30190
Question
Milly is using this cupcake recipe.
How many cups of sugar are needed for 20 cupcakes?
Worked Solution
From the recipe:
43 cups = 4 cupcakes
|
|
∴ Sugar in 20 cupcakes |
= 43 × 5 |
|
= 415 |
|
= {{{correctAnswer}}} cups |
U2FsdGVkX1+vUmL8/IpYubKowQa+e30dTew1GFhkSWayQYXSf8flVT2FjG7uijiCuvHuqmKVxhTJpb065EOEFLAQn/PLOGuzsrcDYLhMv2/mWKE6vCV1hmMixLkvCRJ+rc6rBq+psmPq6QpKN5k1dQyeZaq4C+zK5n+dvjqG5EoVDuxG/W5BPNzTuQJXkXKIY6LDoAjV056toJ/i3UDXCRAisEJxY2L+FryDgbZm+HZZ1DZdWM0aMhXY/q2bMPQX4roVRf/+jiKYpGMfpV80VdKYozYOj0O3j31wb1DCyZeC5NMVTfqsCpJlNaxoPLjbo8AwX+MiUTM2G3hvcm5jJabrSLcnt6okU8j7VuZtfiAz18IJzq0+YO5AnbdiHpOkQWpwqizlv4GDhuHke2x8zNR2jcJo90XfgXnP0f0WzsQ7cBHzx5ertcgxijsTr1ZyPkIOoMHBKdR0VQBPafEpLwaLWizK7cPdainzpQAsCHWjX16mT15zF5WgH853+aporLNMDoaUHkEy7cbZS2oH5HDQUMOrxFCqgw1uXsCFR4XZ+soh/s3YrGw/P0fQek0/9A0HhQge+CUW+Q19HO07cQwS1v0RXjJtFaN4P/2TEwSJ3RZWDBQp0OCABeZfsXcvrS5DJ/0N5wsWkXHsApOqpVGigHtjQDBKqqt0xBsaqr/zQ+25GH/JeG3T9RFhWrdfOOPZNSxe6Rtx/DWKi6FJJn6AqOj/F+C/J/kUDUrSaBJuC+a8gKCS2C0zUvil732eQuBKFGGDwhffEkRR5HY5kcuyQDFrcxsFs1d7K+y1IQxwKcxvOAB8KiT2RlKP6A2pn9WhYS2S8SVnHHm/Mn8robkE0hg8h+SrglUjcNHKZCId/kmR8sMtYfc+PJaxchWEE9pBdgT5ji/pcARFTDI6EkmvkWkSIgP9wbCSoAJWFl/Q6yPTnXjxSDdevInzBRKBmoP8USW8I4mmD5myy1q6bv2ZZ8PM9SjciACXF/bg3QtKQcLN6Hm1Z/eZpdHfFG+mnQnsrzj7JwBVieH2+9iETWdotlqsS0T0QETykTPzJwGdRIZDEuZ1VK9aJPsjeBH1eXGkT2A1ACDdx2/ONrLJuCQuyP6MyOmAL7mFUV0M3ScMOAIz5oahob/z0d5FvsNLup4rtH8uDDMPloy/vR1M8jOtrAEP3FJvuPm6JgrYNbRw6SXarda2eGbUrySPOWDMnaNjKgNaojfhjjASJWmrhaEIChIIBgo282XXqZX8x0xB8LMLCI4y8TuiEicaMHTR3bmL2ixk9yfCw3l5XFGwfDeMFkKvjQrsTh0iikCscCk4XAnAxea/xOMfTGAsRap6V0O9lbdjhjERmN18Fal6cQZamrumJG76+igolN//TDVZhe+xs107d2bTtsXcm2I3V8DFZ3nN6ZPxja7tq5UVrSzfPfgCQ/d06EllRKkPIO3nxdmO9N1hG9uiHE17d19OdqF71beEGNCkeX+grTIK8PC8UNFpTYeRdlT/n+d5ZGthI7+L8Ph04ArIhNSV6oTiIi2WM6Om6u1XtjzsciloAmwBoJKOtt2S/N0IZa2elkwRZJsrhcLvlf/Me6wtmYhxpDaN4z6H31rK144WKAb0Foeksu6ExmjPgTdOFUodjJpGBsJ/3PKRaN9IrwBNXLx+IwedoWTM8mWxBcWYGjRvf4loJwm8r3r0QC+csCOPh+ndtLKAAWreMmVNLOtpq8dXXgA9X8kJHzvPkBIal1wD8KJxLTB3ww52F8jyklNtAFjeFKi2pKr7mu/aw8u0F5sL+l0vCY1pYYUpjVf2CN80EMfZZVWX8EvO+0VCB+sXk7fBEYfj833ptYA7dxYL6VNjocqHReFQNuUtSDQ0gP8cUgA92II+6rahMZh7T0QEA4/zzCOl8rymKNbGnkjgjCCy3mMI7UZ8dgD6qgkAjPxx013iHEdw+v50asagIA/J7mFJTFs+5dvuY3DmPaUHRe4Tv4mw8GU1v2PJ7mGMJ/vVa2ZpQzhOnPaFN29gRDk1acEi+PqG2I+ugM41dTCyckP22iHfMHzQnBM07GNnZHf4WOZnilo2LGY23dBKr6EPlEISPDFpG9gkCgP5DepfS6+mpIXkVd3OeUF1lWSn7eUlT6tVDjbcs6Tf77TO9icG3txIsi9jWIKgBVkf2fK2iKdoPxELIJAZdErMpvt52cSD22P5GUGtvq15WuieKmLCHPPUiGJ/YTNJbAqHJBIUPwAsIH2h/01L3lqgqbIosV//HuZ1gkz6TePDgkuJ5Lt1xY59ywKFgtaiuEnUfKB1KT7FqkdYLwG0otaNk1UwtGnqNDPB3hU9uSEwcZp3WyVxqjLah7T9LNrvz0v0VbZ2aG3cmj9HdmlOGF5Qe5ekWXNa4bnXNYJW6XrApgL24mtK541D3Vox+ehM055vY+MjTBQrpQ5dEzXNBpgJB/MxkWNv1gzCqjZEs/0vHZqWxZTGZzixDqnNHS8Ttss+olAGPLOmXvBjkcAFtRBxJq677fdSsEv0q4tmyXeqs2mL08UJWCxbpvXBzzW4ZB723ByQxHgGJE4wwsSSEtd1KWu+YualkJlHJDnIIkDiADKXRgYu01Irjv8w5sTMX7RtGO1HN5wA7GTXxo2eC5vjtVoGgW18+WgXrQ+J/13izxVbpCWBv0A2rIW2bu2Hngb202y/2ZQYot3BJmEY4u9I1/32biQac2zJiCMdMVp9DaCJ10CR8Bov8d45ZheK/VJXdZ5RdsabJ8ckSI1hjiXV7yssW5MdpS2OAJcvj+kg9fghHvVZfA7a97+6cCvkPUlS3Q5BUl75MQ9Yn5Dettoh/8nGMcaxwMMEDBG+zzxOWEDibzWs72aHcYu4RZ8KWvr0KcBwzNPQOoqFi9BoibbO6mMdVeoO5T11ePw8PcFyKqHZMu1c381NZH10eYoGUQ+oNfNzCcHNUyMZpe7pO53VHnlgbsOXSZxWRjYo6opRD6lQkJfWoSsqafj5SOKiYHI5wOiAxdtyO4a4TwOjFVVb3hm4vuyOcbyi1/mWyjDlKQcQ/xrKZheJci5I+yRbo3VykemzqCR31VRDaJ4L0Ig57v/e0m1BSnoW6TWCCHKCbsh6m0hAnR3EA+/zsM0IBhVRNre5fHbsjY+eN9vkhzDjxNVHIm/22HeA+eaN5ulTo+4ATGWXHn3y6qQthV1ntnLLbGn5JTvIJF7yQ/FReI69BmZlZ1e3RzTApx+GBdyLKZG9FHRWcpCffL+pG7EBUIkdyMz+QUySoWPdsxqq7tKiM/g7oQQjZ/PtNNSBdW58Vv7InK0ttlYyFuhmnJ5Fg7VxWSjJ7L0ERISs9lFjwwABXK3VIOmJ+t/V/fX5WpvYPdZvFMR9E6d3EyJWx4cv8i5d2VXow4Td64MVs/NJLo2JnHfOexxuZY/a5Jqjdncu+3gOrFKbD8PyrK6fmSZ7kPFs7nGoQNeIsuGhCh6PQIddjnDw6LmC8lsAy+3ZeHxW2+Q/0N8PFm0Q0kigIKE47uh16fqr25uIPfZSAvGNfGwqktVtFJtKf87WSKLgJSXhBbYNN3X0SBuOOJS0B0Te1rCmeC5SX2kh3G2HT42uYMVoeCSrsS2uGHm3OxLs3xsTxhZliF4nLwoqf4zGfXVMVLcTmI82weQC+31J8/EvvEQqGcMG8D7m0XS/Qe0wcNuIsSLLzBnqv9ybZAkINp0FdV8uENlqJb+JVjYhqtKoM1Hu+vFRvVIEhCZaLZPNpuypRcHfcSGgejwD0jmueuleAEDM3mLT8g6SIWE0jpuQqruZOjVS4iBls8tsgebeemKiAEKUZHP64DN3sOufSLMi4Dc7jB5TN1DEtNmvTVSOoKtNNwkaCqxvd1Qjhvy037NjTG82BMUENpaJnTeYNiMgBjrYhWItZHNz6V6eltEG7CtepI8yOaHYQnHtv3MlythYpzYl1zBZFzyF9F57IdVmcVTZE1miMACqun3ptmYYrYow+soSpYPN9x9ZPlazmSKySn4zf1b1Te67j3d1u3RaZi4Z6r+GqNvv0oOi23W9xlRHUnYWTxP5NN6G0mt4pLzZimQCbrnXBK8N22gbVq3NF9Pl4vo3ib7BBpdOuJF77lVYG9lrPPtnvloWehri5kIBTTfojCcgL4KuVCtugoaQkPuixlxUwVx63CrEoGVh3ZFK1BKQkDoeRulJIHSaDkDUfcj7qWA84GU7eRMJam7elyGqXInDYUmt+YS5LNwxxppxmIFz9fSG9bSWjw/JdghrC/BJeUrB603z9keAPIZ7OuNVCemyP6PVrOqSnbEUHW7nK46JopApwFccDnExW7KxBuFMdWHtOB6ufcSzDJVrP6WT/Cn28WNKX8ILZXpOWf9//OplGgXNmHno0RnIBMPCWAZuRBM302yUza9OZx4rg1YuWItHVdX0g4nFjWITwNL1uHK+Aet+I4uWesYhaZgJLKWYAcBpB34FORCGryu41+aaRxQvugACjoJx3EJh8EaOasb+4lvd2jS2huwMyMjtHawnK1bdDTOr/gbY+a4K8FWXZIulrJRvhfcRDEsfITN0y06e1iVEK4hB6dSObVe+9py9VYCVkwS838JEfVJDMmudjAbr/pcKeNCn5yaRGtu9e+/oG6onIBdZML+T93A63Nv9r3NY5QUESp0UJolGMyWGtIVicXSlUDkJt7RPHUoLgnZ5HyKIwxxSUhLQYykNrkaRUSFn5HuVplbB7pk4CShSPv+42iHxAhFgl18Ll+W5pmh5YGBrqqmUpzeF84w9tnQbQgd9VGa6DqvcnSznlkBR6fiPsxtShVKiQ3hxsuzvEyGAvl0G2PMxOawEpdgEaIRlnNihFXwPkP1Ga/mElPBYOw3sZX/FyJEuLIcFjdZ3nKQOgSPyu9epha4K3sOdv9IBROJ3/a+y6jmrvZ3u5KrBnNObDVogbXUxMhgwMIB8ZzPngsO0CAHM17oHgrXGoODIIEvgCl/TylT6o2Tkn9Bj+q5VqRbShis/eoHSLCLHjx4n40eRsCxuD/VgKifZu2cupEd2RvS4FP08xyzpp1NiD5ZER+fnGKmQaIUzOfTCm17y5kFZ+yLAaZ/SONcRkpYn0CioIIu18Nt9tPjzc7/dD5Avn5ufx50/FdtjfrTIw7qK9RFIcpI/P9mNYW7k7K4Ds/m5+COCIdvfRZxfvR/fZ5UIyO0sTQpbogvy0PbWfxi33l6xwCFra13sl31euLtD/X1jsLniZjcPh6JPprgmJuw/f4v6tkfnNF7I7wzEWXaJmf3IRRb1eFhiE6XoXW4KK5O+fypjiU3kmd4bAIF+Cdu7C/vwz5/FOI9UcLkWP+mxsSR+RsYdzBKPOJpNhK9lnb5xowhIK2pOAt+ydp9G1xti4SsHO+1ziXZc6JS3oba0132PxPF5G+BSmRfjUkZaKWLsFHlHDlkQ/OY9CHN6aDz0dMCL5dvRnFcME5TXL/ikG4omlBdwiwP/lgGoIevJXmL1zCqESiQTI118GVIq4ii3inxiqJhJhUiqosSBHlWCg3BDI4iNpDiL95OseELPwfY6c/eio/S52w3pkMSKGv/lhUcYzsiMvhIg1FXe+aAVQdJL4sHmp7WZsh3bztknY/p35CCPrjDpNBP80YiLdZMqiroX5E9KXSJ7FEpxZwfASJky1qvC8td3zQvGBxFfWAYDu7GKvdEDU5XbV2X4YDMGwMtioSfWlrrPrM9//JZj6plyeqsym6O+grlcz2gzdqYTU4Bomk/8KUsKps3f0lG0u6XhnAZ0keFZCGUC8DYzMUgzja4ms1wlahx3UHn19P8Zrn5a8XvXa+DFml6TLsyY5piWx6TGxdr+s+PVsgfq4rnvPWjpUSHIL0s56VCcCCqROEP0ugIV+5zbB+aRE6smjeICfPJvhiYR51P3ZhyeZNLsNPeLrePuQzUuaIY1mfixvfDUgf5a3GaRFO5CWI7E7TlVoDehGsj9v+SBxjKyTgandapPC8fus0FcOvJuB+CKSXxN+J35GfkWoeOd+2HlYUGyhoOMLuOfxke79rmYE4HVg+bFSVdYNZ26li4CNj95ScJ2lkOVCUR6in1A7rFbqS9q9MQf1tkHnYCLHL2dTnpcqqtVcDKldWnTUpRaH1d3y1DkiRsxQcHXY4oCFBSj5M2Nl9uj81Ip6WFGl2faraDFGBKnWgqEg45bCK+BTBEzoUlkTHUPh8KCFjn9arHd3ghZ1deIg//eRo2TrJYnm3aqrlGO9kqOHPC5h5aHbj9zvFfSeW4UQSKQuZwGsI3+kbo3Mv6PQx6D03q6nlmBQU4Wl401OyGovXE+Z4XFncNx4jFmkpJ+J4Ms6n3/vk7C1W/eYbLn5eVMs7uuGXYPZMz1OaynjTaxIphz0RcbOxTEoSIOYaYApODaEZHT8lcF3/4XRyiN8Ui53VINW1itJzNbMsbsJTwrV5DoL3YvO8TMrNN+FuARhFMcUGBTq2YCiejIPc9Ng4tl5dJkm60c64LFlfPsSXxU3+0SLa8uW67cTuz5dsM7BugshvBqWaE+fTsvFJtl1Bj9qAp3HxeGi6FzLrgyTgGbE+wtd/aKXyjLeWEjdydQRnogazVgSiBxy6aDKEKjPSan3uajgxUwrsXa1TB7rpaIKSHMb8zT9Oqv+ZKtAX4YFlnvojKQnDhrhVhskB9kcaNKkGgCu130B5fLQbDZioapOKRegytOfVumKS9RjpMV/IaknN2p5j4wNPTOqMQmngLDiuxfnufTIlxXPP+1IEWx5ZnfuknBcAMBxDohMde94QJTAVM0RRGAd4Vd8FM7IMvC1bhBxNwQFYZDDkqSBrtLFQ0+KONGkITyivrYcI/NkY00LmJxFZZM1zmZWF1khLntrPfpeCH77CrSkxrODbQC9caeEoLL0/zGLXmGgFhEjl0FfJx5q6jqW6qatNxtG6bqy6RetFaz9s0EmpThVhuHsGanTHCswPrTFEwM5Eh66DcuWj8ZeDLkBwXY547v/ZlKskTLOi1RCBfkAw63n0BeEl+qfrhIZs9DqLTTIwCDRJ2+CqhsZHccjRnITX0wB8fMY4hUWwtVC7EoaqzOhkYhzIBmcCXdxvMHMTtmbv/RlDLiKC71MLiJnMAhpkjevtV0z01yLZOU0z62/FzrkLfG5cOXjAILI+BfOUDANNMGtxWhXvWvsqYYO40/CE+UxB38MDsCpSmJUjkx45tw1uOC575zeromJpYUQqDHrKDO/Jf62oeTtnPzqxn9hQR4f+tBo77kLIK1hTju9DzLdeGSDN8qbYSGRY8aNAS1ac7YE0TGjV2G+8LZMpFlb0dvtINGuRz+5TeOWJpLJXd1UaKEgbE+IdehL24uirxaFn8tXLOI1/kkeaTELvkBLOBg1prLJ4Kq8cVz9P6jNgOLVYYUV8paa8w7qxiLrNlLwqOSXDNmzQH9aBKyW5hc3oFw/BoEkI45mJjGEew5PcT0QdTuLrNs9m9JKxu8eQntXm8dE7uGUx9dphjEHNNHzmklDZ3aYh78J6jHPcVFkFB+gaObu0L6CttuUpNq7HRejJuOQRuczjRRWMTYXcS6Ic667GB2dBZ8fUqtQ0sfL0dUNDGPnsg3TaWFItGZj3iECCmjHNf4B3tzicVneG4XC+xwvaQTjZCu4R5WUUuhWPVLTIrbdHpbSKlnOS9nQ76kESl/Ke+niIgzNuD/I87HoeYhhZt1OyiCOfrQQ7xk8P6brZZaQOPw6OeMelRZaDVTUk46QTYL5ySqtFtfrh98CWKwxzKyYTYmshummNn/lFQtuaCG46hPvxWFQXWLp9Z3Wy97upqrkIrR8mR2vEFP+AjtDLwdCAOWbu17VhVK4TNeBE5urW35hysH3ifrYVB1USMGE0U92l/xG8MEOTJXdJoHYbkU8fBLml/cKiYOW08BTZEwDYLK2tn4PbQ1OIdCDs5XhJl1LwwxIf9R+LzGKVMWr9YUYRNFvGYdQW2XvcP5JTimFXx9xk4qzTRBtSO/enZI5hvYYt3dMArqGEciqTK7KDl76MtiYv/rVJi8TOM40FSyhTPBL6TrgzZIt5Pgo39mHvohfd7HBuRU8eV0wja9OzBPbc/zSUt8aAFdK4Xxzq9ahM1TotGx+kU2E3GNdSLwKh3KCXCacKqw1JgCfN+GhSV0McHVHayeFmeelXG3k3Pmt1Bv0v84j86rZ//Cesg9xowp63ylph1sE0rZ/KO0QYACGbilLhdm1jvNEj3P4mI/CgCaiW2z/OQNtqaaHaeWUUYBBZYtUsTk9Wd3CPVhhliHo4zMNrqtAF4+Dg7BFnBAnrKCqN/GuExe36o+J8zkDZKvNBla1NUiIn4tkPZfc3uoW5YwjRFRPfztTh8+0PABbWbhR8mj+3mHEXHD7BIz3pJpBpTADTziPuM7iTNs0ryiSq2S156KilaDPwkATKnlwJNpkHJjrLnUA2gv47neUfnreMDg7m/aGp9KhtsFONxY2/IgWqPaENKjFYSnmi/qMBym3/aHxsNZSXLDiX2zHBZGrS7cn83nzH2Z050TIdMUW2zG/SWYu1soop6HgbXA/MhEN1kt60wrQLJtCvAVPQPFis3jbb9aUJsW7IvUBEnyEU7YA9ij4jaUb89REyCr0VXbAw2iNg0ualIXqm4SxQuYGN9bNov2I861uemTC9NsRFtPaHNoXYnEBsKGScbw9qdBqpgYeSeNMahRayHTxM85pCycN+1ILbeCo07PnOqXZXk2DPwMqs91D8Y/btoNS4EvbfiWwlpN8bpKOsPh+oDKjApNjUT22tS+5odmPyST1IJSqL7Rkwdrtd66NcF46QLEz2dqBQfiOKpxyn0HD4mVXtCHgdcTKA+nTzsiILQAdZBkjPcTdER0VO8MHfvA2HFO+//lCoEDQ8sb8rdyklw8uATcvh+0NifbJ00gKmyy2U8w5P91ptStV4zymKmrhe+74rawcyT4aSkW/TnPEuaL3MNDO8EsfYtp/+P0XHtHOOhAqdp+yyU8Q9Jnt7WF53M1A2pbiA+u8IcpUI3nwX0+qRmUBE6tpnvjxcnwwF4ETBdzs45kEazkBJQhWGlG0IcCbNV/TwDL89cmtk+crczd0UnXtfZHyLtwCzRBfHbZyKxETElA9isneOH9ooMUss3+TdWo52Qzbm5Qawv+3kCDcwnhp5Rmz7q8oZv0/53NZzBscE82bsgu4njxYFR1vqu+drL93bJd+rP0C1nj/av/DMx2qsJasmh7UnjmRHZMYJ9D8wYGtE/e4O6p3fpJb3JZxmrslBTjBe9FREy9BDGU31t+aILDwDOsKXnGSJ1uoRwvwALc7YhYfDQVgOfMYD8UwcqWscKrHDDN9Wi9mhlGA3D9Zi+8eboyYVXkX+dT/lOUsebuP9n+OQqRrGJDaje4GPLYVxl3C29EhFh1hwsqxOedzSwpFyhAeopZx25UqpjezNv2iHP/HGoGtwFKueH/HQ1eqBafBhnvTJLfznD+KPUzEJAVS/UBHj2zNcX10rTJ+cV/sHO9otlGJxqI11mdX2RiRHb7FAR7hDgDY2RZZop+MuvP+tkTqVlRHon2N1esswiCLbeS3r8mW00l01E23vXVRVDYK3qGT0lhatV/W7uqh+J+UJ1UlT40M0kfEtzdKSgToW6su4RCZG0F1uxvphnOdDeVW53VXcbsOOtDD6yEHbLWWsAU5QGKC8VeJyahFlN+u1Agdj93mlvaF1XrhLDsPq1w0N6nqORgZ88aLdxqKGKN6KPxlixTOs4pn3HtBKOBIJjGlw/IWEdsDfzw9Gk9T3nre0Pq2AXYyYDUlcH2VGsayqMciPS/1UpUfguH/2Z2u4lL4j2kD4MoGM03K+8ghv1VfLoVpRPMrwezU1u7SVG+mq8ifTYbS3YgInJCr2Mt9AtAYzXp5wEezYaq4CSQg+SO8RoH6jQVMFNaACmUapYBRbAScyizOISAFOx95A24NYN68ojtMVUBOaSwMwKILLtjvAZwaUUtE2wf8RaxKNHe/cbAPtKfhtDEeMgqj6ubm80XWkRDbtoszlClic55HDUZr7g5/yWFgbhpy6PVqxVDlODd7AIMVuKr0wj/+ZbyO9dO0dFa0xVMGZ1UI+TU7WAQMuEYCUYXCzDaIw1a8j4f+mVcjihoC0bEQ1EDCdr1vwGQPxkTBKuT/zfgFw6+Zx1+l2pRLYBZDq19qNDUe0/7QPdiLcCK9b1ihx5HH5+329JgKe2KmWI+4T4uheIPefRsbGwywI16ls4QvNW5I46JbLC55M3pAl7ybu14EFoqp2oB4m1NdtvnmHmfFh3OgjjVVRLfzwHRhEB0Zpd0po+ISn1HZLrmZPqEseqxI9ysDwnsCcIrX3tB9GMoweQMSnOrZX3EHm7ettajrZaKo0qedaukMjlU3Ny0x5PcwhNIW/hAGjHKcvnpzNv7ikGMMwHaJst9UaUpUDYpzMgSjJJh8MD/OQV60CmaiehcVBKFgATj9H8K6uLzzvZLIHkABQDHzvnVbk80YwX8e/YQGBPtIwm8JASIYpoECnhKPXuawoEkJ9lkPIJynK4SNySyNVmchDkvZRjlX0/VLMfkLc+gFyeaGlmHCtTGwp0DQ/wS2EVLXqnlF122KHN9IetlZh+H28S+Z+tlNllQV00LDafsxb4A1/KbsLZzbn+qBFX+HDA/PwJa+YMI6EHmtK9xGyZCYIuK8SQnc9Xq49dZ81FcRXPCKK3kdBIyQd++pV71YH6fCBDm/xUSiuTE6lUJt0/JDpMzn/h070PjFshzGz4olTYSS6tcfFnucqUCKh+81mTH0wMVFgBHMroJ1W1n3JK8k7VfifQLougYGVkIJ1wpQOMOV/qkvL65JnXO9w78dq9o5hL9m+UZjzivxCXv57DUnO2L7xyCZTqg36nPFR9Ubw4o7Y5FxEPJkIBL1B2x/RVhsFR8JV3O5raV/gbtjujZYhOWY5mwIhWTiPQRZyKBOuJtJ5bJY7evemriOd0awmUzu6CN331cf/y05GLXOv3hjJhFy40n93FKR6VSh4KYOrs0Kxkp0B8pihO6iB1+X53xrapkMvPIDnfUKW17HjEc4AZrA/HfI1sxC0j76pdc//naWX2uUln1zMAwFlNX/9pM+QuK66MvCTsZ3bzZluBtikDZMlRBA4obiKlA7XjfylbuR6zfA+xfOkin81AW8V13Yfvp+EGCFg21882ePpK8xfnK5zDtSMpJ7arV+9zE+iKvU87BDjKyIyinfdsnENeZDHSSC2BPw9W5Q4c8HcYJY0/dOVExxBdEIFGshgtpzhu8fS1hOZsdxVNyVWc1nO1jj70sWiz5460NQG1Z7Lq2ZmrkmXQ1gnUYbGKvCzAhbWYEVk9jprUS9vPF3GslT6hFTNEB2X+9VdZa9vBjkqtkngg5qFx/A2zIS1jeVdfEBSFwcApBIECvogtk1zKHjEYfuQrdKvOW4bhbV4SS05iC8S4FAIVIOgQwuBuXHTbZqL8JcruYNXzZgnsbxTZEV7sjLHQoBzfL0pPUSjexeF5UFjPYGFYDWwNV4VzeOCQofG6a/lWadIl8Bf4+GBzJdOTxpFR+rj+EbtG7uXz9x+933uZhc4TTKqbe/WObT7q5hToAKXYPk+OihBFSOX1l+waXENixXEFcJFoXH7SmdcT5UyP10chBQadKG0j1ttnr4y5xiy6JtgdnJI+ELGAYyzbvc0zsOiDb2CLapt9Ze3NeOyVQFWobyjOgfJ3M/HpDgNV5IbtPh4TN+u1YGI6FjsI2PiaYh4IcWmg87ZUTGqwd8tXxFgdbF2L9HcwAQxp31SJSU/tfsev0NcpaLZEZtgQRoDP5xpCnHR0WYBFvr6wQ1tqC64F1kzz5PVP/8rgtxHDduvrqSw3pvRMUFDRooQ0fXcCFXSVIhgSnq2uwGkNMt/IrMksJ6kSjbnMEvPQerNYkhM1dMeVCvDLFjhLPLJoZ6S0WOidHWq9EVsm25MDU+gahGw52zUNx+huhi1B9Jh38LKWSfIa1Uw9/1bzd0XZp0gwOX5DyAwaKHjCEznbu7/NkoP8/KDUWhu1nOoii1o9iJuoveKDxf7yU1dXVpsdpUqRu9dfzgSQl1atrH1cVbBM9/t/KV9ieIvixdB98n8IBCYnEFbVr+w9cr/dkYfagspPLBqgOSYmcpRTFLzDeMBryYDCKyPwqQF8v+PPMgxBO
Variant 0
DifficultyLevel
580
Question
Milly is using this cupcake recipe.
How many cups of sugar are needed for 20 cupcakes?
Worked Solution
From the recipe:
43 cups = 4 cupcakes
|
|
∴ Sugar in 20 cupcakes |
= 43 × 5 |
|
= 415 |
|
= 343 cups |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers