Number, NAPX-H4-CA10
U2FsdGVkX1+GS+dd+BweOBtYPn7bJKZcE7+Z3zhfh8oqpAyEW2EqJhm/a5efMDOAaC3ZDP1J/iaoYgnPylpEeE8PPnvPZvNr+hN2e8Hmwwz7MNmZQooxvN68mJFTiJZr7iIYKU+f2GiCtkd9bh/+5tqkDL8UYR7zaxBsmm008u+O4J041fpu36500ih/CkzvNFzWAbnLwPpl5yqum9YrSk6JmjFPQHvr9V0TyaesmE0F+nRCd4WNZyTL3WMsStnmyI642ums5MeAtZTsAHGQI9KA48Vbvta72oF/ss6AWXFaIDrbpwHJMN2CfBhHFCLpNi8Oz66rXl7y0BGVD8GK7mmwGI82KczpbzIrax/vLytTC+LhYFFP/LQt9aVPuKD76E243jSmDrzaDMBcfmtEtCUHKdRaK5rSTHzbPnSHPwXa5PELVNW4H6PYfb+FeIK2gWQtyLIty5YynTdRWmunGmOpeIuAZtAFTILBuCmS0lGtq20369/9oauGMauvcaSB8yCnkHGYUgh2AMcQmEB0OMp3XWaiod+B/80rMZHVU5bjj9beo3ncGIHnWiII7l7Pf3JQ1IQqWytpQTQkvzUZmZT3dVGA1rHkxGtKwH2/YdI9VGWkswn61x798rBvR/6WNZL/pgmit6HUuUo61hrFzSGn6iXR79yJH/7mZhG6FyaZz1j/9XbTiLn0lUQj2PjESiatEWTmTH3drcuvfvXN0VDLLTWj8HZrlvtSj5ye62FD3lUfuURBk9TI462EybN65FUeyc7CwOORgm9lNNHz81xF/oznpfnsFNuKeerNlhY6Yzw0Y8TYD4yj5Gx15A7qiaggEs2NQk5pngqqdm1hhaFB8DIemBWres5P5Pa5Oc29uM8ZIoH+3OA1KwaRdxkCUgEqbawNEvQOXHgbpHLJ3nMX/ixSxiri58QC3irH/5wJQiECsjeXHJOCIO32w466DSHpdOdgE7h6Utr/08WVR8mShmCtViTBDEbezLfnWuRNoyF7pVf9wNZF2EFcJxrf7MWALNir3j4uWKg3gJi+7BdQ0k/NLOtl1Em3/6Ydl8xj+kl6NBSwWGFDo+tV0QQ0nkx/UVbPIeDBKrjdSLY4ri45Nugaoy+QwEn/zPnhlnyuN84eGe54n7g7+xyF8N+LbbcN5n6HkUqmnAcXbBihXv3T6kfn4nKWlcxp08zabrZ2/B7BaSZFdvSV6y3UeWxf6NOAGc/cbt/gH8Xfz6FkrGeVY17hv3bPpG/fU2S4M3gMzomN1TV8yHb62mF17sKL9hKuZQS0l2gUUul3GMo32k33zZSHB3dRH6WHQ1aaHwdYVhpk5nB1O9/4t9LTXR8PmazFINlKs1jgh/bUIGnb+xnvfNzO0U+3Ar5+R0Us/IrUcR1jsNeBknyMRH3ZzHLUotB87DtavShtIzURWZYW6T1dqHMlsTGBnZ5SstwIfVdMnzQnL5ODz2PGrWgeG5YxfSGXR0wKuujlxs055Th3+On4ZWQfeBoVA5bJX/z8U3+zKrMHynTVjDjuvkOI7cC+QxgglthcRy3ixnuyLOG3XOuifp8ft/J1XivjAc/iwnpSFVSgtu4TWqzIJXKNNrAdKH7rgchUKtjrcsTMmkb+BQkgrOjV6lZ3HqRo9gQcS9xxDY5Szel2ID8frObQt0i+yOjfh8YF6SFa1pWmco1zLPuyUpRh9IMEWarjL12pLs5ci9EAuYb2iLZUFeMJEhbDYvR0dtx8MofSY17vsnAg62Cbpqfew04FcdvPvqPkH95rSVrIGdkMlU16aegT6rO0+g4wf9mdGK9FS/wu+NQM8psT0P1u0A4GbOT1c8zegO/uKNIE+zBR7ybzs2mEwCRTwKU2CCIV+g2sPsXXac1YnQbuSHCiRl5DReqHptQxn1avkK08ILKT+/ym2oa8cNEVQMnfAs46TZCRh3i6clEC7/KwEWQOBLpFKbaECVZQgnfkB8/rJHQcO4yQqG1S7nGznLV4C0OZI4K6hvb50weifhS9wskWtsr0pplfH5YTWeHPo7di5b2uX6HxbEPpOMkcAs4331Mt1FIt4pgNchilVdRGhhP85X4hSb3LPIF6AiWUyNrK8cN7Uj6GkUEiAqMnZDkvg7GklJsSOOoWkUkXFvYIDftMKVFRo7Dhf7PuoqlRrC62nTnjQHAOw89raq4oCSNCCID3/0i5l1f5vNOwfg+5TYdm+Es5UlpeFDQQKeAir60FeiBqUJlzl5koPxaDmwPeHEPG7HcpgBY3DVisQXAT8dKRtOfUfrGetv2DEd4v5uSyvHittWVIj6NB4Tdq5k9kM2vzagKFPwfqN4ORY1Novw7jnTWAy9oe5ElEdFvxaojvh11Frvrf3QheOB6DZ4gA9Vy92AGb9+u4LP6Em8SiPpxSMqKIAhUoVssNeLI42smXquIpbJK4+USYQmOQs/0Pil0h7qZjuswfy8a9M9ggjVWCU5kd54CUcLKdLT1GTwjDVxjX9RrQi99cpHxILdt2gDGJ+6ExI1wPsqiwN1dTsjtf7wodyUDrmfD+Lcp+DqtiODqBpeogxrHrgaQSAz3QolNtcFTXnXzzYOc+l2QdwXkYNnwFF4WmEsA1XT+v99Qurut9trZaygxc1xvTLFB6e0LheukZtRXo8QK2K4oiFUpj6S2yjqDgEv0t32fKg83Zq7O6ncg4/9AslpFNYHcKCtHHyukRoVAgXxHcGKAZQinPFgkyjqn2Ye8NaWPAz+HpKXpEUv6yKgmPKCqWJ9kOGuAowm81qGMBIJ22tv9QQj5JGaC79j18OSfxQlgwuTse8LnQ1I4fuXwgV7sKbCe2UUVMmnjlo8wG2pE0/FuPR7mQ/95DmRfWcr/wHtzxMH0r5IaEON19Erynvp7zsHLRoPBfj1c2C4xofjqRcLCtQYqVAbChcpJBE0iZAc8HANpMAVVjgOtEjQzwBvLZo2nyJaCdkww4gcT4Wk/wrpzKOuoeioGwB1dWupdktN8OE1VZdiehRFLyk5SCDJfBcm0dB1VCMt5iQTPhxE1qV3sbZDJ9KnAhToW81n+pHIoCZb3z5PFCUS48t42417XMtMATRYTg++GdR+LH8cbnpQnbq2v78gu0/u6o88optT2Gj+v7pcfJGYsbOL2vHSDRsqpm736H2jyFgc/7xaG+tTn7LTvDEHzIFaBys1AAY/MhK/JrfiYnAcsMlqt+kQOerobzzsdR+uSoLD1pxitv93Sm4PoWfCqaxhPQlutJf9GW8diyiq1QOLRs0y1A11sG8vNXSST7HAtHe2j4EsRATGBsRfXmiqXOvInwtsclAZliAr0sUk1quGl5Awjv429hH8CdZcUdZbHTQ2lNp51kRMiNjMr45BTMTb0H0n9r0/nC/8rY4g8qq+Jyjz+ampX2B34kOMxReLvil3JGwPrYeXXp5eX9x/uiC/nTqch+5EF1GcM2V0pELXnAYToLNJ+iJS3XWb9V9Ba8Amoaa4tssJbr9JQRexGbhPYrcsUBjCFSY7h3FcRthBtBgjotn4I+SrW8q5k8mOWFQexcD3cl7DpHT8xhZrx/ELYFhiXlo5AYpJvkGnI0t5FfDu8x9cOX6ipJMur6RXOqjAsqt9yTB+VMQjmaw1ReiwxRaR8lRxFjW4mt5xYskTc6JC1SbobSY8kZ9Qxb7YnKXRMFVz8vL8JLVDg4/K/fV1jPdBLCtWvl1EoaWWiPwLZ48J5uu6MZMPj5tkgPWhwMt6+bx2Mq8i9WqIUI1obUOTSIKgLf6RkycqmgD2ibqSR1W61VBT8MZMl+jOaHVcHdGawWjTqiBkKvoit3Ch6d7yohaG3leX4xCtqZSnOYX2UFlhVKdGUhlMZeQHxerAKn8iw2WYyhI6KeTp+ARwVfoJ7uCijsuzdR80QTu1tKOJSm2C2f4dl0IvtJ70hfh4ts5kkUPf7PvOCUkx/tdpY9I6eMNl/W7NJeh6fT2Z83soIPjRU2YFp9YlQYuMHPFxj+3tpbHYp075AKEosVZ/QXkNiXRzIpgfP0kqiEN6EYAGOygTyibemSB8yVSAZq4VzWcfB0Wx++IgE7A8quM1IlRXri7tqYaa9CcFoHfw9bsxVsYaG4QMtO2Z7hVn4j8A71bu2GEJ2VWbBN+xuLSC1P+RthdZ45VMnYqUi3wTog9hA+xm/3+OzPPMDJxERHmBniTZ9HCuJIAfO1644UHkC4sSqMZMiN59rMxAswU28/fATJ/2rxFh8B24PDcG7GA0AQTRrugzjl2u8vOnSjORwj/ojkXzWF+Nen0hUzXCleHAQvbmrF8oA4QQeXPBf5u4aOWDxa1zdPTuxJYIT4nm/4c1y/vcHicoNHYxbiFHbvz56ZJITBugpK2JmEfeVuru/UBqWr/t6DgScG6pRqTRkxGoe/rmcSgZpSsQmu5WAWjQ+kyQUtyDX+65pmJ17kdSzEZnDtfR0v+nf30gYh6IdHivaRNc+m+K948iiBiesU30X7xkM7mph/HijnT/yqEp/OQpljhf2/9rs7YTsguLH9FXvBgiqEUw8V63g9/nspvHl25oMIbSz5hle75bSOuodsUahwdy4pa0mv52Dv/jPc+9GNvJCB+1R27GcryDJVg/mkUYIngnUi0iI8XtBLa32TvoaR3MtKjDr4GWipTaan2+O/BVHs7I0uMJmjNsibtqi3pKleS/dlyBC6HPqXlZB/HESWkQzz6zZtJVfc9+1qL6+TCQb+fxe96TWzcMQOJ4npp9wcjT3SmNRnFwTVt8nOt3431aU/x7tufk3vNAUhOrNGeznggXOKXBdcaSth4y/iKwo/MKvUpmvvAOf/K/1d4wCzV+PbDajehyMCrx4iOLAUhq86crLIyNR0sQz6HcFsRGu2xPki1KGce6KYLza+4q2sVUK3JhxCpXlONcwryYJFnetb5EGDHPt57LY9Ha4w89aWv4ha7PPB3xQmCV0uDes8F5Z5MvPJ0DPykvcGvSR5LxhxpVb+UH4DuvwGfUCuCx7oGmsFPo3i7kztvSM1Upii626A8TS646v1wUmlFjfNKzpEey6SE8emSMn6K/0b3rKZzg8TZQq42NcIj2xRyFomR41jP2s3wvLPBzWjBnVXw2pp4nGstBotMtlmAJC6nkXJAPiyj1j+eMFyGKesDVnkFh0PwbFmvg/9QCEAYD+UzswBv/ejwQ94nnxYaEDMSWfIpvMFUrHT5WHPcOuQygdz7smg1/fDOSKLbkGM9LWkVerC9LVJe5rLue+pkeRaLumy1af/MpnBvFyLw4iXEeY/9I986NToUbKmljeUpWOGUTAZb3fNA2MenWPNjdrXmabn2P4P83UmvqkNJ4CGTiJi/aNypKlzCcvyJS1KwHugOg0rpl3tQ8R94BcsqGxo3FZdCxB6nXZIIctaTWGVsmn2zCOgUkpKVX74/rWkbZiscwOoPng1T3Y3WzJF066UE2S2Tegkc5YIeSI5zA2tujDy7n4U3cEaqMaqohvS1UMCJ0qo+SngcvWJ2EC+CaPetis7XYCe6DQbPrpQHeJvrexB0hE/QAq4dzV5orzBbzh94xCl+9te+r/QcxpA4BDaXrXoXlDKPNjG7t5+aomz8/FLvbZo8HFQ4vlkEQ6JHGFY+L2lRM8ABo4PMPBdZbj06F1e4G6wGXY+rJC7tG1Rb381zczyp0HsZC9Fpat8/EhnNgnxuP67N6g+K9nTLk3gKXAhQR+PVI8IKWcX2HFu2YHESTHkuFsF6kc3Sf0nmuDTg/iO5jmQ94rFU9FLDT20cDpnYb6vSdbR72HW0YNwLCcUt0AXoKFmGhm0duht+c4OoP3BtSq23i8OfQ1fq7UX5yo4wIqMtUgq86i8xQBF40nnYhjPo3JAwzF1A9R64/vdpypZrtIQTCx6RvcTNrGD2Eaj/bSPBUGEf+Pkm7AcaAIy4hPZ6uBMNDeYYL7Snz1go6KqX4jkRmv70bvT/cSbjG2ZHPT8rm0PF5/dK3AWbKdmvaoPvyF3nQMj8XuZF97L3rUDzhl3d4jFj8dfAsG+uOLMmbPgBGY8DjI6jUqsiciOGD0JZTpY/m0DPRKuMI0mm1FYHV3ZTlM5jhLoI37sZFEMgyDAM8cP6ShTT7x0PVNXkF0P/bnI2dCcdwWUhWcaQYKPmi8Cat02GcUJo6NbSbbU5AsX/y/LLRnwVJN0LEFtxRtZzh90mByK+fYX24tTQysgA7W7ElLk3uzFYOmKPSMSmPbOCbrZg+6zoP0lLAh6Nu6abnmB33mXO6BPJQxLgVWykrfzvuGDDVQqZH0IGnH/cz2EFfm7oOCvUe/u7e4NitH7THBUwEbaEgE4iNaqRWCB/k5QqpUeleWTfbgSS7hpwfXyIleYDx/6Xh0SMelRuRvAqytofQeepN2w2da83LX9HRt8A1VvchckTLv1bQ/rbDaA0pXGDR611BosFg9VujqajlS9k3SZbj73lcyGVAcxM1328v/U55NBGj6s6FEnWyiWNg3pQuf2OwsScPxR5VbaOReppWTA1vHQbQZayZlT3+Q4QnzKPnOTkOGjL2yPsuXJHBxzrOFC5ikQ+wYQtFOAVemRibPw1h6w5m5U/N4d4keTzPOEdvxdnsU6fY6dJ0pHyg76k8D8GzONMxHUyX0IfVo/9meJRuC/zTedJvaCjVP8aH6ZhXrH+6JrzbfKrn6uyzSD2qtMJxEBVIlrdYUJ7W/OS2SsVmczVJpVTPZpL3EjDtUj53diceNQPdZg7MxdwR5dApaA6V4QR/p0qZxQGDBXT4JpWbNPA82G63w62tWzhQBpeSUUMalHCVSA0gtx085X1/WfOd/LPIU1BdPwr+76yfVzPJXQxdGMQdMBRb+61K8vkmqvzEZqbkYP8KgqhW2nCiU0LvTc9/QwmE075bF88J0o9QlNpihnTOvORk1A/Ueddtu0/VM8ah4LxPQRShBV6ABvAoWannD0/CTDyPuChdBu9q7bi/ENMo6s9F9Bfw28SDjXkaB11TOXgwS3TwVu+Gfd1bvr9eW6TDQY8s7R30TrpB+4oXmpElmoKiTu6GvnRjqmvlOB4pms+G2ZF7EiH+GR1nzusTHIaBMQUTm9qxyZdNPUWsFHvXaCk5tPNnHECDBFq1rQQ5jrXv5wqo0oRczj2WwvEvS3Ala7vUMqleNQrB1Th+7VC0pxfuVrxqqvE30hpAe4R/MDJiL8vbLWjeqER6qxH0CiH2RhcpW1Om83B3n3ZIOfox8bd9xt5TsWeV96FJFsGJD+hBK5inXRSOAsraMBiBEiIyl8rXMfn/AdLWzI89iB2lUbXO2Lh4M8k3Pjl5o958N9bn60OHK6g6UIG/OwPNybn8PCznBiIjL9N6GHBEMdA0+1tCx1RMyXrk10nPLJNeMrXDn2jTCLKMpBSj/mSbj3Met7rPwfZK6K1GK7mZlDMoMuu/KnQodALfwGtUl2HupycduIm+o2zzoMSfsbHD5uuQelt44ek7tX0w2fn/PWYfMFd4A0X9UliZhFS8Jq8BMRvGCUlgGe+8fPacDULB3R3cgIkHAADJb9P+U5/H5KcQhY4og58PmC4ph0m4FFnOeTpPXpDQC+IJyF39F6Z+nWrTIyjf9W9Nf2kZs4ZgxC2UVw+L2DQdrJA1B3+2NwtW4Em0+4aIT0kE2uHWkg/XjZwwSEitnkEhzX1ZEAwZgp3+KrkL9TOp1l8KViU3lbnjfmCJ7wHft3RqEBiKm2qysSdlOfqJnoM8S3OYjwMjyeb0IDlp789UTfL43uA1ifH+IA7X8/HwI55N+SrqdnrVFxVhzocR5XLUAZcqZlarCx6ljspaMLGAA3iYc86wQOVP8pASQYjlyn/tx/rjTRHkxC3VBtpLatuaZGdeIz0/HT2VKiHSvAswoRAvQ3NzZI2vR3SDOjUb/p0v0MLP/h0ybsDlonzBysZk9HmFNBuG634ojYfh3wCHpJ4dQSVSmID7+D/37nXWbMguqB+4HOAgi49xF1ZU9zkZF1enNTrqho4quYWik1EOK5x0TuIR+0iswOgCe5XEv9tsJ64pNjzlkdUQK4x27ySXV3NQVrt5Cs6bju9iUls0ovCwj0a4oFiMtI6f/SYRIvBH6+pKX1oh42VJXIK4FYBbE04YDmtwzOccY8HztXUcxKvQijSawBFrSFNowOTd+0lwNzXDhLOfL3wQ8CWoeRW9xVXLs1inQ4VOn1Q4d+njmX80Qge8/Fn8KlQ5RIvLPzfv2w9A6T2WWuLtq5V22yrhCP51kDTBgWPwoeyNG9pnrzCb+aKxoMlTrZSeWUls5doTjzQq/JULmeqClI29auSBnILirgLAMSumV2Kv4tlhfjL2Z/L88RmOkbuI0eR8DUYYKhrnOMiK5fdG8fRzZoOSNuWqxmyY6Vl+um9jv7q+C5txod3wEUNKBduW9C37jSpflWszRH/j90pca79pCwybltDN1r4EIeHijsuiAs5zmODqpwReOtrFkhic2EABjis946lq9JFZRsfmIhUk1XF2rurglHdNdsSwPOJA1HSUqxAuog6sTpgD60sxnIqLQN+Z061l8ghgwt/wrCte4aZvyfH2arkPb+BlTOtCGD339p+NNYunDQJrgcwiN+2tl4poCaMXk4RFk8By7PW8r3nK+Rx9YJ6DRJhrSnK+HH1ZsWA9NBSd/qM3IrQR2IrCJY6/jrpgbR/oAQxEXN1aYKu/8mz6SmKVlDg44Ce2FAnyFA+DX/5ydNeJQVTU2X0uT2/61haOBalK1m2MwlATJj5ocuRAHlXaSnlNq2u5Ud20lULjBgn5LPJMjjQCgTvsmR6exXEbDLfr6bUdzlkr2mODkhW6U2iq20ID9x6VzF9F1eol0dPcUxisA/9+S+KLptVq1EbTvnWqksPqLXtNWwRPA29Hx/cboFKxWbWAIUlTFqsr3U+H/+0hdUBNT7R5QLsC1Oa6c90H4b6yXwtwooY17vCWA/T/HwBHlmVFwRnnG069mONqno/uPJ4nyBQJOH0tZcqhk6Zztm6VRCuU5NFOKG/jWIHGz9xuhqkhV2epqe2fhRk182aIlS3Rk02QoKaalpsjUVAl6SM+K0wFGvYTjXcypFCD/CEDUMdby/IdjRlay7QXP6qLRRn8I0Ymu0VY94sbCT0lpr1xfPSmjOS/d4oR/mpvHW9FAk85ai+Fcr4eFIlwvI51XFGIW5mFiEtmRJUjVvbBiUypKxtDpfBmv158NpTK+DtSjhDXqdF0ha8YOiF0Hzph9dkB4DZuv1ss/OojnUICI5aKB7qTBycn7m1SP/XcU7FK/fK53Ik7KuOG0bmKSY4qY00Z3KFGzJPZPf92LAVJUI9Skd3K1Nlso8JZWfjkWLtotRXcGHF0jwOUDVj8AmdRYJY/l92xj3JHaQU4V6N6kH07yI2ltQAtDeFOxk0v5h/41NPFcsOIYG2MmrQ/dUrQLOVj11iay0VHduLTMPlhcGwOLJK45+DWkkwakx6SyAM7qtAGPIqwRCqcpR0FtBt24Qr2nUfl34s8snRiczOHnI9iUoK/Nlasq7Twx+Q7RC/rnd5VVPY6tHyi9YXdSbOMDw3o6YZfjk55d8F5loZfykMdKVH1leDh67Whji+QBH7N2ogivn5e5k98J9YGKP5ZeC/3+LNOF0tPJxrokDoSvQaf12uA5DJMHiArxLLKxzTeobCi40Hi3l6ZVWI4tGKBuwS9guT0DxRw8XGFu95LguU3RjfRt2zxirnIfdMMvyMBXiflVhSUGVnlTgrlheiPSg/5cEPdpxr/iobPpPcudO43p2x1KpH/6Z0rtv8KVG4+ldd2qWnmDUU/JSdV1AF6lnO3LgrjVR43Eg7q8MI12hf/bNPn2FTqKgaO/MI3eR+q0Jvi9Lah5w1ZzV+B17geHjr/tbviRjj8ScZqRs1EMmW5hfrIBX5YMvubj88xOwAiJkQzzATAP1DtMwFVYJS5OSIZQWbe7KFauwY2WO6CiF1RWoLUtRDM5lWFt8RS846pPm6bAaDfxl7BDD2dmT/MrDQlPIDQ547OusZWgHQUVXC1+p8W8/ZQDtBiKA3tbyHi6i73cB/ber4/NJ2d7Zc9XcsrlryFDszynfulKX7GxOLcbUAr8/lP76BmBJexWUQa7t5f5w5Ws7BGLKuB0V188t9zMr50QByGIj5DHKz3AX6wl+LRjV8Y5fFN3VUfAHx1BvC+Fv/ZUS3HqH5m66vAtzUVoUynUZUKkkHoCxgqLz7Zr14ppIlda8Gaf41X5dqEHUEQxXOP9/VLb8Opuuw1OxSAJJi5+HSGWWdFTgcCDSjcA3WKJW62LX3QiC23EDLoy3rU1YAIAKuRLI12d3vrT1SWiQpSg2Kw86sCaUOKSUIxercoWVLP8OtNctTPajZSQu6kogRC9LiIRIhAUd73K1QyWzzRU0ogp8JYiQe8nKDX/eSqDrsHD8J7xWK6UUygLvRw4PzbOnui5dKy91YRSNIQLVWJSOdABYKvYrfrkBvixK3bV9RJXqPo2+l4VcBysdYjGpuVGDcaiNAqoOwi8wglkEitr4jpPZ0b1a8qW3CPio5jcUq7tW76Q1P2UpyfVZsUOZmBvzFMydnljtpEeJTIYIIGTsHL9y1u3mEvXQfC1gLF6k22tPmSwO6GiXkZZxMeo7a/bAmUgf7EkDI9KIxlcvh8AGHogJxGTsuRq8CMIe1H74O6riNH4Qdc9W+nS78ZyMznnDiT+HPppO5gcqf4XgTVfuy1M22md3LZvCWRDdNng6b3CVR9QImLbHWtotR/stK9SLANW1hLXb5eZSX62AAkMTP2BS7piU2fODsjPWmRcALhSFCgiE436ncFWsMYbVky/7sfcFeFSLdpMtCNF8BXT+BYGfX5EZA/00EBy3yjhI3e2bYmlqvMDkf70JbYFziIO0w0bVH5WZX0rWdGNFBPTjCH9GnLdzLCQwkedPONaT9NatY+e7yH8NmckpTRVpVwLZ8zcFMFTlxmYWxMUO0zQh3sD4Iii+DmAnSZy1ReKdXsLyHNE/JSsXX+AZhaIpVd8YzZIx2a9wWZHp7PonpxPLYa3GMCV2ntZpk7Dgw4aPMhfTAz/3upnDI1YRBez9hMV6bmJpkF1Wh4UJw+8NwzNpRG45miAnuM1us/b7L+Utnn4SxmE+xrc0OrvnLJAjE/Gd4BgxGt2Exfb4XoDMBWZXbbvSTH25YbG6M2HIbXID3px+vA5Ldpvr8RYk5V/UGPlIl50OyzcMZjs+ePwzyo9CgE2tRZAtFp70oy42IJrxkmUMm9L+effXBkDuMoSVAMtqU0cRGP5wB5qUHxVmO0rlmwMARWRhU/fYIbuqwJ8zv5w9ODy6vV2KJTTV8VqVpTaw+z8o34NxakmU3yRxHWpPXLDptDH72Vz1ZkS/hDmWdYX2dVHWqS2q2+FnVzn9ToBJcLKmfyfxgbW0SKvLuHBQBCXu+bnJxjn7zjRaM33auOT4451LAyM2nY3ex3+O7mF8EK0gu4JKgom+zLoV0jkFoJC3RT+/80HKDIpFgbj+39tJDJCYTYn9qKd/3WpJQ+N+ZA1csZRZHvjuuZiILNI4z1rtdHLpIMQ5LhTiF/m/mVNhyx9OskHH6UZHKu8w7PT0W1Z0uAdo/lMdewmyMjFDZZqVqDIWCvssVeUgyoHLzf7rdYi/JzEE9kSBs6/hN1gKvB1LZSG1+2b7ud38pOxM4OH7nmTwSCrjYa7h9WV2ew+UyXIyIREVu9kuMMIL0Q9kRONqs+dbrzVuUJjg7mhSXCWTA2XJpCx30hB65yvuk21OftJVCOjdjTpf/jMpZcbJ9fXFmyY1vNvCg9GsedQexz2V8xXEIqQaeUVIHUND4jPAEffhzdnnQJX4zT6ONcEhRa6NTuwS93lLY/JeZGVS3glZ61yCxCwL9+oP9KKximCLjBA5A9fOOcSXfkQS+j+ghQUzldXvOFd3QXUw8r+3rQkg68zSLH+9tNF58dRvRiHBXyfEHT6QXTlCr9DgFedQh7bSdnPOo0a8UtHudFaQKOk/1puSFGKS/qBhBSOPDpBBxPwCFugSCqYwt2EBZDUerJ0C6XTmh/D300B7eZxCvh+RsPULXdX4vSlncZ43W2WhsyJpDleu5Fu0JExSRAILY+tgIpeGX6kJRqS61MC1YYc4vUuzvUlH8Vjh511ALWDyPBFgzV3vx3owcx3eLQCKWATN3Nt54wJhF2PpswwWPLhnUMfJ2ak0jYCbu6BK0Ovhf13wAXK+fS4gLrzdF9aGnL9BY4bhGkL6MBFYjhvSKlENJ1W6t8jirQFPAYLTpTMGYmp4H5DVZB0pLh0aAOqkZP5lkQKKRK3NAO2vbf55ucDk+t/NldgJxD1osnPEhXcLrU3KEXQlWcfEQi+YH1cnn+xzv5aBjzCBIXTVKBxKQmVOl0yqjG8mfxADcV5qqthGC5n35oGaHZLy/OovYM6jYuy5JNp+6gIx9Ofju8UvWWsepRj8CAselIRNb+Oo06AUVvGYczR0SeapsPMvVXpNHggbNpXXdLs1qPRlDllpWpadofJLrKrqNYnODBcxX9RhfY/AXIJyD3Vx9LEaF5KZDtZFzOnPI37aakyX6uKt+xy3G7hDHT6eloGoFRqgw58wbLZ7ZVIkatpee6SCw888jVNZ6ZFkTsc1zw5fqIzUSPUYvGlZQAvSfaCOcwZ0n+JoEBtgfQN3ZeH1VYrc1/xhrHej2pT3s/dC422Jm3Ld4nhMkHbZPewv/udn67CF5gX/CqRGiov0Wsy57CWbYWyRErtaUwh/3s5xs60Cxl4oEW0N6s/4CXuvmAQpzCzP4qhoW+OKPQK6UqbGs/oX+soA+WPIMDqF+l3UBJNTgOp2IdUbId9vM+KEOG5WHrpuHl9GzIuAZwsoCS7gpl9NxITIq7ZkiGiDBF/OtdfOr2cKCNjPfT/X1pFjw1nArya8IU0O7PN3f93YKTj/EdTW0imCnx5Y9J31FpWyeX8tmc8tnn8gWD+v861O4sI0MtNbiARkRHQz5+W+vm73TZ69IxWyFjeFZscGRpe4r6nWM1W+DthidQR6I46cF2+RN/UYd1tVHChuO8fI5QMixUqCTJzoxSfBAaKAh0ZJglTlhSYZTopjGAkM6huRD45Kf/twk6w5GdfWOe2V2+a5Ktc1pI0eg9B6AYwit9j5kaDYVuLwBZ9UewyAQB9idwqpOvOrNNzSlQmTu4Xr7eyzSwNx+C3Rjbx66FyXUzsA69gIEEp7kaB8DnuIe1UUldW4pWQtNGXToj2ixK5YOfIfURGtK35LoXKN5iGXYiBZma5I4oiWteR+cO6niUEJQ6wBIjojTNtd+rtmxYNknUZGY0AS4XurUXu0xNyaDJO9cz351Ijpratq7GAswc9j815nLWqTymgVstDtaXtwUtws40wy8eWKk6zxTbaltz5TW0YChSHSXMypTuRviZ9lwzKfMhOYZriIQ1yJc9wZ1ddW7dkGxNedIdQdk3hSQxUPxsGOpppLDknoZWiY+BKJPzzXwkQ6eVz4olgrQrI29Z588WyplpajHuYPw5/O3RZhtHeWxiF0R4bek8BZIlhyTEpOJrGBAMyftGc7NqY7qO4PKf4B46PUUH+IrC6I7eNuxawuZR7afzyjdA04UacRxMVW0uqRDsvFMmrXpSfpLkbBEOGOPniFWZlEkBOjvn126ilkUcI1g9/2DZG/WpY1JX3ldcVYbc/aY1RU7o5C3tW/g7jP/0/fD0kw0HBQkXktScF/cKHRH2CEdrfYjdCXNyy7ORpyuIXgMhmZIPkS2sDszilp7PE3x5bQGMdIStJeBbxqf+K9qdEOt1YgJs16WSo8MhY9WvBuGRnd7PYWf818Coee3GShSaDrx1sZprlHzHFGO3aE5dnF9xrqGjpNfGT4Ko0ZMje0LeDarvAOgkKXKzhOzKEok0P2zwCEUVyeeETb/86yUbdfXxrWwgUL4V9BNhKpUhR3PXEox9LCVICKDkn7hqQl0NculkJ205jqjL6+0uqdZSg9b6zkOAx2ZpBuw2aFNAQGkcXzRGPcF6lqGBeI+ZVOcRqH29ZhblBHFHy1JBtCmnXemWFu5NyY8Q1EM/to0l9ney5XToI8uCWU1cg12PCX2BC0Rd3o8ea/0dSAiRhNM69MXlPGbk25fan/a9SIGmidCT5hteK8xt6iMPvTQJJpLV5ATbDbxl7DAr5eGuSdZisy2Hx5O0W1+raP4sBEL/rAP7Fu5xIwHwqVNEI=
Variant 0
DifficultyLevel
535
Question
83 is equal to which of the following?
Worked Solution
|
|
83 |
= 8 × 8 × 8 |
|
= 8×4×2×4×2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $8^3$ is equal to which of the following?
|
workedSolution |
| | |
| --------------------- | -------------- |
| $8^3$ | \= 8 × 8 × 8 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | $8 \times 4 \times 2 \times 4 \times 2$ |
Answers
Is Correct? | Answer |
x | |
x | 42×2×2 |
✓ | 8×4×2×4×2 |
x | 3×8×8×8 |
U2FsdGVkX18W0QAMXca/jIQV6Y7GgYIrE/+Q3vV+kmK6s7cr6lbc+3/nuH99TsYPmvDGp3R8XPWMjym05sQzKV3gEj2ImtrPMphAuwN0NfHx6C3VKvUV97ADUlrzrRHG/iidgaJAB272Bxu86IGWeJ8lOI3x+C0rBU0uIB4M9YLa+TvUzkkc9KBYH4rU4MMaLIQdJN5F447rfPiQPOC4KBPH7eeQEomVbg1IG3Dn4VaaP2y+3CAp0LmNtztv8Notnar50szdb/6ON6+SVjSvTqpQ/wQ2+GBFZTg8yheu6Tz5hVCpzGX+ztV5oO+4+PJ6nQdxbR9YLHzAY/ht3pWxbuIHYVW928q8DJWaUwdP6Uh0FgG+T0tQa4+761H1Oom6NKOC0IJ1tPZtzL21EjOKdCmgkJMc3o1n6x1kfjbMMBezlfLSUFod0koKPTbaQX2joPxdUFHchWbnQFFuwAxK0A5ZhdE9XBkaLB7HyUL/h4wBQV5qUCCe/76sXMY9eGWplYR6MbBrSyme12ixfuCUrV6v3uoulyGQDqMGqeT5eS+hU9Nvdk/ZXmvlVhgxgEpslhqS8zheURfOIGGAigSF6TTr9YsfHM+nF+x2Z2Sgwjxvn7P6jjW39cyKTbA9gRgFB0y091eeJ2yT8M67UsX53GfbrjfjxuaTat/LtN/awbkxUmLE8b6HFlKeGcFI1pkdUV2Pj1xHTFIiOLnoi85DWoB7veykyykLWGmurP6XFNkKOTnD2q1sVtET6tzvD3rJgHYcT7kLhjlmM9dlr5sbabwm+h5NLbdmk33ffaGITMdrQJtwUbpfyb4XDmMu431AseA7Te1okZpHnV9HYto0xlyW/PQfxIP/OoR8GzFeAqe62r3bBwIM2C0EEIBsMdtDGNUx5OGTh9tfnToKVlug6+DkTNSsnPH58km88fhc9RdFjKlVLHOROaohaHGVy3TJL2ZsL/3hLdDCckxp/KM54X+IkXMX5hTepi1MoQdk593Ld0LIIrq+PvIK7IWeIpmHDlD98EGIW1jI2spRQX+JxjNe52LBTyrkcN7VLTHvgbwVhFBHqawo5/2c2aWSNZNDsDGuvHABMp8u2qGTNs5lguX/6a/X7RP4CH0mQk3MGcOIijX21a0LDmAq5RoADpHqP79UlWOPAIb+dCK0sIVoTxqgZ0wvPh1R6MWTS8AsUm+jirY/+WxYuDlTQ8bMC11K+RlqDXKU890xQSKHqlmifvppVb61YQb+zb8P+fgpXmwOGDQIWtrpLjEa4f7rRlIdqLJzSCTTAXjmetyTpW6XclmQJxESC9Y+XkcQH0A1Yjf7uHzNnuyV4Cl4torqckrvDWY/Kh+eTIdJQd4/DFiyucnLXGcKlR633Sq/5csYV41S+MqV6o4RAr0mCfam4dC5BbzhMXiE96g4asQzhllUOQvDhQNPgFcnxuHQKOySARbJKpa8KQ7a+o11ruBTwSvL2/3Fi5ltCFotq6lgWbwzjdDTtYxFPVTr//+5yOExRDp45DHVFS48df8u/aysOoK65xgwElSK2bAp6tjnEPkyEhcKbPwnLT4/ylP78U/M0zvlQK0MDHAi22Kraf4czSqhpr4I7PTLQUEI8PmnKu/K4vyHSv9S7isPpuUSEO8bngZD9LQZ+zciScw9jmuzFQ1I23M8ikrGjMV5fEdy8pa+4eG7pFH3v/OFQeO23gPTqlzmdt+4WUSppIXzFxMyQuItJkocwHcDnM1kUaJ2QzfHLVc+gCQz6TycJ8BcXnwF/50n7Wm+SFBIsti/NJyKDgh5QK4Ac2wkhr8T0vALi15osCP5C7KK7CqK5OO/wGy1lei1SlgnymNykVTzSH/yi+IlbOlkESNf2o4qdL4b5rSmouOJY7AK9PHvB0ayugg5q8eNAnJP0Zo9DFc6sQq8w8XskBNEMvWXgPHDkgopQeP8bHYwCUISJgjanv9OHo1gb1gap4JvSRqI63OCGOxKoUFJykxtvrB+huphLAzDs/rl+Oisq0fHEYSvalghYtXOw3J52kVHYFZMoQc+wuZx1ax2J8IVwXA5BuKUtZNKLMtJd2zst2Nzbg624hglXXNhRElmz1g0qipUAj1fV8RFyu8jM/fKNgAqZndjuOYIHgG0U6MbJJnTAauC/ANv2ktjfuttDe8AUMgeEvWSXjST8+Vn2t6dnRGMB3hFvF3Ep2USeoigkHDh3DUXsFuCZvJeXXIW6cgoX9bn1Jm1Y1AuSYViIQ05YAtSsmFXC4buF+NS0rH4lE1LEDr8R+K8gMOI6XZVBCFFjZZ6GS5Iqrlb9gCOjqSEQFu6aCpp0ZoGtxLu4AdlYac9Yubrrfco5u+PRaX345RJ1v9YQ6MnD/77VY12plInGUGA5Z+YW2RPcrWmc4okZYvdp+vnVZl1FeH0OUzyMZwVVRff8UoEQKCzOdY8B6UJtQXMkEkDBnbXrH29H4yEYoMbjxTcnLjjG3K8HSi4SarCn14qxMNvAHAFLkfpyIWxoZpPBqMB6xaVXxaKelSguNDnP6sjb7SCd2wxDCRexGNoneVqfY+tiEADXLPKorvfmx8LSNHcObo8uR5uZ5itW2ekpmYJOhbMKHrc2NqPrEEBBPfB0d4WqB2vVFfQo6OfhCp8dE2Sc6f1PDnBknNammpuZ2Xd6GRDQQLqgeJF78N5W4rvXtL+VGC4mcdB4ajvUX5DQ9zON2HC7qT93qP+M6aPsm5jAQyQk6ka3EOUZ7WFzflB9r85xoYMZeXgr47D++DWZ+FhYAjeUzIV55/WsL9PqnHOeYzTpL6RzE6Pnn5Npv24aVzslBvhW26UAnfbaxDmXhEcdtgr5vu4bx38R6s0GepoOpcPu95fcdzV1O2YgGRcUQecO/TfqXk8n6ZdHqSj4Bv1+Z5xoIO4gj7OE+4FYsv9g9IKxi2WhMCZ3tDwUBFPKdZ1HlZ9C2cPXY7ve2isHuPwK9e3UqV8kVyfvt638KL2ydLqVmV8gtpSQsLtXCxaPKeaiaiHE+WpTcBKlitd+hroV1xMtZuiqs08dNiIP50eMmIcr45vxGWPscwQhlozltxaMyOVGE+uIa57UhOCDy7wVdWxPBGQh07eRGdWcZZx6qZ0Aa1j1clx7AM72wXXcbz0Of93kEVCDwOdya8Qsfff5CrIby2HSrhYvFUVGd1l7OaDeezXAysC4Ev4iQzdrqXzBWfCJJr2WY/KMDZbw2m/sbuYwKFgig88RvFZuktJ1XYCTFFFvGFCnvCooz9jorgKBzmPeNJXqic23LvJTaInRSIu/PwHKdJWksFtqOZC6yYaVlehYVyH5PJkarZ8agAXORRTk1OgGOqs1+xIztJ9zQs8J1Kurkea2/6IZmqPD25ae6dZLYwsKwNYmeU13nO0TFnUUeiuYz87escMZbyCVb/RS1A982Bnwzo/1yFFTzdw3ANtMpkFRM6a97opZRhzPTG0IvYz1H+En7X5pnbVE3NhIWP4K3jOOL60jz59wVMSwu6Ov/xO3py9s0n4X24fok1ItHzSmLO41XkYDaLdwXfEMwVTaaoYBHtWHWbpGZTut8x9anJOQs4lcBtb1N72fGP38w3C4MJDmIUv1eWN8fLawSM1nFnRo33bYF5uwyEUKijTkUCw7qNvMtW7FpSEZJ7Z5UBRTVr2Mh6V2pa4l56PG4B0t8xswc2zZNVgXL+tTelJU60YwHmFGKqmtLhfiVivFx/0mVm7R+JWp32iYFK510qeQdGUff8ouc9Mas4IkJgi20BjwCW/bxa69T9LNSojkBywgaRTt/2tQ2/E21xDEPf5l/l0hEJWq1eO33mwiGkJh/JCHDYrHtE8SxsWxtS7I+Xi4U5VndyXgnx2M0V7VP2FMeriwLmNiRPdPgeCSqPliZEbZcWUa0Fp9IpTGH7Xtny8svRR1z8sn9R3Tg5Y4Mo6Tae4L7DIAeN2FtT4IkXRIw02hkq2Z+EKfWqpId+QDhBPs5IKiR/++2z0+Ak+/JRAMeYzfG6hvTvyuoGP8wrEdjS31luT0InF0qElN13FV80Aql0u+UX6UxnnXlOS8M20a2GWtRRy6Auf/gpbxYp2XKsehUZDGlqj7pApj6KdgL2lvzxDPJMH+ty97QI2LiUgiiZPepqV+EXoFdxdyfE3LEOFKXp4k7p3r6vvT4g/ga3fSgncDzu9euWy4DQD2/uny2Pv2FiKszQN0AwJ/2Bo5S3gTkBVtjMZIoFmKuJ4l+378ve06lDSbVsTcazTq5c6OMwxaeKhHGLFUyrQcO8CmdTOTA+D0Gzqn3ZTRF3MN+L4uyCRFb7RtKaH/MS3HWnXU8Oq2j4omwApe5kUexq61l7JozTlZjKoSv/0SJiVxwfEXA4+B7LJoY4o/dZ0KSjbbcmOl8xOVr//i2YapoeCAbzGgAC5Lc1xhQT78M9JimhlPPc2BpfzEutfTMHY3GlpfAVLpu3FajAe3iMNbfX5ZrZcxA8QY5/3cL2BAsVOvynYv0E+dYUjwX83KrpFYP5RIpA0iHctdohSI6iOr5ZU4kucLHm6ngT1IwdC8wesULg0uoU2d6nLOZFUPP3+uDIdQbhxv7YakrjoSdLW6IeQ+z/L9GyMiDwwvJXWFT/dAH+AsKLbqenjpYiPSVzlgwS9Zcv/AP2lxWwd2gPyjOcCEM1MxQALCHyz/mAv2runJwxCiBEutdG+axNvFcA9z+qHpCJCUu3h+56Y9Dsxfgo1lLHk8/W5cB1/tvX0AfK6s2yGUrIXSgoCvCyA6c/Hl+30kLogvqVBs+hFjvuNXvvpRFje8EtMRYkHuPmOukODURXgnMI4rFQRNZ01qnSKnqfFvOZEz0LdhAJ7mBVxBqhNaWhz39EzrXAqARWOUHf1Wnl5GXZmtXpMCGdIsG3qGrfCTFhkEvFznUSUAZvo9YLL0HCXg9MGVqbpKzOhVTILW3gZDuQJoBHY274qTh+b65bqynhBJLgm2C9RWqUbDD8M/eDot/EHw7WVC3Xlm/7IHvQK0L7QPgltfCt7/c9bcvTLa1H9VyOqT2u09zgG4D9NPEptv8rzWQy2A5sZkMkhmghml6i5ksDFgMRf0rbX3RFh017F1ml1cq5L0hrpaYGjjHr1rQdiUXda+V3CGFW7k2fZDPKoRHHecwNP9wIOq46VIbwc3gM2luQKycuN6Icnahj7WcvYpudxXOZ6uceBmxk1pQCPvUIr3lBCD9ApNSrRxYHi3ltx3PQSOUjFb7jOmLiRyz2hoRSaspbQ/UPbsDfYKX5BaYzMrsI7GElsjcR5YXsAEE2Pl8OakRx3p+SnhRg0QEaI8dhwNEr3E0fu5sxaUoIC6BEp1FCxlrBVDGudjGPIoRGjl+82KO/HLjrQZ+bTYrFr2vOcSrfYUfW6tGiXCARGBh/+Z8bOfR6vH3f+ZX0ON+eC8ooUzSukJAiVK+qZakC+t/ONS8jCQk2oSgwi4tycLUY8cUMb1i4ZKfFZraf0hy488NJBTfZiZqo0wrMeeUeP/JxbgeLM6G2FQCdo40iMy0qgqVLvKkdBV3rbpyqupUDHBlqiLLZDLpfsGPlIOmgfvkfbX8aIE9w02PB18ZVPK70qVyhjstGW+YcgwttKmnWzTpt7ygqy78N132UBMTJTMxWkWEg6HficoQQ21tp04Ct2NMoOZS2/70c+DHmKa90eXcQzYBEdgrx0i8DYa5dACmCItTHYWsGbtX0R6wUxtBfA8M2+9B1rmXur3uxx/cVznbERNNuBntcWjAviR77PSv3VHFEFQiL9l3/5rkEh5C5M/WKLeVO3jGb6Tdr5dmgEJHHdQn9+IOcN2TVkf71ZCQjxD/g6Czk9tMXSDVRE6YrgJfRjYM9Li/+X43U+hcVqPC3JShkC/6T4AX977xi6VwiLpA+S4cUqA5zodLZ8pmQdgqJLV1xZlZtBgg8BU2GgtzZ3dMkv1VeqvyBL5AZSb+tUgjnP6qisZ8AP5hASOMDUlgUk5jqaHWxAYaAw1QJCBm8DeD+/s6EzhIHYhouVRm8e8DcUdHlP00h3foTmHWaJTUBjhrcmQ8D+Jxea3cWLvPrgDu3qRVPBxD72z5ZkfVET2bUziXZIrWlr/mpCbuQDbF11/fbSX4gruRO3FNSUt/24vSRMTMq3LwZ9zpBOUR+Accc/VfY1sWEmWiI23RNmWVPT2cMuCrpL34uzCy+sPxAqwOdT/QDOgbmySo1c1t2BrpO6aAJgJa/KsRXKwdOxib54NH4BcUZCDcC/3+/8Z9SNfWn+U8Q3BbKEAr5wvV1zwi6Cwpz12HIBKuvmzxTHa0rm6rSc18qYzGdLbLN6flVb7Drd8gXXVTRqMrE83wbp31/+V1lBTxVYNHUSp9dwQQ9+isrh/b2HDdk0Sj53tfW4a9b5HBM+pBIOcsvvjL7Ssvd/jQQJ9utDOPvz8kxPgEuOaEWss/bLmtHfYc6Y0Xmzm2NsSzYFWnhvDvYYZgVJH8F4UxhcNcXDkgB/mU4gVUKQhmzY+Q1pQy0BNmnKdmBnCHIxDobIVVy4dA69F/DsfYGuOUajwMD9oQExBD/gB3L66clz4/nrDYrzfZ2UXptkk5o+WiKnZ810aqqEGDZ9JVl0qHcw2SPD7F43e6nObfoi2rEvwiL3Wq/oWVewODio80SBd0AcT+jYjGVpwmBRvPlnziKBeMbd1HyVbr4U0JXxFc5kHn8cbH/UJiwQSdTpAyL5gEeQNsK4xcD4tDKktsUsvOZbuGGQCH1ChJDdJxBo8nf9TR+AnfkwPH2quHWX7KT2Px55dRyjM2L4XN91M29oEjRWkJiA0kTEWbfVTXnOp0ZoFqDzDLfF4XBj44lKYEz24vEnhWpV4W7f/4ilmz/BPbYID+OstTDyJKiuT/hGG42H/CuLGRyx7QsE8lyJ44dVryOp6RdKVraXfxQRHuZTSc/FQfCinRyXa9ubvGV4vU0UzQVenSnEM1dXzQn+5dlMyZNfJMIMSFTxbD2e8xVa5/dxUcDKsTVJyS0UQPAHbsn2LL2/mpSqXm/5PXeG2jy6PXFv9/XsLIF0ts6GKEtl4Il9JOrizlw1mlDKe+joFh89eZeMBDE2z156P/7S0KY36VC21TKJIOHzZI0MVurO3vIkLEST/GONSixMxNx+/vJzCFju0aIBRUpRYJuQAJcFNkD++NkgmBAcqijMG17TZKO++WxrWK153IhOc2rYAc2rW+3AFlIXMrJeGsvYPVRn64WAmHAN9aXVnkTWCuxpqRof7Dp4rLyMxm33rV64oXpLa9scQNaetLKEjCLPF7RP5WodYkQid5ywiWj8z9XmMwyYAWNPBcmaDqGzoUFsLNU51utH96KKFBPc7YCq+JRhkFPiubmNo1iSciMNXvL7hEtv050cL5lObqm4hxT/kBgxENvcO1t7bTX01YjMKy4dYg554FzW96gNgs4oHaH4tkhRHu4egiJc1XSSVP6/AslzfYZMnI6ycfakl/IH8ESPuzmdO4v3GDCQh5qwjJ698OwgCfPdNn9zctp4k9FIfC10eDTF4ygQ4UC3Uz95YMUqzy1gb7N4r9sPIfw95oGntyBbR2Qa1AFESC+lCkPGaZpnhrYpnXRphZeDeCtbEFTnJsoDsyQvQQffurIyvUtnZDstibozD6QN5+Hf1BYSluQPvVReiWNzy2irAEfFIwjr2OBM8DiyeG1YbYJ5TyATzg9meeO9I9/+ed+ySbPY+B/GeD74wF1lJBmAjYPDtUl91aA+pbsrAmWnKakyhUq+cqN/7dPI5nKzmp0M9cxNS3GKEKTPDaW9YWz/G8BEkwBbHhSEQHY+n1KKikGTxLcVmCE/XG79eEtM15u41qP18z51l0ur/n/0Xup5Jcae12Ej491RTGclYi8fb4GkNgBk0HiEK6nnbsiav2CMGawEnJi8CbUqRxgd9jAnPcu0CY7F+oGKEW5VcQGCbGaPWVeD7XrENs4ZMiIAir/CrthKM52Mb5Atl04GfezvKIFb7vXcM8qPh5ZeqoWHU3Svix6wAeV1Ypz0iZX6b2aRMyh2f8dQy8apT053Lo+fd+W6qgeeoUqKQeM213jGvco0JAB4lKV/plbE6dwc/dt/hhw0CmMDzF1aiW3kgWR+SidlCNXuu/DVlhypxQZx6C5MnrTg0qldDUa6AKF92MP1a85PzTPbfJZuxTl91wsV2Jo+WAKdWMdNtl7MON+1aSMkvJgTNhsfmJ/v2Bu72Clegv5SOz/dxqDj5UAkIIK4cM2BuwL/nNRIeSh6Rp/eP6UuVWFmHSEHYQmXjXdhNoLxUtXa3I8sVRc4yJ27TtxAw9b9vxYJ5xTMSMGGCkxAOeDFWIPOq8HL76w9Y8bk8J3WMWiuxSCtVGAK/Ump/nHvZUBBS6yvbxx1uJjqGYE21mWQOBnmaf6cqkBTJo+UmOsNnDpUiPmmi7UpqZdf5vwNjFHnVdpCiSzvZkIzl+tPRtFAXW4e9VfKek/tjRKqtlELICjvs9za0j1a7TZ7+fzuDkkoYqRokn9bp6HvUygrvmFcRyk33uKBOq+DIQzOvOhXrnHx9NuShbJnY3Emveat1OsRLgDzxDanClVnMHTuXW0W0ia+Az+ATQ86s49wmmIGC92NRT92nqGVXcIIC97tpHrAlnuTATKMakItuDGeVQ9knWPz+m8mDS61WowXRFpNuaSovvyt3ag8z4+vzqOZBeplII+N5bVVEAxuJnQz5xB56kfUk97o9epPH5pPwqDQbHQO1f/gH5GzoSU9IuFYsmmy0BZJdf/iX/Laz1BORkOkmVRXVXtSBvzU1o5qzTH7aU2J1Z1VctehhU/LEIscRNmv64E8/Sn72slR5STq0B5lEM+qZGl9nU7m4U283BU2Y8DxWUJ6K12egx5/oCloeEnKjSMVzixSif2MnEkgxrnguB+C2vy0bQJz9rRstIhYqqdTSZjzIPTA7dMW4uaCIUTU2HPm7OxaQddpdUX0+lGPkwrVhNugMQ5Mp4giit1pIMkfcWiMplsxmVJFry5JfJVhTOlWQk5EWCBAFjNuohKoZHpqVh2UAIRgKxF3A6KMK4MDnFhs6lZTE578CSSXuXdmpogCcPohR0EEtv0O184YIsPx5iI7d91s6MgzDpb8kbLjDKEeccwP1eeVwvgKVaZD/cV07JqK0FcXKI5OLYrOblt4ec+fO7zYLVl747ZsXw2KEgS/uCdU3tUSgUtVwzSuyaxoGT/PvrCshpYxmMdehInCT7TRsP5S/flcAtrRlzHUiaFf6X0+6XB8skfG2qlBhWTo2H4xmq0++jJKyXKVu4aPb7CO8oSVHkSGrjyR3H/RPvjzJeLSqmnBd5a9iMOLaDMiIk4x4fkTIW5qvU/Gd1gFJCcbVlOXbi6bA4msoRKFfpYeBleRFkXomK3zXcwK4JJ/2Wg18P/6OTNJmtIK3pHTDmRcnuRc2Vm+XFnmovOXuuXPLZCI/F2Cfyvjiy5819aHiPQlTdJSY+zHeRx7sCkbVezwqW6P22YpDsZeglYUurgZ3Gzehr6wnUN/WL8fA7TbGpDfofmEpreJ1cRsRxzfuYrzfb4p9l6cB1dGpfkFReq4y4rh2mtuDuYzmMlklGJqnpWw+lWoNZbbdFoK46IGTzfr6E4I5xnkulNdZmWgNsWmgPXXE5PgHpmdzII6tBfbUjDrTK1mgDlScCxe4HvB2MeU+KJzZxu5vmszL5irNhL7+ngZuDSd4lhWLmygxPecgGf0lcHZGMpBzHOgkXng4WecYtlnyUnZ4q6IqrcT9ffOaoympzQ3Xm+aYB4V3nnflbx1+7KimJZDAWI29nuFueHU0L7Ze7lrXsAA2QT/PeOa5QV4Z6H0MdXBI+Sw2bWRiCbde30eMQ642JrRTZ4oEuB5q51ACoiCLlQsX7YakULYkRtzo+WpWT5ZuP+BMvpaz3ii48z93yC0zUj3GMLo4gJbTJvVIa/7y6XQ8LPhl1lk00Oh4RAwNcN7iuUeKOLVGt9PWl/JarwycqlWaMmVtgc7g8FJSDMm+Ksog5NiyyCQB4GN7zeK88ho1XXgrLNxWD7R1WddhpolpNfzFl3/l1QFfZPUS/W8OwGtDP/Gj50oHJT3RwdAfICpSVoiJtDCTJEZMMOO4eJakXtgjo6Occ8iY6D5F7kjgI/xoFXM4x8kZMHk0n3vd11XCPV4KkaplebuFMz94TswJYTXOagiG7UJABMjd9hk5hGK+cBSuBKSmDhpNWCPDaS4u7hx7GeIn8l4P/yDcO1YNHlh7jUd/I2Cgf8bE9k40svF+gxvN/zGVJZZFHww1m8t72M9xAF2BkO/OQ8QVVgAWlGKK9QLko0Td8k5B9wC9L9UXsMLR+hHeMZR7sYY7qJkM6O5p5G/6A4pbpsPuy0WItSKYuibft88LKOTludybBC1Vb3neShlJAYv9SOfIX4gDr9dinuYfrTyLf7VJyZ6prHMjccnmRtYieHLApW6lCGWexPJrFHtoq07YMzogdkyzRrCRqexebpBMQxW2qzy1l12XStam2l5wI1/jJQuSM0f/PWpcleO/++jSgAD331HQyKG4KYjuxRdm2zL8TfMVGfm+GKdEgCZm4h0T0DBuGQEJYWETEJAUUH38QuFsXonQkjyoPT4DZqmTCVn1EhTqn1UEzJR7AfNS605mfIolCofAtonyd+kSXhxgxsRgTtLP8neVEFqrfJlNFHE6ucpO5OnT5g5pr1f5p+PC++lJfFPNnb5czE3aOj1JksOsdHg7mp5aDh2LwFO7rTWJ909V61Vuf8J/6y3YK6yc8wpLSh67sSuQYjSCoh0kqOOkmoYg2xUC9uEPKsZCJZVTKTiOvR29KPyVn9nAn+BVclFqumBjXbpTdFOCIXgC3x4pNNL34W7YbEwJtkVGSFg42/5nTP3ezHb52W9C3fAFu/DqtxxrRQFR2sfcGcmS2cPx6Om/qO9OIgeykz1zHbpragvkcoLehe7Gq5E5XmuI19BeC49DOdsqKUzAHQAVU5jlc2hbAGKkwEeRbNswRn92bpvYj7b2VOd4ym2wKDShKJe+kPbtr7J1PkHsArekTxKw1nx6ScPbTRqgWlStqaOiTpjMWNPM536YRrt9fNmuxE8HZ55KWe/AsGA7vamOb3C2PSKA0oU2zgbMmi0FMw8E+3thZlWCdZLQBx3AJghV5ar1Uq6Ndmm8tUdVWzj3hPq9xiwcYCTofubch6ndnumVaZtAhwofInGrP5hb+jWIuVnUCPtoaN3KI4MsfpNuMXwHdUQVi7AJeN1P0p/s9WW7Ldja+kE7ATmsWbtoYKEyHdLd2a4q/+hDjtUFgvWI3WCsIcsAYiumk7FajsN+3f3b39OY1/5h5E0dUIVuU9e5tEILRBLJTuy0+i9hlZhD+VTz4DrG0mQa0GG2mddtSf1pwumAx8NMt2tv9z2l5CzXCpn/7v2WE0neHrquFhbFgfuHsEO0SuOi0RnrrG/JCuNvJWM8/zWbwOTTzVCfYVy6iLg/jzDC/4xWmmZkcDvD7gQrCR/v7r4KEIF/O6Jmt8cnKpaKYDRKU8Bg8g5VTXiv6gOg8iF8WkP/Gf86EbbrbVs3VejHG2dlV6B5dcnYgM6ggI+5DbUf1w4k+bZXOmcr1AN7eJ73YMK3SVAI8nIw8JZoExGnx2rb+OqTXYR+j4tgc1DJ83SWDk9FdhikU/zatdg5zbnnet2v4/0iskdspOBq4eynSy+wPJo+gtk1VuVtN2/kpFD+RdfFACF+R9hYKslbMSe/4m2WCnYED/dYaZ5zNJezeMdpEbuwCYatp27SgytQufdFmvTS/aEhkO5+rzA1CSxlmR2ZDW1vQObGPl/t2niTwypG8jA81h8Y/+T+n7HBtmHPTxABWrFPLw5YZjfBRSLF6G+7CJrkg+Q2k4M46/0kYZ3EP1mUORozv3gKHP/hJ0FOCPsHNvbpNkClk7MQ3XloCAPc0WClbrbj01UhCvLJjbRLbDEmp+6m3pDYueOn3I2SxQfJGLmn3LJoqwDRdxLeLEz/4ByW/Is9DmH4/4J0DjyEM7x0j5DjVrrO//Ezqhe3NGMeVeA7h7DXPFYWz1kqyuDXl1qL0QC3ty6yiolSbMUxv+QvB1j7RReP5Px7+eiIwRYsBy3meHxIONZ7gPG1in4AYrhzBkr83nP6nBJZ0eZ4EiOxh1rXtPCTrOt/gQ3TYsqsGomcg9WBpM3itvZo9XvDBbnkMALs9zWJtH72XyQcRRdadM6XgYL2zE1CAIL18hoqVB7qaztk+jFLPaA3iEiHR6+AdSss/qmVx2Hs8/lveHHy8tSvtP2vMWvruW7BSIJRX6tMJ/CAplWILY/VAhmdLGBheyNMvtg76t+9K9Bkx+KxheTnheoqyq6WSJ+9IRez0QzSGIvRHl7YuTAdEuSqX8yRFg+wteaIzxWFU3M7P1ePHIFbr3q/vZjzkFq/4X0sJIxNG/W8QeTcrraYGBPDYdXDEP7MLs5p9JUe0O0vGWxjXdKpaOevo9mvICk9LR6FnHUauD/DTe8+jrNa7GYEPxWCUubk7YF5if543qEalhbi2IKCT4jyPGMszDpPRoqB92FhCYYDQbyhFViPCq/CkknZqnSe281oQWMG3iD0+XZUxXSLRwEnDg8nbduBPS/6Id4ycKDsF1P3tUcETp0WFis/HSiLX/uSzncirXozVh6dJIbxerZDVNN4e4/yYi4ZjCQ7q8qMbwyqp4IoqmNGjHuDKDCe/AtpDfSKNkT9qX9dZdi8be6fpFDVlLfmM2P6LnytT1VoMwidtL/Y331LJVhQ13+5l2W+VD4FhAEGixE5FpLx61kiqtPIx6T0uata3imMdFGIZRz5ynKFxBHbAc6mIDGedqD6DweOmjxyi5Z/9ahrFKIncAwF5Tb1WgEDlqO4tB6c5WQsc9QtjSmXk8jlqNh0KCHvAHQztLnqnl9KcQJV6wbA7jrXjovKZbGv52YZPRgKyMHOOgR+1zmkmQO7CC51EYTmHuiQQjZpcfStZkwQezheSVOJf2gVbvTYnzEVMbkFht1n+890x9hRy1x/kRjWwYbT0GyLs2V6Kn2SaoeQRmGiECP4p8ciVkjcz0eA1FfVa13dUc1XoVGrL1sHgZoYDevzkWqpTe1nhXL6L5jlSF1t7QWF4fKfM+l9UPvW5oubEos/iTJDZKPG83IsTD1VldrfgUVpg81hxan0U5FUmruD6sJUxuD/ntiarDuuM1sh89CJ9A1xJh78tCubzJH0/Wtg/ikWJwUuLt0wzq7DUD9nFR5IOYYIwlLhp1nRY3n/u+CuESwUhaU9ZfhxCY5u3JrJuexdVK/DnBbRrxLkkhlWl4cfX6HPiofWTVy+i2yLIWzX5gZSYuH+qkepdegt86ZkomZNrJB054QHnHDHG1bXvOu6oYdSR+KQtFlf+gf9XsdcsrUlrtpYWxcTET+SZ7O1LwUyagGY27mUCo07Gq+nmKUMQLfIuvZM3EvyjrxkTnze+NHTDg9/3Z6R2Nn0+EEE9sx4ajEC9wCd0UdWIwb/T/1dweeAazfzYiRWh5TFHCwSrnmaZcs1TuSL9+8TdLr6tp/t/ZtLK0k8lNzrQupbt1bPD2v8E3kotNj6bwydnvqD6J0DJDdyNGTwfdlq4Cnhn55jPwYOlMVmvkQVpUl3mnVPeZTsjsltr62md8tz+J51pzEalAHAlsqnkDXrCvyycmOMzyao5q/I9FpYwSm71VnD6EZM1dgXda0a858H4CcvkHER/nFGJX/BPrXx5YpxD528XwhXqbtAafatswfLB0HqbEwKHzERBEHmgFZuX1C6RHGEVBAWya9yP6/2W2IIe54hOUYmwTnqwPf+pVpfSuK5rfmDigcxKDxwuLw7KYkJkCeLlsWWEO86D8kKgC2ux+I8Dsroqd1oF/Gvs7eCrbaJjQ266QOGwN2nqQHy/IDymPGikdAXXvuib1CmeqCzEtQw946MF9E4MxndbxgGgeHsUFDd5zRAvxmERudg92Da9FA3GMnsT06pzW+kEpxpR5dpalT+pMZIm5rDEaIS/w6hhXaYh8l1zHH7vb9+wr2J4smApehuSNZj8A4ePSFHRY158iOpu91ZSBwFqbUZk0pO0KCtdWGSQ81z7eMS+Akw9Jx9cLCKG+WVSSasJrXawdguqMQDpS3/llJ97tz8T6DLIMq1KCkrfbVIHKx3SeERKZ/LYu8DI6iPNy4v61l0tlj3zYDwIVHgiTrganYiO0IetgLXWTOm7Yaf67deAnBcL+1kQ2aBRcogfEfLurEAOQg+gUiMaHEUcZqqpcNTGBm3iXm7Ub/p/SJFmuibwAAsSzku52DS3NTOjgZXKTXfJrk6L61UkUvoemht5+MJkUui0ugT+nOJ/ZeGmu8GNd0WybuhrflausF66QAJXPgDJvdfkJa0NU8/oHywfqVi+bqVA70lumTnRaByiCz3SteNwENvHIb55jhd69N/WKGF2V+IqgHKQlK26OQmyKKnj7fIxNvLqUbUBb2fwCJErY955hzHKJ/L0yV+BVaq6F0EyWhOIFYDEbTxdw9Yrm+ATuyePpdnA2Il9l/fm/B8TGJh8ligjqSJnA39irO7UsEjf/WDH6iIuE8o7IKx8A=
Variant 1
DifficultyLevel
535
Question
153 is equal to which of the following?
Worked Solution
|
|
153 |
= 15 × 15 × 15 |
|
= 15×5×5×3×3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $15^3$ is equal to which of the following? |
workedSolution |
| | |
| --------------------- | -------------- |
| $15^3$ | \= 15 × 15 × 15 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | $15 \times 5 \times 5 \times 3 \times 3$ |
Answers
Is Correct? | Answer |
x | 152×3×3 |
✓ | 15×5×5×3×3 |
x | 15×15×15×3 |
x | |
U2FsdGVkX18rD8NbyyU4Tu8rd4Oakihr/NOhyaNZ2RV6Oog3RPSvxcdvkvfzDj7Suk6I/EN/AgQv5Owu2qiB2NCR4v2tVHBh45fyrpE3CHa3Po4Tzopq3LUTKIWCIREqenGYhghAIQ+a+rpE6PBZ4MQtBnCBHoEwqWVDo22u006zaxoetd5J6Zy1jVj68wB/O6F8bwgorfRdBDBe5MH1mk9UHxQP7zck7Lzd70mcCO379u8s9gRRxq5rcdiXHzE85SHWKe++J9+Q+480EnZdQI+hKtTHQoBbaF8vuCIDjMy6v4vpKt+3WDviJgFtnpHMvsYR9nPCgOn0PzcQJEGZuOD0d63p24FguyWls16bgZgxrCfRmx5pNSwJ/Cru9UUnhuIFyA35o95ZB091na4CjA+148vovD5iPszrB3kRurDAHixtanX3qdPkKKqJ8uT6/cN3Vnu2l7Jml8PuwOSTHWKlrvTGzIsdEb62yHfB5p4MtjxJPOGh32ISPR8zpP1CvRy8KOpkO6qiZNIwBGekCTsPtbSz9lbYDDkORMgB1JJGwUjBzLeYeafMT7ji8BsChn/SP8hrAJFesSlu2y3O7NU1MGAHapDy7V+dOT7VnSPxibQxoJsMXvJeOn3VZI/Al9Nn+FHNlz1KwKIccq3ji8zml559vQo+vjBXFxP0yC/lNyEqrNZtv33sp9MwzFFMUwAyPGQNj6PCuGriOk8X5eTfn3mTassJgoNRTpNTgRz76QCYm+YsKcnD8Ja7fJkh6lFtoImDabQNVefQ0ZFOZ2tKydZcbwkQAQOQ7hlXYxUHBbMFOtNJpBRPYQXMdAMHZp2w/hJom7V+JzhtxTB+Nn+ewviRxJPIdmBBRr6CQYp7Li2tFgt4H2L/4JMWkrRV8oCeatBAgd6EimC0Jw1M07OQ7lsZi369w/YqASx8pahD2rrXyVdy4PW3LUB3XWpjHZhL781kdZg3ba1G5bVl4AfbhXTxDzQdcUxTSJzhyEfSaccLrKPbVuaWeoWcqigF5JvnPjfTtfaB1tvBT4DCEwQMN4C42wssenvuapGxckK2/AUx/R0Tv4uhWODlci/CHvDMnEYqDNZPZc/mGhbZlBrqfuWjjfawoPe9rzOk2F8/W3kAbaHGDyVVTfwDWmmUCvCVgPGDRBoIu28Tge10mxxHAruB6pfRoQKWt+fkvnff/3nAU7ev6SULrTyDXCwgaaOCpu+SyQtErNqanSWDzklsXL1MlGiBgFOHZHneqQllDTnOM+SF36zyBYBlphcJRbcGEzQwHRsZiaujPQXGgZab/vWEg6nLPhvhcBgBOE4J4ixmaxZ2blUN6wDoldCWtM4za+SP9/3zw721F05LZJGNueoDbAoGvmZkKUZavB4Pk1JNSFt23a0FAMSJORehM2CQfxx/xyO1qSnpnuelGUEAaCN6gqO2DyCMmF5D8tTpA34FImh+AmnFgl0sUMucyg7y7lYgqHCfOMu5WHBDWwWOJ8fmOizcskqQzAa33KAN7IeqEwXrctBgDHClDeuobjaOZUyfwxxBlCGaWOhCkAp71GXx/WLmfAgixwS7elHD8osqph99Nd95qN/3RLzvX8tKAps5HvQLoyfV/aj3s2+ip07Bk2L3MGD4bKrzFOIbyMsnoTXu97ISexu5UgLtcc35hBiFwLwZ3C+XEQLF90yScBj0SmiX64RpJyHLSPbhi+NJ8UJA7Y7WdDx0uVGalJ3525sTXi7m6LrnJm9a2Jk9GM8uk9jAcmLXxAFHeH3AJWg8BKSmSbRW1VIhw8ovC7uyWdssveTBSMkRGomIS/lhws/eG+vrXTtkzclAiiMjbEJK1oUKqz2nvZCnw71mlr8SLndpuAVK9hcwIu0IkPO4MAGx+ns96tjrxUQzT9GBFLleqw+KQYVr6lUObnRlc/bMF/m1bAjBYwYgK4CAYuK1bMf6yNsD7r5SO1/Z0mJLsS1naK5Yu/ZODCYBdXXmofNbp1ZHbkIGARfHT1ndiIB04YF8moXOtXvHmRfI8ZYdC4ZDc451loF8asNSSA5C41pgjBE2kyU8wPCzbEd3XDVWrAtLIci1UHbmuldS/BsmCs0QDy+8PZLFZJ5JewgLSzU4hJtl3CjGas9V4hid17NvglnkUeWzxqRwPTjPhEFje5KdXMYcnmh2ZTAmJDbFWCiEHa8WFjABonN7GLhpnpJ7MKwi355TMKDVaFC/yeLloVqwezIkms+MzxonR6Agw1u8Qj2t+mb/maXUHFm2HQ87cZq5mnUCDOs7C95zTmrTmI6eD3ea+MUp1M+zV3N7VkVtyYL/fvv71do5mU2OVm5uv1AZvyXfDWEpKmlEgH6hWfwRmnWYNIjkpFXBMCJbe4MwnyLtOZH5CMqSmsZBRPUBsaFu8MCLrniugRq3DCHl9cdl1xd02TKMHE5ppS2nht0Kdg1ObzKG42dsyafhoagy8/q9DLSaQZyZWRvyqDBtGcoJzacj+ZWF6wfkWEsl6gwREN247dWONOIHTSnXPD4Z8VpMhRNvuah2ph0sm8QcgmwvMbrV6NHkB3TrSh5DfcpgdO8Tp/d6hIUyVFbWy+aNK6iBaD13Hv2p5rEwJzSXCZ2fDAAjiwH4QKuTXWxCCjZlGZfcxPT7svw1oRf9g/hr/gJ7Suo/UBvLqmGG5ubq9lj59jbjAaOdaJZfp5LKAnDD6t6PTeRzZahw28A6kWgT1fVtFF8pvFgAkPJ6guvduCXq/JoIESBKOHO+B0F0UKMTK9GIACSwJurPbFwVvZnJCjpEydYggNJcUS7m4F1lIvJdIeG+aW72Z0NGHMqO3fxmOrJMUOxmpg4vT9NG2Wdmr7d+2LpoHzhAVbchf8tSdOdrJJiTP7O9MZB0rs7X+X56El69XCIWX+sMqh6fO+G6S1oP0qYfgJxE8FCiFAVaQTFGbcUYGzWYZ1rdQxvEhXp5mrpNMWI6Ts9xnX6QPdjXAfvvy1nzGtUnt22Un4ab06tYcI74O5+bQPrPqlEJAqC///ZcqJdJxsRw7KlvdCkWn/ggOBeEoPQnPZTAzuNmQvsT5EtOEPgo9DfUk6NnW4wJjS/c4BewQlf9UB0s8blaLqq6rydGMyaKIqpVfwrJZ18WGf4+nmbkat2wEb+Wg40XGM9AOAMiLzokYycGix7hRYaaCrFMTR0VUBgWL2pIrMN+9cmpjCxi+B0lZ1arXpudH4IbT5uwwjcT+Xz+5M0h5mkV77MXWokt3RwEmzS3gf1ESWJminJTqmW6zwTq8sW9IumLtA8N0Rrr2mO77J7YVcFoyn33Yy3rsZHiFdFb1DWL9TMdEGcVss49+MZTK/NtbzGU1tk2Jw+82ikZRQHoUEBvCwZg1cMxCl8xzgl93eYBGM/EDP2eFZ7SYchTAuzVpX1f0tb4t/93DZANM/qPNGaQgct/KkH+mEwfC9MkkOGsIkw3dm7pnwNhedkHiKnQo4pa9BJZd5lpMmdnaP89UM/nqEg0z3ikGgfG+lXlCnOzNAg+KrucVx2uPisVcN0xam8rAHTutpM9Ms1/FEEqCdUv+Un4p+uarp1itqENpWR/o3EzClCv5OncUbuAULelyiBV3wkgHNlBwLtR5y4AvNEsFcz0qXzyBh2xaSErkfcz3tHSaMjTNdfAk7RhB/kqirUVp/h76dDeVwkgpeAUmEuiVmAG4yszYLTWKEESj5WhBm+AhLiqLJg4I4+hbYDz53lKjjsDsLSymCcS+NTtTe7IlFblCxyfaCgHUKtLA4zw8/QwWKVaCGxVdgvSbymKY9579DCa4GdUTSKgZPfxqjlNUCfiDkVcgVeawMHgNhMk126rWUvoT6GITL7Lu31kgD6n4fK7s00MWkinPKEKmInQDnuPvZeWNGa7PW16c9hqGkUtLBwSg1O+sRvF91jnrU1UdpAnp554Ks37O8MQ1JhwnjAsGCZNw3W/rfRmeBZ7Xh622QUtXsG0ybzQ1jzoRGTLch7eJZszQH9nPNlZNihOS+H/2LX8prWvA9gBxcS1WVb90aw1uzG71iKyX+AQQ1Uuc+3NarQ49jMnNjHicPMVFub8rtKfev6zSp+6+9BK89d1mU3JsQLPh9tyNqoaxF3dSEQr1eLm87ZOr3hr3EqLXomOPigC0ryF7sSOJqlpBGHFpU7zo4rf9waZaKzy/4yy8ldaAlbKT+FHb68gPVMupqRexIAOeEzWABP+Wx+zrVcw3dHA9WaSdc4wi3fvpFI4JKbuSjnabrvnSkZ24Wd6HrXRqnRjSUpWWUXNhTGk1WCLTWOxeaS8LzNtSZQmEy1EdhAqENnpxoOyUzHg36wSn+2fFV+Nb3DLySgaeD7YxkYOU6ilZWPlZcTzEEE8s+3cz7yuWM40PJjT6PdIZ5bvqLVr5lWYtPYud2SL1qOJknnTWLAFkrN5Qfmz/M8Uy9KE+kIHPyLdqdcTgZTUGJNinptf1yCIBOoOTqZxJX0tHwKOy3QX7/nXgzvPbJvhAOGho9gejZ62n3b3EFyZDutPMb5vExMSrw/35T20deRRuvDaHHBv7qMUlGphQUTZxLa+CYdMXkRHlOWf7/GhE6Fo5FLnaTJJyHLQ92DGDrIJLJXtkLsJ0kziDt6Pchvu1BC+g2Hq7N2XqwgRmhP0PUjoA+47AuP9r7Cpo5APE3rgl8x6j1NBbm7jMOwqmpnFCVIdTwOFoVnWVk/jHu/XO5qTcowcZMzNpUujCmwHn92KwYQ8wsWtrS7ICUPSsqR+SkOwhED/B0CuwtU5OyyI3W1kzVbISSZAe0mSABSgISp/jpvF0VeUFK6YSEXK8Y4HSONX2CbWzzYumhY+OvdRC2ynEHYP9+ShoX4LEyx3d30bSe/tF3nu5CdQdrfu8Bx9p92exGmzEgUZ0dnQwSq45SlRKQVOYMfSOD1zUU6zWvbE5nFmANxzdifNiV4fpuumWRmTb5RLrEJH3H4xZMPkeyw8Nu2VGi3FFDvB1OHq59PCuka237cmXdt1rUfiYJwX9WVFFGf0lQBtywyhWlXudtMIoQ5K1MgqrX1F4k0lZQVnO2miglUj0HsNvpPHQgK3WxHmEk28UsGU3CDU/CWvOGlFdON4VKTIVKUMVx0zzZ9uUyd6pOl77kiOpLnFBgV81szlOh8nJzo0gySvOB0Jww8FAS+oAhwI1oFxgE7tFDQyqOFX3Mf9Bl5KstLOvlvTnPZLNG/7u5yYXV4tVgGvJKRTQvZp69uyXTDlTIcVx+/7EkI9QVe6xnWkk7S0hG8Fzu+Nnp9qwcvtkKbz7EtnnZKLfq4Tkc3kkY9YVQI/IPj6T1+ZaJ1A5P/lK2h64U6EAlUOnpAUQPXAwDWsiU6mAFuFJQqp2qhe2Ai/4hDld4MzUe/N0Q8oj5udIJwWC8Cvq+ACQeD9WNXg40L9fNpByCnh+rG+DBovUYQ7yOaiyOSNPaM2ddd/KW6fKowj7Deqygw6Os1ovpWHsxwpv3DurbLjF1zfEUxQpPHXXSObKNmJa9rEV2RZDBdACmzY2H2jSXApCtUNceXQh29YKegZIizQHo3J5iEBDH6tVzBZEHPEoXN7rqQ7g/TOgaeST8QKWJbKrjw0J181U5Tba2C3hQWIPoy6hElYoJEfOgUCy+Bk9zLOHy/C+wnFCFsFi7nDXIXP6FUuGVke4zgHfM+464Lb4z5NmibeZlvJ5C3cc4svkJV1SFXzjPeeuuPff/CUzobQPe/XJ9Mzo17Z5yyWpvtTwBo9T5tekmckZUTR9IOu/Q4UYmMcooIpKtw/17RXE4Mj3fzlJv6noK3koLhojHOe4QZ0eMIQbJXX7KQUxFgzxZ1swWZddWwlQtuh8CnA50tQQm01ti8BXLONPicgvmewwPqfQabVwF7/DghEhJO6St2phMXmBiFhwGhQCX9PLOqtFdpb80Osb1Z/uWIv6gKBpn5jSMZe1xtTjnJyUMoY6EGVOl2B+ZM4n7GgjlA7dpeqyCROy/bdn6+xvLiQyDktF4/3f+iADFRYkOhfqQTkN0pBt9F4c+uMmq4fucb2VKJIOb35/o9jIgtf6SLO/CTBFRSSbP1Mzsezs6sFo1sc5IfXwwJKQzhLZbLI7J3Ej32DLq9lVMFXZfgNF9Jc4itdbiV8OF/MeSrQWzmTFSPf/rtAyriO7ug5lpPU1M7JeI1kz9t3cdRTH0ZltD1DEzdifk45GKV2iuhpTHrMeXBK8jiPIpfMMy2gnYpqKy6bny7ckXBZ6QYO4XJQ6tVjKcaty3GmjXyEAApw0OMDSHapthQk8hqppbYUEdRiIHnmGyxOAhH1iUA6hom+uAcf9qp4Ua+JsswcvINmpDgdiKjzEaKE/TjUxAOo1tKE+oK74LQY4SpcPIKGn228drc2VvkQT6MC0ylFxMJsqmlgKPAvvrpQ99Fhq+nJ/UsMh7dciupEhkHHUAmNy2YCKTtIJraQrM/7F08JUXbPps9NtSBc4kxJ+cmFPJRV55mnfcT9WYedyJCOvvkSJm9230VxyXsK+iOfsBycDyz5iUVZnmR51coIpB4FK5yALpfGqJxbYQg37wxa/jIB9dJ6iF2Al//mj8ijuMdF6MWxxcbVNhHTQJD6w+Pv8rkdXl5gwzYFAZdfDaUUHLVXc0OCKoQ1RLwxzeApw7AStm9RnlT8Df3jbxWAUIQJzyL7E4KiE+hn7paJ68tecdzGr79vfCzA0wJN8/DidpC5fnHdpCIe7iiiJvQXUI+CG+y5TeOeYB5eZYM5NL95fRmbBuzkGt/C+J8FMIMrCUW4LH3IlGMI7WZbcciOaCfYAlcjCRe7z0zexHk9y2y8LqMaAI2yFazv+592uqqPmhF/0vybkgLfEOzkQbFb6QiReLlA/cbQLnAuVkbKIgMFjaP7ZWi7ko+1HTT+zYbAuEQx0xu+7cJgppDB6E9AJ3mGFhLEqkjcdxBFEJRB43+TLentLgMplZYFB8iDlCktWkE1O0y93XJc1XblKbahOuslI/OoPhkPez3yh7WXHsNPtJOVjGrPmXd3NU1CR4wQpe+aCTQpUB72kVHoFcbjmTUgyTN0j4oLxY1akL/1ILZEzfYBYksIPsfC+tm/n/amvbXwRP7+BIZM98GE+h0/9lTd52xE8HU5vCW0CisjpB90dn1xvwcYVa/41TPaFojPWt0xb6feEEAeUxdeubE5YNx9tl1kDt+SkG6E9aU3ehqJAu68QSQ9LVkiA6RMlRKGpT3/+iALYVO7vcc1Vye0SmKDzNDv+fAzCigAuACb8jPffuZvQcLv1qZsVBFF51SVaLT55ikMBFnWm0v9u4Zsr+f9+ZcDUw/2qo4az6slkU2NQ2TTyEzH2VgIdyXWpDQQVvgByubRxCf7kiVmltDJ9U4pOuhcFTCcZ2Iop6vsvqmB/I6ovNSm1LCBjQwePgBrp++lWaWirkk86U2jUhlnEYQwaa6kWEqv8wdgEkQxybSaJz50s8KARWt6kUw8ik6ZemgFoqxu0aNjaZRqTFBCwlKZ9GwbXJIgO6VlPam7FYOLyy1/u6jpXGzFfHjhmpAEkragWpmPZkmcgb4YMxSaksLVfHM+axqXK+ZgxSjNtTC22GPq8/PamWx8soiclPToMYInwbisIRzJmbjfLQodPXr1HEB6bC+7as5N3PMwZHi5crIxwrmS2xh0iScGck9OFlv2O1V4tQuOotIPZKysIkM3YBbshkO6ot9+WA/1NTL7LHldnZAiqSxlttR6/Ph1cnQbkTIRbYwH9OH1vV0aGDE5FZBjk0KOp5KcX4R/wnhIicoBd9QvdLnT0FpuEscctjSQEt/Psyzb5R/Zk9QDDDaLMYcY3xbN3FGd9i0sk81VSjlpm5HkMupKEH1ls6OPUMbcum+iId4RN994FrCxQXuO7cTEBosXEounQyFbAbe/GA/Lb11CntKGoW7AANIQHVFpCsB/FlTYoMsHSuPaAfmzOmm/hAWeMAx05shA7W8fc86DkEqKzyGEWyLxW50QWDoQfOZUurmz/wCEm8aMLY1ipLeRRhZHGPt+/wR+BiVNkqTKKarQeyXqP1Y0F3CcHj0IxfdZuGHHptGSuoae5aA8d/nCHLebEZCgvMFt64xYBmpV89LX12zqge+Wek6OFDr/8gk/5J0gF0RlDD+JiQuKWW7CraAxFNbRSzCMUdZGEcYaIgo2kQC077R8Pkzg/fCiSAqiqAJaxsQzFrzzfOVxZvAsQNAP5z77AKYfBE3hdRgwnVwLri5qqCII1+KKXwZInEWigVJ6DzqxOOo/djiKpWNvIvUaUEiSYyI2Msy/KW7rEqwSZf2arq8/0Y+ZJ5dJginkSXXEVyqw1XD+bPBlsCeXpLCh9S+H2U+ExMeEyNBqGvYFEt7iZkkX+7HLEbi+7rtM68bwAPiMD0Xx6T+tF5E4DiASVMOESyxMw18Q0hKzHW1IkAx2t2uzT+nCQFpmWBl/GVj0FLQUSn72Vm+bKv0tGL/I9qc9ArEZNeTqtBz+Rkl+OX5GtV07Qy96NpR2DCfuyClUh0/sMevT69x0JVntgE1afEvzqFvdk3OnpsVDDFeP41r4wnVc+eVqKJwT7DdKF/z5t4H562R5Z53EO0wi89TvS8/wI7VO0070yT+F9TiuSPhtUjvW8FZ8SKuI4bAYe3Cm6OTHKczUwlH1Jxw/AXJP947JXtjWpG+2wcnBBn/fYgM1d2+qgdhvZ2FCrHQwzCtIajDOG94sjpkKSgwM+8NskyTslGSSdR3IdUBOxjKOg4/9iJ2bm9GZegNb4C0M6JqLg1tnHlypZmYzDSoYCecW9BRKVgwOYfttosYB3nilwIQlnnqvd/ZluIUMnT6lN8N7Mk5pYvX0defxCwiVagtD6g3vWSLNPmsckp6woJc+hHcIB05oR9OvFpHcYBiqHCiqmtmREIqs7Xc1oIySO289bn57arh3zCN2na2ku7QwWgNJ1LBmzYFr8/yyVdmug0nc6LEBd7e89IAgLIeqEE08Ovim+Uc7JUJEtrdjlgqZAy0AkQW3fX2gVQ0HGPKbS4RJlpoqOr9zLbbwb7zkY0/0g4vWvZSChLVv9i9B+o5JHmFVuullthapk0KF2ugyDR/bbKLgb3hELmCzMnyvRVA5lW6xKtJ6pePoMp80xlUmtpz/X0RRNUryr7qqfDXYi37F6BksCpzk45AL+LhEoCPxvOsprvnea2R5y2LvvdvESRQ+UM+YN8RZXzXyCq+9VJWv7FQ8z0H839srhNFBfbhMGjXxb6bGtxkUzEzGomSwmZZAO+j1oSO4Od4qC5ez1pKwqvnS9IIIn999XrpFriuCL7oRLEguGsGKjdaNHlFY1jpU3IkvEJ73KeLpEsumnQ3nBjl2ctIBa/zZwCn2fU5UYYKpbtaAjiY0Z8G2d3z2DF/uj9QEpfs82imhgD5hSr8VL9Pe/TFqQdPxXxlVLN+cmk+DV7zkOubjJMZIaNh/4XUCjc7VMZ4a4+GWoEiggLK5a4hR8ekJ023J6tV58VtyKTUXQX7jOQSm1SdXhbYqktq3d112Zpa1v6fbvkfpzy7GvFYas7TAb03MiC7xfFuBmYKVC2VCX+i/Xy5yNXee2JS/Pj2ml24y4Dpr89efbn5Ct00SAqIU8xucrZJav7xO7m8bkI+5Hq2BV1Gk/BFXkDW1/xj6uDEYj+IkJmaqjBp2uBc6LKaf59QyCILiVpmdasW5SXjfwdfp91YaqJ920SHxsia1Csq/x1o1aYG7F7bj5S7tHTJeXEIrG/XWlPVna4mCQkWP3DAvK78Avo1zv4VVWYaZwK8ukAFozdRBqR3K3v3xKy7iA8xlgQupmH8EpnEp5+jHRk5ji9SIBQV96H1Fw0F8DPA/LyL3IcqsHhoz8hncx+sxHaGz9xWHLQkVGjvdWTIlBwghxROq9XyW7t8Q0wM77RuCUZ61CFW6ymkgijCereissIJEkbNpv5BBK8hAug8z0bi5zqB8vRMQSWRbxmMnIVkfGfEqMn23a6DCuwr/yabltVfL/m6UR5WVjxzJkKQWKyHCneIw7cWWR47K1J9e+x0LaPXHBiBk7VbDX82w5ZvpXeldt6I+pz3Tttec0q1rgkjeYhVrqWHomsCb+g5gnyqzXYYVmBDUklDeiC7t2Pcau4JMw6CkF0a95Q9zvnzQRT3EJExf+Enw94zYCAsZ4CWAxfuUwhk12WIjTKpibPMZxE8nDiMWV4wW7FxGR2WIiouYXXd9UY9neZLzX7XVQzjj/T5c12Q1KvO/ggf9OmmM3eYLwRB4t68vbaHG+FK9m4iBuHMYxsV8kC7cEEhFkuX4VFLRFbRXOY6SkLhEon/5jhtgwaLx78MXqSRCox1h8QATfSmFf4/VueJVEkNAPLNwTLXa1KQITPPSTU0uI0owSrQNuhcGw4z6e72x2TUOP4VtKv9jJdPCD0JqW+b/+k6R6XyxGLQCXUUdrxunQGVgVi3dPm55/RV6V2oANigaIdwg+zitfMkDuhh4tQrrBgWt4E1Yxth4pa7eQi/JktMMUK/P85LuYWWCXfoH4jA58rfXS5KdHrJpovReWIaH481E2WzQeRCwzCI3YZPPg73pVi8wprbJndaniXypYEjGdgnXTMRIm5b8+RsoG4MobCUTkDp/0xC6Zm07Dasj6u59rHQYur2TtGW+DZYy4lN/5xab47j0X5SUA7P97oMYKdCdgXTX4BTFMqf4wDz4qxLnZaf5N4FDJLPpyRprPwMP6t2gps/CfdrERqoH+HRSRGsYsUUuWQ1kji46MVlyKk03JlNTWv2aW65mzE+lczdsgLuFj4jaaaB36T9FZ+g+0XFZwk733gcFxrXd8o4NBWARk2Bwm5jIFiIXeh8jpYmpjNBLp+9DalPgG2jrtqiW9eldSdCXaa1KHhHO9z9YXIxu5aJZxV0e9FeiT3OroAzobRH2sY6TJl0P76VGQa+0Pc0n5GPxiUcDNRoyXfISSEVKUXjTaSzNmxsZf+ni7mawWVoStQPT3dgpeH0L+csA64LS8OU1c3UOksiyiMVyZyFzWV/G9uJJfZ+EY5Vbpqy8J1164FS4nS/Y0xRLg25pZwUZqeGFDb8PjRz3ltzW3+7yfTq6K+GQyJrVShnO2+R4M+f3X1958+5PXA0ZoEjKidPHx1mReA1tf6Lha+N/+s844q4hYVWnze2uZiOs2cgy6sqd2U/qiQTigDHKM+44P3UznCdNuZvHXncDj6cozK0I2tH5QVHJGlpg484YAvEZ509g1eM4DfWvsN/CXb7wh+kykyASnKrQJRaYY9344BJNizRfF0ZrHGAHK1kGzu/ETKTbutxk/kDf1UjbegpJZXh2km/yf974u+rYJ7iSEKAuv04jic6LS4+gnhZoSEEDw8K+gbov4aAS/OrkPS5nzG1zSk7nC8E7EFxu7dELiXcasz/B/ZAxYDE8QZkN1GkM5mgXQp40nfIYwlup/EkX6KhK5iuA0zIDn/jFPvSfkI79Q9v40zgenn1744mrQpE7yR+lznFUzXiPF/YJK94Q+VSTPwxN+PXD8Du903tRFbaT5p0BISHEsUmFLuIBByO7/h+1wMz+tQdmezpB8Z0UZ8w/kQp/MI9kigHrHh33CQpjthl8x4Y7CJXfNdYyo3pjmjbmntxdTBlCF3zXWslE+AURTM345I4QXnEHsN/DKnNkYqKiqzOCH2a/wV+CfyENsvvmR+Jw9HN7Q1gNxlSyBFeXYMNJMV82kIcYER811JLDWW0Qj57d1Yt8aSjnK7cVQBMRRjTGDmVc3a6aHbtUUlA3c+cIJUZUz/xO4ot0xwovpU4lpUDpfsKiKZoAaphwPn0jZNM17An0kgtDP+ZuehoBQ/qH7Srq9eHiboxghknHjv+m7zgAEHBAmS7s3Y25UGjSlGD3niRpWjjyCfojWizH2GzuYhq4kTnJF7hin01G5kephaNr9w6v/pG4ch7oDzSKWMv0akZxVU003wQcJceqvfwOzx4qQg/YMic/e/lYCBXgZoELnpRm8YbkCzH5HW3fSh/xFf0fsugud7QfJh/BtM8K6k/gi7scPciSQepFWUrKITZHBgTmPK9tlPV7H5y3lK2OFsfJu3SPV78VikPUso7uv6nE5dvxRmq/4Ik2NODfUEW2lo8m1om7azc/lavO8SCRWYwT/sgwhDCwUDulUSiJ6YwB+vNQRUnM67hbjSth4MzSz7Md2rNvz+YNIt3uTBnRRqwuDIrv4OZ+uzgrowv0voI6Nq6Z9JeJiEyF3IpTDBzVAFub51zy/V6bd+EPK97EN944M2E+LXbytOXHcP6t5pGQW4kYWAnfw/luPMTRfeurtPLaDBMNNGVfA4IpqkacfE7ozX3wa07reSqTMo7OB3edJnLQ8xniTts8CiYXYcmtKjbc28WOk8moui5evnARG7gZAY/5vUB5k/fzEpJOOdKw3Vb2I5VENXNhV39ocQAvpGtZg8wKWI+HXUMmWv7CT3qWULxO1hdv5qwgG1A/TwrjJvC9eikQUJbI1XhUoIStTEP9OFj0V0vnXuYSycMA1Ac0Fw2YQvyEl7+WpNVMsl8XHa5zEvnB1TS1aSXikmXUB9dBArXv8DUsatflJmCi2s6HUO82iwS+i/bYcJb0eAwYxtwn01e4YXCUEiRqb8ywn6epL6UkpVxwh0MyvXS1QPM9bXMT9mpRexIiehhfScZrSODlfYDBFOFmfr1rP+i7iyekVOC+lliUSt4rknYTYHw8rKx3q6Vz1TPS5nbcNcsk0ISHFrXa2OHDMYApS6xbIp2aC8kx8UvjidHtMPNRuqGu1rYPIHP8Jav0PetlvtqCw2MnJpWziR4jbp29o6xQncSScI1pmGHiDgZl4E+WRB8zA7R6Orxb6ABG1jfgb76ng/7SK+FRhSqNOScwaeOGBSYMafaOOa4zd7jbK4Pou/oY0POfOCtNBeM/9nrixsYR7LA2a/yED4nh+PMvPHOEvxAgXpwQCBPOh8BlVqj7eEZnKKlz2DG8XmTK8c0AUkJ21G/mmmMqdUL3oPZQ8qJv2IYlQ410qQDWZ7Oe8aa76iSeioubACbcAU7cNccZ+5840seCQ+/5G3uoFWoI7f0DPFjwQKS7Vozfs2qQx4pIjbJQs16pbn4iN7qrsQRiClIP58hbJSwsuCt4tWmr6VAVoJLbP0coCuq9x5Fl6rgtfYnp7NbHnyR7zc26OZbnefxndiI1/SAEQLHuzFJzX4HFnP+9GGtcWnpsHlTmL7wpf0xRGuM5XZgLPomg+Qr8opmj6V5VLmqB79FYN71xFYTIZZ3flug+rAImEOJRDQobJmTudR7+3V2/1m0kSnSXTdGRkkLLebibtNeAtpM9xBv0PuxEfee2ZKAZxz8SZ52h7Zj4uOT+AQAjRwoHJQIq6gskDUvTvD7/vLyjX4irbaklZCdyyfTyFCJgXD4u94psHJnsauWfrLPrOZ6j45agdjgpdfdc6qGsey/eevdnqt4MR4UZoVFUW6IUDxf+Ui3vKeWBPOSAPElkcu3t/kORJL20E//WEstC7BRjQuea9YF8EdWAWAOnBCHmDmg5HhoGwzibRVJrhlk+1jGWIfhoNBNfHQfKGFa/fgW/tIhYeJoQfMnf1NiZQdSj5Qj2OmzEl5yWCBoHigR51vG87bQvKM52bxx4dakCV3c5OUMXGzdMLku+GZtK1u2KesNUynvmg8BKq2LD4K5lB12ocY/ISlfih/iyD7TijOcXbxhvpQUaTgosR+IbfswJmOMJEM6Z56csKqUgFTrBsXYS2hevuyx+TiBaBE95utq7SnvBO8qxiilnfhlj2FTX61lOqzl03s0chJ+bWnXOpTjhrH0LsvBbQ/0fXUS2bbzzy63b7pHJ7nl+RfA5TZ4AivlPhYH09jV5U8rG+2nlsqUEJ3QF6femzE2eYYVVkQDhx+NfFK2V7KJ85upGGy4oSGFVOMw0CGhfJnjJIkaq6jsL7b4//9SnDEIZgxkR2i89QKo7IxZAigcRRF5UGAm7gT2eGGCZsIpRKi9m7Ia7rebfPyQ6v3AgQzibJh1/ZFMT5XaJ4BepCnClt2lAD4fs/y1fT0e5XGMFRPTIX9+ZyuXjje2Zri5zUhmREs4e9Qoi4b8oUTkrolMQX/wRJ5KMYqLaV+Aqw8z5MG2unOBjUJl66j+KHqHVKmj/jTSe+96dX+0L42dFz/oULh1kq+N8VQV7rTDpvc258JRcvW31KdMvOoWFX357A8iwt2pJu2WdPAVeVtYpKV+vjDLX3MfpEP7uMuBqHxJOKQKf7k6MwFIwLnVZdok9pr0In9iwpexkVn5TIvVyM+11i0CBnySKmwaWuqzu6Jpy5YzPhXvbE9o4gb41HlCPRdliGcQd81cDcjL4n/oQfOLBjahRYBh2hBc05zrZ5u9hgpltgVj9wdJlYze/r+TO+cZZ0d2RwJYP7REVwaWf9Qv8ZcQGKvzClh1p7dXTXCAcZMlURg22i8ggnY1N89675Ns7+qbc9khl8ySjStqXtoNcn+pZItxicYnFAR4yq6h7Cgk2yWqz9PFvviXlM6NOJazGgaWj8OM2x/biJfYuOQMKafF6nqODLLnDxpE+P2wkdth9w3wec/g64KSQTXnFa3iCx8cVbs7P2PWWsIX+X7GPun0cmbaCYMwxX4O9ljOCCCOlcvwwnECTL3WR+gVdNhqJB8jZnVVnhcY0L1FjKpT0l8wWmGP28NU3AxWHgpoMa0R23JwmK/v3bqNpTTcsm8HT5txqswNx/ubXjuEWBUAKyBTtYyzViFJnmRgcbjwRYBw+qiK75zzR2gUgUbT5WyEvTNY3VFeC11qpnDQ9vApozR1FzCQRqBOXWKII47E0q8u0fyNegwI01uguAJu9Mk2H45oKTmbb4xSJkwByoi4e+VlOc66sqo75N96rbOlsImo3jJUt5kygg4ZclAs/DnpmPcPUa4hkBx01BQVUN2jZJypPksZFr49IvyzxiF/a9I8OJS7EDVFqveP9zEoMafN790KX0Wqzp4opm2W5Qa/JHrZGim+o+Sa27Pptwqs8tWtHpuQKEKTuEQwfJTREY9gZBPIR5OJsQFrGZwRua/ehTLR0rreeicIqp5vASHGkllreETsu8kxwtEtL60R5cqD/Fq1cuSYMWmCLigEUdAg4OSFC5ESSj5bktj/wrCMdVrSm9gDHDuMVLxvsk1rhuttCwKXHS3m0/jpLAezj+/lAigDAXLh6NDBWSmPf0V42w2JsTUb7ZyKdaaFR5kp44iGA5N7J4Bb7hrqwLOKDZCCOmAUYgYv+BB4RgkgnVNwWJBWn761BqECj1dOrdREve38R/zZINqnjXCCmU8731tgSSiuXCooJpTBuSjlHeZwd9LlFBMvh9W2cekpPmWv53UgqOzqQKBiD8T4tjffpSrKo7+10OCZbC+c2lUsmUuP0s+hpP4YvPoHeGc9QOoFaXP/4beBrbqwjRcplq7JCO91ryhzMBYRlNUaj+pYtcd8pnBuHX1UqW5nWBivMigxsM5r2suE+CorEc7zZKV/wylhEqT8ZOI02etuWpYtpJyAFxwFo4SzfGBXj340dbK+Z0oB7H0muKsLrg9TNaAtuJbYPdAB+bZO6sQC5LONOfpg0m6QslFqWZHKzqLyG6IfgOlWMfn+sEgI0M3avudA28+xFAIHUCPq0MewvhkGr9h+j0qNn5qWskdHmrTdI82CVkomxZ2Ramygn6hRudyvdzsRFYLGjm9i1O55FLfwqQirqIJ7AH43tyx9yFkanzM9jXiUpKpEzKj5pbJ2EraS23NmIKsIreem+2TF7SxRR2KjL6stFhhVLEULji5g7iOYF/GgtY04V0EXATInNK0u0Uwd67h5qhiOB0RGAl87nYsIuIRI5VxHnZGC5lJEBusxPjwSsQScYWAPBmxcON2Za7cK1Inq0lHFmAWbEfqsX+qPXA1Kl6n47IEgT7HS5Dhun7exN6vixs4m2rdUBCeYruYQ6qRxj78tBhop+BZdU8/HVrUAvnyLWdtxgeCDvxrRtnQw48gU1JJ753hDk/r2367nqxqWbChbwyJBLwzqQ56zDdext5TGwhx/OHuQam9XUh7KJ2oVJQOFssnI+YmRsiOmrUhUp+kI+jUFEhm2HXDA4YvC2fQixlb6ndidFAjRXzKCzaeFRN/b2OTl0DtEEo+VkL6u2o1b4Bg4V6AyTwGr9mdvWbq1V95GkzaTdNl9q0jPqVFGviBIPLmf0lNK/JTmJ4gIEjVFx+U8BiGM6qypLAP4U7aHTpQqNNlt0F1M9iA4Y6g3tTKtZoNRU4k2CGJb5SZDkBgFpZ5oRmGr7aCgqOQdnDSBy7bIBnmm0nRLROIQGVPvCgW1EZEmgaLtLbFyy6KoyagcgAUxhKk7D/rd9QpmWCFHVQCwiKP+RIjtSsf4g95ti4aMK29fZ7ylYVAk2HnJeGIcvfzyPO1g2R/iI2PFtVuY+Uh+RKMxqp6g+O6Zl3AmkRrdyrXrWZ2OhISzzq4Dp6420AapAV6S9qHFUUexb0r5FtowlY2zXE8rqvazVCl/6Dmj2aBEi6Tmge9ouMKi7atTbIqYhygjvyQqwoLNuc2Fj7u6Mu5HNX46S4LNsZcpYLed77VtN8MiW02jshCf+yS3td0Qg0eq2YW4dildykkkkfTXR2A0z9MuNnRlwKpjc0dj/3d0W2AnfNNd+A9bFBzxlXx8Tw+tau4J0Gks7hp+NEj/EikthaF96v8+kIR1/IugQf02GlFNh14prCdOf2G4UpcTd82q7DeVsO9loTo29BMcT/fEf81oqn581mMoIJGjSeAyvIX3OF1ID4vmBvO5x/SuOc1/aS4gk8dPwTW3M6PFKmGyf/YaCI+VZMXiZZTNFr/yFzmBeitTbvrsxlGi0vuroMTTIXgef68i05cHLv2AIF3FFTNwNPrkb4Exc/dgli6i0qiv+rn7hOhpa8/IMtMCVmiJm6XBvvS/2qIrNqtDpGF1gGTpTGYaI9WvA8WpFEZDxXgvsMqSS3GySzWos3+qnd1QhdvwtlA==
Variant 2
DifficultyLevel
534
Question
214 is equal to which of the following?
Worked Solution
|
|
214 |
= 21 × 21 × 21 × 21 |
|
= 21×21×7×3×3×7 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $21^4$ is equal to which of the following? |
workedSolution |
| | |
| --------------------- | -------------- |
| $21^4$ | \= 21 × 21 × 21 × 21|
| | \= {{{correctAnswer}}} |
|
correctAnswer | $21 \times 21 \times 7 \times 3\times 3\times 7$ |
Answers
Is Correct? | Answer |
x | 21×21×21×21×4 |
x | 21×21×7×3×3 |
x | 212×7×3 |
✓ | 21×21×7×3×3×7 |
U2FsdGVkX18Ktv3avBaJ4zrKYJDKCCizRAROqGK+uX8ja0NGj47401iYZiu6cal8k1bCp9rrQNUAz0Xr7wo0MUWaXJLGOsXH9CHe2NlxqNVJrf4gr4vGt8s3hVeepEbGKmBSZwKsCzZWa1trKe/zgUBK4y6d9O/k+hZnX4878LvD6C0LM9ogRgttUfajCsjqLNYK1ObkOXfMOdjhqHYaGsdXcNP1w52BanL1NkcUmZ69Py+4PtgG/I6vUOqIPVZlMEY372lYuit+s8n52LVMydy/y8i3lAFj0Qpvt0+KhYrUf+6cBrioy7f57QzwfmEzZAkp/QI1WKjWsfMpWQyIbLlggwoQ5rvjFK+3/jGF/+F4RptXUMP6eSiEbMh41IJbvTNpre3WL5vhuoaa2tKI90lX0w2tLC6K1RpYWUqXj+d6v0UyCT98GFT0pefXkVbEnptAhOvZjadLscSC9ZVhfu84hbg4RooGftVPSkAMNUUquYDHdTzz+ikJDIda+iulGSfozDXZdjRmEIXt88OrUn8rmm3PMUn6nRPnMY3eTjmyLSaT3rZcEuCb3mcqUMyjGJYyjbpbVo9WXUhB9hNcdz7kGvXZwnXQb29oeneipIf7mNfP136Ui9KSnaPH+Che6kFvT3AmMPDSzUU/Ino+UZvAIw20aKZJqrtZ4kA2M11uj+PS82QH7XdOo+deIo/HX3IgVZnTJG15Zie//VndpoTWzlMc91n9cJjlFLmp9JQFlknzDdsoIDWJlgQxy9mStepi45NwoIXDoVhtDVPqXzF6gooryFf3z7gxPLd2uvnzfBhBiLPTluCFAzhOivtFefChgDVGEtAx60LOD87akR7FIWaQtEQ6brV3p0h+FXSPGhKJWdNgIyfXb3dUW0ERvjkuZTN6XOF81jkar+ve6HAym23d0Qc7V3ykyeh3BH78f/mDAlviaz3uJTV3RvHL+7AMlXOA287W/THwR+r13pkt67EjtR+cQ4XX18riimJtc4cgn2KZiQ4UMaHTFcso3KJsIhVDDFnLznj0ELasinc55ucQJgFmIibskrm5blcbD496llG7iJGTND4uFpM2TT2rublxSgeZ+4HE1kIdZEIithBXnYbrgD0IrDDxIjjygTAhfwLrvYGQYGjBcSV+s419teCA3npz4EUQUmOU1VfbXE/RR4EJGLeKL++f2Y1Fb5lK5XJRZNFybncprDbjrl3UAPv8f3LPdsyZ70L9HyynIASoXgmUtFyc3PnRj9EZXSpDFOTW9xQuxnIQP7c8m+7T//tWrV23De5FR2WbY2ZVoPL30/LaiiHAs8wLPMZX2qo0JxDxYs3MCzDblh1FeroMuYQPWIGtL1MPG6OGMKoCKWkMVKT3RcEf7Pk5iLVJaNzsCkmcaGCfs7eljAuuMBNdk+2T948kRItrsWOFZYaG9OPQMoOE/rrcwmrXMZ7iQ30z0n95OyZd404Ycf03Y1ZzBDusIQDPwqqpN4sfgvww2bKr4sllhx8PpreyL6SR5A2+Ldnr5EPqcUVzOBGKc6fGh+RruHIkkQEDZ9nQvYgQypvuhHM4vcOmIHASo5Em6pjGwgREKUz1S9mBtyc83CjsoxhESgcop+ifhHU1tAEURudpnK76F7Ix81M+HcS/jBA6YLZo7MHPxkEWrO25rEdhybcUgsGcOSQFYzVGJhXXoyRr/3GAnrjcN+OcuqRu38BRFxowmdgtOyggz2JHKzw6ARsOiRsirZfnSyq8qcJwwb4pwox36CfOhiB++iXydbdFGH3ENnGY1uijY+Vyk4ZebodGKxx7bWZOpa7Kx2UdqNMqjZwRTYEQkORdt+E6jMwCZtb0TTV0In7OVQpJG46O1qvmwU4lFXKDqlXCEp4KVsDWPuDDUSXEDHSwaSgIkwTHC+T3kYr93ZLDx2LaLv7MEJ4eQ3qw9jnT0yTIJZ3fFUanOKutEAOBXR5cOvIykv4QK/FIN/ppgdYG9j+gOx838ZV8VTq6lyC5y00krY8HAAyddZWbhP/vsrlqqM5VTKV1MJCZE/Y//hIIm0JmRDlTHVGvteZzB50F3stOpnBT70u96V8qnIp4Ag3UEGovV7rzOzB5sz9M+PzEINoG/jiCCLXYCLvkHngPb7/dE+7MW8YfdFVjeB5BvdY0HSJQ87V5RARO0EOQuTEUx0AzcDYsdGrpyRxMXUt2o6ZhKo3jXcM2LDgH89iAjCB5aQBViLV+vsk8p4yjlXUNQBtzUs18Irfq9wehw61fIeqgpAsS8pJBQIAlF61ttOJ1CYKj3GWJco0+DPj8AloOBwqEgtO2IAeeby1h6bOl/7kodhZdgc7rYeEwMFVHp2RRoXm4x989350dcoUDT82NWVZu8AJxQTMxwQp/ZPHbHrciR7AYfpGbmDwh3d+tp9btH9PhpFuHV/Er8knM6xaGNXYloVYBSnP3QAadDLI5NlIPwZl/+YLbWNn12EF39Ja53J/Kk+j/BR3eekM4Nx8m1Ckpt+c7GJd3MLEKvUYONXvvPitjIAno4FhmltOuMfebrbEjQk68Q1u4nkMS+yQ4TE5b5YqyulYmdkn4o3ZLmSgSE4aQD1FEt9uBVYasAXlRZhVThs2AsXfyk1M46Ehj60R/7efETt60ebEWi5F9Lrqc43JLbkduELc07H9fn1ev/IonNSj7rQuWnfe/6GemFvuUfOLTgAWH2YHuFwGxKa9s7Wdl2OHgZTpkitJOB1z5FbiMCE8RDUruGnOkRsQd7Eaa0OLer1RbNhEqk+lL2/hLC5/rcgYdWpibIzsnRTr8+4fJXo/IGJwrO+J4YOnlOJZvPON1L0wxLBMFsbL7uE9hUdt0n6ZJdDDtR0dt+8Jk16WPcusblXr7fW3dDn7sxxy2PSZMw3MCuBhcrue1TlgSY4GFSHTvbZDC0Mve/MlszM2ZY6djrmDZI896F3Mv4Qi+p2B/F9Gtspv5Qxtrbc5G963RzPkWemqONYO6v0Kprs8bYGn3n49ZPKKiOnjgTobjPCBqXiCD+JAMK8Vk3+IynuD1dikRdDhsC08842v4EHco3dgJDXgooXhlUNhPUV/xIz5378y38FJGf36M0veLzXypQYIh0X7IcqAqfZbs0blLXt7h/dp8iSkLJ33ClNtPM+HJsTmTEMI49CdYhl6VnR9SdtfCSepfHL9MGxEJeUwirSgTuUta9gr6xrhUTsMwZmliACmnz+T8KWDwfin6tJfMEpJ3S92aYIh4O9/6D0HIa/yk6YOWVMYP4BSKcMEoojSia1zXYnS3B4qDII9dgkwyY9qIvEPCePnt5mfeZbouU5xDwsvP585ot6cuDBWglT1YmzmbgsK8OVoSHEq9OfxBCWwAX9PKF4rlQo9ev+h3nnFvWYXHiX4WQCvI0SJ8Rm8/M77VFjDnakDdY89+1Svob7ER0z7dH4koHfimWo3Uj3tps1aw+lPMwkHEMjHLg2RqHiU8zAaOTTK9k+AwtKd/HyrWdj2lTvnb5h7cbObuNqFcJ1DXsFKr/E/MTWCt8QxBbyJCwUkyEshl78bla3FxqHDfv9aosN2RFg+xbhPddErnuMIGEt4MmMBmwb/FJ1HQSWOrqRYLFDIIVspW+5GmxCQHbpGnQvlr1t5N2YN6djKK5AxraPAZdoADvF/6aWxMP9bOImz+7M8zEFg4KxtRJmhMpDIB+bzr1SyAI9KMB+zwIqjYrQ566ZP+FZQiyxBdVvKuRs2CUYimQJuaKRRGzoPjCWqFzH7wZIZY6ygNm5ZVyDUqCDKP1xn3YKfBWcjDhzoMalHDEbyn/pDUpRpZ/UovZOmU/4EjyLRc85/4mNlq/3hS4mHUm8a9z/m6NuJwa4lWBZF4dXh+Glr5OC49sban2d4VGEj552QY0uOQnbNxGoNND2VNzksfC3rlHbsg5K7QBgccyk9xM76UQKH2HN0rk0GWwJcyW5aLjXa+Mq2rJE8URzc7/uM/0sc75pMioflEMeHeo4E/FaE5ZEL5autFwhMbbdBFYhDLgIayPfvB3P/Hax0bkKKr53zRPqEVyajK7TlfM2jH6Q9sUi0Ph7Akzdai0tqHFoZDWIZZrLBmmUTgIbgddopkVeD8AWvOGBz4a0ifCjmel1Th1GO6019DU2U37v4xpk8szfhDXJ6ba3vXVAHcWQdqp8NsCyTrwc3ki7UUwsIw7t+BwEX/1MrMUNuOsGZls93adHBe6981UjEQ4aZ6gkVpJVu258Gf/2tMryxd/b0x875TR5K3Qs5wxs7PG78nDJNQWgJtrO7Nh31sVwLn3sTDOHs++4xb0a+4P3IXGU0XGA14mGCDhCN3N6xZf15J81qKKs9C0IzXyGwp4q8pwQqvPR+1DVoeRM9rl5kUHkn63Yk0lCv5kz2SIlFIG+ryE+2Yu5S2G76NIds1kVae9ikDqRdWyyz/ozNOfgAwKWMecNptz+EDWv3P6mvy29O04Pt+oetchxbJH+Fl2gf2tBZtzYPzBbpmw6Na8aZL+eRnwfHzzU9K+Sqs8HFmykLYK+04pcZ5kmXR8OHeMKA3IILlqjh49XIqX+7A1rfs2rlIMCryqrGWHXdMNJehoJZDsPjYFHP6palXeOGEljfAGkFa74625e6uH+WtgWhrXfvPIDmfbGGc/Bd43mNWn1y35zVVNuipUh8NuhUi0rQfIMptjOzRXFNuJW97dVxtdTaDVnMVlhOxjWqqBtdR9MetKM0pbXa/70fkg/fYPSE7XaSu94Qpg79j8yoCp9WTW5G1yqaV8mOlZt5eEdsmiMGUk3mddVTn+7Z+dyB++o9Kqp8GZiueMvN8860fxInYQg8ZRRjxrcdF5gBNOjBZmyTtBfQk+a4AtY7riJ253z70tq+CeaDNX7f2zdc33zx4H6ewhKld5EelScOxBVg0A6HTVyyL9+5iH8gyzkBFOM4DGpQTX/znO//7P2SQsBpzd2Bm6J96UAZGvuWRHQ3vJWFh6O0vpvvWhs+Gm17IHjyuExPqWUayke2QDEx+iMN4mhrbfS98CHJhr0W/m+3eF1M99xt0rKlLoR5ZIbusGyIWmQW08UQKuV5kNUo/SsBMQcAB6/lCzqKVljimabn/C4gt97QcIcWfne7binp4onqmISTVdIbVSBbdsgDTHokL2MuIxjeUs5ngQqEyQLpB0/Bm5pLMiKWGdfi4GDhI7VdnsNyzlzsO7N+kaIzsVhu9WHyfEyIIvCwIEjL4xv6KD70/whnq5DoD6dJCQjXECLldF7c+/G8wT3k+h4dA6cNFSzUkKjVKibcIMfbtRjPaIMYgNXpoHUtmZG2nITPKvdp7+iAnCH7M+UB+Rk3ZRDHYvMhR8Yo47C188HyWcayT7q3RIzggVttFflpi67lxBJHxjIT7ScXeOGM/axatEwq2/9OXPqlticFDu0bSfQL7cVJKIqNM2CLpY4cQJrh1tMPIjEtvz4eM0q+Qm+/yOsGtzmOM/jPrAe77slaTeNKhOLE02atund/yKEBAJ4yWNqw4gB7m2CeOx9Ukt8v9myAcQPCBk4fTOxml/PCveaJWFS3c6Y0ql1omEi3e8j1d0zHVAtthy+GtUBIfve8G8bwSb9TnfpqmORRyG5l7scXM6JQ0BaJGUF64MX1U2gzEVaftMDX+rKm1vk3NMoTQvq4Wnvz29wf8AZnA1xCVeRD9ml9OJrqSrsxkBNwjLZuuU62LGu/aKaGq0wQmlmy/sFIcV+XjDOv7FA9KcnaJaDGx6AuBQd+ZUUFJRNT7jgCr1l2laAOLQNdbEqnPF0jSs9r9C+iGbodvUdxP+TL76CJwkAx6RBx48p5fj5RClkhTjarWK+2kK2lHpd88yzz4NIbiEqvMfJ+EvY1o4AkHtmk9drL0ppOLKahtJd62BG0HCK6pQo9ZaexTgKJB4aXZxPGta/7MlD/ftOwF1lJhCl8WpsWakdUtbI3zBXs62l5ihz5rlVMMB2/vyCnInLXbfjOWX1nLKQ/JBAocN1sLqFIc9ItYz0tUBjQfTFO8Gzpl2LeX8Gfb6fiFd5Zw7tbqAeW2IDkvFOc6ODQzBkjpa/bPbC2rvUoItkV5BWs4oY6zCVIup35MMM7NYLQyb1VID00E9VWTE8wETJ0O33IbcK6oU3wG+ae1ZF3aA+91/DXkUwkZzBI836s7G/qjLp9+XjHbxmYV71gdBYtRI1+nfoiNr1Gh/64p+fvLCxkxxD3f9jkoFZWnbue1CBCEVw2pkj7v1VZB0YPwjL9WRyPTYsyU6Z3wahXxaY6QfKzIgW3irIxc60BJZSHKfjJ4g0wLvo5eYzPsSK4k+rbovqb+h34Z4Y3zHY9fT/54QSA1aY4lEH7iSNQaJaL6+5vUyxClIJbUcVSprOlxcFwvfhOT3s8D9/JonzTCsUYabcGpziV9ueU7ws7eJKgBqjNaABis59ty2yZP8COuVdl3+NVTIq5L9vVnGn2T1GvdugF8ohYvNDY+ffXHZsNK1qyBvVQo0Yt44+7rjhFwT+ewsq/I1rHDesA9ysI1NYafuW7pO8U+ft59NYEWetwbtWA2XtLICF5eFQ/pa3CFy98r1L3VzN13yMtzDrqiSiNS/xHL0pDuhvsaSRKTuOs/wahzNASaTWAxvoPwJ2rsi/k2BNI+f8UvWw7Hg7w5SUf5QHyGeiyjZAoM7DKFE2wptTIGcWxrevpmSiqbq27HeXLFnAD9SkPiicEsf7gST6W3r0RPle96p8Ze+ERKgeHZj0MDq8WWKIt3l99RblUVDM8DEj6eN22RW+L/fJwy5dYYzsCfWvCtExa/f9YOndnuUp2VQNVYfSifqnXFDjMu1TOLUmClnsC9YaumuOSarZVodY7xagNKna/yJcofpuEqt5nUQFT+GdAD2LFkbkcTnk2vehTzCgLVtlGzvVMQvMrf4xH0xoElPn0Ou2u6aBMczi4wyO72xowyxH83+MiceiWDWnt7wcUGrwg5GLHG/LYhdqRWi/2g6Pb6X93VH+3KyjwC1J4LI8t28HOmfT6DGsqOyVc3V0bRkA66zzO8vEWQoBxgEwRLUBBj66TuaHdbxLT2SZk+uC2TPkzHt5oa/5NEeU/VuyCVxqC71nz4L0mXUGvgo+BJ3aRj/iG82CYOhxl4FnZBwRfHO0a24xc+ZElBcxox+f/h6gEf/8LjXpGnsXr7NSjZBlZDNIQrAmtYsxlUQmhqnVzY4mRdCoE0/VvpYuXueqMjbZy+xCUlk+rnhIBX9zn/ZoInBEYuzqTsoKqem2Qpnn3nYgR0NhyS41T/MR5bcdF/6EKYcaoNLq2HQkR0BkRgn5m4vf17/Q6IcyBX9jPYOZ/gqnCFUJPEYDmaQsTKCYUgU6+9u1gCXagZx6QjLXN1ClaR/3M3dpNYdTMDdwnpxmHsk07UIoTzX8g+9u40OuHrSznQd5xXTSdNQ+OohC9wwYUHC2LP5vu4XpYoHmzPu/mGJQXTs5MGvelLRhgJleJ5woGn2qQnZh0THwkuE7fK7vDYWCu2iXoarLMMB/4MMZjtq6iMYswoPWtT3zzs9Wr7qW4h9yzQESgOZ8Wn1NIqyxVKNiXUkwr9lDEOJW4bkYSMbeTCBcos8kE4MkazXh8zTwLzf8p9L+0LvG2KBKeJ4D7oJJZ5/4iOt/Hj1t8n4H81+p5hK+wxaUtwZrnk/vIk097dUNa0ieBWTHZ65ivYnOTkabVDn8cyl2KfXWj6TXAqbdJ8dU65gbERtsEanQv6rhXijVtgOcrr9cZY0w4oILWTYI9J7KtKLQSidlldOkHzBLAGApHyoFv8/b+B9df+TJM4+AtbwG8s8/g+K/b8m8OBQ/e0OR2gW+OQr/DtoqnFIu4lBuFG6sVUSo7K8OwV36SavUf9UD9xSEz8/eBsSm6ELBOXSef92hXQDKriKOfXrvjWarxfeGxphMZuDcFj5pgQTvbGo/YWmwKyxf/qUzZiCT1bT7Zh3tHvEY+TErU/Z97+crqJtLYEgFwRos7ei2h2QcuW6big8zWc18+gcitaQRL/zTTy+laEVobaYs4WrG2NgbAZnqABjNCwjPrTMyhYNoGPokKpbW24140EoQrxv7WvDBhTF3FFsWpL8wR5kU238JV+gS1eopR9SQYyBiWirjKqM9i56Gofz8Jm+NrqYIQsYchQUC4+MNxzgExi3wtX5Vx1QD57bSDCbxp6PQ5mKLWmQRZo7715KFOHiWOgiAHztDE0mkY/4zuGfKammZ0ZrbsdOZTYWh9NEUhqyDEEpBktep31o3fo5AyCX8xUbIKIEjl+nFF2OSCm7nL2266h1/JiJkcl+g4SmBucYq4SMRLii8cNvYN1TuZOJya+ZW/2/6qkZLIjMY+oKkxNK1F/TgHBHeRO4/PFP7FcUeNIDOTzwhKDBPoV+BVQ1aAQs1uhFRrj
Variant 3
DifficultyLevel
543
Question
Which of the following is equal to 122?
Worked Solution
|
|
122 |
= 12 × 12 |
|
= 4 × 3 × 4 × 3 |
|
= 42 × 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is equal to $12^2$? |
workedSolution |
| | |
| --------------------- | -------------- |
| $12^2$ | \= 12 × 12|
||= 4 × 3 × 4 × 3|
||= {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+l119rRIdrAWeNXUMCk30r8+oEbWn81xbm8nhFkYOlr5VUIkRiInDC4O5Nzrvw2e4mbA0bgdjnIpajsNLl5fdBzoMtzxPjo5MP3OtuP3VuQKxHiN348V/143M/GDVnGE21scq+P184p+k6QNWC2eZkBLxvBBWyWe0w0Afq+AbML+qmladdwp0WH0w9UsoNlIxXTmg93dpV/GOHKnPjg7Q9YEIA8npJZvE+uU3dKXUKQFnqSDEI/TYFKigzNL2gZYM2fz4bIaBfNQFnnvAc9gVS/Ecu1oGhxPFWjbxK6t+7SD8ZFcAOkTXP1bEdI/AjqOJquDN2wnH/51Ycdj3Q3cnMtl1VD1Of9LInA3xQxVnLKBqX7HlhcmkLOy3pOsNpwXeX1a54S06/9zgJRytrUOIiqxFDu4WQztjGyTTsyJ4Bs9RUfZhq8exMO57pO35u1pPypBIqS6xnEG3GxFHoYf46pRgWxv+JQ5Y/lNCWeZstp4VAYtz8GiEkj4iaISFvS0Fz0wbpy/rI7P08TO9eGgZ3b/JPoMQ/QnuerUqr3QHbmg7QAcm2rEhFQGuCQydcgJ3345XO/Nu2hVUdC1h8u0WVsIh80T6XWDzPqWniS4pqhA0VUL6IqUvIFoNvM8T9JWFCTFNpMH4cBFqM0wr3Ja224/ScV3o0Zd0BanKCBdWBrzQZ/3Y7V2N7yoJNtbINEhcxzQ95ZRcP/v9qZNCD1Jekilz3/6N5+biVuncM9AJk09WJhiDTSXIuN1MjE8AZ3ih29kB2heNGGLIktu4WsV9S01J0RvhBerm7T4jXMWOkIasz9zjOWnTW6IGs1m5ClCMN3vBx231Gjdov6YRSewMQlWM9OlM1eXS4fKsVMx9hsWdS+oXH1StutO1khcSr1fw0HH9LlwaeaXtPm+BDtG5T4RhsGVIM+qlWw30ABc2ZsndQQQiZmchgmXbCcTAYxP2n2Raw3TbJr12hOZpPh8WDENN1qSh5rTX6ltaYzU4NLSHSUFBsw9YaudhnWe4E6uSInHev4vF0gAFSOHPOBny1/weA2zMxHbe8L7iv8NKG5BBp1wr5WtCLxSdGej4JyVJmDbzPPvqIqG2mh16E0ZuFYWWIe4o/Ok2Hzh11AJH2Vteue8MeuUfwvarCtFZqJSrWGvmINPIxDXPlX/6rluB1dz8+guAkHk5KVIqBQVT9mkDqxTfU4ACBoQMxlO3e7cA45Er6xKUAJJCcxylchyYpdwd1wl0so29+a7+8knH8dudunIX0rNuAKO/mZS7BsFGt+/xAl5KoLfzg3+1zMU7WlqP/NyyFFmB17rPWGgiOzNiBNU4WmSpWsyDlxbvU3Vs5r0QwM0UXt7JPczDeVVsWIrs3nDubRTQDutTOtB3vBy3KOjgrqpFc25e4sOgapxJNy9OD4V8Y9yYm0bBxomeT/qan1Z4gFufswIM84dISkWmQQgy3pRlExYrfQwPxoStC3pym/HrxcD7cuLYgc/rCJ7Qxif37KHl8BNlh9gbw1/fEYEaa/gEhdy4PFjXlU+0QFhwEnnA5vZWSe8ookAPTudQ/MLLXzKoAwQFD8eee8Janhp4XfCvAM0XJH8odHceb3qNJh0uxoa/6WyBTBPChknXzmcU+jCGSIkGcIyuMJzmM5ueWvLJOIPCaBQ+tMH1NOi0aQdSpiV+tKxDi8KK5fi3Ia2XyRNJREYNr6kQk0iJsoc/kZHr+NRP8ab8BR89+4pOrQEhGagOewgn1I/lD2I5cu4ehkWkNzuMtkL38xvgbnScc1QCTRovtv162Krr6ROwVo71dtr6/ToyFKeQxzFaD7LDMzeu/vnGWQs29d6Om4w3sv7YyPRAwepz+7cgsXTzY0AXs62po2xQ77fR/0Ag8tLSjNGx3rmyRbXVH1PhfhHj1BbSPO2sL5S0qp1ETbWMKPyEpr4aqbZ+JH8gC12jDat3+AqXyHjpiAX06IbqmWkRT1M8F251vynS+KT05/RZ/Liz+B1BaH9TNyBIOlRiOdPK8vXm8Z6HKxbAOfsccaFCAFVhPTbVdUu9JsJIAgiRMO0eM44/nusAd6JAq87L6htGMiN9FiB93pi/9FFHkSwMwjTP07u/u641SJtyL921wh3arkXxFVm3EN5j4sjdLMnY6z3ne5Bo1y0JHiaNW+JmC1Gw1B2OTfGtOt/JP5W8rqqGFpG6sKtiuo0Tlfncu3qLbo3Mr19gQ3t1EHUZjuAj1LIxfpYSol8mx4u1UAEOo8VC2+FrCxpPRdv6vHgg93aK9ckyVZgW1/dQZB34YbEiet8YcS+ErsDF+TZsETagBkxlqEeMEJWy2wa65eRSgLbZKiSwWcYjTxEqIk6fJpvJ1p1cv8LCjorrnifBf9qvLwGcE+urPivkqRBE3FuNoi7M+GXVW/dzNSAZd/bNfz0DzwbgugQowrSnIaVw2jCggEjpf48uxKP++d7g+z4U7QuMofW94cyX+6TH8OWGlY0PhUn4RpvVS92qY70jb418pjPm+R3Ax3HBEpA7WPYF2qcmmo0QP/vF+bbFRJ0OOWhNQcNQ8F0KVSpZgMDl+ZPn/nids8NNdLrK/FPLM0aC4Ved+8TN1b/OAWoUX6tfCy/aZJKRamODP8Nfv40786qmIpuHdDiEHFMZtXSteNqR4GgT4+H7cZXPLTrvXk5HfVzptBYcEHiAqAyTcnoXKxeYo54vFBzWZ4DOnOmJsuNZIZhUpLrd6xeVvGN1bBecJpG9wHR/KPpSAGIOHl4FwlFHlRQSMhj2cHUNhYkAqfq9Bbn3o3wg75kzT+ZAWLNJL+8EOCLHNdwqWf7zfRibBR9T/7icj+CNzfXw+hbWiCwqsYn7gW3kYGs86FZNYVOvEcNcj6kjiXHUA8YtS+N4sPG8UvsaJFvfUHwIxiWDMvxnc30ORR9CzlzZChZyLUkNQqo+p7PbGYH5uMnRsxXk4XRS+KcnOdoxe35QlaHFEkeyQI1pqfyGafxmnmqC80TRH8RqW9yObMbrLEnUzJ9h30s05xzAIP4+9de3YAFjAQcO8tpmvGQhyMxyXhg8ZPIakKA+jGSE4mGjzfgb7Nr47Fcrx5OABFlda80TOXp2FIyxvJ4oACCejcG4Ioqs8kEFV9R4F78C6rBmECc2fbl+POwcwC9xsyJRsJW9k8XvwKVYBxuBGnFcJQrJlHrfSHgzcJk5LEzygsZwuc+Jn8I5z5m36RmtVlJi3WAYkFw1WQb24+nhI1bGC9uizkx4DY//aZt+zVk2If7WhEAtajoyNEor9nWbMskzlY7N0pNUqgqgcFQCV6ZCEcUzR/qPkzWIY7Em0i6YXQb8xbHXKsOyFSWH63Gohs7jy28+SLXo3Y26oFhn6nPwpuhe7pf2UxvBsrh8hv/IPTQpNLM3fJ8raEmzoPmPbs85YrrhsAYLNSW1RVfmThCPvsp4QDjrxGY9Yi2UjS7W3qLijQz/3ptRtoxbT4+XdMlC0qsUWPCBhZZ3mEblpS4QJG6WVlZNBNCLZUzbdz0ORDfajAlQ/Yc+UCl8VKN4RIvquuzWUH1g3l2hlN+FLEBj/ptVjRGqx+ZCVj1SIbiZq2AWUhAERupXonDXKfNG+eTm3rS254QYEPPlUX1Jv2zprYCZI5m+Abe0vUO5GOTAklMjmtTH4hfsLnN4mHlh4aoMPCZK9RZFIxLDLtEaaHiZ2po/Vij7J4YzlyLcohgw7EB+ajLwnllm6f3fiyMb0RlW6q37lnkcxWTsC7ygdYtKe3e6ZTKbskal8zbU8qDv/fGmF0VaCV6nqawmgItJkp+KpQFUyMlDXzvR/p5KENvhKqwsd/into+eeFuIUB52qNdfYK/5oLybwW3I0XyH+zhOeTemZSn8eMcfzmcRq7S0n3qWwGQS9TYMM59Ltsi+KMnD2Mk5PNCZlBDMQCGnZreOTIsaNL0FMhiUaPNW3dpzfJx0yKgHtfOI0thL1sju68hRcpwt8FGzV8WTPYBarygZ9HHUHxgrB+p3Hn8Sd7J3iOTdreWt21ZBPvwGxQi7d7T/gIsNb+kbbRRFQb5vExEu9kdT4qHUhSf95NljEhbbIhUQJKvFhR1tPkbLmMR5CeY4UPDIE8T7EZZRIgslHG2wdghyfI/u75SiotqPu/sCYWN7ZIRrxRrRyma4zwI8YZhVjJXvMbVl4WCvs7ZaDIDuGc0CwDPmeI0YQF92IY0YY7RiEJ33gEh4NfuMyBMnG+4aaPjOfCDIzPp66F+0o5NLDxB39aFY6pj6cWj2chmsV6DcccvdxJ5GAAXGa9jvU9dKkWMzWZ1ZTXT65RFOBm4N3WdupnL1v6zcE4bjY57fkadRBHzJiSBG0iLYVWgOeom8ZISNcDXGoWGWTEN16nGLXvORy88WXjS0xXkgrCq4XZiNL6VrKN4LGI/++ubPFqtylxbUvi/4bHMIwosUrcN1HcYrqIVr1UH62hALISZx/x3hW6CK/E1fbW9AwDYZEENUEHIuftCjvGS5EbjafWCLtdrrmbKahA5oyfxdusCQ9EykYC6MLab8fmEqy9QXICJPQrX0VneK1y7LH1RgUlXkmnZlY2Zb9Usy8ksjVdp64u1S167GwE7yLkVYr4aUPkKcjUBFokgVeXOW3MkGcG3PQMIxGyV24+6mkbY1MTC1dOu67TDhuAe0nmbf7BMrR1tlaOv7AdisvLCv74tPO/Vi+As3Q+Rw9336UAGoljOiAl2myO56YNK3XS3InWOonMa0o5pKmTBjLgwygSRV5k+dtIFGG5qwO/+GBYeiKfVRqKblb1KhKMKvUcA4FURVadbgavC9+A8eTwc3QMdz3wUDGlxsxxDYwP64YPv57F4emNjTxafS2H2yw0QIcMs/kwdFWKOYaLsZ5OKOyI29Ew7s/y6BiQLaa/z6c6PmeHaIsZbGGWh7rFIDyDdX0zmPeSp5G5oIq+B/KMaUVbTJbNuHDfdLQxyPsMqLfuPNB9+GkF6borCpJWVB236HJcTvX8qm3jzWlH2+CpQSurHQDp8cbicajFNY+2xo+OO1PN6Oe1dQ5U4QSP6OgZtEQzahi3QfYiaDE3Q2gILvSiRVCEa9wDuq0GymmJA4wYJyu4IJ3lphaz6IyQeZr8+HqTrTNqssWtdFFKBAAb5aBitJcOWENMC3Y/aOWfMlq+15lSorSHhp0GjPrshmdDJG+2LgsftxmUHLMsMMtSLTgr9x8TTqOEo7y2WereJMN22W/uQnIfMDehuSQt30tAkCn9e092om6Jk5CVafkkDFUMExgedDJER9+rYYLpgjsLVKUpNe16o8k2uw/NKKg+SpOEXQs3g3a8HVFky7EP9iviD0YvLTeJXXoQEAnk07m1ZbL5okVxx57dS1W70k4Du0IuZLeIAZKpXQBUR7uHPUfedZV+boInfkj4z5YFtsCRhQTkBVuK/yqLtm3wkPCM4VY+ik11gPis0TS0cfqDXP9FzN9S5GKVrjJQWm3LucYLZu0597DsHqhxKhbTCeLJ4UnqZhCa8LM0Y02OETS2oEZ0/hmlOrMG+6+bYckV+zEqvVIhQfRrGuq5powyP53hZupitvBGK+qwHhq37xpLouKbhOxBjWfHbhiwmx8f20zG1W9wY/IwRduy6KDOWMjIaTD+vczR/37LuGFA6tDa+xwOM40r4evMn8OJZCBBKKEMYwhZMcPkQUt/kTzzSYkIikIMAqgIXoblwPbA93CnwOkRS5uMsLJ4zQEmygPofg3CRMifz4KNWKluqwuC1EXkrTUwDKO9S/4Yu81iyJP+TMvF+yLioNxbfX2pxdl+tXbbepoPbJz8AukAF2BcttOx5+yVxk+nzCPHRRrGf0Zusv8ggOAlocff5SOZyzv+pYH8HKdAu1wXMf/Kh3AUGrl4GIMLaUHZLkipMUQUT/PvVvdDGMae144eC5sqpY5IqDpMpe4m4SLeYwRpecaimUnErRcA6mpiRqPMHsCVLutcKW2uUFzLo0HXadl7crWifBerBiWLmxlIMhvITyORlp/bpiC2ngYUjhbplWlzetG6X4XuhecydimXJwCUdnb8hJzJze+kIskdGUXEBRS4B+LMIaurf+PwPfOuwr/TQTv4h96ehdaNLJgrYycAfW+YRIyE3zJA4JCL1UOsqLBwplYVBrPMIXnLGOh/Fas7B/8qEXZVFPXjQLHCSqq2p9LhyaS3NoRuaaDgEVeGhvEnBc0LbqP1da2AmmFl+3UXGNkBYzVvWRnuYlbTRTdgG1Wt+TOlJsCXIn+L1jE2NIIk0ZJ7eS61iPTu/1VgK7Id8aKdloCSX7m+r83zZVAs08NuG/5ss+KZ9607AclzcrdMSLji5yphkBKhmzR6MbDouvrihSiLO5hY3BcSjulOHDKmjj/j7n4q6eqbVYzKVKcF+F9e+dlSxzJiKod7qt6tTxeblOLJ+HAaDxgDhSY6ZsP97Ct8qNN6LLo1Y7KF2jZTRN+FTkDjDom9QnD4NITitVS/KwBBWOOXLPby3ZOPYvtppQcA9LrgFfU/vpVs/Gz5qMw7Y/QIxVdG4G1E5EM7iM0fAiIR9/oe+58Lt2gHNE6YZ0fOAOdPAHGKU+CDX1z1YXNcw53du6II4szV3zuLBeWN+Q8fi6VqorHDm64oYiYVqcBnJxCQhtPHKVSnsBnmDDW7howNIxiSMziBE0sFRk241FptHjUxwRHKaFIPYNoSCO5sHpF8WmTmVgDHbVkHP+T+yjvjWXjqtqNJpoLDIuaaF0gxQOVv5tfbmNYb3/xGb962KLoH86RY+xgU3CFIJMS7nn7HMwTTdxSYQh2Enm1wUR3mdLlWKWqP/e188eDMu1WPkbrBcUNWSpoEC+lABp8qZuQx0Nlr6WNrR3rt+SA+cUDSbxgHXWkIhiWm2dKsNTW2Bu3yBhv4yn4AegM3U6QW/S24CKa1A3n4ZXkELI7C2jwpF+IrX717gwBJ60NtL/MgjmWFKeXeY8cJnZLOoQf5pcsNZeXiJ6jdjsfT2FzCLjXiQoJlIzhwMkj25/bx0d6a6Y7CcT/iEMm7wweljUWs8XGKbmxfqnYsRBA/bR6zBTbHSgWWmwof5qeubDqgwsz/eVfoJTK81rWcDcNxY12dKaNzOHe0FeuSWNjz+YFwxf00bpcAUgaYZu9U3bZpDumuaSfjlXBa8xqFJbLQ6aRRqxf9bc4FZvk3Lp4psEtaU+Ec8Uc4wBw3YskIujCQOgv/rqLRUpc8Ox69CAdqht0aQm1CQNvlqT54v3Dpjz5SeRV8ofxTBwviW+jqYQnINxtEkcJxPaGh+iZPlScMzv2fdoIzzsDNFx6VhYhVb+bIGYtCIa2Mb1uqXbnP6ytW5scVrTuIO2yDwqy1uJd+/17stIYLpK4KKP/CzKyZWJet0PFDGcl1R0nRktAJ87tNpwnsQaN/hl6kkMPvx6VR+Ud9z5M7cKIOEwzBkAls9vBNem0rvvf5tngXALbcqAJvIEorkHT0PXPGOoZUh5r79p3pSlgFg1vj2erv4ET1BGy1ZhnpxqRD+JiCvR7ulfxJZGdY9lRBE0UoqnDB0N/aMsBY+CCujIaPDsirk8tsLuAMHFMhZTT3szXT3kCxDnenAT9c073X9q8HCFceNDKRZxoDI0O5aCaUeGu5Eg8/1G/Tz2wuIpA1I8tJdU1UBsrYYaVRNATXaw2tvHJQPhXmhwL/7hn1RZTkfKsY3wTqM1HFwVUIzfel81Z4yvBUm87zBIdTtqnt/twP/9+UAJlPc4M9b0BkJBJAmH8EhDhwuaS3pKFZ+BzHDjRZUyj/kPxIsis4Xvv0ntGNifHgNZmrmB65chsdQXfL51jUERD8DVdXac5AFs6NkqyCgbtnfvWS8oV058EtoSJ+fz3O1xRgxysnKG/Cy5At/Xr/tMRBPKjDJU3M/dfmvPainto1/vF+VaNzrRfA/pEy84H0+j6ZYEc/UWOfv7i+JTeugLZqHAJ8HAxqkrvwUB5cGx3odfv3XkjJLNhxYKmsHfy2mUoSBF6r+pmunNx2FMy6BQhvFf6zV2Wz36f6bQEaKSQJrIKVxov2qBxREC5EGeyfX/TF5nUd+n7VnBxVmoT3PvZG2EfyUeD6XGFOr5iGAlk5gi8tSBOvKp/uSanvxKPhdOO+DCd7X90mBQEtPZlQ5xhe2+N7ys6Bcm+tE1iQMo827IxK2ogNPuQr+VxiWDk8hRw1hdk+g9MT2RpSfqTVH2CuMu4Uo1BmyKqdgVT/JdTUgTuYhIlQr5vwKTALA44yOya1YS4tQiZXi+a+laJHUfp38/Z9Qy4VWTcF50YVoudQ2nuL0RdorbTpj7Gf2HrUruMyyrgSJ/juZv8rX55vgGkYRYC3FVUWIP+euRsEhHWRH98wa4zwQGDrwjq2Zkq1V3YB9vI/oFXhRMT7FVghFg2DITLhif+NNIYF7W8AKLYftobgMzxfTGJArprTnRoJpcdzFLcgdeAOwhTU0IfEqIQXxj3LPFKgTYTkFPsFXafddeYkQjev51wtoWj/w//zK8VhT0heYn2wSgnRm765RufnvId1gZ+VO7gxuqwqbKgvcce5dJadSqzZKGLIxrN1NnLhuo3yOKBpJ03jTBmgmwi4LuxAY5NEK/G9PdqCDpWN2aygYMqpotGpPZDwHPbZB0lMQWEqgVCyiaU7dVimv1FjefMAXuFTpjPv8FtDmpX5PHdx6Fn3QrmcaX4WF1sC7Slqnt7Nij8aH8RMSXPZKsiWWTs3+tvkIw/dnKlrSoXBuCRspMvVC9Cp5nvow/Ry0rHdbcZ3M5191ZQ0c2WGlwuE3NYk//bcqCNCGZLWXSFaCyP94/zFIbvVncziiykeD8elMVol/CFqvv1s9lpVnPDpOtfQAQeoGuud6UUizEqIr3aDMKVYCA0b5TCpELqQMueHtrubKx3zRAC6IQ4xont+MjQZz3Y/2zizzQ8k05PRBFbenCQHxItpyH3CEqDCW2JCavRqIf9nzs/NsAibnlygtq25XQmQ3pv8/XzLJHeVHzfUFbiWlYUybvTsUyyo9AhcbT31oK/lIGDnwDPn3NAgBIWPqdqtsVJfmgh1oI6VnAxEGcF+sHjEoO/wVltzH00QVW1eyU4J9r/EGU2rnrejqR3Tf8AUb1ae10kCwrOmUnBJ3DhwFdVdZpWRmQZLAyGgK1NjdI9+z+FPwYuFW4cmoX7eXQEoGrjyB70Xq63gWd0JpEU0EPrT3n2ik7XsQ3VuNJXFVkk5herjyFH98rGv/u7L/eWTYEaWIhWD11e9oKQv8u1y9Df0nciS5G5lQaM+SCCCOkH3Y5QxjUkL0Qd3amvnHwBofG39bRx4EwKg/nKp5/0xhClcqJrBbwUGWhMAgwB6/vX0PCsz/bNMn4BX27KFiPSRyrToFe3FHdf9tMJGN3fOQBVsWCGuligODSlB3MSDivskRtWtUhDXiQz/N/nsy7dMjNBiqIprLpysuzclaLaqGpb0qqx+BsXqvqRJkvYkQnvGUEVjpIk5FCjdEgcLWxE345YWnYYoNup56x3K8WpCwYIPP8Py9Go8oMFGuUo/hBT1N6DqOhMIrH2lu3xxJhIEEjKTOkkw42nIFfuaSrHelatAdJVAZKLYEJ1TybC6XSr8Pk5zUWn3G7NDASdakk1NTRd0/T8LpFVmFR9OQDZXmmK4DufT8SoD7iLyHQcmuCx1C986fdri6soj8dcfaEGdzlnROV3gYEcCnVicMIa6441SgrMgogrr7Jgu3sviIyV3hZ+3epp5NidrFJzKLaFXf7GiXT+bmHTZxMaUwWQV3ulE+zhQKkzIaljgac4rGiiyQjsXveBO8e7BdRYPwJ0mbmhohJHsI2tMISC1p79xmSVW5s93OiszPxIvkvXYLg6zgQlcnHMIr8Afc+xtg7ytLWCu83Jpn2ZHwyU+m6kYTGXLNLorXM4TUmnq5U6Lz15K/QL7w2XQr2AbRlsOmY6RSJSqCQQoFT5xaOjsXPnQhwpoOlMCNfprIyARiUqopQj72sTW+fUAB64vtCcJ/ywmdKUWkDGSgZSL4FpbQXfIPAKDJXOC1IHcdnqgb3pM8MgP0PIm61LV5oYLO95PXWtORQ+eCGyZXQPBn37UpTh3gd9nrtHO4QMqcj746g+0opnHMgFi6FEltrByzuyF8S+zch489PFJu/fB5PIb6rMdLw54on5WXBDHJDdGR91zvlIRdwd+vvv7MHHe4pd9Cpknz5AXecvs4Z8WJClfNXKqRuVmd4h0B94qGB/bDjD2C0iSQ6iGE8gtM3S+Wjood4+RSPq51QXJwImRXmp9fw/IjduMVLa1SnsKGPZ/khLV6vxPpYrrBZ/Douo/Y/YXcmhgT5S3nB+T5/fv/pNTkJN0jx9lszTHOiCCjW92a2BtQqdqikJG3mQFZjkiyNEOOTnzzwxyPa6jFbiHUuFi0Ggifxjr8rHl+vVO2afqkP9QHaSEsWE5GluyWhro/1xqs+QL3ngXzpAk3hRQ0d1sjTshYKGo3ZOsay6uCdSjYbyns0YJ/gJxDJZbuYtJ1eX9bBJNBgJHJgi7gh5qdNYwhdowXLLPUveycTjfPICJN9UtxJ8anNIOgChJvTZte8Jsur7O0O/pC+bASu5PvHWCF+TBYgvRxcC69P/jl9zgDkpuc4Fcikn1+y/KO21007H4DbRcoARomPRig5kG95NdI6xi1c4qmgGQ48YZ+nfh0voTmIDKISLEeiI3D0rEgTdo7QGde2jHDSAf/21BFfP2GQIZ746tENMpsZ3Nv+Dy2JOejjdi24Sefyhv43yxgerUoPWP4OnpWrQtIrVMYO22TOi833DAVz08xYOaW5zZq6KxQIP/mQ9ggOVYbTXN2KEgOQ54WUT3l+X9plQkY3xbCZkah0Fx+TvFjoIyMIY8qefztgHsP0AbBdS+iddqDh6HxDJNcf3Ig/LJrz9HP4KNq3PIonVVLfdery5fC0K0HJBM8bCxPIi6CMLSfKwPTFQcC4eJQ+6Kkr31fCMjGU4lLQPsm61d/K6JH5Bh2NCyFMqbv2MZNPLcU7EMZhMHi9Nugt2SGKwIHt3eCkftmpFu9j7ZcbW0Tgw1cHiE15ihIgi4VEf/F3z5II5V+hmmmBQ4joXUWPMXi4N5odHN09a3FD20OlFpxwNySR6oyegHxbwXJTT/eXLtbWkNCGG+XPTy1AsX1QmT/2WW7+pYG6nQtYsYwxqJ62/GFYnZaEC09g2nNyCO6rMEESkfkTlk8FDwKJKySwM5g7JkwsqNJRrzOzmJk3LEyoSSLVtLgL9wHTfzQdr+N5jb4i/U5Y5B3yu5gGlFRDgLv1UtmJb+34YBPezl5K3rjCnwlH9VeqoN1Xc2MaHm5o7E+rlQc0fJOmLWZktV9FZGLYjHV5gUrt8ejpdkw18jMvqUvPJaQl2Aul3RidtZa79E0GtNmmjtuSeFHJkg0at/c4j81r2E6i9acZfk3FEqW07RUAFBnQU37zmUfPJC0NVnx1L3TAlS7eFHANl0d/vZpXgfgJlh1vjNZiuNDM8FBA5G/ax6FUPZIlnnEp3UlmteinkReBp2n2L2QxU1zVp0h0hVrSOBhTpOj+ZhsdDArU+xqSDeyTofa6YX70ySAoDXjeHZb49NZaILXupVkBM3h4t9uDOTAfIKHiUay/3SeH7yImU4bQIJrnsyoYOEnsJUZ2niJo4PIJ6esB6wufPkt3X3w0zt8sJ7ITKl0ZX3V25u5zxsiPnyUFAc6LgSePfG0DSWJaSoM/9Cc/YJMg+i7x+Pj+gYHItzIVgRwbAHcq4O8v4574X0RjJA9/byrg7wqUAEpfAA6eXnujyzD3E0Vc1q+b80ny2VQeLaLQY1e9auqCW9KcQpN2lR4razFUgraxW9fykEh9CiyvEkAwrgOC5iDCoJTS3FNUU9S3dqXLn2QetedaRZvuGpsVwE++PiInIN6i02NiR0cw3k6IQX5F1AUaCsgtlnwjSS+XvdbHYk5n5IQzEv8C/ndd5bPhoQgZbUsoHqbpfMdslNfKhz2r4wHZQjCCRByWqsCRivf0uz+4OtUDgZHEUTb4So0BexnZG8VlS7KY5L7KV/PVPEEYLCp8po/E5Kf971S7G40UySfP5q0+ywYpZJbiwHkCZUyRNiQAT2hks6YmEcVFKf8xAkiwyIypTrCDm8MYLvBxeCyQ/ZrVSO1QdcIZowcfOSXk9Uui/YDycRa+rjoQ3O2lRgVZeQ454K5d9UERvCIbELZU0B1ZcOpfi9feiDRLvbGPZfwZx08mPmeWN154XZovRgbl1oCm0eHZ2bXQ8WaGT1z6tj//wDQ636+EXblf1Y+0tJxFm83ohobJFYqsPpA1Ri5rn2sAbx3v4FMFSbztP0Ez8QzEh18ydIfNX3Nd57KYksy/VxxE8RS+FHsOQ2zASPq43ayPqaMWD3C/DSyRCXAucbNY3oAp1s8n0U7qB8oWzQLloytsfWVNZZlmv9ubypo1NoGwrkyYXU/jTKq+y50AR7tdPEjwMJv6A0IrXEKGGia5CqHX2K2gP0YQbXPW+kbG/CXfB0LEIoySdECTvy5z+qI55OAvmL6yO8cNLqPViRqLNlph5Bf/S+p+elqgSrIgL1RrVN+ZWGCrTZu1KJtVTsrfkLdvL9mjbQ3bel6Nz0vXYKNUvgAlg7DC73gkE2ByeAvWvqZFD6IOLBX4RahdQHTTwwfPJwG4LbI60lAbiU+O3PckvwdrLyjTQ5dNVMtPHsOj0rk/cRMmV6IoqTgc91twdQ1VE289NpY6ChI1vBCabp2AVRMHxIFKXumVIE/hWj4yIw3CgPUjHGbXY7PIJmkX0Eg/LW45fEA5EwBcaO6UCzJb99U1tQqL1qmIq5YJUIZ+iA38zAkcJiqsW9LnpRV+GB5bir8liE6MPc28BSFTotJ22jfz+h4CnOxRwD78Gz43Fj4a3b0FeIRAn/czOAokpChXZigzsT2xlFGp3jwKvYuDnaNBZXsiX4BpYxfWoCzcGal1vHjBuHXhWZbSg6nrtyGHkw7hBy5CUCS1A3vNFmIg2zbBf2mVrU1UC2hwNYywGBmX8STneuAD1xCGzCi87DymU2A30CN+HOoauMGeMF+gcJ0y/vTGg1wI9WzfovJHJKzNTpP2QdsYlts4TMwMrfA+0fgzZaO+VsYDnZL32H1AffoXTjz+aX22WqjCMNoTrP7iKaBxGsXqbfHYuzBvehFWgaFrvonCYyK/JScS2OWYBULg/h49a8JBQ6sbMstgTAYYPutqam2EG2FaFUPcOnWpWDE5Qv7Ao4dI5IUbLHonHNQiavQn8EvYW4LB8AVLG541TuOnx3gC/RBsTZSQUxumWLp8bWvwmBoZ1LMEjYjVh3uHP6TEwkVjFvIVV/epq/W8RnVVsMfG1ll0dATwyxXKr5W863zJUKdHbSJjLj7kY4M5UQPL+pcVJpHyjhh5R/f1GzDqAI8tder4xNyKrQHSU4kvoYaEC9bICvG8O9OERxj86BrUz/qMZSqg7f0npKjCCcXCMpeu9r9VS4hQuhESKj/BgYxvw4AcqhSFAc4/dMkYRcw3fQVNPBXi2zJy5+cvmyOajY5GGxIkwXracnxRCmH1SLctv1LLzh4fhJyfdpz8MyknunjoVYp+MgV6JKgZdaShABxTVEU2H1XLbz89oReAugDYpM4+idRdNED00TEPIcDfFldY+6QGXFwm2+5H7vAu3xQDKsMV73khYGkHKspbb8TLbSCsl/ZqKUYH1YPI36c5F+EYWiDaZb4UG7A+kpQ1eyn4eqjCSB5aJHvtCBKmDHjxEuXKBUkYvcuZfh+6FA1IzQVMaxeJNIwdbcUN5TewQ0LUF4w/GTS21rzhrnY5mLqCHeSWndrOxDvNaDfKb8gzqUNNsLyXSdbOE2sKeviMk44PqyfeRxAkfIyvvqxlGa8tX49NkIDKsIv6k09M+dNFpuTJJ4YChM1EnAYHwkX7p+0Lkf1yfa51oqWVNbOJSjHq96BqxGzUkeqTPp9X6ArR5s9KfbLGy2ZCK/HNyOHRExujp2xJhaDRHdCtzJRsNIIyjx5lBNLOtnwtXuNgHAzk7A9nayqHRb3G2E9s/alW9P1TDWhMCbd8oSlYyI7iuCn0vvUmFO0V9vYT0dezxPcqa4SSdvSfo0S4VYkBNacu8wSmlSGTNrcy59G681r/c6ke8uMKCIhrKmVnNRrSZQid/2ukTa1e3AErEPeIegSHfZSxOXENVWi6IcBHM82Zy4hfqnyQp5YVhf5p1QzB0DFcvwuzUNnhrg/EHMYWcE/+s5mYpsigaLVPb0NeRCOJTfz2tyGqa6TLW7XgPOyW5YodywaRAmyQBw9oba0O9swtJwtLGmXApqNNMhvxCUAhdG3YlW9O5JxyO/74Zp2J7RMJrs0otvG1CPgsPv8oXvjx8m5XsPVVXw1abB/D955WWWJZeZGlq0MxGmQKfXZmztQ0cM7hLEVGtNirR07urGXHadabHmyHwAuO7ZbinlgdmwDYcHRDYE2ANmx9NgRezbaETNkgfAKMB86/U8hpTq2fkaykXInAKSt1VSOe7fyCOWzzHD5dZdC4lX7p2cQbTtUU8p14bJyn35agUUs72nl0f3Bk3XZVahVQmWlMqynWaO158H2UZCVhgOCpIQzJS/HbNYrg0DVlXsuBg81JHZnz/q1lytNtgirTtGUPTZ+tQLxMr7caasoNBjrbEQUbJ813VMGhaSTdD9RlHEwAuWQ/v6SFj0EnoUzO+9X3GrsHYA9jug/GDu2wRyz/zOSpsw6I++VgZi09vmCU4Qc/x+uZOvPr9vFuE7trND9qJ5GYlz1FGUhH9y4kgOdaUmLGjREm+JE3dG6sYZ7+n1TJABSKsiNRm26q/AyzLiGlP0xchLumOPU1sfhkOc5DoDlyhludRYP+ix86y5JuF/Hu9pgqCyRJJZtDn52yf6RQIukLX//ca78YIjWjAyY4zCFmMhtdLnDMcNV/8KofBE0gA+t6py7mjHHzMW8W/rSnV0JrZAfpB3HuaX/X8XUTKZKKPztcq9TRoVxht6GMJ2yU02EAqmlmauHoJ0rjF8qSQD4bQPr47pK99r8nZwNqg73w852GFEaYyoaeu57jsqq9ADwQeo+yrAnugttSU1c2KTHnMpaVu/mIy+buV8ALazTF1+w4aQgXKQIJCXqtUHlq52+Zh1dtu5WKOS56so/nGalH2Mk3PARs3LVKbZTtVIKm8eHZdH6tAfmwAcEjFdIAtFwaJPVk5Xngr47c/jV8edm9qFUd4GBte9LZplxbl2KyktYRUc4GRH5hpmxSMjKDUujn/6q7Q+vvZ0S4MSvL0//QlWmSPbEvkZMDbES8ARZH0GVkKAYUJ44FRbNu8glZvNnZaEBF/umpSr/zNYXo4PPOljRO9pqNIa8XOtB7nkIGKWsIY/D9MeA8tna5GyGm4XWFgbclqH7DctQ2FvOEVwJzyPQYDOokezgzOYzoGBOxfVcf+hMUA86EgWRkCAYRjRzJ5nDEToToKFUEL27/eH6Wm0KNhBfGxX7sHVCjw0UF8/Ue3IduZnQurjMy0bXQoVjDPgQ8mN5hTHAmp7Uq5yU/Y3WinZUEmOM9p9tEkLiP/akmjTa8cKaLl3BjqcfixHNA7kporZFeoMAcVozPykUjdj/yHq6uppv2Y0PfAZsQ2179+tt7pOQq12x1o0CCh3xiZFpoZZynM24ujC0Sdqf1NJ8Lm7X4GWHBzhhhPG2DGFTmtjwmEAGSqxtEjhlBsC7L81ls05P59T6MjYNkbQujKVGA9Xxlqlij5HqVa6z6L8gd7xqwC1BFRxGQ+dDy0TPJOc7mVDvM3FKw9IZLbb6CoQcUqmNYGJGGZwwoka6ukF0SoOCs/BGNnbZaEO7xPAs6QfJVb3DMREExPr1joQjTmbSk5TgyPQ6qlG7TwiARNjXVndO9WY9IAvIaoL9J9e4PEQCIW7mm5ZNqUcX4Nn13OOT0xSxImZRwayc+g33tHF+j/19/AiqnhznZ0QopRGCzRYQdihnoU2Ubwx3RoBoLo+3LJQ7LINt3/3nJJmzKVfQh/+W1qiWHe3FuvMBp4lvVExtPDzN11twSSbz2UpZbm1SC0SSJvMpf97sYAoYX5IxNzQUMPDG2oCh+K2RY/eqbMrddO2wkZgvqxtGxD+5NFxEzHzIZhOGUwFfc88knmjZ01rV0Uj9ges1AcNPZjniETXwdRg/JBIrW7URYM1VzPdtAwCc9lBi0qOyhHhYH54RCOETCdg+Z8nWgej/8FeAHBeSgXKxzxVkCK4+w0bz6pwvrYyOSSyH1bGQCYDxkWZgXwXi5lsPHKLmdXDxty2NtzheK5oQaHeJYITOUzk2aaQZYLIZtNc+aGeZvrwxrc3jKVEDKGiiNPHKVh/akfmuRaYWWkI/2eOIos7/bF31asQ2qUpciXyszsp98UdYrubiXmNGqRXZTHAfYecuMG8FnXLV7vuPQYlZB7XHKglo1LUtJ4p0HGm8/FuWYEkZGAsXZ+GBTdObaof9MBDsBSTXhnQss1jId73DqhbrZppzOdSOaeAVEHzNbka+r1SA7s6CAYaZPdZfKxUhwpExCzM6BOD7Rne5krfmKRq7KLpfZG2UjJ5oVrRhPjOuFiuNFcJnahaWJ5WRd/g1D/tQzUdh0HwOhASvlj6HygehVveXlHiHvTsO0RGn2kuonICKHPPZ4BbewrwMD3HgWSGt6koSG+bF2tWwiWV5zkeAGaaweMUFlwtvT8SEsUKbpLFXwa3+8bJ/TB1gfL9vYM8CJSXaiVOM5ZJUukC7IBAkHVhGQyW/qw4pXyCCNmowuZrACR87J6ap8BtTH2DUwHltz6zvhCFkUuWPL4z8ciC29FnLPDh1SBBPlC70vks7VDT6LcB6cUIeo24DeS6PnNb8Ieb/AsnfDX+thX8qnXJbTGDVBTy/1+mCoHp2VrMW6rTIIx2X2xLmrY/V0hXbpcrOaZ5tRsDtKF50vQKURybbokbDBO/lk4jszl8B854yNiVN9IAmuA91xMVvRMopXztvq/LSkTQgjPDSMkQZFILOM+QGLCczUqfI3XJY9bGdhwwPOy0if5J9m1fHoFpnHY1XxaBsN9iyfcyNPNNYQIciNvsd0gCCCj
Variant 4
DifficultyLevel
558
Question
Which of the following is NOT equal to 43?
Worked Solution
|
42 × 41 = 64 ✓ |
2 × 2 × 2 × 2 × 2 × 2 = 64 ✓ |
8 × 3 × 2= 48 x |
44÷(2×2) = 64 ✓ |
∴ 8 × 3 × 2 is NOT equal to 43.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is NOT equal to $4^3$? |
workedSolution |
| | |
| --------------------- | -------------- |
| $4^3$ | \= 4 × 4 × 4|
| | \= 64 |
sm_nogap Check each option:
>| |
| -------------------- |
| $4^2$ × $4^1$ = 64  $\checkmark$ |
| 2 × 2 × 2 × 2 × 2 × 2 = 64  $\checkmark$|
| 8 × 3 × 2= 48 x |
| $4^4 \div (2 × 2)$ = 64  $\checkmark$ |
$\therefore$ {{correctAnswer}} is NOT equal to $4^3$.
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
✓ | |
x | 44÷(2×2) |
U2FsdGVkX1+lUZ3MeQ5s1tYkUwULYtFqzJOFWaraYiT2QFBYsiL9Bw0We75aEb/0V4FXkpy+9BwC8qw10NhNy0Rg9Z3BSGyK+G52JFXdtOsxtRRBHE7B/ALzuCBs15sSBzRNYyvY64HWQI1leZYyEbc4ujiBsDZR3XYfUh0MfjJiEQ4J3UZK0KgqYT6/+jMYA72RO8hps4zZqVUBq3yI8IQ54uGTm5CkHDVbQNtYZUq0AIuNrqHEPsk1CTbFeh+xUgsXWpd8puR4MGKQl+uyC9Kz2jM1hLXz0OVRw7aL23pDfIne4gU2PkUXG4UAPzxCII1unbeyck265dycuOfM1JVZfVM2uzW0BE0GvEretoUq6WEG5im8p+4YQOmRz874a2a0hvz3SHAQFU4leRTS2whOiAf6vjwhPXmAxW9lPAXGlwvWY5psjs4VS3MWrorW/kA7+Hdrod+ueVCsU55xw5U/XPrcm03ATdAVEzAG3EKAYl7rCikW0hbE2O1FbQFJcCJOR846iuNcuFNTSgn8/pIfM7Q5HXzX7WQYisWt7d4aFgIGpUk2+gqeNxmUzc+HK3pdCIk9bHA5gt9UCBRo7VakGPrA0a67gzalQp2uZkq2cSXflifpRI+FHz2H8ekbiqLGM0qgR1AC1cdL4YMZgQHM8eiuTNjbwgy1fIs6VZXTbh4Bg1dmPB991FDowxe61dzmj3u3O1WDuEdNsVWxi2aGldYOTJXzRGeYLxOl6j8Ft/km3UZMGyWEjKiRTBJgd+VlBxgHDMGsv068S0vCjn3YLS8ltSZ0PGXZUnvDA1CJf4YWBgKEirz2Px58ao00MKqSodEOBrA3lGo9v29Ja3BTRcz/s29o8vZ/jOKtwx89XF7x216z/w8311YyL4/2tU24gDiabICKUhXp8fIM48S4YKcEIEtvwY54mvOc77OjxHunNMhoHxmuQi1nrJdjHlabFTpRNDbwGGuuBqWjWizlCxB/PoOKQmFOt1O8/lDlfQBDaS1u1kggcQPDql+Y82YICsOO9Q8YEYT7ziSXuV31DlJXelEjoHleVs1b+AYgkHE7x48IWLoG2CbbPd7Kl5bWt3V1gsctUhPKCTpuO8uoC2WmtTCPsmN1GToqHioBplfoqGuB2+mzRgBqUx0FN13X+czrPxTv8K3Yrb1EoA5RrHx3pTow2p3h6+UWGYvb0p5AwnQAT1/HI5asjuiNs9pL9bjFYueeXrPodgMiwYihNeNlRJv9Qm0a6PQf7bXRRgRRTrZJ5tdIPF7G6LdA4V709f/1e0y7AxLYSXwCZTOsPceomwRcpJ684RwFGUggLTS66Ue7BfJLjrabWphBlZqnst7vvXVxsOqTqTwq5hBZx6tQ/mUpTVkxMcB/ntOdEw6/iVssmqKqDjVboNJZVld6DBKyMoPvp1OFs8XHN1RhihrvZSrjSHzBqA/POM1HYc6FCTapOgDHqtvORIMFFQPfsmV6R0f+tiAstKYrQf1FkRt+v11b2dZJK5DQhK3Mr8zDgpVJGqRf8XKeSMvju855lVjUPWPadv/eyolIzrIk5ZgqSKd2ploDxerMbLomYZIsS1XUINMZeAfMQ+eCBw2vLy4KUYMkEo1ntVVda5jySBJpGiZUyLM19Ct+1kSpcM8AzQ+l2+v5vhzW/jmQ0zcyRvSZlEkwzo6Ph1di5G4xiyaXHvVqPgo+ub092rGz3tLnGckrDioHZQKjJSoiSGmWhzl2er2zYoRrqnJ7H8DFfVoxqRkgf3txM+Qv9/Xi7ZXFuo1S0yHnXK3taTfLImyPOfpTwkJpPVgYQgKIsTH7IC9iCNh+CE0rPuQXXU+IZ4AgyWTbvlmWZX32ugI/JiNjpWVAWtBSmIxY3UPAEu4QNbKhzEVnohU/X943ZBoujCYOIWFq6wGjkG2rX4ZXXZdv5cWMGDWg6iWQYC9WnAd1LzRB0rvfqepxkAgjfeV+DMVeUsoCY3h4CH/uGoB5/TG2K4sP427eaKepH5qEzuXRvFlTYfSTtByPvTS8DJsKH3G/pqUrYJFQWNZgmKl9D18MGvl/MS6AeFe+VH3lriEDGLkUhWzcSze7jQjFM0y/CWwzwI6JGQUIZTM/pQf63dWIjdbqynS7XuPYC//DYJ7g164V17rgQdemRy0GqxtvCb4yKZA7rtbrPSpgw94ZhFQCuHokxNpjHqZNnXxPLXcWVcTIwm5xOsC6VRFje7C38PqjM4eS5hO0euq+rRB8PfiJUUD0JTFHTjD8J0o8Jf3zVKmzaYgkVmFBLxAqkHkpQ5Gwpmc2JFBFiyk6EH67J2nBPl3qNF9gNpmVPK7cQraigJ8xLzPJQfSb5Hs80MPX12MwDWE4j73ZDQP6AfGf+lUUoP8THryhAkyOXO+ZYXFuVata3aPXF90B1be1mFn9CLRMIneZRbbiytUgvyy3LB+dFG5IcXhZEjy8uMoOjIwssJsjWWecrJHPmFEbM6yfsUIuYOZLaIIm3pfButEPBAbkNtlNX5LJtsWW4Q9uA64ZTSasfAhn58HXtWUIyJg2Id8rddF3VD9Dd5WjcxofMaa9+8F5mgBRZPwF5Q0gPPaBJS0Xkr4W+XpIMjMO6hfRUBDFoIg9UT70SXfgn2LuT5gyf96tuKPKNz9cglakLtULt0yKIdLPiSZCI1MhWVl+MwSvjUKnN9sa+qrQuVn0XwzNlmuEcKGi8q80CVlVJcwcd0sU+nQMpCyrBSDQq0m/8khTzTlpGzheBB+v7yz36KQ57dWarCS+HRXeyK+bZ9NIWsTUPqz2z9RwlPCIwpCRoaO3njhdvkLZlGJJDCgexRmZmP0RDSvVwZ9jF9sBBYWLH6bt2g0LhBT0zUxxhSqFud7vS25mch+88lOKIGfZmmlJ6bsKozkG2q+3czcq8/Vbta69PlhsoJrXhZfYXUEuPhcCbdqsrOZyKKWmKMUUqWdyF63LDvOkWU9sND8kNPO4cuL8Sd5JNl66zpjM88ZomZ+F2gqUa6oW/nSU4jaluQC1QS/iyFhwbkkwMpTabcExx2g66slBiO/4mJUKtkafOy6IFYezWB0MQqtSKHq9krMV4Cenh73fcBuyVniHXI57rN3HtS8ZFWXIvO7nG5fyO/oCAtxcidimIPyLP542fdeyaKX1gSDCY0Bu1yNmerDegm+3DU0yGXKpBmCZrUoPosPzxJOGSvcJA7GSwgdTODMkNdU3MwbvJkqTSLHq/y6pf0u+RNGYCWThMHT1hPBngOqOPI7vbfD6mR/NIiOEif5hsSRaHwLiFSC1Eq8I9jjSiTcq5bkJNv+4xq9/H+2NIVfgHiBADx1JboYIHybdhV4mowVPBJCtVsZAV9PdR5Hv4U5sFhWWOOr3Lhib3WVMIVS92TGmQI7sgQBCaJ+jPwUdVUEILnJt422jajDdZt/fm10pMUUft71LZ5MJzsooGcD22qNqodiDV6fu0JXIA5/3uXsOZ/CVUOURkmfwKsOjiPfHEbt+Nqn4/EbInyS8UTIHtItBEEXUIuQkQSVL69DVz9uH1r0oKeB/wW7m579fzUXwR1alylW8/2awVgyQPc/xZ+r1vCtNvCgUOsfRlzRFRqni+NR0QSYyjN8UiSYuJEUKG5VXnw6NoZAOjjlscEicNzazg7XthVCaUt0vCVskWY31tPXgmtr/H8WFGHGW/u8qC6TfP8OnG/41hyVemy1t6fTJ6amMbyntyxRGa7EklGz3USUPsgBzAnDznDHhKLhFhmgo1NwXf8F7T+Up+xvYLByxYR47Mo/6nDdwd6h9CYuU4sSY6Qtz2qB7KUAoJ70qT/kP6Y6AuJtANxDdrzE0VZ5/8fYHrUI/ecdRD8lBALbc3yfn7baeiDhOiJlbL1Wn4FKFUZU9jsOm0owOt6IubMiWTHCrHA/OJIIxPXINbwvYs5iG+w4tKqJKNB58x/OtQUlzhbhSrrMZRdwI+/PLFsBkXNTzlOlCBQKrxTELGJZRhAzcowM/10zQlhfUR+kxguVnBMyzn7M5We+q6j4pdqBXFBnDIz1ZVERNloG8l3V07p8zAINQatBRdMWtEp6joTNDOZjGYdgSkJiBn+E/6k7ILSSq5JyN6MBGjU0NkZBjZaor2EEt1dfhDsaU3DhT1PpVhD22y4dOLwTd8QmZczMvrR/4Rl5dHc7a+wL57fJVlhU6QhJwHeRG7HX/CB7lfvqSrR6wz2CJNk8soiF4UJRq3Xi2ao4qtxQyUO1UwxSJsT6c1v3CHjGUqcGVljQr1W6EOGPpvAUhl2tIUM4Ik29TpYy89V81T1dPLkcnykPYN7jXFUWMATy5ejoCIxXyh91y30A9N+G23Bzw+yOsPrdxx9vPlNRbrvhJCVtERt/oymwGiOLmqlcK0nFywH/W0G7uw7ZrZZDHN45HLNovPGWP+SmsqrxyWzw8DEzSpjvrPXShCfd1jcMVFXsjxAAe20zaTK3K8oal17+PK8w9SVKwiRgWLdvfbcbTSYPtz8+bKUQ+hMmet2VyuT4h2DF5GhbOLBAMCsCdl9v5Em0PX8GaZeBUqcnOOQ3igSeFQOzXhhOJJSJKolhwM8ru6C836CDeKi/I0vek6wqm6X2fPYVpFSl5zETC7JDuBlUITdDZqNDdw64cGj3NVdVHK25nbYxWGUXXLAUFMa3XNGVhGsiDqGl9uZrMzztzJ3t+0Jm3B12Ij6YBO0Juafp+Wm6P1uKz8xIE3niuyqoobbeQhtI3dGyD9UCPF+yOfhDcVdQ/oSKVv5Teq2rY0Oesd/+fg1z4NTawgtwr8qFrYNrhy+rzjgWTbwz/XKns+tIbkIteZCkZxok6zkR3A6gRjTi7tXuEUH4Q1sLWJdgmkov7kBodnlP+1aSewQkGMz2tmbZHIGKbnIHWnv+2ZKiLhAi0EakhL4csj9Ba5Zc/yvajcOUKpUu7iHaPdL8LZc4AgToVoFNQGvTPj/hwLb7B+aX1zXIx0yJf5N64F793TqH+4qgwXnLgilXUaRP9+yGQ/186x10WJRgRXdsmnfvWy7Rf0WK6SOpYsXHzf4hJuZhV7eFj+rn5Hgv8b9EoUDxJbQ/neub6cP963SapTRpC6xDMty4lvkhLhVzTC/aA3KO9kcKNc9RwvLdGk3hbPVL7ZfH3Pvkk3M2VH7l4pX2wNJDISuHOVEW+ZDFPu5LaLqud3kshD53YOdXZkmJz/VLw/9MeXIb8k9z3IRoiuQMoBbn6/p3bgGTQ/3Mp1o9qpUazK8e2jdcr6LsSngpGyaOR7kWq9etXkf01IxBVdOSAlnzxngb7OkAT546yXCbnhRuijHGVH8tYODg4Q9qrhh1Cph+no4FP51g4kpD8W/QN1aMA/kyFFSlpNRL2DbophM7/6j0n+uYFBwMTpDoSh+RuSfVF+AKr36oFUdWfoVJwx2eetuOA9IIJOIgmj22t0PRnovSUAxBbPEDK3Jh1CSOygHhKD1huJE6PJ5cq/MP21EIkY/fkN7q54KmBHYvl6z2Y4EVRDH4+LGf/3hEwLlGUg0LYUO1Uh1FGxrPXnBwtCJuawETnlE/amfveqLngD4VOs0lzQQhCVnW6K3FfiNXPb00D5h8KjfAeVhU3HvrJGQjqsdB7z0gvC/gwgri47aPNu96+hREIzhJn4qAwvK/n/fmEYXsdVjoyucRbtAw0bAYrrv6Qy1+JhZosk2kzI7B+ER1ujn7MX56Q5Patex7PaOqBbuMJFS0XU4ful3d/vXedyob6OyO7Pbh24GZGvm5pLjRDeUnb2jQE+oOTtBIthz2Oh47JexeCkuxzq8UuoqKhuN2nIP5eBnY2TpZZpnamJyV772+MokV3kb6VX7rYJpOQJBYsDcYQhpr42q9pm4R0zxdRhjLrLHPjPLWJ2KuOsizJ5olKfsijSN/fO3nBQrCplIA2d4gGu7Tq2m3jJXm2znjp8FpOD3JG1Wk2dlZDYeTA7Pcn7XCGRZhcQgV+WvgSpFvwhDL+iVnjml5HjY3EZOwEFTPCTL1Fj+Ub8SuHGHkGsBgPYMD6hxLK7laBS0+t5+qYrf7KK8sU96qBGCJsB2lF/JQbG+YiaUFyKX7LZjwbgDiwaSiXkDL4dWV2PZD0R7nOHfNGYW1Kpl7HyoqzZezpajTAzlqsZbqkEf/9heDZ+juv3pb8lGEcLgeGqypUrMXky5LdBmBOSMUcpNanRtLSl8OnYQaSrz84+YD/H1BEhvT1Bp2fEFH7pVXdYSEFHp8bSmn5brWqdJPq2tUnInNKELESPGQAu7CaORmeNxzmRJp1+xi3NNnYX55cHLXnoYxyCn9/rmQAMPCqiCRqj1uL7AXbWZE6FNhrVPquPtM+Bo/MBwQgaUfD3E4hjiM4e9DNx0uJHIMw6Yek5IolZssgVjvoPTf0gXKVDyYAmYy7QsBhq+5i2auZNBxMzZZzQk1KcqMAOFy0F8n15AYJwxCm/6sWwky9vvU/bcciIlGAP8ZHAcKecu7ZLQ0I2YuCoOjHwjudBRQ+WtqIKawvrz1HKRrm0UP5GsXuBRegCRS/M7/GvED4h9OlZJwJNslpj0mMkV+ZW/9+G8pj09/KtwCQTzkRMb24/lLK/A1ZkbJPz5uw9je1VOW+OMRdRXprScR2uRE+530zBtLIr9rfMCRp7MGXAZjHlUhxiopLwjstlEEwQ5Ibd28HctjYtpRcmEHGV7CCg+8es+9qMHvSv1vlD8xIbFMd6jezva3+fK3XIVzc8yRleh41gQ5OJVYCuJPpVNOzH7ZGSJZepA5J8LoHvGpmn+J26eYkCURMA3+G1WJQVlMuFO3/XLuWJ2C68AJan6Ua4fvID+7Nl0/8JNu9RA2il2nvtl1Y154lpUAfyJ2SN350qpHMF9vJIMo8MYk67isU1c6gPUcDe+212B/znBMo3h6UYoGp/uMUtjd9grLfn7VoxeGNBu5AABjkVU9Beqdcv8DzXq/WizqrYIbtlIIp6cvgN5AT0d2yKi6y9BBDaVxGsiku1j8vphUq6iuHZZD1s1oBd0SfqmCH8AjRy2UvcB8jiag/E4nTtOWBVva7u/RjXciD7bmhQWCuF/rJLmbxVKZkSiFPFnBBgtZNAgEsryuVMEyFdNqFdMIi65nvur/YDXYqI3GfxPFkjVbjY5NzFRLkbZ5o7x+tqbfa0aq07xCThV+r6lsg8X3nOWVYP64W4cvexpmUIqSyyxqMUFQcCuPK5RtVDG9JjFF5i5GHQLhU6TqVyNz2oLNnABiRH4fR3yVq0A6jtTcigzZLLb07KTwnfFiekb2t33IIhpOgUQxA823vcC7W5q/6XJIMwKz+0Mlad61HQmOwsjzjDns9kaQc7ad+CaPktsE9N0B9ZIoBxDRpPenmtXA+WN6ImpMlT2GTleO3YSbY/PX4/AQsGWkCqkMCguFEV/nxKG4415qnuif1eqoKTnOgFZC8+qgg+0a5Nk/Bil5whnsEKXUpWrjXsdHER0AbmFWriwX223ia1902wStCSgK/X+pHfrd++s/M8v/uvWX2oLILckaPHZ9YSgZj5JbxODqPlWIZpMFm1Na5aSh8V1OYLfacDNGV17DmmxrVcMBy1005jZduLWPRrlD4QV7ocPI/YPk2pjhSoP6InBiWVnxJqkZ08Kh1wOVzVR5+VxJmnbkwPDZycj2JjYb+8uqcfRYQXfstah+RGiShZ0J2lvhC/JgVcWkE2Wit+NFlwoZRNBEwqYat3BqTg8dLVd76pBViY9wZI1KVpYlx4sJkZYnjsTmcdWmMQFXpmU0wq2LM32WGH0hNHr6pLCV4ScIshPe/CI5KWqW+r2ijCySltCDEtUwpdVDZvm25Ms2gk5DhS1uLDqgubCcNrMkkPHn5W5imYcxGvG5N0j6vfVZKLxduuDiPfsVW4hJGfQoiRPgyWsMtkp5XO5HGHo5lOuLKrfM5plIDPWHFYXk4Djpm1CDau0CE27IiRcmfW/Bz3UtMvx/GALB+qKK28MWP4m2E7hnXdMHqq/N8w+pHkGeU97CVh6bGFhf8oCjdXHJcdfuplrQdb/LfyLv74vucl46Siu18q0lZoCucuXmEQpuQ5t2UUTBGur7Id1hgeX9ohx1JiVYgyLsWvQh8iHkNnRelPmOm8O1OmLA2T4SErotNa7pgmovPEgtVsvaukIJI5sbxQPr4KEa3AfKfq0FwJMmj7XSdgzQlrztckq2buc3wMAKGGXZiDp6OYjHASY9Ott8KmQ1Q6PF/yY2fVOR4Bwp+dLgaRmR31KIyqk3S0Df+S47DiiRNkuZeJMMUCaful8u/w/Q5tfudU/ql1QOZRt0rnPlhUZ3QVsnRaxvWyVrMJgt217QKrP0qgY+LibBzUP2XKZ/M5NSp/5SASvovoDBwxtdalXGoPbcmhxQ6MT1B13X/K7uhejSGE2Ub+ETZPBrB53z+BUFwlvBSUa81bLL9qwvCvXj8rBDcpkaCLRE/n+r9rgLQvqmvHBIbPp/Fx8a8cHc2MHLxxpbg+08JMdWJ60O/Ziw2QyIfieoeLmJQP+qYZfzDjgsJw2u3kWHZwNzGhOgJi/mOjlOe0KRutM/envDAVuScFWvJEL0bP5uxSKU0n0qJzY4n6UL5oVK5muFul6A98+qAoAaLAUg1O0KVdIkXpJwdPDyTrkcxxjxSSwlk+mqyzc1jyAMNtYpc1/tEAuBliXbo7ZjrJv7b+WRCTjUONfcLa5OKtvkZaY0wSuKL+YwuY8xvjaQiJMdyWppwd2fFdJs/e99oORLDxW1XHiw9jYqCiLi3XZzYYdGe5/sVPeXC5RDKXWr1j6ivuIrzWnaukZdDc53s0J5N6G0iW20UkBK6HZMKPfTZRThJOmDs9UcBP+a8w3fYFAOdwkDZf6jEg0dGja+gfY4SjAEjWunD2a3mxA+K1s0KMV8i9xjDtptxxGcVU0AMD8+/LjWnCPdww2ekt38PGUzpaePMBuSA3P+qKMLGPQPjpibQfyl809UQv5pv+JgyAl6rPsDvIoGAWKFRlr4murrmDaYtMhXDcqdLG4svOABUTu1ccaI4Sz7aM1A/Ya1mgP67jiF2cVHOQx1maMbZ+8lwUfZk1xxG5fy4nEPtcSxQIOlSy3BjCUTn80sS1839ejhKv3tw9Akd7SjhZPrmnk9eTYV4jX0VObWYxcE3LARfVbh9mMspx6nydxAUTmzT/kjU4arRyQSkPcCGQghrTJyVbw6kr9dvTZTiJsdeS4UCBpFbDITl2+okLKdNLC4be8sFgigRz9t0Ji0RN36knQDnBJPitp+Q2LMzQBn1Nzxpeq9SVnmDUUiyM+5E1WyrFnwEOvfEXRBvOUsTqtrTfcfEbp7MEev3Uf0b7/hoX3J9djxXTq3aaD3t62xV4ivIKlDONXMY9k5uyAdzuvo1PzaNGzrOIsf+1uH2YbjaW8CN/Mv2JfKi0unVNzlHRmiAhEQh9ummeVwSBb96F9rcRGDxUTiuG2tMUf5eQ0HHDRNV1JyXlG3tTjs0ZR0l5etHR6YjM0jn8oh/bpX0mSKImBWTsaB1r5sgOhPrzelQ8xUlkmzT6zBaDo71tCB6LD4ZNQAYZUEOvavRgyUuOXqjhzGGPRa4Db/d+87L4FhAJldMiHT7PguTvzNCIudISQqRGtP7xNW4wogUa8QaRUw5RalbEsrINU83YfMojk8kOY+qhJju/hUsJt5S8equE20rEpD70r3l5jirVKa6fdSr94y7H/W32SorCqGCtHQPi/Dfim1q2tI0qt5n8zfiCzCQhpFG1+oXg6JXZwADcsk6DVTZRxhtgqIplyGDBPWmt4nav3Y3FKvh5AjMmyx5a7m4LT8TjqpqAJLScYmkvMTW2U+IsL3YWKzrSWDMeUze8W5rJDQ5p2+y5HFAVGIfhFccGgzNkYWRxYxWtbW4poUdZuGS8SRtvyB1B8vE8zjbX/+GQ5iI7tGu0osRnA4JTUgMz0/sTiOHVqtyFhJNfEsuHi36egt46ae+plppoBfQAV56wLkjFcaHwERJ+lVaToP1W7lLEwKQllllKDIPtK9b8TUFveGlrK7pKnd9hOAshHSv3IbQe6Cb5eYsdMXIW6de1qOFTQqjFIPKqTm52CykxxSyz414wRyDqd8zLzl033MJg9XX9JMuU58/6AqKwCUCZ4ddBqB3DDs7+iHkx4eAa3mDGyj6wj++o1z4A9zbN//birkPViZ7y/HpA5kRH4TseKp2XMmadDnuFFyYVfVya2mfRJrK6WvODzoqXn/xOKEYzdWaNGZA3DnPBGDiu/SiEWO0fcenQTfyyRASXSo9jzfbbME5OB5dGytqcI712jRY2JLOON+nT5pBmr8GYzq+BbPo7Sy5d+p3zHLUVPL2DDp4gVIJGzbqnPFsItFHtlVLNC4+zAAKBPQlJjADcAmyluCf2psA1TXd2ZGsyKV2J11AXmYVHgCqAXEb66l91HQ/kH0i+ebgIR2kD7c+hYdWwW3pX0r8hN5523xaOU6cYKSxYAplXjws5EZvuT8wIC2I6Ip07uhy3CJ0BmhEJlJLLNttYrW01gGV7xx4Oeuz2DDirssTyiPUrtBJXlzFbj6UO8QA8SNSpXnBiwe5oXMBeRN42g6uLH5fJ3dpAMdlRZYhKHR/+7vZwFQqV3QsjP8AtCcq0yOAzFCd+XUOIx2trYgTz3WPYp052QtqgaN2iPaYO6fNI1DPJOEzDjzuv+5du4foAj7qIkuSLtJamAEmjRXGk76Qos05Yt1hcLC3f4l/sMDf4gfNp7N47y/l/aLvbAuXkHCMo5cpjDCvAN4R/qbStK8elAvkYDMCyjZburMC4/5r8/uSk9/kn4JMWiFr/ODIjYJ+a4SYCPdzH+B4E1kc/s+oWfGM8gxHgsZ5aMHgxRWpnT+A/Kq6MhhJFOc0LCRJ60Jp4YFb8O7JHRpptw6mhzca/44NFgfdPJG9Biv7mrVjC+hafTswfRB+PhjWvKl6tHBpWne1KVyCLOr/RqdVVQbUUhC0lsyLfxKlcL3QYDFiHj2MqIgZBYWAnaN6e+MkBSAN6CMKw7fbJnI2vt3ATRDQmdIwl7jWhV9PJkQJGm9Z8rN7sQOKv3kCdqisnALqb2cUX2oFSI2+G66QKgmOYt8FAvrMY2A+pBDTlrPw4+NidUsa0tPQpl7eSkeMqdoN5IbyzR3Da5qbYwTgj4qrGaTTAuIYGrspCyP6JxunBizBbRTQZ6aRDS/G6PySzh33wJ+j6xHCyDSQt1LCGTiL4WrwVlo0aOwrgDPBFbtb1yRD6pjcohpGNiXy9sFYM322yNWQN2BDBQLQdFES8yOrSQ2Zvf/PEwTIP4RjBuvP0mMO6L0lNZ3RFVhrUlfJlx4TwSJ+b1VSbP/hrHSJ5c934D+ojYgYi9ao5QctPvpqIr2aiOxkyjNIREucMbV1IfHr2MYZqr/EHuTXdRWmwUglO6ovXGAlI4OfLflpjxRjUikmygNrprzXUdAFdiZJTYupFFuOpGLwlV1CYL0KbsfEIpPFSMa1BXTlUI7AY9TIGVqlKeBoWk/v9yvCZgCWo7QXL4S5MrsoIVm9s3ynSri/n3oB9xJ4MAjDDIB0GB72sfkXQQ2ptK4kJJgv7GoeAeL8Ju1RdjPqWOv+AzW8seYJRRcGet0054SYsn5TJyXtSEb6YfuYsnPKAZPX0sQKx6uTeeB3+oNUzqNOETI0MeEaCDYPBmPih0hvicmocB3QanhKlMA5MGWJEGU3ME9V9q3XDWQE47apHqQ/WMJSt0cLTTj2fE7pvNwa2KWSaHy3eVOMI7gZ8ILSMzKGTzDxfQoRIFbFAHiCtvZI+PHzfq7N9dJFRKtAnnBgcWyg9EDK14Fuz2gBd9Rm+1y7epHfUIUl9Fw2ieT6ZDPBNa130gDDUNu0081+rQH0mHJFUcTqdTa1dGpXut5tNtL9gtilhJPlxZHYocu8eBxSOl4fTXICXfesRXXUCSxu2T/PSYtTBUuEicgi+82M8+zSEKV+Y3RW3sciEJHyITTCwRllzAXoc2GF6kXU0RPIPRAfvOCHM6iXDHsVFn3i+NIDmX7t2E1uUJWTQ0iwvgIQfQ+gMi9hb2+Ni0mAVp46CxXBVeLuirp9Zogx88kFZMOzoUeNuHpBHmtsOFlbn4jshSqlrnQkpKv5JWQU9j56201HknEJ3M0+gG71aZAXkx6qnFN3BfLv5eXd6YWc5a5nfGdoiUeDFdEl8BXZ7cPPmN6IvBcPSji8ifjAZKXkskeGdd33RGhRO9nGUZNnF1T27wMuVuIzsPmmD0yQNz+9KcaPYlFAbc0zEQk+gT6J96L8Zaiy2/+FtvFz+qtcip803pMutNuLZRxeBFL5PE5yUvQvzTot0l6yofZA6kDCLpiedm7RUJnhlf4tJQiummtMIrfJYG0H14XjL8qbNubt78ndl7Yl8Z6RFG4o5z6mNhWBFt87JnHD9cohibqfFnE5Vr4gyJwUU1Q1WuUB7PrloH54KOA9o+4YWSDMT0wVytl9zW8znaKAZtx3xGHUUgIeYuUVCUyBRzcqYfWAouTVr7lJsyevJ6NT9bzx5nfNJUNWbyN19sdX+8oCyrtI44zgHQ6axjUHRMURsHRosQu6CMRRGwsQWMwzmt7RO1DllsjH/9M/nDC/+eXsX6Px1RDZs4aCAGLdCZfEP4E6Tahx9GLwuUKQiINDt3ef1cn9q6KRKZt3pLZMqrNVwDs/iZsRv4PLJ+ie2Enm+9Glm+vTi6gJcCoWyagbM4d4RXh+lkfSfyCmNvZuEUVYGBYTi2xmQqwHKKhEFMKH6tkxxKP3TghLUh56YQy3TPePTCA00ZIteZo0w0X2z6aDwnIBSWUPHm6dXVVX0u3lq98+pplkmFUtnyjmyFhOrvV7Tgeoo4ukxA094lhVdA/HybI+ENIs3JA5So88cfBYEMVDfkP2uoCknh0oxxVcYmV86465RdlrKEJJ25/Y/CLazXiv6TDy2gJor6Fo462FAE7qoAfeSO2kPagHero6eu9PJiQ+EjCm7ByhNMGlcbOkm4/8zMqivgNNwnOrxauHeNWkwe1bUl1mLIP7q/3DjT48KlBIiexpePfIOvsplrkCTAHrxioTDOpw2CPCwp2hWGuo96GdTbjMJGo3LxIbt8+x363sWObxSoaW65434LWvB8HK1GNri4K6WyIdfGvoiQcg81ZZXDEVFpfR42oZI4u1fBmUcf87lC7dxH3FTHq2U65kp666i1IgO9QtGInseFwO+KXMa/Ws5NSrZesQslTr31AsXPjumBCNyjU+w2BIm/ReutXgMxqRs/toRxKvHNY9/AASXBYZtuEOB5dZEjEVxJ96CjdEI+v9q9Q9OyL0vrFdybxlYjvC5I9pUECeiffy3dJsQMMIM2BYQ6+rJfa7t04kY3rs4ku8xd3nXMt6aWr0rzWGeNvHnIp8tK2cB22tNMmCsSrmZSY3MAnXetVyuQRa5YpzMUF5d6zo+AnCiXkcXADvIGZt2v13LKHseJQJbqIwSrNQo1sobLnfTDhDwPTDe1H7yhcsZiZGz3fTrWKsRk9302PQoHGIAds6GHX/EI7jb10wLIHPh8yssnfmfb5NCOVdZ/MSaEqp6YqYO1WXMdEQwnSWIegVmvehYLJMNO75pOHk3BAWhi9CyPQ8FaYUBc+pcxd9WvQdaCeBSbb3DhwNWZ7VjlVQp6oeubfF7kLvOWxR42711vfWFPKhruUhd89uZMbcMw+iuH6Lko+18OI7anKSXX6IFMik8mYA29xeQLM4CPcxsI7QT9eoOKx5GGy29ezXWsvWxanBnYaCh+wOQcTx1cXKhh/J9vSoD4sfKht0zjuiiU3Jy6499TFlZzwbc+LhKgbB8HYyJ3o9HX/YA0SxqRf0k0m1lz3mPqiU9yzOPWvasbO5rO6BPCay7qYlkRzo3S4pt8aofOTGixM5NGHx3bKKLgV4E70L6IeV9urKy23+eSFBaWsNCnvcwHxob3UV3yuy3SNq2Lp75VgAjpKTEoBd2F+ZyawnQUmfuKTJNyA1W6PdQjbpW02lsHLU5s0dt8JvvIPQ+OQVWfYyLhwqqXWd6eJG0Jodo5sCLavOhnWoohyFFHiEUcF4983FJpsG79EMHdO2HSpo7R1aQ832IjpPxY8NqkFeq0398D53TSaFgyUYqP4rBrWxoYx87WYJH1ycQIl9EUGWV8E1za30YFzOdMhFqolGPfNhNG/hgjbRPK+ZpBeL/janB3ehHCDbD5lfCQP5UTdAX11sOUclHsAJPVbdU467UK43LUhRcLuF0EQKgCBinN4lH0Iilk//LUnL6VtauJMhhU3Dh8vh/CNH0uHHXin2ruHiCLESCOC3zsvwXyyg0IJfvj+2cGTlrEMgXZDx3zGQp7TNDB2JuljW+sAcASpGdLU+QBzTFXkNpeQ522hQ5oa841fgGrMp9L6BgRFZyBGKUEJ5hPYXcUPIfQyLSla8Qt2uiK9iE9wvBxqXtUMUcepRqo1Q2rXk/abmnZMpnTm8UXFN2730N4H6RECYoBeolpHjGvg2D1goE3Sbh86y9vK/Q1FwjdefrNlOnPHiiZJ8OjVApgmnMAveOpLCvdraf/crcvaWmJKrULzJehonlOvDQMlKmjui0g/rJiuz5KsTvr/C8y4gJL5dGpsnyuvBBMnKa+YqoC0a8dd8cZMvNpM1LH6kH61W1wIggrlMGGKllN/RDm+9dNLBF9uF12/PNUHHM7/82kJzOMhDpo6hcp+0sOed4wsZbE/lN6MuQChLjXabU81sPO43dGQNjNFNVulibxaXvCY/gknS51819j4qUirBiZQux1TklmmzygBvguyUinIj0f07jg+u11EfCnzWUIqwXLfr3etCJy6PVxkKYC7pU0fWMlys2fhGrlpugDn4S7xDLn6ijIcNAeWqgFLUs/F+F6xRN37N2StKZMM/sXr/WO3+f4rnqJ+yQi/fZHX6WLLdkMu7623VvD5KGuH/1TkRTd0npuTSOHhpTxv4OyCLOOqbdxmwisukTtPpk2RhJsRf/Rukb89XHnH5BWoWYOvseGzXTwkAkXnSQMQ+V0kVyup98sWbtLKABV8clo4yjwspugoNlt5owNLrsGTY0XBZ7fap95CigxV7SxCxmrxkzB/5WdC5jxrUTSPwaUCtxH8o3XQtNQOBWMioAmB+wNVGs/1NhZyi5MMCl6lvjrku7y+fROqWFplN0jsIDWMLaGQDQydG/3lPtYBs6aMXccowJ79FwKw2bTCxaXlb7vaQyKganKC3epWmzlRCes1wplgbjNaB/ZnDTOcZk6xGvJKnJUl0HPSLfk77ziW4uCQNcIsr3yPyoak706IaUEaYErpsSGWskVtt82NY6+pKqnqkMr+GdZ3UiiqqhCftiTGLCdIFEGIf5iDO+EOXrRHw41XtGuZuCX0/GMkLIsEz+lPK8gxbjdnHBZbiYJblYv8IhkYeSxU4JYn89pgSPYiDJlgpb5uGopYOekhNIvj/3Ah7uvEK/p+Km8RVxQl5ii6bWFgqqj1t17JZ8VBKNTVEhHtM82T0m89TpbpXwTeqmoK4GtyxkUf9OeCDxtl9OHAyGR7LLHH+dFZSQ5HKEqAicc3e0VUKnOYb2oBoK50w2QxkaM+WC0UMv4gCmU6OlDkm32bOATv/N1C6LvruRqSpbzMleDefXeYf5/xtWwngEFV2SWdSgZklyY4xtlkoCmmrTddsVDw4ao0VuTXdZpOXkeIsng5Y/l68tC0Pqm7sjvc00F+st8bFpenHKeWSCIYiF+ZQMHx10Wq8KzJsO9YUC9eP+B4MtN7GBY0TiSghE3Dc+T61LEfuG7nXGKEJk4nLvWmlF2xdh2KvjFxXgIPE2f1XNEQVvw+rG67kqfTow9tkxXKEoVJaLa4CxaPDAyXp8X5nglz6eCDltJSxmBXC0jl/+xAJzgyZoGUYOmTkpcc9e0No5jAGo1XyYLI7hhLtSfnrzFGEkgNo8hpa1y/hv+JFiA1uBT+HsOEakyABMyL0cLI/jvfiGtjGZluat/5oWpFALbl58MEWhgHArO3wISvy/52WT2vU2cUEuvt4pZ+bwgPotkfLg8n7k1nK4hMjPT50wssLTHd4aGfKnvAwRJtE+KP0Whp/C7mmJcd+oTmGmMtXwe9VuKNN/HND9WOGvl13ogopECAasYzihaeLf070gbkTRvVk+R+ayCAIw77Qouja4jboT79D9kdFhTUgS3ZB9SypV8B+IYYwz8nqFWifahXTtjwgQ6BuGiIO0k/4gfsU/ZKSDz3HwAz3H0d6dL9jdUIkOH0mRcOC2eTa+WAH6JZ7DGZ10YkBkFm7tXfzjgS+K76zCqtkHadOghcvjEfd15LFpdu4QaU+qzXo41E3LhWi3k4v1jFwUOybmqHUDXntNn3n30hLIbfiiFA9tslqQUW33Nb96TUXY1F1/e/vXmofk0YKWls4KZuctcuFxqsPVr0aFRdfugosq7TuMd3T3fds6BmM0/RDTVrlt4g9d+rS5AREwyrudJLkLJISAr7nqz/pCskXjzR6s9bp55qwODSriy9M+t+WaQmJr6Pof9Kt6AK9A/FaXj+CEBMHxopJgbzdsr2q/uVFClOTnP7t/NfhMCbWC5rBPhpyblVGxA8k6lVTybViUtGWLIgFKtCF3+1eQY/mSVD+4kZbYr66KmT14HuuQd6IyegKd5vs1l2HzpJ6StGv3xSM7Rrpmfs5f/iDfh0RAS/6bgY1tIvyx+HsgymHeVpYQO7qOR4MPkPsuF8j4Po690OeMm5wpUwBz3a0yae53PXqfmAt9gd69V3o9giDGzdmYZWehs0B4QmkmLmTecc5UmA6+1Z4qAZtRrmhQ/DWqJ1CfBbos2hliUcfjF3/4APSolMe10DFTKrQhDkaEL+nKsURnv3qh0jLDTuDb8cJ9yXDTxCtcnNk7B6zpymupC3ml40QfhyWBBjRNFinMeH2DItkMl0rD7k25Vum8xUjxc3QmnQq0kRufbJDoPBMI1PIgFQB5hscN074yKOi1ZTdczYgPgh8dUTFt3DXSNbAfUTT0nIJQ3SiUZZ6wwO97fds25AjCEgomVbEiXtsPKqAkVNbcYyO/AUM4tU/93kFxYHWhwsr4B9p6yVuTE0xRj8N/YbTClflJSzKntx+NFTIEnv3vPF8lsTcdvChB+RwKJF7c2dlaVkJLyB9ybI/fTx2H0BONS49vVWfmyAhPN77YjRyWbJum2Y3Fj84v78QpLkbGY/UVbD86oFKe6Q3GhkdXT0JGMgSbW93XdOQcLeajuDnCPu3wNFo88g5XVmLL4XbQcaCHuKxX/Uod3Gf1qZVWyJ8LTSYd6DLmmfF5Zc4pzV4TGctX6SiU01iw/PF0lYpJO7HOBvTx/gdbn5wsCKNp0HzVoMx29AM+y3cnpiqheDZM+RSr7wudptI0OnSnHCCXU/FIozgfLidnJ8m3knkmdcwvH9wKRRuYi2rbNhDjFTEG95C3uVevRjFEUQUOKCvDPw2gSqrZt9C/WgfAYEagQYeXc0I0r1O18CAjc8FP13jL07Up7zx5iiij5818DglFjx/hS0CMdsn6cobuIjQABiP8VjszhrqLWdlCpkVhO86jAiLEHi9z43e7f5BhmeBzcGlMfXlK3lX3sOALWPAOo0ZfYe5kP040LnBLvb0ugrsa4PfMLup+CsV5EVQFyq7eNqN0qnfbW8gG/zJ6aGOcMOVgmrQpQl/UfCre7ktub6wq8NQBCTphhC9jUrGe8yewBHQgw+/K77gGo9fuUneuNiF3xcZ/bOALL1YdLwFDWYt9T/yBUxGVPo+EWG0RFTZCgEqG/4j8z5nNE1ZTKEC01bMEi2rbu96O7oIGeDadBO/M+as075+XiTRptvlUKU2f9elANIs0YM9OV2a+XL7M1dkEaAlEoiX9KzUUmfXbjtC/FdwXJMfJs8VrEn2UMHmhOodstuQ02evcajrPY4VHT4SMMZgQvfYvsH4SkOJ1AaR7/agtKkvnLcR0f8PLjxuvohGz70S/s6cg8OwAyVA69Xqyqt9/xzLG7jZH6n+zvhlHyTLRicCw+FJRfatiaApMX7L4spd24C5z4Q/UbAfmVexEcweqebUZ4Fi3Jch/pEE0Dwiud+/Mom6oRx3a8x155Qt4LtbdA/2REMUJtg+hmECigAHzgq6DHWkYgoqPs2yA2kpBOjv7VMDJ+eQmawidgdvWHpayB2zF3Xx64kK/cpJVmt4lr4Ckfv38DJhDqgZR8y+jtRe3oY2jsBu9EnB8wXyvF0XOpMkPgOrt+Zb5xGlNxnUUFFTpZI0nd2EXTNQ625LodG9CGBEnqjvk1Gq5qVWvdAoqDImZXIm5ek463Wd1ob/AEvzb3/Q0gsviAPjZmJD3CWzmJ/4KNAGD9SCEAlAc4z9suPeZvHuOmVFqx70K5lSzNfFvyhWW09qym6iF0vvR+veB8+CQH8NpIODEVKBqHnnh9I8oJn+cj9+wlX6jPmNIG+UGM2wK52NtXFk3eS48bT2UykgEFxMfG1AvCiftivFWnhhCj0sajFIXVT1hVbsR5G3YaBXEWGc6wkPWHMLG+IVPsY5Vo4sys++zZEl/MYnobJ4M+7O59aZS4XglBmErhIg+Jf0/+lmaPNArc9EN1r/vAOO0Xjdxhs6kwpF5FoGjEYmNyz7oJdQ0USWSmdpCcZSaS6FeJLxcSSYRmuNvfdxUXKVHDpifb+gmLwfmp29g7RX+IV6TExndVeNYOROVclaTzE0vQChmEhH8TcLRlYHntOBnBmizD2FIk8pN1G1QmJsE7nFoXJvB1Yi3j6lXUjsh6SXz16YukM8zXxeXQpDvQXL5sWHDZLmQ0y65Jsq221Tzq0lq7tjV4nZpiDvf48O98aDY00o9MTA9uSKOGwKq5trklos3eQHNXT9L/ZckN70kUkFUsHkeAAocCPfxxEpEdCYP7WUS67K4VFDoZ7zfwTQW73xGHqr7+rKlpUclpFMOr7OVOlvuy6xPkM1aN2HGFnby+n0wB4QamWAdi1PDOoNZQpqATkxstof+A8KUxcUNtDccC38r6IReXSR3VmgwuANoBUwf47nCS3ePHvyA/ai/JuW31fNFF/9uPLf45dUKtBYZ+UA+Q5UjUN0buIQ/6f6FyeJd/+NK4mxvnDKIVgWnNct4ppSXZlFizRHrDXE1SzKSETYXmVL9qD2JxLhUnU+G0Jr0Firng2GG8T5ZebgjVLihLeXsG7//5p8+WfRTv4fQjju7/vHq9sEls9hwGOsmHas/Y7F27SmMXr91YfP40ipQpUK+/EFprD67h7buVWQpQTXcAlSw5UEZGmy/pwO2tDjXvT03CfLo16klHwlzlbg9LounHLiXesk1oiOAFtcMkwxfc4ivu8uK/mJx9IsdNKFNzGvloOkJAjhv6rP++eJx9e6d5qeHw16lMa9IB6qaRwWyhB/A44EfS4kCmnnEpCvqEWnxt1lFNKzSHqkCqXzjC9uTjGQt86j3VcQkpkDex7YTUxbxUW6Gh0ImL/7/ecT3aQBxVbTFkfE6T2BJv29w6GPCrHXWifOWemLji3lz16rpdZnnhE5cAA3JQ5jJT0UxbDCHn96DVw5JFUSz0g/qtCJWc6kC8WiRGorwZ40zTpMYi/fRpUQuu32NMB4QuxZXDgKUhtfjLRJ1rZ5wfk/Cx7FwDqEd7PGte/CZk6qlhaPT8WrWIZ2mc4E/59rmudOlL5O/vbufZFGe/wxqcN1Ttb2QsLgfJSHtrC2RgDXn6qAfL1jwRRqhE5K33tIxLilBUifgRE0DEYZWLlKSriNmlEqPNgsjxYw71t6vtp9E1qCr4We5V17qGXVZIqSK9arNjzabe9Pr8HnsCWzejLeJ6t8zbtSL+zHIF1D1GHGbas1i8wvdDwWykiVkxhg5uzSGHk889q1tgXOm7t8YmWGgjNU0gRG4TdHvconJZn888UKjJnrXrIdB5EYooWgd/h8qLABH+WutSd7a1V/C7C24gCtI22FBCHpZ3hde20XaLFP1amAx16B5SYenRkwXY54utwRtaH24yGahb3SPFKC/RhExXSBO1xAA0UdgzyZkRpkAfUz8RMhyjnADmTqjcpSoepvCyW3UQS0QEQQjKFxDqcAyLueez+CjcBzU8mZbshIprDZJWaiJuppxUQpqAVVvAolB04ZzI8DlXjScHxvf7OcaQahxgYs5rX4ZZ4+vuHMGcjB4Y0X5vZrUB6QujQFQ/4GXxgPFc5loi/acNAuY+xOA7arZfjqQxkPHew+OBs3DReijKbOifhlxIY/zdnRXEzPmjOaaWsW5GWHCv6iFUqxB1nI50hEXmjTZMRTiRz4H7XYLNEiSSvfWDHV9zZsReFZ80mpbIa2NSGNFOiq40TlXVm0UO6DQ2DW82afymgDYphGxDzhe2hP1snMxSkH2U+ppcawKKSNObcd+Dd4JeXP9KjSsaDRcc0a4EK1g++PESFETDnJ/7I80/HJ15ydN7YHa6HsKRrIsviSH/2AB7KEI3vZ+l8DhPIJjWezGazMch9LxATzYaqsy4b1En0NYaJmreHbeutQzo2VnLizrZw+3e7AvhPTxv25nNen0xElnK0gf3kUcZB6bEEtm819Wf6uccYOauRPZEWQAH9aGPKWqmmi3x0mTN8f191Pr9m2rnuSPEhprt65/ZPn2fNXNEUgr5pjOeGniX4ttHK0dt9tszJi2uI7k3SwVBoXVfOUiUDsfptAM7fjZ9CHKpUhJZL89zLyIRzjswsQZl4djfgsZ14qYDL35k1F/T0uh4rjjmJMD6xcONzJ7hhPUyKm0sUhArepEBUksg4gvtBup6lT03EGDCRn3tg/BYhJiAfuvHRFtC81ebRFad5YNPdouo/wUbg10kaCKvpZqR+GBfDK35OVMVbxtMTO584Pg/HJhPHUoA6Zhw817njTj71BQQvLTdomVP8dc8jHFdANDipAsPcLVOfm9PgA+vCoOrJFonHDoaiU0f7ENetBWFjoxeH6pElUDEMqm9vTrKokPM1GL5XSdJQ+DaLkRb2oPYT4cQe8e4YX9d5l5MNXI/rdfKUcy65ahwMsMI/WA9xuet5Lu4MeoFSqA9u42K9MNaatNyuB49MZYBQdZc5vn8Z+dKQzKkiu2BojREdvBQFZgpc1maVJGGJIiO8ddPqJUTUwo7PGeNo661LpQtiOjiLkgzFBA0juYjKioPK1xDEkW4n2nhSDSVuzpRPEBkp+NafisCdQIv9JVGauB6SwUdDmU3nnptu6kq6WKPR9wdis+QkwX2T12tJf5XEMyF4OvcLO5iYP+lp9ZAdhOtxQS6nm7NQRgDIz7irWfMdBDtwoJQk/frcDt+MuBuKYWZnok/ouvjUydLfxCdxzCkZEGdGahO0GOhbiawTPQ3yO6abfwKc96AfvL5Clhi2AqDllR67dYXT9GUCEbV0IP8zFNXlQ03w6XWRDrMxh6YdDSqjZB+xJ0Av4LeGnv42JMWCBy6SE9xtboOom/guwnonOh17PqzWMJfrgnCzL0DKYF4CB1YvJ12yTMA09pBlVZJc3ZAhLf/3hy9L+ESVDsHsBwvuv+IuElqy2PGZLScFeYD1sa/pmPx86ZW3n0rH26ogG5S4oWf/rFMavrObrqyEfEK0m1LjbfGSvHZDE2qtw62/NDF/07s5k4R6/nksKsnLvDrEVTlBUJI31HyqhDlDl5YsMhwkTkTFC2kXWYNyjDKxehO6zc4wJd0QlfovTkgtay8mithdiZbu/1C2Ujqyx92QYAtaIvbw9Rl6X/4mAoxDImkq+KkxWoSHrBeLvl829RaMrGHpAfOjMYeGmsLBPvjDza0iY9oepi/42p/2KOP5/rdG6r+XDrM5CeH8wcDa48ptRf51kaGExrBhwuW0Tit9lzUuLv6Tygsc1roa2z3Ijbl8C2y2hHT6LYewmPbBF5+7brXfKkAHl0HufnhgnY2tV83sg6EKzCcBTt11n2SQJI/NZ25NoaT1iMkkZCUxLmqKzkQmPikJdEOKWfD5C4etLtdalwBe4KbaO7+9fVGLoQ0K/G2qvAltizgqAHmLRGirFx8+f6DN4SQFTv6/UOocBWcn0zEHHGY2qDocDyH7cP2+Axt1q4ZHY4d7HsOZr3dpu3YBRGTIfJLE02TL0319uNlKYpuGDARyzO7VVmcURYvGbfiGY9PT6FgjvwVCwl/O7d6C+TM19OgeHjxbB0AUp562pcXOJ7VuLPmPSBA9A05C0w58u/9UIETzkASOjQvuAzhnQxxJn2Fb1qTyMKAk0egsueRbFeYCsnDieOXF3kNVeJZC3YfISL/tlNfgk+iNyZEsW/ESJQj7wmwCxq18c3n09IavUTcMiuGBzjhkCA5l2crR3x3e1oYbnDNs4+IcN8OrKz4cjVPS21IGVttXPRjOZGtM4dfiuuqV9KGEyj8S+yMlzPdB0+88BSsaqbd/6NYhzDDg8+e9F78kRhnTwZUyAzg20VL9aHLVdEvDEYHXq2vCnhwvTGMvio5L/Ew0dVFViEZJG9w7rIpKxk0EeQhQhllZ+kz5pSzixAVnNhOcM3AgX3tD0DLUXSrfLlCMc1w/C6pqEwoTeyxTAAFhFHW6WydfZvZOmTPUIlCtxjuf8GdJomArcgLIRjAH2icew0lu4DZ8fBLMEuZhmGovWgxMJoX2sJf3tQYsRbNLOeoSJ+y23BoSvSsic9/kdneB7le20a8UkBJKdq8d9XdIgNU8DBUPbPupqipvT9c+2hLAB5yCyCAAXIvkzQ226VaVYL2sbbg1WLabjIaUVuKFVoKxyCm6Hg1BAamIKVmlHP7xdCo5sTNP9hfvk7KNnxbHB/yo++1457W+eNRiZawSneqF049U3vrU70c4UX2+CtBEeFG4eTit4sLo5xOqMa4ge58NbaLV7za+x3F04UxjbkIfPTuQnRI2FgtniSZhIYVF4MzK04WM7ZswZe0waz6v1r1ML+RJ8D6DLhHf14Pk78vHIAfxfCAXq6Q3+Nw1EiNU2f5G7ZCqHEuSWTw+lNcoyIt27UhkCyQyMBng2KPgcVTtZSXkh+ghSjniuSG/4iqOtVbKg7+NbRO+0yBfK7nv7Vw24oA5C7f//2xp26OVPNZFSYVmJCg7e3VwoVx5QzajqeKW5EWVt44XxCEKpjp5h3MChDYNWCRzPRsXjRxKdUotC4WD4Ab87C5f2dJOegleaU4kNHXWReBoNPYZIG7dJBvffS1K0cntNP9ZDhTBxeCkSBY42LkbkrFpSaw6hCaHBC/Smj/3WppJoLLNk3tNZWHQpgbk7aoP5ctpeOIlMBnffEJP0tqlIBbSVSjYHu7ZdW+GbbiJpbWye8nVdzBvlJ+zMMKFTQgzNsss6S683Wufck5BGirkXnb5/MPxHYGOlkWqISjNMiCJFcwpVuhxTUA2omo/9a3wUlnUzD4BCF+mWGtjbjj2HMX+nIhMawqRGksCmfEbsmwGnplMBYW+lr64dkqlUfA+oCHL9KJby617BC+MDTiCmxdSlLW3yUGL6i08Q328TV64HOxYxS1boG/mRpQh9Oi7CAg4Kr168kMqyU88RTEwb+vz8dduspTFOQ8oipDH4AiJQBBoMNkzvcHxTjdy3jibWb4t1ZpYz9NOD59EalJ4NfIFd7HkU1FpXTNiZjq1a/cqygZSuKW+w8IxPBRIWFyk56uoq1Ko1Y+kBYbo5l7hS3Houw8HdtMX96Eov3m2yqTWOlRrsVVvR8AZNjzuOfcsDqShPF8MQli5nADrLV08fuRFQoJ3TUkh3Nq6U6SoybkUg/zak/LlV3JnA0ZM2GXv56OYmzKxsm7YAMR5GQh63VqCgHtf1RJ0HH9yLyHYnUtCpueGjSV/6zUI0HHttUuYWOqtn/F/hRnj3xA6W2048iQn6nhEdIiU/onrXuv20tMBxaxSGSMmYh6qN4mQgxjYVjeJlnIV/W+8LimcBTcr1mRiqpdnrdBfuWEZLtld30wTu32GnnIUtaxgsgZHGFkkACYPUlEkCKcErVyThb8/EcblURefP73w25Vh96e4/ADOGH3Ro2pdRBlZJkFKiNSUxBkGZMSlP52yPHZVHbsSs9cRsotbhmdz5YegDX1XOIQxe5mtIuap9NnlqFfLpnf/2x0HLppem7oYoqAt9wxB8CiyKqy81A+qMmJbgbneLBKibf+DVmAcBz8g8XEs8rQDejGkju9VPLvl2HS6IRcZ36B5cHx+ns4yIE6b6uYyZY2gSRR9AVak11+ThNlDvo5ly/ZbDQ7V5CAdDv8PXF2ecgLer3SzmFwZ69rENFF0YvDPkmDNCl2yV6mCsHZ3oUxSt7LeZ0MDDlq716M/U1r7L2F/699AN+fYZTgGPU8uYNS63FOY8yMLlQX79wCQyghTgTkkP68SFn8/cwEcA+QQesCkhiJYy0zVFPXtI5txaQZNPrCxfYcyBLoUju48dtbTG9oLRePzMocjtVtWDWjY4iMMdhuno1F52k+EI9kmKiFsAhnZfF9vbuvUdoCnV
Variant 5
DifficultyLevel
552
Question
Which of the following is NOT equal to 28?
Worked Solution
|
|
28 |
= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 |
|
= 256 |
|
162 = 256 ✓ |
2 × 2 × 4 × 4 × 4 × 4 = 1024 x |
22 × 22 × 22 × 22= 256 ✓ |
210÷(2×2) = 64 ✓ |
∴ 2 × 2 × 4 × 4 × 4 × 4 is NOT equal to 28.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following is NOT equal to $2^8$? |
workedSolution |
| | |
| --------------------- | -------------- |
| $2^8$ | \= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2|
| | \= 256 |
sm_nogap Check each option:
>| |
| -------------------- |
| $16^2$ = 256  $\checkmark$ |
| 2 × 2 × 4 × 4 × 4 × 4 = 1024 x|
| $2^2$ × $2^2$ × $2^2$ × $2^2$= 256  $\checkmark$ |
| $2^10 \div (2 × 2)$ = 64  $\checkmark$ |
$\therefore$ {{correctAnswer}} is NOT equal to $2^8$.
|
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | |
x | 22 × 22 × 22 × 22 |
x | 210÷(2×2) |