Number, NAPX-F4-CA26
U2FsdGVkX198bI3GZQaVW4aqKEEn/Ua6weD6JJ1olgNeuHwH17BiCPbc8cFxFPPBgTOsYgOhLxhZ3CrIpF28k9gSoIZl/BAUC1V3uY5SJStqHSoprwv1tJo0k5kkh3ui4mEalLQiPvQunfHLXb+GOZnkmE7vo8fu7gs0W/GfFc1kJlaOQ6VC2ekpO8toA9b9xg6ELv7iVSqtSL5WyNyPHrsts9yXJML8e/vYXil/hvNrlOX5okRJJpyI+/HBJw107FX9n3o6+0UiKBUCJ8q+XISo1K4b/J5C8Ijjhs5o4AWGJcLA9Z5FNHb6ebDynAC0rH7NT53TVpOWosNnRPtYY+vIWn9H6cWOYA+ra9ogecp8APND2xS6TPyxCLchW8kSZIsFsxnD7FpX6jqFCvdhfBo5AF/0IKZrnj0du8NmgvIOnc1oqrMIp3JywvPgMfjYnvnmpta4hErdiNIGLI8Wd2X33qlBTLyNsz81ElZztkD4mYc/yTDDPWp7euK2jAooLek5vMaGhGD7RUvZ9TJ061t7FEKnLfy9bWKXwHJ/WU4W/AVs4euvodzoqtT0p2niHkrEEXZ8FoRjQuBHbpeAJPrgWXJI0suVgThVEBMJEweuX6F6Nb0RpIsXVvxzO4+DOYE1r3eZOtAjOHhiZb1cmOcU22uoEgzQ85mOpGfHhqXQXVmmPiV1yBVIfogYENPEma44dwvVV2FIx8lRBGbhhKEu5GuX3NyW5iFkmn8NBKKzXbm+TdnWLTn9T6TNc3QbYKQYMzAxTTudZI6E4C9Hf3DPzn2/g3roa6W0Yo/sJqzeNO97Mw6OJLxKCflp+vOoHWFwtyASwjHn2FKsa8RIpWdMjNdyikWt1Pnz1p7KQIULuIq+labpC6LXF/RiTm26A7PzngyGQ8tQ7HELvWIk2xCP0L3duBPIqoJOv0fKt580vE3D6tDM99bUO1CvBCSCN/egLIDi4Fwf6l3D3jRQBI6gdA4yK2Rr3G5J05Pvpnjp88XHo20Z+4eGVbwsa0bosIVLrglgQjBm/5ljG2iYURxgd18ofEW1M0abXpEA5dD/XuuD55rBgPWgiwFYhc8nE88I2HkJx8U1lh+UX8SvfFUeZYr9vsT0SiJRkL/0snEIEqerzP7R01MM1pmr9Fw1+5udiH06WLdyn5faxjB9ugAcpo4XWaxG6gff9dMQDcoBBcYwdw9kWVYkW8L3TGFz+kqDr3mB5kCZfpUY93fLw7v45CLus1PIt6fToMfIzlT6nHZ+YKXnGExx4zAmjEo6+1yCRUeV+etlYoWyKDXJxmCuiOLnWAmmIAdC5aHga5DuxYnIECAUTKOn7RfcDXOHxWiCzOEapIP4qp4YOV1Au0RP/GFU9MjrlmmUV1hRjx8J4ci1FdANiFva/5O5F0qR+gHx+hQ/uPdD1Qi8OpRp2h9VIAq9dcHeHW7DKn4Hyyu1FgxReUyjjMrLIlWe2pyJhDO6UZ+PkZuWcefGgy/3eLF1bWprcMy4eyfDofLsTlclZfOfXnBhnL02WnDfEC9qWIPA66n8kjmrydoEYPFmI/+brlupJhjvQmYRIaR1P4Qzr2G/XpR/vk0bjP+Vd2WH5xjG2NXYPOia066adYfTWzfbmoXx6N1mPNuv13lGz5r1dKRza/bZuBJnB8Pnwc4vO9caW8p0L+Agt5iuIPqdA1agEhkiQsI+yDtFVTulNJAGmUmBT/5eQkfNBSSocF+Eb20DRMDLlBPc+HE/wQKNGIRx/fYtUwG5vzQtTB4F8c2WfO+0hS+5a38X8fhCcSYyEdXL/RkZsXglMclSmNhd5xbTLQFQvCTYRlH58P5eJq/G04Bkjd8jBilnx9BaCIRtVV/tcgHDJkz0Y/AXRsg04t6wTe0qrnuw4zXICP1KrpzULED4c9RVD4Ry2AoumuskkfXGwI6tXNN/c3XVpyQEizsO1q0rrgh9lPJX4vWZM4+pErZx7TlrpKtBl6C25jXVsMTBBfxmA4U5yFENwFIcy9KnrqnasAF+CxUOU/YtLVcjytTsOOo4msuz1UZkyMebLw4NmbejCbkLs4F3wwme3lQotmDkjca1TVsMHt6Fbi3zEBh0hGxDl38jR5z3CvI/SrBYPmmWtecL74o3+Mg4pr1ouz8CBrtwV3wiVWzJg0XyCdxVfYUxZEKK2ttwQrZRsgP8ISdv11giTiRgXFh2oRGNBOJXqUURkbkzRZuCufdTHHYPbHTaqDfKqJyBM6MIzCtickgU/Fs6xd5h14VNtJnR09Ud4oNfM2dYobVo9NCYjTLSLMaR7N1/OpkNNlv+oiF9G/KlKAjqq+qjQJGlgckpvZiw/3RwaICnU9RCXzVrzdmp7mqOmFDSxzh/7CgzGn+ZKP2hxgYwsVr1UdXsQxYEADYBy72fQmVM6y76zMzkXQnLCo+W3kj/6eTgpA+M7pZ52wUQjlLbUcqQkQlyA5KOE8U7amW+uIOsDFSKZKuuZDAVD8ICywLzDg7H/Mm62d7uH30/YpdwkZG/YjMWAO3imSua/8zWjQxW4XDpieEAq30Ji0rZ/tvQizydI3B/AIO6LA4hcrmF5lkn+rWUiM2hZTt332rsmquSDgKm8JiadZIiCuuxl7l2WpkF7rPu+dQOFhVPl1snMWuUsahR4m1Xaf5UTatk4/iFBta49NTktAl2P9nSDAxRvxyHoIXyg6Gwd01IhvJxRW7gj8+bT68q+GFjdm5/voI2Yn85nRncepYykWmBOQ32v3VKxJ2ymaG0NNVgoU5WgUtIvsKMT7Go9vwWh1VAfIAqkUB2Ic6zCGZxLNoSO8l+BPlLps4FOwfEHUl/VzMHxrKK6dmLYc+9SQYCpmZAq3rg33rbzCcKheoDzBG23hyoRJ2+Ss+wNNgS1T9JUPVQCaHhWHBIGlgVI74fbh5/wDCuDmVbA8ClNSgKE+eRe7f9hbT4wCpYI+bddHEo0A/oCBK5SMQ4V46+eOhp4DlxIUhO4Vdd0CvUtRMG9eUznVUc20CS4Fup288TY098KPJjUDSQgF3lS8rzJovrb4CG5aPlHC7nY19PbpQ6xtY3uxVfZk71zfkyNyWXcvK5yVcoVix+bK08nrbQmuXGVHqvYCmhnc/FeK51KScp3fxPT2Av+HbrTAkuGuDlqRNWC6mshVdfUWDu9zOQ4GQWb7xjcEn+3wJ0vFUtMdIgq3xNFU8J1oajw3VvTk5b3JrkJgZSvdVQ2mIBnLS4z3Rnt4/m9wX5ONZQvsmaIJOADZiF3gr4HvpGpaql+LFkmChAbMuX36KiQCWN2ZljScdbuaT+A9B66Pf1ImrpRLjsO9LSO92TYTQdS0aihEgsDB9nzTV7aZ4zXNr/syUBrhiccerOfFAk/nngdhnCO28jm9/PmkpUND6cFze9i1u7lCB3YVHMOQikcuYB50Ps07kwJ+4jtsvcVaoS/iq+aWDG+MGS5J97BEOIwzNkDMyTOrn12UJyM4/TmCEeDiI1UTOn09fJjSXLjI3MErICAhmhyUR9aWEhT73d84v2SMi45n98QVLP74D+K4O7pE/ih4+q0CsxzqxQsHSKUeo61qVmsKxAUU0XPsAbHM1Kkgpf5V7VAb/nv6uCat8KYAeLWVOBUmDw0jZfyHVBIj6ZRa1XLWcuwh8nZQ2wWhdSo5D5enGpNzLD+O//O++9SpBaptUYOAkFoytNKuxnAIDRMioP0hfmZsRdSxXL2efKPNiyTJe+opPvxQZrq+TgBiePokovGMrEl6z3gefVhvX3OrVypnBtQcHgd629M0IFQtWgQ9cLk54J98EjwjAUKeO9uasxWZjds4XAQez0yvWwfrVq+bcisupfDUA3VzDwBYuoQnXqeK4oYInGQftPxAxXo9xpolLo1S9Zuw8PKcP1t6qEVwV42KL+PBpkLoSFWqxZC7FFimc7UeUmK+6a8aMBovIAPiVANlXs6kcmTa+daEz190CYz4jPhuWi+TDLIJhvmzjpJnTEVZJ+Up8y3U3VzC8jLW6uzsu2bDnaUkmDlIw38/UyyNDFzrv5t+y1O985CWFAZBJ5B1sXHPeFg4Z1QO+6fN5O+QaEKOac623LduwIi9gvHysJmVi+JL3/NpTw8WRfHs8Hvt7cw3K1lgE64opyB9tR2n/Anr5M0lopkCuaMGrTKhsSI4N4E4RIJM8kFbKcZd6YZaQ8+Gk8h7vuji9viB09TyCw/kwkdC8g8MpHvhkGlK/lH8wLn3vJ+7l//hcZ59I06U6vwP6kJEU2lc6EHsr84P9Nmmhp0D84GyCDRAt0ZBepvQAnbXRWOAZ2E0xuNnGovGzdUnrbnHzGgIHsWgRf7k5Gn9HSADZazj6x+7e0el6me7HDEddruArR2opSs9TElhh2B5LzC1EJjuB/PqR+Heqjl/ogG7lBzu+jvFckrAAi+oauiqzSyWQlDz8GtYpkGOQHKK+k4mW1QDtDV6sIUzvelN6QLMuEOK2aR5EUtNKs+iJWMjVxI9OQqZW0exDUPFR9zh3aZSALEL+n3P3CyXijcziCcwiJy0sSXuvOdnFpR/6zF3US3i7LM3TW+F3CeoKjAf+HYRyD/+MtA4Rq7+xQjb6Iz7RxRL2jE7/YF+mf/qv70Ar6LnYmc7zFqBcwPC4Q4ZVcPvtBRzpUtif4WFg4m3kqW/I2xWUTRlQ/eK/S41Qv2Yo9dHLlj8Z5pur5Ljlu6j6wzqZeM4yySBNK162a6ZHdiwnIZ95kGYF+WpTqVRhPGQVPYuuG7ni3s5ie34n9lHeMy2S7PnHR8YZhYkwIJqw/4groD9kguedRlBLAnYJw0xq5B2DT6tx1kUJxZ1TsGGcqhbLBRf3lusN5Qc3C6QtcPX7F5cCf6zDfmwIZleiq5Pc9jmUMxPUVz7mcIlpEz7vBitjy+7nxWM6jNyaN9fMr7oJpMN0ZZa1D0Hy8NONIEX7DH1mn7pzsd5m636/gCA7Fmr6JoIo3PcXs63VksBNeOZKTT1NvrCTpg12ecl02/9UxnxoZWqSJE+qwtDgGtT/Jr6TINkcfNisbX94h39bCS3XcB421NQvhYIIasWzcJGZdNNt+hpfyH43MC53Qncej6VzLnYfGpxuyB5/2gJpA54tbjqeHILIngPi8yDtc5FaNC3NHGjsh/HhyzGP2K4D5yzg/D0Da6vCrR+ah8rJC/J5dT6T9smo/NSgfLTl0BJ7JAontJEj3EuOuRRSfEonpRY0jy7MKa8hJYd7ge434HsRky9Dd5XAf3N7W//FxU6BNwEOFHXPyJtlNBTp7MZDublZ+bazHpXrWKmtoNki3ks8Qa7P1yDhoOptgsPXzSNsnydVUcP6/Fw19y+Mfb7XWbutZUtQg9FYRzhZ9WgBux6JqFOYdaMQZp32U6eGz3yUiGSzNYTkKrexorszuSEQrgV2HGOjZR4Y0nvh7ScKYV9QoISGaOOKX82FnMJIRgFMULnD1Q9JNgx1MYa/sCMhvrMSulgvjfD++tb+EYf6H6ZHdpqU5JjCxXnW7tSiChGL3JaEuMSKwHN9cNkw30sgOAoqzz/WAx/zu8u4cuZ0Raz7HP+nMH1sWjoou+qz8rkTlB1mmQ5bSyaYEfXDnRdFO/K2fSXM3G6ANfdm6UWzjadvC/BblO3nFXXbTuU8ScntYZOy7859aCBKPVYPBhnKqfVrbYwIlOlZbhQ9UkL46FTcUk4V4hk1Z5yompP8haVJkznE+K6avYblJ4c2PuuZmskOJHZa2IXAOxw5NYd2hRv7gSigVbXIipy5fK5n74Wo+kMP+GRvYEUnt9NsEQqgLmR2sMhHISz/mc7TjMteiKyHz1KoBBLR5y5iXzc3ajgnjL13cxvymnHzhhUyXm7KTcZ4PZLSoQfyWD91fes6JdHsYHs0xC37lmUwsgxEl9qLpx+0cJTdwyOim4mgX9nHAm9QscgO/5LmIYIQYzbsLDl2AL12BkQka0K5Bhzgqu5ZjAphguE7dUoKQi6IrwEHoRe3czs/p3hZnhKcWSPMhWFV8Fb6xIBy1qDoZq9GlS1yTLoAmHiWQvY7PAlSIwc6T1RrAkFcnJclgNy6GfXJ/oi09ZLpPDldy29r+j1oVtRtwIaLzDXRt9fUQH/WVW9/PxXXMFK6r4TyjekKNcCyx6sDNszpTSFW6g1QqYDN8TTgpbR4m/7opbEn2Utk+EqhfHNPGRDrJfzG4eBcWi+QJCmf46PqSVDOfBMnCrX9bygED8hVZ+BZXwAbiFkWBdzsxEIsody9aJ3P+bWExIYHlzXpg1FQewDAnJ+Jld/ZqWkzFtaT/2E19YyUxXgN8mwzrPpwNkzWc5ghTq6QEjTm1yzyekCUz2xCJqraTkzI5nVB4RHe0iioT/BJ0EqxfMesNLew5UgZSzwpqVt49/13btc0t92o7ijfJFiL7cb3+TiZNf8+EP8F5PwUyV8vSb8h7XLeC8etQeFjrzqOvpSgMDYK/pdeHBk40c3R+CLE/axvcQVujYU/SWVkPBhD7RcvyO+W6negdFBKb2ec49cCdChMaOoKzjJulLVVaGuOsJXLPKK5sBaogpvub/I2bDYh92migE1S5ey3VK8rfAbDZUQM5qnZbZPhkQiyCfEzqn6c9fZHjZzkEabKolDlHzn4Fgp602kiUIuXW+9bbejBk/cixTZWaivE3s7be3WxFTuq8JOP80/pLHfca7GAca3WsdK2T2Hpqn+dLKhrmQyIwaP//7c8tKPCj90la1Wb9JjaMtjaqdIXVRhPND/2vunZSvkI6K9r5J7+Chh6jUBanGFAYTjH9OvjKkH7ABAAfGjUPdSI4702rog9b+afp5WY6EjhWHQKevuYwHmFSvdbiC6qbyek/Md3nFV+e0M67iwNDS+O99W78RCJzBunh4OBEj7c77MR4FnxManLKUjd6qcZaQNBz5N1Y71MXQ41t0oDOXNH+lPso9X38L8kXzb9MngSCimO9BOaW5JiNvRnJ4+Q8oNOByWOg/Khpf7GwWWO0mx9Tee5fb7UNin9++a3WnJYDhlPfe0dikmaWcsOQkhaWbRWbuucX7+6UYyRBifgEM8Eu+Jl8pZ9zpuNDLtPNpZBkvKNfuVjDsFH5wFyIRgAUy8odS/v3SGq4pfsnBLNidhRgdzUzQkMBjAYrzLzdxqs9jB8ZoFklQS5BqkNH1VI45exPvI9qRFozriVMzrVZARyWhxR3lQRda9pg9Zyj3DO/O1t8JaC93Nklx62iv0SqvajpHBFnviL3hEuajRdUByZvH5MekLOw8LmeNY2Cw1y4/Yrf///uWT2u4Oo2uZPXP//Nn6iOF/8BHGyxVtX9eWu6YUwj2ErG7BIbfqyXYDa7LSiPkUv23jU0dBttkPj5cjjKyjppCZ2xCwUJ9jg4Q12wjv2OzZ1Mgm0TQP+Thsi+elp7/vnzKaDkRrnUbmLu0JWJy1U5+5/byvR+2V9mYs/c3xAqAFF7tArtOCwMImX2gKPH7STL7asl2U4ehW3+1L9pa8bCrotxUIN44juCJQzFmK/48yXzGJN5dyjvApkXVlACIeW/DZhKP5VkzwfOaLfY/vCFrXKA+mAfB35dQJbju/eYqw0gkJl3gigsMFTFLUPb8VrPRY+yTJKkbdJvxFjl3UH/chjG/RGlFlo6Xi2rfgsoGQrr605dEmGtvbdnr8bTZWeNNmdDrJsktgg92lUAOu6pby0ELc7o1K4TkUjM+TDNuHY6Ajrdv4yRXp/h3NYl403MPLxZqSS6Y6lfO/ZVpRs0I0d+xdJsjy9NIMjT3PQdCsfQVuwUfF+k+1Cd11UEhKgEvtjyC2ubHWPG3dr1shLcqTYOQ+j8/c1pUF068aRmr/p/veO0DvEz6co4utXXDU+Sz8W7GyxTxj+KhWBNUv4EZuCrU+xxTUx7biWVxGDhpk67t5nEoOSpvbf0UkeTcGrvnbL+R/M9uWw81TMbnuIoq+LvoJhx+WUiHSz9Ojq0mjVUOE/rVpM4xiQMK2oAmk/Hnqdr539AKZ8dHqu/wLYVDfeRWaeBOB0aKUMb5XkcrDk9hv/ENVBHY5qAvEZbAvYIcJGLbN/WkyCCjiYX5FZbjqi60I7bVPn4rkMzJmDWfNsXOcHAMvGGhLQpUuHenzYY9OCFmdJEpKzHNxVx6iBdKxg3eUIwy1U328lXb7yMfdwnA+JVZ+K8faTWxy/KqNkoopRB/mmuVXdeXrpyiT6YpxOdalJ2mRucISkTRFyTWmgjoHQJr3KvGDepIDV9rPRpLZ4ycrQJaf75zy6z94zlaHM6YzIsLYIE/6odSyZnE3kaiYUvA2wWt+z0buJvzPpyyGNoGI1T/4nG9viKCW7opzHMkNAzv24mpo7w1+b5oEWFwvz4QcgUYcmM0yyyBnTRYIJlhVNpu73Iqab+57DTZWvdWhL4uHBjGmGLzP/T3Hrcds7idRJqU3GeDuoGq+/HOg3YLStrMJE1loudz8dUg5O3OibMr6trTdFCXB8UKz0MFXi4cO8MzfwSr2QPr8YP8qRV1Jfza3JQJ3GhkH419RYDFK0W6TP0ZvNptidz3t4uInAXMHfezjQmUaCx913dqvaBvdwQ4uuFVNrVQhdOEPSWYpX7N7JjSrZRnk1EtePRaWQj6pvDxRMRf2MLmon32GXqGm4G8gte4y/b6QJtpxgjR+whj5Mk6gd8lcStVwf5Uxjn8ZA83cQ2fFUz0LUBvSUuzdqh74r355oOgU9AuszmipC0J1TWQKGdlY1U/6T16xfhgnufZsdBqgV+umYgOWmaoh7kL+7uCfmlFwFIMvLkeNgRy8tML8YCjLdR1/txJq/wPSIsrRTo5Xo0+VArnN7Pav4OintdqQG20u0uOIqSRqfHeGja3/42np80X1SC8Zupp4jsy/PI7urJBipxTO18rcDZODCNMGNariXRyXEUwZS/EFJyWhEX13wu9gld7ApiHT4a1FtuIhAz2BDQPoolpyDnGjzCInufhx5MNbTSaqPEMgnw+i83knpCTTCcU+EVAKy/PtR7tJgI/RdQlnlhnbKB2f3q9cZ839pI+QAYgp7kYy/rOeE73G6S2gRyb330zU5dwmF5Z/Bw2feqKjy3z+cNJxq7tRInPAoZbYb56jhDAnmsSb9NJ4iVX5PCYf8fQfnW2bu+CzMgLFM1pDzN5ICo1XA9ymrNGTOnMzCiONgHvwvd2qgsEUITWE4R7MQvG2xUXRFW5e9YU7xQ178pGsXrZnzDMg9WvnsCZ94xcGePG/GKkq8aUXEPq5o+b8PiHLjBHxpCjD9DXEJHy4G463mipaP71/+A991Qfmr6oy7c1pNmBY25giEechY2FCbD/+X3DjqJihKsy2WpZq7nhdnaikh9eLzRPdzEzvBZ7yJyvqkdaMh+V/2i2vVfF7XrdAG0cSBLq37x+qjOPrsOIRbGdG5sdFNpthUu4x9p6wUUwKc8s4hfBqoFs9rtv+5fEN/yQT9j8xm63JM7McB7M6WGWYEbWQe1vPBkKc/7nEuwQ/+VixjZH7g1SSamkj/uheUW4OhJArLvlKlnOQqw4bQebHH1TLXRV4xAqFA6HXutwNuhhHLAgvEVD3ZOflrzJybOYEO08oVZvpu3zf5kxtl8PzX304loR4Hgm54x6li5d2N8JLopt0Bf6D3t7OJeV9+mvlE/Kjlu3o3vuXi6U4Ec1hSEGxck/fH8W/WlPewWYASNpTovCZ6JrGHygs++CPmiCYwdujff2Se+kTianjvDS6WQq86IdpoXFgJbQKTQMDEAxizF0PPRbne8AFp3HD73OW7c78zd7a0Pgovuq0aIjIQmoK0aWu+ED8+InnwhChIcj9rdNcDLmXzHEl5ua0znf5bbfhr1c8bQGHQiwBLaYHgMtFB+V6aW1YKEKkDJaRNcRTSyYtCZs5fwuaccbo7VNZJcyt0/hpjun0ix31Yk1ttFEKYeki+VeBNWL+G8PeBlqNvmFDN8WP3YsVAdh4/wCdti9KtEhtfCyJcdSar01aRk8tz5UbIQNkubQw+u/WhCVwbs94jqGfMlKV9kZDKMJ2R1c9lLwn/Ok7WtA36vx9nKGSnWqSlyBW6HHChQa2PlEV5OcbDYV8Jh8zm2SNiIhoC4bDPcgwJqG79/60nNJ2zx27Jqduj/bKlELsnezBMQHyPuVl5ajpoe1rh9FYip4HA6Ngz5CnjF3Sz6vNVFEO4pcSx4ceIy+087aFZr4l8w/SDfbW9bKbje78EvtEB3vIXffWfZ4i0w9lsYVR5DoO581/i5wg31PqAQ4MA+DaWOIsNTrGcMCmYlZg3cJqT8NxbaeSDUWfAks1QttEpp1GwieOAJbWwqGgT+Jr4MDMifnEErAXYr1H3OZn7XO9hdKzkFw74+4yYE2F+fxS5cu0uUDgOtPE1QiRP5GRb6ApLUMifcakC+4M1O7h7ibNBdlvkFOSnRlD+lOd4pnnLHK9E4agt9oTRWx7Y5FYpLRNYSa3Q+wJovLiOb8YoshXNzy26gNzs5ebLwHZPQHdZaE+L49sWvWWcnZ1EqZU4q5QI05Egh5mf92A+1nNRQgkj0dtZxCH8Q+8Q2YDl0syuEVhw+2RI/zYygDvuL9rRcW4SJ25i0c72w1rGuaUA9w8Om4TD/pUaGkG8TCjLra60H5eKx/F5pJhIYg+4qwPyrWfT9/8+Ox0FQpXQwy5nWhJUu8sPNbBQ7TzPSyu+MKq6qLNVKGfD3yOB/ZT8WXZ4xDQRD2HNc7EZoUNffcrQohwc39lvE/haqTdOZpgQg6Z52Q/NulsMcrzFNYpFwBe0heDOPW7NdiKjTfJzryg1R9JphlT4KnsZtEQQjQbbp3nMIDnItTdMaYLvf7JDEZTU8PbVndmQXELTgN4dB5u27EbSqZE+HOZTZ2lBWM0W4YQS9wNfTSQyOrSX+XxWQ+3dnS6X9+8dtcyo14fg67obs2qhiBsicRmyW7ajGXvZar1SYkjwcLu0/3V+Xr8jhFaQ1f3/ACcEYviOHuL15aiaicYHA1myaJnyemm9RBnuCFB5BPs18gfF5FkXOGqck/nnsw9jFYbMjQNIuJ6ywqyv8eGRekA26tLz8+SIFnM3gJuAT5dxFRbDaDbRQn+jZKe0bADKbN68+L8fKDhl4A9GRsu2RbyQwQhnBN9IC1W92xsDOTAlfVPct9h45dK9SyzP0KxSUG1WwColmO2MHtNPUO2I9kM+zHfjRjL6hYdDzc+NRwqZqGICgWK8xq7gsravLJEU0zYKEmuOKTqx3BjsjmE8GsEChCe6QvnvBs3Mzub11TcsvWP1gobOYQBigDiIfEHy/QT8t9B3e9tRnfFhJE4SwFZ8/JH3C6EtL/pMCSWWmJtOY+0dZ2ehZuV2xbeCeXVLqqodVoagSMxdAOFnc2uRMKS/NpX3Wcz5v9WhM2abY3KvHRppRayZ4aHq8f1CGwPXdCZGRzk/qbgL7LRAXv8zpRsrdcMxE3Oxyou9MAhRvSB60S83J2pm4/YqEwVF4RnYyHHWv3+TsrUgkXBb8o0xWvQbQBa1xLojS8JcSmsachct6l5HPzgWJ535qmgMJgXqSdXlpcZBntvYFFZE0dZhE0DRg0MyH9OuNB+lxrqaJCbH427tIrwfMvj/0yY4CQ0UAGqp0mijLIhDX72kIJAjGcloXGBZHgKP1IJXgstR5eIVdx+v9274cTA+T9PqzDv4aBVvw5AOEM+Vy2ed3vGhrni/F2p36VAAzBZJ0QSlh5gQbugaRAXJKEEHeexAQu0bKtBbRdCDQfbX2eJ8tiP+wbk3EQx5m7aavHcQIHGo2WEiDmdn6sPRsMZnYfNcS/VZfBmdGMPI9wv5XkohVeClsMvLttwGh7uBadje3rl+EANYCXQnlyEmy/7acpla3814MXbpTUs3OIiZtXMebqzjB9U7y05PMxhHnRmymrYg0ZvCVRWwucXFIrxEA6nlF9dt5bP/SLwthJL9dxrMEi2iBIe2YCW5+KD/kKYednzT67zBBmi+mAlBXW2Ks4odH3PWcdyUVOpYNax4EZdThee8OPL4mvX8g6UDugTWyQXVmIX0j6iJxTkxulpWaTmwUv7E8PToSuZPn43Tb47TnfU5TtOTPp8/4jD733YvbojJz/TzuEp1vKrVrvMfYztS7iLKs1S2cDtu9JVPO3BXHWRlrVdYMA41JjWUWuFUHWUXsp+ldjJRTCqW8pdM+1fZZFogaI+T0GyhiRVTE1XjZlBXzShRfb/KKY5IsJZC3vvCuHKYX29KUg9xiB9KmYRPIvyoFerPI3LgNjNWDJ875ZJlAEHbmDCKb0a/puucFg5yQVPDjxb5HtuzgClTOLyxijFuCjf5IBXPMD4f5JfFr0GtvjK7bmnhmdRcVMV6vGxCzVyfAXJcMURgmr2nwT8erFxjqEMk+BKp+x0z42IlQM1meNKT9qqKo3HI2vVXX40LoB9MFXuv+gO5tMMDTFy5uXhpnWC/eJM327vxTJXTbhVy1DItZb56AH+UxwB/rklRazjd7XqC83CBU5ALztrZ/E/lbdhqbHCsKAE2KfsIKOqWSczLzhlFRIaBscUd6DbT7IGWFoi56bkGPK4wWydws0xsBqrjyn7Xkw2eEtYC1Mfd6e9HmqqTA47SGP4JJTpfXrGpsltRoWTqdtjf06de5rDvsjgTdPJ/Ji/5tTfrH/MB9L91Xd/13i/Z/fus2ooKXsbbcRuvlHMPHeOhh9PLhhgD8IwW5XBcCnDV1FrskcDwmi7y3QRv/Cx4JCg+H+PtpAceu/Cft7NCbgRp6yqY9Ud0pk/7DkdpkFkQyfJCzxF/HbN+uxkEVC2eQkMM/65EnAtTFjnLM9ot1F2yUbRVZ2svDL43vcIobrTx53vNYGKOZ449OJjf/Kc+PSoUt7plQ2VNFtf06VTC5Vj5Tbk1dV58B+oQs7hTZkEaWZsNIVbqlP+qS5yYYmNYTSheHWURldEWh58Mofmwg5z8IdW2iIJ3kSeoaz4nVxbHOKef0qMQwTGV+xPGvgzfXVKiw08ic7vKr5a2Hx9UbUlrT9sTGkyb7KSLrmFFL/DVbVU1mw4adhMT/K8AG1DrgozpY/pcx/aGRsuyS/KVQjv++MOn0o1BtEELO0HyEShWeTaKJRQMRnhEvW2iNhwU5qYk7RKC/yKjJrsYvcK2HLgQ4boP+6JTUlg5V8cLpw9XpqrUKhyw60IKcbpu6z6fp52woXulYZhI9R1vWEqeMiHkKi7TizZTQ7EhVaHEJQoLg8I+Wfq3iN3xzL4YCJnemjkK4yadJkThwG6JMzy6fL/mf5g/frM3HWrG+xWqNnEbjnorrseNOpdPC+R+p2UD1Ai0WhW6KUqGeJ3p7np7c1RNBcpOfAdPf+J53fEOo5ymehci0YIouwzr4vhyro19VhfFEwHyBRgipTz+pOAwQ7awS5poEsEQqwJ3Bs9oZ+iQJvHCP55s568y+E6RnkaYRiTgZLpBzeLQK2W+2vj7cq3DFd0e+ACpeCR6zwcWmSvSnHXik9pVrbDYCuMYQztU+x0Uuz8Vvxl+M+doG5oknc/hOSKbmtpCGMxYd5lroF8berOTQNHKZWfKkbELaWdN7yVGQWPdIYL9/7uoC2L6bT76c9BKqlU2XFZ8YXyYlyl9IfqZ9Y5WySYiq06yXytQOXOrpfsXDIBWiFvcn3i1dWyP2rOkC3PYQsP4SNQL2XC3HM2gmripA7+GW126PE0zDicHKnb8KVrRL3u9NrZurmVT12rSY6kQWwgkelTutxM9kYZqtqddDe0MRjjCTTfLP+VcdLpymQPIe2/4zAmXPBWu/VnW1ZY8KgpgkzzVMpWe9HQ25pui3BcCuv+xDeRiDn5c3FAjOMFfxTq+KfN5w8jWgd/HeCmFFqy/Omc4IajCDZmeKeCUQ/NQKG6xYg4g6ijkkvp5tfEW2hzulKLUhIjdXojFBYV31QzV7MKzInFYExFRpMZPNr0ntFt+5GG09CazZa+ZvmSHeiIhxRQPClVhGkX/93u9I4SFiGC7zVpiQeLZ10mlJ/rWTKbMNLo5GqCbJEjJT0Mc7q5uE3qvDXcDY/+urVUeuQ6AFf776IxCBVRMs1KXfAGoUnuB+fLzWJga0ZolmNhkdWLWix/vzHtpaFLj9lJG4ybwurDPFVswlBwX4mjo7HkEBO964RtJAkM07GD8zz5+uzzWs3wTmKdrbe3goQvdmqCEET4eINNui+6hJlhef1wSnNmcWuFyennxl1PpV6CbWfJ9XzeANAypCtU5LFwASwNqxeEP4OjyPb4XFZFEWFW6GClYRONMJKq2MPU3eG/46VBJj4pDn+3Wu6vR9CuMQ7smy6GmJspgVCTDuBb2i2XQ0ihA0gMm1NbG6X5vkryHJ0v2XndkhRzwvOVgfpz/1b5AG7Ja94SeOE0p/WUYw8b6afiD2t7J/adcg4gCvSSfZc+htESN2vzZC9CFi4p3QLma3f8SfDZi31014vT/5bTDNqyR6rcTIP77QZ7XLq9Sbp9i4pliXIPPoEIW54cctYyTIDeq5tfWjMfyoGJmJN/pNqV+6UTEykyTs+PkoGYyvBlFbyBfX0/qu3JdiX9GXTsLcuy/8aZ8z6km5s2uKo00X89QvM0yOcQpVL7/t7LSPjCFtRkW0YLEqcGsCwTozoJTbyFhzdtMVt8zB2Xm0NzeQoVeifyIAFDwuN/61yfeu2ECZl8zMYuxN1aKFVZKltkY8jatXLcNT+d0Ci+ojBZnK6Od5O4AET33+fkqGQYzl2l5aU0x/Oac8UroHsuCE/oQja/wZfI6m7ZaVqyimd9v2zdOr38HMf6S1I8MCE9HpZc26sbzJhY0rWfpUlPEBIPFlp/htSDxF/vA2yLv+UpPiOJDmuQFpw25HXW/D+0lKLYpzy1FJ0cLo8jX12JbK5MsmiHhv7QJrAhS5Dy492wv8c3NV1h45sivHmHmAycJ3a8SrNvYHifhAIq9WYpl8nmgaBKjdBcof2s7/7B8bgYVq+MwbI3YZRdBrh//6r3ycfFSTvR6THDYtzqIK/ttdHq4aRd4Ae8ZSodd/MSo582lNfM1BB7GFzG4hSl232VwOCv35d3iGSEAhoFAa1b/wBclu407SFsczs9Xg6DdyZ8BV6m9PC6cd8DgKgVcKp/ycWn13rRUPVJDRLqEtrBMm7ETBBV/erRCLHx63+W7ONFVEJu5ZXiN4j00QSJObAnqmftqn0ljHJiEXlBMzldY0TczfjARQjj28BoddsE8xbOeskHYBCNDrrbajcWz+6EUBcbT9SLz+iNRzv2uwaTXZLf4Q91dk3CYxleHIHzty1P6WUCOUaWBIBlYQBRD5m66CrgkY1fn5A7aFL8iL5TBwYyGAasMd9TCqCegFUWMwNq1swAxRGVcmujLYwTQoy2drs8Nig6b0KrQF++9OKCZpN3NnpuESiCigpH6rY07/AwTsb/YpwdCxLrrn6KKDoaRcbbu+ftRhhzTGOxTsPK1tA+6gFP5P5AbJ3kANDdwd9txLimq9DaESEHIp19oo39qm9ZSavSvM3c2cYgUM9rtw70jorzf80NRCzNytPrjXBBlcOeBUMYBL/8UQapZyJ9JlvH+1ecxmIP4Bw6yGRJaKs5RC8snAL/B2NCSdltd3gd8wvE49RgDwnhaKWwsjtEOV4GS7oN61+3Cj4DL7xv3GHsfUekwZiwvWJIw5ewf69nUIJnCWHIFGeQsze80E5le7Y8RXKV6CAz7kWIrQ2PXq+lVM2caOkKgZrQb5LFuuxAGk9R29hmdB0UXocDHIwr9yxcVoWmGNV/IHpBaBQ3WE6wvrQr6YY8NwcdQyD+S4OYgn8ErZfccAXEjiDrNXsAMARarePIo7VIEDN+d8dIheOr3FYODzZNbTo2JLtBX/B9MHZj+NHpV35t8nlbDmybCyIZ69L4JZkvBM+nGaKRfgv3pm99pdxucLXsyG5oTFBL6AEXEpfPWdRiXzKgL+93ggNVBVFW3n5IbXkJH6w+O16asegpiSNcMRKvgZMurzFK66BIcA01B1v4A+cd50rK6GcYbAgYRrpmKLDSBCsA0vYKAamyEEgEEmIoCNPElgFtz9RFH/rz1yp6M6bVgwFNr2tqNxb8q9HF1kxEoZioXJLG8heJ3k8NS4JcKL14YM9tHcvrB89CJ4TZZBmgBCV4kXzglXw/LY4vOlnqJgNvxct0iZsDNmeuJufy2193gQDR8dxPruY/I9KeqY2d2Ss84oJJPziOOR45G8dBYHIa9YKv2x2nrCXaSIpjp2eb/Ke33JJz6lN2YYy/CwjiFEJh0V4eIkWo/gV0igqnuNcMASie+75P5g+AEZzVNbKhC3CZDRddBokOqEabvRkJnpElrF/AZaD88uRgcavhw/wwod81IMz/HfLa6k0Ds2wS1g7pZ4teif2mS/X5EynWYbVulS8XSyOYxJSWI3CENJb4Q6Qj6h4oBbgSoyMHhRLLcRgktZJ0Vq3wK/K/vHmah1KIBOXYVy9TisHE9F/STDZEbK1Lv0lY1xQtJeNt9zoxTxxpocqFmwWsKSyKFPNA35CuJaNPVu0gRWgBhBhi4RBj7LjWop8OT3ogeDGwCQegHBK468KIt8IQozD50p8kANI+IrP2LmCY4Lp5kuJqSacUs58HD5vVBYkHTAOQ1/3yc0+KEORDys0qmWmknmZp0oJDo+WQQcR8L3fRXfZtMkmjJdX8aRqXYkAfq0MKXRVZ5Q1l0oEo+w3YljUMZHDH2dL3LTZBEHH6ignFHU8lXsmOUWac+Ufsl1fIaNsqWLwnllUxvZ4Xe+73fW4QWCxaBUJ5qC8n6SNg7C6pjXS+bHFZpU7ItMnfMoR4sFclV0mPSv5R797/eOocz+TnhImHektL8+idY0kd1Cvl07qE911Fi1MnXnpBMT0U9rmrB8yvf1ojA+APZ7GCngQgkHUor57HGQ6y/cWwV5xlThcmhSPBvmZYNK9rPgpYVAN9MXO7ACf/I3cyDbXuZVf6hdRWB94fmVkrdRwmlGhycF7rXpMR409NfGfMP9ml/GhuzrN+FlEYnOnfxa+OBN+b7NjyQ7jveE4bTjIilEhaINlUS95zmlveGcKzM04tmGX3uK6hQQ7W1mlnk6TtBeXy3t5y0Ps5b5E5GQS+0Hs45CJ95LFfEA0y3zfSwjDa3tt4s/ZAasM2eZjuSkmMu9bXgr12lRt4e+IP8P7+NomtYD5TIV8eV0ODYwa7My3JSHJErRTidzlzyyvqgKuPn7IRIHwaoKBM0Bladrd4q6bqvvYISyNR4RGRPgW17Qc0gZRhPQkec4SX9lCtY3VDXzzcvgzsOBGzXyXcGMpUzFNf+qnpJYwGFIsASxblZdNLdvp5xmQzSPP5z4J/gN84MmSGMRyI3tKipmVMkWXyUG/TkNEP7DHYl8yqZQfohGHaZsYjl3WF86XG3vsZxBXHjVxMLbn9Trt+bVnmrL+UevKXj/abIQ1pZx3mYaaMwjJ61yj+qojPgOo0n+NLXldA14ypw5w01d9t3DIrky33AofJuLNScQIAebs7IgbxAPyTRPmgEyKw1qvB2U4+ELglmnDTRPjyaK7V51gIKMU2aTk1udBR0yoAKt9D+5y6JwpZ/s0B2/hn+4I3A5y4LqFzUD1cG+0JicjEfztd2AUvrd8PRCLInjp9uDfV0TrJEmO+wo7xFXORpFqmx2HZ7nW4NpKSyOzvX0spIvGz0cB4S/f4ggPJvWhlppx6GkK8D3JHRunmdtTIc/BoTTe6QO5rPbrY3S5rVBI/RSCJMHlG3ulnUhvPRROwLEjbxLGfJ/nLzBAZdxngpsByG3+M5bPbcAsok3nTmyqzmaBnLg7jP7oHQf1Osgi8IVQYZXRD/7KOyA5h1oIQ3AV20SWfIytP1lV3domPdw7hiIR9auVzB+Z+IV0zKtzCIaHDzbjVtG/7aRoF2frn7qhxeE1YF+y21QmyjuSeDFj5dJC2QYeFCZFOovsmtibqWJTIVoa37p1eJ2/B6HNirlng==
Variant 0
DifficultyLevel
688
Question
A red blood cell and a white blood cell have a combined total mass of 4.2×10−11 grams.
If the red blood cell has a mass of 2×10−12 grams, what is the mass of the white blood cell?
Worked Solution
4.2×10−11 − 2×10−12
= 4×10−11 grams
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A red blood cell and a white blood cell have a combined total mass of $4.2 × 10^{−11}$ grams.
If the red blood cell has a mass of $2 × 10^{−12}$ grams, what is the mass of the white blood cell?
|
workedSolution | $4.2 × 10^{−11}\ −\ 2 × 10^{−12}$
>> = {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | 4×10−11 grams |
x | 4×10−12 grams |
x | 2.2×10−11 grams |
x | 2.2×10−12 grams |
U2FsdGVkX18RWCcKYDtVTzmkiNF17CA8Lqt7flwzvZk7yr/Es0njYOiE6y7EBBGuBVwckgwko63JWGcoMypNrZqsojaSbvFArT8dqyxf7ZTgn6C8R22Aoi2BFc6P/rKmhJcg4IwHzT5mYiOrZVBcJ56FWVy+JbsjnEfj5cei1jKEQgQoAiFgC4bKmK0zO0tx9y51Qtl7KsqgYwqrE1FUtXbGf7nAZ0lTDBd9K/NI0L8dH2MTj05ePbbjPTzUcZs8U8GdrZFgWA5Foa8Om4qt6UB2q9Jtmg7rG7I32oJ6E5iUTChiRsnUzCSv9dG4NmJofGLn2FCSR4Z7IbBO0ViE2fMfCCXUnneDRPUPOjjYRNcALK9Jqk1CKo4Fq7Evqg32c4HokqPYgyiZiF7WFhhlnYWimJCHaN8AHU1K5pMlKHhvDyKJU0ucao+d3oakIKz4+EDaae15hemcnixYmyFkGFNoSDjJUWxnTtdsPEK9arw6Q8U+5CIrzWcdBU8pc24eVLTUsRpujGR5huFLms9Df+ad69vQRbv2EWp2zk+VSBCfaZgkzmu9VChiiKf9mdcRcuvl+GPo25a+mnEPhJEvyCATNLf0JW2mC0Q7qWzGyRbQGghn6pxZjtuOJRcLw+0QW65/zQYnK378BWdEmFYIZt85vDjOw1K5WlqgvJ/mZUFI8scDk7OZY/2YG1wITxMNyA2uTV00E4gcHI5zHPuW8JaU+m/YL0xwV6Mlm1LhmRlWBw4tVoT6wfxQ4n+aIu8RRnJl9eUtFF8iUHJ9QsOSgYeWgMFujzSXMPBQA+tYmiBAOxnX/2IqyjxzC/wTOlozD+mAQUnMr/KLirYHeaVgfZLmWtusvqTydNGxvFM0lun9QFNbFh3lQqJK5nR01OT84DYOxrrCFHi64a5Sf76OSHp9EKKdk8S0D7JPCx17oxcfD2X4j5cyGtp6rF/qqeNyLp/6eanGviK8Cg71mXJEqcPT5Fksboa7uxjuZGGmM27lppxKuB9XOdITHnhx0g4Jk8bWPhBi5PQKyJCAV0LU8oW+NCTbxruHCFKWF2KwG2IDyUh5zL6DxSEHGmF2v2r4c2te7vuQtMmRFPAMCVK+TR/tcjRdT1umGCx6heC67XRmBVKIOdUU3yHLCnKk0AZGc4xevfRyJP+Oh/75VxmKgf0LvBeS71owKLd9+A/pO4lSWkBavipkb9cEC1bD+uu2gGjF/FYtf4OjS6bFK8oMgf4Le/tGeGkCHGq1JdjYxP92kj6iN0MJZ8SzNz9731It5HRt0FCpcbmu7oGGN2DcJSvv0vYgMLcDqP3O0fWGj76boYluzQnWI0J7nRxDSnwZWxSqN0pbj+lEMJ1aL6b4VKG+S//8Y94bg+DF6SZAUC/oEftRtg24PAWRINSxnSW7iP3uh79HVX6n9tNWurXchqWDI3Tc2NBhBYy5hy4K+4tR1huNI/Dq1knAFbHjHHizrP9y3VaR4g/mAjcmNU7X4Uhcde7QcPurZPwXVKgktlwHvlAQAP0gIF+9C0YqJ34/yI6DSaP8DnjxwqvQ456NtQcgDowzjPbke4gSavnco0DAa8YnFhFeBmnatfLQ4Q5hmWCjrW2lBqE5y743ufWuMDHAviv+KjsKClJIWuD3WvulaK2/BkKOLy8JcqxCQFK+Yfh1FDSN+fFSfhzUNDLRB1Nfnua+iWp4bRgqup994XrgcipDOkcemUJd6HzfPqZjFXXSYDO/XgbfNqijzr1uqCy1GM9OoxlTdUxg3iz7qoELEkQlS8jvrTclY+heT8dWZlJkz+grg64DWDE0im/2AnEL2zzPtTehoG+yMWYhZMoYQFm4G0beE2uvFFu16/o5wnmXJvZYjqj8xrguwnEgAKA0aefoxeoB39N5SwP9o5x639OslNIPu5bsMZhV+5MeQZy+3pMYMzw0kLvwQjK65jyu0oIoj7C8LZcc2I6Dea9s/5qlKpE7TIHdx9JwpoqZnz6HNuS99tdZHus6yebRiHRqs5GLNUwJnMkcie95o2tJDNvPwu13l5C8TGmwNePvDjFk5Afny7I9qI63eMF81NtK/joU0zAqV2ZleRdJBXDWI5+DYXYd7uGjI7otEluBO2xG+SbimcSv0VXUiGeo4TK3/8ItbErx73aA4nNpN4A886UIKYPrZENL+stv0DBzdK+Ltlqr4e9je+r/fqgF+Sl67h23G3nVvjsWLBXBXui9c+j3ZQuPzgK/ms/HGsIA37L3ufZHLZu9wqk9UKd+7wrVVc4bYTvCHUU4cfSb2cdTkt9UEdlCWnvtHrQVIuwmt+veKGdMk/luMlZ1CxmgTSf5MbcqZpujnzeRrZpWE9EQog6tt+UmUNIsOuR3Q9y+z7X1DhVHCMQBXLrjgHWViQASHOlg7oNn5DEa0CrHuytE+DyzGKhJds2vUeY5+u3d/WlqegveSCp5W0sBPAp/zPnmXGL8GrjygL5jOU7rBnIY3gxZMvoE/Z0nKUv5pAHy+DxAGuPbihNlb9eIXBhIP/Ys0UKf3fW8XHXRdrH1OAcToqhTYcXrzpjMS6NF0WvW3aAROj7OHpd18RraiD6WX5wMIu121YGEPq3UWECPzUuNnBLjrt4eAPoxvuIg3sYYCZ6cQWu6QM84jcQZwd1USmkKLJR4zfgZ0Rk1Ry6EDPogHLn3ZaBybvkhkQS+p01/5sYMJEcIFenY9884yvbPuIvKtOsmu3a3hrNMmUhvgth2HgNry7OlgqmECESReqBdfkbuPxHyiP+qBTasYMigEY+sgVTY4JyVc300GVB5VaFliFeoEDpVaP9yWiIqIv3/IwXkRFUdSRu2CbImIGynUcnGFeur4P8Y3CMwc/dEUcdUKCbi82PTLUJzLM8ibeFYE3qlHWzZH0ZS0pBTrqC+A2JTS1qQWtkzW5pX4Nj3Kupxsel7E8Av4DihcsAcAu0T89RcH6xYtqh/pgskeDK17dePxspwrJ8pPop/Q93mPopHPZK84A9NQ6/irqEhonSOqaeAi7WPAKkI+vHqtSa8Z27t31xiCjOkOC0d6ABKnNnWL3268+K3U4cO4kmzhE3Em31S3nrC/z04ZC1F2H8XbKbqAEKWXenJjBqH0oO6hAA0FBiOJ6awNjbeZCdD07y4Bowt0v93yht9o+XxXadd14Pur2yrrprNPzlDHlvlfsr3606N82FtsYM/NvdpcHmFK4DHU0j4woTzJw/wFxKvcYCZYOeNvV4/DnDD06cWfqT7xT1LqRnf2xQpJU+G5dh+NOf+NVPfcAL1OWLcM+zK9Tem0Vd62VUt77w80oF+bd85/qV9n5QsaqLAWUGtGgC80nWJvFBUbwWS/PU/OZH7CtvRLAS2CCki5yNSU2dzuK2P/xN+ZcWJF0HZXxM2PQu5Ly3GkZypsfn36koGMl1dwicHZ52c/zjZAgWGSeMrxqCyUBDlQsGctk0vv79u1xo1RXLKPH9Nwkgobn2W10rrBDHXyuhJZTlgsmDQYyx8l8x9MljmoC7DVpQyBAUNuK1bmsSPtO0/rB4ouQfEiWO4cT6YrS/ZCWOqXk0pN1b+fbYPhGXcBETLuFnRxRQZ0UMZtIASfVGIvwGbOB/tyFZVLjYE8xfXn2+dOLbfTBadMqJXqxoSp0VYUlZbt7h/YRV4x7y46TPgOccWZeI6TL/r5XOwtzG6MaHOqdNmXnEbeBaxdq/b05RtlxKuOPB+SzXwpK1ApBY1ST4QOJIUiuiSE0TwFRdvT0NwO60ZNG2CBgi9TAJfFyx/oeKpQflVom0ylBeyi3cN2+60ElT6gbn7tB5eIzdvld2O7pE+cJ2Js2jxi8a7Yr7yJW3jvPOZqqdk7noIFFsWaa0QF4ZlSHda6z/ZrmKq+XvLQ5MB+s0NLUEFJysQsEA4TKK3Gxn6Js6CYvLpNGDZg5bdpPVuV0TM/iG/RHhMWUIR6+2LAtWWuutqv+u5PkPe2SEuDmRKzWZzkDAP3gKAxKs77Uoes8wEe620j9WWpoblpSeZo7XE0vmn3P8NEHKY1Mq/avAJuHkl7+9Fjr4Vcq/zY50VXjbXbMfQFn5tLZws6w1HilLUwVSpIKDtEqon9CIMus6mEyhesm3fAFO0E6PqEFsQRxCAWov7kT0DumumTZzYDsuRVZxUTHJZCxZFTFwThbNy74Sw/kwIULfbD7U5iiDrSOKDchpACTT6r47FmKwVQ2m7V050bvo0V6X51UycQC0qok+2gH7K34ncViN+aFAWXyKPxoynCpLt2fr04oJBOQbe6HP8UI6YzQeTFSqAR/W/Dpvqso3sDaWRcz1W27Z+2eM1YoeWvS7A1+CsSq7H/hpq56o79BclMwP5TJv7hlQadIrz99LiCZkBMgr6ub9u3cPDk7uLLAYuOym32f+qH6CQvZ1S6And9el9llkJuzp41Bqyz9Rb/ExKorAcAohTG22aSaaI7cJrxnWr6uEwTfCwi90Pcv5YC1ySyeq+MNYIlXCSTi4VyZ6uUp6fprMXyk5oVvqN/gByOu0SveFjDyxCg38inTFhDpQFLn6GWTYvQVCe+eKcqqu3uVI3QYL8xgo6EF4tSSCK3zgiQ35tif9spozTbRHa3UxwgUn82J4u8b4lyw1MpfLSm8DpKDyN0fEj8go8prYRPWPJnSYsMKXtTiW0nYTjG3nXlqRCP+wLchVDxOBEXyZFOH3AGcwYoKb8olGJafDUFYVRwnYbxkeFlu8QNFzos8Uws9tEE9kcqYH/jefEas6Uc9DOLB1YjaypNXS2xVFKF16pu9tdYDiDndhUIAuaIHT3NV3VUc1iuq8aSZ9mxq24jvJqU4CX+nlCYUCgfmGaRnJRv9GYDSKNcZyhWHx3HL74ZhYzdlTiCWJqQlwYaxCASBJXULWaps4L2v86E+eHItdwNFYKBjR8eI6RpAYiyBDgWoQjqwGU0T56pSIZTjmgg17XdyUnKeyfrSG8VJg+i0jLfBaZLlmZHuKnv59/6aEp7j9G6o6Em76+IFgj8arPvsRpiJvKKq0NIXF3J8CzmnbFvGOuh93NIq+Po9APRU4Ii+t8JMpFAvQtPnew02hYZemnLMQr8tCckiZLk1L7cC5dgJj8RBtSCgc1y5IS/6VqlISwsoxCEFFZBSyxi5+uW3JwnRT/G6R29a80+gNTd7dYDQOXN84QK6QUTz9hvnH+2ow+CHTD08SbgMIu/Y9j0ta/dzFMp2QemQsmfAqzLME4BPFzwXaXppDf51IqDXHx2TxMldRioGpB6zvra3+53TkZG5lkgYkldFxxaHV0gFEU9CcK0lAn1PJOwqvv9AVSOF+A+d+JC6AQsWCEClCKaeTlW8475kjSh+r2bN2RQwtvU+lxSnfDOfq08uQdOztTwzHo+p5cMFFly3FZ8z5imFm5FS8vcp1MyWV8hVqb9lH7PNk/wmB2VqtWwTXBQEggWOiugCD0LqBWkfGYjneu2cJUVtUFTEVlTcoG2CMWi1auhfr4XrTqJ5KzFjhYQQuExstY3d+BHpAdMlneHs8o0Mg/L+hmKO9JHUX0slOYTJHyQeKpFj+MrIvXzmDDZN7awItPPrAFhabwngqV0p3GjA/xExN7AcKkSyuMemD4Z5n1PwEcCMSJV9GPcN+F2zBH0Bz5bOZZcqCiLrIkS1kMtwpXD/JnihQKRLChnMUqro3wiZtGR0rtlYWEL2BBLwHV2h0xtCYFujhWIIQ3Z9XnJLpxjd7LHcboqozzjzZSgaeHo9iVlJeanMn+cqZ7Xl2nSW3JbeWijLakDVT9re5ZbzmWTwaSbMWsXcYzuYMZBohC4AO+bB8yQQCrzP2wR73IUgy2SDrkOmnP9GPiEgwVe/yxkUCzvZ0/D/7qB10F6RhOO9VICLllaPQn9QNxLDRg/r5Wu2ZHuofE/lBaETpwR0eph32FOhdZeB07PcD4EENxTgM4kzMpBF5dnaYqujU6/dLYB5YarVJWkeJ+GcBBLFwkCvzwHUs+bUgTpkpaNZukt1QJUE718MKo5HwOKycvwOhMmM7/da19OMIYRGNU1jCUZR5jRzovzwhomTBcSzQqfnYHObvYuzXL29jNsYUkBw2iIJmt8EHZjCvajTGRdW8CCP5fhjvm0vfI5SQPL4jIJaw5Ro6WRbRaYaDyx0w7hz18hd7SiIjDeHH/oUVMP7385JMF6QNf0NawO1cgP8HRM/xz6Sgq+fS/V3gUJLM2eO8ZTdrOOPKijUhL3mWghgdOXbAxTMWP245bev3kMhiJ704vWXjbtXUWBgS4lUMc19TY8WOoduHBFGrR2shanVPlh/Mfn+kmXWqAgTwf2G7lzKP3iC7H5zw4K5LqBjhG5j2qmjCAblpqzgEm6BuRmkTSks/dDEEANVY5/GAwo3rwelmt4ipCKzVZZ80UlJHg/mH/f2As0RNi6hwB4MsKrt+Ar1wADyQey2DbbcWyPDVBmAl9w0Vlsb5ZEkzlsabPxu/YrMOfrW2nCGteaUBhPIaSNbW98A+umlHd4vFMnklg1HSnZaYY2wZZ5s2E7Qf24CEyZzbUMkMBlTlWvfNOInsa4GogyN14v5+nesydXsEhxCxFtvSgZvJVqyBcTGIVzcDib4Jo2PKZAz9QcQ4iUChYwl8I9UnmndOPxUYV5Js5oWz+T5+SbOMN1s5UO4hDrGlboe5QFZYC6mICjBLVvwwYFoRHSDpxngjVaSoEKxOGpnWP+Zkd3FfDX67CnNKKqAv9XEf2yQYByq5UpwZ1ZkK9W8Q7raKvt9M79LXCf7TqDNriUee4LiC25YZ+uvkCdXzaJ1aOcKrE3GdmMI48yas7nUrm3sBuGpkWT9Y0VqfvpRIooQiFsEJHTd8z1K4w/9KAVGNpB0cuOAK9ZuHC4H6cXguxSHkr8LL58QLkNbOWgCDG4na/tGFgayuGyoJ7U+Fd2ZtyhRZgrv+4CAPYzPF2VS+DsgHLpv4cbysQMCKVs96UZ2PMeiW2qf8RIaal+Ba2U2SpKnL/KaSQDf2sCsGubMWVQK1CzBz7p1Ul4U6uPoW4cONAPxR6F9JGZgbBIi8W6vXEWQZqJdGdoPlxrIHFAalVlXtx+p5iBaDgKnGSq5FUxSeiRf3XwqY3qlMLwP6nbwvlrhew7Ph7lKUqIoI9/4QMLtchoCbn/DRaTKnFxxFIffIzXVDzdFKatxvmvGxSzr6MeKohclxdreYYKq0slHlCfINSg29S3oZYY/USN1UaUAVE0ScVdIlvZo3ojDK0qixEN/nS7NfsMYPYO639aSVB5Wl46RWRzN8Tll5+Qr3PytozzPqeYfeJG2DFAKOd5zQhppl7vESqBvZ720jPM9sdU/cKeog6Mguq/JrqtzhGb/ABvCgUf7kGJCoqrI5qYuwlG2yNa7Kw3Owp6njStHZUUojmvZDsDUvIKFBR3lrArPfP71J1Wk0IO13rX8wH42ypkO3lTd9ndYU0sAjxVPVnWrZNxSDf9jV246V03mHhventhfyEHOhV0Djhu1+fo1hyoG5ms8fSeeYCGBQjhF1sbcNP7d8Y6ZvRkjY13svkk4mnFxrXs5SippgAxb8nAqIvEnsTSAFzVNybSyf7rJDmqdhw9Aq/yJZkLZnNOfNB2V/xzm8SwHKmna/0XIHa2WWvLcdasF5uLfYyK6HShpulJFcpSr2t0TTp/lArB8omApezdepPCk91bFwMh1YHJjF2BIASZ6nAauUjMN+92FSiQvkYJ5QIyc2/u1h6QAvb2nUZBPhZsmz7v3JGTHuQfjEZV6AAQo7FZ8/ZjFvEzrpTd5PE9uvucYbwC0lXC7vuBPT/A2gX/UspzcOlqEQA5FSYW6YTAoT7EmDjDkW1oHX8wFyvf0n9XW9+N3lI3D6yloFEVODKBzBvab3vozq6fF5ZzlO+BSa+PwezghNuIg8l5BKypMfiJD9kKSXNGbwFJOYR11zQPvsISX1Zoz21ARR01of8gfVl3QHDUe81C+CY8gJ5qHWrcu4cQ8FIeOTtQfNw7QIbF+T48iyEwAMqIrxzmqyKVfW2SCvyrbJoXm+IaFc6vogLGpg2OPV0SO8YHe2wX77jTGC94wTMqbnB9ac/vrD+WUfAbvCxkfwQpEpe64u5cTmngrnAgFXjWaW63vGJvUV0u4oayE5m5jTCpV7RILY4p54SMIhRh80n6wOBYX9/MgPVBUFMr04cZRjfsR1Hojj2imCc9dY8p7cUMCJdm7E/+DwYNA0kB/595VBEG/P45NyPRcxLPA5pjl52b4ecOSgLvB2MlyIXavFm40SKwHtoyeoB6LUd0pBVMwS6AtX2G+RYu6V2Sxe1jkys/bxCrqdzFy53IXcNcero4Kyajg/i1v/Ok+UKVhLvZ2ho89BPnHxjxJgRM0pD19J05iaPaA8e1JwT0gPugwo9YvQarjCzCHeIsokRcbRuhzprYz/WgWIQhvCbDriRqr6RppG3bns6ArenYr53aIaTzmfJ3VSkqdsySPXNZR34b5R713DKCXkaiybkDvwE2tdI5Njj9nzaFILdnKlMJwSBPQz5zOhWOX4f/pCj2s6QHOuS+3RJs6lcIx2Rq2FvwFA7CWffvriYfD+V+uTQx/aSe+VpDITzyTUTsI4onWRdT9Mnylv4fSfwjsLiVkW5cDjPiHaMEjSvjwGrbjDbhdgeLC+/pRL5iPltB8lhuJeYUdAm0QDYO4iibyggutC/qd3Zi0Lj8+dM9ojzCaLTyIB8z42mMU0LURffp5+nFPOjZEkhnfFI3RZkZAchuwhLU7srQ0eODMhk1h0eIRV38gfYvg7cx5fvbjRxBEqgCu2qNI/nFKkkcIMmIiT/v2yVPqrgM72NZ0UZrkj5NsQ5itAtEw7gYn6FocVTdbK2YMDF3h3IN7mV4lNruR3LB728P1LL64QPlweMLRJZ1VA9ukA32Z4iAHbirWc+3yjfCjT3wC9zxlmHoY8Yry2WMVPGPF34R2uoRualexXJbbbSqavOp8yP6Bhu7CzMYtuWRmDi0YQ+DJoOv3aF17IlXkpDhOiX2VoADiCy2JoHBLgdOP8/8pKNFkdk3PB0SX1spMmd2KUwFrNoR+k6mS9+AKTIBfb6mS1TDpVXRecpEQgMLRiKDxx/KrzP+G7zg4QsXdhp6I7/h3b5leUzLoV8qI7RcB8qMN4NEaYU1oeBoDPoyjdvyy3bnERAetXGf4jszKwZxXjWf5JmAOw6B0K+w+VHLb60+1MSGCgRyOH08+6Qu+67C8L5OMYA+ONMD6cff2WAvanX/fm4drHUiGGVUeDpZwSiKld91a9E5YGX9QsRyz/lntMkA5vA5T3XzAVhqDs4NYiJDGKXHmjVkGvIb4E0/FR0SG1dFvBSAHG84VViymjfjGTm0N5Mp5+hgzNZqMgR5Zqrwgh1JZe+628P6zQCaz2JcUXwkYIiYMAptPug4oTTyis6Ehy9eSbQFv//F1yATZy+LddmCFtM4slsWNqN4qxAeifHBGKtCSHI3GehBgRCgNwpkDsxxmDFGdpBgjW7A20HhpZBJbaxm9yjwiTuB78bebGMHGJFFS+8skDDC4HYGLwczJvPh7/16AIPZsRZzqaC62a6Tl1fhyiApVVG41LPkECtTHK3HkcDt01zCwqyOnsS4s1g6cQ30STCHPZHOfV/oK4pRBw3vqs8BW9RegumhtZbMgAd4+1DjEk0i34ra9/fyJiNviuGicY03ZRaHvBuRQxE+E0oX6RDRu+crnQbv0albDUFtbJ6oq5RzwCGC+UFaLUjnzJMYVa7RqEjrFuwo4xqs7Ka6u2SdERVU2ziKBDssV38ZKqXUa2rr0yRim8IvEMkc5kgzCJ5uD+BBZzlIXsI9xAVO/Sy44kxNBbRLmapJaOtjZi4gqbGan1JFxLTXvHJ2zTFa1BtV6hPEtU4FXG1dCRshn/qY2MdLIq66mwo1UFKHBjdCT1KCx9orKdPQ85dNM72ttjAO2XWlWAxYZdaqWKdZJdOfFD9fjMY9G+HOdb8HSMUOTfDE+X4v8o+S0s2uuGy45H3vqAAW8cYcQTINvhmVPhEo1ZeDrGq5I373mwVmnWJLuiglj3Gm/l4qiMm7XWXcwvCn3HFXjCOQpJsMOibV5OzCspWL6tKg3NiVSrsXwiZCnN9gyhvADCXhLrCxZLmxypS4j9K11hav/A7twMqweMsjGkeFXgRULvMGoaBG3K6ZvtHP6TVTl9hVNISpmbHZ2IlYtZ4AA1lrzubE1rhC1P4R0VJBUaLdZtvHjlYUFke/is3ByCwXzCT8fZ2io2Sa2PogomoWRT2NXyBDccGDyzDRIm+rOoHT0wUmZdwrxQ6B9A+C0zgNhrvPOhYtVhdfK8xuWM/V+BJ81fcDTvt1tswiNPEQc4D/tWZ949T2CLcPjHa5jjfMVd6/Lpmdf+ssONS36vt8tYw3xTHvdXTGdy+K6ohgB0fFXlvLWgsnZim0P5s0psut3v+L/vx+Y4bWJ07m1bQQ89AfI4r0AnOAFnpQiB27fOWKC+RPyXMgYqIvCmegdSZCAfePC5vHjQnIG24WufLQx2asAYDax0NFwYBYnenM19Mf12O+oDsI8DJCkPXp6SUQYQfVQDi1bj3Nt74GMb+VRdt9s47jeC/6rfpvwt8rC9fj0z/QqGURHYbTRTiPnMRUewBy88Nbkeoc/i65pqG1TkeMXMpX6W5St4wqqYhvOqxx2uE8wRBbQmdhGGKJBpHhSoOOFzZBKSlQm0t/Lah2p/vqaYEQHbeP6oyUB9tCFmP2W09Lq0+qprW4+/BdRc7Eq9Rb2wqjaTBQrTy2D83uI4S+mvnWJP4AVfwjRCO0egfaKqMb2qq5S8hHmwBkd5VdOBDTiBMUmow3lyCqSjR3gE/jTzsgw66SpHYrBH18fBFPTkWbnadFiqqDJnq8qH30lmNWT4wCxke8JMoJcsj/6AyapsVbyzC4F16XylbTMATebg6CWoViRUUVmv8TnRyuZMF0xODjxL3vWj8RsbFji5H5eCoCGzXP+C1d+liPVA9ibAeZggVxg3zrCJ9KsL5/qele5V0nkMc9qS/8bRoHpR5uFvb3elElOzh+J3f6ZbZPQJU+WtoZ13okuoFX1uuvWS6pqF6k8dqkPd43qUhuBoecT6zk6IKLRJ6bAnghXRBHl+xsVtyB9UfwVqYxLhU8VcbFuS8NHbx/U0gdG05xwM9z7lQvDEMpko6dJ00DdhyT+6e708/syleyqIitV3km+SNhSiD+gnyg4x1CUJrXWrdDvht/4VSuo/jRAywLO0pCQWRceeSj/kOloXQzFWONxBBg1yvh1Yryb47vMdWAEz+1//ge0YhP4DbnFCOb/2oMZHTSxXqCGVCWftUj24+F5QMn1X46xvuTBLmyXLDVxpZ0Ix7kQzKGifiBMBGop1a3uLobw6jzGxA86MyL0aFWDoyAENvSvF7wyqAZ5Knes/zRdaWPfXuNDSna/FUXjQWkG0+52DBlsbbKfezg4zsYkdlph7TQTGmJj6gQIkmmpwyupJADiPsNn5tLQqjbHX8rb8ajYExdJHBuErRHPEdP2vt69b9Z+Ds/9AFgPFP5qYSoX8YyDD8ni1AEwC7E9ULSVUNy2lr14B26jSyOGoN3FKdvoPRm1wrfGviZeHHstqw4PKj2sJ9ZYMD37im3ttlsKjYeSXDEYUCvApRRmFBlAgm05nOdcnxAI12ip0PnnuqxmE/jC0EQz2B4DDXAsQFKiyx4UNstnoVKJeItiSiWVMINdAvaEhw2hRIqy0PxgtPk9pgOwJmOTAi0t2AxXka/zTGY9463luoNETxRjCzZK4QYyGbeGsV9kyxAKCKh+9isGNcE4DXjip6fqRCOHk6ZejsCqShc582qwppcBU1I7TPvj9B9JWdmoKf66ZW6v2KGMpNMUfpV9tnU9S2ImWB1SSE752svNoCxWqdMRNP77hOOPg4J+bV0mGwd/bOTgTZHz417NZ+SmVpbkJGUqE8VcGEBubDxmQ/COejkGIUmA/EVZN4CMEg/bC+HDIqd4bLCtE6qC6PNAguZYKYmUDdm7GWDOa7fWDGls7Yszz+CTb1i/ggFoTrmc+mUoKpHCaLTBpAJ9hplN0xz3Knxp7JS+hAYY2gVQNrBhk7jtf/oXEaG1plg5PS06XUjfXOhSc+EIyNsIqlRt/r/tYAH6+WaVp4KbXhykeM00pvVz+9FYcNBlsVnwdvBBNBpEjFTa1quu2aVD5zVQhkm9Fju4m7fZX0ql+Zo+YHC0OZzNVD9h1Wdft7xd44MUICOjuhVnTqrHMpnGBOu2fXdlra2aEhT6Mn1PQ2/yo213CyO8VAjL9zRBRgvYlZ/KX3liWPhLuTFWgYJ2F0imG8UvY5EE4dXoC8wWWIk+fQS4UWp5HpKAR2tD8LNtbZM4v/YiPyVpjW1AQK4/5LERFARHXRIEUw0rZZkcvrozHXlBg56KwX5JtAnsiJwsJsRVJAKW+7LAaxbxU2n1Y2fHDf4vgDzN/MxhFCaBu2fiXx8/Whk+9Mq2HlCE65qx+RTumDlBQgEXAn8EnPSHPVhuKuJSGQHUDnxZWFszlFR/OuUkkQUupxma6LjbcZqjlkzWs5atB/4ggyBxEgACOkborO8S+aXLhGUygIytG8LIWCBFIoD8VDc7XzVJIPUb9SObCfaDemUDrL916IlcDBUHuE2ssRryQV5oVrqTqKnFyZAn1bdxM40zdHDSvhw7gVhRPPM49KOanBKE5rAMzcQdFmCD8O6XWzu7v+UwS/2uoD3bEqZcdQht9KcAH53MJQ8zTDJHvBAikyyvS9qTeoHEPbaE2HA3hcPTtBlS1ZXpzgo6GsSLDQ1RFoW8V4XFIoXvJN9B3DNnxC76xkNlkkHTuFeWMYnf1su0YEJF4wQy3xicsR7ltemllpqaA2Md26QN/RXYpjIUGuVshz1qmdGLyjcLvzKSaLepci/GIT00X29tTy6gxnqFwSgJSnTBGx+6DwiZhhPV6k9wWdad3DgDzjs0tN9ix7WatmpjK+6heUnr5ynvl06AoENCXYusLQxD6X697hGwMVA17KVqDlsh9/Zf0nUBEQQ33vfyRbeE8ociszMcHiXIvZaL7zF+LN6VRthDadjhrMLE+TDcv1eGWWNRCu57EX05qwJElMzOHSU34iF9+7m/xIB+Mr/dOnTsF8u62qO58W6JpPfPF7JaToypbt8UL/vqIb2yt96LrFP6jE1IJ3UqM1favJu4rK3SUe+yuY07AwP5yP1cpW58WIZwO52wAI5/oN6WSFlOZbfPVxtMQ6H44SNfLXnLAtl45pmmQH305uX6mv6gGy2FJ8y4mtquC+goQhm5stfpc1An/nJEFUvMxEU0Oopr9j9MZemw/R7WJwgFLUcQldvRU+VcGsYDOQ2xqU1EsK71yrQfrH7maZPVYvSJ+d9z9oqo4087CJ3RocXRYObGdDa8M61Q8lFu8oOvODoLzWGnYcMikXvl3rwjCBJEq1ON0pOBhvFp4Tm0QKlxqRPb02I+L/eSQScLBoIC5dIH1/erhM77QhdovqGl+n4dV1OyKj8v/MDuT5z/li+EymAeBlPSHna+0l3HWtvBchEnS2J0KzBc5VLg/fXncgYybOLm0mf8bfYA6/BUo0e8Gj/liOkfX23BQ9Vex+rQkhwAffDdio8cZ2LH9gaK1oCPvE1w7vCZ05B8/4I5UA4cSqntEV6jnCWlSHFN+cV3GKyuMDrPbMGpJn5kyUUILrE/uYueyrs5/vn6B0X+MUpXBW+n/Uhp6LG95/WGdpjQaD+zo8b3hLdY+v9/MfPH1AEswmTGPEbhJae5l2tCCWICYoxUj0TSdju4i87iSHc7iLyk07yqnT5Hn+VY7DxV47eefwNzJ3rA4BF/VOfQ4wGswPX+JKzq7kWBskkLkMYvIXgGpg3F7FmXr+NVmHIUQg+hHXY7gTRnT0IIc8PDEFur5ARbPeG4MFaT5QAEQ7VbKqiXQ27x0aYAq08KO9TCTWNtPXGl48W+WkMX800qjAimEqYOJNJKTdzuJT+eabuAVYPA0kOppO84C/cVkKlS7dY6w/YsjTov+mMRtMeK+l3q//G4EgcpnP+MnUgO3HOuP+49028uNn9GONmJJ4XRkn+Tz254Ix/CMGulZZDKXsz+/I5VE2rySiZlUAXCTkSvCvYNkKmDfcqEEPWleIIEASfqi97gF2npN/c1ywYg3By/FNHyh7ZX5qPDQiBL4hb2xMdZc9VxfN9AN03aJ6jSX8bXhy94stZicv7ffTckmvy3HYf3VExTlqOjmuri8aD+SUNuohQM6JWPT95vkDYH7km0zyPXO1X+k/w8TqcHRKNRLJblhPDyKBe2ENcF+tsCxYhLyvXjJzFFaF/vP2wYZmvAgeHAY/OnaAGAfq5e+u66oDFXZdWMqNW4evF16OTPnyhLZQlJ6DIdojtCAiYvgnWYtGcJUQtmVGpovtSocBc1k4qWTisLqq52Ww1vdNHaKLOWpcZ6k5V/Nl4XKHSIP7cv+chZKy3FFZjpQPBn1LgYRTmKW/GSXMUy+ZKYkS8XOSJ+zhkDLsW9bWzM/dRezEic6hPj2h6G7mM7dQbuB14Xc0dI8zdWwZb4Hm9uZU4tiCRnm8G38afi7sWm3s++F3rYfn+OYMnXaVpj5N0/xRvmAehT/h/XYvdnPCOrerBedMOq7CCw7CUz5dK94AlN78WcOPHx69/l0bUXV26TP++JiyPOv1m5+onhyxSk6SX7sxLr5LCUUmgXEuMp5VgJVQGiwJ53ODJgX7rVzuTsiqn+uWEOcc3xsmzC89/X17qwi0FRfQ2uyWjcGfsjRGtrxM423TBmttqmQwi4NTmj936Zh72pUyQnw8QDxiKbQg5qGZohaza87tsxXSDF/WCXvTfzb6ZPIjCSPjjygwkgs+f+q33kKrNrQWDz8avq0FVP+srXy14u4nNmnIrdH3EYOkq3pM8GpU2rZpoul2AYoX8JoXtpz81+zIXAsqxZT/DlN4RE4iTooBIJD/Fn2Wigv55+AJIsOaoK35nNJF4c5dVjeAJZCu5B0WhkD7wnNCKXNu/1AYo3Tn1TXQgk8Y9l8V/xG8q2EoVFYgsFIvBoNqD9uI5LkvC2xejvL2mCOQjIqz5UnukBKT1Y8XXQnIXRNUosiD2bTG+tqa5jNp1zMOT4pDBjx1mVM5fHGWqzhdMKU2nDpU8brtTGWfIiuLk18N5mNpEEC6VYBE9qyNDb3YFEpjAxKeyHO5vth3buOczq+0DzWjm0HJdVoP+WUWqoBUvGP68TSlM2/Ck0qPFxL+2flyqMsojAibdbQBhdCntCZHwynOf2/THYNMgU2ZIfnHrTN47awgouZJIywId4GHee5QlUfDdz9kwtg43APRWplcwIE/XdJlRB9pPimntxLTEXaiPJEPCpzC6O/O4NawzGtz3NfaqVaEyr3B2e9BJSX0Koy7AVgfiv3urgaxGNA202NztUX6mYCPvhaK/CeoYiKTqqBUeECkNl42spWsuIb0rHOtF6TB1U0KlpRz31qM1uJTCZ1UmrhAxbyXqz8XkC/3eimPIQu5XpJU1yYtXJD7NJH8rk4E2/A8XX2DToQC1bKfslUMiVfYPFtJmB6Wgp93giSHig8xOOxhcmTKqNiBH6mvDIOe7YnVIRRcWE13Dd6EnSWo5BiYDyCzR6KVPa3swMshc4BiEr4mk5srnn7qMQn6hMEqSnio7yf20Gvh9yRYWnIYyG/PL0df74u4sR8fva/UompjZkc0aTUiTMJWPqs2V5aeswaAhk5UqUe+sNNY4Y3KqJZf4Bthh5V9Qqb7ybr/egEZoLKdpkcKQ2rV0Rb1AAUSCMJUDmT5iB8nmrPiQWr5hdERmbFVrbc8ckuAqJViWvnt1isNFWGynPFY1+pYUqhGiNIzm2/Dg3zQjxRW1gFeyYdFffVhX5kCPOcJXJIoiL2g5XuYbQwf0RxsCQkQ392CJjHPJXaojLunSKRrpt+oPsE7Ay+lcaLJZbrtIahk+i5Br6vatkclmX4URaACWaniwWUy9glc+h65kUrd2XEfQ2AzflHacR36OJfb0PD0K1Y1xCzjkQsbD59PkdiwuzIGSKFaO+sB1Dh9fyWDsycHNEu18KWZcQYx3Gimy6OiV+uOLLgq2thlm0yVK241RfirkbbgG/98vY3HNfW96ckbfq4NCKnnJY0b1pS6zcpgEYf+9XnTb0EXsaEA0IfUGzJDoHsiVhXfKLU1jfacwOmb5QkXUDX3C4l1tl2iYYnp/PBipwu7+CU0TQlSA4VAwJrakMOKtbKAG0ns7DPb8R6t5Vbk+RB7yOjfkMktrA+yIKxdNYykesV3IaOw7fiESPPY0/n7QYcVVAeW1m6uklRNXecw/dr/D1IvV1PE9ARdvbb2dpYyC86wXvDbkjB7UYMNtC+D0BXAjFJLCYLtmAzK6OSAKPk7iBytycBwPZMTRIwOcpRKwjU/sjr+OmjqQxPaeeaWu6aobMnHKwqSNhhhyH692RtlAbphuUjZIz/oOBzlbtPh/IuTCBq66Y6v+TXCSFyZ8Yz+esjHGbVqJ1ydznkWu0kVJ+umZGcxVGBgaDtEnHMkTsFdXm9SSjpL9OYGuBaT6SKdMGnyUi3i6njL2x+kcxfUIUy7KlHHerOdYejFDhP+6lI4puJ/X/h9RegY5fI9RcuDLBRR1sJs9LMVPmY0pvokcz2HARoBMsZ0Q+2dj4gC2/gz+x/UVo83qnhdy3tL5N7xOex9+ZjckWUsxrDkDXs1G0zHa1eCSDrH4194F+faBuajIKAp9vEaPCH4qqVw9fgqIzSBY2tCqYy1Gvew7g1ZFFD9BzG3dUNNKnkQpLozBuXTGv/hItkH3ULha26oI8JD+APhEOVKrAKpp5EDrpnHT8qW0pqsMbtqBuUr08i/1y5l3c/ZB9JoADLGNy3S9/78Jf9DpQFuH7CMy6WvgidFun3pBxSn2+6tnyh8BjUrBbv4vAiTLk7HTsLAdlo/t8JDaBHWxbJtIWLYF2cz0o97uorRlI0/+qz7CGgbwFhoB2V1J89czYHaw64hmLtQVIYNePEFp5+sUMwhNCoOqu/10JyHx8/ugsMEFWtB5EcUqmGOc4IrpAyafsn5HcuS/Fs/z3NqMu2S5ZR0zfEYAD4uCF6cRSIM3zcJQKs1GSRG+nNQeCFz0Y1PYE54vRzeleXC9YeoqRUMnlFeqSGWc6vkd3VA2wHO5/KEP9RXwa7z9qfabj69D28D7oJM78sM1iqqfeftyzv4c6ZBdr1DwlhGc9y9YZxHDLxk05UhzOE0SQbpuC3MbZIhqM5iea3X3K/NnoXd43L/TpydrIykDYt0lRn05eq3TjUmJ6WQiHdI4AdxfDmG0Umh0IqQd+Ln1OVX1Hl9Ay5EGLgyn0aiZB5mOFi10KDRq8L8bnxacPe9HA6f+KjmKWZV5IQgiB/A4NM58uBDv5Mj1FgzS/FhxyE8jmQsssRM1+Grhgv+7neJy3WjlU8oUYDUcrb2OJem/dEfNgT6ejf1viLFW365G2lK6m7Cy7rDHxzK83KjXz0iM2AmH8aAkgoq4qdstYrqYMIkPS6JS/cw0soRO2kbk3lEdrm4cQ9C3OQNbnpTtgcBqaujhwt+hL3HRX6PbXwnhgConpVrbAQHC3Cvo1TCNXKPA08HIejuZT46HVBDYclQrgt/GM67YNu4y9PHkYtrlhJhcFn1/9u/UVJUhGFRm2uk4NHBXGJ8yg==
Variant 1
DifficultyLevel
693
Question
A red blood cell and a white blood cell have a combined total mass of 5.3×10−9 grams.
If the red blood cell has a mass of 3×10−10 grams, what is the mass of the white blood cell?
Worked Solution
5.3×10−9 − 3×10−10
= 5×10−9 grams
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A red blood cell and a white blood cell have a combined total mass of $5.3 × 10^{−9}$ grams.
If the red blood cell has a mass of $3 × 10^{−10}$ grams, what is the mass of the white blood cell?
|
workedSolution |
$5.3 × 10^{−9}\ −\ 3 × 10^{−10}$
>> = {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 5×10−10 grams |
✓ | 5×10−9 grams |
x | 2.3×10−10 grams |
x | 2.3×10−9 grams |
U2FsdGVkX18O23Hto3RVK20sD4oO5EfVulDZqDb842XddMstheMVN3yduIE++UmI6d9B7nkZ/lqZyGBoFf513LJVv3QCl9EzR6kkaVwwWBAWM1ucM43vi8smn8wiA2VmUtnNHjRdkEkJlXjMubq5ATJkVesK18WHG7KnAaQ2oZp2fJfyd3wdoZKwFmPgY22FxQz3+n5WLt1GSEo1a4izf0PJGvCFs9pSMCZmIeCeH01mssg27bgRaOPHYR+MkfrR+14HdKnSz244MEW5FowazvBomo+B6MD2Q5W5caA0U/nla6U30sg4qCUrm3YF47AXkvUk4Gm1w6wVkx9VU11NCYfD4TMoTCx6OqucRoXkddlJKAxQOYEqI/AmlhtCBKMUcmUjyFCkcPfh2ifC+AWG8X78Rk+/4lZJAKzs09mpS9q+zxN2fpepqkJlcQB2hncQde51XBQ6pMUjuGNq0mhgF/wYQy6Q/k04WadOs8gaATczVLFRfq7i+BzYIhkRERHkOTWrJ/INsAEum1RBu1yIyD3t4vE7QltW5ACJZMrni7iu1uX260szhGKvTyU+3QWAB+xwXHyMEzfvbsHBKjUaUsv38EF5cFKU33EvMoko5TbC5K0yHiwYmqnQ5EUdXrHtjs/D8+uprPHXhDzProvVshShgCPHq+ZDcHZvcmojFAZUw310EOOwZl2m/3/pGvM8lME8/jl4oTcH4UsClHVhH8sGmKRbesy/BKy1pS7Y8qWfduEWV6C/F9HAUSEaDlFgG92lJaJH/V3ldFUNf/JgboM9Dfm9AniwFdm8K8S7m0VWE6dTIQFVpCaiEsTMwhYuFKzbBDg1uDvTSRv7eg8tWr5xsmekX+4F08cYsv/6226L6pe5ufG8BcP42Zwt/7P3HtVj9y4VvezSJcKhmsRQBwYrd7NEDptiu/Ii2Yi0vKvMXUR845STA+nBTA58+3X8QswP8Me7SkgzBERjopYFKP8af1/DAEPCvMbh31CSzLMpXfyZGDUSf46wicxVPwRK/n4wfwUAYYYBCorvtt+s2BTjseFl3o6avk0YdttwqgqI0CYtGBYIUcZCdbxJ5q72DKqNjSCJD7gWiEw29YPmllvfZpvzDYa6qmGcFZkoKwWrtDVWwtM9dYdceujRYhJqMmlDsgYayfM7fQ4xrhRB70lQU2Cozy7P1k1f2uYXPuc8lJvgTNyITQcnwB4DQPHjIJuKXYhwvFavZMcLdZLD6HrPyKGR5wEC/dXN2UYxmaeZbUkxe+RqAFQmVWts+AQSENsKX1xo8BtmCaUgC9gPrBa7AjYLJZf5cGBZCMWyVxy3wREHxyt2HxLsV8J8azUj6niDmWANTmqBWuOKBbhLxqsprTjIBQ9m7z8CSIwMzViZMYTrfmC01pah66I/qfHjuxfRBWTN7oYMXu1dkvRTdvb4SJLA+cWt4YNTkEqp/ze++imNFYwrcU0TTfZkAC3B5dkPLMC6jyR5UxVl8ovg3ONZGs3mvvcgA8TPw/P9bGoAkK+QrkXL7Gey0Wceh6AghNMPRFIZoGtmfrw/mnevAxXzMMucz2+u7dN5LyRgC/gXCVvvNJeiFYY4VogFQ4Li8FRz1TSkuIJb4lZstlCzzu+vvu5Ipky58Cir8colRLnl226OWeeFNDJld+AUZAIO31NjEkvBq+ojNL3EMnNGaxZdxG1Fj6R5J04O5Kn+nEus3d0n+5A+D7QPqGHZNhQ+OZFxw3IcAVyIeUoYSzcmWcFOwRZrtwrIs5cac6Q65lvn0GE7NMiBKY6QNLzJTx9kwkyB68VI4gOAfwMKr1jBrvHd9l9iNUdbu2KOFSq6RelTM6lUEwy2n7mTa+2wfXyKXB129alXYWpb2GMqJcN/QRzOqh0q6XcXjOYK94USUDyRMhqMO1gb0oiEdtMWBUlNaSy5ssJk4F+03Kq92Ag5/EPGQhbiud2PWOwNu/RrHCCCU1EPlFYuKKZm/EwHz/Im1EOcVJHtr87J3TQ2bzwCxSi7+upazcSXwk0GZN4cFzgWsFXsl/4+TPsb3yWqFtcNzYIgP1ehTt8qbqCXQCoRyva7CIY/6Ckec3wZPvFGPxRF7rcQwEhLTOIqQDMzGfbm+S2Zl8zXeI6HMBpbmywD2q+l8tOm/+6EseUUNCF2s7hI/HliYxpVGVEmbV8rg7lf54p7FXXU0/McKC5wj/+4Nay159hTEy40gBah9gI9Bsm/1z5ZVWHVgze6XNV0vCiZZjcs1nW6446eSipCOGhZHOa4ar6hvk00eRbv14D5hSgty1NYRWgQ6ksJdm55FmVQB81eFvdYg1EpCtkCea2fmBj9WJ7krBMuiJ1dXyQaqymTZnSII19S9hpOLx2fbQCGyI4x+0ktKEkdYdOmfwsvSfjDwpkynb3HKwIRDxuCsU0X+FXi2cAOZysSvQLuhvTZ9rbM8k55BaVWefNRNlStNhUnWuhHaqiW7ff/Sz2uePIr+MTqiwNqhP76USovEVMmaks0VgT619KUZ8H+Y3pa7sGYWjnBrwS7NOeDxdeyaGNCnQI9YJ2HvBkn/JyN2GgaTbFux4D7hMr3sF6xY1f4QZB7eNmJUSpcPs4a1U27/MwK7ESbitg+dsEQq3uGsvJYBQiyyqmuof5rZ1tSm+knJ9WLcIbf9byP4VgrJOfRxprI76WfLkUVfPUa+3IR6lxFQ/BNMMratHd36CFwCaK7CeNMS7gnBp6QcJF04Shu09DrdmR6vwGrLimXAo47Lt+svLMmYVXN9Cdp70MBR0qjzNdDrlqIqooYmoaHfFGM8CaP2fj3/eRGnbgZxQdNrxgeeeXKoltApvJJX1HHzxPYbTg7xe8DuNkPc/LKJg/gEuFTn7jfzTf6bQrF5J+aBwZMDcPxTanEPJ8CdenXnRziHLQyTh+LPN02gcmkTNVuFYb0l3tHEqqljdeFVKOOcf5gAoVyS3FgzmdI9yRueTny4g7Go3JNaxGk2kCz2NjrRmo2EA49sBefm3FjC+wj9RmGtpeZ3me1ttbzEzYQVXXtVR/qH/nI+4fJ74toOnN6G2KqylCElDLj2lI0dR6Brl6ZC/7D9BnMp5TD9eV7y/2IV4+ReCXjZrlCG3Y+8bw3FzP3v1PpxchsZFWzj85llgcLJ5nfhdsSj0SHTPiiNKsm4APyuUE9W0BHUeDR36HyVMUVdiTbJzgrLrOrl9srOU1QuTN/sQQViaD4CITHTrmPvrPmth7ua6D1MyUXyW+hagqx9yWaneerncyQtKjCcplapaN9qLbWL9OcwqSgKvF06CqbZaf8vqEctgkxtSWffQ/HatC+HbhajKJbvHnGXvkSwUrbzX4Euf+HIL30fz+9EAjEaQJuSA8CAfKRJIFzTCoiVEinPuNzQv7Tp3R3+R98cOj9rgeo0RWvggUzEXQrGkAsRkUINfHCGhCva84+pW89b5oGgyScpnCuJaSBdaasbmbYmWNkIV1S9N0Zbk7b+jJIuoj4CwLWReNeISLuvcK8SfqZsdxfGNVkDyZy3yKd7I8peJaUKlP8arjkLHEC1KwDxL6/8GZ6HHtz0V9SG1BOuXZW3cwjYmJU+2DcakIEse5F6YLvrsM8FFXa+kZqUQFuy6cEpopOtjyyb7SZTGgpBu5CqxAnjRW/pl0TBF0d1agt1wHTEHAHM+zTxVRJ2ilO4nqBNPMsnVczIYlo+HEat047iKoqXJN1+CKOf/E+NQqf47q9XWkVtyg6mkEo/MnEgjWg0RXZacwJMMsoU8BTH0Bhnt46Gj302st1qO04C9E0RYWNEawmFbjkKk9T3vOf2y/TPvBAAbgcfS3Jb9+NmUpkCh1vRylQ2baa1IIq5m28pqXJ2oTqnevCnu5I1Cq7B4oyVeOZXzccaWqFIBi5+Ej0fQ6wff8xH/McQadmmJkgtzZacv/+cx3DfmhIIn2Srg2thiCxjSMjDjHeZ01Lr3If0Tm2Onksk+x14zv4XUDsP+diH6Oh42wZM4+M09Bc0H9gNn8VeHrMxzzRY6RUx2tzPl0DuIMnC8q0iMPvcKbExadg3h4h2t3YcfIvV1U45GHrpha0s78H717W3eBGCH8m/jkKHJUFfJQORMg1jsHh82hV92pk+fPU4BMP3y7K4+Pyy5jDQBOnTe+GDdWLnX+0Q5AymKKdXNY6naDuOw7xtu8j2fR8mj+LQNk76eG2nG16PPKj3jbvz7T0mZZ+uQdOkc8DpH7vyVTjF49mi9y7zBSc/5eD4cogDeeA8zP0NgXOBEotUAKzY87umltX2STYy5pyAEDVdGtO96l8qEXAdGP+wHWpEU+YiW6O40oQVsMzQ5EFSZKNdE/qCP0mUnmx2EoBrG9u6HX7VjVePdtarnyeXZoqh2ecgnyFUlUJUr0CezmKUMhGPvOgSsLdNCcaDDvD3K8wzMEHNT+qlrw3WIDIPxUYVYVY8J6i2Ug1VkXNVCpAvF1Kt8axs09t9IvA/6fmgZu5WuAM60rSq1MOcL7hKLfASkhBJDJHD+MwELr429CvXe+p9oADhX6VJoSCED7l7o73+jVrX05Sp+uNouV97hBKsBNWyCa3l3c4HaPl3s88ZJg/QdagxZpyWvoIUMKpgfo1y1uR2JHGCXgSBQl2WyDRKi6LIUyUpsZoJZt2/BWRiJPW2Mqlx2QHdiV22jnrrTJUy8w5rQcZj8ejJa3UsnvoPUr6Lo8+vVS2GIPnXeenvkbajR3h0J409o5lvgvxRFaDGzlWUFJiLatZoseMacpjKGt2T8SZ0k7FMUBaH+vmR71JDkCCUjhlhLz1Fzhbd02rE6XvG1iiOGwtQd9/wGeodm7tHFNLWFmoqBfb4l4GiyQuXTnwEWIEmiYJ80Z1ddmmPLa7moyx69eu91xHWuzCibEH6iCb2DEXQQ/msavtd5EM026XOJqEyg+afYrXrZqTF8o7SZ/0/YKRekw2yXoiwlqmzCK8iSnkwxd2AIXR4HUYGJXa7vpmNV7JXRbdPHKDe+JMzMwFNbhX2/44ECAn6TbVFLl9vepy+pM5EsYqNy2aAZ0ZkVGfP3WP/JW+yRdfhInVyKF1qkvq5DIf8QtsHkxcLpQXGxnxALVROBm9XYRni2tpg8aY2BchvtolJPcaohZkGPDGOhUZVrU5kgY9Kb2CXq1InAbXLiROw8Q9iCiSuzSohnCexqaM2q/OR3cpPdld7cUq0gSNrWTiLlvIAkTYnRfLiM7AQdy9fNc6Nuivisxp5xmSccWJMuvCe9tmeO+N/ni8ZDPfo3BcTcPym9nGCkEX44BbcAmHHqLR2SH87CKgJtAiEIOll6IoPPWonjTJd06i6Cp/DVD6JMF82WbsHEvChAGGYiXMvipI9Ppxbz+vEGqaHNL2MWttbVWurgrK2IJKZ46QyOEYARFvGb1w0hdhCq0D5x7lZ5CyjX284+4VX36gLqz/sOoBM6Gir0NNTjvS/EKKuZFGwuD7Yi/I/HMjKvgpVV8F5sj4r/jiPhkYv/tVrTe85FGaQY92T0dp40Am1HV4Jw1nQTe02p2jwcSQDT4jtEiIWJouqAyoGfXTPyNUY2NR009Msmqm+y9J87Qb/5Frmlr5u0sNJwVufTGxS4sRAZXTlbVcLpT0JES0Uwh+gp7+yF3vsN5W5cEcqQZ/DRzMbudK07JnpLkhpKtgFmxaBm3yIbqrL6lS0hEQ9QOejtaN5fuZmGVWPE2EVqKSmgIfl07hA2bD2fOVs3+vCI5SmsSk2IB4GPRGgU2V0yuC6c49S99RJbOrYIgOLYAIDY3EU5hdgkgtC7tSKoSVgDizXHSO04e7Db2DCsLfZhkftCHDsXg7x8534tQfwss9Bxi8zjc+XdMwJIuEVjozIz0GCXoHHevVhyknbx+mR/GQH7N6bHvXvZgSoJTy2u/egYzS9L6gzylqNfjjw1BAoZxDqhTL5q4vNzAMqmoJ8EBE/LRHf+ZyuFYE9H7rrm0deURbEU8VG8VF16f5bcippZISB1xxurnh4bFcom1SlstYIUQY/Lrw0xYQrDFrh/ncPgRaBLQod+zGl3cx8/JtCdAfPWRgHpflP99zXjf7BxS03vo2bClQKE0hzwd6zFqvLljbeRFIYB5/drBCJ02fIgN4nVVT77mVXe110ozRDsBrd+9xWhWpqFmZfgqqGBdCV2LYcrU91yTazp41tB7ddA/EFKzWJW6CaR1Hij5DhseUMvYso9Wtg9TKYkwDQ7xe4ADlBAPZ4k0efl5LsrXfbWVKYDeHWuQoTbq6yNFtk1S9uD5mmlv50g6CTPijiX0TIQD0QcTcQD6OgQ3gdUwTpjcqfqRj2TZmU+6efy8kL1kUKhyLCER7vMzxHzxuYcP/aHNAMBzno48exlTQ1+d1K5C1b7jgh4+dij1dVs785Vg943hqBZEpGDUThgDjSsG16tTdY144MntanvBaQc9FxWZ2Ud1PG4HUfAm7uDE2XIIgp0SRDgBtTPWqpyW6X/1tmBvKrU+Q4oSASWD/uXwq+4hSrpg9gmkC0DS9C30+6rOB2AlL1jkNVnYqE/U3HZDBBBnZnZAfSR0pJG9uEss6/Dvkml67hf0EA3ciYIcusMWvEinpcdgIC94yFO/6YsgoxLLEWG5bf3c70/xZnsVW+NOky2v6GRwaMSqJqzxZpUE8hD7kXDZjmub/mqIJxbIjdOMuGK6+dMMuS0deB2L7fGBfYiHVGaGrWzJah/SvkSaWvEya5U1HQo88uqeN8r2J7PUinfa/QfcNPtKY45e+/UEU7Runfxbnx0BH7ZbCbyjddmJtTzAgpVqHXrG7PuimcZqv2g3q0lOZD+dJbU/wHhymxYD8y3OgCNfFFHRPek/+Mno7EMkmr4T/Qb/safT3NWn5LEa8N9Ek+0qXWdBq/kq2K6c2/F4DKi0o2bhMi4QXb4gKUSJA9bSAi1ZbXnH4Cj+u3/394i7qwrdDY3lDCS2ZRHI9OedxwpgJHn3z8dy9ElMRKoVVV0I0SnqWBIYlVei2FllIlrIEgIyXpWHuYbruDC3Hbb5C3wE4jlxnBfkjlronhZjST+FdGy110iz0O8dXZEpfFK1kKA3gQ7AcWhSjuEwASuD30CPdj5WLECUhS+0E9v/++z+M4l7z+YxHLnH06ZLHoFas2MsTkOSC/3tFoGcXnlG8ae3b5iERzh/rcAsrBflnwZs8+ziJWqANCTi+PZSkq5Z3N5Z/1uilJUZKBCWz/+8qxNp8NYQI4u0M1FuvmmKJPoZeHjRfCeYDEtMBf12zsk2a8IERN5dQ6Jy/6qjgWc436TKT2KWXamBII/kNlsGLBDbt9yoYY6uYEk53P8Dl672InqwAbvwjWesPlQsjxvNKSjJ5w6RPRFvOuK0sqd5PwcURZ8Fbmk1vwNjS6dw/d4M2WCXns+HEBebD5Js0ukqaNvTGcecVQF7cghlVSaLpLAOTiHpiNu8Pe4eoQlWzuDji6bdKhINUVfgF+68szagoclLt5CIi5xZp6epaKzEvSu8ffrNS42Kd2xbA7uNIPIPe10LS2pvGtOimG8jqDFBCDEE+WDzPaG00vsDDWz+fWhZDznt1VEdJxWbt8Q1Wyl2zBMK+vHsWhKNA9WKsuCF2lDlnAqzL/Sby3j6fLhBmTNVtHSR8WbWrSO2i8updZZHHsqkzBCbvRp+ktzvDxHEOn2O9L52cB/KmFBXdVC4hZ3Y+n8AS5jIHN1eqAnJ8FfenlJJhlEB7FNuyCvdGVII1OYJcyCFkI6yKCjH7thGNFV2g0PPp4WMwGC41jL08DKHaky5+sz8qy+FDwsMp3D3HM3QTu8/ObLybhHfew88lhryxpnmm56/VERHecBLiHHd+RyXUU3cO0suOcctOBFXTVw0oalCYXTteBafJjCwJARFcG5B+ZNkLhsv26wYr1UWsHz9P88fO9r/oAAgzgC206cLAFTJkr17Vf4mFD2ntjW+kjAJfCz7gUATEiohI/InKPovyt+U1/wnnL3pDJvfVNfqCIjGUr1i8qwBtZeRJgC3XwKlp5UO9JEfsAjZItyN0iRQz9Vt84WOYQc1kZK2Omlp8JX7tLRpamTOb4rzE4d3M6q60pXbZtHmnIDi8OpdyT464Ubi9Sm7WCaL55+5iKd8SDLUxZ10+jYTIDn+brhsKa8Vkx78GBJAxRsOInXsQfwXtAZPV1p/cTdfTrwSD3w/nneV1oxLzIRD03r101Cb7D+5tTFN5q82dFTSoIg61x8uCdweOWChBeJbXql8Lkpanukhx4PmN4J8KruY/Gfxj6azS0Hc5KsPkJvhJHrckH0DWhnzSfjR7Io9Sz/IOBM17g2kkYIzSKdefDnfx15wfci7PSEngVtQbHk+nw0EeUo6hF7oO6Dzjb9YXamAkZ4L3WJ+W8ubQBKwCwfkw+cNlT3I11vc/niAxMCdbVU8aFUcWKeigkDaAGEGFgQZ7SuGjO25jIOs3GHaYc3nZyULwuaoOWm/WxsEp1ZG48EcBXXp4rmE/7pL+5faafal4QfFC8Z2Rl6IL7jIMjG/wlryH/TzbyFkptw5WO1FJ/Oe5h/CbGPXZ+JryhjiIrwH8WdRPWYVKg734HGC/uiNhUgZAap1bBdHqv5xVsZglV34V6fjIpqpUCR15Q7/jyXS3Exhb90l8uTDPjjcutA7IZZGwb6qtoCMLIAdyPBTen6gC60TQQpKUKLMAkMAnSLmOfqQmrGYRqOp/Nx4w8caZDuF2nvuQCjz9Je6PgXkLDQjYz9B56gy3HuHoxF3LWgXxEUft2etjT23OF351/IGKrSe25MdCSEWU+3AsSZm4jYIBGTSFhKR1oo2jNGXXpYdqidGfSPTEoDhZXyi72tWKBfxZkqFhADmUtRHNVtzXBqelYKN5oqPwmqPo2g6e+NgLYMSJk4OvqppuUn1ni38fFdve3GHfzEZAlIxfdr0x6BSXhlWdx2qYSgSGanQjnZM8vfphtYjoW9B9oWo33liC3rmm6QH/HxK4bGNvPWsi0tNTTNB2yNwxtc5xJwaw+LMMMW+ET+SmMkToBVyRK/X6HDtDSRt5A0Hk16nrIl7/DuehoQq4nk1IbcSmUxeyM9cyz2S15lByH07tXdyzcEtufxkp90z5405bsHHJNIqpn3VSehRnR+WXzUQp4ck3alSkpdPFOvuRoGkT1VG0feseVyCBa4cwmy/tSEJq4Y2PdZoG8s7XrBPR0GEJ9Xf3N7CLelBP464OGFcQxTFnr/EecIoQ6EEimZtB0LjiyqrXAfm4BwCb87K7LAj0L7bKZvbq6gUcGH8bz8dA6fF61tE7XPQdDQZyqNz6lktjD93VawPp11j40JWGDFM1AaW9QlxapT8HonL4C/hRbdhlfX+EDeAoUFLH3YULYqKlhPVJxsE5GR+VKVR4W3BOi96F5QUhIjHeQjOwGWUURJ5YZIUwgLdoK1Zu9gAvvBPfBFS/i0IrAovIPmCKx/WOkDb/OUwhvkG+SdCvobFMfBW0HCr5W48Hw/fWHwlO08l7F9soJueD1RJmts1/n7WiPCY2iFqROzxinfL+Iz666GIkuwtQsFHh7DkKvJjb4eBtq8mm9JmrLJUZKkWxKWOP4zn9fBx8ILlQ/pdWE0avFAU/RvdT1TSSr/LjZVcFvuoOTZSQyefb6fVjeZD4b/nAXdwEtqSdktRccuCX68AmKkLbd6Bc2xfiOSGLrzoRECKt9pbJLoKtbzS+PVr1zMTkfeT4pF78kVFEWw1fS7m7hmo0+9W+Iw6e6jewxz72Hm8c/ZihNTNMU7fFwOe5qwGtZhic0/dU1Cb6KTmykHTg3m71k69wrudEnq/P1m7sJBlGuPMSOnVM6IWWPTxJHQYvW93DKAESXEivjSyWOX/QfSD3al8BXPt1RV8oF/EY9qZ9ZN2aPhlVht5A2RXK5FwjFQEnNoRWw3vsXhjmgSVj18IH2JcJ5mjewoXCTjI/cJazdovyxrMwBfxEOfAW19+j7m8gjfjrZT4OSwwUn0YhEoy9FtThTP1zIsp/yZnlBPsA1E2NmM5rfUT6xq1a+lJkvqLd2Kc97Zc3eXlUYwOosEfBxeZ57Vdx3D05WuKx1FEVw4ZOr6d7VzA9qu4qV2cIHDmBV4BV8HSgSPGUomu/wlgab+N1ZdjKLBr5q0VKOq+UXrNumkktJD6nVXjryH/kyG4aR7BSSeaS4Xy2WwiTS7LYN7LCKJJh4SstAcO3DArU5bRxQ87zvo7HwjCZOJ9DQmzHMqOWNGvg43+W0lV7iZuPrxQhw4eacoczcwprrKyi44o/sF4DbRmnpGE8wgUZygTRpOQ5wY99JH9YDupOo7cpQWnPmq9EB7rzphkAsRPoPBAphOE7jvr7jseEshiFd0wMWaY8DvG1vTzf44t7ZXqIJahpOsn9CF3jsxF4WYTJJJTPp2F0xq/rzaadJR2l611wr2cSFJIcOnUMkS1Bqd0nhU1DsJVo4kolbCYc9niHu53P6Uw+s853mqqe2qendnTkt8uJzaU8ZN0c1ImraMxGyej9xjRb//Zk2YdysT0uUl3HXmSsdltCSnH+rvd8SfsaBgmMDcPrFyO0RxKDQzHSBSD6rQLe18uNFwwq7siO36vtRy9jQ8lvRpJDyyQoEi21VFfKSTMd/kBzcQ9JlmdzwW49ph+VKLDMJxWH8vw0VsqgEWn/P0Sr/Ye7oEBjOHP9C9tp5YQZy2cDKj8gkd72h3PJ9z76N8M6Kbd9xom4RUmaSNxFnNWC5QnHax9NS7J7u5+xF/mwWJSxb39sjAdmjvaH0BC/ZjLEvGckMK+gQ5NQnKK7bPkwsHTjptRozwillFZVNSvr3QTNhcPi/Na593Hvl9I46ifAltA0ZVOvSxL4DOhrri6oMHj5rhDrjveMpm7cHGvDI8aC7t0Up01LyNASS0NlbU6nAeZL1q/gbT2huOHcK2TLoyh7IPkBMwmPxZdUwdyDVVABr40A6mLPMqnkK7djcvdlCHiyuad7etkMjcYfgRkD+DoP1l8FpVTQwJUCtFKNGFpD6gzcSWSvQKrdxHsSp2VN5CvnNVdEEtCtUPCUq84pyzfZrlVkWg/9S0842wppddHbZTr4ZiHoc1Hmiq5Aw1GXjGg4wosYFwQ3tMmtO7XdLueXu/kGnuTa0lMzASYp0UxH0iLXpFsUQM4OrnIcwtLB8yqv8+xuBOWvmxtmZayGFj3qbJCdbywSOPF9eDxUs1q3F5lVGkB/ZGzk654PiFwGX8p5OqO6UPU+kkJLoZnF4C9EatgYn3s9OIIJSVs8uICNkTKGAz2CBxMNVjXY0ImbDpROUjAj1JYJ8+D/PJ8ZTqI/Xk1sqXKdirHiyYYyBru159XwREk3K0/aQWg6iPlrYUJVvVPXP+otsoLdrgMzCFn/35uPwGSZ6qvTMJ23kx4NRHcLO9lyigXMeB3u/VW7LLJum0oW07VPpUnwEGJCAQZ4mOaCd2rmpXi50QWAfPtrqI7cYlNPHHQstO2Hx8ehemrYLRtbl0TE1yr6LsOChfJRhLeL3W7T6ti+iPyATHcKIjPlLyR3fuhF4TPHsKCCqmVMJAeKLLFYa90fT/suF+4vO9BIp3x9xxQhisobDZAsQnHoURZd2Wpf0vswxV+N6URU8LR12Qzl/GzmE5OGY9SsDg9rCPzQxLJg0RyexjCV+sy/CIb6jB3PSjvLa/vjY3lME5/zc4t9QTOtQGZdfepQavuLo6O68v1lbpvBDBuw9LPCuYCrGyEUwYn+bokMpIJHLmlkqshivyU3TUqLavywWWGNXq7WP4T1HUJUsnjQBcF7C53Cz9zKvnLFroWE4+oMwh7ztmETooQbPle9cwXP4/jDhMyCYP4j4gjgEX3KcNE4uXkhc1aB7x+UvwOw8Gbfh9/vioZVhOqEj94Js9byYHiiR8tCn16p+ZyhKz3uH710AuA+iWNGzum2b70+HXeivQooMvSPlTrWGNnhrpREVecrtqOfnTh5mp1nEiNrCOSdoy9fqgqZLmVtUXs/qJ5i1hm45gx+AFcHhZ6VKG5tJtoZEvHwGhQxwhRbY/rO2wU9lwaMJLL0wBXOYz1y2yTuEUdymuUbg0CQ7noJX1DprS7So3SdaJS0UmeiwjglTNhpvLBwogsJ+gIGAMimIPPSNLAzOygFcuul2YgRAM0AtFyr5aBPQibxPGPxDp0RpOhP9Ub1aeVTUNNyPwoBi94Qym0UjNd4swoPo/jNjYl5E/jWVsizUIvgDqx8RAO6pmh3PP/OrNskOIsTebd+Q3lyi7wxzjYmmE2NGssmANS9vLJjXKVtLOT+1Xc/FJa4y1nmBDa5hblxWDivbbnUFBUub4mtKkAcaJ+Z8M64wao8xMqhz1DKVpqzZLlkiNml/cLwfQ+vBMEfW/PkGoiknDQ3kQFsJvYrrW0+Ioguptr+ix9vDbnFCZSTEAnomMeta5lYC15wcI/5VrVDET41LGaezlf3HdCeraMGZGLbgyZj+3Hc1Pq5AocfO375D65C9DQjitZpNI0WrJGanEv1RUoH/8TKSw/RIhMStUZj7ZfPl8SOJUSqctpsnQmhnPPP/ZUyYJ4RihxH3/A0FjJkwnVm+FtNnpd6SJ5v9+RUJhPfPflXxoJFIquzUo5var6WT+9+mmhRK1v20YCbgKf4CsEDHy+WCU9BdHHqMbeLl/uCCv2DbAkWxjyTpj60VEbqlkph2GLVmAR4ktZZZ1b2rszXGUJz4Lp0sJtYPN4w8jPUb9B26HWSwdjyglUFRE7CYB9an1JUTmqWsZMLt4QW4FPk5EgUXGmYiQeYPwj33gQ4HIR+BOBqFwOuU1q4WZkawoSQHdLYopzIQ9KQ58lGANqaSiI/DQjAmG4s10Dkge+wXZvP+um1vLugNUYXtzF2efFk75m5Ot2lfcHjoLiIhtVMnYu6PJxugTkRzbmFjVGmtzKIPMVsNpPGCMN3l7KgUWNRm6nIS2ZrlAThPbJO7Pw8bK78G0P9mA6syW86lYBS+WF0OmCj1D4CHZM8SBXtULX3dhxP65kOLE1zDDBtkfI7Sr85Oy9InUywSrnktCGdGHKNFzm2tNTgXYizoEMf0s+61f83ipmDda5kEgGYd6qY56h5+qQfeggFNk1DT6VnhYszfBJIOLIfw3l7i+gVphtoL9Kd2YFAb9sxBAjE2ED2YKKANGTGiPdQYCwicqcEHW9MNlk7rNxLhM1Uz828I/wiBBuoYnPp2Nv07Rp9qRaBLXL71bdthVGWZ3NeQOEx2/ocho6nq7Jwa/gCatZek2Xatpf8YB+Smjh2qYhnlgKyRfDgpx5W0WiZ7uP/dFz69NWHokwk6pKBTy+IaaSyfqKbdoHccPgjoan/KwR8eeoGgJ+zBNyC2CF4TA+mKZnPf4u/cyaiRVIu/DjcKFgXMKIIjp/wrvT6LkLVdnz/4+Nqvz43JyBpizUJlea/wSFvldGkNGyK9BNkM/w9hkcqkMr23OrqFrVTK7R48vmdHMVss3Fha2faaZQz94C+Asl9hSdSERw+soezetVAVYIuu6vcjqkypwvFOugaLbfhi9sAGHC/MwjzVCEqdy8ozhgxwR+h6fEbgqmyq/nx32gSNy59RcKvk66ehXUQ8ra/p+JZ8Bc3BgzeLP7KYFAlc52XRJ+EMY8L2zzFLd4yC52C3+WAlEeBt/SIHSXndfDWDiFAPVXZJVOnP/5RajluV8/659S43nnXfdMHeBuSCbhM/qPGTTWpM7QTim3z9Sxm0qf96K0iFeg6FCPgN6gVDHbw2A+BN6xcUVdsOfcJFXrWY1ZTk4/pn/rePwICRQQvSj1WuzwnQVNcbVRsqIrHCWH+BT1YpoC6L9w/n0hYp6gIdIEcvVeefUjBl1wkMrlXmAlMiB4IPI994PNPDmVJQKfhhidgs3i3BRZmqxJVOKCwtbCmC3Iea8/0tw+G9npCfcvySBYlG60BZhAk9FRqDfwXJEZMn4lDQY2lwyBVqWkfOn7/PKAiu60I6bg7ZNJISq3s3U9VPJOSyhGJUwBwjXLX2uCtVx+6VsEVKwsCdP6FtdrK3O0JPjuY1HqODFd31KDnK0tNMwr4LIhkT9nRFVHdas8CxLHrNM274XD4BbMWiMbFQ7slVpz+EMgFDhFNZzs2k6gXvrOniaYL9Q+r4UdCUn0eZbTsCOVZR0I4QPkbVX2B141ITJFtDlOEgRIlYO8HmuZ6N1PlQvg44XtNgLNxYP9/rXhwwGcP72ksCT9W2xqaVs9TE3mJyHITE0RqpuzqU0tc4aakbiWTHdM+lsOb/8zJG2P0+Lo/gglVMI3LTGBuVIS0R1GBx5SzAQFj8J/TP9ttGOVLUiDKz0eyWfZwF+ZQc8sV0Sfx3aLsSNIastYROmSFYKKpx46IGo2YFd8YlKmwYYuIwD+RRuSyoYG3o1wYQOsou1ymux9Y/XatBoZr9pdEDga1iX/uefvYgeG1rknDcpWfHI3HoUzBKBbHSy84Kf4AJE8L0zrijBcHK3e549Iu3BDa0vqFUWwXmPAr2/nL9npyqcoZOl/Xqu8ZhHdrGihNjH2R+6UWVJqoYXfnAkBXT9SNGS1MoPh/pM8t5UfbTye4crltRz+DQxnPTepAU/CScPlpDW2Q/pmBmbSvbIzRFYEuFJhAmj9iLlwsYuyhhGWGAHjx/ApO35kMItPy8291o5WgNpzfZxl9VKC5G06go5urW0qswGGcw/XMhvN6C/pCjWvSGBURXFw44Z7xry1ZQJ/wdCx1RjwP+zYPoeyRqzWVgsOqNGjYNCE2cNJHMpdzglBzPGRM22uNvTg5iHUw7PNEPLqR5+ppD1a0QzBRrbxS9WkMOpADUyKv5iAVIhifjYkP2iJ9cRJWsIMn/qtTAUhgdvGWkWtvzff009Y45F/FmVyK2FuN+dosBH0FIIRlMbGKRil3il7zCRvVCcDcAb/4sN9Goe+Z90LyBLh16EISaXNb3ZPAoBifH+5fMj7Sx7ZYS9TKzd1g8mf4Sa8JECAGeaSvnr/d2cH6bB5Ddarx9Y/Bn0rnf2pejg+AxkZ/owpAbUcCee3Oz9PlYxOAQHK+knWlqJWQDTq3xtvTSBx1qFt7MXI6915D9SBUNhf95pcCfYVY1EMLlBQJq40Cmol6ZEPDjjSSSfAbZ3ezTnWHyATmv3lj7mbodnYVk37z5ShuQRZz0ZGumEPMQy/16UQUJGvpzT0uIwYWd/nJRivDyacDe9GHMkFAE9d+7Pge6JlS3YEjN7HdKc30OZxAveQSYTjgGCFrTrnSgVGOpwrnTaQPFFZ9dYeVl/lniT98BqC46P4/YzLmuyMSg2P/UNto2dSKOqERfQvYbXEYjEAJa5WX2FjcluFs3c3cM59MOl4D3/1VVaN0JOVzzj5AdbiTFRIdDytmMq0AUCu2Z4i61PoQN42d4cZ6oG0Gm3b4fQ/voFZyz0OJik51GJPafMBJGElskYZLYqXI43CTuKT5fPqYEg8q0nXx7yw98Za/OkIRCu5vFh6J7UqY6eBLHUtdNCFua7q0bRfPEE9KYFrlihQ2XoJo6KdLsMP84W4afMcnPqEtIaa5mlyJNOxnerEhLhJKi/DbVx3d/lvMnjo3prIjmJ+bhIA0Lkcpq1N14mhL1nSa24BMQGNTtAKQoVC+/YzKg504XVryelgtINxHfzfvAiFa5o0EMTwd2UOGgAu90W7Y1WgC3FJ2Je7GjHEkftS+7CP7vyEO/cPSuBSH/E6xYy/ubEd48o/dmeGISkNaqNfESpnxDBhFpNWIUXnLmdtX8xY745rdIGlU6A2VkT7o/e3xq1SM0czd+XQeAm72cvQyEl9SGE/uCQzeXa4ZUj8U7oVbOdssYKk7rFFQsIYr+BZh7Mqg2fpG6qFB/xlkH3fSAhropj37hy9D6vBXTub1vSDRvrfSPapeHv2ahHhPnyX1GQAyYoqXBWZ/bL+wUZ81gIxysu6QbWDDIcFbakfIuTuVfQyK6B0daiRCI6HnHRHdGNWCt2QzvfSmOAwa2I5eTYFHkviE6J5KWNvjfhymSKtx+UDfUEfqfcpLHtBDQ37IlY7PNqm2YpNN3S8tSk9B5Arb1/PH8YQl1jNEtrrcCadRgSlrcW6LCuZR4XtYrFUu+TODAKyG2fpJG8tyr+GiQaflH5d9UMsisFgroDxTXz8txXJEXTEnm3356/gvyr00MyH/czJkDg6hep7ZT/Q+6a+QcjP/vv4cmsNX8u+J82JS0ySCiZgMflXZS0EW4bEmRvf8btdEs4TkX/M2BuAu13wsrUkGAJbyrmZLSpaSKBoHJHMgZMqNGUuk6lScG1qtLB6rFQ29FrJ2IEHFAsLTp4DDwi1PVFR2aR9BcK7dkuHrPBtrOYDlPm/PFfn7HkwRZsR8mZHKQM+U5PuQb3//kyqN/RKaoplshL1KDHxVVULQBS141B5Y+sWNrlA3u+efzLSG/KwWNWgOao8ru6gv72bD+/dzAjY220XxyfG+RSu6OeeXquXaNNgkoWeQmQnGvZ6xbBkBFzkDbC9tDgouPSMlKi+WJOTxF8U9tFBB2+WRPZOHOndwbKJ84gLF7d8fLY+B415ZmRjO6+KdWrLi0jaspVDVo8N5tg5C68bKYnP0TatX2JP8T73M5TcpVTfhHy4YMoLm+ivb0xPHVJPj/85wIc/GTFWlsTo2+L/EH2BPbHy0eXXT5SCZgCiIfWtt0DytWt4IqCfgAWkUHGBsY9wk8+6Sw1y8xzv2DADR+40WVxmtXvmjkPRU3SYdbk6WlgaWbWsZwX7tP+g8xGYop7ziVxbKdY5ohESu/8hLF4NAM41FmHOF5R8FNq8Qc2sa5EP7gi5gqYUM0QiWmUMCA0a1S0jpgaasAl/ngDHvAnxsa3X40qUp10T34l8+sgzU2w+t3ugB1fWRUwdGv4PqythB9KYA1DPlHdfQ1c2UfCLq4R6vPHgJCW5YKzw/eWHbw20Gh6mdFS3WivqJC9z8L22DPfvOD6//CuM4vxI0UUL1/JBRRN0z/6T4NOYfY4C7woBBXxHGcGT/8BzCLu02e2hF2qiSaxRZaVGES7i9A2Yt6XD6tLEXoV2ZmUbkJtY5xfgsOzRp1BCHVJ4tbqr79WrohkezesxKm2JYht1+9f75K6wp0JdbNDF9Cuk55AjK+KOQHkMaL9yNjsSQxtqcW1ETfi55Y9ES5RpUMtxu8DSmLnv6A4gV6BG96dCCNA3VwRxZlI8pzYjXvd54xnpbs4G9W0ulVA6qILOl09/u7YPVSmDkya4F61kkidRTeZWTL6u1+R8zYLq7iWQEXQEq5aoBwqZHVihkKZ3HANqMahd8fVV8psRvIC4WnW1S2D/5ev7LH6jFNKQEtgpR+BgwMspgZau4foGIR27rCUjmgrlEHBbpGtuPnYUQHn8ugmOwkGWy9FY7jHppoGBhNK8gBHBqivARJTQ3zP2w4UF0xDVPA7wIJmlKxI7a9npjJSgpPXFxBlTbPLixmYiahr7YAngZs0dYZgKiqUSpF3pIyss72Q2ZmmDrXKVEPP2GBZs4/y+ianeeRkpku/BAlYkkmVfgZ54yu0hmvlwrmAQNCKKZByzHMmemiuWsK2itbI78et2QrzeBAPvB7ENzPEQelNQcMQm5R15gQnV4gnHY3etyy3lwT3WeysmP8fi92pNekd/awyN3hKGAdqA57cCxO/BshBjieblgVppHV7yS8jTvZr4RawgQvjv72Ci/0V3q1igZVslglA5GZksHI8v59UNNrethvvxf1mTUkjxkPMU2KqJdTtprZluTskm01/6UL/Z6J82gysbOlYXoL7wTWOpcsjDVOMF/XB6WT+PzNwY1UYWFqxfuV6ge/Bkn+ZkEbHiw1SwE7nj9hwVO8+jDosvBL7ltXc5ojy/ndWDyEK04upIaVN/kEGVtoauv/ZFZE1sKWJeIWaZxoShQ2v4up6N94uE3AfrZdOH0DlS1idJQQ+udEDGMpfT3dt5p24DAwI1PwP2YKXRuDcXeGLaoFG0FFg==
Variant 2
DifficultyLevel
678
Question
Two mico-organisms have a combined total mass of 6.4×10−11 grams.
If one of the mico-organisms has a mass of 4×10−12 grams, what is the mass of the other micro-organism?
Worked Solution
6.4×10−11 − 4×10−12
= 6×10−11 grams
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two mico-organisms have a combined total mass of $6.4 × 10^{−11}$ grams.
If one of the mico-organisms has a mass of $4 × 10^{−12}$ grams, what is the mass of the other micro-organism? |
workedSolution | $6.4 × 10^{−11}\ −\ 4 × 10^{−12}$
>> = {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 6×10−10 grams |
✓ | 6×10−11 grams |
x | 2.4×10−10 grams |
x | 2.4×10−11 grams |
U2FsdGVkX1+13eBsAr8eMYyO5nrLClcO3XZ+TPXkqD8JB4x5u181gAJo01UjadVhD9hjM4irIzsil07fXHaIxJ562zrAXz7LreNRa+iFGCc+LgEJ7k1Cto9o/BdhG/+fvPt13kFMxdgyoQI+wcJol55MJnR5vBRO4lLV1/Sx7yH5ZWwvoIHd5hy7grMYP1smzcmmlbVAWpHWngmMxnbu0Jivpc7kZQD/XAiU49JX/YgGPx+5ln8SYHtn47a3L7Qm0fsmME5RFiebFOsrWfMMc8DT7A9fYsNX7RHGJ/FBownkIqXzgwZvWwuL5wX5wmsylLpRcPSMGccxYwWEhpXhntvdYe7mRsiP/OQUn2w9rDQZezfXThvvD21oimxbDQb/1jBhv68TS7RnKzIPf73mEXvX80zcCVLNZskm5fdqV056fyDyr5rb4H6kXiYDv03V12Z3bQtRTKKMBwW6gDEs5ETK9WLD9KNTJ06CbH3ZI7SHDqP++w2xmfO+Dvahyegzvp/ROUwwgSgxUviFMvZosQDhFQ//00bD0tdKvXLjZsUwWfZv36Om13ZeYB1zMwozFzR16ipgPlpugtqTqnsdCb12VX0yzxQv7UxW9IahrZWYjbskXsBUwzAV7IEU6HCResWbCshkV8/ehmgMNar44TY2Ohbosj49oNmDFoKQzliDZdYLg8bgyv9/qtC1BFz6wsieeRC9Pq/7+eOBDYCSvTcnSkjnDAzrNv4Dhk/il1buLx+F4ysNLMg5Cp1tRDHGTPtqNdf3GTSuWMUwdqBHMtoRXXoGFVolrCSUaqt5ZlyUU5001iNTE1oRFwahlQpyBkqp4Yht/GtAmY+HBIRv2MC4gjn/Vrt29EDoKcFebZy34g00EQYeFjQHBfR2g+JlkDug5jVtDX9IXac7vxufzAZkICcdvRklx22rDnvvlJ3YQ4L314vp6O/rSVFKNWef1pcQsApUysoUK8QXpGsRQ6r/fPF+Fu+YZTdwrhYxOT3wpxhQsQxTu0rcWm+HFyeKrRsZVKgwmQOmj3CmA9cWk7Ypr+Ja4eP6NkNEST1vjUZPbDplOWuiGkPl4cP3mBXOlkzx7pvzyOaWOceOG3+Bz4VZ3YanO+8Wb9JARyYIiVaW3Q1anrBXo1uN3mG6fn+XwKVD20VdmT/QLJUSM/FFDthpg/jaTr2SMyRH11W2cXYYnGkAMJ2UVhb8G+MyAyC+iZAk+Zdywc3jD9QIjx6dtWR2OjNydIKDr91AQZqS29IFZ1kzt8Un/AJTQyE/s6uogpXJzWVJ1w9GF+QgjJJmUdrGbWxt8K0R9tQ0U+EWB1J685x9l1lylcXo4D7jhNUGOBEy/u8r2PUKQ9v0nbbmZZ/aeN1Aan3CNeoCbZwqbJZJnB2kG6bbWZCCDSSHL3+MDhpfXYrNbDF+GE4HkQ/a9S9tXPz7Ag7jPLdF7QMy/IpkBtWUPUixa5z7h6EERqKI7ehZ6kYbxJMjavvFOYKQkZQn1LV9tdkJl5l6IcpNcq/1gt1GK/VRi2cQXMTRUcbuhv7E8aU00W5HhgmVwpf3edZ+yUUhOU2Ddg44qn/wncAcmV/7M3My0scifEx3GhwzdCRlEaHyAfAyC8+LaXIjtS11s3qDuhIRWPTkTPU4G+MFNhGgSZ/pe0WzSyVt94brCHml2Skyrybjj1TrJKqVbB8jkW13LVF86NRZKcN08Ef/LLzxTHWqFANM6NKQsvrRaMjaZFUDr/Z9duqLgUaiG5ZOJIRk5qm5TOtGvtAlKxgJqsGCrJdHKaWO1++fAVD0ORegFlwEHhscdZvsRCvDCEgL7zCatD/bDLT0uVqfWqcuG2VXt3+MDa/Zj8uRn7QvwNYE8MddcS0npfnBTlEd4RfyIv33q7Dxo2y2tD5DhMXI3KDGvJqhN83eucSFpejHKKdY/f6p0RFkJHnu4h1oHMUcCSO0K3riokWr0fEwGEcLt8M/zptU/4GZD/XRT9tdr4tGckQqsfFZSug1qtc7l2MaeIiHCr955XTpq4zxDYg7t92Epj7kcf9EvWysmD6BCHChQkkEXNeTVEr3G7NnNDL0lenhmcIxQnwos2f2+6diGMtcvSSlXjXcPqXtxcGBmHfNvlPdRsZ6X+rjsdK5Iex1huSlo0X5/r00YFVSvhuGVefbN3AYIkPRnC26v8HPHkb4s9Z/9XtDKNYNA8xv5n+bEMCqIKG2JpZuN/idxll8QekE07dgu624Uf8bNe8x19WIWXFH0q8xioEglVuLroR59dJMvZfAJZbcnABZr3M51vlI1dn9djUriIebZs2ysejbarTDwTwU7bJuNrPy7N6sqb6sfIsSY/blwADncg09JmbPutBsDRRrn5rOMfEgbxcy/r/KfdhOy0XR8tDbJi8z2ovf76pOS6SZE6bm61k18c+Aq+yek0MI94CMpA7DoLhoE8JTbTlKv7cAS6AdNYg0geKnWjUtW+OpYuGTSUbp025KhtWDRp3ZMCrjcL4ZZXTsdmmwQWuv6FIwWqPo99vVUSnElu5UqZX7i7Y/UJvMOSffLicgNRjUvNacDIcti83unJNCkLdXr4KZxAViD43XxF0OTGYA3OiO5ZuRl25SkfyFY0udmh35QJx110ijPX/PwFu0ietoX1vS8jxPY+C0j+HISptu8HRk66W6y4Yy38xcrh3u7UzzrX3v+vTSDhkAZuvq8CE8eyvyK0B6EXdDb5C8ILhO9TOE9zm2NBnBnu0PSI1M+MSBNRFZrWTyd8qL8QGQWXI2ZA9S+EEKzz4KNNrHtQeVBnTs6zwGvXz2bad21vBfiuCfmSQGEvQCv2IRNGkBMaMH5/7W+c2v2XX9hrW7nynB2Z169e9RBWvpKZKiSynDkqJmQkNmLD3THS+9VnrYrqQ7IJPTrtTQpPJjOAw2NltjDMZ7J5pOVeLbTOu2Qio899jfxmg3rziBCbmu0ORge2RDwShjkl3I64e9TzliZ7lile1IFuVEiwBmUwo2STQwyIOHvsQJ00Y1LaTFVoOh0I8XoSPqxWjYtJSlD4YlgdS/xPa6IqW7KHxnpMnw+8Cj6GExVr/khFigL8SfxMa9q5n5xZex4z+VbC5Zm2FwytVQ3wldMNcqViFulhq7JyoUFF5XokaCc2TKB5PVfAF6xkqTDw2huUnkT1uhT+xNgEmN6+WKyfOY6fk6fyrjV3/qEhedOl6lFCq+fWRakH1agWEYwRtxO5Gf8nXHZMOilZ9PNIEsD1FrAVKLCqpvf5tGXZggXuntxjKBznJdoffqbv+2kmjWzh4skyiIHQzGIjGWJcdAyDEZp7E2QHW+2Jg5LndAn/QxowOqGNGbK3EcY7UjLYt3kmzgEW+omQdT3No63brHoYi5Q2DCHCSP5v04ncAHf+kdVo42wRlI8Gz4O8I9bkAXFvvNSkGl5x/l7EAsi7T+FMy7d/bUbBs7TkIwsTvyLUq9pTczhJFR3qE4IJFtWiKVlyZguOrpi/PLn3Yr9LoInli0wcQTXd8YwFmZRcYEk6LfmnWF9QSryI7uBoHjJP6m2z33zd8/3vGjvOX3CDpNY0xOHj5kZdSRgV2yJ3G/AYQPMXrktk1tqx557S3c5KYmVCf0u4H7Hn5Ut95gU6cF2qPZrGibnG6yhFLTUP6vsDXlqlAwS/wudNO0HTPUnHJ15SBPWNZystxfykV+pfHO95/WLUs6DPkXNFbm/islMCeYhNZZoGAp57IyMwHDGR7cEKBMIaN3Bp0lBHxd4q9YhV2YGv/Ycz+oqHqX3P7EVuBZabNitooCuD+EvwPBGak9xh6aZbaxZVpDXvxpCNAcsIIm7onVqZFH7zw3m/cJHF2WeSlP+l1iNo5CjKac0vMfWMZ/MenmJbQq4rndu8ClOH7F6UDRQ4u3mDyv6TQnmmgnykfmohGXVTGtrIF3aBIuGHOrPoJbrG+G3Y0eW9eO9+mZcfhEP+dMeXtMQDwYhh+xDBLxaI6xjWO6CqozNF18gc28NqtSg7shKrCQIynxLIoJQc5HzceF7GeVy9Z4vIYJFYFMZFk5OuNW4P0j6UsLnVkEeR1HI3ecW4PBlP7t0ShGdb93x/5GIXLZcO8bxCzaNc+uht8p1JxoaPNcNbkB1vR6tDDl8+dypGSklCArJhy2Xw6T691gnMqXrUT1penwz560xAY5+5sSEdhnz7L9/XbN8IFwxUtK4wyPKSJvChFKSR3FyOHEKIZGdFU+ckOKXPKga05/sr9TKOgf8AmjAZjKKiWFYTrfBof/z7Srdko0GlzvZ8/i1jTzI3zsyrJMIFjxtg8kj3hnYDvkTB6MI0sU0+DXAYSureuf7RkhQh7W7++D6Ls7GX0o1jW7EaMKVGPO25QTU4DnEkyBeAsJtXZE9gMZgyoPeBKaSM5IE7NP3uyHP75/6Y3UmtSGROd/XQpDojzO9i6qnYRNmJJXH1vdpkuCSyax3Q6LmP1RgUma3pkZByalbcfYFupmDNXn9ZGjZ0BHVe9u6d1KbxwhOmBpUUf8dQQkUL8nbMYr5BBvkH1hJjBfUX1iTwwIMZ5agJt16KHH7Zh1bdQYBo7NHayHnS9jI34AVtyAMaJWcIY3/NILEUQ2C4B7MwyiEnky7qXbenDyE0jzKyWMbXkc0dX6J+2u3t5wtsG3Uml+OFooqBeHckYs9yL9jn9TsKnIbvAju+S7oJ647gfJFHeert+eF/mcGJEwC4xoroQD7TXUe/vwWdffIJcGTo4gzbvVIATYLBEW5ulbWDk1Gu9jY4arpKFmTbSSlTCLIjcmikOm/1Zz0rlbZdSH5i4dvbLXHzUkDrScpejUpcFl9sRiRLQbbvefh7ejoh3VttlPTAMOxe7Kx5q9zdXQwKA3TVwgK2Ua7oO/4tBd8Hoe5i9IrvXi7Vm2QzROfigDt3PFrgqlD5ve5/+Sn34yytlPsLrCL70rfaxlc6eEupTi0jm41FgyoaeSP5PaT1tfGd+JMsqzSc2IYMqhhvxXLorEaLpiNE6fif+M3nybr6JQJ2ybE6E42G/bkNd7sPscG8kB0+SvSU7Mn9nn8uxUuTJLK61OvjwY7Ad0/guaiqfz3ILSvuqr6cDBRg+EXuMVQtJ8DlBUL+gZsnylID9ULvULh+MQqeAc42zfTqB7reW+vmoUHKpK0lEH/QlWK84nuPlHd1piVnq0eT3X3XqqVifKezlLGxRiFIhxW9m4bKPbHw7pjZ0TOoZ+0TcOCM3u3/plW+Tuvm1kwbPTDDSOGPywMsdH9Hbm8oLeSU1G7XyuLYn6+5yDNKtywK4K8oMHYjqQXjRtvJGXxYWr7SbORXw624H8Fc9ykYC1GL9Kfjwulrm0jDdv8blTCEQlAdPIoCAqhW0lEHoHz7WEs+TtxW0sx/SQBCrrkcJ3xPgvPnPc8vd+V0WEUIHuOHfIfA708thgqsyKIIMsPWffW5LH5t+Urwm1a8twMn57TW3o+ub5iU1hUXweeCwEzg7DK+uTpTKCk+6xnvNTgKSe5MdxfUZguNoEr6XiwEQ1ooTh3+iWs9Vwm4veR15lUCYOnG4jq5sI6tVTc8YK8JEtDDq/uV+vvhtI+Xb+Cg8Oc5vN0RkCIPGURBHRJAm7patmU2lNIBMjHDdOI+FxvcDuvinu4VBRqHmJm/NlqfAw29ixzOR10o0JJJXjvH5q+iy/d/zturOHQo6gWWVpypSZo0BKr4TWGC9rC9EXJ4fJnVd0VhiimOosF2h+VFgUQOD44aVlyBJ7lsXS41BZyri35zrOgmqUz8whzQ5MEcCRgt2WiYrSbQAi6vAd32blQv4FSivVD5FapsVwx2s7mItYuiaxus/T+QXChjRAOBZgtBCplCuIK+ZCEcwiepouC2mjR41wnSSTJBrnvoi4mfabJZYTBO2vt/tfZm4EiEqgibRjwtpoeTvNO9/stVi5GoJYvdz6N6GMVDavWnBwMWTSdZy5GrBfnd2vLMAzMwX83Nr8dz53CaQih1ejtmk1lvbfvJ/9DZ4l+G+Ee3x3E9pFGVIipled8//mEeWcjnBaVWtxFO0WkLqeaK750JUXOImcnZP5nZas/tFqNEtnBHaOJO9JrW7boM+Z3gU8vtZwlt+OsbN/HN+hTb7sexsF7HTGe1KmgWVSQycLyFFYqU1l9/Xs+gTOMVME3L2sA87w0fCLuZkaxa5lre7p7jJ9m0EHjIUhZlTpc0vQT1blY7WcH3LH9Zc9vHUnLsFxY1NxGyXzuDvdWjCm2Ri02vXizfskcynKXYamJUwZBcSdE7h4pwtp9f3zQdOAuIgq2Bjt0BV0aMISlh7DHRPC7b0huh1wSmWacyv8B+Rr3yHgM1XpkD9oEGZVxWqVyin7/U7igi8mXflGRvcnPUVlzPWk4kPOq7l2Kt3+q/K0Sy1Nmt7hfVbdvoO1xFa+//UNitvK8q5Kj2MesUKAb9y/QEehqRTrKFeYkJGmZmoQLAS3gFSyiYssJR6tIrUFykjqiJzDKBEPswTgl/hrTDfjWoLYvA2eR0kjK9ctdJyFHwj8luti8r56zuEC4YdmW0kIV3XzR0Ov2tc6++eNbLm+UIbp63pK96XHT9QA84ydboErSPI7xeUd649Nxfaji3il2nxdJM4Q3IO4wzb04/CJOD+UxY0+uVk4StVQQXU4tSFpo2AOvtP6sEm3+4wpyrrp2Hg+oMOVEoR+kLziP2xBUX28xr8BHqJTdvns1VRdHGaMcGQxe7Bi6PtQ9KAfJVmZxGWun+YhfkzJeK8qAi5HzQ0sPZU4xV/qwVAoXdT8lrWTGdHcNiOAkHWJHbeq8hS7J7Pc9sbhVDlrk1I9Oqr2Nm9U2552+IO22fxupsuevc144efyHmrngyma37sa2eDaHtjnsVzGJsO2+ImXxwinLjroMKWJQ8plQNSp5lNZt6LvQhaOnLw1VKW3VaXwoouPl8ZrbYIEgcjdM6nmkxPs4GQfcpWt+6R2B3QuPz45S+DAn49iv/+rNMRkMsN8L0MCrM8C2yZUtQO4PV9/NuIneugiAqi97QGJaWmHqy0YyO+e7bbRdgzDBEu1B86DORK+pM9Kek0LdYRAAOhqeUWeC3s3K4as9CHK01oIFo79efFjE0FGu5osJEsP429FgvhlxwpXM8+EeKvZMq+dlQmg7smbFrj4qAuvQRa10pnI3W1+rCtZCrOgSarhsIBa7BIDiAhZxy8JqnRVLaEtFqIdguVA77ICaZ8ah8QywtmKCpLFiugs7t/sRaZcBz/3GJ+5ST9Ub2ko9Pw64XW0VdtliZrdG7cV2tvbPe3uijJ13RaRHirTETKam2sCP/YwKfZc+NPrQp99CVNYIRE8/nwvYe/Ot6M4l66Of0+/3B6+kdXHOAb7NMRoOI6ZD0SYddScOxevKVB3K00MZ2qKDrboMRbp3dH3MW3QWMs6ELci0wfCZGvjJwQRt9StHl/ydn+zQ3GOeRVCW0zNV2u2czRqwUwRnGLlprUqs0S517kxtEfFi8Rbz0Xg+zdLQBeEk6AmkWPKF84yc7aFVijtJ8Jd8Uj0DDbh5aylwTOS7AZixSLgqivqVuHNvLx6eAn4PK1bQPekbZPtPmHzLszZ2nAVzOqPorLuhGxJduSxZbTiO4adeiHRhj2eGvqYQQU3HJ64Tj5XsoHI1/73l/r7gHIZH2NCW3Z3nSPaCz3V2HjScWDE6Lu6NY+Wktpy5JAVKq+jacFbYc/aGza0pOM7eA+uw5yWEawVgAWpVpohOqK57AeWZ6757rLtITyYqjJeHq1xStHI0tkdLcShaGPg57OsP2hPFk0HF3IPxaL/sb/XTLXn5AHs7fZFgNns9TI426nxhPoXzDXGWJx3PPoSGU5RDKgr33RGci7k40Dk6Qs2DKSp+5soDxly9IbwnjievavfiHq/jZ9ZbbzLei0/fMXYR7v0Jae0ZJ9NK5tg0Xf5UhIHJ8cfhCIxuwpt4//6SbhiWCBQoNt6eB5HvmFXECTul1fGVqf/2Rf08wBLGK/sUniqhqPf+oLML6JG56tPgiEJ6CfoRyH8FqJtV+6F63t6zQ+HXwx8aLcRz0DzM7p0sLlPmjjs0BmA4g6qQSQg+nGndaY4KQuANpA5ESI457ZnzGHdUKDPoZrEmZZx2G3lhG+LYKeyeF9Jx/RivixNLoxAWybtobEkNyoR2aMIBvw+Zrl6o9doEJ42AkAFh2POcPI/wfu18WESeIS/dX3YTLD+kUaxPg0Ow+TexjOAqdQHD27mYMT7cmwUftoM33WpA4C0uLjV2BB8EpC5jbJ+1tc4tZJOzZ2DRN/XcMB/7uHv/qz4w9saG5LBqKI/aZZ9qMSQmIAAAYIeXNzCMkQDDUvRbk9l2D+mRmLsHZ5vpw9o+olVK99z0iVVgAmfrrVaVMGRGOUGQ5HpkeoB+WA6PsamnI5AwRqdqUddc56CGI3+SgnLjQP0AShkoIibf9URKTg48biouulRQ4uhQYrX6Pwp0ucLJNi02eVigr4vbcBszf/gBZ9fQjY+MIE2yZ/XtxoNfBkzGAEffDsqwyZFNYBeug2dmxqsotvm+5PNCVgsV2UUfe9hvYVhpoOg2IxIiAL8drV35qvLgJXaYNVvmEVkXM1qnrpjlBAzNQ4nmUR+tItz0ew1wy34igL4ZPh9RDo6kqvKRKldhoGyVT3DDOSIoJXW+IiQSRP7jwNXhmN8hiOrYecNSXg1NQ0+0B9uWKSvHY8v4R7H7Tvi7+hzw6urk7AMpL0wV6OVEGwS0Wn1PVwhoJ3hq82IN60XmKv1UM4Qglir8AZ2NvZdeuPP7RstkCnUzc55vZKS47yFjC7u/lacqCMJ5bm0mgyb1VI/a3fEDBztdxKJlEF/vF9WuJACnSzQqLPigf8coizPPI2jJzQSv8aZCPadNgrCAIbVgPr0+cpQwVq48kCzpddTGrqLKwV97+N49m0nZ7cwLTLwxBK1PfVASEEuktq7t8db1nAJ3dRvDt9swrSO5eScnHM6I4r1VN43f4IJ2qa5P6tUqmCL2GBo3mpuW4KrZ5APa7pWkHFXAWIzLno7HvYhnWGGeOKM3YN5ptVijCOAK4fUU1uOPaiAP2WhPff7K8ArLwk0X7Lot4Chjc7FFyJNKpawwg0lvVJgkbF5XxFqgru/1KbUxhTnyciBmv0Vvg1rIiJyQoxWVsX71pKGiJSlXPDGgQp4ybzAGOmfq8u5N1LVp7pZdU+QFQKovRhxJyhnyZX2AqaLvjwdX7y4Hmjb7C8LZaVHRas7dY8qx/dVzWeGDQofsVHeooxet/JTaCOwHc2nrelgKeDerdYuxwFshQjz09YDwVB1Q3P6YvOFUW/VmVeJUMvFGSQdI/Fbjh85W0lqk3lnyCVSC9Nv43CpSeKMLC2ax0vfmLK8rAfpWYHdMIO16Bzd9uVzMs1kBmbs0gtdsnwyetWXZ8v05jwSS47F6RjbUPiv5ypJOrJ2TpjhOTOahhv0eM32YfT5VqMBLYG+q/1rP8ju7CsEx0xqSHvDfO72GwoqRcYshCtst6BqO/WkdWgYuzC+RWdmrRn3DP3e/038uHq5teFpELvLEBYaaUDGzjifHE8seTOtVYUMBEadzmxMOFwvAGZf8VI7A99jFlsd5bI5wLaoIgATYhGQ330Cly4Ov+C9FXTSYHgP/gA6bHG6pdhYaHKjphLhkaFmwLXycnnDIoB4W1nUPFAAldBLVQaGGqCXszwURvdHKCDb9XnRXG0F28Tkhe41LDVTuRlWIHZXmI87ArgDbYbNxwtq60FScCxS5uAH3klBWMIPi4PHAhFjkc0KWHD6eAZj+5ilpdsMC5nun5M3UW2ZJ4J5VNWBooeLweKggKbQCQJjpWP5ojk/20bhSVa7vjSIXrBp7AN7Thl03/RwKzvmqtH3s4Cpg0rAhXkS3b5JkWIRPJG90fvkIYDjQnaM1NdxvNtNvnNifqFv5j5E7bSc65RHqLnNJE+7dKG2UP63aD+DtANlfJx+kR3TJISxcbU8mvqIHccESDvM6CEVye7h3oovfZ24rrr5fg741CNOEG11robAx5xKbolgtdmTV2tvEZcQFr25okM7BH18tM9EjTIe3zPfBYD+4PtEAox1VUsqMCsXeTv9J7APciH7fXvTp1+jejoC0T0pqAhDKzGkbeRUsH+07DW/p076Sq9KKuCBeEy932Y7CwZuhfCDX2lNiqssPW3EZZU01XYERl8mSl7d7mDMUJ7l9b+ptylvl14FWNam/dnHQZ5Mq/iEvLJGdI6qjwbb29H6/UYJ7wQYBRlpPGqnNirgZ5JlUjyAAtATz8NOpqZYQApzH/xKrUT/hhlZhopfBpA+F6un7L5ClPEW87uYvxq0wE8pQ9gsLsv8OBkiGw0sD+WFU8k6bKupLT5n7nVUwQKxSjlzJZhcYLA+c26s2PM4SvJRIb2WblNJ3zssRwqA9QjM2NAWggmH4BJty5r0jjfx3uTcBwuTs2Vuagi3qJBdhB2MzaaOo83gP89aquscBhBLWKLry7CUnceJsPNBEltXyWCjm3x4ZMJ8VPWz3Ow5Za2G81Wc22SWhmT+qbDXBdqcFCK8pSVxAd80vvnnNUSHyO25evzIl89JKawl+0SB20ejOwbw7PUw3SecGeepIWuJYw4893JDllurwEjPls8g0iRfXQ2YkD81DjsEWYlQNASUyLd5oaEt0Zb4c74WG/8ALiTeJlSvftdiEp+km8KCvtNiCwii98FxanwViFhdFToTTEN0ChxbZHAkQNAAP+ATaiwp9QDKl6yAZibSdC7nanCTdVn/ht4LoochYF7TCdYw1TfCFJKngINQTEIH4HEBIrZtzAMBIbDu+cshFU+Ldz1X70IrY0y2pTkk1jX1oFcCk6Hc/kaHu2PAWtDCumHUq9D3VG8a8mnznwKzJzPKE2oMb05gkrg3zPjPYS4vMlblMJTRBZaDaa9svYOiRHcyW15bbUkvcbEsKpc8H0MVc4CGNJQTCVaz0V9yrOQsoXZCbrlLZdvzem1p6QGY7tCZ5dVkCQ8T1ZPD+i4tVHBTcxN1MgJ4F9d6UAr8WCXwESmSAsAbvS0GbhPKwVwM9jALsgs3OO680OG/R75cqeZudXQwhY8wnoljEXGpkaFwkDbpCY8pw3QoAfpPlnN7nyMnlnAk+k5nx6+sZy0HDsm+enWDERQMEeNN31N27JaVQXV2VH20AAgdtw46w82ws6/rdJvj74Tw6EzKfA8b/5KNYe2lmNxhPb8cd4fiYYvkoovpldcS2EMJ1TtVibpnPX7Ae7eOyp1rtpHmT23VabObnE9ltwnGOZl0Lne8XVGUPxUUHtjUbMm+JjUJrL1kdGlFuysUV37eSSyMGs7A7W+2UYkAzMJKX9fw+q40l/Isi1pyBJYlARgF5Z3j4GGQMUQlZy81uELDvvbUr3ZuCjsgX/GPu0n+W88pac0JTm+SiBKUkcM6/a+t+9VPqbs/LkGEFOtoIZP8LHdzaln23DfRvp6o8HUTU/xjXE6eOL9+DDR5+xf1YivRnv+cj0zDwQVt8M9iS26q4pCYk22BH2N6Jo5GLoU03He2GD/OqPN/o33k6P1jf/a2fHEJlrH5CBwFaX+tBv2TmZr/IzseHzgk5UBEfcI8a+3MAxOwQmhIpdyM40/AXMwKaq9QE3O9xikAB7R7pHYwJU563CgPheggkrd9CIDkPUh5JQQ5GmfYG6Kv8Gk8PPEfyv0Y6vmw3/wDpVh0zTIY+v3ISdXYbCgZ/wVfuKfIIhVG1HGoQo/kU1VrwrhZxS/6A/6FKc17/pIMYjhiJ8FBcHoMckOSUrzsX+CwyaBUuSsmTNH5drVTLw2PSi5PlX47Krjy7Nx2hEb+lBQ7bf3isjJFuZjaXuxGyZodlDF1+48APT5L/PtqvgnwWJa0D09pU7IcpYKKYgUHIdlDmV0epOpWOuK/03eGLiPgHcip/NWjeIAaE6rIbw8AHPIhjGwUGA9Xpz0yXTvj2+skZRheecLgAdyyv7i7Arj8JjiFV9vT3yE/kVkCN7P/m5vy3DLfD/BsGfHIJuAkqtI7cr0kv12Mrbio7iy8AH3IcmxqI709D6kkNerwG6QNHkt2HwDTVNKzIsjg0RJek8snCHx9mTo5mGTCYoxROETen/hWRpr3lp/WjHbFDOMpJFI9Rq2MjP6l5AM/6/dGCAgadnYKVTNa4XfmwWtgzLrn6cyWBC1jwDf7h/+ZhJ9bnY27gOXR3cFZwvU+btv1dxUt1YB85+ZP1yd8M12xb3PatpvRUqnTyPKq3gtlY+2ckgQXlggANdNWx1nPqaVI8/+7UXSU7BY/ZZtRDl66ZfjZVsGH8P+0ERPTa1eNC/Vq4YsxLyjpseb9QdNKy64WfUQVVMn3ErbBH+HJzMVydyStIZKC9T+tbtxrhWtGZ7fDsLmgX3+fcL/e6vGOJILsqR1hIbu2pDyZlqn5jkFME7KumY6iwGRW37ZwhyHsnrKDRwJ0OwZ2f8Lmg6nwJvrbBuPkL8c5gKBaroynrS0JhYlhgyl3SLO8azNoPMRNR0qvtXInFt03H2vweym+ysgXlYIFsKD/hyXxKhHZM2O52eprB5M2+Cgd8pfpJkXMuLAjb9ZjcGnrf0v0iTcdFDd9YAiY2tviQXU8QGakMEjv6hu6qtacxSsvQtX3zVbigMRPuZbQ+y3J82YnD1qMVB1WWxKBDFM9xwXyq+awjTSHiWMigwDS3aWgiWlUegRoaVvJOmhSeSUk8cxHOzbraMF5EjdiOV1UrS4ZGRL69e0A2eDOQJgN2qDWl8OGLUobl93yS34O5zV2JB2vwnwOJ9GWJb7yqyU1TGOUy9gG8AkttGPjaftBUe9BrnqZHMUXlkDmMZRny8e7R39mvG1x5PR28tk/a8QDf69iMe+0tIF56L2FD77Dpa8jb2bA5gsiytIsEJwjk6qr+zh3eSZDxlGfhEAoMDhQYhTsrLS8wZAeUjGzn/GujT2AiCMOjWp6EJz6ecddCRhw19iUW77QGAjXjVb8ceLX4JBX7uBvwPPBQ7CUTasWDufrHNLQjVuF4AN2iuCkP/aJ1qfF+mqZDOAtXteOmN5TgDDheVSYW4eEQqZV8sW37YXDVaR0S9vD3ukl56SN4DyOHu+agKia8D6zIy0iPzHdD/H5V2TJYyVVokr9fRYnKHeNqNm9akKu6aiYQNbqSG8eQaiVhkgFyZDZVM3hZDNtkSznt+Uck8MkjEXUKi2beufBKerFVLCoJmxiNJheFhlk2Th+gjFgqhscPVqyM5RR/PTz0Vxx04GpfDcLm2wusm522zgeGfvAYta4LTNabxAzBq7pp4b7dLaTdNAQj1+XcJAo8VPVuGaAKDpGUddkC6zpPre28ShrWRtg+QumUg5PR58o+GssxjOrMcRYn5+vFgED0kbyfHfshiS6VYlgFIrUu3UCh/o8Ouey/WQPHIb/jB0j5OTBId58A7nHFcBc4/xr/+qrHE7sLwgxNOMUkf829CcsZHUGdGDgm0WzJPj6+FPBkyrSU/OycGLAfxjrjzQrp88cxGEQo6BQJHwvnTd744Awh5sKJfBSqqhV97WTW/jUYW3ZKHMnpL5rVuEHMtvztGhmvJHfnG6t5Xq1Whhj//0t7h1kRRG7yo/1GfrU1duiEtSUI8jyYhb5qVUwKogYdoX3TpcKH0U20PyiwHvGK9l0N4m/ZCJ3iWeHQrgNuZy48A460Zj2L66QegcLKTSt6EJFVfzLRRaEDAh2uLj0y6+kOotdwACzjBf6UF8Q+x1LRQuecm+ZbzOfQ5yvBZZt3j1F6Trjj1emgXLLwzDv/OpALvlzfqbwsXxk47t4QjwBSzeiTRfKFwEckC4Ts1uWIl0ljf5ZuzyGgWA3JQEyBkHUC7ovxI14L0h2OI7eoakDlFfUw9esnoojrf4DJgXlPDiWISRINg6Voszdbgpdj3jBc4IUPg/RKwio+VPrjbEcIHg/wStcQ/iqjyo+qk9JI6711Ahxrb6syn+E8T5Qs+oeuJq2llUu1n8/lUuD1GWnuOVuQhes1nnH1QNJBUXedaGGKYwYKhwqUX/GccK79vtUjm1ceN5lOjhGOgByxZciLXKF4p6JznfkR3T7xf7xYuEHjRMBItqSP19b2dImNkWBtzRPKWHCbA4YP+I818vmU+vvwOIHCePNLTbam/8JzQBej+GlEGD4gtoJ19EXQTppDVfbeMX9eHNMpQOdU14NdD9B+yTIQgi2yLjFXT+66OsGhak9wIx/A3qPlSaSnnxQS3L5buDyRNwm/ZKjRDXavMMqmRriBZYa6sn5kauzrhuCjnguw3lHjQKBG3ddMwzh9iYHQBwaW0SPDGZKPSbAkACFzE+M1GmVpvZXMJlcVDfXrEGXgfZ191OddvCfrQQGnQdjoeAFpva5FMacKU8CoZNekME2ZKcvw0aMxMRuLQI1nUC8XtyrZCaVQNZGUBq2SAG2RGKdtaZm7nHfLH++DBOAYQZvoNKRANtrNr0iAA+paHoSu4t5FIGNC3TdAi+Jr/203zUbQKIy74Osm5REzgaZuJn+QGlWXigBJP54Vpp1DWqdk7Hp4sN0GfXKKNcOcMecEiB6zQQuXivPYRzgx8icMVCsCyrtFY+m0wy4FJB1Z6Y5KBomzui1U0HDPgijgGowfTunuPElPMMAbSBDqP4OE8Uwmv79ZpE4CL8/pEs34GBssApyn/F0Y63jiMUtQkVt/xdEFddJ+WAkqd15u0C9s2WGuGjgzlpIKs4tdxF5N1la6wsPBxlk3lp4a9CQpC5t+MUxOkQUmbyxJbzDJckNkRWRT7y98Tyd2piaGUmtvhAzI2cYnxOlWRT8rMBWRF5dufLRu1FRm+PLQH5mVv8FwF5/YfeCx/CC1pxChKKvdaxI3C6RCxbmNEPuy2cAWTCr9O2jRtXyMKk1YeVxEVjCfeQJPjP4qsN87ZO526eqKQE4CqKj6lmxI34eY8Jn3N8bcducUxNDpOlhw3FHAMVHyN0oEZDJGbeBDLZq3qPZlCn5t49yljsgt6glnFEuZkLXEa7RphAyfGkJuvjdD3pwnlcWOSfbzQL3mnVMzRjwJtaJ7DwDHsUJGuQ60LpGTD0lDzXo1kHZPsJNOuTMVNsYNfokDM5UA9mLrw4HuQLOydptQACEtTq+ySJZUf6pSAmn4gDbPYrXDdROobLBWp4UApLmoM+QKYa3Rh0B3h+gB639W4pMEzTfu4UHYl0sLtEpbAGO7HcwxNl7R+NI1fHiOEotuDIf4w9gnT5GIAxax5E3QwUBgoJRw1DuA3/X89oX6Ghfk9QYo9/ieAOYoiVERq5HendxGNqcSAOLl1MZoHSLxp57dtLqSzEDPKeQ9jHqXMZeW0uzUeTSs55+f/a69HAlVl9drBeN0lW+Z2J7/XO9mSQvlrwrOLNGUKDCIsnWfVzvqGYy9OWT72YOTXiVtFPmY0NPUNBNfZn7IXMiJSzZQiYXeSaWiOW6t9QwEsGrx+IzrB3PCXad0bKpzeQHmjQAePTaSfFiqLH5QpmKCorRKCpGSBzOF/jWQoYtaYoCuiH/+g8D8DMWNuzCFbSq6bQ+9ReMLwNWo62mlNOuFKwLrnmf5EmOum+bH4FSCIZEpYRajbF6bWVChb2D4nLjg7DnbcWHiR2r9ctUL8epaUrSzOde65BEkjIAlcxLP0S/7CvcwBRLm+R2Lnjh+oO6a5RaikxQhUeW+6tCbh3nCCQRer428vOUwIsO0I9la34fWrNcV1eTMEq0p0sqW9Qs60TEjiYSS1rX4lt/iibr8V33O11plEbyDS9IA+D6wN/7kTwCmWIWv1JsDFrJJ79DgtXSPCHoEPRyt4cC6mZFOQaMDNXrWa43ttnubG7QulOvDsqALhMOxaBYnDaz+nWWZ1OaMVpnEYdpYTMdNfCiKkOFyUnmhnHm68WLFjiHG0sCaXVHER6XHEa9Sbh7Ed37sDS3CdGUGnPLRTAQtmJipUd4wEsbhICsMFksxOLFzOoEPLVixLKXJBY5HAVN5flXzVt4iGYvqEA6iespgpk5UEMS/LM/o9oC9TxBwA1t1fFZGDb+H3MQGqIg7+iB1JQs+JrTJzPJyq1stv8lLjRmEfyio2bMkKfNd+GCyuoyBYjeVai9ylsS+sQG5UgSsIA0ObM+JnGI8A2LBvuXIiAbhl9SJyhgmhZys+57J/c8fjwd0u7RrXubnvz7BBKO1xKpnupafMc1veLR/GaIrV2M//I/pG22EjQt/aGgjCV/2CyUqwwO8tA+mO/PzUs3MGDsg7/3S7v5mMlEGkKdnLXOEWMF8yW3n1/D2Tx/bn2Hg7sCbVtZwIaUFzouaGeNvJd/lUpa+HQJrwv5NDkt8w1S9IjHxFgVSOwLleQx/g0zw3UjRjKsa/Tnn595NPxN4PrOa8aB38hDH4yyMM+hwtP5LFaFYEyxxB79+eI3Wv6Gew40HPduHmI9i1IZFpWbrLoq7R94t6E8TbdHZlZ7+kMcGPUWPeonv/O9pYw5aBYPtAl3//VdL5FbqiBvFuAfIP205ZvmcxMYtyek3RuaaYtqt/IgincWMOM008LUEdF/YNQuVFkgcnlpwViPB4ELzLTYl8G7pI9dLmDn6RdA29qopK/as4M/gvGPHrTQbajJBX5WZg2Z9fowZM+Tq8pJPX3fbZW0Z+LPa6yy8MRt8viHlrsNaIvRGcGmrq9+t3h+E9okidRFY6NonsMj6bsjFDhxv2D6Pu7jDN3wAO3HUMqAv3BX1IW3YjsMJ7P19R2dnTy29oXYlEVHmrpREIEFv8krncvoYb2f+eaPzdnWDp4xwAAeXTCt7TrKJJ4Lvws/KoFxNI1dtmXTIqJs3cmbj6jms2ucLGMSpQXJW24QZ/YH6lAnV7oCG73GLmdmWN4P7u+0QIdiWSfyKJQviuTmfskXaH640eGGAr1/IKwQ3L6dwzbZtfYXJT9mhgDf502lGv+VHCVe3c1uKgZNYZ2b6hPwW8dEeRWZEcSrQgK+n7O3smmmf0g+XvrMuKl6vaIy0Ns8te3KNzYjMWpxkngMj1glIzuS58GxFb0IqhWPEMLPMKJoo0u/UG5pLhQTO3zOq7BnPtqbnxP2fiI0xDb864CCvCV4Cu4gDam1fbzdey8WQtzoxgdQ37sOEbGSi71UQltALgNNkx1GsbeEWpCXzpJPlNz/evdcBR/+kbrL2hN8/csgiPiwAAyC9qUezYuAQ0oxEcauQk3s9bQHs24qnVtjXnCv8t0x4SWuGNvdWV94Iz7tzIq0GPhuxVFz4fmTYT8L2/SBz8q9eDroGAxHPZO7+KARn7ZVWqzoim9/1YT3ZU+zjA3ad8/SR6oP+qXCVUsuc9ixgBkPXLu2NXC7jjvROqNmS9lCBTS/gruBjf3fnu3TJY36lmNDJmtB2dvyFNZj7el/GkSLRdKICwBXwTM0ekIeeUKev26w3Qvgg/OMLOrTLeXdL3ogyKf06GaDK9T93yqJoRnuzyR5eFtw/rHJ6EnLxiEfXc5y27j1yxQiqP6BOGZLnb5OKlsA/3Xka6MywZH0Zn4AYHzsviHSeEuGe/Vk4BvSYecEPwp1GcmOimMquPIl+smdOgyttAAEFRBLVNL50ZOd/3oKoPXFbRw7WdkkuvKU/NqimcRliMcwR4TQKiRVsHNqYnQ9DuFsxfGdSz8wqfBapP1nDkWisbzhKLYtbMJBMT6eESQK6gK2NAYm+vxgPVVYhQopON88uTnQ7JSDi1LICvBasVyUUaeE9a1yGeE1/cCO1rDyi2vD3bGOYd28OiW4YLewGymDkuvzoE9rSUU902Ekjm293wfHdmXVYjSae7B/TdzLAvG8z1+KDUhG7Vq6aYFqb+yjO+IWfJNPfH+IxG7sy9ARbQrEOlzpfHjJg9470ccLDuY76NEM3TLl2K7kxRkD0QYYsyt/E6mrN4ge6Zfz9cU1O41Sl/BkZ/2gK77wa2G5bL1NVQuzsRz7MkJ0m3UxyEQrxRxTqJRNXoA5lA==
Variant 3
DifficultyLevel
674
Question
In a single grain of salt, sodium and chlorine have a combined total mass of 3.8×10−12 grams.
If the sodium has a mass of 8×10−13 grams, what is the mass of the chlorine?
Worked Solution
3.8×10−12 − 8×10−13
= 3×10−12 grams
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In a single grain of salt, sodium and chlorine have a combined total mass of $3.8 × 10^{−12}$ grams.
If the sodium has a mass of $8 × 10^{−13}$ grams, what is the mass of the chlorine?
|
workedSolution | $3.8 × 10^{−12}\ −\ 8 × 10^{−13}$
>> = {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 4.2×10−12 grams |
x | 4.2×10−13 grams |
✓ | 3×10−12 grams |
x | 3×10−13 grams |
U2FsdGVkX1+KOMF+2DECD83gDzHckl0rhkK43Yv8re658ujFsRFC7GbqTfA6XAnq66HWg5umkWvHwC6yDeeg/Dcn59iBTvHhBYfSOA5Pyu4cmypmNVNXC7uG3UIdhsirYx9u5uWHqLdpDCdPKm82TNiPeI4S3fj77Qi+OjQxuuM/NxDyk467xd2EW+yIG2eZLFdVJnY/NPMRvuI5L+kcq7P0sm7Ta5+ykNQqsKAK8uvhtfy5byM1HKuh4e1nrQCO+B769M2ZsQWXEnfZA+1qCxgajM8uJEaiKSPzy8Van8EoM7DTKYd68oT3WPTX/C8yB2vu02TlcNV1Jyab9L/w5RLZL3YZaybJHYYpeuH0nFbBSjMfJQWERiBar0SAq69ImrFjWd2Xhasfo/EhK20C5UJduQnzl4UFMjNETgAtkNaILL1qpz2EzVxqyVCj49HLujBY98T9V151RBHHfnSi4ZVUia9SqTVt69L+ysF27zHkhkU/qi+U7Vi8bV91f69PjK39MYKePjyru3+FNFjkPmfBHN6Bv6kJKIMKYgeQH3q7vQQixX0UIHDHvVgBTBJjT+Gy3QpZ9Iw0ttbtt2mz1Sguw07e1HfhYQ7atg8fR1pEmAmnBqtp/Y4FyXRo7baXmth8P7ntdzUXn0h1qRSMKzAUa1pJVe6FOo9TPCpYf3nzZmGawNaMkmAG+Z76jf94REiPOrQkhLv82sUfWtpZkggMrRC2rArERgcLQCMDj5FCaApRsqrrwOfas84PgcNUOsh99T3kg56c1GWsqvm6fMU3fPPAacpl8T9/+uYbYk7MAWb8LdmRV+Nl65zBgm9yeGap/+IB0BlczWmgR54qxsG3uDZtSetHNPbjL7yAtNukECT/yPhv3mvrgChDd+NR1zUbE7jvXQndMPn2ZhY0zAsKOmB6FphWGfKI9oqTA1dqjthLFLOA23mZ27y1oNMwx5SJKvXM6syTjIrFATvaqXzf9z1tV/zeRaPPznTPxNi5sBjcjYA6RGmuEVo/FnCNY6DwFB4Rl9AdUURZBksUPhUYSpmXfEDDKupKmGh1Yl5k87sp3RR4BCVVJD7o4CdNiDPs1MbCoxyRNORglAZ31xieJPuMfKLfFvrl78igu9/pY0UD4ptZzmFm5vUzX41zoEMvnYaXzyHMErOACBC2xwpR4XBwd+ZO0OuqqNIyNfa3ExL0TdArG1Qzs0L0NoBnK3ZWeI4hbBQeWvLpdiv77r2inYZiVswoGJrVGDEPOuHKtdyI0xDKZhRFsBC1t9TBb3h+VVsxyIxGmkYaU1M9At/kai/IarYK/Ky8AyqVO2ludLIkS+UtHghYNUN49i+WbwtkPWqSxXcogORftxZy2ckXxvJvcX7NzNBbm7SzdEqGx01u1ZeNqgm0C3wP5yYMGJSDQ8zqW+OelWM2s1wxJ1ZhT3dDeoTDb3SyA4IpVjdCLMnaJGtEuY3XPWHcLjkbt6M920fKexGfXpwJ8Yfs+KlpDVcD29ctq1rEwEZ/DPor6vQ7awKQRbhDhXfgVqzIoU6keTj9oxzX2O+nSqJzTCQzxQ+woTkrs0+/nn2zJPmPaMrm/oCJfBExJAmqEI34M85udDL2DrVXfvFpVDl5aupsErxbGyntoG7WXiYND+Mik4rOodQzDOHdHuNOi41SUOt5s5HlHFTjwDB51ahuBYHFdlZsej005Bmcw5/Mjkw0qT9FV7SFv03mq3wBda3ZdsdzxXQjPcWIoHngdFhRcwlQ8i5Xh2cJLhEN2nXE4JhgpS34kTh/JWfrzt2K2ojUyfsPe/cxKcenLaPY0KxCzW9Xd4vbv1926WrnGgZCHeU5drilQ6D5gAFMwJW0b9ouQStO00zvhgkjjzgkGB6eYgnBWC+7DWQxO+qYZN/w+2V5aO0ziIzDjC2JsHL83AQ+uYY0d5zAch0GcQmb6F9HZhWBj4XsBMBE9HFfl32MY9Z/lhY707/iCGWQRCUjOnlUaRUUM36NST3uNePMac/HXfhB8aAZ7z0J+3/ygUQZ2ZgUPIxq1uOJsNY+U962cgOEvDmgu45UVfKn6i6Sq7/d6IEKRpCq0bfblv963YbIZZyhiGtQI9n+ecK+QLk+0KxjUCSelSsrp45nsrRFaQWB7+jSNKvOFydkcOOS6snjpSGRA6nwXHDH6E1aYnHnZZIi6StxGxIdW3Ww7xNd+6UAotG/NnSqBXtlzw8v1X3wwmvrn9jxOe0ZPHwQiCYlCNGBvO9jBMnIfon0s+Oeao7yaHmTxcrmtheAslNMqZQlg7y65EFQyPtaSqBdrtsyIsIPG1+ey7pyMCLbSBcavo8HxRyZ4Mq526txymbPn9irPzPk7XRS1XbJ8B50jX5yaYpUfPjpcpYyPhl59gETm/HO0tgmahoXeFparwMKIPEem9iA4SUkswhel/721ksaDpvWXOPkCh5nGHqqVnipWcWiNJxF7gSrbuMvWJRgVVNrsL/xyxyVd13Q6Ik3vu9mm3AJrDcshTS8HIH/afzTVqhvM71TBi8xmX8uArE0Hn1+xtDY4Fl4vc/x1q8HbPyToHhN9blEYA8sCC2ffZ1ycjR39ICo2vpd+GFsKm0pF+eBGqc0DYqnNOxCAlsrhe2s+8O9lXmrQ4urIUPNnTBi76e0QWar4N3NI+uyE4dpyQwm0chjlbt8P53L96Be08HAZ2YnC5vAep6ZQ9XqZlNauqDPF/NRT5j98U3b7Vy9klcCiyeHBq461v2kxo8xy6q9+1Y51s/SXHgaXp2SIoiKWA9cSBzoPRQmHHJwSpBgi2n9F5g8RXu6F6k+bxVE/qHR+cFIS+DBs9x6opzM9UO8G3bPP27/uDxoKQRQ3I+ROoqsoEIgWFBTZQsY00Ui58LfOXlky0c1P0cIXz2Ryt5NyMB5CHMSbvhIJYue4lLjAt0eArFALfLFoo4QqH1QHg2qlZtlk80qTurRvzh4qymS+7CjHAIoJXSxs5mmbLpHR9wbi0ZJcU2Yl/jrMGEiutcqjEYXYSEEzDbB80mPbDnLz1F7Gfdywh+YwQ8zR1OuFF0x8jMH5YrC0EGJid44HL69zeWyrRljPzH5/f5L5fGkYL3efKRLkuPQ8558G5vr9NImIsUA8kJ4mYxrgs62Z3JUMmnIKpbzN0ljir/dgRctzDrlylZTkocrEWnUQ9XMNzWzjc6gxisuhD/dH0tYHcVz3PSuPwYnmGZkaaNDpH8XQfo07fWk5Y7aWppbhQ2E1JAje+GDkt6stwjmmphZAuYfIjrFumPjufFWguBvGv5qz1izYSFS24Oo9TWg34hJ9cBZdMJzyCGYjkCMuGRWvQAHWfgRIrR/+8xzllZ3MwVMRV4ffKtAQ/DSIFHKzqBTc8ivTOkOVg9CXoyJPui0hYz3wVgEzCMBFCl0PPh80qYKZlxDlSQrWLxGCZJOeOXt3Z6mr1J/gLviR4iwGhs0bSUfgeRYEd8rZmVxSuaXjmD35XxPRlnEwqHwAiCnAC4RnjiRISOWO7cLAuJRjyxLMH6FDy6uj57LfC82xFrZC0axseeIB5xZODHti8CG9l+3WIPWaHBDdqNh+IsBMRwJtUTNV5m8M3xeHHqeP3OtVfiFWOTfGufAMFFMoiqCzjwV2FKkLRjzAsb3GadPOudelrlYKAo24G9KKqFaaWqdTlAmirAiXlmXuPullXEggkN50C0l5y0o+9i7g5RND/J6/5R2P4fEs0up/a0fM0x5CROu/A3KCBDXHuigXh/UNxvobhWSFoXSDg/oVYKswqPfM8Y3iyLlYmbyQXT7oDKAYpmPL7p8Xv28WqNOdLuIgSa3P7onZSoKX4CS+WOx2ORGNezDsBVtNs5WvOd5Q6aVPu1u5L2t/Bx5hYSxrjDwqIzUOwSy0ClJwC13cPoDUceHTr2jAQXgUariarX+oDcJkowRLM+UFQFA6sI/FUkOVOuik5ya3lF7zGztj6cdy4uYU1JbdD8iS8x4fwX/TssBchDvzOTM/iZtzOpDh7D/wTXCYhmvtvOedraoVekRqx1lbeZhYIsELUP9qV/YwS7n7wmf+BOUdbDG233cRB1PXjRAUKq/xafIJhCu+7hkwUgcEa0LkIwerrctznZtJ+3LzyzRdfidbyx3jy+pK3hz/9Cs9WNO7YdsKs9CprF5AsScYyaxmBEki0QIK+UKJfyv4x//ISkK2VB1J3AVT1Ck9Fdl+boRF1vsNRoiKXmZ02lHwK2CXph0RKmqu6J1ZEnoTVCcAiN73tJ+oSAcv5JoBJ/lx93TST9cxqWg/4RIPHioos1rAMUl0TizydjY6cktk1wUFXaeg42NtmI3wtZt8gvojsU+y7EZiO+y9BnyBeMuvrxUXA0IozCtFCwrNSHjZyEpEHCXeMjjT0Y6goIRJUyVAiNnjGQX0wZubwOCigtueN6WtVmLZnLUCgMRylU3/CYHgShqggOY6YMMt9fFdW2rb9/eWMIolE+lud1l6Emv8AHUndXfURWOwRHG9LRJn3C0SW3/C5elHN9p5Vw8ancxfLR1nFAgCnAFzrGeEig0TQJy1rwz2hZkCeeSftL8SICDb532/1BbRjDrZ7ZFVuh1JZquTk5BkHYQFxhUrQSlZiWkoYkhFKCzy83+hoJkwSUG6XfM3GDMlzh4Ezib4UQc+CzFjCAbio0UPNC1QLmMakN45WFQCEcCv9H2cbChoK/3//7Y7jLuZCQutL7rvOJQr6KFem8FtvcEQgM8sGdozueoFJ9MsymJ3zfs3nckTPnVDn7b/CYGrgnxnGWkVIg0CopaeVXj/NluYg0f7bhYpiC7RLlC5XGKmhPqg4DiYbT9oKltlFtZO2UzNurhuaScw4PWRIv7233bErW/PYXP7iGlozRvGHvisSAQamD6CE/CWdedbNOSNkLYAywS/PaD4sVs3jCicsPDOpIjLojB/WsFW/taJqnp+x1FgTaBZM89KvFErrsQheBqThf7l1O+KalsvZMFLis96FAF5SfZkDMRE/gy5wNaSMB5ileBsYANsrjSFvdXLaHzs5W3G/2qCa+fdDuUDwdxaZN3SpS0T/MhObv1OQVX6KuMSm2QmcTDlihGi9pf4LYKqYAPtcjY5ItFQOoLGN3qgF9uJ/dvAX27BmnvzCgS7+OhI9+ulbF2XkKzJizTZaMJBjxikCN3H/k09+Nt3p7qSjuGMqxdJu4VSnoTclntyKAXGeyonsjRb5f6VVQ+m7gfFjhqgtJgHCsPg85iS6/qQuuzCYSqzZCjKyGYjYtqaElJ/U0CkPNv5TYuWX6LgkCnrOD+H4KIj5iO8DiNfs1Ux872ArUWBqOhLCNy36Mtiox64cCR82XepCLmVVzJ0+S56S3iWv+xK0YpveYW8mWKxjQSMX7i53lFFUBnlgKG8nWjNPQysI+C/VCWhi83VViJtwu10s8eBGzZRDzGib++fwl7Gbagne6+vE8+pTEiRPcLbEaJe7GWkrSeBDuvYUH71oESGiDJNSDA4H0n0uSmnNQpiVFtY0KD9KsHXLRD0NcEwo0XkUTxSEfaG6ZTelnpumM80UVdZv7olM/MQk38MzJ0WIaa/RQC+wngZQ4qHKRmsbCwa/YPudrcVcBYGS0F1TM36OqeIzm8+bZhIWqx1kiUYHT8LJiTy6yS0nNgtGycs0WLT2dR75V230wUw4GJd7qa9yPLojTQaXtYuaNtl05cgI/OLQXYJ2llMYUF84QAs/769y7YqGfwK6ZGyoSGuLFJ9OX8/qYGDQtZcbYPwm8g7KA9qqfWYUrIojilNyHit/jDmQ8WTEmIHjwI1YXE1hlsZZ6mP5YGvT7A3L8fleXUZhbibnb89tW3hrPP0cOg71xYU2M3SYKNzuEnZvdz+3ZyadK4g2LU9wXhwvFfQ8hcVVX7leeJDA5aatw+4X997tvperWvvjWviAAYimAULwDF12E8eHBqWFwV95+vXVpqwzoMshxa2Mr8WAIbuQUwvaMYPhfhFKAMI52jdzplkks2dknDRDwXHu2Pyhh9MXRQW27cPrka081jSdGloINtZrG5WUSFXqkFnaR1RxEKfkTg7An+QT27yhKXf9mqQt0CZFG6lCnIFMJwZCNiK46KwK/3yRK0NVO2ABqaRYcY0xLDuuQ/RBKLSET7VVEb+FDA/kPu8A7GS1DTiRDEAvw0duKsaXC81gK47zGVcjgvafti33ieaQnRPPKjnYrzS51J3iXb8XAc8EdMwFxVJbHD2m9C+gK8MeBu2FUx2vj18Dz/g+v/pCE+T6ha1FwZxzXHuA5qYdNOY6SNIbs1sF8KACsG7ghXU0qFLI3UTzIp9SiFqUnKn9yD6jAaQO83H+QE3YfSATS39AGBM+5lc2VgdQoR0eFoEfTLaNQ1IxfqM5WSWe4cBYw1cfqCQkrp0DIG6ClwUMjhx7yLbUq919XcoboI6XHoxqYW8vv8nmEp6G81PbrvViXk1phrNejZ39pn1fCsfCnktdMGbB9fkuF0IBV4qTAlBTni3HSGFiLUPuxw3n8BNUpXld6g1xkZ85Gm6j6Bmh4CzRQpIzg9t4iKkcDDTDWCOv5vGhwIfWcyMeEKiIIjcRIPxQL8L0JXkMPJMUqeWJAUqvnO6ePqp5grsbhTPdb6FJ9Dx8cnr2V6DIMIVSTj9CwIfyn9ENqzmZj0oDJBixL0WDxj16QiihEweVb4Z/yd8Nn4KG3trmxPlpWMhbzBhXgDcaOCEQ05gSoLGp33sgf9yI+VTe4YLpEPPB3O+wsOOWNe6p69IvtFlJnRljb29MSw4eKVCqYyZZkRyBnuTK5pH7tfEunD3hpAv27qLli1JuRktCvFifjR0eeH/Pgr0LUUGvzz7i8fC2j33kgIi9RZ1aNi78ySGGV2NFMGFA+YHPRHGiYv4XrUxzvcvw+PoS8KW1Gl/+dpJMQfHfM60RNkuw8eeug06sdC6qeuefv+DVCPb/ZbaKASawdfW+Yihf/tvcXHxotK97HivCeUn0ht82gpNGGTQBg/2ohIc96vSbsyE4mI1C8IckUJbjjVvfgKXjpuHhCR3z8U4YpqU8aNlJNLxeDWWnFafyk2uXEo+RciCRTJSIVEbRT+x0AsIHhg4a6MtMh9eK6fUdaQrRQE86BDCMw6W/x9BtAQ9eBiWHhnRB53qiGeacPM7bzUX1XhpilGZsW58Et9ZHHDl0G8JRqjeTp9YIGLfu1Omcu3NUr++kYggGw9AO38nkXhi5vrJ0+EYQAaxMIGdGwV6AgBpszw8YfL2OghO8GruolyaIXwP8gM5Roi9GMQ9GX9RX4W4hu+IOVp0k2k6JQr1pCCerKuiCx4LhoGcMMFqzHl4XYiqswJNbqpXVm5A5Pv5QEYhhBGouiGCi0AVSJMPHwq5xnRJyGWaWgx4ruw4FRJnspOF2Fwt1x+1jMv70qm5HpHD7zfHNaKaHFRYCrIWeUC5McYQJ1ex8ZoNB6CcfEC3F/sLtQkHlQKAkjGx2hTX4ZQxqJmHGSPGoYnzAfUSKYSX3V4mJfZxlhE3pNyFY8BHX50Az0yutX/fHRw3cMtWhMYxpyo7nGHxvHWuJYoCkiT2p1RfH5dMUfz6jyx0MsH0xGFp4gbACWCFDOY/vXojGIvA8Vr+0RrlqhXnp3FaeAXhFL73xxGBbK27SQJMMJ9AETsJF1KT7bdwX2Q39a1Dji7IvPy7xVAec9eFl+Fy98iMplG3lhyP2g9Yir+Rs7U5QfEKWVIjBaibL0ruW8L7TyrALp1+BWcgx2hq/HznkGottDEhhg7kqAJUq50+em7M0IiVD9VDOmeIXexPrFmva9v+/B3FD5jNwW849UKqwufUHWZJr+NpYX13RqHoXTbMnGEVnjnrFwlHMfmMlxoNVuM0Xk8ngDL7atJmCJnm+zIuXaoAVXjoMPs4xxt4HG8WwGR1tQwj3+3bKPgbp5ChZPd+nVxWUl12hDyJHhePl0xiUBq+biWxrLybf0yTAjQBplk8bLyC/UcXIDhFUGQEMRCad7XKaR6MunrsblA+8KQjoRawIeRft/s3fl3F704Hx0cPjkaypOHClNMXHPG437xIFBV0MZOg/SuinvuC8vLV6lqCP3bJd81kRSzhuqcXn8l9Qoj9BFCdXLlYduLYqBasr5VjTW5tA2N2k+2en4QgACj+aIgPdM68KDvPhI80J3+3kkVUpULmxAC2RWawdcTOtMX+ces5I5e+wNB8ZSyvREGgS6kI/X/AMUAGOxM0r9TKq9lQVu3/YPEW+mgvqpygvtrMtqBal8tKyjJbLro9zHAu9CSSmmb8bgvomQtqV1zn4kug1YatU4tfd2oSEAGi1YbyPRWNlScP3HuJ8n3XZgz5szs6BC+oqKrZCpciuLjEtFrSSEKapdXq4oNjtr3fsYq4Alm7XPAmvJ64Qps6cws8Zs/lhWTnGAiqNoyek4NNEzqVY6x+maW/OhzWU+Jbkxx62spDQ/jy9bZl5eoMbIKDrj3q0P0LTAn2sFDorHp2eOos4pmvGv0JgvJMTx2vaYiqjNJ45rTgANO7IjqVNjYlZUrDuv6K2i8pkQ/3bRk9iWOMV3oB/97Xx6B0pv7TF5JVW1Ay6cxi5LPZ/9OQipDH2Aj6YFQ3btRBRP7//pLkNzRN/zlA7FrmeBgWgCs4qd6i5V3ydRmCRJR5GnV/0AtXB5RZal8WFUCWr7fTXLZK/vC/B2WbZBKKUWDv+87+narNdevrgb4u5ZDgMFWqYMREyCAh2MYJPcSBcRSI7MnniNqTYGJO5Y9XljW+NX/S7Xk2ZBeTgApQNH53zCSjr+pe1BgD71k1SXrFTWjkTunVyd5UWEIkuar416Lau0+sCH0v9u6AwRaVZG/Qu9Xkf2Q/5jQAadumxUcknEXAIwVVp7TvrnyOL0DjLm67vJ715Ya3BmNLQhMVgFkI/Nip5TU4WdMJuThbkRJfePg1opbvN8/bhk7EMRynWpU4isbgadDb6cDmdh4qmBEQuufwWht4JxBjvXJNA+fAMjOr8QwHlYmDr4iXMmr9evOsTUgEqEpjyCVskvZg6Qph7f3SeEBu8lkxQgHP0Al00WAUNDvheiPhTggwcIFTll0XZ6wEQOQdU95Qv7XYBYKbb56vUPTpWHRE8Gw1sLOELW9Nfy50HZUDPE83l+bCOgHtW6sGIqi+C81rAmCoxUCDHOAqitxhU1DLmhuV6fxsaO+oR5Y0jkHndqFzJlz587xBSYuA8EyQprd1DGexRedC0N35SSTParGkuIo7OZKZiHE2R7N7Cx4/DoYn0VXhdIT9NXliAFnwQ80rpZFHk4QHAzjsvg2GWH9wed/dt1u5wnIkSdbjIEnCvhNPBXNM30o4MKq+TUcSW082nGcxNEvPHoJUeLJGbfdTSaePnWkT6NC2FkqyY5i8K/09SKjnJNISQOd8cnR4gbD+xXYBT31L5LtDI0rOCGRTUC2yqbcjdst5sX8R3JBJPLIg17/ewok703HbX/9tM6/GcBVPyGvcfUXVaHdTc1lKOe9uN4fIXr9f3mGnIiSwPSJSpvq60Gp493rno3Z3U2Ofm0fHz/L3ExplQfQUshH/+j9D8gw4b+1ZaG/zi2mzaQ1xXtITckT7C2l9Tv6ez1VIbhIQtSyoYBi7ejYm3ZC7fMgbpU3zJK1Vjm/iQkkLFP37HJSXFKIv+RvD7Q/3BLjaCV1iLpOetvsLcMBAaQHlvSjh8XlI4R8nyQdKq2RDjxexNUivF7qB8aJAFu6gH7DitaCL7RWXrkMX4pkrpR3V5hg0PLSArxczeurXEnnh2nR9QwP2efsv25lYVT3FFhCP+d7sjON7ZAZjPQXo2Pi+W+0cNp0xGGvNGf0kkESD0fOD9iz3kTebDjApKk+DQJaMYAKWtb9KFZslRDw3Wq1KFAdAN7bU9P564xRJo75Yu3gMAHaxWVYpPnW60Hcf0YxreUk5nQUnQP/Qp/oBe9EaH9TPhdbFMSnvsHR9srnIMJi/jVwZGlZtu1WrccmqbmDKVbbpAt0np8X9Wd0t97X77uzzyXDeM3XbW7HyyhU66LZfHbc/y8Qx8NRq082AQSuIksdTsmXu6JDyagKjDnY2oRK8kKoJK914nq5tb4P1JxhzZbfkxVLmdgWLf/NxhdAX/ANncfQyrkA3wcBiP0cvSPbIfqMQcRePv0DXb8qqam0GGcf/d6yPJ6mZ+gESlSCgEEXjfJV7wjgpQhrv3B/KawdmaQj2gAUbetWRRA08aEeahhEUVvqeZy9EpUc+n9y6IwFHhY6162REXJHyqfs32PzjUycJ6tDRjuBfzU2PGCEAAz5PTniR1UT9ic3LpDBDBJRjx7FNRP4trA8UQGPlEgUfPaAQIfyj3Eg4lfV4Z0b/nhrWlCuL4egf15KML6hl2naJvbmoaoCwkxIDeTRrtHIGzMlmdum3p+1QgjjWJzOFP6OTermQOLUbn6lXBi65lGJOeZV4+2ufZBj0hf4rsNemAQHXA1O4+a5kPAOH+nXqN47p/fDsTCC5fZ9JacYTJ0EpkY6zwfVW26dz85mvomj6OUxXOJ6Un5G9Ye/F3vK0ZOX+E2dxuX2kDWOVZndIBrltjWoEFDHUtMOLu6z+FlLbgA0gmZGVL6BI/UXm1CnfYvClAki5ODiTNPP/WPVLHd6yynEC7z1VujC60v32uKknHcyexJZjxUyO1jG7fz+zGJKvW6ZwAv6QGS7luuyYRovJkTVK38Grdh63vz2OocfYMOFFj7s1OfYx5L5ZeR/lot8s3+Hy+aApHiSR8rQzcw4byfLTj1xCLAoB+43TQ9Dv5c65YZcANrUxaT7pfFLSOPoE4NejOgm51gDP2ohlJu482atABRDNmduL4jaFx7uvs+h4v+PXfjJoTd3GVqgWh1jJR0C2N1p9TrAs2+hhp8+2ASazSnTfTOnTGXftkz/AI1iR9nQtNlPAV8S8jVjZoWCN1vg0wCHbKza4f/nvcDFHfCaUxtDjKh9XmJZUuVBBnCk0rHY5Oj1x+sokXrwIdiEmcT/DORm2Ev2HIY51gbcGbu49CCbLJlQwsrkFRS6oNBuGJm8cwQO49f6EOJ7Cqbn3KpMrNpskWBxMGbw//H0iXrBdsxXOjgLSyatZieHliDKFFs14Apw8Tw1tBkrfq76d+7RDGmj2TSBj/wdSi0I1g66XDSFB4KJBKgrGHDgIwayiiLPSHN5WtkBawf4XMk3gmyHbi7s+K6uR2DnbIJIMMmt1FYcpF8vkB4Ux/v8KKIISKcrXHWPug4ZKl6GARrDJJPw8WNawje5dVKA7Afy7HnEVvZZYWj7ONok8eISEp+HskiSTYhly5diWzOw+5oGpdarS7jP07wq3BFOyt7U3fuvoyWpwQBckdeyEPoOZ+/jzsKpV14n65N854y2lNTD89L8xiC9kJxDMNOiHGI/4eYORCFvwTPoMoccmmxtTBUXSdi4Dnl0AOMVqP77SfPO7hxanyZSuRecRsZ1lmu1TXWGo5KF1q2xjkErDduFBPwR92U+85EIasw+37lKQFrZap7aTT/6BvdjOjX2CcgbBQZKjTvpFvfsC+cJFWt6jPph39jyPblNa6GVvnswpb/+PoqoE/kX8cJja95nkuCW6ORtcQC20YCLIAfUMwsGGJk7SPMmk40z1h0fYKIUWJaIGrGPkcniZCEyrQa3LHD7PMHsbwGUSf9NA+SqZWzywsOONdcwmAdpeVoCJSd08ouN+TPhOklHCqAQJ4B+qNQfrbMbzmqZrrdh7CO1cX1JLOEVwRv5Yay30yPZJ0W3JuYF0noH1sB6uNeyCNoXI287+ouZiR1rxlKqdHwvGzJQtrk39UjOsFp8+jZHeaPfr9O+XlP2o623MFtuZLGrDDbeMdrqk5AiCU3ywvM+T2OxZ67tSJVWISi0LQnPyH9CSVFZtJ2Nd7kiM9682yca+AIcCzP5So1J85gohrVBcQ+DHVfAyM/pvkcD+Sk0/CwvIhNBvfQaEEwa9TlEk7vW6zvFvymu6IVHNytsjA0/zqDzMHfJfI6yum+xBwFNK/PZr4NA4xipsWDjNCZBEak3X1JHGPjSK6Ufi3e+t3OVWmPjBfW36+rchXY5v5Xt/jptc30sHd2SFJllKk5pywlZV8xIwI9EoG+RUOhR7KDCGqqFMY9Y82i16Y5uIruc1ThLsJeiVsTM/aNQcu7/p7gFrqngCIoW2xHbSt1jZlsj1KAqpXA/JKX33Ua49TqoDBksLL4yatycTFDKEYIQqW+CEUVDyHyoTNhcevcQteE12MLCNQ7H+N0d9UaVPTlwVC4rQJZ6K3J0XPidGUnEfjJzIZAhncxB2l+z8ZmumoJqxmFxcimEFNRpL4kiHAI/lBLFa3kgjfexBmWEU+wwvAo4vTtCgUaQR7Rr2pHI6zPKv8ITlgwI8ubteRmZ9riG29N2CT3H1Y+9Qs1WvWxrpFcqV5S0XGd1HHUMYeuOEnm5nib5JvY9cFcT5CaLu2P1SBH1GImg/CjnWlZ343xXFgx5vkOw9IG0jcG1/TmYB5ShIsZdv1bkU6h62D17tY+6fTKgny8opaGG5z32PZwP6F/V4GzY2KHtex8/fSHxoC0mwtlawoJ0v/TH3tnmnmVIzePa/o2kNpksJVTMIDO5RLtmOaMHpfjrSwcJeRM7sfIW3EKi0wCgKsyDRPL0BeQbaFdRBK+19KHQL36PGfo4u3Bh6945SYSkmaBErREAzd4LsyLWpqJca8Z9heeuUzbbdKZDQgQV1xonJltzZHTjSc1gfkwTQuHO5NOjgkuCjCT/bKVI3Sy+sJsFTHqPyQa/BsUqEhDGDRv1x11DKvesV8DuTsHYUqeGdE9MAF02z2AkgHdscvDp3NibzINXfEE3/B2AQ+/+nW+L3kGfA9M0etozIWkZ7WQU1mxfoJ1mxqgAiDXv/OSZT9/kt2ISjcvF2feh/CbALEJODKZxA1DV3zADDiAnZ9075DOIP9vqELWLYkdsNIe3mVPtDDlmibnoMQ2q+lzWP1BmV3QeNgSAbbP3aWsJdX3XeVDqMsw2185NicWA/FNAvR8LCYWML7pAkQN9Xg4oA4Lu8ibjJRcbeJDD17ho80FAS6v/hE9o4v2kWL/SVGp0xZ9JpZTwYkEjkIGPkfl3BdCfv3m6m2Bn8QhDQPD38IgpuwIHoNrgJP9FdpL6emNwCq790nG/C8Ch2R7cm/mfOJM7QkvJNNVJmz1qTUfhqRBdgm4aT26ExcubIwBeiPNoTUlmPAR/O0x62vAo5ddkehu372vrzZbBGflUZ4gO3HrZ72JsJHGgT8jzp4kjD/H2EcFST/Vt5oCx2IsWqSqHd//WV+dDznKSVJ/qQI/t+GkUY2lDrSSU3Oqikp5gCzcVbp8etunR1q1IOGI+fP8fv6WkrJfLtjjzZtL/nkvI3wrPmYfyyGWQisY3E6+ZqldXQ23T8ft3Y05nahzvFfiRABMoFzC0yktdBlg1MOwACrmnpJ7KSOxQ5My3Uv2FPUCIM3zqWAU8reyETWzrhvmH8MIu0FIBSTQq3G6QbpgQhiuL0C58chzf2BpKSwqIMbXkmOf8jZqC4s62Dg83NE1F7il7oEWu6DwmZIRy5kav97Afux6deeFWHS7UbeNMCQO8E/B5vGVySR66TbBo859UrFIZWFaF13hkIjmR9si07foU7O/WgEIb+bdH9mvsRQkxmdGvBnVy/BjJNEjQxuItebIKeuGhWZe+cnrRVYfuLeHu6QIvjEHPXEDx8kpMR9UXPRArXPafbEI8Epjm6JDGGSRhYSsf1qMtrA1JVGTyCv6aMaoHxKfAkXiyFxJThslpk5T2rsmwr7hvam+JpnGfW4oJfZwZ3nSp7ujvf/0w7+/pv1kxOA5uTN+T0M0ZtrBEyzztfWSZ/8bO0nqO/oEQt5yK3Q/ehHc/NhduLYHgUNe0cutVpn5FVUmCU9A6QZqVj0LujTQOuAUd3i3G6sXIdxKoKD0A1qBCQB/qJlv/5U7cfPCnkThRLCfCTkW7BHGfpczY5LB6IMkxw2R0cBhCHV0YmIS8P5EnY04W1s/UNVHktMEVzYZiZGNdhIRuGbuu6TDTkKuXe5l6YIER1z+CNoLFEmQvyKTf1/Ksx8GAKx+mGzQgwlrSwKEQaA7iUIGuhJqD4SqGze4ADTiTpkupsplOO4aB+k2wIxYie3aapyZQ9iCBz/P82ihtNmTTsDgeIwt2LUVxOgEwtyx1IO+Y5lSw3MvHhfvpAeUZhq/ECfza+lyP+IZrciIgm+XuoABsUqKP/flmlsl2iwzk/h/aCYCfmb+EHaUs74jj5DmY6S6q6bKaX7vWPHN89NEZ1ptxHvVUnM48RVYlDX913ljca1qMee0YuOKmEuQA1gIYw2lwV+62c0s/wylOwWmlRT+A3BLXnmQSNcV1ZgfTid1eeVJn6TkF6ghmAnjZKmLdKVZFdeh2LHPXsdDbizKwQ9R73ArdVUVfsELEZCsVMkjVvLd6LU1py3j3gMZ+tGV6wu2Fz8LdW3UZPGtMuvHW0DONqJjGRbVenc3ntkV43P/rUeCSN31+2fdppQoCQYqW0maq+W8FMQt250NEjn9N0g9MOkEEoa/abCguoAt+EC5m/CdMdM5Mh+9cVAMqKT5JEROEVUx21cc5KBFfXH7eeUKrqN1vmofEqsoMnA5QIkhCZ8/RAneCKAw88mssVON62KBZq71romhfzoSJkyjf64Q2mUvh/D521QXrKogIGYC85mHKyvAjT5+qjvSq5gFi1v8mxWnFO3oFH4UQnIqLEGSQnWMzRLJXCfvzIQ0VtlpCMUPtz4LEc/e7/TOnPfe6/3JIRTjf4WxFL1jKS0WSrlu1yFFCy0fQZl7l/nKlWc4u2mk/MVZ7V2zHe8JoNIfyDEa/ZjInYqMa+5akmu8ygm1qzbUjVkYS4AN3ateaLCU3MAs+ou8OWjqxOYrlMR5x6ceFdbdgOyODmb0NM2KwjZkCQmHkkm7SArQEj1hSglYYmMOkKYVgamfapZ5LwciUoNcWmY9IX10v/8hnQOPYwsmpndA9wIpB2V2aPvrV1rj2tCbcthtW+IgAKqxJsJkqe7AiaRFW1UuFSSls0vpQRLDC+Er0f0EeKKd6gt2JIf+0q7eji3630CG91dI1r1TxuM35m7nsDVh8ZELXRQzfkjphDQXzOunZvyXG2a28Vc26J7pCwUXG0uUr+y9wlqTTPbsEzBMtL4lnSsVUx36TJJFUiD4vyJJ9fM8J3VN/mAprnrqNvOb9lwyvRlFZaZxOoiui2+x80GCm05h2o7uaSKoou9BQQtCbXnug7CPtpu/lyuPL9wtUvxj4Fv7tf4krmZSIGTXo7yRPOblD7FGPf7SGOMaEcZ6LZ+heklAm31uvtVw2X6UjVEAscUVa3DtyD2WTQJ/Y4lD8zk1UWzhBDxz2x/F0XRbd6T9wQn/N0wwKT4Q8fOCBJrwvJTrtUyscsNTRkt+oa+MV9h/CLyLA2VnoGv7JcDHbHyBVyszKM2dL95FBd+sxcvYaEk5ohBd3O6u0a3T6Mo0jEUNDIfQvCn+JlGHO6owNjuSKwStFXFpNZeKLupoFRQE9r2/MQn2ME9pft6a0A4PDMfmCBVlyXVmhVqw9xXPnBdzidZdNM4lqW0v9yNhce502A6rru+aWaAddI5KkHViC5znu9wBxja3va2ibRvmNJ7NHRf7UG5d9Js/U2l3q3mgc9XwjS4NKt7mdn76/7dVi8m6iIF0Q84iM3KtHsiGxc08amnzZZQWM4Zvy5hYv2OzV4cujhYUDRokHcbXWGWvuseQuDry8e1zL1w7wd6um67cDw/uysQU9oNtGCpW3fviJbT1Ryrw67UZko1HEjVzuffB7cfZ+8u2fPpwI7Q41XzDsNLrIdkboI2i/yV6S9H7VZSVMegKKExzaDAhYa7i/ootSm40xfqCFDGoBRwoqIihlpNG2C4LKub/mqFuz2VozdkE5xXMPKoFd7ILo141lUR/RMQZx14ohANaLbuzW1Lq85XBnh7QzfzqBiFJBYqg9o553FBBqTXS2GihQ7ynqDbw2dEi3vta5Hdal5HjFnlCxsDgUewIeBQCY8iPhqDFt3A3m6WdezK8ACowJFJpTFXKgh8rQlomww44l5BNp+P0L6ybJFuhmimb4sCIkr8enybTs9ZFp/kxhIE29+AKc1dfPUapQ7iGHNFNpCCCY4mErpEx4qln53MQ/6a1D04k23NS2yGmPxLoJJ+2MR0jQkMjy8Y7B4kxHLtn3ofWRPu1PfWOPtmRKoSUQs5DXK474sZkkb1p8Qr+YlRn6HauXShsFTN+bZi1MIse2ftbtQFvzCksbGV4oMIG6K5NB/7AiRrhB2ZwbtB0QYKKZNatFOWHQfrzKtqUNI41Eop9UR61ioETih/eSD20nEJMDX83HixPZDJYqiveAaHyzA/EZEwqrBjj2EJ6tqT9uy63VK77PCYtXBuFGI+2JZMSHXJmg9rU0mElSYjeHerRiT2QT/ngYz8u6+m1eG5rDX/VDwmhbxl9rWMx15ONTH+HUxn6553jmD4Ob511Ey1aZ+4YQMRpY+FXonYcMLtnOoo5E3ArjmIT78PLG1/BJE6sAaK6an2M/7vw4ihINFUO5//7wcwJzqtxt69aviDZBho0ghVXKSsKNCQmSO+CgWyn9/UKY7s7SzKhNhkjhIQ8F2GULk4DU+PKNz6HbxOZULhicKXhGKJ7t6Vvxj3+VvT8uwIkuQsAq8VBG3/hOQQ9HYHGaQjPW+0+8uHhDs0HLW07ZBVd/MX4a7S9cvwZR+Zgd4jOJkyNUGv/+2jYOalZWthtLtXkadY7OiJUa4wD+ndGFx/bhYj43dAfzUAgSrBmOu6U9GGJc6x/cX30+YY8G8m+ZADuJizneWRa73Bnf6FCSJnPSTSScCTMn/5T14dWqoYvesE4a6NNOTagb9T2o7SJ3kY33cGQjojtfMN4U/xaKHvIasV5rFpWNKsgwg97P/b90Au5/nXDuT3jebmRuO4rQQTb1A9HwyGRizvj9Fd3qPoPcGowqvZtNhnPyDqUKNWNl9mI+wJVTEYtpq+c14ZNMK89NKcKzuzgxjoN8DsDVHNp07FIO2EldrDh2xtzhGyeX86ElyE/5SAsaq/JMWVriF1gjbzs8kkwthpMDHH5M6i9DjjN6mCyql+KQfrfJx86coj/So+YgrJLe4nn+EdZvlFQ6XcmJYtvdL+SuxIxxfRmjO/TJj0Ol3rQ/3OxW6aa4x79JZ+WRCMvdLVD7kgdwD+tItZpCzM+aEI/5co6fBczzmxk3OsF6F7NOj2O1tvFCmyVYB4uR5XzyNItga3p2T9sAJXGZMZTwQCHSzzRV4bTgOVBPgBkkJn9XkolDWz5R8tsFfs93FfuR1hW0+Zh8C2pEvyObVDuQPwDcsQevieur6yy5yNC25WFi9KSb3O7ChqfFplPFV8GwssvRTqghUvuRRKvt+nCkpwBpsb0LrTe+taI6877OKe2fFVfW+8GS9FUZElWtnNXxGM8Ck0kp3JkjnDs8RkhXfXSdUtVy/16NnGVUoEQfweU5TG+gn+N+MlbammYy54aoapCB07CrEtGW8ctoa3SvluGkkhFiXAD+DWMYnJGNOhuNplEVOEz2XUt8h8azTZvyiS7pQUOxPps7W38tK1jJLf1NJF4tqowukGkHZN/A+pp6uuVFVdPnKOLCcRTZtboVHmsNaFOJWld0mKbRB2pv/m/n69c6cylKyAZF4mzEF6iKW/AwpZ0bfk5WWd7CXLPuxEEkD5Arx2qcCdBGPGtoCn0lz6lH2c2VadQ1frMGNi92kp+nRNiV3+p5nPPT0Q/K8fe+gFyk2d1w7WSfOqkBdg4N/AD68s2g0IJn5v7nF4+WJC7zhC53Gdo1fjwnv+WqnxODALYciAyyl1H+bPqJuoLQ4SFV1f1omcXJydvSI0DIB7qQhghPBa03TFetj6KFFOdMT3icRTUDCQGUvOV/vy1S5r2gog==
Variant 4
DifficultyLevel
670
Question
The active ingredients in a tablet, iodine and fluoride, have a combined total mass of 4.9×10−10 grams.
If the iodine has a mass of 9×10−11 grams, what is the mass of the fluoride?
Worked Solution
4.9×10−10 − 9×10−11
= 4×10−10 grams
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The active ingredients in a tablet, iodine and fluoride, have a combined total mass of $4.9 × 10^{−10}$ grams.
If the iodine has a mass of $9 × 10^{−11}$ grams, what is the mass of the fluoride? |
workedSolution | $4.9 × 10^{−10}\ −\ 9 × 10^{−11}$
>> = {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | 4×10−10 grams |
x | 4×10−11 grams |
x | 4.1×10−10 grams |
x | 4.1×10−11 grams |