Number, NAPX-p167439v01
Question
A box of apples weighs 32 of a kilogram.
Lou bought 3 boxes.
How many kilograms of apples did Lou buy?
Worked Solution
|
|
Total kilograms |
= 3 × 32 |
|
= 36 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/eEAtk7S+go9YXXGyB8LqxyLQA0RHNrsA+vL0lxd6uDZ3w5T8mDOIC2kjofoVN1Ajx3hC1SPMIpnw+KHMti6mLEIa0H1Poq8gIhwumoo2JQx/N+plx4O8ivH08nIu3LDmvq53AmCVfGHjc6ipgIzZ6JTGFDlwWZeS8fo3FkAohMNWCAIvI91eRk4MKl76HsSkjjd2fQzmXCUHq05GN+V1d9w7Hy0CBreEGkYxtWGTalIWA6KCSWbIcklTzLCdQZc+2wkDc6/A4Yf2okv6Nyqg8dyP4p4Gg6+gNRkyLKR1mHM41xqGpPcY7+vl4hSRxLBscYhBP7aPCQeq3Uohsr+PDhOf8lktU571y4WVF/rzidgTizMB0I3oIQO+9Ywc62Cpzirur9PYmMbTdZ+xPWeqEsPNbuTPKv/tydPSGAy2hGyQt5VR9K6IKVTM2HpC0FE5kEAIZ8clVAHfmnQhjLW8U3V6xq+cQaKkklp6ES3p2geWSTpxKrkEb+vJgbeUAoMHFxZRvseBynXdZECz3qX/4BdId0hujvq1GNRL0/xRbm+TTMh540FpAsVPnSsQsYlCqAI0Bm+tVqQ62sR8iHppv3S9JQ0BKDcAcYYxKG4b+ucnLy/f3PR/IsZGPFVC5Oze/y9GxD4R1C6PbNI0oKj+BySF/Y1mO8jOziPVZTFhrgneURSD14gAVNGSIMJVZ3lEK2cbW58e1W7J4JxLuWm9/BqtWb9KjJhthToppQaaVWcFoc/4e/VebpQQ5MEUqk3Zrut+4jlVPjB8Y6Hz8gqS1F40vGJ4EbVOQAWBxEIiOOJ36AuXQmMj2s/FopUefshxF8d2P1wf+flqJ2C3C4xPGIwQiUDDt7BhTKvH+1V7NzvLWnd7TIexclIexLFASn+bL9sv5UcMLHn544XHPqqEd64Y8yFdknYUfX9zPmNSjMxN2efSeu0YWLvCihd0T0kSN0YETIyHyJRgeaPrv6XDp6CerP3TiZ2RsQHKO0+uLlJQTJn9X6bEB62YwABiLLWMUPZYkVP5HCCGt7C5DyImsA8rSgd9dIaaI2/fMItT8ZiiPooCaIcWLn/L1Fajj/7rCjd+nI6YrIYyTsTfP5huFLahBeLsfCvBQcE/Zh6yHcvyVJufntrqgJ/X4591rXDW6j1mCoW4brD5Z3xj4Bq6RLcS8Dpoglo+v2H31TRuj5nqJVEYej0jwPESXDUhhL9iOJgLBCbPspdsdkSG3aGkGhyfG3ObD5mky8zySRMBbyGcofC7wIwbF+qu7hEN5eg0jV1l5O81yCPdDN4l0Dw2YDLcpYnASkL3BJF8DgWix5z5Uyx5mD8fYx/xnwKuXNDV6AbnFW9NHeNO6Z0R1hYeJ6P3oig0VvvszpGJXWElVprT7GkYxm3+C3il7Fwo+SGmANXU3QivPjpzSKPTaVOGZjz55lzwVg7NiwV3Y6Wp+AMYTSnFBrltv2HonjlWzWnCsA3MzYDHmIXFKepF7uzkZp5TlnJe2l6MAEGPj8/U7lxslWP1tAPfsqebFYZJOTAf0PiFjIY6JeBzdU8vKoP/w74a0hIf6z9f5+CPXWFBj2w60jweB2nQNhpPealz7xX0UUVVeY5t2N6lUfPbXolxKp6F3gGQjiyK9i+18CXSgVK7T9ZopTkXutAbQEBoiw0bDLMWEIipBeCvJTrkzTX+zg+0QzSJxSTfbvaT3T2j6Ku8BVvyVa9UPuvL+HzDTKsjqTiFXgZD93rQyMZYRH8tnR3iSwDMbs3dzjCHoe/3vFRU97E9g8ZiwQksHzE/mNycW2Z11XVlCemESU47ZzzQASVaKF55e6crYrMcI6UUv1hRSmvyVs2F555oUKt7cYmmdD3eclh8K8Lijgtv7m0c8d3Rmt16ficPqmRTQWcRcz+CyP0i2uIgM+hxg8Fl1gZPilTht+ZjUbzmIFa4++8SE10daRt3tLLctx6RW16A/LV+/tNPOptRRSYUkCpFv+3YkxFuJUD5qe+oHM7liGaDeRdTyjLFjxYdQhapaYCpMU/RBfntiGqimVtuWGinrtXh2WYRH0XJTUK7ARLrtL9uMnbhzTO7sivejaGYgy9lJG+ZyuzbELlz70z8TTfP7+Afa1U5BfyVLI+LLkadyKPd4jJmpIGJ3GDhBqX4kKAVaJOsLQRFRpXsDuTTahb9/G0zOk3xp4jDzMNzty9Qrq1kjxHlRmv03Q76rroeOZtRnpK4Tc/CUBas006XgGmQhcVPNYR8kXlXfASWop4MolTWJxqRNdPBBGUSac1I2LoBBgXN6KR3sDXUeavwT/voIYv2rMf2toZ8UOqXie+B7thSoj4zsCVAV/ZY2+V9vQ0WjKUYWwgProEFMbkHIS/V45Q/81vxKaYKxBZXyCSAE6+/isScy9KANeYnAUanR+2Ski+RCerr8qHSy6pb9q0PaIoXQQGMYoT2f3VWPhDuWkl07wiUJjjBl2yYlnvD7gH4jagDKKJlH7lMQfWwoAy8AFTkjUyLwuIET3NT8cSmh90vxGw6+zOeLiABqgd8n5m4fHygRtfEXtKEGzmSZ+FVUsxLwv/4JEzuIkI+TOxbEMWxLKwleV9be0si3qMr4jwjF5pdV5+w80PkIyXjeIAYAGxRqUXtnDu9G8fXVxGFDop9DOS8bsY0SHZLeif24BMyvVkOly2noNGfkg6yliXoNPeKFvIalZfO0e5pD8ndWSLPyRzbNaeOAeAhXMtG7Z7CFQvMjgK7IhaUXT/9WPL0fOtK+7sSfH35yIkXLxHqJho8GgzMwhtUKzEPfq3mmSOZENEXV6OMRWsfOr33l2H+e27D8S18CqXQjImpmOp3resT+M/Hl/686nof/vnnoKDNNfrJLEjcUdoUeaGX6jGtCzx46uAhtP97pwkmKkvM3PxAI+2De2ImLSChmgD4C2bzMH95QoFKaZwoieOJ2X/Rezc3bcp62i7G+h8kwc/oPhi6i4PyrgOOhbcLcqXEjKXxjrwHmBy1WmNfrIlGlL1f7rYcgpV+FWNzkvGy0Np4H32KvDpitKSDNJOZCNCcGquPfvcevHHsNG4iHVf182hZC7AAkVudatxxf883bOaWSo3lHAxHVd0/Q68y7kz19a/KLn/UdZltAeuNwXS0PA8H8nCEWOQJ5DC0vZAPu9vrSAVEKOelHoaRXcRtdFlZqdSvm+czcbUtLh/TtFYPehRRGgx5cszWIZ1imY/Zwj3N+w4IZLOJMVOAnHv+t27pksqS9VTO5pZc8aKXjN7yEprBDN5lbOINZ0qjprQd/VZFJ7/x+94Lv2ZgD6WR/F5/J5vwEQ2Uf+5cjsncf7BvAXe+d2Qmfi9Snnm1S18gH30LqS4Vz+xc8ryV52W1xa0M4UYkwKxVu0HHtP7ZtDryR5TtcGrpulhoGivPneD0LCkB0xa7HfOzRRBaOkTBA6SbNvXjA0yfeL2OteYeVHY4eGKtZsl+nopyvdgHuJVkIcs1QCbiniqlcmPkrb6lCk2mw80YhUU4VO2hnMe7oAkzEqVEewswqk3VIgzgSpTpwFvgd34EZwejg93eKRVHaFTTgPmwTrHCI94EKXldI0/ByqCpr74V3Ss3SD6S67vSP0OD7jSXLXKkA+NkbRrCqIaHQt3YTLKbNo4mpqSCmlQM4q/sr0X4spisbICTUN9XwztIX24pb9f+0gmLN5nY8eb45mIH5BJusbPMBx4iPIF/3AyX7EKq/AKcUsd3lpS24mQobIghNBPsMBVIjjx370bTsqRHJaLPHTIrAQrWZCA2aRC85J1bbkRN71+aU97S5w9l0VyMe2XOwnxweVgwndkEP77jJStVhZ4Pblm7xPUK2Rg2Gvq5wKG0yobqPtqoTSXyoiSYfu6rqZIxXN1qFrcB1xxkCFNJR8YdklfFThHZK7kSjPmiyi/w3UfCvs48xgpLSpjzPWjUDhddJqeTi1b7lxU3Sk19NQ8eccbig9jMxwmg+/+Bs+0WB9p45SkQhQNJw3TdVGm83373mTKVWEZEr+7EkW2TcDIlYcgujT6PQSxLZtXf1llgEeX82pVomXJUy+/SCuMdVmkWKTgPtp3gy9MuKo0TBP4FzCrzwIPF2X4udKIaYDv+hdK2mf2Vzo0pJxvxL37cYd1IMDNeOeqPcgYwDjfQaAS72bt9UrGU5R72pIrDLlkBArprI3fQ7d+Tu0LJ867w0JYK0QOXPhqRxGu4TX2Y+V9M4DXLJ6E9hwKY5tw3bth6lG5Xb4ay/K96Nrytu2ic8XgJCbHcS0Z3xn4DqoV3g7L+x23LSDXgOTAAdIWIJXWie9ylgZ7/TChuKJKWFwqSN56bE2g6Xv2yhEumKWoIdk0Rclf3C2UKbM8/10B6FVs7FBtPsfT8dGtfG5oYSsWbGDVHOiWpgqPtErTQj7C/qehbXKlTJBtZYCBeuofPibvxh/1em+wLpYt5wXnqjmwF3EiLKJgMWwz86R0O/sjK3sFqqz5cWyz0Sa3x89ni+ZDAkuhW3zi3TBICPaMdsGxt0SPRM/ZCpAikzWkDye1HZtttQ5MKT9zaG8UTZwbh1q8b+9s1s6ALz6kSeDO2ZnVZO3RXiv99V3tSBPF+zfI2v7hGWhw+GjwalL3u9B7dF7ibIObcrzHRAM0kuN4abAMSL8AqwBQ3CCY5mjx+9xqOtH7lGcK61aT36mnYJ2j+fRqrlhrAHayGMuw/BIaZ9QuyZnzRgshYUmdya5Leaf5ki1wrItevER76P7TfqXvuBSu2eYayviJZN6Dd+ynbAmHb7cV1iAaxBVTH6wstV2R0iVumdnB7nmgt8J8vrw9R9kn9E8jVEz2979kIK4C3XmpQ3Ha8moeTuokh85s+b/G7WYtyWB36b//0PQiJNN3SxiK1eGKMwAfz6yxzlEjPKlp3k/m9WEx5xM8Y0TDL/e0eiDGzMGfk3U+L5aDMQvyXRMbxC9tL+O6bC/aSRMNbsj2fi7biXseF7/t7o4RZ10DRt4ZsIY51EY0cCA6uVEC+J+KD2Kx3NtIySZt7yrKLl82+mCXlp/rmdeLcpkaakfEVorL9z9GhjEPqikCykd+m7Vs6w/n/Ha+zqiI9KIYHcGiSIOFsshrLaA5lfAAofBVPQM0QYBZBLuU1KTAxuhBgI0ZsWa14xR8IcvJ8ERMZGr23LThLFIcwKEEAAPLL4TczrY7A0glnczQ9mcFoiOVaDLLM1huDYgeAhxbePlbqGyjea39PzxJQpYR4k6doBPeZInreHg9krY4BTrv/+xKs3upSviqnwo6PWvLwmweTb5zpeMJuJ7ASt5BTLeJzWyonHl6+E37Pk9FIEZcmaA3gkPY149mAEbavK5NwpC4RacWBdhUVFkUNScZRxBa7jEhC/z5tGCLgTW4qoeKqCRIHSxJsCKAkNuMkuOhIUMNf6SH5Uo6pq442oiI1rWkr9rYpl8TdCGONMDSa6VQ0nKsze9KXoduUSQdbEAPiaVIaIbCUdSsHRUa/5cvDG9vO0OXvqtuUefU08r7NbHtTZRmqQW/fS1vcDUxDwGMom0PNarjFvDGBs6hJ5JmRFbTVihdh8+1MGF29QqiYqPRz4tD95lRdCRlJhD93ik/rPSx2nFpUc16/XWogTHUAW5glamwILhkmG2mKZLeVUqcuqUvO9lBgh6HHsOzDXmteC7Mpg1gildqlj/JiryCkXRg2//82dprAoKdO2N3xK4JfIYG2kNvGp8jk25ZPTW3VNx1+UtuiqLwlimu4Stz7jsZKX9tPW13d2daGUgh+8SAGSCA/Z6splY5R1ojFbTqBMOeaKeA6jW6JeQDUAwuEiLWker7LAyPrMu4hc5VLL7YwBNiX1ok6K2sOE04Lh0sD+ql/rBI3xUf+XlyKOJGf4ref/YLEQsmx64RDipVgDggu6pgiGHGbAI2KormuvKFlCQ1CwaNsmMmtiZ3hTamD4FESkcPLe/zptqmJEvmRZB9HkyXlydvW8/aYR1KodBWenYYxz79bBXGXYGPlyv4cgRs3drGS2qzDrEJ+Ie4C/rUUK2Cn8RWdcdzOMrgVcByBD91EsKtEDMKjcy9XRUZ3qkUEoyQBTuER0rWvbWupVW19m3e9fqbGQwn7lgiLp6m8KAmbk1a3id/loUPC9a9aEtzuVF9rb93SuKDn20/OT+OCfcD3gb+fX3ouTHdIYO5AcJ+a6JeIFmgLrlq5PN2j5xvdgWn53xJJDKA3DOoFV0oX2LCwd5feuLMd9ExUJnF8PAFdPFI6C183bPNDOiVSbyqCTZ0b1J+GHPZMFzxYN3RCqmF56kt0y2XlqJqWZNQ6muG+ix3889MPDHxCI1eng09d4HB4RTImeo7+BZQcYCHJRNBOG0oWx41KnunL7HXk0yJMe/IwjsL9vLbei2pttG7Jt+HXsA+SWiabzic1EBVVzrUz0Nj0wBTzjI6cgI7uTQTnxb2L3skCLsEBLtreVw+V7/HGIkorT9XyJBhL6sUuuPO6tfjXt1KUnVRCxiA0NaLWqsko8PxSPQM46tWotj67ZM4qEwthl/LNp1dssy40/bmtMsj866+l7d4Y8FHRdJsKKyq9eUqhtUtrANl0qgf0p7e5xo42qaZvlkJjj5i0KiGgBv/dI4nBOt6iHBP0pOmZsgLhqze4ioegaZc9zodxP/tfTf2TPv5afon+0J8lDwo61LwHSAZB+42VdWXZ5CIdCUbZ9jHinbR/pLS/7pbuatQLyIu8TqQN3twzuCAiA+yiO07e6WioFpt7AFXmsipOo9gmKiaG+XOuD2eKCIGyLSA/fo2K86vzHGWwNvHuebRVtFxi3xokteiF+Ej2KGjCKl9/sSrLhY+zsoSQL8Xe9PrQF4abAQ0EZM0JDLRUtE+sR9OIbBMWZA3fE952DPhBZEjEHc1vFDwYrxbbRZxnN/9OkC5izA1wLozF/8BQa9qXmcBX2qf6KL8PIo9YNisJI7E7xnI9VAwwyfxro+6zq5ozKZj8LLjtt3ExJWDiePOzjMrXQV7pm6FMsEpsgp8B3RGHmEtsqAtr1hDQ9clfrBv141S81vQCaQvqj67VdFRGC574I0YCpqV6r3tRFkvNJoSsVgtVxiUUV7JG69GqdVIz11YAC55KUiJk6HGayB0irpn2PYcLXIPV/DthRoEo6lZhnmcm2xcltBBN2pjlJXsbc1SLs0TpAm1peCJtrYnQWIcWYXfdXGdwmU71+z+CsVIkngfN9L8KgYTQ/ze140NI48RYKQ+oFwpuPo/zT4aAYJayZCZjLrLqBNCNUCoROZGabV7DWraiw7h7fvqJ1Pdp+wz3w4MJymhQDGXhSLLMIxy8WhZppuj4LxictAo/oeLC2CrLCgEHlAmEYJRPFsmj63k61Pvk7DlGVfkpqsUGn3lykGm2O0EwkHhTHYzWdg5uCAO1iUU/TLbWNrYvvBJqvMgy2zCGlhbD4naLfFsGQ+2hOfDi2fID6o3ndu5wf4SBZ1g2mkc/E9EmZGUSum/YGhLDMD/e1Eke27EBjHptxVQi6bCkjVzIJnJDQHSJSJYfLKFt7a1cSRCy0yuh9hE0WW0M7VlId1VlJzBhjRKdjFQ1QxTmHRnpFZT5p/psVRshOB5p+PE5VHN9xVE/6QQPx28nr+tFUBa69jHHNuu/IEpDqprn/3ULBxSAPc/HPwv1lL+448Z+e6e6rpSn2tzQQ/AGzKeVUdYBOBz2IzdgHs+vVqMR/H9d4jQzRNlbaB8sG7roLF4lfuVJM0rKwlE1kJu0jL1df7eIEEuB7/au1ySXN/Rx6O7MFSPWzl251CjYZBdGv4g5XKyYtCxR2elznnxdbnoCUxkdoTv59/n/l7AEk89MPULfRpgoO7WG5xF9mY4eggizABVPq3vipi3jLYnXFx13qbbaOoCMU+wp6tvbMy73U62XnowW0RHqQgPeZg3jzSlGNwhlOZuWYWs2inRdCELk38SPwXgJZc6gAxD4sZnWOW5M+eoLmiv8SVu91ZyjM0SC1BY6Hw1/8C45SDB/XzvT2dPr4tVA/VO9LaEWTsDhEft9nfn35KIcBqm4GpnitDBMczP5enhqsUEw08L53mJp1Iu5eVIKlnI/J1NG3csIBIxFO9AqLyZt2bcXlni/KhoPbl0+pF9WF+NkRBkcOEA8n/JXS8plmXwUDQYwW04xDDRN+4Yj5UWyWWvriZMU833gFWBB6MEA+vQac/boTZK/JStnboohCiYy3+oGDjorxCfZpFvWAv2KbOCuXnnenPauK2chS6cMP6A9RagTRrU+jkC5mkeEV6gh/o++ImqujaQRgu3b5UFZrq4OJjeAmBHlWVGh43b9kFr1Whq2kKe32jKgY755DgOIE4XfW7vXoKFmA/H+4FDtfORZNzePtE4ssLW/xxtsj3kdUYXR0NuhdvApDzaqRzFN33ZL1M+lYkiHUdA38+DPfxK7x5Ffy+pq/9ENeWRHxBqsseoq79Y3r/d1vC8OKpJ77ESYfFzVocBqamOAJDkWZmouI4R9+zFAHh7gPrxbGTIaAt81lftdyz12NCj+nasRQDuNxztKRcmNp6ZbSwhlmBzDCOvPVGUmxmyf242H7ooUhli4VsqY0U3wMcdNXg9ezkyt1FP+akF+EIakJKwJQa5YPIM35JqsHoXp3SI6zgdEvpbjhYMNeUqC3tez+PKZa3GzHgYo/KJ9JGPBGgjkxgWHDq04LI5XnptbOfKZdRkHh2FKg9GJ2vWHWF1PwBp/4Anm/E4EHgpedz0dzvMysLq+v/YHhlpemcq+R17tb/ealyPc5mgLGNFzbN8Rb/Iq0YMWtFF0N5PoNs6+vAXPmB9zGihAxOxphvQohsUrFNDU0WxELJAcGdvLoRBS/5RR1goSuxnbdFkp/yebzpOwLpn+AN0fMbW5G6IAWLn6axw4ytwpKqFpxRLyuCBClY9n/LWBTeJzLoZoTCwsrJ7EN6MbdNeHulxYl5y3/o2GyFTbFuBdyftnKGGZFM/jjf+t1DKFcuuY2l0Bi1Sy2twsXuT47bY4ROwO4irz7W3L4rU10So6uMYIu+kIHUJzp8ntkGy8aL581p3kToO9MkIljZ7HFbb9jcjdHAeDIW0jkB0fiVUiDBfIm7SEGWz1IfwAksnVlaBAwQ81GUH+Fdv5qepgxCqqvSKAJlNTaea//FQsUV/8Qe/SdyBeV2eWQv5TdYpGQcMqYPzkaFadQEoS4RhGJO6X0lQMcA+JjmCrm0ns+wImK7I/q2Ete8SWqZRzM1glfWSMiFAGdE0eYQGLo2oT+JbkJxxRPH9/jsBggMhI+0yLeqqebTVIoZ9mzMcFN/spya6Ft3B2qAuykj+FXYG4zct+VHtrXrk7Skc3x2j4MSUb0JCS245DFuvjM0XT2UZKzCnmvF/t2FkTdsRboWfU3j9TRPtb9BqC6b6aHsf7XAqPKJWrXk5iR8+5TXZepZlHZSpsKCBPFFu9z9xO3cOe4DmVeSXDsBV9M5khooP6EG/Tk1Gh37Bn42YyBpKkgWgQAqBaWQLxXeIeLvcQI7KvKlbewdU7tffkZ3VtNp9fKeDgwUGJ3ltKjcNeUYjOmZOtEnrhn+jTI084+XQnoRaWNVyqRfen7Qqn7sx+1OCUItvbZRickBOJ6gygp0fHu5TSC4z6VT0u/jME2IjY00TjAxvDr3uY1MvC4xvaZfsRFBdRpXiAdPeHNnwx3JLDYh/7qdsytUmU1xz1Y8j04Bc/0vwqNtd09NlpGOuvJu8sFgcmgGohDdcNJPDp7D32jHQ6OU7hpLELmH2VlUHD9bNicrTSx0t5Yj9Etn3+aSbNmJWB005/Bcx34qTmbuI2vUxFct6FzhnMPFVhVJggoqLL6g6N955ZAXczi8BRpS4DEZkZMMjj2dQBpH5vZl609/Bi8D6O8iG/vJC4NkLTdhpWF8cf9x+S7otogpwuEkCysWm1sronSzJbKkVWtwzsw1Y3y/tjhIP3AOhKzFm+wWRoT3xRLUltPINoOEbqMVB1J0ZQVQHRbJ5H43hYKWSpXevDsgojwKgsLRt7kLMiWbYkZl9YXMncB+4KV2oHNTRdJBmWzDUyjBzsEauhzB5uQnuvOjhwcROBAbLb+/CbYKQo5PgekM7EJ0MVw++oh8IKQM21TVchhujT9zhhqxz+ur8E8sOyjo1TJIJNtpngPpgcwOwzrMBo3sng9/j25CgmY/O9aVxjQs4IprOKIiOcX0kEHswaoGf/ZnBDM8TOOLCGQkMOtaZ2NMALzbjugzvMRH9QsvF16Bh9c5qBro2kFKkI7Bkh1TIO/LMEHshPAwb6jfZxCLv+YsV6ym29U+C4UoF8RX3GSw/vqVfoSSDKOBvHvYYTIVi2tJx4cjpiXkyr8xZPX2HbqVZ2NQOWqXlruuDcPDbLJ39zP3lmZ/l1+gdoqLe5ou6HLBGw2BIESDDYVhs+EfVZjYGV98D2vMutKckG4vK6xMHEIK4M+YPHUUpCT5KbboJCQmbA2Dh0nEltsJmgYpT8Bsn8nGcGOilCw09RUo7vk+FwRSxbmtsffgqqubevY5p3TPTdT5AOAjlT0oAzmSVG0IrK7WKDqt/Owc7d1rh8lhTvPgMNPOYnUlY6GaKNXGj/TPABajhIQ62CXJl4nUjIz1XnlMyoD/dxGyWEDi6l8E3eqIR2UVwEXjAb74cQq88amOkdL3EHEWMA88OuFjpk4auY5zMtvtv58+eaQ02xSi9/ygjxweQs+KtCH3j9b0RnvKOBWj/Bob4jbB5qHdksrvzXrfUKNhykfpymjyyzvVKaNlx7z6EvazhrHVFz6NGfyxPtPsQSvEC6ZvcJ3uUsy/W+H0VB5kIBj2gCT4WsDlAvhQOj7e3h09qP8tBbpZsty/ktIY9PY4KRTTtAa/5nswjM69KWGkdlz500LJJladvY/5zRCDWAX9VHkfum3/8RmvJ4KFTl4InKI4RMV/qKjb3vlfIYeiewHDfWVUu+zTVIERTU3z+1cIy7ISJlECNQ7SmgpfQDYPb5DT2+ZIjOhJtuazvSTKZ/8kcBKEVs4a4cLsrib2qur7z5OPAVU44s3hrxXPgu67YqDNHT2l3VmcBdbdkdaBN7MumBe6wzoT8uFJlHdwS2WJF176MnfbjYjySzbjq9nfSRNT1sy6h03Uw9kGDQwe9+hwmHFsWAHkZ3hIneu+wrYg9yrjhEeFUjLEAtWlR4D6pQ6v2RU9B4987bwxR0fNorK4kTeBZ8003y6SiUKenJ3agt85PVB8CKkkXsnThTLbqX89NF5eEF0Gk5hqOCmhemb8Z4uOyB20ARavbQqI9kGgLtkUhIelOOp00z4F+QGf7sYvj5LV8Zp5VrB7kSXrOY+pt16YDLEweNALqYFkgi4dcaepB+lQbuZIcGVngSLWvg/X8jaM7UypGHMgRXM14jpmLPxe8Aa75SxNldFvG+ns+Ts2sHxXkEeY6uDtBkj1lF3FIUvJJX+5rImiCI8BzN56dURS6JGVnVQZYUeFIOhzDCZMochk4lJUGEBv3QvkrKA17Fmqh9rNaLp0hbAX6IyX433vrZqLqvCARC0RxFTq/r6wbHrRazubwuw0MZ3N3+WHzMfrOc7HeFOkqdUyO8u+JeoBvm/VTikpjNmUnAfFzE2u+ANa7MwpjNgn/jiY93AOYITBbi71Dk+ymZQFRqXP+EqR775xcn2MuIlFZcMKxbhLZuU8vit9hexyuhryqae1OKUFzmiZI6vPW8GjhSrIRjoh/cu3hwG7bCLQQPfy53T6qHMJuRE3bmyKZGbs21LMKyeHWXeNCIaMdwz4y6jvbsU3fK53Rg380BryGNnLIJlVRGtruEuO6ItilEeU6a57LGRxqOsDO/GsA8aHn9ZBQ5Vyo66c41K2Bdt7+Tf7GOIhrAeeHZOMVm+Uki62SVWnpSffOa5HKINHbUP0zhHXFTekl4kgJk7ISzmDIHSQhR7m6DDRBr3aookKqHouugZFUTyYs2WqrB+QP4n3pyfAdZKtIx0q8EU8u+KhcI8P6bglCyQHTBZqa03P8R/uCuafMYU1Q5Os6sUxMZ1L1qbLywT4aZCwCZcfUmq85uTCxm9j2Dx9orhOl3Qs14x5k5lF2jRVHYiS9AKngvVEuDnsZIq0w8YLUjlmCbGCEGIoIzpVaLMwXSkusFSm8naqdSxGgJedDCtvFKEHvjf2M+9yPDcwrET0bOu0/EGefK2oH1laWV+vqtaG3RLIvoBZiwJAJlIp1k2i9xs0WXxCdLaaGdbw7UGJ9WKreSlErbNNzbgwIvsRZ9C9jpiuU+9lojbKlm/sUXZUFmjLfUocHszPRrw6nFWMN9umBy10i/gbZFvd/zUV6wnNpVf0OHMEAUp2vsFwEn2GwiKp9e2dcYjl4efhOuMnhqWbBk5jcBChL5fZDQCxnH7EAp8tBsfNvYsxkW3jBo+Vps3A54HbjLf1r9yEU6neNyqQjZbiJUOuEOaIGCoM4W6ro2sTm0YvAB1e0dCjU+QYchLYYumnM9TM8wUsajRezpXPvVb84CBroW414g6ILiTWLaBUNNlZ4gXQP08DDzaZVzU+bkF5BzQwH6LuvskbZCpA6B1oa+kXjGQqSZNGiuhgbL3CwMXo2IAc2QkCqW+b9VI8Y0XeAev+g33g1pZ7wPAYWWzU04LJQZ99fNqDMLsUakZAOvPCETn5DHTgV+oKRMPOkcrbKpwPTU/Ag7H3ywdY7tKznRDdxwXVd6s5lGKCabmfHej5rYds48grCPwuepWad/S40ApJlBHQ9gFDGjQF99RVHKtXYYUgEOIXyUw+ptoY/z78BbAMVBcWLvla0oPhflQCpkttOnjTZA3KvY4stgFNoxrt8z2FQBeP6MVk319E53VF7j90gPKrk0=
Variant 0
DifficultyLevel
498
Question
A box of apples weighs 32 of a kilogram.
Lou bought 3 boxes.
How many kilograms of apples did Lou buy?
Worked Solution
|
|
Total kilograms |
= 3 × 32 |
|
= 36 |
|
= 2 kg |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers