RAPH12 Q39-40
U2FsdGVkX1/AEbe/Z3wmGJISbX4qh8OjRW6iz3ZCQVygsvx0fvAZ3NBERJTjnx08Z413xiPCd+gebsVJT1QQW50Unfv1nnxdjsctiMKQReq0Av2Q23I1xRqs53t546ugo7KJnCUus7/zHArf5hPW6iImyXI4wVehxHjM8hUBzMIkyb3/mqSCDl8241l/Z75dtuIN696nGrL0o/UYZdol78nKOu1XII+maWg5nIj4g02WJownh2KdnTsUU6CAAU7bpRL20eIzD9jj3Mx+8P1zbMfvVz9FberFGjjPrlmkok2Zy93sosqLFUpn56cVgMLVzwQ8ZCUpTNgQFZkW+wMsFWWjeisH50HR3rdkRxr/1VkUePbe4V6pA8UWqsPvWraFm8vfSIPVFqp+fAbbNXZ1VeedcevG7GSG2FocBB+vYFPUQ1kiqqtGSKYDhZGfzH7vC+W7SDG62/XjWhFet7XKTPp90CgdwaQPPhfHx2kCzo84ZnIBFPcgP6tKwLq9ZINOL+m7BLrSe6uIZurGx/ZmZ5fc6toCXB/wgbmKP5vQCW8CIka/GrJmE3OtP/MLlv4cFv692S+ZZDDtjYvDyF4vwfyduJAB4j4B+GZdH+ELNY8oOHbKdTEYWQFQkYkKZzG0KReAzOLZkJ+qJ/+hACMs9VeHYotqdlQ+S7LLiNMCMfz9yw+fXHMgG6kE/eCkffwZV6ufuZvey95zCfeRsbkLuTS00rX7n66fOPh2OrzNJWmKKvyeyKSA7JCxlxyqQZhHMPRzA1WeE39aQBipGx8oLWitAFlvUzpDxmy/PqKcGvaXwK7g+VAMbx1efXsYjOj4qmKbOuQkFyLqe0OwyPdwNwSuPF0jyMWAkkJ2B0XxixTWdHOBEcfNVzA2xJCnfr87tXEKWWYpBlHwVQUr+nMkgdEs8yAEAc7yL1hBfhKxdOk2lMUqBNM/NswyFr/+U1wNc3HdEZ6ansUbymC6VOAhbL0vVVJTGSjs9Bb/Nzqc25SyrmLYZ39hDKUPAQbte1ZLRCOfjOjlTRsFxdPrVPPtnrRuAHPImcUCTkMfB/x1vTwEQs9cB5Ln2Re0IKtXHveEXQjt4YJbWSMWtjR1QQWEfxFpjiKnWAK6V9yzdm3/UMpGPmSUGCiXUfx/mRi2pMjnceLbbnuWxvAMfOO5pqE8MK/iR/EvGZz8AA8enVp0MLkMZ3LGQtSSzPa2LbrFaIUiNvKtz7J0SpqPddbRePo74ZIwbb2QsreqDABpRPV3Omfz7rnquWJnRxZjIXzmF7fE15cvEX7CLLa7lXEyHnK/tKR0wQccmPu1AvPxz8uX6mBj4HvlTdAZsbbwflP3hARhG/9nNTSEZccyOcbI+8z2jPIS7pffgCBmvsVKHLKPQSQSjVHzsxOCMPubxjkADU0Z0cyQHMfa9QDV4tYQzozEkOfjrigaMr0sxwGLqAc7vOAU4HzMECrx0SxH7QI28VjOtPCvJTMn0xCn4tbsaHM+lGDnrW4mgHP0pgptYikGLSkJKeNqHxIZHcKryQEzSb0MmvKlaNSs7iGKTEMtsUl9viEixyJf1KYdr5i8/U/tDFwyElFVmiiXEgH/TUeYfeOb0ULtWXyJeIXY6fwjw3qpVe/UlaJnalHT41XV78c4xGxPyTj7PRMSxO2o5JZuBwoozTioN+jsWWBtC+PeiKibjiNYyLrpIRNGo189A23Erp32jrA++e4ULF39BXN/Yrv33K/NdnIdMlJuiqUP3eQmS1hvnZvzoqmRUSgH3XkQOuOo66WDitu5GMgA6a6AwBqDt2W3hjrToG16jxJ+LWYtiip+BjvlM/+sr0A5T1mGA9ZI2flwqsRgfdTeuqdfOCuJwtoIVYonkyWBCn7kklq/zNFdjdKAxn68OOL3cERRWtoJWExiToRBnUIGRgT+LY1B7xNnqOcB0RPsoMBfM0BNbjLJi0PnSN6pqjTtS82QGxgoWiPRneaSgMTL2kLDMraKMlmkGndR5EelOS5SOC53iD+I6rif6eSxrhGynMgZruW1RMris6q3Xfal1r1lfY3LBcMcJ6UDNr9o24CdgC8ZkoflKQAc9SG/rrPSIf1lPZTyVw4Hh/rN8DFxlYcIosBWfygQeEQ8L50cFHX+9WB4cGYbqv/Z8dRou+g9mXrTdqUmAeNiKYSq4uXxLLNSwUvGd6yh50M3AMCFbcQdqctScie8oQshJiISkrE3wm7SViwcPaxhacf7SYq4tHPH5VvlUv18RodVbCrR0I3aa+40bBifHOGeLfJLM7gTHbShZA8LqfzUFxYkZqKwQUfz1vBY9oHCIAl4etVOvbtbx45U5yutoQKPVLrpjzQRUFLCjP7YucJjWRuzQPqgeuf3oVUIs/9pnQ/lVoWnOK4BTijgn5lbu5Sg4CeRG20cZDtRnRrMovwCI+T6vSywFhGXpflJAcNmdsp3APq7Os3xwCtQ200Ps3MS6IgXmMX/B2HhYgKuuhMrwaktEZOEw3kC7oEtgNa2LAkOjL1KlT2sHSD+U0ie17Lc/M/kDCMRjcj/uuPIwwP9WCifWdZ1xTD5v4oxqvq66bZUJtLdGJ5R40Rxp7WNX91M+ZvlQfUmBPoCwxm+crdJDKcu1h/Uw74myXRaPnMQpYCWs91D/XJ+OIxIQT/nFKp5zdYe2IF1j29zljTbiijWGF8ScJ470k5D452EVfNA8zladu4HHU2QDoE+GLrLvf6+qx/fiy3k7JzNmXUhiNF1WIsCC7peSrZxxnNlycbUwezCk0Woor5gLCQ5T//lL9TjyqLjRO/Zx1Wu5NLPn1z3/JWtlrefJIv19oYrzSCOppy2bUMX6ttljlF4jHTYUUATkc5/yjMt5AUpRHo68hh+kPtINwX+Ym+EBZw56ZZgWVA6ZnlyDsb6seV7I+drZ0vrJ20DJq4d/tpV9EInJTjdYb+mdafJaoyl8JIcVrf3pSYsc2bc9e23naDszGjjX27VMjSyUtl5nhujrPMeyGgVnmdV2y5S9v4km0f83vV319/dt6seMl+n22KR0h2GgXxygZkSIFk375p9YOZ1tysjWKjwJE+Ops4jX4Cys0hfsQA9c/SeNr/5nTNqO7T58rmoWHBDq46kRGbz+hXTDYbFp9NZClbKzmQphOsFjA6u4vZPpXIfPbE+svt7Bq6G49tRPCIpd5bhqvYSUugbqWArlJ3ABgGD7NbYucjW4tPvmcgoXtPcQ8bA0ug8RdGGgB7PC5VTdqIPueqIxAhBbWMNv9CeTGHAf0gv7TNx5QFRudKKQ0OTUs+pDlbd+ZgvIu+6R8k8i6jlOAKXy07U8W5h5CIw0Oihpq0k7M7VFu5HKDxcOFmMfyqI28PvTZmTdrChFXebg9ISJDEqBJYl/md+8WV6enzhkZTMT8rGnx/pUFXuzWpKGSz7NCRBQWZRBxoROD3VF+p7UwN2a4A/B+r8S3no57Opss7qg/DcszmrC+fDZ2VYBVUK8L12TXQs/26fEwwISaZfw72lC6jCFdE+8R9XXYVAQwFT+1CRy30+/thkb1Yey2tgsSJF5iHDV5bKAWDsrHsHqruXIob3drt6QG5L0PViYytN2I906OrspIL8PEaK/sl2r6rLF1rpv3Z7bvKy5iXdJjdrt7yq4kPGgvfLEiDBnHjyb0WRoQl2CCg1MG8yk9gnmQ2kkYH7hqQt9L/b5ZLDKxKCD8uWg9AIbtL8fL49eAdW/gwCVp7lVC/bGD2x5DoV7+scMmCLK1+d2viRZZobsOa97XWpquRc5NZbT0BGhJFDsJ9u0bTYLMurGyrHlMURCq6qTA4UrZI/57ZZXT1cRMRh/8YBmK7gWG5UuYF77YbeAT5o6M5HhTZAJoDHhXUywzKMTRYMlzEdLhZa9aS9cAlY4r8eM7ax8PconRvlGKP2qJ5lZDWqLRDLA22bxX80dxL+K+2/osbxxlGIxSZ9O1Jy7+EqrlnaQ3DakRDjnLoBf8kFcmphAF53DAdCB2xFNi0vM1vvHuP/Oh3toyZnBnlP0oTkoHuKKmZfoTT1MbIrB5eU4Eos/L6FMDpvvtJyERi7ddLf60R3X7wsCdWgQIJ8GmFbLJ4+GNB5v2BGHLJis8UdYdtZsVivPS2uQ+jTqEc4x3lFf/cYiGExam7YXI59BXmPyyrXMz+B6lyt+zIR3W+qdJfovEJvwA8nqMkv2+O7AJrWWAI3m56j7DPGmkuz+CaQy4y9uFvN60rJ06gldhTl83mVmHrst6wUgTt8DSfh2jNoSj6+q6gSUFhOPkyPLXoe6nx/WqIIHDC0dW6ntnOOqtKYF7R0fbbBWfYB3fF3Uju6ZP10Esx8rPMplKYFeg+BE1oMRkiajMu3ljEvKDVdbngr49bX2TqxT/hZWyUxsVA0qwrE9GW3SV2jgsq5e+nyUK7sl5nTl8ztvW8UDU3wL4Z1M83OTLZFIbPIW693hODaMXeXtuoyLXkvTetaTecZ+v6gyAfd02Lf4Fjo1kqrYU2oKDnFkF4u525c0QRIH8OG9uvjmjc6213vMd6kqNI3OdgXh5rAgzbJT/Xh6DvDeNLN7BZcMp/jGM2NPLHIOztTbIlsWgZR7xC5WmIx0ZkIJ2F5Jb1bf4lTpvv3G+S6K8vPMqU3jcHeNsHOJe5eGcrF0dyqpRvVqweGJfTj2U8UAhnSKImTa+mjNTgTghO0kERSj97KDMLUDm2RODBdtCGKzsu2O58XS63u1A33sHvOpnWNQnGa7awNQ36JMaf+fs3YEposz6YhYjua+q4LJbYVzkGT8Z9H/ZSwEeiA3jAqOKVxOa1HhbhARhn07po2wCqYjKUBvDHiMbVtpm30BQP6ipBFkpTjVu0NVokAIyhQMuGkWpFOQUVeRkdC5Vs1z8GQkR7mjQHZ7pau/yQNlQfDmb3wKllJyyWVZqP/nTQ2Keeex93RstwBokp3uvD16Qwp5m8MdbELMVUBUNA4b7QHXAJJ8Hk+h4RERK0+1cr2gye8oFF5aSd++SDNAB36eZuQQeXTZrU1VxC1XcaO1WA3QWn1hUFHvN3P8Kawx9Pl5jlLZYo5nxJFc9BDD9XzkxWiyHY34zLT39W4ni9bwsZHglhw2J/DVrhWPlj12o26ahjPfVmud0uonhQ5KHY08uYyvP8FNOUgYPcZgvq+PdBVtYl0zhBigWrQcvn1/+H63178WhCgNEn3nfOMX2KBWSsjD4WIUzdAOafk8G7OFUWRbzrSZFHtFxQkoc94GSIbuQj0FBit+WlK2Q5Gl8ooduJdbBTCmtYVXd6F679SagOiAVu8+8y55uLpJrW3UcYuO313HZZsDhRlbu6h5m2l2oZzWpuPYCKfLjce8aBEseN2o+BJO3+K1E92rcScnTKa3Jwe9GQ3yGCW2/kYiRMITHC4oqecgspNK+5yNcYNZCWqWHcs7Ky4//+rfubVZm6Fbrz+zxa8MBiQu60PdlBKN1JakEzkmfgWbZFuHniW/HvGi/B66xoU5TDCqWM4E2+xc4LmojHn9ZBrv2FudaMOc6r2Wk1U+pRf7ll1JtusRfFOLThGvgMZA072eFYtzT0=
Variant 0
DifficultyLevel
488
Question
4 angles are labeled on the image below.
Which angle is closest to 30°?
Worked Solution
Angle X is close to 60°
Angle Y is close to 30°
Angle W is 90°
Angle Z ≈ Angle X
Therefore, angle Y is closest to 30°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | 4 angles are labeled on the image below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads//2021/07/39.svg 250 indent3 vpad
Which angle is closest to 30$\degree$? |
workedSolution | sm_nogap Consider each angle:
>Angle X is close to 60$\degree$
>Angle Y is close to 30$\degree$
>Angle W is 90$\degree$
>Angle Z $\approx$ Angle X
Therefore, angle {{{correctAnswer}}} is closest to 30$\degree$
|
correctAnswer | |
Answers
U2FsdGVkX19IeZrn13DoQU3EZLrYt6lAP/qXALOK+p41G61qaGKzqSVlyVLo+TKEjZXg8LuVSycrum9xj62QtlrphLeifRFvjHD1jsWn+a91+WZtBkVAEfPM1viBfuzed1zL4kx+exjX9N5EgihZpoEV0s16mrMxv94x3S5tnAT8mhJqIenduXh+EHoBozoN0UkfBmibgBLPMN6t6V4DgsdjDRjIMwmUYcaKm0UGwEF6TkGS8oXA7oJuuu1Noh5SAAn2+GjJDsfcV1q+rwVRHj70KHg6+uBe2qxs2gh145aEPGOXEDlJA2k0WNpJuaSdvDh56rFjCI9kWWhsl3VPa1Ptg2yXf+SruCZxqzCWuveG3pR6UPC0weubW/um3nzbwpxKHJ/z9d7KxIelSApzocU2a/ERHqkeKylh7pyOZaQ4FB1wRaThrR+qejtIiBacHBzBOH55/R9XCKWgBiqieA2HDlmZWLvIME7rujUk8asoCpM3OLpxidY5G6+VaWnwOXzUH230UKH1stBuqBnQMl4KzM3ozTiT1BsWdPgNa4/k0ps3WXxzTWbF7IgahlqiC8auCSiVg9ZmFKMyJ86ZVcqrPQZfdJeqJ29/ML/xeiv3/LDU7SPRPPlb+aFRA9vTQC5KDjqrOtGZAHoe7o08in+wP/RAd33wdd07rMD1BG6IhyXciNGuXTNuUIN9rv2B2D46I5q6yoc8wO5Gqfpke9FqTf3+O+MUnwsjmULnbDxKAT60RVbknMlC4F5ZothNqRaVOUrWDpvNvIGM+zPS76SRwsvX8zhhgzhO/JYD8sGvnCqMSjJf8KLlodJ76xzFxqAUab8HRoEtDi1FCdonALoIrFiDc4OomHS2U3RbiCYRri+vXoIc0m9GBys8yTMr/N0XYjuW9zut8GS4cP6TBR2H8xvInRLFTIDJgsrkrtslWmkgBty3Zn+36ijtZU2uoaDpNs3BXsgztL0st6y8gTTEIkBj/3R15UF4g8QwPKHGkylms2cClNWEaWp3Vz5kCKVQF65M0NS2GmnpbEWLx+z/295FJUq+1FQMsy1x0svneZAb2JFStyF5K5XPcbxf6ftGAqoua8nhNcfTDe0iO1rP8TGlvQVArdQTPW2e2WGpw2gG6cT7HwPxdpOxCIqAP3ioTE5oa8sj3iek2hfmtbX4VKW3JwZK2OcNa5O4/ozIw3UjzeK5s6Qp/SQo4KkVdG0pnR+7SuUkxZnvwhKsHFNClAtzN9H90DxtT8VhjYRGaQ93lkCEzXw+JfStWtuLCJIEwYueKDicO9r6uHYOBEL6leDA3MuwS7/hw1k+FLeBVHj9nuQGuWmpFtz3K3PMMb1kb8YE1nsY2iycf1HpfcPCMxjt6Wai/lqNKw2sAKdlWSz+HRJBuzW6C2cd5hcXA0mGViItTjJ6eZfp1KssQIu+XEAl+FhQCguTSHKh7Gux9Z/dK+OAb4a5/paMbJTSoHwI22HS9eyVpqOkUsUoT1o8y7Vnhe8RQ0KYqQYd3CXkLpU838mjBQffjVH4oXnP2SQngBsSBcUevZwl1P8tjiecsccxbOXuGYs4TyAURJLkFPvDiFnIaiZLVg7b81lCYAkxt0REwuWnmD7zmrm2nNaS82CKQebfYAkRRG0/V1ipPMFMkD2IXKn0x/ovgXyH2vhyKxLese+gXwkMHuPPJE5pwgI+oCCJrmerHzBRPdgwIvVdez1oEqt3wW7FtOQrh0jEmHObES1OK1tcH5JZXoOTeGENA9EwPi7mrH3uEBRyiJAwNiqKWRoykV4Yb6WNTmFFmXYKDok25ZZwCne2EeehF1nkS4ZLU1tinogbe1AA5UxdNfccTL5Uf9q2q6L14YF+SCrqAytwinvnno4tX6TJCeDwWK6JVLLOnzkF+j35WLl/ePP40bL0dRcLsYf2bBNChxuEjzCAaqGbqdKlwr1YeVLJ1dVL0Q3mEW9DHL0tKKbwgBIpIdtgEjkCBMwiEjP6/kDwYopcKKtEIjgWMtSpBX4I4HdVg3yE0nmKVx65Jc1ThWMwoGQkH8A/whPhBhsCOgG4FX+zBTdZJOwEU2DE1SCjt0y8Xdn4u/suu2jn97wLjQom33LYbBsx5XsHGctTRsjqmKLJD8naWn0nk1PIBpfS1SnPuYW0q+6MqUdGXOZx4zUjxb5Kt4jP0kJOluGz6SEMcy9ZSGPLsiv573HvyzsOOhhgCK8KL+55l5Qz7lb0w49Ba+rVcqQIMrWv+h+XXg+4NMVw7TtoRjCJazZAwlWJ1qbuPWPjGeZs+gtEv8G0wC9m5l2rwoyWODEnBfJzdqdoANQvijE7C6feJlsy/iYsCBgnZ0Q1SygcW+FjbcIlZBxKyKr7rjrhJhGwoGTgpYibCcEuTZNL9+/+YP2iZQTrtjP6ntQ+0soPhCOsPmMwRbUa1HzfSwVy4qF687CbUWIhAi3kia6AnwkUng/LiCrUpCxTTtSj7eIqdxI1mkHuYcQVm3PhVY7QQaj2y/B7WI/GfOXo+Zb10n0cRjMLsB8zTswXgSbzkUqjFHoOQ+bHbP/dx1ymIti/6qLv+2XbzRokufrEkth8XpwUHmGwUqNHVi+evyjlkXWHI/h76Y03FAppcrFRUCuuW49NlxRGYEOo4AN24I2QhODHBm2nNzLHGI4sWSVjhGvwiJlE4X57yfhMDDp/9rdBlSl4Vyj3jqn/pGDcTCh1To6JyUZKc15rLSqHwBTUwzogbtY9tu/zyg/e1kM1nqhwX0XMmt96FPt15kwTryYaEUU0YJL9+/YItWygPv5BnlxGlvT8ReKI1GXMEjbfnVQZI5ix0N4jPNIYQfS5k7VeaWG0zh9a1RUBwCMiz064fcpwBIQvnAfrkhw9sbjQj3cOm9Zkqlg6XxDTN13SxeTxi//bbWlqHkOsZWK76UETeDHFqDC0sc5d0BqGXJH+7iVKrJnT2P7EJ+lW0KnWALk0HQC6+nutMG7j/5NKzklp6+jjn7/RVkNbFlTCld/WpJTJ9+XY2xFgwUVFR4bozcvhcuNkERKC9sENftHrm+BVI5JKENXYEYm6EQNanx0Uvikvk2M6Wjq4Fk7MyxHobc5fjD+kS1piMhQZlnpHQG6yJ1Y6MZ+Uh7hUscVuoAMrbtdm8StN8arxkaDJ7hAAKT72IP+MjGNZ+wn+mCEqXyJDEaq9BfIuUfBvYMfM9j1gcJbXfvf0vJ1D3ZY8hEf260GWTILsuzvTgYzg2DFXD7253k3gFa+jeDDuCNbZrdpctzWKd8ev8OuaID3y7Uv0z9qkMh/sYPLZ5PMVQKjY1DKxWQtxSgPcZUPli2snJhkXRCI7TtqIvbJCWdnE26r1/M4iTVuQrVoZz/t7ot6LB/JzYqFWex43Cn6wz5Gd5FDYZ4tkWHckD9Sy1HME9Rnb17Rn/Zc2kH8LmsCEIGBKNQJcWeUgNKYCrUA9O1OUr1nJLr/bcy9iI+ErCfJLjkBfyZE05244RWcHipr4FGvEHUVMagDSsAX0W28XmRrlv97ldhafrtsynfMyqZS8XBODnhE4dXErmImnAOqAAetBgq4xp2Dy5szrWhicQ4nmsdcimzUOQlWx1G0qa0+cfHDneTR0rneO1r8+7XZRE3ZoTYunBIQveooM0O9QaOtVY7FRwUFvsEoMW42nV3jn56N4733kAD1e+4+V212hjvEPKLTufMcRO+lx7+4wUWjpf5UQJOR1mdLpwp/Eu9E34HDUfNnYNo3a7/JhvtACDAMjIwqOqEDl33P3cCJRTEJGPvBIuTmU1TslP0nbzQ5QbuE5XbxJfcDNYKPtzlCqkW8/zVD3/BQX/oyHLMzi1fetHoRAIApwD0jCpVUOAgLLicMzt1UXKd2A0f00yt4Grh3SBYzKvgu6CvrfS6JkFGkCZwlI/xhjUSL5+gyC6NMC2JpjxpmsEyQ3n8kNxbvOJXY9JF2EmVnjkyCPIlZ3SpqjJkCvZBC1999WTsWHRSgIpkuOc+7aNvKfbCcl7KuP4NhU6fJaI49Yy2Gpez6aXoeo9E0J/pMbwGpRSc/UDvesGFejdn7iJ5b1sLxs1Co5uiNdsO7NoTOcx1Nfk6dSP67tqne9FkPDMPk1E3UEzjKDnzdURWSAYPAjOf1PhapWvPvs36M8/T9RtjNuKBGanz6Wbf8mnQokNYZIe4UTE89UiGC2xskNTHDuGOfprUarRZwF1wZv1TjEroHS/0MvBM2b32RhDsUTd+HRI+zLcIvqTynaQxT/wXqDQzCgDgBCatVuHLHST8g/Uf3NlEUlVlRvVVp+b7zmXEZvfRUNIrbs81eNDdwawo+hpaX/YxTv30vwqG0IzHkmjiExydGJZx4YgUpsKk+XwZE10KadZqB01UxQ6JigaiJqada/WM22Rn4NCbI9IVJYK8Ku26DHCF+Zayz6AQKnQuNKLH8VEepuDt2isnAF8vKCA0+Inm/h/zGOgOdPckxxTViyUuO6nnBs80VR5pOP0AAmjpfI0UN6ie6bwUiVUr5kL+aWENKm56liiFOT83c0GW7URLlWU4tBEXywXz0GNPaag3/jL77kYrDguTvb7j0jdglxBSmI96cctIGXPuqnA5DQZ0A5IeZncK5kOrcu8uiudQ0kyIFkbUsfIR2d3ZDM8eOQ1avGUR7I0o29s1lfH3Q9XmgSRUuaQw0T8eczYYJYHLUf8tOQ28Jkctwq0nICLB5jY+5ExsD44SQRtYjX1OnBJZf9ias8yfm3SmFaw91vZ7icBRgR+0BcFz7O3hprx1K9SSMULHZtoo5InZk0pRbsU17d9PV+YQkRAZPQW4JYrc1jzeNCz7jIaqUY97/49qaxGyHbcaOed0K66AeGtkIRm//d7Cy0ZzHlTbl1RCQDfAGYYdSstnWrI2X8mjdGPOjK5p7r/FqfcxCoC0v7FKL27/kIa6rzCBDJaXHq5ZV1BVIRa7q53ieWJMPZN349bxH6VjNsAYZaMXQw6cql/tt9R+RTPNFZMXGKr6iMYc4PxKpDKhbZEfjtqQF4WZkx5NSn8H3mSG24aAGknauFPQDjyYPQNG9H1oI76esZT+9XwC9WeVeED+qgnuEDJLYcdTaCVnV4K32d0NJjwVIf+LCdmGssEQkTNE/U4hFJzt/E6Ga+vIGwzv6D+VAnakq8w8yz0IxBYA6UQoJFNMUSapd9x5VWtCCFBJqZvHUR6mx0a2qZUdXdIjdTLbDb5IvG0+Z4lVdinBdTucw8babw9J8KX0RS7gPij1eRpxAC963fdLsFN0z9i4dgqOp8CH+FEt948t5pbx99pr/QuAeXsKMKn6+IqLPOC6sM4AakgH77NDKgNPJHL29Ixx1q0Iu04NQnfn/DkCMTv3HZs9aaMFjlB1z9F72/fvtGbbmUiPK4Z7QrT6nQ5HG6/xBAwHe57CLyCmWxTab+4TIMl4GE9K2Nd4YEFxDftMygjq52677Jj+oaZu8E/Zcg5ZKP3sLmZ4jSFDG+JwowETrAFj9Ak/m9OBy6aajBxxwORMH0tv5O7Cu0vsPqEjIjXFnt7hwIobYQZyGccHeQG7aKvMxYBdkvCrGyJUn0jWlS7+V/SFnRLyQxvclmK4S0XX/FRs0elYiP4ok2vWdF3lOiPJ3kQTfa0r09vpDA8JUlJ6M0faa0+MOm3PJIMewz3XdHYtLpqA==
Variant 1
DifficultyLevel
486
Question
Four angles are labeled in the quadrilateral shown below.
Which angle is closest to 120°?
Worked Solution
Angles A and B are acute angles
(less than 90°)
Angle D is greater than 90° but less than 120°
Angle C is an obtuse angle with a size ≈ 120°
Therefore, Angle C is the angle closest to 120°
.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Four angles are labeled in the quadrilateral shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads//2021/07/40.svg 200 indent3 vpad
Which angle is closest to 120$\degree$? |
workedSolution | sm_nogap Consider each angle:
>Angles A and B are acute angles
(less than 90$\degree$)
>Angle D is greater than 90° but less than 120$\degree$
>Angle C is an obtuse angle with a size $\approx$ 120$\degree$
Therefore, {{{correctAnswer}}} is the angle closest to 120$\degree$
.
|
correctAnswer | |
Answers