImpWUyme/ihMMf1VUrSYTiH+WHX29dWslCCG6cIWUWnluc76agYxX2iF92kcYYxriVW+kveQeM02pr6n9NZZeAJARwkc27DT16vbvcskzJwUNkoCOYAAS34khnsLRxhctc5HrUjd29VG0oYof4gG9BzkIO2Wi6cDCLhuVCanHm3xC37Wzzm4Ned1XBOFQ6pNEhNLBfjWCBVd6+uLCzXHyaSnaQh6m5JzV812hqDRcIDwO5hnaMzDtvOJVRxPW1ZMmr4xcVwGC3hTH9PLY7f80hTslhuxxbgREEcUqkDJDQMS7W0vPdhpFuns2Ms+5PhiN5q+qlYs+eU6a5RZEO829fm1wy3+WZCWg31DEv9nM4aqhoD056u++b2kIvq4cZuJjjaz5po1crQ1WLLuWxIO30O3GZ+oXl0NAqFkPWeoEeuJLBMsQkmzB2r4o87Jn6EMf7+tEXu426jd8n2+70wbV5l1YXGMxCq/5gfrqtsawZHGHh5/WGrL8DER/Wn6gw2fkgCUpi9+0R0NO6DlCxDIHEccyZwm7EAiyTye63wUhNkG1vJV0sP/Fn/YiRbq9mUOxrEB3cYiZfUq6Xzydqpw3IgcI6gN4JPO/ImpQl6NsTY+udkivNs81LGEal5r+QrEjgvMtHbm4fLN121XTDFAEsD7fmYmLQQsB05TYtA3qbny+0BylRvub+UHFBzKLUGYE2vwEIP3KP47/9cf0yw6KFgfwut5wHoalMX1tp2RYnN9KKP8G5Vg68NZzlk313uQwSChBtD4SUJEZlqzrw8GH0AaRPlqqDdFQHFPK/rSWsehvS2w8XAgraJUGueMgi6NSQnG7dyqTEVAROgf05twFgJYg4ECka4tfKzYYRKbHiQfopXKNoWLBV6GcVicCNBlYCv2lyGqDa++kvAM3ePkjXnPuSKJsUnt1mnfx7SFcYy21tEzUrXa5qJFwpiZ64zN6vOYO62RYg3fzZ/stw4hk4OR/UxO7o34XmGKF8GmsjPu753W4Frfv12Z1kj1pW+7AY1Ln1tQ5ZRpdPdYGDyjgR39ttSdYsyZY6mUVOa7OH75d1lsnXPxFHfFMqkH+oW5W08sKeIaacoMRpvtfb2Aai3/aO+SAYLGp+BKg2whPK5E+XUtPmEPvrtKwhWaT9qc9Z+TfUH0loOjn2y34qJ+hmzIE/yFDA1GE/tesPsfzkR4LH/efVTEDhGrK3LJnXeyXZEoawbHFAiynTFDwe2tL3fDZgPYjxlLCGdAy84RDY1i8UgliH2GOQsWU5TIccG0uctwb2VdgdWSRsOQTjYGZYMa4xA4REC4tVQISf71LFrzLHLhn9QVz/8hXlS2ZaWzZm1/jb4PQ+qjRF6HW2kRtMC0t+xj5SpqG2w6mqT5DZhGYbCYg+gJ/3tfFwkc7f1v+zWAunJT9d3o5E7RtFT5mZq1fuwRj8nOCjrbB8JjNt/T5ypiIa/cXq0HcuUr7gNOqRYew4ejs8NgmqMEqjzDRRMGedp+jqmjP66/qV489W4O1SatV52bfk73WdNXFkvxUnYvKkCgfLVzgBtJsOwBCM1tUSQ9dStdPjDp0se90qi7RkIdmVupZyU6aUiA4gyn5XaV8bt/CSUdUDP8LkZakmzuSghaOjPgKpEvoos859LES1+mmzmS5GDsEIM4RvOWFQaIDR8RrNYGIyiZQ2TJgU7QcvvmfYPkuFKql4SMj/fJdA8ycBSLvhWjutO3r8++91DVW4bBM2o2WLpv1RtU5bvzyjzrxT6E+ntAbwpK5SKa7qUoQO/UoEfukh52FDtUfby1rayFH4N0YP178UA64g0whNMWEAjnB9pSxfrjQ0z++zaCYyzkbmSehSIVOcP7sCZH2S6ynHfbLuS+PZxoSL/U/cLtZ43c1M0LfLVFewEZ3uDtcmwwUvA413G+HV/hgJdZuYqiIOr5dEIx97ZiAQ0iu17qP/1PvjIeetlxeA82OmsIikVMysTupD9IMiduXvFvnzVU2z5+ifNt3SjGRtT/4B+CLPw5TXGn0lU2XLoN5cEWWBMMIi5KAgnd9+NpcWdi9BU2DtR1gW/wV/twryvdc6SXu+uWeYtyULIhIrz8/sscCDqMqCrYVF4Nw98H1iE0p54nyZtUcMsPacq6ADQTImwK5PCQAHF8ZIAMQ5xuSfRiMuzjX0QV+gqW92ETsuwoTb7jKKUh2JpQlMyHWaH9ecL2oFIOtHo1Wugwet/MYW+H6FSBn9HmiUqVj5Eq06oLN75avOPG1WkaNqpks6i9u1/pyMNh0o9Br6BWXmK3v0gcWnEfwVzDHGkaHo4w+p0RYiYN0odoleqCfnsheXosc4bJhp04AjQJwuXGCpFEYeA7yPyWKVWRt94IFYxUzoe/1wU7okBFpN0+p57SaNcT6uwKfjeLveUo5PBfp0SGMuUqhFAi6k56IQwq6qiLii2pZUa0rYaJHJiydSQKCgFHViJWNYDru7hBIlkrJd4EY/mok1KdL87NvdGq47uTn1BkJevgH5OUj24QZaUpAACKcgkFbgVtdnwsm5tTYaCDw3A17TFW5sWRDuA1pNf1rpuz5yWATiajhHrRmh+qiyD1G+lNw3LOhIRHecUsQTIpdAkLto1A8QR5YrFnC/7yRhcWp3ELozzPxq0l200YCGDey+U8iujkvDpE+ylFe/glfQOfZl413NcHGB962YCUWhgNDoKNbX0a4x7JiHuBcOa6+/PwNkcrFszAzst4KLZq9A2jIODY49cC1WWVsEt5uPmPAGkQpP1QOkX0vPS7eZZo0etklrPp38TJkgjw5zwGNW/o7ViDpZHrgq3tBnXi9uopZLY7TwDeyXAwfYrdairOf2kOCCvism5DK450qewvHkjlz3TPQTRWgY2Pm/EeIdqPFLzcMYFMZmfEkAgtAFZLL+gG4bIH0fstCbboMtckpMSoiw2qO87A5kc2/3YXXM3qMbm2gXZpl7cddQi9I6gvmIJMIvO3uo1uq3kWcHgLMkWmSDYI6kn/YdFSCI06k+RY96BK9BLZwsjPzpcaH3JYHva4Pjq/E+QbCi85Pv1T2ssWs7nUvpW2oUoaej/Z2sL4oYkM5Vxds8Ww2ng9NQ1KpgMZ3Ea9VDOpuejfCU2x9PEjvUjG06U2i/pvKkHHPM1F2s1t/EXdZSc6k93CTp26huwta9T6929lBSHVdGLJPDFFLqP3b7aQeNJ9J3rxnCw9/t6SwM4FecgOwVWG9/tK7uc1zKA4bWgTnRDSd1mAxN/SuF8qu+xqTkwFMaO9tOlLeqCVb6ynhUIPBiX/u8O9oLOPazSzpjb2eb5OwrziqHEZa1dEgEgzJMf6RTwGsrOkw9ENXQ0whsKxeMhS0x4+WROb+elLGnLUN6fztCweUXl9CIsPyBkMR9OvdypRGbmgs3UHle5dk/J0cSa3Ck0h1jSlddIBewK8ZxOHZZ7R3lF7lU9BXzlcdeafEe1Y5nTUD1PAZZgePyQOeJOdUvrzBq4JNfk0o0xIBZNC8JMPcj7u5FX8zW0ZxyYeJMaryjrslqYHHjxxnDdoHJLv7wCdIRn0XkgGxWYEl7zdVOl4n39rVCUiBSau7mvUgOh/5QfmVODIaMTtiXcxIzNuY264ba/aL7nov0KzlMwWBAeG821eXS/hy62WA9kh24N0DBO1Pv+QeDyR3lPy0gWLXqIBOetQvEzP+AGvdxmlXLahSCin9KX4w+uDJJQllGoaXP3H2A8OhrR7y71JgKQl+ZdrVWcVKuY6oAPz1Z65yfyvnb2t7RVn6IudrcPboK1pRClgzg27BNHe/BZxEBzwl/oRstBlfDuLJzZb2WD1GYNtzIZOvsthA+veQG3bq0/WkYPnEo0Jf3YeLWQ3yfLnbV5ndfO2ZUv/xBXysjRyk59Enq95qsWA3KZdLaMHkP0Z14NUH/3q1GSDKu9Qj6fNCoZijGQ+8ecfLcLO6mawatDKSSb1rBMk5GgxLE9MAGeZMJmnsTRBZiUQNwmTLrZOBax33ApQkwWmJAN7OGa3X8OgeJG2M2/jEnsRApTZHBSC8Tv7OhIsBDls0Ee0lgFi77VrOJwRZ8M10Z2V9IUw7s8K4CgcX6yOGLfzWHkJvO1boLvKKIyDZOvqxcXSWcoDqfwZDP9TWGvLDZdYWIEbJUFaqCb77cnZZROQka06IYC82+Veuebm+YgyFyG84HGN4rh93Cs1SdRsdEfLimsCHmvULv9DOMi0gAyBAwt3LU6OBRVEg01TQ8JdL1nMzj+KXMRzJvUPILH+uXeKU7QEUyLfro1noeXIUpPmB1RhwTTZ414j/JICrJ0uqpXut6K8JhQmqehS+Z1ajuG3WxLl/JRW7x0O4jc7iQwvgTfBXF1Rt/6YDfWm3/aWhg35O0IIAqrPRINSJH7BwW2GbdFYM1f2YVBGbes7WHnQpyHn8EYHGGga/h3x7cL3gxIC5vBXrDTYtQa3eA9LT6YMu2jkQ9WRnvgtGtTQN7tPyQj0kvJhvZD0eFXNp3ICjQrvEpAbK5gWHBfRGPVIP7aQUjHUCPrr64EpbXKb8aPITe4a1/hNNWA1Z++FDd+ZVz2UcqtrmXZGguaUueZuUS/GMHKewszcnIfc4lcpDTLLSExN7hur3NDLQJuvUVzB7wjKRT8F8NotC11tt5PsQdjZepZnnmJt2ntyZBRdcLAVPx2e1AMS/1q3Sl99kyNnjUuHteo4bXLOu/KhB39TEIVwiBCI4zrVSBTzk+QmUZROqDjDbV4f0OqQaBWRq8pJDYz5Hs0WbnzduNC9thqH+1NA8XHGscikLbHBizwp+OwMfLaMBibfB/dWqz5U9jXFPbaSS4s0wKzpnXuN5KpppVJOkoQPfOLhCGXtT0F4Va7CQl0jifv5arKWOv2UMju+NsoTlAAmynT0nRX2FgxmtEJAgrM2Vn86sG71niAXW5nhJLbXjZLxfzkGLzn2vPnCNkZUg39WoUqW03i9Ze0WchbyWiRWjcaddsCM52NloiHf17JK0CUoEO7a02BvsGamaDAmbyyMfH2j2AfMYuu9qf+9pqc/ajmXiIRGKPj7ivwqF3C/x0ybKFB7zKwukyiZ1wj76MCg1mKnxzoCUmCX1SZkfdOUO8l6vZ1PsgXYpMfG9PkTfnDSvHLIDjwxqZMX++K7Fll48YqI6Pn/uodGNkaoGo+x51V16hRypcYn3oCgNVYamJTBPkP8ZrEu16f1cOSARsELpkj+AOp+Q4g/vTnyl27OLX5z3x8VPFpgIiUJDw/9LjyRDMVK5JRLxdThY5Xp7cvpS9QOq9kJ7Hpv7aFbXVbkoKaPFOGQplbtcfuUPxSVKlWd/v1Oun2FmCmajtPps6xx7Z7lVWut9vTLWTuFVm7ScTE5f2IbWVGMnOrhdFDTMefN72Cz2Wa8fr79vqMGtzzdIlycd2jxz0F289ATUHqrJ0Xc/Hl9l7WkuFTY6zgj4b4K2FXBII7nIqSD8f//mvjXdDA8RzJPGnhmB4TCuIkSUlpfN3bh/a1nGuqVZrra+S+a6MVzr038/R4+fNDyRF9ATP40TQtJjeuAi0Rme7mbjVLEDEqNSK8wl829XUXaG/btBmARCoIlXpykHJ7Id4aPudkkPm5P4sQraSPpzcqGgJQ3uKbxzoKQKlAfw8fB4wtqcY+DxRyKvi9HTwdJY/0HOEzYlVlhVcMtUqhr+Vc/VDPwtEywsQY55qxn31vChEcIp4WPY8c0OaltQWuXVNU/gfKFx2oCLx4Lfs1WX4j3qQ8N6cmQw5OLD3/vWgkSHWRfJnv1jJAG2dKFU+ofndVqEaSFHrMBsOG4dpWWaXY06mLIBfLRs5AAUbct/Lvvn/YvJJL19xOoQDmp9sSDeIsy81l5NdYNjpra8nUb3LJ5akiTFcas3o67tqPWmixyLqNYhA4/7VNjub8IfOtrB8DEUt9qPHkC3ksgF9ZvrOiu6TbAaNNMWht055H+UzHXGDIXkF95k/7r9NrmbktwRwc1s2RWzCWa/beNugZdlEvHhSGbWIfHDRRjfHVvkLaN5wXNMgkEtxs/AlEZuv84TiIP8WqbVaLwD/dL/7RsVJUbEzWs35IRzIJvgPvIba1WuZLOs/1CUhBdNPHOTOt7YAJttBiYKsAarppBdUSGOfqho5FMVbtUdO1iZzE91tBYarbFF1p3RZhFuQiHcX3uuHG+mdgdbnddluV+X6uOy5zuH7NNZohMMI5U8aURGOfay3R/bLv5GSPJ+4VHOVLsKIx63T3Th3rjNWxlad+w4G6DbTAEH8T5AVpWepNYzf+DinKBOhHnFJdSwsamDwxO4/0wtX1pVLOnWQNAVJ/m+tyBIqgslfknEjgEROhfKz9s92x7B3M4t6yq6pWIRH8zBynohas/EiOjtMtf4i5IHx2GltOPGiUu72pRgr5hteKJXJNfQhzTNtcOIBNdUy0t4oNbUOBI9RqQWJPennDeffJfEK529s7u/Y9NSmor1+D59VPhgPcHxKv1hcuNk/o9OaRZDOdVxt7pgzxxhL4gf143q03QvBIRHVCXZZjLnnu0W1K5A2TXZAwoGiE5h0BHEOoGI/P9HLx9WVDCDuoQoAIRqriw5L6mmmq8sT8h3Gf1+zJgKXNX65vTJhMzy6L02dyL39H56TvDozA8wbD2flkNjSIS3ZRkRZ/LPhGKdFQOfjKKJzAxRCBMtkcUZf81Pix7FoENY/Li2HlDYrdz3RabDvPGFn9r63tmONDGmQmm36x+0BKs5XxHyGHsseZ60DKbadn+j8IXBAKBI0BgAsIT0J+6QuNvkEbHkuXAVgSdk9Z05qEqmREU0x3kTZyzVRXN9mVtsXmB/JmkCUjIveSla2Q8CZVmkeAqs6P5lcPQH1PwCE60aI54hdrA4CzjfEjgfQpFTpnjJ/Z7STTEGFhen1bcR1GWDyUNPO7mohP94fLTaS7PD9gDlLttwInesqE3sAagrvNySJX8rT0XcyzdGM8PD83JfOeHYXpEFhBDLMDEMsiV6F3eRHDUDy76bOkYtvMfU99sMdkGyeT4QughSG7orej26SPEdKdtGCosenFmbif4JrpfIh0g/O2Jtt2RoTG/AAu5BfJCo+yt06JwOgFMN2vk4djJ5SGnA39e0aApr4OYTyy9getvMixbLsSqd/2fzguNVCLxQbXZBLbIf8/WOGKCMPVJbY1XiprsGobB+bksT3Fvuo6M8ltsQcsTJscic2SKzn98xZk7A1kbWlCLyfu1bnLlyVC2Gp70Kk/JWLiiIpeNHF0jh4w+lmv06FW0fUVqN0ZmCabCDVtFLO+iUwf4SDkIcvEMLtfpKlFSK1Tmx2Sszf6lnqNZAhZnQzlhB+0d8Xuku4Upqpo+XSKjSqaf7hd9oFg30NJA4AL2cC8TI2d8Oci7XUBb1NrYkcupbMHokkIfVvub4Plov0TG4iTUcecITtSoAjZZ/Z8/a7lCfe0USgoW6Y+BN/9KzQB1lb96Uq5NoWnmmwx31b/DCXjtOTR2UgJ9Ym4g8x7WiB0Th9YlYWAGdrrMT5G0/wkdgL+qyxq5nbr6umqncri225fInOImbG2R62Oj6U5zY+7QfmYQP3SsE2eb3Bn6j18LdfFgiQSVH1JSMr0U4JxnKb1l2M85JdvTSbGWAM8ScxEQR3248eM+b38cJXrQTO/+O2/s6EeYU9MM4VHug2dkUzwuLxDqcCI3lVyF/AIkTZLhyuGlFTgKXe/j5W/eBFbp8t5dbIMhHsPgqyr8p2j2LOVOm5Ev2aDEEC0/zWVxGV76O/kJVRi9ykE0FuBSBzF2BeTE9uKx5n3TiDQQY1atqUey1TDt4Cr1bPL8sqinkc4tGHIn+rKvqZqgPMC1Oov/r+R9QzNcUNx5B7CRRtFYYBe9uw6bYLlOxP/SUGHuHn4ckX2oTmRoerp5rFeD6D1xnj75BeaxIEsgSzDOYLfnhMHm3HXE7WZutNcEYPA3wXE072M7ifBNJji1HFKlXc1BkxN6LhbN/QEFgI0N3DspAY9v4HpY4lhZWPeHRuKEEYbiauiAZpn9baTNfIP6WMv0LXT/nhFCiXco2NcKnnqweYZ7oATeriAIo2Hy/XqU5y728J5bChcFhD9O2w1zdRVf1/LN7dUO9EedmGy+M2XVNT52Qm0yeKt/YsBqz6E9zHGA47nSEFSGfUdGX1Npw+S2SduaJI1EsYmXOW8HmY8P3CwLczYJq2b7dznhxi8RF4OOr+NP0g98xiz4R8mduB9pIMeGEQ0w+/0LpjyRF5L42HnfKIWlgusfw6K1Kz8nny/3LevZxmuup9LPN7vy56ZWh/F2J5WaZfGyQp57iLaENLExK7BxaNenE9AdMMOvs2ElbRT5xPp5FtkQiIJ9mli5EgaE4yyKQ77MvUqFBccWShDBu9WxSC5NMbn7ecRqgcm59PFGrjEgioDSy8CpzffZ1viHXL7y1hJrfLQViHP7GedqcY799iZ/73GtqBS87eMt80ZHYXXgQG7h5FItS+5BwNv0Ca1IaaPhorNWhDpdkN33/4+lwDQ1p3+sURzhBabo95nV161wqeE1d1x31wnH1z+eSy83k6ojbF1tjApwtmLCfG2AiGvHV5t5n2fTAkevxPI5aK7asgKsTbrHdJapJV7LDExRzbNYSknSGzNgtslDuZlJ3oNcubvY2OPIWsemlA5o0p36meZwIQdSfTi9/5Mdp+h74NT1vNdJSHybumcyTKlkgHsuvM57nTUeXQ1fZAKNvZT+HQEFYbDW3v/VmCkQADWIJHk6xKOdjc6CnU+jGj97MNVK+L3oDghUTOJ5Ho9StfJ+55LpxLYx2UQZVSvpBM6e7kIkoHuhjlVEprnj3UZEsXFuPZH1s5HIwJUII+wwve2yOWJHIAtVrPu2Ago1610pXI0d3PI9hUhX7GZZ3K1fAHkbP35uWy0TZluOQ+m5Q1SgwBGR5FdDncVDcjvorzvu/Jdq2Kmbf+cV3wPWn9ZX8UKZlyMsjEO8rUafZkzoGyD0Voswc4/0pgbZvAPKL8kbEu8XQXLTzj4ZHiKLkHd3wCfu1jRQPIINtEexN9UmNLDvkrM6ljOyNvV/hxqg/b4uZoU13aoxLkvw+yEGVUsWRCyASLWVApIPdbtDJFDSspSThss6GEAZSpiPGHffdPI2mO0cuFHbiicj2yd0mCIEKgA6aL6HOnmln2TG0WHy2aOGXlQii8rscqAxbzXEwrrnr8gWuUqTrKKKqhag7RfYsGlz8hcjeQfs7YOzpHbvtSzp7eMQz8DFKCGWaEJ+T8rIK82hsqxCP8WJ9xqmcrGaCjdmJh4W4gguvbLk+qFiCpFdPC0lCx9xPO/tFh4c7gGNe1OZACGh0MlhCfPZh2Wy/2tf8x02CvW1NDdVzy4EE359DwDRJnKUY/+2tepjigpErIHuGscds67pKBkS+tUIwQUX6SFnyWyH4Tn6cjIXNz+w3ReTM6g0IUSzWx5CFmUkzI3UtlcZce3FwAu8jFh2QZZ4nP1XVsUIeCfw9QV5SXUtE42Ek0NmKF9Vlf8cKz2zpRrHK1SM+ZyUu+n11rCHjQTKdECVrn0exPb+Z25yJHQZDaFfmjTIVfFBxXoPnO3EbepMu0M2QLfRhhu3E7QfWf7t5bDfWfuXzYnOKFcQpLwgUE2sY/HayPu/405EFOfh+BV+kto6CzzYjCp8LS4Ma3CDYR6O0q9fcpRGRtpJS/m+0qo02+OF9OB/tXNyp32JmCg4Vpvd5DSs8PpiOcOAOH/ujx6Ei/W7Dvw1kczgNXAM5uAiczZ4X2wQnugKwwn7OkGT+1Td6TQYaftEc6/5dZMhnl8bfjNFmy46AjPaA62+yZqQX4uqu4kABuSDkqWTsi0tjCgJYsShdCcyWvWZWTU+QarZ5838+zLEeZ649r9Px4C1V2cV4BnOj+HQ/4vs6Q53d51B0b7EcnxN5e7v6lCrmmH9CHUIZn1EcdjkN0lTxuNH7sv5Orup4hvCosbxMYN3u9uSsynnHRGdO4VFHMgb1RALbNAaRhKZR/3NtBLV26XjKzAA0yd3N9PAA7AGxfFCbwCOtfRRodxtDdMJL7AXHNLeclB/hj4R4RIzDGy6oDG4Nr3MRguQGRQJZFIsn878p54SxEdsnWtVQxTvUQAys/46/uPh9OGschz7vILGHG8I/pnJ9S6stwOfOEBKmLYN3PetnXKO3OAnQtba9K8DfyIG5zznjJD1lhdwEwo/E4j/TD4JzCGfvKkzc5qKLgYL0a7IY46mk8YKNJ0DXEDlFZ4zPyskbfKaGDuNhzmi77hHRc6l00cK5k6omm1rlhcHxEFTeZsxi9x7Jx5vq3st/I/OcEaXj5UlxZDba+UnUiq1y7Y72Twg7iOzTBOxGmdrtf6PzJGzusC/7bHJYsRURXHzbNIn0oMq1IuMpCSRmcgJDqa390qMgGBEUcP1qOcxybNyrMRTbtV6MPF0pmwFizResDYZ8TuxAFB9+bOAz76joH+5bceAe8+3Y+tX6Bpp6fC8Qs/mOJBKnaQY32xBRWYSrwjEFdalJ7xuvuzipl2rbvg5aYFPUePTSaci0Ok7aLTxa3YAzo1YMVXE1gqx1hsQ4WlzV9aY4WR2riWosaokjQ5Yyl/NPkfBwJI7xgD0nsXa1Yx54Tn6oDbNDPmkjOxux5FRfyjpn/V+R+NTeYIFxMYHVrlDYCGlJksHYnY31mgyzdCGY3ni+J4sfPF4E+29xEE++MsSCOBiQEO0tgi1KcH9rBGWT9uP7uMz3hUcMZ8y13P2yw7W4MSCnx4OaUBJDoOVEh5V0wIDeHf60pkNG2f0+Ys/rt/ocNp2IIFgsLL5Qwl3ljnbiQeslbenSl4HUVWzU5a3yV/W5RX22yqDsDZmPhkEncF8JFijOwi/+349Q6/ptwSdosUq8p+VrtPApFrKY2brawdPa3jkRta2jkwvjEgFrdV09bCcozRFSLfwBNkeNfiGW0TtvtUCKCmrUo5xsq3DY4p4FURJE0y/UzKZi5bpJnQ7igpGuyP0w0v6Aalw+UXi9BcmL3qP7ldYPfkfW5HBOzL7OGl8siRJvSkzhHaU04qE0pJlZg89vvMLdcxz7Wr44iAaiTsAuhppISXhugHFpEugNJ9pl50gEsN0IVau9h37f5JOPBYnvQMCnoZ8V0e1wdQkWg6FOciFqdJ/XIh1J/rOE9yO+km9tBaw0/fYZhuFBxfZib+DDitqAjjGmaETQ/01LCANPGt4mRwmUYPrfW140l9WalO23xoHVCmqrW02Vw+WI4x0ubU39YY1nuEEIPL7WeGqt/aNz+hOB2kkZtWS9fsvHF+ZBmKSGiQQPRQyVCEg4qNkjFC1GLxGSE5HFjTJMc5SfdmVxUdyIeUQGMvkEu66l81vUZ3BdLmUQTtsOAMW8auUbi/nZDtswuxhNHUmt/ZUyHD36EnK4m2vDQunj+1sp8CF1fc5bXvxx48qolk0nlaQtCbdnXzosP6xwpHky4Jwl/j/OTCz7mN83t9D5mQa69l6kfoU88j6qp71z9cZz73heAal8vtTgPpDzvaKCY2AWDqBFtakm0Bgd2NfhD4xet6/1E1deVkF+v6EmqggQNL2PrcPFhfVq+D+l1VtwFoKn3UW5HmolsXcNWSn2PqaWsQY9WIF4FInk6QFyMsQkVsMgZNO9slnDh+rjcfEu6Ge4BmwPIyopl+YMBDPiNrPVHNOjSYaoUoB7NJvpUVz+zxKG28dhq6B8355FnySXQLcrB9S7eevDJ7Dvuti0xiViqToO6baaL4UZB81oVVLybFhzVEeU2ySF3RAZEg3ZWS/ir7nrj4DMq+pGa3ye79ckcCgf3yzRtcob8XQBf4Ze9O7UD91sJ25ZDNIUR7AbVtpWmAEWHJC501u1EedRkm4t8V1qxLRoLROnnh5dGTNIxz2J21e/YvzPdFRCBqCdMOBTbLnSzu21Txjt46w9D28kySDkg2ZWE2uySupySLgzdEPBD8W+QTVXdpNTERQzmaeyVN0b6KHS8dPH5bvmZat157hgMroZt6Gp8AS3bFQPIJhv2cyFXWlHN1anoYXYI4Q5GdLAPqj6lVqDTUJFbYOUcTyIUVymZXTxEE8wFqz7qfxElgE6ArEj27EnfWW3dCZMNjrPLTb7J8Pun42WQ0a3v75isqT+MhA9Goy64k8/5Bcnoe1JI/7y0segKiZi2cYGkJqVcltE67fibP2xZTvN0XwecSBstvaLwm+ShTFnX74VeVZCRlwSUqfdVCYNm7h/QiGUDXJR3df+sS7NIr8oGfmvb9gM1pEktYnsXueNiAGRvvtElyW+aA/DfUUqw4Jeh1s6QDMigDyiz2Az+pz1jl3MJ+Vakh7uw7QU36iHBAmHn6M65zT41Eu5L4pKLx1RfIvsNtkEfzcWGOQI/TSdJftZ7M/ePc1hmPvfwNPfu6GlXzR5oHLUg/JvQgEJ82EtTimndVxsgpJezqhiy3cTLidgMSK7SSaWgzPbSqWh6a94rd0tKnsq/Od2farCODT1YAWFxFZghnOWqgzIUQkwwZucgthtw1nTNC483ANa8/OU39McCD8wLQReSk1NI509JsD641rGCzIobu01nVcJmnvvhO9YqI9VBnQCUfQDpxJ/9CNBh+KhrvY8fUT/jrK0oT8SYPCv7XOUtQFwp4lg6XTmNnsjXokENsdgcWmMtpGNlTorUIggtPt6gXmmsY8kvNSCe3ENh5r2ti6cvYK3j4jhXukfq5XxbwjfWPF1xBkDSL9Ggoj8qP+TbhC15qgdHhSMB/u9Saw830r3eBIWfzuk/beOcDJ6yA9pTz0U8nk+PWu9yiy2qpvBvRrkog4SPA7JELjIQq/G9JiAKueCT79Brae4/O1jPTXC397vJhuayXKk3c6KG8HAmUrYTwng5SBEJOibIHZB4bpvinY4I32+/rlrb17bOHcStq3nKHsy7c1LYm3lDJDjwfj3o+L7lA9QKZbtGrw86rIuNJD3aC1Lh+n7Q4r57qqsRZRyrSZz0WEgYcbUc6zz0iM84tFhyNbvcdfjr3rxjGzXm0CKEsaKMwL9aURCJ7jKC6w3/WkVr/mhsTGZVoCiP5tMlp5RfOWrJ1k7xqzwN9gMuGoKgqcDocVarRmqkkRQau7UAvl9F4s4EvxK2MWGK0Ar+gzOmOQ38aFoE79OrNqebUw1NDpuU9nIhwLQ4mXbPbMUERWjs8VfJ0jP+s9CaaWzi55s/DusfOqKoWDiXe+GOoTTtTq33Y5tsrSR072WhcQU/kepG2NCk44c/isMvDNJ4nZg0QeIp1DibW0mM4Cc63OlhEf+b5t9yUrPmN7EjOlDPTTtbSvmWhCMAKSkHC5IQM3/aFIpPw33JdfbQi2q9ArCCSkQIfzK7KRvs7xI3zxjN7Az45VP3gxopxhiJjzMPEF+VAYoJNAHqxkqCZXwJdFD6fYW3Wy5AYcfXQKdFF2hFy2Xi0fzj8Z94Fg3ns+Bf8vNFkWtoLx3rmTTJHBkyzI0pN/Qj9Rp8vfsAnaKMfYgfzYQ2tgZM+uhlWS7aKsRr4wPUyfcGONH/ZksiIQiWKL8bRYy+tdilYZz8PnrtrgxjuWNEHfEd+GEEM8ORrZzT/xok7qFCADrB7ObMEHxR4P+QKRt/C06YCDW5yNPBFiZLBEWikwvFSh1gHFZ3eRTw1TRaO1dumIDMpB00ePyeM18GbDSG5E8bhf5ccD+hE+zVuI5ozcjBJASkXgt0LfqDpYoEN4cBk0Aqa+4OpL4BvobRSO+Tgq95c2QIzcsi34cL2A8FuIj0v1HWWo6zsz25BwHjiIJwhj0MKg0B4szrdMC3bP42T2eQYMS0n5OoUDkx7j6oeOZ3jX6u86rIOE6GZOekBSrXCTPoEFiQBS0oLHb+k9DUq0OMY2l4AcLQ7yRja6ncW+ju/w1YsegWpyGsXSkNlQAf/hRBuJaVMzwvbX5jpdxlf9GtWMze+FJNh9dYc9TCL2OKQqlk0yBP/QSbGPB1hxXs9YOMQpbkSBJ5bhmbWVMyWMhq96F7bpiPQnCDUiQLjc6aP8seEx9StNAclK5nA37C7u82SfQNxUPalJsLFjEumIvX68Z343x4LTruc+rmxGtCK5k1Bcwe7A61WVmeIq9D98mdfCktCUTkjagzia8h+rnn76BLT8sUUHBn/58Ijf+NQtaLZC81vLmk6ww4qt+HQfQyGU8vC+1qpZBueDXG8ilDoWcKiVGda5TSkTUFrEc8h798Xq7YHNlfxQdqaOgPibfEj3XNRisWOxBaS+tsqcJ9ASFgil5mlQJ8jfQo3z4ZwRRQACpG+psFSz2vrM8xA5DYHffD4gSAUxo5EjssBv/6IzV9UjLFU8rBLY2Q6c9zQHROhUsGMj/hr+E7E8qOwJZDc0fL6XtFcCE2GxUrgZVp4qLpRDr4e58iZrbDsoN28vZi0MxpxAleSqtRS/lc8uetA0N9qQC9s4hE7B97RUt54/TrTH8+JdxMMxvuRYOWEAy/2mxqlCAT4Ywv0jaspufAyp5t0j6g5I6gmxNmid4b/W8JaRNT3pjp2SDUhGmc7p5tdhV6Wuo1icwuAks+Q6Smd+Q4BVPNqMFs31WvdYb2aF96kFmXQXb5lgXwhmy+9sdeYekOuFCl9zMIVzU0Z5HbXqEP+lewGXaLY/ZsJQDAe9yuN7Gx1mtO9l4+tSshJyPD0dhZyqIGkV5iPwLYYm8lhQJyQ23Gs2JDc/FxfJP4LtIpQn+RsEt4ofS1+CTriJp0abjG2qQCQZ1ooYVk8rJi8qVfj1kYva0HCz9HaXS+pdZNDM4r4ukWA52ngRx2WBQuji9poMGV1k5CpwPnaY3PxVD3U12u66JFj9rjp1XVGr0MgBwkZ2JO/ebyVH20DNrAw4F8A6tAi+BtF+dSSbgp1UwnblwXKr9up9v1SxLl8eu1stRvR7upPX9AaWyvWus+B4UVSXB1Mw8nD2KZnwLc4zqvPVhSE8Fjd/8zfiX9B8iv6kzfSj+cmHAgUakTMKljPGwdH74w0dOWJJFTV82vUwYqG3ZD9AyT0vkWO0CCKnaj3js2Ks1sKQtnUX8sidNoFb5t01P2HLwNh4zRjn2Y231+mE0H4Xddtz9ofyqkLROhK464e8wHv1IxwQbaq4Gz3fUGlrtR2r6jWtrSSZA4OGdlgyDGUQZCd90T4Z9J/9EelVnNb6APKFELDI17tqTky8y8/GlXsn7W6x5kv37GvtS5RjClZG/nBOvHTrWt5BeSetFz2asNRusFg1g5oPE3vU9ZrxixnZltV0DtEqwMpAqRY+L2VKI4fPzH5xIUQ3x2TAdnrVHt2OXsIkEtYjKn2BbEB8hfaGk/SmxqZcAqn0NtI1ZIgLZhHAQ3fJAWHkxydk+Tn3zzz3CZSIipvbGaoF+g9BHuS5o5pCTuDwh8Hwc/5hAbEIxtEJyQpSwZMZ6PBZSg7nTYeG1drBYKfu9dyi/bkXbW9QgQeVyGMZrJUqwGbHrfCTOogzMEjyr89AgUXQZ+LPW5f7A3qyrFwmE6JfYffiV4e4Snd+cXeU6aFA4WeI6nvv4HUeUOTx2EfagaT5CS8+Xu4ju3dZgOmImwbtK+vobNGTj2dwl+kgNl6jY2KiLjUj+DqpTGJP2NuOZpQjosMqqguMNsCZfNoxZ2qqid7t9XlvgMJPlkubW4UCYEvqvtRbV95wIKR4y43LMUTCyY/5+X4Beaba/6l6K9OOzyOt0SoT6REYrwEwxMilvdJFhSynzViB+FHDp2+FP17zh25vYkKz08ujcX+bhT5L5bobBD35SlsVwTVIx4pUiYeMW3QeusgHZFpDnQFl0d5a4GgV4pGNmWiia2jjB7l4CEqWD5bDfzZTU9inebIsSsA8JpxJZBsU8pDIdiI2P0TFvdEkwcl/Kffr745xS7WTYkHxvtYSM8t0bhEKuStjp8+nM+sRiT2H8nrfRTg4K+HdB9JAq77wjavnl3eiEUYxRgA5tREqDR3RJGxbykthhpb8LJPxnZaSFYMQcGTtmfIwZ3Wt6pfsv+yq2zA03p8XxgSIRsrVuwZd/Paigkn43TxER4GN5VXo6KTkwFeCAr2+aIwbe9iFpwvBD9tV2iQhqhF3gox3BzgfWXVUBQdUiqTfaDlinv0/5UYBelFMnup8dVVxhw2dbmBwmepJxS/rbtlWCRIgGspLNu03jzkOaSGtBJ3kc1A0xlExfD4MQcAjh9dGoQq1x+TtbhjT6HI1ezuqz4YjLwZzHknHYMVbrg9D9mWhNYZJbz2o1X9WsHJOxqIkr/Aj5LFX9MduVz6YfNqhletzZBq8rri4H0qX/kHk+mNZN5Au2THZviu80Y6FdAbh02YNlYgbbF8uMGZrvfUP9yPTNdhGKxB2VkBoISRh0h1x3PQ7kHDnr6h+MKAGOzghM1y7rCyPtDNQXdcgh2Q71xs7gijZbnN3MNx9vRFU1804cJZjafvxzeOAEEDIqzqvNmzqN2dmLlIdoX25nzS4I703GQjvyspyUFDxhaKRqKrfLf45JIz+xU8sr7go18Y+zYGfPvUlFwY+4vyDMciKdHrLTKwIEG4esgRaVPR9FREKKeWamJ+cXNGTKVSmh2RWYhpj+4VJd7YJBJHyeKzPnHiGxbOlZ+pe3bVWfG0yVSvACzxTfwxZhY2KqMiVxXvGrsbeK0+Qz3v53QxZzP5Z42yml3LgWQfZmZ5TDdywKQiEYo1nH20Au70vcX2FpEnWc+ovK7gxRqF17TghOfXHEZ/0OPReH8jUPaWLZOgjZPZCxUndzShD0xyT4XH5acMZ3pMLQiwTPs3541BeKf5fDqjcfRX5we35n0FU/VXcbbvQqpvqPwFItPV6A95Vl/W0NEq9bH+6XCHSOr0730dXmwwcaJsZ6H3LU18A5vDSpyRvPO0g+z8l2nYwGmW2JuBkJqTvW0pjxSEG2ir7SbwLhzrbXSGHSRYkWx8yUrFst16BqsKAnjflskcR49RwRDWWvbQw41FcG2fucAgz5nMWdrUaDvYaK4JZQ1xnr4cqPhBJ0hj5gC0uhdU6RqMoPLcb7xy8bj7rYWm5bo75HAd8skhdpMwOgFk2EjaO2/YRa8YBRYOmHdixxjeA1AvS1UHXnkrrbYr7r668laQwnWObJNiq8RS5oHqlOZwqSwvX989/blClGebxN4HBHdBo0CHlmqdLLC/nv9viRkVPvXFrEuyW+nD8jFf9nDmbgEpLaro3KsRVI4ep4sNGq6RR1hQtx0cqQEKaroGUzkNrEmYSNhsOPpgx3Al+ApMNwNnacKJOl5dzpQKsDGO1uI4+hxyKM2d/XZpw/RJPEOjthWUqcqmEEsPGyJzUPMRzCKL8m/dCG3pdYJKeJ60u8KlAtSCkQdHOvLjjID8C1D3VVSwzMOgtxlC4f6Ug4F21Y3eVBle2FbjWUPYysgxl7QdH0dA1A5ckAboFee1BtZVG2zXfncoE71eT+C2YQ5qJKgQnH76uHr7lteg033VsclxiafNVPW//zhEWh6AzkBpYxTANTjErLdFZwW6D/Oho++i6eJiN8ZAui8ZFDC2LpsL7CLmu2SzyrdhCuyLlBxujIfYq77avGTm1LaNYZOt7QIWs7fylHeoXgfBvEFE/PnMPvkP908FfrHW0zgGzP2MLruWHjBg2Nyqb1O06LDrLh52ZpAbvjvvn6EEhKWzRwlbZkZMTqaAVLKlpS0tuKJMBZv4HZZm0QnY/qOZXj6xbutvvoL1gRah2nPntRDvpGBlciLUNzAaQIaQb8FqenUEZMAH0Iw78lkuP9NDnKdsE1LDuY3F/M75QO19uhPSj3slo1GbWMXO5lzuPBcqVbVTp2LRHBqBjXNpF5ir2up3eWYoxizVngEpipFxM8+znnSuVuyS4kXPDcBLLlCjEm/i+oAmafVTpJ4L2q4qdINTAaFStc1KodcPYQshrPL8tICy+PxcspeFrmUV0QmLosfcyRer+5PvwiNWJ+7ahoI1jXcbfEOEClUSiE/rdpLuvj02m4zO31B8NxCKnYwRGaK4V5lJ204WyjA8ofmRuTCWpaJAMReWyYrAdEHrAAKrx9Zv3KORcCAzin5/MtkJJXD5oUGHg9uKbEUQ8Wu46iSKZ4qYvDjbqAoKN/FjLczyhfO4HCCCykl+90llaxnAxZAHmwOV97UIawzLAXL/qK19B8B8EsqT6H7Avgg2nj14BFjLnmIII1hZpOrbt7O0as3eEO35bkCyuv0XrwffpLSuOMp89rnVNVuk9PNlHRdrRZ+cuoSq7w8sPmP4BhExIyuA1KsJGTZL0HEi3K7+AYkatpFOoJCdcopOBRoxaefGSEL9DkPyB1pZdfj0pnQ2Oi/hLevzXz8ssUzPbx73TFNoLjCbxkUNdU30ZUu8YSjNcT8jRN187VwftL7kI62uG6YZmwBnVBvm80GweuVjnDxKU8eMHIVxF6pROximH8QMs/CO76BJtkLocO64uHru6700QoFuk03UXwR8laxPuiMQWC1hfBOA4mKUpoSxW4r3e2SgZMOE78Xp5/E8XagrggcXtXlbWiGUnj5pAonX9mYf/tmS6WjR4elNYdeWTNWrQWJtfDH9ccBmDx3W1gr+qx+GdaDNRNLBZAVE5T4ofgu294qgOnLjRJol4TI6HPxhVk5OiBOMtrEcTWVdcBCoxRo0xw1MXT9vm8PQh4NCGhrw2+z7YQxRAOf0GYSQxg0c9S7rixEfY/cDD2x/SueACS+dVRwcmEOBgKj1DlAU/Zp/rRfwLbLmzW/k3smJTF3EZPJU3upof+y20q0id370pARTiFRRqp64oIQ0d4M946CkT1HaL8msf1Y9lQUzqpgQNfuEIDxwbke/MUUeXwlzUiYXUHXjdOD7gO9BKtiWv78x1Gf7XgeuawSbYrNinJBBH3pX0DoE9FKnOdw9wsEDunu5C5XsEJrtvvi5L4/O+BuHgkIiPu9JtJSZtidtAonip44zzJRHtoyDcNbhjLxIBNq5KpFcc/S1HUOZo33dxyU/ZHJQSqgaP5M4R0otpo5Tg/JPDHpDR8v92EGo6vn4gsYEfq2TfVpWuBwM4bQ6HFHykDqC+7ohh1hmIPblZ8m0Zf0ox1vQHubW1vSdpgPZQCPH8KZ9GpDSospS14hoaJO6TzbJcapAev1Bzvkpux7lMxX9Ob0tTuh5eg5DNQI63X2xctZ7/3SWH8Q+GwRNA2Nxn5VXR6bAF1m0ZbEVNSUUXLiHgNclqS70LSBd9y29cvKtrOFRDWdThRPmjmpskapyhbKP2H1qnndTyDvp7fBGhNzpoeAdgxzSM5JTRlbsc9h/bYKanydaqBMg7ei1tK/pnZk9r5e3dBjbELAh+JTreyWSqVHzUMCDxek2TzcZLqw4rPz+wTT4+Zs3bvXxeMif5tRIzIIlVGavCAE9cXvPEmAmjWDeLr5BcR/DjdwV7R7F6Y4P6Gz5H4sGLm5e/Jd5UUOgJEsVCf8ZCytEJQ1gfgrBQ7iIE2mXkVXtIqcXC2/wFYlQAfzDA8zcO3oKzkQcFb5sulK9iV8IYRS7p/gDA+1b+PQhBA42x+PAI1o1ahjKUxC4ksec6uShYBZUnpPcBxcm9PI+rHkrmXcQ+hMtcXYA1yMIEupRngzyBhuunFQknHnUkh0232qwWaggE5plAY6oY5rh3KXPSudCLuh9/VH7z+FKpC18J2id7jsF4oCzTHQQXwsg70qteEsjVm57np5nGyCIh5R9LR4kqc/kj6nEQ3I7jVwRHd9k7QQBszzZz8iWpYL5khqaFt0AJb/OhgcYxfqFofRYdTB8wRRr0M+T85tlEvvLfqzEYSRhLBqGg8LQisirAB7B9xMmGNwuPitDO1D4Piwqcw9ZNjcYyFOXKUs/Cv3ToEvKKZucIClNsBHiWEQ3rg8UYxXZlR9ICgcnHFEjJiEfH2Tvz0kmTv+Sdc7lWq+lIVO9ybpYu/bzRiGMD2o54SGBvaJSWwin3eu2JRZV/KG42m2RD+PLaDC/cPZKLqEyuJ0t54ZQUVMGLMP7tg/v8wlvtE/XclmPw4m03s1SOByc7qrrugNbyNRQ7JgkC9c+d1KWqwZJTTJ4LUxKFcYSdnf+xPiPQqqlGoJRzpxuDHbK7u1q4ZfCpM7KnimpkT2BLggRIhq4NjCoo/AmbOqHGe8H0boljq03SErbD54IfirOMgrgW1IKTflXvYDZS5U5eAwRGMQu/6JhCeLsJ2tX6Pv2X9tNIV5VPswqco+WcbhU2hKzq0F6GV9/mKaKuDTXGn4IZWzB5amvC/2G0YTLB+VnEcTMmfpFtQfng9nk9Ct4+5r2vPnrSJPCs2sa7J3dtIO3Al2kpjQyWgk8bwiBGT6vZvQj3Ty1XrNyKTYJpTrRx/PklhIkyz27M5Fi5G6sK6G++GS2UEKRwlhkna/Zzx+p8km7nXdj1/LQjwBjHEoSJTeUUipuyI1wIm31JL4FHPLND3MzPKIRLvW2v+4qjjL4c3suo+rMzVY4+i2SMNARznEZnlvNhRjuYdzvpwTs95rzICdz1JOtb/MjyYX9F/Agr42CELa4sdYGcBgwDdA9c/grKsrEm7m8nf4Vd2kavhHhTIKDsd8OEXsUmpVKGZPV8cNb/Zn22CKLxRoymMpngbT9iBxMxLFk8xqZXPiQ98A6bHZkwz8tpVtPLtfztz0KMOVoZjrq7Y2zC5wUjwlvVmUa3U1WUUmPKn8dALFkqHFfHC8gebu7KY+GA03iCs5f+ASUlFo3H5TA2NmbXmsWn5mUfNu2Dhe6ecL/p2DSgQYjKxOdT8tHHFOhEAPWPqFuenUJ58R/DlUmDRuwmGdbBXwPSjK2S3NWdFaujAFZV1sx+ELFUU2HVGF2nBki1VATES/ApbZEf+d2DnqsvhTN79HnkTccySuGP3Td6dsGeK2zfKdCgih5paJko/b+y4Yb0A32DaWepRcnYZV+coYukxRSO1r5MFVIWgeygK9yIJKrTl2oZ7+SUDQV+YLj9PMlxBQLqOOWSRbmAifCZuPAvz/939s8YISwIy2+jGs8SimYA+wIQZzsPC4E8K9h9iuoBg7tk2E2vq8Eph1oR2Cg7agCAIoHyGXji6NyuyxMzAHgHwYy1rHaliMMNYnV/HnKksht5gkwROTBQc2HiDnrTjlU25t6IJBRO8ECuv2psVXGtYz7ODcg5fSGPnSksabzkEJQyDrDD2lOkSD1IU2Dm+7tDFWAR5lelReD1Fi73rBVNoNbvdB0pPjlOXBEmnMEBTaqcG2vwNrdLPDU2NZhugb1W28XTTJGqy493KpIk3qOuifML87B134D/3G6xHa80GSfSouHINCxxBfO2Gp3URMOCv7hLdRPxnBSSXmzE+K1eaTaEMZ5YKiA7AB9q+C9+QEzXCOKzJ63SbzgW7MTqHS7HyIHAECg/xEJE0hG8jWI/JdZ6yexobmUSitcHHL0P1iAZiBkQh+OVJGXWKukg0YeEayBy8f3nV/3W7D0qoXaBbD19paFm+04hQ6AulpsDIqwQAGAGL/9qH8hj+DJlJSLGkm7KXKdbDiUcw8yZaXsEBtc1Q2YqEajzFjGRsMOeaxPCOwpPtMpMaju4OkYbgJNwx+XJHPeMX5GC3Wa72w6OA3/NAOAVVUcD27aY5Z+LF8NDgcZtYH9mQy0Ah4zHZySaKcfz3dR7WDk/rf//FjgGCTLSs/mO9mYG9ylzfMRQZkj9PKMm3WMS8hz+PfrwsdEHw/3qk6jy4RnDJ3lb1XovS5zxvPDjO5Cdhl+bqbkB6goImIN5EY+cS390kz8wescECoHiv/q4NY5C0/CbmDFceL9Leo1dQuuH9R3kl6hIuw0D/o2ur/UIRHvD6vRvRsAdAUHa2U45DoUI5XDAejIFORCU/sLDzLmx2S2JFNuMmFL7m1HDkAOWkaKFlH9Iori8Lcqzj3yjwmBByXXDQzTinKBJ5JHNuOxyV2qxl2OZ3u/jOsDspWUXjkqLE8n8W9gWrJ1VVCrRKSV3yJPXAMQSnPCcR/uT4Axg6Jas12BV0Sl6Z8PB/iPncDUS1x9Gq4w/jaEHToJUnFG8Yll8vK1DpK5a9A0hWGfJ0+CxPxB1U9bGrAb8EeoTKw3m9qitoSKzrMJbO3gHtntYe9w35fWf3aHiUq0M7q3y0jiAv6l//NfK+LzS5dd4i2n89kEtpIWuA2zuF2YB9LZbRreCqWwXlhqPe23I3PXgtkCMLKhHhZj+wbM9xA2/CmJofqINJBNVmvfb5uKgTChfyZGsEQkWgzanQiWGeq2qDsPmAJHO8tUxzOZZcFc6HOwcNZA3S1Q6XS6Ekr9vshwmLJgj1CKDruP4NiXk3E7yDhOFp8xnOBDFFzbUZmOgRrsDXGAUSyf6jtU47LLA/20miDCqKi3TEnG2ibs+4dInWFWEDyJizG9YLDTC8NpTWh340Dig9pjWkEcnbqWynyO/0VSNnFVhVKkOFRCPafOyhW18jsivM9yYMB6aejiDFmP5dYvWtUyAJLTqrZFZShGGY5EYh8FCXXQuGuTDuS4pv3X/7am4H1dKY+4ilRsmc+Gu7x/lRy5YY8Gmm5z9nV1aC4AYILwGE7LWCGIgkg64AC7TognvXm/UVNK8QsYDVe65AMHs4z57d1AbWInXPTdlKJK+qqNhjG0W5SzrH478cSu2Mx2rlUsycALEK/nbxa648tulX5IJpxIdix8v98otGmOIhjoFxppDkoTUyaXk6O6CljushnhqY4UzNJx8Y9AeTpNslG/fOwjFIhrP5JEwLNqkmiC06LUJ8OE5xsGN1c4LP9qEAdlExTXoCtAjAaFbdJPY1wJho/gP7w0Te/wLt6kU75VvGsu3/gRZUApTiDvKfaxrsqp13DYv/G+iA6q81fB/fVkl4YKdDyHuVm27V2Js6BkC7uDduqy0/jPivpDVGkJTaACtJLVV+JP0yH+K7KTUOO3BIL32iqoTT2WjbbycdUbE1JeNIKtVx/pQXUy5c3EE46acQvPxC8P5V9ISdcFIpnCLs2Jb4SBNUH/ZiwVHTl18smYwJxfx94c2NP8uIQMIOkoQ3G0Dz3yarrC7YpWtV2kilRTXr/Ss2snroIxYp/3iEwGRuB9CJMq4smKsM45YdVLfRUDS+9BpY3/Tkg1G9MpB+vEfiF/E46IzXuY8Dl8PKIZe4pGdmOWCWtW3JQpjTZ4VgC9KIZsVAuNdGWw/LFZBXAb2wp5je2yK4y1Ctht2HvYEjA52nSC2BJm7uE95E250uEz7WNuXuhaaJKVDiSj67UXOkNg6VgrDkmlxH7F2K3/hHFpVlCwLeqFMrf81nJ1m8v6uHkwfn1aMaLJVZkvc0CwP2uZ3A23URmROsv/r8Km5B97vykyC0eg/Y56pPEzJIrfzU9AuJVGB4QQlmm/Txh3g46o7KnGaHpGI6VkGmv/8BuLKrFUUMsJAkkEVj1tGWmZ8XFDcNiFQ7q6V6ovQnt8n87KCI9/wHlXl1j4Q/e13HY4pij8Ih5omnhGwefcBmHGvg94tpHFbdDLikXa1vc0X7vV0UZPDhP0eToRP/+nNjRAXoEACJe6Zi21+LTDO5huvAlCEf2zyxjgBHYaih4yrk465xv5VAz6aWoAjqAuPKgVqgxtIeKALN/HXcuZjH63ReC2LKXVxiBfdCXtj9VN++qRrpXrjoZ0aiQDQ4RSOJaPlnh6P67lZYWMWUG3k9xfASn4N80WxydQQsmNeLTrYJqvgcbuIdr3CHL3HiqXnsR3QzJ650aVCiUeAsBDcjdVfPniWN6lNfNDvQ0+ni+xB5/rn0SFGAzIZ3QgzUE8IyYWvPXbms0WSbovX4+FaaNStLPYM1HoBA8epjGASwhFs+nwd8l8xNqips4KfCD9PzTho9xn5OZEREW0tz4wsSJbg6RyxzmOcsvag2lH1oRqO2MjHMn1+hfcwSuJHpyBOnEI4OPRTWG4RS6p0XrKBnYkzC1ziM2rm68eLg6elmeT7qAQ3uas/6WDBO1fsXBjkbBYGf7huklI3ee7BZVAP3/gf7vz1H/VAYVLpGGGWDq7SKnt+v8XbXaNhiGTTz/EHRZ8mHbJycZJPbVx/n+EfWeUFosvvmPrZJ6idfkaVhpsr5mhMmPIXyWBmwkGghgVn1RjJyUkRBdf/qpb9+gQvVrog2aCszscxtPS7LXs/nrCwhkDgxSA+AjQb2tX8hy7ZBsxS/ZyYt1GjbypD4WTVR7J7yl1kH7dK+2yuVrfhoBcorsyzF7FabjuEYv8KmvfwyZIFiL7rJ4XrnXq/Q9Shv0=
Variant 4
DifficultyLevel
471
Question
Which of the following is equal to 45?
Worked Solution
|
|
23 + 43 − 33 |
= (2×2×2) + (4×4×4) − (3×3×3) |
|
= 8 + 64 − 27 |
|
= 45 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is equal to 45? |
workedSolution |
>| | |
| ----------- :| -------------------------------------- |
| $2^3 \ + \ 4^3\ -\ 3^3$| \= ($2 \times 2\times 2$) + ($4 \times 4\times 4) \ - \ (3 \times 3\times 3$)|
| | = $8 \ + \ 64 \ - \ 27$|
| | = 45 |
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | 23×33 − 43 |
x | 23×43 − 33 |
x | 33 + 23 − 43 |
✓ | 23 + 43 − 33 |