30015
U2FsdGVkX18rrIm3x9F87Ldtcpq+RKyZn4wYkZuKRvyKC54o+gjvkgEtW+z1Cfnh8zwaX3nHlER4ovR3coNKwtVFWE4w4wqmBkqipYoOAk39p9NXCrID5BYdWbOLHtoT1s+J+A15bOFNhTIp1/5OvaTH+ofIF/oeX+kqR1/H8R8x5OoJ/6yoyVYf1CQRPyXiuhgOgNV7+M7WzVlaoZc7gLP0y8kvsgLR9COznV8EYbBDtB+w8VwxkcqiRs21sNcqI7K4JFeG8HF+JRixuIPlxOYwAQ/GzQXbJAEezspYCfBGaTP49WIqL0dTb3V0umDbpP/L8mmMvSfplzMzmjxuMOVCfLFLFqlBFvaJhkSrMao9n+X3FzE+McbsAGNlTJEOsXzkAzUBK5yG3qSg2lJBoOA0n/Ljb44lWHuekbUNP4Bu0LbdUfEHoMJSVIgcAqBq2xVEcLYnpyPKtzAzUki3KSowkLnmcgBN+9k95IYMmFBwLIX38cErlQe9dyerBJSjD8hYJYvEDjbZyu/bXH6eRF55OlLAS+D7ymsPJyzF4yOCDLB4EeCfXU3ka2hFpXG2yTuKWpP/QmJLWbBnO8vkcHBZwpqr2X5G2HkWpTfxiPK5Y9WXXxVOUCfZxdx2D6bAckDAfLdBi+fRxeoFqfU/P+mnqwp/XwGttyXNOe+Ly63qBeoH3IiLwINVAMa8bUtFNHgVB8stOIjkUHAAPYGFLjgv94sfEqJg9mcDKtCYocehz+R2USyBkiZ8OhFeghmiMe6Wph6xTBzeF451eQREoG3UJM7g+B+IgQe8Vcxtnj3JRRFHa7GUl+fLlNMcJMHpy2VWz+68VlvQwMlKJqvnceanceAx/0GF+sF7EN+SwxEcA9/raEKc0kiOYHG7B+uAn7lonW/tnHhDt88rbYnHIiIxmF2K6rruW9NAIR0TiZS95TImdYmYHFUKVyRTp047C4aheZHL0ZrHCu7FlFVhEOALKZELQFWQGSSPSurpsJzlOLT3/d2e8tj9Y4PrRX1HzcJFTRHmKyifbZ84eIojgUSlVakYOeAxrG+D+YJGDm6gKSbOKZdw9AjGhiliTqmvvKXT/g5V0jSaQBxr7jp0RDzx1+CsfeTxHWYoHPckKx6I+31qSG+ZNaWtvUi58opqFki0PB/xrgiiARq+tpZLhAeZTMWyEaUnwlRE+Oq3ELSf0JBnOmz4LwmU8OHaq3eOo8YPLFv6tJSSWrPjk2pMTvEDpJb76fQQkMNUYzYrleHNGl+IlGk10eaOgDQXgVG+OL0n7Rmz6XY4aHyK9VPBYD+fCATvE7UJNtaloQ1GCDYWRgon5L57KvKQ2KDOaXXxia6QEJjSSLpLlFW57MM7TtsU0DW1JoelLFym1SnfvEleFFhNEX6sLsqSvZSoH7cSYmflIW4z2khBRwexQqq2NN3/1T/kwiAyaYjqUk2qa42RwtyazoyrwzUY3onpJWktEKqP8TvpLCQA5bqVjFdUyzx9rRfobIl1DLogMNj8IbW7wQjk3A2Or43DbZmxHKduMH4sIJgYHDprEwBS5c7pMWWvLwOHAOeYz3rvu3S0WCMj31Uamc/YkrlRjLqJ/e00Vp72cPWy6QpSfzVCKuNvQa7SmbR/8qjyOfzcSKjIrRjlgn3BeohJqjeiAz+dS2/A4rzxntqB2aEZt7zTnkegGGWCds3AHN2PP5+UAHzGoD4594N++8S2kIV9FCLBumxc7uzC1z9bfGieSs0uhrN6k5ywGZn8Ulut0DEnuXZIMFMi2JYv1lCd/4wvGE3otseV1TryaSlIaSoG0zzOTh97vWKb52SGjCQoRrUf+zPsAsOWBNo2hZuR2J+3aGBH9FYurmnrp9FlIqZ7lafP65CN9WRYpb8s1Zip3IQv9PCNiRApvo1jsknW3pcVDpLNfYRYvOf2NL0LdcvwUW6RUwbIEmCmmHpfSk0T2sQeEvMvHPq325iy8jx5a0DeHkd88xLj7+VgSwCxm0IyJfImjMW9PKjcW2SdyU/eGMYMxXYhwCzHuwypjTJvmER48daGCJNCSeDqP4gFa4A6lefRtw8AuWauizTCg0srzSJphhAwf2gkqbuInBFtGxWLsb1eRoaaNJzoC/+fBA0X8dlEhxkTizj5bEDNuVl324Uk7b2c7kx7MbZJv8py6CH0Uaa+v18n2xyPG0Ok9jvA3k/GC/p0LGLxpqHKhyn6KdclKpsy4DHAcVOZRfR7ET6e6coYkDoyGLH3lP+U+g8tmbmFxA8zXAAyJrk/l4L9vQYoI0tsbCglBOLfcX0tJQa6l6VqCWNDiLuxAZXSkHeHybArgtoS4Il8GkFfr87H7kCZfWn11Y5AkYTF+29kPygrd8SwdI1ojadaQElki3umunxXyCxbmubR9MpZLl/f3lJF3HwUAxp3ACJQKyqbrE9fso1AKz9orWQiR/zN5MjMqb4EEGoHn57kLwNVDpZZsSQfluJ5GEbfiIrDx4wqIAECPZqLNHzpZOxjiBJSYFofJ2W+gytSyRvWZOJEcKpqOaVJFjztxDDC17OobUHDUStP3ElWJE3/mIblnwqpNKvD8N1vrsCwEIX5WUCbyrTMJ/ZpkiKYK/GqMrBLdxmDeE8vxeGNHLekRwiKE7vXvoo9paWM7TLXR/xaqg0SXp/gr4lUqhKZ72ehl/kMswvaR9qrML5EQ/LlsAL2324/VVkOZWCld+7ukaRbP7njm0GTCQ6CScGOgoCzNRQ2ptqz8DCDq6qxrcIhszm9Rfz0SjvZvtisgL1ZV9xhvv6ltW9VC8m7ifk0vinsQGaLVRX9G+THSwsYRRjQ2dzEmyZYOi+/eLWGIrXUw5dU6OnKqfM6uNoc66ejMfzyNi1WdLeUjIrmQo/fNDgM7KoeJOCsUp7ESWvnm9I13xwoLE0l51YqspXYogm0JXAlhBUycC6aCoGUYCros3pNpk8zLEo9kYoCcYIzMz49th0IqjZlHAZ1U3qnQHiTkTOFDZJFGleS04YQCIwguGB+wWCoLe8XM0p05uDYsdrZj0+rvg7bLSoKHqtgZqmb17pHM6hk2WzREjup3OVHmvFzhEf3F2wrKe8X0uevtGM8fIqOioK5Tz5AhYeXCFUitxdQ7zmdFcVZ5kWIFSNCROdAqqh4bs5es/BML8CsrYLpeZcIScj09fnokCX+dGSbeE82feLH+bfXRv8inujOsrQI+LycIyN+YkuJhAPvtlnCCMsT5gC6s83xmgVZmEbubE114r90kTBDtAZfzy3RSgC81rQERh0H76dohCDUgit50R0Oghr7nwLD2Y6l6SDGE8xvqboovwAfadsoP/9frzJD67RtN04nXl5dKcxx0ex1EXZcMN1TBBTaPARff7XJP3lTLjfDNfzSD99XYKTiGu23MH9oJTHnLlmgAWxwexkazswCwxA+cMEsx73RrQQ0cvSybDTp1udht9/q4Qs6B12H36mR8FxE7EcfWEPwCtDHYTLbg3U9tLNvmHc4xRECQ+QaqO4QSGetI+NRLMko9A617wSBxrrwxC5alMvutrA9EKEXzvsqNlmMh6kph2t1OwKhWbCf/NtMwOiRcpjcjGwSzn1FPs50DDzg5Dk2F8x3SmlRpjZsX0CuoLSr+3wedyKVGxPPeFg+CSEC0ASxviLCUFp15/+2AlMJv0zAF1AqIF4Y+QrMS79+oPbkjKwujXVO8gRY+Wodt/Irqkmv/nniEW+t8B3ergvs20au/Gof4azbXEqZ7DgL4PJ5TDD4U+1pjLQk38xYQOG6I5CoRYa/69wNee4vmpVVxTU06ZOpa7/zycsxSsSDUkHoFTV1ThAlW+zD5PXWUP1vC0IjVCJu7mCK9oAzVCEprVkDL5HNay8y8YzXuj7HVyVgkMduFbnEqr2QgZLNYwkw3qwLiCyk1b3Gp/Ef1H/Qrj4VPD6uWqRwh3WKViHGb+Gl3PKq78EZmCGx2ia9xFi1Q/zItAT9toJSSzrInKT+OZQaVeHSLyGv44uFuXFHXnJO8cHna/G5BaGsdnEwGWPX4N0PsDqlsxuBpSaEB3sXtkcSHr/HxNaHgsiNnMc3iz3V9b6aQTsJzB4RbIpuna5tLZyQw2L18YJFvqcR+M0lU8edCAEQvBRL/a0ASUEmqxGFzJ/pTOxPe7eqtQf91UYG+Ztll6shyUK4VDdTQ0O7ERuXXPpBAv4siXUmKuGYO20BTdpa+cSv8bC/eUVkm25a0+LO1GKgfzbR4fy+nKhcbjSdWfCwJpI3ZwuzNMt6Ac30b7c6/UjuuYtVXXBQeMQNCxXkR8eIRQn0Lw7hlTZ1nYguryV15OdljGlUTtfCPxteXLu+tRpS8P5pCj7SI2CyZQFQ/uNKXU3dQCQd1pJMIUgsu+IPK7ufIbHTp+wkg0K9F28VOaZoyAvdjCN8yPb6fkwrQRTJnsOr+BPLtq+grWGcyCHzoxiewHLuNKd0OHQRfRivoTE=
Variant 0
DifficultyLevel
586
Question
Ricky lives in Bellerive. He is travelling by train to the ferry terminal to catch a 13:30 ferry.
Ricky needs to arrive 30 minutes before his ferry departs.
Train Timetable
Glenorchy |
10:30 am |
11:30 am |
12:30 pm |
1:30 pm |
Moonah |
10:43 am |
11:43 am |
12:43 pm |
1:43 pm |
Bellerive |
10:58 am |
11:58 am |
12:58 pm |
1:58 pm |
Cambridge |
11:05 am |
12:05 pm |
1:05 pm |
2:05 pm |
Ferry Terminal |
11:17 am |
12:17 pm |
1:17 pm |
2:17 pm |
What is the latest time Ricky can catch a train from Bellerive?
Worked Solution
Working backwards:
Ricky must arrive at the ferry terminal before 1:00 pm
⇒ 12:17 pm is closest time
∴ 11:58 am train is the latest
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ricky lives in Bellerive. He is travelling by train to the ferry terminal to catch a 13:30 ferry.
Ricky needs to arrive 30 minutes before his ferry departs.
>>**Train Timetable**
>>| Glenorchy | 10:30 am | 11:30 am | 12:30 pm | 1:30 pm|
|:-:|:-:|:-:|:-:|:-:|
| Moonah| 10:43 am| 11:43 am | 12:43 pm | 1:43 pm|
| Bellerive| 10:58 am|11:58 am | 12:58 pm | 1:58 pm|
| Cambridge| 11:05 am| 12:05 pm |1:05 pm|2:05 pm|
| Ferry Terminal| 11:17 am| 12:17 pm| 1:17 pm|2:17 pm|
What is the latest time Ricky can catch a train from Bellerive? |
workedSolution | Working backwards:
Ricky must arrive at the ferry terminal before 1:00 pm
$\Rightarrow$ 12:17 pm is closest time
$\therefore$ 11:58 am train is the latest |
correctAnswer | |
Answers
U2FsdGVkX1+Savg2oAXhXCA5lNevxpkVyEJTPP6B+P6Q7ZRnSQkhgOLeExZC2K+DzWwLHl7XvnRhityZo39nvfr8h7pjlMqiy4UhrJXL5FkF/qknLPqlMJA4h7+hPttCEAp0xIOojaI4WdDcvfzPyJoe6NtT48ZbMo4VV4sjGyEaT7rF+NlfGZjOb5Fop1MwwxJz+4ZS5a0eZN6VV+w5Jjh7xq+4oF1n5nl68c+/H8Iy0dU2SdZBZ7ONw83/UOaxrzHh+S1fzvtzPPrvTpRsv+r1VsMQhvbEDhrEerop854F0YdIIH4Et3FNzE+yFmo7N6mEuK9PL6zxun7YBLSH2WOrhua8WPMQczGsB+JpAG2Y6k4R9xMht9GwYYPDNR99W98W0zIl9lK4p8pUSFN4e+bwrL8GBd5wvevXq37/w7WyVl8WSlajIMw+/2fmmtfvV9Mp8g9peQ9x0TX5BMFJIdgY4Lf3ncyK0LLnf6akJtxUvcoh0lcIg1wDhDlM9rf5STxQ5mhuAUXvFDsrbyxcST7ayGSZOjiUNABhcey/oIpgTSpwyQJz4AeQh77i9lbldgvlRt5HjYVsq9P8PfSyLd4H5O6AiWsk6P3awCbB2W6JzIsaVCoey62j4+dSWsR579SaQcfmuWo8yQazQ5dPEQn9x0JdDtfJlap6Ma5in2/lSGtDOQNyrK0JJT8qKT7OixjbmkfSN7A9/KIFc97wuSgW0uE1fZRTXcOKlwqdvYUdDSi8sow5LsW8ZTeG6rBh0ZdjiuogVETdxVYbK1WHckpqQgTVYnCZjacjQRqhwqXKNBqTzA0P7F4v0d7+TNiF1QJQ4qUAK0Yc0vzrEtvmDVRGt9aa+wncbvEShrrSyUS9sHW128DcE8nQ2Zfo0cuBBRgSyNnoRGHCRnx+CYiFsSHZTFpxEBUwIfGaMdy3xaGaHxZoNtjTJwHuCQP9ZxqbJetOUl77hoxWiv/ljOPXD2GRFcJp4exJdm6bXGqmpVP/rF1uMzcepYluQdPLSQja8jh7x3fdfnUIID0C4QsaeJIExYUaS9Y2tNsuxrZBm1WD516bhtW83eOs/kcms+/eQX2QBjmfwzRrSMVeiqu8+CWs2L2czVczHp0tybysqc122nyYfdd7trTy/nCJjeMqPj7tWezJOyymLj5vQ4ZL50Uf/JDne1IQsVqpSgn0xQNQiCjH4ugwfhsVfpvuidKMtUFusPwMTc1WRuUJHShjtMpYB4nyqPhfqkcyneMg01ve13Wut/Z/0eyGHVUZDw/ShP2cjmL6ktGGR6+ViLGfQgCfD0dQGJ6klBtogcv3tRIEgd1csFOO/3hsMDiGWmVqW9EfNlqhtPUQAgofCH9boylSIwfuIn0/pP2sxR5iVCKALubclTh3g/doMcIXQY9t9cXfS49RC6QmqyygS2YHEyZlUa6XTIfDeTzOcd1ltYWyWxRz2Z2os5GauJ4Z35fB/L4TeBZawJBBPpf4pcs4qey0Mx0eZga58SBxdECAzYSDKPE+CEN4bGNmq4Zkg9+tGYj7ODJrMGGvbKKxcgkZ2VnxCwta+gjYRhJDjrzDHGUIKkYxAwLNVALW8P3SMyU7zwvoeIUljIc1Meq/4zPddeNoAcij1Ay0YSCTnOS6367DHJFdNRyFp1ZDBNyJ8Gfcgh3eG9UUyTp0hZvnTYJxQKFF3ADTK66ZaxBiEDHYdB5zbvpwLqxhVYP0c/+H4OnK7uQe2+MI6D1Pa/uClYbiT0k+/5FEGVUYW0toa6W9EOcS9pGQCpTzD+NmjxTomvqMAsEk0ZYOFmt0f4gm4mPZD22tq8EIA4TRfJoSuyevM60wSE6lsqAnDbOgIt01A5YC6zXlBc3FpcJ6bVu0Clh1/ADT+JIMVdZirFjrh5vPmFbXT6cOJOq3PBhxZrLas1p9/UHL6fzXi5k760i95SYSN1v58Do1zYF8EeHY0UOxdiBKYvLYM0sFJUkvGSAfC7WGkH1WvLW2FOYfBDcmDQ20mydI+w82skqp8n6/8jeASvHnRxlyqnrMGChEJeSy9jOmIojSEvlyDooxYq7BFbcpiqCNaO1eD/9y3TmLpfbLwA4yaALGiRIcPY7sESyIiil19aDP8/oDFIiZgzuVn5p2lIUrDtY1BX0tGbxGRfr1ostJ5khR2N2MHQTmWQ/VnrKDTb//UO8jBzVKLAqIGLeAPqTicUCH0INEvniFNgJ50P3w0U7BDmmfkOeVRYV2neTzIbYBxJrc59lVjjU6M16SXu6QakITwLJtDlwRme9GDVu/pUOIyM1NoDGVxh6FqhoZPOKHuqi3OBZPH24CQaIU/uGYjD/YM8v8wk6nVB1ItQnkFnlpRiTBhoN40JAVDBhXsmMfTsocTyuJ3i5V6NuUBYVMFNC791s7ZxLwqGFBF09yeTFsH4z0orGqHPBaIjvjfLuF7tE7Yv8B6f+SetmoEzHdDQ2S8BQpnUtJCJuR9rbBRwvDQsnZKmMmi2eAy82u47B1pvOjxd2bxJlq9AHYneDNxKhwZwddT9yTUHoxEZIFUDUt2MFpNqda5WetCLLm0Kbrulx4qRD9L/l0hGlZQ2gaUEbt09LzdJY59JvDPxh69lfUiOJFPiG8e1/TlanYxfek7qrQbGaKO8fL3dPr4grJ6ckdxDAGCRiWSfr3Jj+QXnJlvn+YmOmti4yUMM+Uf08yecDHupGs22OeqV0cX88fBKdPbjwD5WvFNe145uAsVZ9joFo948jJm8Fx//S0+taKoe2HTC2vDzr/WqmblP8rl7MJu/IAp9clj5h+PV7XgrgOpjnbqmz69BVrOWXNw1wo9lhechWGB9fZI+D/uUhAcpEWYfayrGjwCkk+U3XHN791TF653WwIgKGN4CX3BXalWD518cYlNpL+VKdyfrBS6c9dUsUd/CxdVnkYq8xlBkIMepSGjwV/hYIQaar38XNfFpg6ujypIz+BD0m4ji+0CpcdzQbaGj0ik8cV9OZEldY8A1mMfaLJYv8XSpwZjb13w64k+X/XNSWa3Qa9nRlBICwrYeogkc28pJWDZSr9f51jmwKTvyrI6r6fYiguBwBW+vaH3TWZZLwsPXzGR+MZ/XoFpcI7Xi/9TUny7P8vsR6x+uGjf7cTnJTy5T4hE6Y0q+f8Hyz9E2/F6oBJ7ideulPnxCxKokNYQelnOGNtuAAFjjw+Eu+/92T2RPTx1AM3ramBg03S3vo094uI6mcSREB3omWp1hFIx+9EYLxqCumEEmw/QEsJHxjD/2ZrNlN6OGqcrAV5f9po5zoj6/3YiyGPiNzWMmt/+x1mJIu6lZ4KPevqdG4uCm7RPu3n1c8u215RFbYUS2QK0lMreVgku6ZAgzz7LGvIzQ9nawd1y77B2ofNpkdvm6vEBQa0lHGMW5iliM7kJnn7Ik+vCNI5fwjyOB2jW3pdpNWo7JQm493M4JSSZWQzcAzYwyRvCFnwriGEIISheMcZZ+itrMlWNKAI/hcg/z24/aGBfutXsSdAZMpr2shz6bY1WY2WKbmXiz92bnmf0m8XFoV5+bY4VevN7Js+M9CejFrRu66n9BP2rpFej8V+pBJVFiDPbz1u+wP8LvnsHVcQklBJElaLLIowCfRaR89J+hUc8BYKWsH7eBtrA4F3EzJJKmb5r1Pon4hgEjQA06vSfv79g9V/yG0tR6bq47vEslCqOR1zIT0ApsOuA3jjCzqbn1nX0X4uH/yoOr05nbqcsbumeFrst6ukIAICBQ/0DFzC9beJ9OWiwQIoWbJUXCnyRj/P1NBBlj9FxfmCgfp5fL8qBurqdRwUih9rSQPIBQSWM1zPKwpyRo36uAVw7zfhU9OFJmhaToTDty9fptXE8+ISsHPbNfD4UQeJyfYmFOJeF0gp4nO0Yd5iiQdzx5KPOwhsmMLW0G4nZAuyx5vIszQMIHq3FQx73yANO7bcnronwPXNMzP/rJsrm8Q8xiw5eFoVql1H43sRV3HgGhZAvp4g6Bn4sIJqLso+N4TyZ6zeKl8mmi7JtddiHjMty3/Q34YAZpLdb2xxQ6eQ87rJv6XiirFYO4KPYZrb8/u7QCalqE1TrGa4zYEG8e+ObsPxr9ht57K4Lj6hf9zHc140aPGybjnnmc9Q/Dk9Ky1f2GKYE7Q//gXpYqGj+5F+oLt84Uuyc7P14IaL2jyZvUQdH1yhBQKNuHdUSVDr7MH3KWbNPw+Ae/6947vSttUGEZh9IEiSnupuQEzoOjFCA/DiKdwPfkQFYjzeZj5TYgOWcsecFRwdY7SNIwJJkrZmChEhAPkGxaCNc1fZj6FQdvscbIYL3FlYa2t+We7vuiDiR8tHvvp011I+Vdu+To3nCqBdqaylfWUuQYaonZIipI5DSPOnLfQXKSC6L7JnF0DNGfg6Pw6NoQMiUkNnIn9b/qjig0qTQx9v3KBMT7sHv9SvLoUge1VqVwCnDuU/BY2SbPiNlb1Oyx6frVjO1sGA1svew92m2BxjO8GXZloOT40/+9ud+H9AOq6Zo3Wxl350r9ULVPc=
Variant 1
DifficultyLevel
584
Question
Jacqui lives in Moonah. She is travelling by train to the ferry terminal to catch a 12:30 pm ferry.
Jacqui needs to arrive 15 minutes before her ferry departs.
Train Timetable
Glenorchy |
10:30 am |
11:30 am |
12:30 pm |
1:30 pm |
Moonah |
10:43 am |
11:43 am |
12:43 pm |
1:43 pm |
Bellerive |
10:58 am |
11:58 am |
12:58 pm |
1:58 pm |
Cambridge |
11:05 am |
12:05 pm |
1:05 pm |
2:05 pm |
Ferry Terminal |
11:17 am |
12:17 pm |
1:17 pm |
2:17 pm |
What is the latest time Jacqui can catch a train from Moonah?
Worked Solution
Working backwards:
Jacqui must arrive at the ferry terminal before 12:15 pm
⇒ The train arriving at the Ferry Terminal at 11:17 pm is the latest
∴ 10:43 am train is the latest
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jacqui lives in Moonah. She is travelling by train to the ferry terminal to catch a 12:30 pm ferry.
Jacqui needs to arrive 15 minutes before her ferry departs.
>>**Train Timetable**
>>| Glenorchy | 10:30 am | 11:30 am | 12:30 pm | 1:30 pm|
|:-:|:-:|:-:|:-:|:-:|
| Moonah| 10:43 am| 11:43 am | 12:43 pm | 1:43 pm|
| Bellerive| 10:58 am|11:58 am | 12:58 pm | 1:58 pm|
| Cambridge| 11:05 am| 12:05 pm |1:05 pm|2:05 pm|
| Ferry Terminal| 11:17 am| 12:17 pm| 1:17 pm|2:17 pm|
What is the latest time Jacqui can catch a train from Moonah? |
workedSolution | Working backwards:
Jacqui must arrive at the ferry terminal before 12:15 pm
$\Rightarrow$ The train arriving at the Ferry Terminal at 11:17 pm is the latest
$\therefore$ 10:43 am train is the latest |
correctAnswer | |
Answers