Number, NAPX-G2-32
Question
Which of these has the same value as 6.37?
Worked Solution
6.37 = {{{correctAnswer}}}
U2FsdGVkX1+hs0ybQPzux/m0kVxVMenGMy7WHEkWGAp20kzh94zUCppsEejPH9eqo5nmNlM+VFFoTQfcyrLHU3VSKaGscWP6gROrDS9tpd8eW+fCdXJMy7xnEGeRTOAextQHMDt3NB0NcTT+BM3wdqd17Pr0fn9JlJKar9C3vfXOjven2/yWFpx3zdBMndnzbO5AFzJ/wh/02alo05VVPHZaQoQG5DFwKwZmfN70quq0O2+M7YuMzzBQzW7vQeYLQ6MIs1L84dTf9zvKpjS7pDN0ctdKunxMT69CsOdmaPHEynaX3j/Hh8qkWoXg3KxWD0ontpI6Cfr5FGjuU6AX3/CwQ+Bdoo2jCvYFP38/DHst8KZoK8SBfNShSvk7DEnILKZGtldI9MZQ6FJc9Et1Tv+oSlDvx9dO8CwYrpgQ9e4OJwPKTx80B+AgIfkszPDB0SOyO0Mi0kfGs0qJDfEFDnACoMiIF1fgDdDsaY4NMVfdQF+HdJ4a+6blTSMs3SraXJmWRP2SNKTpri+Is3Dr+yym2s9YONdnF23HshxOv/tLP7OID7/9/1ciZp5mfPJAoJE750DTFEY6NttqasYfYNI+lWDU/Tfznj2gKMoLcJiYkaCgvQ12a9WleYjJ5MeYTVJIZ9I/fvXUsDH2fwd2Gs8SUmjkeXIMTD/GCk0Kmp0U5VkrfHhS/T2qDXSPhNd05wJF+IRcg5sru8dtfX4xxz4LkZvdLS9b1YPVWvWMD/vO6mlqUfJj/up/FTFiDPuIhQrecw71wMNKPbac9aQHo5MFF/+cUHCrhCeQgEiDwnqOAWNscG5qt0P5IvCjpwMJ0AofqnS6hNLT6kBFrX1FvPYJuKc0ShqAj0peo5M2gtbYUcxGHeiJgjqZvFtIKpGTrwk9lQtBkcOSUIMC2115DnyQhrLfqtVbAt8DyB9b6zmI0zrBdEgrP9Ju5MHRJAu6kg9kAlWcp1uQEgdzGPRBsEpxAkJkau6GNKmOEc9ZuzhCRkGAY7oXpNtOmw4pRHnoiE1VITnY1Vw2XFJpiO/4OzZWZugi3hCBwtWrXsO7IuKMLJ923YsNnZysUcWT3ZSzBJZIZNNkNbjA3EwkDzdz7ZqSBZ9N5nfsqjo2DNWi9q8TaUaQw87WytuO3L8O9EjI7xBKtS6cIg0B5W7Jw6xDcQkJScTN5UF+E/1zEoVwuqsr9w1CDyGO6HqxgSvzZ4fhVJX8EkxLlOgLuPKsaGopLUz1ThGcrGFoS5AZ+QmWJ3SV6yIvSzZQKGANugQ87jL/mDnq7W7lV2ToylGu+PYUgyRme64yjGJUhCIa2XFmF7C9wD4v91z36vIqxYg4AkGPGcuR4uvNgh+rxVhftUIf0o5WIL+64wxDa8Lev/K2IZE3AHDO7Q8hqddDOQhnbVM4SDohg5SdWHBFF4fHl/pVGtPpMkJmoXFaZlWFkbV9XW0sxcD1whkrtnITG2vx7+8hG2QmmdKcTWQF0k6QDxuUNp921bzahvTAQ7M4CsKRMhsMQZcDeHe8+JPsa3M18Whk00P8Hflkyegav5L8Xfc4WdkxIVsBmbZRJsLhUhpTOBVWTGokG2iVB9MCCNDvodWoVpMhy+4XAD3thLDKcgRpYURR/zW1XQTh09OtgIZQ9wfbjui5A9JNEUBgfzMvxNuLLbUVIHiZe0qCePp/16F9jtOEkXEnvyy9wFNUHvk8zzsTTcVKm8ygHmPLGOLEEVNdnb/4r4ZckrKX6uIZz1k6g+r6m8znx+905/J7LoadkiBOuBVCpsCZ07GnHYOUv+usu6uTE9IsnxtANRSJbivXTfi3IY3AS9HH4PNEGRhNYEpvRDUKZNq+NMQTF0MpVNdAY7JRTEFcXOjU/7XqMVTba2Jy7kxiA9tPbZJ+QTIi+vgyR0BPem3F5CfZWy50Wf1bOnfJljaPW0L+PrDsTDkRerBDa+moMYbMdx4SHiYkuovvvpSG6s3grBzA9uIVufHH6ST3YMQNy0mlWm5l/0rYF69bsO1KIECJrbwKC2z8wRZ9zbVPwScy+wqigneMdYvHci25IbWIg5y5Efttl/CL9VyU3Yne+YRtdiMniXzQ5fc0gjNdYv1925rJhRKDh/diLjNlZsTKKzNFfhYajTSXPDs/fzi6Wi+Jcxj9f3Zm5ZOu39E64vRWp8vGu3HkYU6X/0nvCwVvp9W+KQrEiIEdbfdCqtrRHVMtt/vltmcM1KAUJWOENnWxRtJKgyvwA4bZbEg0idPyiF6j9Aw1A2Efp9rl7saTku8N4jM6QXH3tDHXdHJw/fq7Ekr8idQRPeptZs1ICU8VbIoET4SRHkWkhX6aHfcImhyfls/DDinQLTo1Zgn1dQddCD9nCnSlFVoojorD9IInTtV5VQTPM09Zjupndc5oIqirB8iH468Y/qjecSY8UKaky2AWGDqpx0vjI0zANe9Pnw+jM7PFLz6nF5RuqSeEJxdp4+/NDrWkYEPnqFMolKUaPBHSKgEoMrKnxxFaTCOVP3ypSgYjiHqg13eGPwUHsUB/6B8ifDyIPEHiFLlK5oNtYECXwSYcj3OdOclARJ3m3X3itR9RxELOGcj+leGFR4VTrUMC1Ip4vZf2Yky4ZrDn/nnmSnoN5iTmkIbqIrED5dgso9WQB/a+KmJmp8eNAXpbKW/DiYy/1bM+eNBJ7g0XF1QUgdXWUrtvs/go8YMdaI7b9p5Z9eiJBInHjw01gPFGDFC86uUXwzariJVsAj5K+qCXkQHnHzFcMMpEaGP56xJD4WZwuoGwmLMSur0cam333Yl0X00ZQiriq28YIUnX2VT2nG9Re+aq/WV8MPEoecxjO4zA5Swl6Bjdia/5yq8S5mS3YmgSQxb8QqgIb4MISRYJDquJ0oHPVbxIrqpM2tlV+3TKwfHtgfHHn1lEH/zWHvAGF/gcg+LVHwYLOPFFNe7lo6TdT4Yl6g2E9TUPp2/eWipe6uUwvvYc9th0O30MdmRQcVdZnJDXXAoQt5fGZqf/+p1dpU2fdBjBjdsVSrRM6Ivw/HXhbre0lI+MVEFvE9AEetCUv8ZdFhvnLvesH8b9A0mWm/yn7z7IgIhrMFj4Rd/tABcHkuxogpClhT8D0JPkE/wXklX5jVt3jSW+UVgnmctLHFrLzY20s4vF9PgrtSQvzk1nlc9et2rplg+nPAV9VzljNVnuEsw11wJ/n2RkIW26l4an+LjAueZHSVqfJTMojNr8mGQ7XTeRJkv7iM9yhKVZ5HYD4rw5C7I9T5HHAoNXXxAmQot4AHVIltx5gR9Kh5YA0/fGQPnX0K/yohLVpZDXSBzYWnrj9GiQxNGAJiMeQwy3X0NXiTKYWOt7RPRAtGExc3/4LQkCUgW8OaCQLNiSnVyB19GG9go1RqhcVZ3MA7YhFhQfaTdV01plLtq1coNYRyj+vsT/KFyKr42EIMYNj55J/hd60nNa/IUb6vGXigbEPPxPcjbWx+Ifcvl2yvxfYGjh3t6HhZYk1S+5UAoN98RJfl0G0yuTwi01oglv14LvrSpqmcVbK5IyWQfS0dqWRtny+PsGpSU1hUxfXDmyf+2YolYeT2jRgQs7+xGr2rdT6IFfFDL4KJPUxgBS3yOHQyxUFryYlAEVAxANkqeko2EfHg5XYnWo5IaNAakBWQiTwmL9twGTex+/fz1rjOm//43RLSWiQ3yA3XpmVnWJJOIkZgKrauE1Y++rAbpI9CT51nNXYfsotgUtxf/j2p5d196HRfXVv7GBCXpS+aRuQLPv1emDTP8IPgeGzpBY50SkyXLVB2kySWWwEzOgquwF46q1/bX5N1M7spcVxTmVcVBjdRQw7hobXE1+xq/WTDglh4NiKwZ2JfTBVid2j9PITN6UzIbQgKrcWf1FoFymFD2WXCopNmUB5HlyroHebq0RP+SIztTKyADbLf47GcQk6lg2kfv78+ESQjb1mmCVsVRhB+t18kii9LqHqjChpMkc89/AOAw5Cqh7AxCgtiYtDA8uTII5C2fJOlHV9S1+iGcJjPL2jilhZyf9AOS1+lPGtCs93bMlnackbk2x6PvifE/kldBREHQuEtd/zZOGh+9y5nU+AfuFaxlXW0NeVUrPPD+AmDWfmGsyA0SS8YgExOvion8N5a9Zf8zwFUVPEN50RSQk395psOj1PaDQFTpf6HAdeBHyKPoQcI2ydSKDC9BQ8cqqBhb21/2Gev7g7deCSjNg6GGPshP0TzAX0NA4Gc/x+FUlUaMgP/9vsdqMaEDRztdJjos2nZPHrfNjEeuyMCrqDziY3B1EeCnOeHsb4YUT6SyoQmzNNrys+hdoX5yGhtlstIR0XrG5K+qZV8RoL0OT9LjJQwq8J/lHqhX8H3g2hw1C++458VuSSRy0RqJ7h0OvsNDcpuRwNZb+7RGKiMUcTvb3Yarvk6i//pcOgqDXyAs3WYbvWNE1DqyDY+3brZUW00R1KMpBVEnzRnTJcToz9KZDnJfAA8Goel0pwwqmERMtpCfA511Yth53Erpx6SKOYGXgE/jJPjWNo/i8F4RzaYH39JISxSj1XjsXcy0xTiJMezAfSuZn4u95s7I0onI49IX3aUwSDnzjMGVGMFGsvknS5MG4an5UQ8bgBBuS6Hqvo5fimgXK9l8flYGLCnuu0V7edKnQe48OR3N5yUUswm1lLhok2cO3Sf69BiLOnSKR1fRFxLJLHWiU/WzuCO9Qkm7H2mTeVUkKWVFn3IxJo63lKidupbVXbrL8vZMZLs1VHayZeUu66SfY0/SAZij5YCc/roK1E3Ow3Pkl0Ik5izOavXI2e9gtaSLDIw1St3oeR6zETCHVudGbl1Iy/ZIFKWhMK4mkyPdIcBtxjxY8vO64q4zWAD8ovi/KHseZnjWFYcONhenUiO4BNSQvGva1AHek5bNUxH26Qzvl1AK0M632mH/7pyuJfOSDgWGWUJQhwHJ058GI6K0x7yVycEK6+JZ58LfpKIGg/FNQmP0xGt0jJJXFLqfBJMTJu5IDclkCir5tuXDuD+IbHt6GN6UWZ2FLY59roNhpnqFGw/2fsANEZlku8gkcJxgYjzBzVUQqkUlmEGZsQCdqGDRuo9oe4HFgbqaN4QmfO5wRdLV2ajvKBhnlRnlzhEOAujgFqPsE9dCAufYaWlh68n1dw2E3wOdmWhmXaRelbcemiQTHyw2pB66HpgJaXkrOBUSueEZjGOXJF8r7sYqQ+NhKpv1Ea7MPJqzxmDMm4kh1q/YRe12z+E4Iwbo2JB1V3j6w9AmnAm/asy5LEuhqPG7TMBy8fCXnB0ocW3wG+46cWIfLiNn7A+osOpa2dlG8gIN1+RI/92lVpc4fElqrGHSyI7cQhl+3B+loCZfKz5+r0F1P1239jpeA0W+2p8a0+JA71FXqbkGZHj5llHHwXUnSGjMjxON9WtA7oe/0iEDvbYwsC0zuM42vfOfnaxAElDilS4eCzvro8slFzS9KO+qzQoCxfru/eDB+6Ex2ps1n6Ng187Gnr/SEf6FBOX3Pgl3XQfbKKJq7VYrVkQpEvI7THuu9ga+594FWq29b0o0cB3H5QrijgNopcl+DiQ31ufg3Xhh2F9quwNJAu9CkYhr9Ma9Ew/9hXIao/YRQVjBoO2Ki51SZFG7tgj+W9rf43N3GS2NUkWw19R49fRiYDqCdB02sfH+Tvm9mIXL2/YbZTCaIsFTfc/kWJIeGaLSoRnFmNmmc2KSqfVars4jNSElm+JVG5VQ3QKWnP24VYBFW8JYd/5rekdXW6VgbYoaJhxWGwqZMxk9neugrqtEIdGGjxnycZKFEy4bBqiOq8opIulnEnIi2bcEkSJKC/nYPvJdexY7FKIW4wPRjN+komar2HgF2yIHAkODgnRbWmVNGVTId2IaJh7fJbxJQNB6VUJfBAm5R1+iD1zJ1OPDBQ4cFQBSJcRSKLQf3drZ1fH7rxgcNkWqN3uO8Itzp29J4n81RkNsuMJPEtPupSi5bJ9ad3uUuLo3rnQ74fUzIqFSRQLbB9cZyy3eMTKtb+IWuw0zRqNklfmGboqL1vRQTA1Q0WXJuy8cZ2/JFfY7br17/Ca7sdAewg3p9ZWE43vEOp4XNUNfUN2xbu/4XXcIqMOfHpci4JaGVrBkEyjAmqcJdr54xyXpjpvoeO/rQj6oi4X+wLkKQcDymF11WXeIJWB35qtO9iLtHJAvwi2Hdow1JCskXf7b+Fehc3gl4AA8EIqRuWvVx0yRqvCHkf6jYnaEPVBMhABZ5JBU1zcnW2FhKsB3VLlmzY3+APVz1doaGcUpX519ErjVmTObpkJbpL5JbjJMehV124QW5aYFkgCB8xU3C+hCLmdXnlpPt55fzfQ9zh1Gvhz1RPHtzav07LqU57vfN1qYweeqG32D8hcdl/iULNc9vZLpgq/2BPIfEqCuXRaE/OkEmJHmhrT+bU3CbJR+XTnbwSP7k3G+lydE/6G2VOkiSZCMkU3Kkv3PzH1OV3q7sU+WYRuX1L6TwLUKdDgR/Ry4OOsn6mtNzscvTvN6byb+yjuQdCzl1hPDO0v4hT1SW4LVk802eyBN24h0gnPTRnOWpthRvPoM0+DZ+CJ1Hx3KiHok5X3c1Xggq3mrH2wTAsOX2Ut6EfN1f2WjQy2lLElNML0QP2iqdJwxtWPO6Hz6+Vs9DK5b/JPEahnzj259YITehCxKuyuBDZNsLR+dF0e7JygeX6xXVsvrE5W4qcX4ppLHhfQtYQ4T7HwRyw5LF9UihHVQi3KPh9bAaHAhuDANo0VhSdIkDrZ+UZEIbjhQDAWxjRSynmhdZCPCZpMPXLsrfMOccNAtYiKioY0MChT9CDCZ+BDCw8eBUQrsDHaXi+F2Ux/67CwZ5JTaDj/0qmvCVhym298z+4L+PuWjLCVmxwt1dL4LO+7bp0nFCNnrJeuqLTm/swr/KYAyxfAWeUx+uubW1Lh9QEvH3Cf2TCYpypmUZyh5S+U31J4pTSbU6EWh+RYljbhiqZa0JP/DD0OxutzlCFZDey7ljMIbihK+3fpVbHxJx3bsKSXb1xOIhvq6zq3MDyMR2HqZymOeF+xjbdDUjDcUZo5/2FqgyqR9RA+sxx1RZ58OVHV2XCLkuGkLcGCNM6ofipsq+4+VTXnIbLzut9G6tVh8oIrFIgQ+PR9tvN0a0BduIxHS7EXOJn/yZ/GDft4ENA/HR2Xolzdn8COf2gNMQgpeyx9u2d2C0L19kJLjeFSyXo0mGLvwt71FuBCBisNMPQwdrxknXzO4HkMS0KaqN2vaSgSwQDMUzeRRwUIpxKLmzJEpCLd/SpYwLKVbVUBN11xEXdGang2UZj3gk92i7UO7petYse1pwr6ij/rIgFDREoOHn6NFCzPzV4U1dEillJjDEYijMoSRI+PHoC91iqosxyXme6Ur7EASe3x8zowTlTzh6dJ3zYABnimupWkwsY7LyDLsv1lMfpfr6jjNy3hABMW/UfTs/CVnLzyhsFhxg4UX434CGzS8MQ2hK2eyxKUNfQ7ddC8smoyTJkB3tCAIXlh7PXK6B7VkSXkWmVIG0knyfIpnG8U+OHOXaXqmeNy8nZjvrnVtGrKk3b3ht3Bacq589o4LypMjH70tfKculVTi2YeGhQGkPCie7CJIRYyheDqEkTXeEH0lpEdNmhAh22Seo2aRvokqtKoylZfZlX9nvS2/KI3ZcK/kKV2cDkTAy7nCVb/v0wTsQXSxxxxBqZuOQafaoURk/TGtl1+NwFixs0uPFCLO9Bv0PIIjDDaF2AGXK65AD11gwEngjhHd1V0pn19cC0ltpSfwkorBR62L0PlTRkK9glKr/SC0nj2dzP6qFKvYBK2fP9GD59Om0rGOxzpXKnGwAThcFX2iQ6vslrBG3mmBTgC3bjlRgaYLlSpap9I4AfsFMnfWq2chK8DMUJrjPrC1OF4oapk99Vo57ZVbV4YhP9lvzxClGSSKF+tUO0sm0JB0AEFH0WtYoXaL6t+SENjTgxRa6Jqd2dXG8DxxU++Zyq8nXjS7+JYjSdRVtshuakTvpYn/2uL13xn3g+1cPdzVwEF1LEKLOkx6gQPHkKyaqa1u/d2KLrbl9xBiDvGfQv8ZwTCfDMAgPmZ/HRiA/3DipOw+N+RMWgM3LbrBWr65eTBBVWDrXJj3KSDHB5tv1ZYXxhnN6G24Pa+MkYBPP1+jvfzi4/8eCbWpAKHB58Vn1lOhQ5V7iKDTjvqn/Zd+lZWUHJycaPYhIo7suOkCEpLq8aMH6Vhseek9Jxs/cwoGobKdO1ilV/9ynl9hX6uQARU0H1wH4F5fRFa5bcuczPt8KMdgKqpKRXDxP1CD25bnn4S+InqjGyuXpdWsuwdAAoS8RkWaaxV+L52yeDsEuy1YHed/3eNisaCPHfmBKlT12PP049L2MbxxwXzhPWEb2CfQQ0t8pNdFbb4uKXj5CBKgudpMxcyWeQF4a0aQqZU30KeemVWor4JeEHEsTtgyA7/v/Q7gXZsBRyG/ozvZIeZE6p8HOVMiIGwhdDYT/7ZWEzI4p1GOMzqKvV4fvJxCWyFcYpyoDdh88EesZ3FocsFxNC2xu0lkZPejDuOQpB8vk51Dtjj5P0TwCqXJ05bvEOA6u1lCESCNVAMd1YvPx3hY6DE4NPkExyFpDB8+xgHjl5OqaBLjzKyGFSB367JtHrx71HoDjrvFKlVlrjsRFxfitwPZxkeH7mYnvNhJCR5CtdOvb2du3Rgsb+8RxPJQ6LRXMRaKjjzFb6poalbABTCpjmD/002dkAUQ8K0eF8IuN/S+XhGpxFS3Qg5VqgyzrhC1FOA3Ykl6sXA3XGNlcZmwtK2KMageT1I7e1rtzpPk/bUz5P/9cwgmXwE+BylBtCVarARRBQ+a5/sNITaUBM46a83BhL4xbRk5Hkp5KX48l1Pi+MZb/RSOYPU1+KlMYmZLZEqTheSD9ovzZ/g4Y07Ekmk+lwtDAGhw7F0+R1FrhpWKa5lmp8z9r0WEM6uGj0cem2yS7EPkk6yNElHAfUXzPzGEJwVE+9KS1seWdb/e/5/dlB1e1gVW8pYbSv0TCmlRu6NMycrTa6NaTpLsv/+MGh0a27n9BOD08Sze1ffZM7+cKWBBWW5LR03iqwiaXSv+7fD1qMwkLcLXLIuI3YJMTkQrbxmE4Qe0gXu1KTC43Y9/7wLZeU3D9TVcNKLLAMf8QS75uqc/xaruKtQ4MLR77K/JAkww7oRdplfXvPZ2xoOaysxGeJM8p1n6aaAwvIQMu2yT4XI1y4ujlTd6CGWvWQqrUkpJ9Rtuq2YkcWcbk5n+1If3tlXO2ong2JdhcM1WBvyMgfgMIryue9naVkKskTOoFNMYhrls5gabUfW3q+FhREhZek9ksyfhXtdwbF+i9YLTiVEFG4Mq7+zZhpu+vqAjN4A+hVxeoyaSAzTf7IS8hheNd2ONXhoTlyPbxkbz94oHIGJ5l2ruHaGyf3/rBWgq/QVchoSR7SD0VFP+86fVmp9Mdka88N9NdpPblbYTSt2Ph6DX6v0YrMX5QcBobvcsTHCGakkCgZYYndKgyW9osTAsMHiOjeiERVjRtvfH4H1iySRT+muG+xyeJEyyGuGW2nu9uP/3OlMWFhIGp2ScaoqwbtPcm3QdoIrxIC6a66cveB7NRzOwizIppTzEQNgGaO2uePso0jDvrBbXknYot4HOmD6KUlDAqzXFWYQbjUXvZZCTxQET1I04n3CqNzVXGTdSkw8YMGEyAOVhPyfEN8faAG0V/pB0Cj6W6tUwCcaLnWXdUidaZze0GDIxBTjZJ1n85GT23gwT7um4FZm4buJnAvk6Op965SUQlBfxFqWPZCfb2+50+ch/fcoDVYR2ZUGJ34aIakWgWZc3+IwyH5xCVDKJ4muVZPg794zu+EPNcr6oyzxYE85N9ExJQL20798yEZA1IKMyAJx0wWIjpztsGtct99hAQgC1FeiQjWCGcrHqGKe6FOhESbfLmBMCUc8LCi9rZLzGcYqZiztqfWtspXlmAVQQHGy98PSC32UpDcLiwy+4oFr1T5ls8DsZ1qxz1QMAhszU3QImUUftqPBP+Av824YaSCVwf2q1jhXDMbXnSiuCieEtbSXFz5CKy7bADFnBhalhd/OJiHQcOE/8gbVfYNgBby40KjBV0Yz+kxvUdzcVlUzS/W7hqE2KgrBnYRIUkqKez8BJFw9dXyIYixX7JHCrWEX5jd48sEpoirKT20hPWinuZPZnL9nLwqNEZEAe+OiqAuk3W/V6AYugSoxbbh0sPLbzJdfhN52T0m/WrPf6kWGy+a/+Pjdv/bZOHZTbgegoHpyBR05LEo/LLIjqXLsChIdSgiuWHWnTtpAYr6AZ17fAPCP3c/yWEMZyDe5K4s44FWHXhO4lYD5qOMMIUi5F52I5dPjr3zChUM9xJ+CRP5ZDOfSiCtTyEJa/uCzFKg7DL3CvtKaMeQkbJ7nWF7nWix2gHKZgpuM7s5vjs9BnymMZ6CbgJVNAxTXJvHZLgZ6RC6Eep/XYCsPOGJevirwCqJXdzmBPXq1IUavJDMWoX8I8YzFpVtu2yALDLmU8jUDzZoZGxLLcLkM24fqqaZF/HmL8DOTUf2cGH+553ONx9K4oSB9kQnd0kwYDpEjfVL14Dbkh55QY5rD5LGDUCZdSBgoHeMl7wBG/EHdkFiJRvEfD9U2g/2sMq1ZeAzyu1upVPVPS5p/tHYVwaCDnbwxHqsh+Gov6rLQ6T2uAAqkUzjVM8RFQxSx2RqsvLCvfHKtnxAVYaqD3tTVcCylnUS7ZSu1Yhq1iDp9b2psO6EWSMmOwd1t4H5M23A5qivWqJtMFqNTwPVMPUNZGBWhG+HJ4oV3geeE0uzzZhWlBMTnAPDFeo+PCTG93jC/dkHRsFfZ0XK2/9cy5Wcfh20tJW8xlNukuBcW9GInZXfXdJcPHVPER4tbDH1KuSBY9XGN13DQjhzOMLG9M0Vn0bVVBL+TScXsFPTgnnXg+6v3jNLvlNnfZSggVCnXm4d1xpFIC1OdJckM0vSeAk5bP/k3/7Vuzn1kAP6PJMJLRD797mFcRzmS9a6TjZV0BmPyzP5n0498jpdjEptx8L6ZHb4x2QfMxT9z+csRHsgZmADuy/7ef04WGENnV8nWxROniAvsFlv/QsL2xRKWPY8AlL4gu8vrLBBc6a31hfh/Z0kNNQbsVvW84fg3HrCrXH8UBpTxdrVI0GYGJ75Rvs2d6KKo2Qt585oiohoapCGvM9HIcWptpMYPro56BQL9cxyJp/gcf3Z4oQPo38rgVhniqq02EvdBgumGTrxd6fJvhd1ubxkEIIUZtDn+D8CLpeIUBZ9Xu6xA9Xy+NkvSz31r9DSpgxll8gEGxOh19vKVBAKMUSfZG+wIsIEIUXKtY/Oo2/RkieYqUBfOXvZpMEPUGvtV3Wap70OL2LQJA7Iklk2Y4n91nqSGaUH6xAwoqS8JtZqROvLXMAnkvtrCeutglQmXY2stdDqfAhD/oDk/Ptvagx1CIu8n82OyckHJ17wcftm48L8qH6N/MhceULkfRrI/NrdHl34NYHGnRYScyEOtG6TDok5W3G4TiyqEZcDCUq+Pt3VHQi3QcjC1aiDOywMNOQ57dxkjIlH8wRnjWpQjGsMsgvMzVqkO7ak2QuTBELLrX+chWqRiFMUx4J2zTZd/2EMCpoWwIN60YxKvcXEqp3q75XHXFZRWyl11h4XNYJGOrkWlYc1iuMZe/bv0bfxZrUdB1W+V3Oi6WATjTG/BfQtbvhP1r1TYJ1pS0rN9cF95InyRqyrlGKeEe9Jo3LGIoig/Je3A/aunZw3KPp97nbOfgw7X0jmmIq4FklHmlVcsLEex8G0+5AzT9/80vaaGZA8/miXvMeS85BXtV244RFNg1gy8TWhHkxsgcU1CHCH3FwW74z/S6b+BUKOhHs92RuI38BHDMhV9JTB2wmDCEGAzSnbOmqaEt3Tdhbaqegeg4CT+HwHhN8Wfbo4o134c24hZNMkA2yUPjx+lMofzBHgyxsYZxjdQ3MqR2j+bgsxPXXMvmK0x0CRkVZ/NBWKzCSXflCdjI+ri4nrhoVGph+Wa8HMFYl2aDjYLpKGz4cqTUa7yhdcLys/o8E0TM4O6eExFN6YJ4o1yU0SgHpPq2VOaxnzeMO0IoZRrhFHeXzV8bsLBBK8USRcW2GHSVUNPYIO7RNg+qLPMCUWfnDbUSloesUKKlMBWg97FODIPiaxDZWUS6UPlJYs9Rus2LM1mqtt0/XSgVleaexK1axUzeoTcuaJ3r3NVDDqcriI5k2Ym18DK0WEnGPjjp+2/JxC+xCZwII/NQtVvm6puABGd+5K/7jo3K8pM82g09mG1eIJ0r6ybwiAsESgqNReHuHy8hebjeXJ2mYItLoGGOq0xBuXN/SAxQUTH4uMg9d+YLVUrq3OV9klIN3RtuF4YhkxfhWn6uVVNxoo+eI43NhYdjzGpla5KpyEooAakzUwK+P9GZEZ3gAfs8fcfsVyxtNRpXj3ClPjLqrzWNAcyjc0X9paETEnUBeyYOaocAZTNEvGzNWFw5h57ObGUwN0KEc6NizU/cB4HV3ak5qUau/+dIq38r7uTgjzDyI/s5anbqfQF/aXQrdyxR+YQDkMCPDYiuSfY8pX+jxT0VqjCDNuL3LqeAWcOmhC1W6cj7rUk9csLFnS59iQT5UGvjx1UWZhHvcs8tP7QVjVQA8zN7frqHjtSUQmEQ75dfjAaor2DN+u9al4+DHBcR93gycZ50ADk35+qgHNF8Hkdx+JXqVdMKR4+wjpB/i+WT0Dz8hO0GEGVKSA6KvyPHlBvY/n1sMpo9TniweACkOVqMOryOt8q7NL7XBSohR20TDQU+xmWxNUUYbyduGkAmsIO/ojb5zD39iAmdEo9dTxLL0TogGTQ5gN13+75AQfLD6oUdXLuWbu3C4EyKW9GvRWd+v3lVOQsexUTbQW8YDluuB6Tmp6SmQGNE/mA6y3kryBaXH8bSxmJZV1rNVIwRK4aN1e8Xr5VEKiARoG0in+MIA1QpK00fU6bYOibvAwCVmpq7BIyGxj3Kf1BiHS4uA6jFcJHoPdGguOwDHUASKsIFvQCHNHicvddE/DfvVqXZiqK4q0iqsvb+vlbNNttdk0PYoFvr0e3x5tcn+ffhD+P+goQqeK5JfTYoSfRs4r7yuHirCroIT0lnAzkdk5Y7tKAMyPavu17XzKlUsc1QpGGg7clftpzAA5f8HYWz7o7mlDbKuNDPvsQMiFfqp1ZEvG7RZjZMWwH6Geg2Q/zs80ZXN3xVTliwTsMzkSn1+Euraxq46GRuNMhvuLIqZfufY0guLOi8u+5XufXfefGGDy8BYj9LMmmaVm5oMbhgeywZcZZG1csbzrIU9A9pW/dWcS1nLpBzzsdPAEfuEwyz2T4jrx/orKjbhNaLc0q8q9ZP+AkAl1P1xJXwp05C395wVQt3J41b1aY27BC17tlRVI11sd7q+6/DrH33vPJDrpxT3dS/9/OEOP9uFD28HeZmoAtN9/QSmMuvFc1XT6xRwIX+65/xWq4n6Sg/ZuUw4Vjg8IOG6Pvp5Epp6/Ur6Dy8Aks0twG1j+vU+fG9qz+cwbnsMjCcAKijRuoYJZzYUsZyjH5awkG8U7Bafr4f5GfE8nLpEJQcldITYQ187zbAzWWBpQyzpZWnlSQ3Bl5VHFNg/sf9MPeCD+J/EHBM+6Ngx+9sIy4zwWoMWYTuli2UgGsffMQMCyiMs00uASsTleiFiAOK9WYic99Tfc3OaZIVXX98gy+pEgnMCtA+nQOdmqFBKjX7bl3F2hsIR4M1ACNunsdEy2pjqtBivy7p3FxfrAJLLQwg/9wJ7L3sLRa5lZi8VB4dDs2HM3cp52G1WAlCFF1yshXKhSl3Fg6bRx3eUpR4ywUeGN21uwDNfrnPDqfvVQbiJmJCjZZ7a4V6puu5DRO1Q8JTkM6l4EfPfihaw6jUl1h1nV25oRhR9viTBxrozbdRrC1ETyhVGXL1rQojOW9bl+8lkWy4z1Km5WQUgN22xwaaVO81Mou/YhiR3VmlZycMPC0Nxb1MbnmRtWxg8so/I2iqDTvUlf48zyu+XKi0kJs9X2jnPsoMBhtNgYLK7FsK+allMkvvWfK8yoHLbja5caR0KQV+gmepNLOhjm9PWfoXQxw8PzyLSWoHu6YJJessMl9i2zDb1xyvwoX6mTD+njMn9D0a7mNYz/C6NcvaWg+n4Mt7XPZSdJjmKk9vD3FZsJzSlCqQ/JhSUusW3yAjw7Nug5h91r7STIHpUaN9y/yLKT9JZr1sLmX9fPxhJvnrinQU4W4ZJIY43VcV3k2BIWnEtr+QFnQYCaqT2OZmJ38RStGK2QqdZVi7SPVT3wYRmB9W+wGEEUGt2TMeXPtlXvoZOoXr09d4vNB/IpPn6NBzjf4CkUz16iYDiXBRp0fkjnHjCwMgpP6NPlKGBCKVyLYs2nZh+IaacmSjPVPsBoCKRirf//dAYqEqwV7F3oAd33yEuyVKpHgBWX9SvGq3zH4bIFa293gFkj3hPq1jvtifOYTwkzvkYKH3YlyoMSjK8ZrOiIodJduhx2CU0hwdI/czlJNxf/yEHwex19Nr2j7nq5UiEjc26ommO/tMNTBHOfmKR+feKFBigcQfjuXYdGo8fKbAmmG3ipQQVoUsoNhwngZudtuR2ycc5L1Z9T7wmSTg/FOEXJi50OK0UH2liUOzURLyqNvBI0U3+L8eqQxh/TP2OnStX/eBfVnwUSyWwNJ6VsL1l3chhdVAmi/huIMVP4E8Hmv+YInxl31fafwcgVh8EAvh0nJZQ2iK/HH1SQy9YaAZcJWx6y0ORbtQUlRcD/PBvHLeuJ/9qdZYRk4Sm2W0MELOpLUiD3o2XGP2oXAv45WggyabJbPR0WbMPxD/Q8b4esN6v/hg+HcDp41ND8TPAX5HxA4HFwONvfpS2u0H/5XDUU+RMivsz4NQqWvJBRs1vY8jM9MrpIhOxpNneInrm05Fsk+Kdzp+jyLzyaVCib1vqIeXFsrY+uGSVJcOoBtqL0bWU7XoIB1vRH4VmSr5kFF8zHJaZKWR5M/8Fju5vQbJj0FNE3u4GkBHoBxq3CPRb309ckZhucmlC+brHHkJoJDLbhQ8HOQBAOMLiWbIA7IAvV+kjs9rT63RfQRc1bFJguyVWkf5NgJniMHOVZ6P4/5Gd2TGc/gr3IFs0aCjjx/f9LvYLXPirgm0NlJOZJxvu5VXkrukRtwtKWsb5LrqLWaPYe7ynlf7SN5nmZQ==
Variant 0
DifficultyLevel
580
Question
Which of these has the same value as 6.37?
Worked Solution
6.37 = 6+103+1007
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $6 + \dfrac{3}{10} + \dfrac{7}{100}$ |
Answers
Is Correct? | Answer |
x | 6+1003+107 |
x | |
✓ | 6+103+1007 |
x | 600 + 10037 |